• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //     http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 #include "statistics.h"
17 
18 #include <algorithm>
19 #include <cmath>
20 #include <numeric>
21 #include <string>
22 #include <vector>
23 
24 #include "benchmark/benchmark.h"
25 #include "check.h"
26 
27 namespace benchmark {
28 
__anon1e6b2a1f0102(const std::vector<double>& v) 29 auto StatisticsSum = [](const std::vector<double>& v) {
30   return std::accumulate(v.begin(), v.end(), 0.0);
31 };
32 
StatisticsMean(const std::vector<double> & v)33 double StatisticsMean(const std::vector<double>& v) {
34   if (v.empty()) return 0.0;
35   return StatisticsSum(v) * (1.0 / v.size());
36 }
37 
StatisticsMedian(const std::vector<double> & v)38 double StatisticsMedian(const std::vector<double>& v) {
39   if (v.size() < 3) return StatisticsMean(v);
40   std::vector<double> copy(v);
41 
42   auto center = copy.begin() + v.size() / 2;
43   std::nth_element(copy.begin(), center, copy.end());
44 
45   // Did we have an odd number of samples?  If yes, then center is the median.
46   // If not, then we are looking for the average between center and the value
47   // before.  Instead of resorting, we just look for the max value before it,
48   // which is not necessarily the element immediately preceding `center` Since
49   // `copy` is only partially sorted by `nth_element`.
50   if (v.size() % 2 == 1) return *center;
51   auto center2 = std::max_element(copy.begin(), center);
52   return (*center + *center2) / 2.0;
53 }
54 
55 // Return the sum of the squares of this sample set
__anon1e6b2a1f0202(const std::vector<double>& v) 56 auto SumSquares = [](const std::vector<double>& v) {
57   return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
58 };
59 
__anon1e6b2a1f0302(const double dat) 60 auto Sqr = [](const double dat) { return dat * dat; };
__anon1e6b2a1f0402(const double dat) 61 auto Sqrt = [](const double dat) {
62   // Avoid NaN due to imprecision in the calculations
63   if (dat < 0.0) return 0.0;
64   return std::sqrt(dat);
65 };
66 
StatisticsStdDev(const std::vector<double> & v)67 double StatisticsStdDev(const std::vector<double>& v) {
68   const auto mean = StatisticsMean(v);
69   if (v.empty()) return mean;
70 
71   // Sample standard deviation is undefined for n = 1
72   if (v.size() == 1) return 0.0;
73 
74   const double avg_squares = SumSquares(v) * (1.0 / v.size());
75   return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
76 }
77 
StatisticsCV(const std::vector<double> & v)78 double StatisticsCV(const std::vector<double>& v) {
79   if (v.size() < 2) return 0.0;
80 
81   const auto stddev = StatisticsStdDev(v);
82   const auto mean = StatisticsMean(v);
83 
84   return stddev / mean;
85 }
86 
ComputeStats(const std::vector<BenchmarkReporter::Run> & reports)87 std::vector<BenchmarkReporter::Run> ComputeStats(
88     const std::vector<BenchmarkReporter::Run>& reports) {
89   typedef BenchmarkReporter::Run Run;
90   std::vector<Run> results;
91 
92   auto error_count = std::count_if(reports.begin(), reports.end(),
93                                    [](Run const& run) { return run.skipped; });
94 
95   if (reports.size() - error_count < 2) {
96     // We don't report aggregated data if there was a single run.
97     return results;
98   }
99 
100   // Accumulators.
101   std::vector<double> real_accumulated_time_stat;
102   std::vector<double> cpu_accumulated_time_stat;
103 
104   real_accumulated_time_stat.reserve(reports.size());
105   cpu_accumulated_time_stat.reserve(reports.size());
106 
107   // All repetitions should be run with the same number of iterations so we
108   // can take this information from the first benchmark.
109   const IterationCount run_iterations = reports.front().iterations;
110   // create stats for user counters
111   struct CounterStat {
112     Counter c;
113     std::vector<double> s;
114   };
115   std::map<std::string, CounterStat> counter_stats;
116   for (Run const& r : reports) {
117     for (auto const& cnt : r.counters) {
118       auto it = counter_stats.find(cnt.first);
119       if (it == counter_stats.end()) {
120         it = counter_stats
121                  .emplace(cnt.first,
122                           CounterStat{cnt.second, std::vector<double>{}})
123                  .first;
124         it->second.s.reserve(reports.size());
125       } else {
126         BM_CHECK_EQ(it->second.c.flags, cnt.second.flags);
127       }
128     }
129   }
130 
131   // Populate the accumulators.
132   for (Run const& run : reports) {
133     BM_CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
134     BM_CHECK_EQ(run_iterations, run.iterations);
135     if (run.skipped) continue;
136     real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
137     cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
138     // user counters
139     for (auto const& cnt : run.counters) {
140       auto it = counter_stats.find(cnt.first);
141       BM_CHECK_NE(it, counter_stats.end());
142       it->second.s.emplace_back(cnt.second);
143     }
144   }
145 
146   // Only add label if it is same for all runs
147   std::string report_label = reports[0].report_label;
148   for (std::size_t i = 1; i < reports.size(); i++) {
149     if (reports[i].report_label != report_label) {
150       report_label = "";
151       break;
152     }
153   }
154 
155   const double iteration_rescale_factor =
156       double(reports.size()) / double(run_iterations);
157 
158   for (const auto& Stat : *reports[0].statistics) {
159     // Get the data from the accumulator to BenchmarkReporter::Run's.
160     Run data;
161     data.run_name = reports[0].run_name;
162     data.family_index = reports[0].family_index;
163     data.per_family_instance_index = reports[0].per_family_instance_index;
164     data.run_type = BenchmarkReporter::Run::RT_Aggregate;
165     data.threads = reports[0].threads;
166     data.repetitions = reports[0].repetitions;
167     data.repetition_index = Run::no_repetition_index;
168     data.aggregate_name = Stat.name_;
169     data.aggregate_unit = Stat.unit_;
170     data.report_label = report_label;
171 
172     // It is incorrect to say that an aggregate is computed over
173     // run's iterations, because those iterations already got averaged.
174     // Similarly, if there are N repetitions with 1 iterations each,
175     // an aggregate will be computed over N measurements, not 1.
176     // Thus it is best to simply use the count of separate reports.
177     data.iterations = reports.size();
178 
179     data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
180     data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
181 
182     if (data.aggregate_unit == StatisticUnit::kTime) {
183       // We will divide these times by data.iterations when reporting, but the
184       // data.iterations is not necessarily the scale of these measurements,
185       // because in each repetition, these timers are sum over all the iters.
186       // And if we want to say that the stats are over N repetitions and not
187       // M iterations, we need to multiply these by (N/M).
188       data.real_accumulated_time *= iteration_rescale_factor;
189       data.cpu_accumulated_time *= iteration_rescale_factor;
190     }
191 
192     data.time_unit = reports[0].time_unit;
193 
194     // user counters
195     for (auto const& kv : counter_stats) {
196       // Do *NOT* rescale the custom counters. They are already properly scaled.
197       const auto uc_stat = Stat.compute_(kv.second.s);
198       auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
199                        counter_stats[kv.first].c.oneK);
200       data.counters[kv.first] = c;
201     }
202 
203     results.push_back(data);
204   }
205 
206   return results;
207 }
208 
209 }  // end namespace benchmark
210