• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Parts of the implementation below:
6 
7 // Copyright (c) 2014 the Dart project authors.  Please see the AUTHORS file [1]
8 // for details. All rights reserved. Use of this source code is governed by a
9 // BSD-style license that can be found in the LICENSE file [2].
10 //
11 // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS
12 // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE
13 
14 // Copyright 2009 The Go Authors. All rights reserved.
15 // Use of this source code is governed by a BSD-style
16 // license that can be found in the LICENSE file [3].
17 //
18 // [3] https://golang.org/LICENSE
19 
20 #include "src/objects/bigint.h"
21 
22 #include "src/base/numbers/double.h"
23 #include "src/bigint/bigint.h"
24 #include "src/execution/isolate-inl.h"
25 #include "src/heap/factory.h"
26 #include "src/heap/heap-write-barrier-inl.h"
27 #include "src/numbers/conversions.h"
28 #include "src/objects/heap-number-inl.h"
29 #include "src/objects/instance-type-inl.h"
30 #include "src/objects/objects-inl.h"
31 #include "src/objects/smi.h"
32 
33 namespace v8 {
34 namespace internal {
35 
36 // The MutableBigInt class is an implementation detail designed to prevent
37 // accidental mutation of a BigInt after its construction. Step-by-step
38 // construction of a BigInt must happen in terms of MutableBigInt, the
39 // final result is then passed through MutableBigInt::MakeImmutable and not
40 // modified further afterwards.
41 // Many of the functions in this class use arguments of type {BigIntBase},
42 // indicating that they will be used in a read-only capacity, and both
43 // {BigInt} and {MutableBigInt} objects can be passed in.
44 class MutableBigInt : public FreshlyAllocatedBigInt {
45  public:
46   // Bottleneck for converting MutableBigInts to BigInts.
47   static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe);
48   template <typename Isolate = v8::internal::Isolate>
49   static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result);
50 
51   static void Canonicalize(MutableBigInt result);
52 
53   // Allocation helpers.
54   template <typename IsolateT>
55   static MaybeHandle<MutableBigInt> New(
56       IsolateT* isolate, int length,
57       AllocationType allocation = AllocationType::kYoung);
58   static Handle<BigInt> NewFromInt(Isolate* isolate, int value);
59   static Handle<BigInt> NewFromDouble(Isolate* isolate, double value);
60   void InitializeDigits(int length, byte value = 0);
61   static Handle<MutableBigInt> Copy(Isolate* isolate,
62                                     Handle<BigIntBase> source);
63   template <typename IsolateT>
Zero(IsolateT * isolate,AllocationType allocation=AllocationType::kYoung)64   static Handle<BigInt> Zero(
65       IsolateT* isolate, AllocationType allocation = AllocationType::kYoung) {
66     // TODO(jkummerow): Consider caching a canonical zero-BigInt.
67     return MakeImmutable<IsolateT>(
68         New(isolate, 0, allocation).ToHandleChecked());
69   }
70 
Cast(Handle<FreshlyAllocatedBigInt> bigint)71   static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) {
72     SLOW_DCHECK(bigint->IsBigInt());
73     return Handle<MutableBigInt>::cast(bigint);
74   }
cast(Object o)75   static MutableBigInt cast(Object o) {
76     SLOW_DCHECK(o.IsBigInt());
77     return MutableBigInt(o.ptr());
78   }
unchecked_cast(Object o)79   static MutableBigInt unchecked_cast(Object o) {
80     return MutableBigInt(o.ptr());
81   }
82 
83   // Internal helpers.
84   static MaybeHandle<MutableBigInt> AbsoluteAddOne(
85       Isolate* isolate, Handle<BigIntBase> x, bool sign,
86       MutableBigInt result_storage = MutableBigInt());
87   static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
88                                               Handle<BigIntBase> x);
89 
90   // Specialized helpers for shift operations.
91   static MaybeHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate,
92                                                  Handle<BigIntBase> x,
93                                                  Handle<BigIntBase> y);
94   static Handle<BigInt> RightShiftByAbsolute(Isolate* isolate,
95                                              Handle<BigIntBase> x,
96                                              Handle<BigIntBase> y);
97   static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign);
98   static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x);
99 
100   static double ToDouble(Handle<BigIntBase> x);
101   enum Rounding { kRoundDown, kTie, kRoundUp };
102   static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset,
103                                  int digit_index, uint64_t current_digit);
104 
105   // Returns the least significant 64 bits, simulating two's complement
106   // representation.
107   static uint64_t GetRawBits(BigIntBase x, bool* lossless);
108 
digit_ismax(digit_t x)109   static inline bool digit_ismax(digit_t x) {
110     return static_cast<digit_t>(~x) == 0;
111   }
112 
113 // Internal field setters. Non-mutable BigInts don't have these.
114 #include "src/objects/object-macros.h"
set_sign(bool new_sign)115   inline void set_sign(bool new_sign) {
116     int32_t bitfield = RELAXED_READ_INT32_FIELD(*this, kBitfieldOffset);
117     bitfield = SignBits::update(bitfield, new_sign);
118     RELAXED_WRITE_INT32_FIELD(*this, kBitfieldOffset, bitfield);
119   }
set_length(int new_length,ReleaseStoreTag)120   inline void set_length(int new_length, ReleaseStoreTag) {
121     int32_t bitfield = RELAXED_READ_INT32_FIELD(*this, kBitfieldOffset);
122     bitfield = LengthBits::update(bitfield, new_length);
123     RELEASE_WRITE_INT32_FIELD(*this, kBitfieldOffset, bitfield);
124   }
initialize_bitfield(bool sign,int length)125   inline void initialize_bitfield(bool sign, int length) {
126     int32_t bitfield = LengthBits::encode(length) | SignBits::encode(sign);
127     WriteField<int32_t>(kBitfieldOffset, bitfield);
128   }
set_digit(int n,digit_t value)129   inline void set_digit(int n, digit_t value) {
130     SLOW_DCHECK(0 <= n && n < length());
131     WriteField<digit_t>(kDigitsOffset + n * kDigitSize, value);
132   }
133 
134   void set_64_bits(uint64_t bits);
135 
IsMutableBigInt() const136   bool IsMutableBigInt() const { return IsBigInt(); }
137 
138   static_assert(std::is_same<bigint::digit_t, BigIntBase::digit_t>::value,
139                 "We must be able to call BigInt library functions");
140 
141   NEVER_READ_ONLY_SPACE
142 
143   OBJECT_CONSTRUCTORS(MutableBigInt, FreshlyAllocatedBigInt);
144 };
145 
OBJECT_CONSTRUCTORS_IMPL(MutableBigInt,FreshlyAllocatedBigInt)146 OBJECT_CONSTRUCTORS_IMPL(MutableBigInt, FreshlyAllocatedBigInt)
147 NEVER_READ_ONLY_SPACE_IMPL(MutableBigInt)
148 
149 #include "src/base/platform/wrappers.h"
150 #include "src/objects/object-macros-undef.h"
151 
152 bigint::Digits GetDigits(BigIntBase bigint) {
153   return bigint::Digits(
154       reinterpret_cast<bigint::digit_t*>(
155           bigint.ptr() + BigIntBase::kDigitsOffset - kHeapObjectTag),
156       bigint.length());
157 }
GetDigits(Handle<BigIntBase> bigint)158 bigint::Digits GetDigits(Handle<BigIntBase> bigint) {
159   return GetDigits(*bigint);
160 }
161 
GetRWDigits(MutableBigInt bigint)162 bigint::RWDigits GetRWDigits(MutableBigInt bigint) {
163   return bigint::RWDigits(
164       reinterpret_cast<bigint::digit_t*>(
165           bigint.ptr() + BigIntBase::kDigitsOffset - kHeapObjectTag),
166       bigint.length());
167 }
GetRWDigits(Handle<MutableBigInt> bigint)168 bigint::RWDigits GetRWDigits(Handle<MutableBigInt> bigint) {
169   return GetRWDigits(*bigint);
170 }
171 
172 template <typename T, typename Isolate>
ThrowBigIntTooBig(Isolate * isolate)173 MaybeHandle<T> ThrowBigIntTooBig(Isolate* isolate) {
174   // If the result of a BigInt computation is truncated to 64 bit, Turbofan
175   // can sometimes truncate intermediate results already, which can prevent
176   // those from exceeding the maximum length, effectively preventing a
177   // RangeError from being thrown. As this is a performance optimization, this
178   // behavior is accepted. To prevent the correctness fuzzer from detecting this
179   // difference, we crash the program.
180   if (FLAG_correctness_fuzzer_suppressions) {
181     FATAL("Aborting on invalid BigInt length");
182   }
183   THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), T);
184 }
185 
186 template <typename IsolateT>
New(IsolateT * isolate,int length,AllocationType allocation)187 MaybeHandle<MutableBigInt> MutableBigInt::New(IsolateT* isolate, int length,
188                                               AllocationType allocation) {
189   if (length > BigInt::kMaxLength) {
190     return ThrowBigIntTooBig<MutableBigInt>(isolate);
191   }
192   Handle<MutableBigInt> result =
193       Cast(isolate->factory()->NewBigInt(length, allocation));
194   result->initialize_bitfield(false, length);
195 #if DEBUG
196   result->InitializeDigits(length, 0xBF);
197 #endif
198   return result;
199 }
200 
NewFromInt(Isolate * isolate,int value)201 Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) {
202   if (value == 0) return Zero(isolate);
203   Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1));
204   bool sign = value < 0;
205   result->initialize_bitfield(sign, 1);
206   if (!sign) {
207     result->set_digit(0, value);
208   } else {
209     if (value == kMinInt) {
210       STATIC_ASSERT(kMinInt == -kMaxInt - 1);
211       result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1);
212     } else {
213       result->set_digit(0, -value);
214     }
215   }
216   return MakeImmutable(result);
217 }
218 
NewFromDouble(Isolate * isolate,double value)219 Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
220   DCHECK_EQ(value, std::floor(value));
221   if (value == 0) return Zero(isolate);
222 
223   bool sign = value < 0;  // -0 was already handled above.
224   uint64_t double_bits = bit_cast<uint64_t>(value);
225   int raw_exponent =
226       static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
227       0x7FF;
228   DCHECK_NE(raw_exponent, 0x7FF);
229   DCHECK_GE(raw_exponent, 0x3FF);
230   int exponent = raw_exponent - 0x3FF;
231   int digits = exponent / kDigitBits + 1;
232   Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(digits));
233   result->initialize_bitfield(sign, digits);
234 
235   // We construct a BigInt from the double {value} by shifting its mantissa
236   // according to its exponent and mapping the bit pattern onto digits.
237   //
238   //               <----------- bitlength = exponent + 1 ----------->
239   //                <----- 52 ------> <------ trailing zeroes ------>
240   // mantissa:     1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
241   // digits:    0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
242   //                <-->          <------>
243   //          msd_topbit         kDigitBits
244   //
245   uint64_t mantissa =
246       (double_bits & base::Double::kSignificandMask) | base::Double::kHiddenBit;
247   const int kMantissaTopBit = base::Double::kSignificandSize - 1;  // 0-indexed.
248   // 0-indexed position of most significant bit in the most significant digit.
249   int msd_topbit = exponent % kDigitBits;
250   // Number of unused bits in {mantissa}. We'll keep them shifted to the
251   // left (i.e. most significant part) of the underlying uint64_t.
252   int remaining_mantissa_bits = 0;
253   // Next digit under construction.
254   digit_t digit;
255 
256   // First, build the MSD by shifting the mantissa appropriately.
257   if (msd_topbit < kMantissaTopBit) {
258     remaining_mantissa_bits = kMantissaTopBit - msd_topbit;
259     digit = mantissa >> remaining_mantissa_bits;
260     mantissa = mantissa << (64 - remaining_mantissa_bits);
261   } else {
262     DCHECK_GE(msd_topbit, kMantissaTopBit);
263     digit = mantissa << (msd_topbit - kMantissaTopBit);
264     mantissa = 0;
265   }
266   result->set_digit(digits - 1, digit);
267   // Then fill in the rest of the digits.
268   for (int digit_index = digits - 2; digit_index >= 0; digit_index--) {
269     if (remaining_mantissa_bits > 0) {
270       remaining_mantissa_bits -= kDigitBits;
271       if (sizeof(digit) == 4) {
272         digit = mantissa >> 32;
273         mantissa = mantissa << 32;
274       } else {
275         DCHECK_EQ(sizeof(digit), 8);
276         digit = mantissa;
277         mantissa = 0;
278       }
279     } else {
280       digit = 0;
281     }
282     result->set_digit(digit_index, digit);
283   }
284   return MakeImmutable(result);
285 }
286 
Copy(Isolate * isolate,Handle<BigIntBase> source)287 Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate,
288                                           Handle<BigIntBase> source) {
289   int length = source->length();
290   // Allocating a BigInt of the same length as an existing BigInt cannot throw.
291   Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
292   memcpy(reinterpret_cast<void*>(result->address() + BigIntBase::kHeaderSize),
293          reinterpret_cast<void*>(source->address() + BigIntBase::kHeaderSize),
294          BigInt::SizeFor(length) - BigIntBase::kHeaderSize);
295   return result;
296 }
297 
InitializeDigits(int length,byte value)298 void MutableBigInt::InitializeDigits(int length, byte value) {
299   memset(reinterpret_cast<void*>(ptr() + kDigitsOffset - kHeapObjectTag), value,
300          length * kDigitSize);
301 }
302 
MakeImmutable(MaybeHandle<MutableBigInt> maybe)303 MaybeHandle<BigInt> MutableBigInt::MakeImmutable(
304     MaybeHandle<MutableBigInt> maybe) {
305   Handle<MutableBigInt> result;
306   if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>();
307   return MakeImmutable(result);
308 }
309 
310 template <typename IsolateT>
MakeImmutable(Handle<MutableBigInt> result)311 Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) {
312   MutableBigInt::Canonicalize(*result);
313   return Handle<BigInt>::cast(result);
314 }
315 
Canonicalize(MutableBigInt result)316 void MutableBigInt::Canonicalize(MutableBigInt result) {
317   // Check if we need to right-trim any leading zero-digits.
318   int old_length = result.length();
319   int new_length = old_length;
320   while (new_length > 0 && result.digit(new_length - 1) == 0) new_length--;
321   int to_trim = old_length - new_length;
322   if (to_trim != 0) {
323     int size_delta = to_trim * MutableBigInt::kDigitSize;
324     Address new_end = result.address() + BigInt::SizeFor(new_length);
325     Heap* heap = result.GetHeap();
326     if (!heap->IsLargeObject(result)) {
327       // We do not create a filler for objects in large object space.
328       // TODO(hpayer): We should shrink the large object page if the size
329       // of the object changed significantly.
330       heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo);
331     }
332     result.set_length(new_length, kReleaseStore);
333 
334     // Canonicalize -0n.
335     if (new_length == 0) {
336       result.set_sign(false);
337       // TODO(jkummerow): If we cache a canonical 0n, return that here.
338     }
339   }
340   DCHECK_IMPLIES(result.length() > 0,
341                  result.digit(result.length() - 1) != 0);  // MSD is non-zero.
342 }
343 
344 template <typename IsolateT>
Zero(IsolateT * isolate,AllocationType allocation)345 Handle<BigInt> BigInt::Zero(IsolateT* isolate, AllocationType allocation) {
346   return MutableBigInt::Zero(isolate, allocation);
347 }
348 template Handle<BigInt> BigInt::Zero(Isolate* isolate,
349                                      AllocationType allocation);
350 template Handle<BigInt> BigInt::Zero(LocalIsolate* isolate,
351                                      AllocationType allocation);
352 
UnaryMinus(Isolate * isolate,Handle<BigInt> x)353 Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, Handle<BigInt> x) {
354   // Special case: There is no -0n.
355   if (x->is_zero()) {
356     return x;
357   }
358   Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x);
359   result->set_sign(!x->sign());
360   return MutableBigInt::MakeImmutable(result);
361 }
362 
BitwiseNot(Isolate * isolate,Handle<BigInt> x)363 MaybeHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, Handle<BigInt> x) {
364   MaybeHandle<MutableBigInt> result;
365   if (x->sign()) {
366     // ~(-x) == ~(~(x-1)) == x-1
367     result = MutableBigInt::AbsoluteSubOne(isolate, x);
368   } else {
369     // ~x == -x-1 == -(x+1)
370     result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
371   }
372   return MutableBigInt::MakeImmutable(result);
373 }
374 
Exponentiate(Isolate * isolate,Handle<BigInt> base,Handle<BigInt> exponent)375 MaybeHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, Handle<BigInt> base,
376                                          Handle<BigInt> exponent) {
377   // 1. If exponent is < 0, throw a RangeError exception.
378   if (exponent->sign()) {
379     THROW_NEW_ERROR(isolate,
380                     NewRangeError(MessageTemplate::kBigIntNegativeExponent),
381                     BigInt);
382   }
383   // 2. If base is 0n and exponent is 0n, return 1n.
384   if (exponent->is_zero()) {
385     return MutableBigInt::NewFromInt(isolate, 1);
386   }
387   // 3. Return a BigInt representing the mathematical value of base raised
388   //    to the power exponent.
389   if (base->is_zero()) return base;
390   if (base->length() == 1 && base->digit(0) == 1) {
391     // (-1) ** even_number == 1.
392     if (base->sign() && (exponent->digit(0) & 1) == 0) {
393       return UnaryMinus(isolate, base);
394     }
395     // (-1) ** odd_number == -1; 1 ** anything == 1.
396     return base;
397   }
398   // For all bases >= 2, very large exponents would lead to unrepresentable
399   // results.
400   STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
401   if (exponent->length() > 1) {
402     return ThrowBigIntTooBig<BigInt>(isolate);
403   }
404   digit_t exp_value = exponent->digit(0);
405   if (exp_value == 1) return base;
406   if (exp_value >= kMaxLengthBits) {
407     return ThrowBigIntTooBig<BigInt>(isolate);
408   }
409   STATIC_ASSERT(kMaxLengthBits <= kMaxInt);
410   int n = static_cast<int>(exp_value);
411   if (base->length() == 1 && base->digit(0) == 2) {
412     // Fast path for 2^n.
413     int needed_digits = 1 + (n / kDigitBits);
414     Handle<MutableBigInt> result;
415     if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) {
416       return MaybeHandle<BigInt>();
417     }
418     result->InitializeDigits(needed_digits);
419     // All bits are zero. Now set the n-th bit.
420     digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits);
421     result->set_digit(needed_digits - 1, msd);
422     // Result is negative for odd powers of -2n.
423     if (base->sign()) result->set_sign((n & 1) != 0);
424     return MutableBigInt::MakeImmutable(result);
425   }
426   Handle<BigInt> result;
427   Handle<BigInt> running_square = base;
428   // This implicitly sets the result's sign correctly.
429   if (n & 1) result = base;
430   n >>= 1;
431   for (; n != 0; n >>= 1) {
432     MaybeHandle<BigInt> maybe_result =
433         Multiply(isolate, running_square, running_square);
434     if (!maybe_result.ToHandle(&running_square)) return maybe_result;
435     if (n & 1) {
436       if (result.is_null()) {
437         result = running_square;
438       } else {
439         maybe_result = Multiply(isolate, result, running_square);
440         if (!maybe_result.ToHandle(&result)) return maybe_result;
441       }
442     }
443   }
444   return result;
445 }
446 
Multiply(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)447 MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, Handle<BigInt> x,
448                                      Handle<BigInt> y) {
449   if (x->is_zero()) return x;
450   if (y->is_zero()) return y;
451   int result_length = bigint::MultiplyResultLength(GetDigits(x), GetDigits(y));
452   Handle<MutableBigInt> result;
453   if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
454     return MaybeHandle<BigInt>();
455   }
456   DisallowGarbageCollection no_gc;
457   bigint::Status status = isolate->bigint_processor()->Multiply(
458       GetRWDigits(result), GetDigits(x), GetDigits(y));
459   if (status == bigint::Status::kInterrupted) {
460     AllowGarbageCollection terminating_anyway;
461     isolate->TerminateExecution();
462     return {};
463   }
464   result->set_sign(x->sign() != y->sign());
465   return MutableBigInt::MakeImmutable(result);
466 }
467 
Divide(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)468 MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, Handle<BigInt> x,
469                                    Handle<BigInt> y) {
470   // 1. If y is 0n, throw a RangeError exception.
471   if (y->is_zero()) {
472     THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
473                     BigInt);
474   }
475   // 2. Let quotient be the mathematical value of x divided by y.
476   // 3. Return a BigInt representing quotient rounded towards 0 to the next
477   //    integral value.
478   if (bigint::Compare(GetDigits(x), GetDigits(y)) < 0) {
479     return Zero(isolate);
480   }
481   bool result_sign = x->sign() != y->sign();
482   if (y->length() == 1 && y->digit(0) == 1) {
483     return result_sign == x->sign() ? x : UnaryMinus(isolate, x);
484   }
485   Handle<MutableBigInt> quotient;
486   int result_length = bigint::DivideResultLength(GetDigits(x), GetDigits(y));
487   if (!MutableBigInt::New(isolate, result_length).ToHandle(&quotient)) {
488     return {};
489   }
490   DisallowGarbageCollection no_gc;
491   bigint::Status status = isolate->bigint_processor()->Divide(
492       GetRWDigits(quotient), GetDigits(x), GetDigits(y));
493   if (status == bigint::Status::kInterrupted) {
494     AllowGarbageCollection terminating_anyway;
495     isolate->TerminateExecution();
496     return {};
497   }
498   quotient->set_sign(result_sign);
499   return MutableBigInt::MakeImmutable(quotient);
500 }
501 
Remainder(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)502 MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, Handle<BigInt> x,
503                                       Handle<BigInt> y) {
504   // 1. If y is 0n, throw a RangeError exception.
505   if (y->is_zero()) {
506     THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
507                     BigInt);
508   }
509   // 2. Return the BigInt representing x modulo y.
510   // See https://github.com/tc39/proposal-bigint/issues/84 though.
511   if (bigint::Compare(GetDigits(x), GetDigits(y)) < 0) return x;
512   if (y->length() == 1 && y->digit(0) == 1) return Zero(isolate);
513   Handle<MutableBigInt> remainder;
514   int result_length = bigint::ModuloResultLength(GetDigits(y));
515   if (!MutableBigInt::New(isolate, result_length).ToHandle(&remainder)) {
516     return {};
517   }
518   DisallowGarbageCollection no_gc;
519   bigint::Status status = isolate->bigint_processor()->Modulo(
520       GetRWDigits(remainder), GetDigits(x), GetDigits(y));
521   if (status == bigint::Status::kInterrupted) {
522     AllowGarbageCollection terminating_anyway;
523     isolate->TerminateExecution();
524     return {};
525   }
526   remainder->set_sign(x->sign());
527   return MutableBigInt::MakeImmutable(remainder);
528 }
529 
Add(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)530 MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, Handle<BigInt> x,
531                                 Handle<BigInt> y) {
532   if (x->is_zero()) return y;
533   if (y->is_zero()) return x;
534   bool xsign = x->sign();
535   bool ysign = y->sign();
536   int result_length =
537       bigint::AddSignedResultLength(x->length(), y->length(), xsign == ysign);
538   Handle<MutableBigInt> result;
539   if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
540     // Allocation fails when {result_length} exceeds the max BigInt size.
541     return {};
542   }
543   DisallowGarbageCollection no_gc;
544   bool result_sign = bigint::AddSigned(GetRWDigits(result), GetDigits(x), xsign,
545                                        GetDigits(y), ysign);
546   result->set_sign(result_sign);
547   return MutableBigInt::MakeImmutable(result);
548 }
549 
Subtract(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)550 MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, Handle<BigInt> x,
551                                      Handle<BigInt> y) {
552   if (y->is_zero()) return x;
553   if (x->is_zero()) return UnaryMinus(isolate, y);
554   bool xsign = x->sign();
555   bool ysign = y->sign();
556   int result_length = bigint::SubtractSignedResultLength(
557       x->length(), y->length(), xsign == ysign);
558   Handle<MutableBigInt> result;
559   if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
560     // Allocation fails when {result_length} exceeds the max BigInt size.
561     return {};
562   }
563   DisallowGarbageCollection no_gc;
564   bool result_sign = bigint::SubtractSigned(GetRWDigits(result), GetDigits(x),
565                                             xsign, GetDigits(y), ysign);
566   result->set_sign(result_sign);
567   return MutableBigInt::MakeImmutable(result);
568 }
569 
LeftShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)570 MaybeHandle<BigInt> BigInt::LeftShift(Isolate* isolate, Handle<BigInt> x,
571                                       Handle<BigInt> y) {
572   if (y->is_zero() || x->is_zero()) return x;
573   if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
574   return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
575 }
576 
SignedRightShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)577 MaybeHandle<BigInt> BigInt::SignedRightShift(Isolate* isolate, Handle<BigInt> x,
578                                              Handle<BigInt> y) {
579   if (y->is_zero() || x->is_zero()) return x;
580   if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
581   return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
582 }
583 
UnsignedRightShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)584 MaybeHandle<BigInt> BigInt::UnsignedRightShift(Isolate* isolate,
585                                                Handle<BigInt> x,
586                                                Handle<BigInt> y) {
587   THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt);
588 }
589 
590 namespace {
591 
592 // Produces comparison result for {left_negative} == sign(x) != sign(y).
UnequalSign(bool left_negative)593 ComparisonResult UnequalSign(bool left_negative) {
594   return left_negative ? ComparisonResult::kLessThan
595                        : ComparisonResult::kGreaterThan;
596 }
597 
598 // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y);
AbsoluteGreater(bool both_negative)599 ComparisonResult AbsoluteGreater(bool both_negative) {
600   return both_negative ? ComparisonResult::kLessThan
601                        : ComparisonResult::kGreaterThan;
602 }
603 
604 // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y).
AbsoluteLess(bool both_negative)605 ComparisonResult AbsoluteLess(bool both_negative) {
606   return both_negative ? ComparisonResult::kGreaterThan
607                        : ComparisonResult::kLessThan;
608 }
609 
610 }  // namespace
611 
612 // (Never returns kUndefined.)
CompareToBigInt(Handle<BigInt> x,Handle<BigInt> y)613 ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) {
614   bool x_sign = x->sign();
615   if (x_sign != y->sign()) return UnequalSign(x_sign);
616 
617   int result = bigint::Compare(GetDigits(x), GetDigits(y));
618   if (result > 0) return AbsoluteGreater(x_sign);
619   if (result < 0) return AbsoluteLess(x_sign);
620   return ComparisonResult::kEqual;
621 }
622 
EqualToBigInt(BigInt x,BigInt y)623 bool BigInt::EqualToBigInt(BigInt x, BigInt y) {
624   if (x.sign() != y.sign()) return false;
625   if (x.length() != y.length()) return false;
626   for (int i = 0; i < x.length(); i++) {
627     if (x.digit(i) != y.digit(i)) return false;
628   }
629   return true;
630 }
631 
BitwiseAnd(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)632 MaybeHandle<BigInt> BigInt::BitwiseAnd(Isolate* isolate, Handle<BigInt> x,
633                                        Handle<BigInt> y) {
634   bool x_sign = x->sign();
635   bool y_sign = y->sign();
636   Handle<MutableBigInt> result;
637   if (!x_sign && !y_sign) {
638     int result_length =
639         bigint::BitwiseAnd_PosPos_ResultLength(x->length(), y->length());
640     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
641     bigint::BitwiseAnd_PosPos(GetRWDigits(result), GetDigits(x), GetDigits(y));
642     DCHECK(!result->sign());
643   } else if (x_sign && y_sign) {
644     int result_length =
645         bigint::BitwiseAnd_NegNeg_ResultLength(x->length(), y->length());
646     if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
647       return {};
648     }
649     bigint::BitwiseAnd_NegNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
650     result->set_sign(true);
651   } else {
652     if (x_sign) std::swap(x, y);
653     int result_length = bigint::BitwiseAnd_PosNeg_ResultLength(x->length());
654     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
655     bigint::BitwiseAnd_PosNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
656     DCHECK(!result->sign());
657   }
658   return MutableBigInt::MakeImmutable(result);
659 }
660 
BitwiseXor(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)661 MaybeHandle<BigInt> BigInt::BitwiseXor(Isolate* isolate, Handle<BigInt> x,
662                                        Handle<BigInt> y) {
663   bool x_sign = x->sign();
664   bool y_sign = y->sign();
665   Handle<MutableBigInt> result;
666   if (!x_sign && !y_sign) {
667     int result_length =
668         bigint::BitwiseXor_PosPos_ResultLength(x->length(), y->length());
669     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
670     bigint::BitwiseXor_PosPos(GetRWDigits(result), GetDigits(x), GetDigits(y));
671     DCHECK(!result->sign());
672   } else if (x_sign && y_sign) {
673     int result_length =
674         bigint::BitwiseXor_NegNeg_ResultLength(x->length(), y->length());
675     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
676     bigint::BitwiseXor_NegNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
677     DCHECK(!result->sign());
678   } else {
679     if (x_sign) std::swap(x, y);
680     int result_length =
681         bigint::BitwiseXor_PosNeg_ResultLength(x->length(), y->length());
682     if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
683       return {};
684     }
685     bigint::BitwiseXor_PosNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
686     result->set_sign(true);
687   }
688   return MutableBigInt::MakeImmutable(result);
689 }
690 
BitwiseOr(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)691 MaybeHandle<BigInt> BigInt::BitwiseOr(Isolate* isolate, Handle<BigInt> x,
692                                       Handle<BigInt> y) {
693   bool x_sign = x->sign();
694   bool y_sign = y->sign();
695   int result_length = bigint::BitwiseOrResultLength(x->length(), y->length());
696   Handle<MutableBigInt> result =
697       MutableBigInt::New(isolate, result_length).ToHandleChecked();
698   if (!x_sign && !y_sign) {
699     bigint::BitwiseOr_PosPos(GetRWDigits(result), GetDigits(x), GetDigits(y));
700     DCHECK(!result->sign());
701   } else if (x_sign && y_sign) {
702     bigint::BitwiseOr_NegNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
703     result->set_sign(true);
704   } else {
705     if (x_sign) std::swap(x, y);
706     bigint::BitwiseOr_PosNeg(GetRWDigits(result), GetDigits(x), GetDigits(y));
707     result->set_sign(true);
708   }
709   return MutableBigInt::MakeImmutable(result);
710 }
711 
Increment(Isolate * isolate,Handle<BigInt> x)712 MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, Handle<BigInt> x) {
713   if (x->sign()) {
714     Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x);
715     result->set_sign(true);
716     return MutableBigInt::MakeImmutable(result);
717   } else {
718     return MutableBigInt::MakeImmutable(
719         MutableBigInt::AbsoluteAddOne(isolate, x, false));
720   }
721 }
722 
Decrement(Isolate * isolate,Handle<BigInt> x)723 MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, Handle<BigInt> x) {
724   MaybeHandle<MutableBigInt> result;
725   if (x->sign()) {
726     result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
727   } else if (x->is_zero()) {
728     // TODO(jkummerow): Consider caching a canonical -1n BigInt.
729     return MutableBigInt::NewFromInt(isolate, -1);
730   } else {
731     result = MutableBigInt::AbsoluteSubOne(isolate, x);
732   }
733   return MutableBigInt::MakeImmutable(result);
734 }
735 
CompareToString(Isolate * isolate,Handle<BigInt> x,Handle<String> y)736 Maybe<ComparisonResult> BigInt::CompareToString(Isolate* isolate,
737                                                 Handle<BigInt> x,
738                                                 Handle<String> y) {
739   // a. Let ny be StringToBigInt(y);
740   MaybeHandle<BigInt> maybe_ny = StringToBigInt(isolate, y);
741   // b. If ny is NaN, return undefined.
742   Handle<BigInt> ny;
743   if (!maybe_ny.ToHandle(&ny)) {
744     if (isolate->has_pending_exception()) {
745       return Nothing<ComparisonResult>();
746     } else {
747       return Just(ComparisonResult::kUndefined);
748     }
749   }
750   // c. Return BigInt::lessThan(x, ny).
751   return Just(CompareToBigInt(x, ny));
752 }
753 
EqualToString(Isolate * isolate,Handle<BigInt> x,Handle<String> y)754 Maybe<bool> BigInt::EqualToString(Isolate* isolate, Handle<BigInt> x,
755                                   Handle<String> y) {
756   // a. Let n be StringToBigInt(y).
757   MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y);
758   // b. If n is NaN, return false.
759   Handle<BigInt> n;
760   if (!maybe_n.ToHandle(&n)) {
761     if (isolate->has_pending_exception()) {
762       return Nothing<bool>();
763     } else {
764       return Just(false);
765     }
766   }
767   // c. Return the result of x == n.
768   return Just(EqualToBigInt(*x, *n));
769 }
770 
EqualToNumber(Handle<BigInt> x,Handle<Object> y)771 bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) {
772   DCHECK(y->IsNumber());
773   // a. If x or y are any of NaN, +∞, or -∞, return false.
774   // b. If the mathematical value of x is equal to the mathematical value of y,
775   //    return true, otherwise return false.
776   if (y->IsSmi()) {
777     int value = Smi::ToInt(*y);
778     if (value == 0) return x->is_zero();
779     // Any multi-digit BigInt is bigger than a Smi.
780     STATIC_ASSERT(sizeof(digit_t) >= sizeof(value));
781     return (x->length() == 1) && (x->sign() == (value < 0)) &&
782            (x->digit(0) ==
783             static_cast<digit_t>(std::abs(static_cast<int64_t>(value))));
784   }
785   DCHECK(y->IsHeapNumber());
786   double value = Handle<HeapNumber>::cast(y)->value();
787   return CompareToDouble(x, value) == ComparisonResult::kEqual;
788 }
789 
CompareToNumber(Handle<BigInt> x,Handle<Object> y)790 ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) {
791   DCHECK(y->IsNumber());
792   if (y->IsSmi()) {
793     bool x_sign = x->sign();
794     int y_value = Smi::ToInt(*y);
795     bool y_sign = (y_value < 0);
796     if (x_sign != y_sign) return UnequalSign(x_sign);
797 
798     if (x->is_zero()) {
799       DCHECK(!y_sign);
800       return y_value == 0 ? ComparisonResult::kEqual
801                           : ComparisonResult::kLessThan;
802     }
803     // Any multi-digit BigInt is bigger than a Smi.
804     STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value));
805     if (x->length() > 1) return AbsoluteGreater(x_sign);
806 
807     digit_t abs_value = std::abs(static_cast<int64_t>(y_value));
808     digit_t x_digit = x->digit(0);
809     if (x_digit > abs_value) return AbsoluteGreater(x_sign);
810     if (x_digit < abs_value) return AbsoluteLess(x_sign);
811     return ComparisonResult::kEqual;
812   }
813   DCHECK(y->IsHeapNumber());
814   double value = Handle<HeapNumber>::cast(y)->value();
815   return CompareToDouble(x, value);
816 }
817 
CompareToDouble(Handle<BigInt> x,double y)818 ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
819   if (std::isnan(y)) return ComparisonResult::kUndefined;
820   if (y == V8_INFINITY) return ComparisonResult::kLessThan;
821   if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan;
822   bool x_sign = x->sign();
823   // Note that this is different from the double's sign bit for -0. That's
824   // intentional because -0 must be treated like 0.
825   bool y_sign = (y < 0);
826   if (x_sign != y_sign) return UnequalSign(x_sign);
827   if (y == 0) {
828     DCHECK(!x_sign);
829     return x->is_zero() ? ComparisonResult::kEqual
830                         : ComparisonResult::kGreaterThan;
831   }
832   if (x->is_zero()) {
833     DCHECK(!y_sign);
834     return ComparisonResult::kLessThan;
835   }
836   uint64_t double_bits = bit_cast<uint64_t>(y);
837   int raw_exponent =
838       static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
839       0x7FF;
840   uint64_t mantissa = double_bits & base::Double::kSignificandMask;
841   // Non-finite doubles are handled above.
842   DCHECK_NE(raw_exponent, 0x7FF);
843   int exponent = raw_exponent - 0x3FF;
844   if (exponent < 0) {
845     // The absolute value of the double is less than 1. Only 0n has an
846     // absolute value smaller than that, but we've already covered that case.
847     DCHECK(!x->is_zero());
848     return AbsoluteGreater(x_sign);
849   }
850   int x_length = x->length();
851   digit_t x_msd = x->digit(x_length - 1);
852   int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
853   int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
854   int y_bitlength = exponent + 1;
855   if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign);
856   if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign);
857 
858   // At this point, we know that signs and bit lengths (i.e. position of
859   // the most significant bit in exponent-free representation) are identical.
860   // {x} is not zero, {y} is finite and not denormal.
861   // Now we virtually convert the double to an integer by shifting its
862   // mantissa according to its exponent, so it will align with the BigInt {x},
863   // and then we compare them bit for bit until we find a difference or the
864   // least significant bit.
865   //                    <----- 52 ------> <-- virtual trailing zeroes -->
866   // y / mantissa:     1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
867   // x / digits:    0001xxxx xxxxxxxx xxxxxxxx ...
868   //                    <-->          <------>
869   //              msd_topbit         kDigitBits
870   //
871   mantissa |= base::Double::kHiddenBit;
872   const int kMantissaTopBit = 52;  // 0-indexed.
873   // 0-indexed position of {x}'s most significant bit within the {msd}.
874   int msd_topbit = kDigitBits - 1 - msd_leading_zeros;
875   DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits);
876   // Shifted chunk of {mantissa} for comparing with {digit}.
877   digit_t compare_mantissa;
878   // Number of unprocessed bits in {mantissa}. We'll keep them shifted to
879   // the left (i.e. most significant part) of the underlying uint64_t.
880   int remaining_mantissa_bits = 0;
881 
882   // First, compare the most significant digit against the beginning of
883   // the mantissa.
884   if (msd_topbit < kMantissaTopBit) {
885     remaining_mantissa_bits = (kMantissaTopBit - msd_topbit);
886     compare_mantissa = mantissa >> remaining_mantissa_bits;
887     mantissa = mantissa << (64 - remaining_mantissa_bits);
888   } else {
889     DCHECK_GE(msd_topbit, kMantissaTopBit);
890     compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit);
891     mantissa = 0;
892   }
893   if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign);
894   if (x_msd < compare_mantissa) return AbsoluteLess(x_sign);
895 
896   // Then, compare additional digits against any remaining mantissa bits.
897   for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) {
898     if (remaining_mantissa_bits > 0) {
899       remaining_mantissa_bits -= kDigitBits;
900       if (sizeof(mantissa) != sizeof(x_msd)) {
901         compare_mantissa = mantissa >> (64 - kDigitBits);
902         // "& 63" to appease compilers. kDigitBits is 32 here anyway.
903         mantissa = mantissa << (kDigitBits & 63);
904       } else {
905         compare_mantissa = mantissa;
906         mantissa = 0;
907       }
908     } else {
909       compare_mantissa = 0;
910     }
911     digit_t digit = x->digit(digit_index);
912     if (digit > compare_mantissa) return AbsoluteGreater(x_sign);
913     if (digit < compare_mantissa) return AbsoluteLess(x_sign);
914   }
915 
916   // Integer parts are equal; check whether {y} has a fractional part.
917   if (mantissa != 0) {
918     DCHECK_GT(remaining_mantissa_bits, 0);
919     return AbsoluteLess(x_sign);
920   }
921   return ComparisonResult::kEqual;
922 }
923 
ToString(Isolate * isolate,Handle<BigInt> bigint,int radix,ShouldThrow should_throw)924 MaybeHandle<String> BigInt::ToString(Isolate* isolate, Handle<BigInt> bigint,
925                                      int radix, ShouldThrow should_throw) {
926   if (bigint->is_zero()) {
927     return isolate->factory()->zero_string();
928   }
929   const bool sign = bigint->sign();
930   int chars_allocated;
931   int chars_written;
932   Handle<SeqOneByteString> result;
933   if (bigint->length() == 1 && radix == 10) {
934     // Fast path for the most common case, to avoid call/dispatch overhead.
935     // The logic is the same as what the full implementation does below,
936     // just inlined and specialized for the preconditions.
937     // Microbenchmarks rejoice!
938     digit_t digit = bigint->digit(0);
939     int bit_length = kDigitBits - base::bits::CountLeadingZeros(digit);
940     constexpr int kShift = 7;
941     // This is Math.log2(10) * (1 << kShift), scaled just far enough to
942     // make the computations below always precise (after rounding).
943     constexpr int kShiftedBitsPerChar = 425;
944     chars_allocated = (bit_length << kShift) / kShiftedBitsPerChar + 1 + sign;
945     result = isolate->factory()
946                  ->NewRawOneByteString(chars_allocated)
947                  .ToHandleChecked();
948     DisallowGarbageCollection no_gc;
949     uint8_t* start = result->GetChars(no_gc);
950     uint8_t* out = start + chars_allocated;
951     while (digit != 0) {
952       *(--out) = '0' + (digit % 10);
953       digit /= 10;
954     }
955     if (sign) *(--out) = '-';
956     if (out == start) {
957       chars_written = chars_allocated;
958     } else {
959       DCHECK_LT(start, out);
960       // The result is one character shorter than predicted. This is
961       // unavoidable, e.g. a 4-bit BigInt can be as big as "10" or as small as
962       // "9", so we must allocate 2 characters for it, and will only later find
963       // out whether all characters were used.
964       chars_written = chars_allocated - static_cast<int>(out - start);
965       std::memmove(start, out, chars_written);
966     }
967   } else {
968     // Generic path, handles anything.
969     DCHECK(radix >= 2 && radix <= 36);
970     chars_allocated =
971         bigint::ToStringResultLength(GetDigits(bigint), radix, sign);
972     if (chars_allocated > String::kMaxLength) {
973       if (should_throw == kThrowOnError) {
974         THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
975       } else {
976         return {};
977       }
978     }
979     result = isolate->factory()
980                  ->NewRawOneByteString(chars_allocated)
981                  .ToHandleChecked();
982     chars_written = chars_allocated;
983     DisallowGarbageCollection no_gc;
984     char* characters = reinterpret_cast<char*>(result->GetChars(no_gc));
985     bigint::Status status = isolate->bigint_processor()->ToString(
986         characters, &chars_written, GetDigits(bigint), radix, sign);
987     if (status == bigint::Status::kInterrupted) {
988       AllowGarbageCollection terminating_anyway;
989       isolate->TerminateExecution();
990       return {};
991     }
992   }
993 
994   // Right-trim any over-allocation (which can happen due to conservative
995   // estimates).
996   if (chars_written < chars_allocated) {
997     result->set_length(chars_written, kReleaseStore);
998     int string_size = SeqOneByteString::SizeFor(chars_allocated);
999     int needed_size = SeqOneByteString::SizeFor(chars_written);
1000     if (needed_size < string_size && !isolate->heap()->IsLargeObject(*result)) {
1001       Address new_end = result->address() + needed_size;
1002       isolate->heap()->CreateFillerObjectAt(
1003           new_end, (string_size - needed_size), ClearRecordedSlots::kNo);
1004     }
1005   }
1006 #if DEBUG
1007   // Verify that all characters have been written.
1008   DCHECK(result->length() == chars_written);
1009   DisallowGarbageCollection no_gc;
1010   uint8_t* chars = result->GetChars(no_gc);
1011   for (int i = 0; i < chars_written; i++) {
1012     DCHECK_NE(chars[i], bigint::kStringZapValue);
1013   }
1014 #endif
1015   return result;
1016 }
1017 
FromNumber(Isolate * isolate,Handle<Object> number)1018 MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate,
1019                                        Handle<Object> number) {
1020   DCHECK(number->IsNumber());
1021   if (number->IsSmi()) {
1022     return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number));
1023   }
1024   double value = HeapNumber::cast(*number).value();
1025   if (!std::isfinite(value) || (DoubleToInteger(value) != value)) {
1026     THROW_NEW_ERROR(isolate,
1027                     NewRangeError(MessageTemplate::kBigIntFromNumber, number),
1028                     BigInt);
1029   }
1030   return MutableBigInt::NewFromDouble(isolate, value);
1031 }
1032 
FromObject(Isolate * isolate,Handle<Object> obj)1033 MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) {
1034   if (obj->IsJSReceiver()) {
1035     ASSIGN_RETURN_ON_EXCEPTION(
1036         isolate, obj,
1037         JSReceiver::ToPrimitive(isolate, Handle<JSReceiver>::cast(obj),
1038                                 ToPrimitiveHint::kNumber),
1039         BigInt);
1040   }
1041 
1042   if (obj->IsBoolean()) {
1043     return MutableBigInt::NewFromInt(isolate, obj->BooleanValue(isolate));
1044   }
1045   if (obj->IsBigInt()) {
1046     return Handle<BigInt>::cast(obj);
1047   }
1048   if (obj->IsString()) {
1049     Handle<BigInt> n;
1050     if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) {
1051       if (isolate->has_pending_exception()) {
1052         return MaybeHandle<BigInt>();
1053       } else {
1054         Handle<String> str = Handle<String>::cast(obj);
1055         constexpr int kMaxRenderedLength = 1000;
1056         if (str->length() > kMaxRenderedLength) {
1057           Factory* factory = isolate->factory();
1058           Handle<String> prefix =
1059               factory->NewProperSubString(str, 0, kMaxRenderedLength);
1060           Handle<SeqTwoByteString> ellipsis =
1061               factory->NewRawTwoByteString(1).ToHandleChecked();
1062           ellipsis->SeqTwoByteStringSet(0, 0x2026);
1063           str = factory->NewConsString(prefix, ellipsis).ToHandleChecked();
1064         }
1065         THROW_NEW_ERROR(isolate,
1066                         NewSyntaxError(MessageTemplate::kBigIntFromObject, str),
1067                         BigInt);
1068       }
1069     }
1070     return n;
1071   }
1072 
1073   THROW_NEW_ERROR(
1074       isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt);
1075 }
1076 
ToNumber(Isolate * isolate,Handle<BigInt> x)1077 Handle<Object> BigInt::ToNumber(Isolate* isolate, Handle<BigInt> x) {
1078   if (x->is_zero()) return Handle<Smi>(Smi::zero(), isolate);
1079   if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) {
1080     int value = static_cast<int>(x->digit(0));
1081     if (x->sign()) value = -value;
1082     return Handle<Smi>(Smi::FromInt(value), isolate);
1083   }
1084   double result = MutableBigInt::ToDouble(x);
1085   return isolate->factory()->NewHeapNumber(result);
1086 }
1087 
ToDouble(Handle<BigIntBase> x)1088 double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
1089   if (x->is_zero()) return 0.0;
1090   int x_length = x->length();
1091   digit_t x_msd = x->digit(x_length - 1);
1092   int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
1093   int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
1094   if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY;
1095   uint64_t exponent = x_bitlength - 1;
1096   // We need the most significant bit shifted to the position of a double's
1097   // "hidden bit". We also need to hide that MSB, so we shift it out.
1098   uint64_t current_digit = x_msd;
1099   int digit_index = x_length - 1;
1100   int shift = msd_leading_zeros + 1 + (64 - kDigitBits);
1101   DCHECK_LE(1, shift);
1102   DCHECK_LE(shift, 64);
1103   uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift;
1104   mantissa >>= 12;
1105   int mantissa_bits_unset = shift - 12;
1106   // If not all mantissa bits are defined yet, get more digits as needed.
1107   if (mantissa_bits_unset >= kDigitBits && digit_index > 0) {
1108     digit_index--;
1109     current_digit = static_cast<uint64_t>(x->digit(digit_index));
1110     mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits));
1111     mantissa_bits_unset -= kDigitBits;
1112   }
1113   if (mantissa_bits_unset > 0 && digit_index > 0) {
1114     DCHECK_LT(mantissa_bits_unset, kDigitBits);
1115     digit_index--;
1116     current_digit = static_cast<uint64_t>(x->digit(digit_index));
1117     mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset));
1118     mantissa_bits_unset -= kDigitBits;
1119   }
1120   // If there are unconsumed digits left, we may have to round.
1121   Rounding rounding =
1122       DecideRounding(x, mantissa_bits_unset, digit_index, current_digit);
1123   if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) {
1124     mantissa++;
1125     // Incrementing the mantissa can overflow the mantissa bits. In that case
1126     // the new mantissa will be all zero (plus hidden bit).
1127     if ((mantissa >> base::Double::kPhysicalSignificandSize) != 0) {
1128       mantissa = 0;
1129       exponent++;
1130       // Incrementing the exponent can overflow too.
1131       if (exponent > 1023) {
1132         return x->sign() ? -V8_INFINITY : V8_INFINITY;
1133       }
1134     }
1135   }
1136   // Assemble the result.
1137   uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0;
1138   exponent = (exponent + 0x3FF) << base::Double::kPhysicalSignificandSize;
1139   uint64_t double_bits = sign_bit | exponent | mantissa;
1140   return bit_cast<double>(double_bits);
1141 }
1142 
1143 // This is its own function to simplify control flow. The meaning of the
1144 // parameters is defined by {ToDouble}'s local variable usage.
DecideRounding(Handle<BigIntBase> x,int mantissa_bits_unset,int digit_index,uint64_t current_digit)1145 MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x,
1146                                                       int mantissa_bits_unset,
1147                                                       int digit_index,
1148                                                       uint64_t current_digit) {
1149   if (mantissa_bits_unset > 0) return kRoundDown;
1150   int top_unconsumed_bit;
1151   if (mantissa_bits_unset < 0) {
1152     // There are unconsumed bits in {current_digit}.
1153     top_unconsumed_bit = -mantissa_bits_unset - 1;
1154   } else {
1155     DCHECK_EQ(mantissa_bits_unset, 0);
1156     // {current_digit} fit the mantissa exactly; look at the next digit.
1157     if (digit_index == 0) return kRoundDown;
1158     digit_index--;
1159     current_digit = static_cast<uint64_t>(x->digit(digit_index));
1160     top_unconsumed_bit = kDigitBits - 1;
1161   }
1162   // If the most significant remaining bit is 0, round down.
1163   uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit;
1164   if ((current_digit & bitmask) == 0) {
1165     return kRoundDown;
1166   }
1167   // If any other remaining bit is set, round up.
1168   bitmask -= 1;
1169   if ((current_digit & bitmask) != 0) return kRoundUp;
1170   while (digit_index > 0) {
1171     digit_index--;
1172     if (x->digit(digit_index) != 0) return kRoundUp;
1173   }
1174   return kTie;
1175 }
1176 
BigIntShortPrint(std::ostream & os)1177 void BigInt::BigIntShortPrint(std::ostream& os) {
1178   if (sign()) os << "-";
1179   int len = length();
1180   if (len == 0) {
1181     os << "0";
1182     return;
1183   }
1184   if (len > 1) os << "...";
1185   os << digit(0);
1186 }
1187 
1188 // Internal helpers.
1189 
1190 // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}.
1191 // {result_storage} is optional; if present, it will be used to store the
1192 // result, otherwise a new BigInt will be allocated for the result.
1193 // {result_storage} and {x} may refer to the same BigInt for in-place
1194 // modification.
AbsoluteAddOne(Isolate * isolate,Handle<BigIntBase> x,bool sign,MutableBigInt result_storage)1195 MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne(
1196     Isolate* isolate, Handle<BigIntBase> x, bool sign,
1197     MutableBigInt result_storage) {
1198   int input_length = x->length();
1199   // The addition will overflow into a new digit if all existing digits are
1200   // at maximum.
1201   bool will_overflow = true;
1202   for (int i = 0; i < input_length; i++) {
1203     if (!digit_ismax(x->digit(i))) {
1204       will_overflow = false;
1205       break;
1206     }
1207   }
1208   int result_length = input_length + will_overflow;
1209   Handle<MutableBigInt> result(result_storage, isolate);
1210   if (result_storage.is_null()) {
1211     if (!New(isolate, result_length).ToHandle(&result)) {
1212       return MaybeHandle<MutableBigInt>();
1213     }
1214   } else {
1215     DCHECK(result->length() == result_length);
1216   }
1217   if (input_length == 0) {
1218     result->set_digit(0, 1);
1219   } else if (input_length == 1 && !will_overflow) {
1220     result->set_digit(0, x->digit(0) + 1);
1221   } else {
1222     bigint::AddOne(GetRWDigits(result), GetDigits(x));
1223   }
1224   result->set_sign(sign);
1225   return result;
1226 }
1227 
1228 // Subtracts 1 from the absolute value of {x}. {x} must not be zero.
AbsoluteSubOne(Isolate * isolate,Handle<BigIntBase> x)1229 Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
1230                                                     Handle<BigIntBase> x) {
1231   DCHECK(!x->is_zero());
1232   int length = x->length();
1233   Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
1234   if (length == 1) {
1235     result->set_digit(0, x->digit(0) - 1);
1236   } else {
1237     bigint::SubtractOne(GetRWDigits(result), GetDigits(x));
1238   }
1239   return result;
1240 }
1241 
LeftShiftByAbsolute(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y)1242 MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Isolate* isolate,
1243                                                        Handle<BigIntBase> x,
1244                                                        Handle<BigIntBase> y) {
1245   Maybe<digit_t> maybe_shift = ToShiftAmount(y);
1246   if (maybe_shift.IsNothing()) {
1247     return ThrowBigIntTooBig<BigInt>(isolate);
1248   }
1249   digit_t shift = maybe_shift.FromJust();
1250   const int result_length = bigint::LeftShift_ResultLength(
1251       x->length(), x->digit(x->length() - 1), shift);
1252   if (result_length > kMaxLength) {
1253     return ThrowBigIntTooBig<BigInt>(isolate);
1254   }
1255   Handle<MutableBigInt> result;
1256   if (!New(isolate, result_length).ToHandle(&result)) {
1257     return MaybeHandle<BigInt>();
1258   }
1259   bigint::LeftShift(GetRWDigits(result), GetDigits(x), shift);
1260   result->set_sign(x->sign());
1261   return MakeImmutable(result);
1262 }
1263 
RightShiftByAbsolute(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y)1264 Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Isolate* isolate,
1265                                                    Handle<BigIntBase> x,
1266                                                    Handle<BigIntBase> y) {
1267   const bool sign = x->sign();
1268   Maybe<digit_t> maybe_shift = ToShiftAmount(y);
1269   if (maybe_shift.IsNothing()) {
1270     return RightShiftByMaximum(isolate, sign);
1271   }
1272   const digit_t shift = maybe_shift.FromJust();
1273   bigint::RightShiftState state;
1274   const int result_length =
1275       bigint::RightShift_ResultLength(GetDigits(x), sign, shift, &state);
1276   DCHECK_LE(result_length, x->length());
1277   if (result_length <= 0) {
1278     return RightShiftByMaximum(isolate, sign);
1279   }
1280   Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked();
1281   bigint::RightShift(GetRWDigits(result), GetDigits(x), shift, state);
1282   if (sign) result->set_sign(true);
1283   return MakeImmutable(result);
1284 }
1285 
RightShiftByMaximum(Isolate * isolate,bool sign)1286 Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) {
1287   if (sign) {
1288     // TODO(jkummerow): Consider caching a canonical -1n BigInt.
1289     return NewFromInt(isolate, -1);
1290   } else {
1291     return Zero(isolate);
1292   }
1293 }
1294 
1295 // Returns the value of {x} if it is less than the maximum bit length of
1296 // a BigInt, or Nothing otherwise.
ToShiftAmount(Handle<BigIntBase> x)1297 Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) {
1298   if (x->length() > 1) return Nothing<digit_t>();
1299   digit_t value = x->digit(0);
1300   STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
1301   if (value > kMaxLengthBits) return Nothing<digit_t>();
1302   return Just(value);
1303 }
1304 
Terminate(Isolate * isolate)1305 void Terminate(Isolate* isolate) { isolate->TerminateExecution(); }
1306 // {LocalIsolate} doesn't support interruption or termination.
Terminate(LocalIsolate * isolate)1307 void Terminate(LocalIsolate* isolate) { UNREACHABLE(); }
1308 
1309 template <typename IsolateT>
Allocate(IsolateT * isolate,bigint::FromStringAccumulator * accumulator,bool negative,AllocationType allocation)1310 MaybeHandle<BigInt> BigInt::Allocate(IsolateT* isolate,
1311                                      bigint::FromStringAccumulator* accumulator,
1312                                      bool negative, AllocationType allocation) {
1313   int digits = accumulator->ResultLength();
1314   DCHECK_LE(digits, kMaxLength);
1315   Handle<MutableBigInt> result =
1316       MutableBigInt::New(isolate, digits, allocation).ToHandleChecked();
1317   bigint::Status status =
1318       isolate->bigint_processor()->FromString(GetRWDigits(result), accumulator);
1319   if (status == bigint::Status::kInterrupted) {
1320     Terminate(isolate);
1321     return {};
1322   }
1323   if (digits > 0) result->set_sign(negative);
1324   return MutableBigInt::MakeImmutable(result);
1325 }
1326 template MaybeHandle<BigInt> BigInt::Allocate(Isolate*,
1327                                               bigint::FromStringAccumulator*,
1328                                               bool, AllocationType);
1329 template MaybeHandle<BigInt> BigInt::Allocate(LocalIsolate*,
1330                                               bigint::FromStringAccumulator*,
1331                                               bool, AllocationType);
1332 
1333 // The serialization format MUST NOT CHANGE without updating the format
1334 // version in value-serializer.cc!
GetBitfieldForSerialization() const1335 uint32_t BigInt::GetBitfieldForSerialization() const {
1336   // In order to make the serialization format the same on 32/64 bit builds,
1337   // we convert the length-in-digits to length-in-bytes for serialization.
1338   // Being able to do this depends on having enough LengthBits:
1339   STATIC_ASSERT(kMaxLength * kDigitSize <= LengthBits::kMax);
1340   int bytelength = length() * kDigitSize;
1341   return SignBits::encode(sign()) | LengthBits::encode(bytelength);
1342 }
1343 
DigitsByteLengthForBitfield(uint32_t bitfield)1344 int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) {
1345   return LengthBits::decode(bitfield);
1346 }
1347 
1348 // The serialization format MUST NOT CHANGE without updating the format
1349 // version in value-serializer.cc!
SerializeDigits(uint8_t * storage)1350 void BigInt::SerializeDigits(uint8_t* storage) {
1351   void* digits =
1352       reinterpret_cast<void*>(ptr() + kDigitsOffset - kHeapObjectTag);
1353 #if defined(V8_TARGET_LITTLE_ENDIAN)
1354   int bytelength = length() * kDigitSize;
1355   memcpy(storage, digits, bytelength);
1356 #elif defined(V8_TARGET_BIG_ENDIAN)
1357   digit_t* digit_storage = reinterpret_cast<digit_t*>(storage);
1358   const digit_t* digit = reinterpret_cast<const digit_t*>(digits);
1359   for (int i = 0; i < length(); i++) {
1360     *digit_storage = ByteReverse(*digit);
1361     digit_storage++;
1362     digit++;
1363   }
1364 #endif  // V8_TARGET_BIG_ENDIAN
1365 }
1366 
1367 // The serialization format MUST NOT CHANGE without updating the format
1368 // version in value-serializer.cc!
FromSerializedDigits(Isolate * isolate,uint32_t bitfield,base::Vector<const uint8_t> digits_storage)1369 MaybeHandle<BigInt> BigInt::FromSerializedDigits(
1370     Isolate* isolate, uint32_t bitfield,
1371     base::Vector<const uint8_t> digits_storage) {
1372   int bytelength = LengthBits::decode(bitfield);
1373   DCHECK(digits_storage.length() == bytelength);
1374   bool sign = SignBits::decode(bitfield);
1375   int length = (bytelength + kDigitSize - 1) / kDigitSize;  // Round up.
1376   Handle<MutableBigInt> result =
1377       MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
1378   result->initialize_bitfield(sign, length);
1379   void* digits =
1380       reinterpret_cast<void*>(result->ptr() + kDigitsOffset - kHeapObjectTag);
1381 #if defined(V8_TARGET_LITTLE_ENDIAN)
1382   memcpy(digits, digits_storage.begin(), bytelength);
1383   void* padding_start =
1384       reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength);
1385   memset(padding_start, 0, length * kDigitSize - bytelength);
1386 #elif defined(V8_TARGET_BIG_ENDIAN)
1387   digit_t* digit = reinterpret_cast<digit_t*>(digits);
1388   const digit_t* digit_storage =
1389       reinterpret_cast<const digit_t*>(digits_storage.begin());
1390   for (int i = 0; i < bytelength / kDigitSize; i++) {
1391     *digit = ByteReverse(*digit_storage);
1392     digit_storage++;
1393     digit++;
1394   }
1395   if (bytelength % kDigitSize) {
1396     *digit = 0;
1397     byte* digit_byte = reinterpret_cast<byte*>(digit);
1398     digit_byte += sizeof(*digit) - 1;
1399     const byte* digit_storage_byte =
1400         reinterpret_cast<const byte*>(digit_storage);
1401     for (int i = 0; i < bytelength % kDigitSize; i++) {
1402       *digit_byte = *digit_storage_byte;
1403       digit_byte--;
1404       digit_storage_byte++;
1405     }
1406   }
1407 #endif  // V8_TARGET_BIG_ENDIAN
1408   return MutableBigInt::MakeImmutable(result);
1409 }
1410 
AsIntN(Isolate * isolate,uint64_t n,Handle<BigInt> x)1411 Handle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x) {
1412   if (x->is_zero() || n > kMaxLengthBits) return x;
1413   if (n == 0) return MutableBigInt::Zero(isolate);
1414   int needed_length =
1415       bigint::AsIntNResultLength(GetDigits(x), x->sign(), static_cast<int>(n));
1416   if (needed_length == -1) return x;
1417   Handle<MutableBigInt> result =
1418       MutableBigInt::New(isolate, needed_length).ToHandleChecked();
1419   bool negative = bigint::AsIntN(GetRWDigits(result), GetDigits(x), x->sign(),
1420                                  static_cast<int>(n));
1421   result->set_sign(negative);
1422   return MutableBigInt::MakeImmutable(result);
1423 }
1424 
AsUintN(Isolate * isolate,uint64_t n,Handle<BigInt> x)1425 MaybeHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n,
1426                                     Handle<BigInt> x) {
1427   if (x->is_zero()) return x;
1428   if (n == 0) return MutableBigInt::Zero(isolate);
1429   Handle<MutableBigInt> result;
1430   if (x->sign()) {
1431     if (n > kMaxLengthBits) {
1432       return ThrowBigIntTooBig<BigInt>(isolate);
1433     }
1434     int result_length = bigint::AsUintN_Neg_ResultLength(static_cast<int>(n));
1435     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
1436     bigint::AsUintN_Neg(GetRWDigits(result), GetDigits(x), static_cast<int>(n));
1437   } else {
1438     if (n >= kMaxLengthBits) return x;
1439     int result_length =
1440         bigint::AsUintN_Pos_ResultLength(GetDigits(x), static_cast<int>(n));
1441     if (result_length < 0) return x;
1442     result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
1443     bigint::AsUintN_Pos(GetRWDigits(result), GetDigits(x), static_cast<int>(n));
1444   }
1445   DCHECK(!result->sign());
1446   return MutableBigInt::MakeImmutable(result);
1447 }
1448 
FromInt64(Isolate * isolate,int64_t n)1449 Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) {
1450   if (n == 0) return MutableBigInt::Zero(isolate);
1451   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1452   int length = 64 / kDigitBits;
1453   Handle<MutableBigInt> result =
1454       MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
1455   bool sign = n < 0;
1456   result->initialize_bitfield(sign, length);
1457   uint64_t absolute;
1458   if (!sign) {
1459     absolute = static_cast<uint64_t>(n);
1460   } else {
1461     if (n == std::numeric_limits<int64_t>::min()) {
1462       absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1;
1463     } else {
1464       absolute = static_cast<uint64_t>(-n);
1465     }
1466   }
1467   result->set_64_bits(absolute);
1468   return MutableBigInt::MakeImmutable(result);
1469 }
1470 
FromUint64(Isolate * isolate,uint64_t n)1471 Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) {
1472   if (n == 0) return MutableBigInt::Zero(isolate);
1473   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1474   int length = 64 / kDigitBits;
1475   Handle<MutableBigInt> result =
1476       MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
1477   result->initialize_bitfield(false, length);
1478   result->set_64_bits(n);
1479   return MutableBigInt::MakeImmutable(result);
1480 }
1481 
FromWords64(Isolate * isolate,int sign_bit,int words64_count,const uint64_t * words)1482 MaybeHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit,
1483                                         int words64_count,
1484                                         const uint64_t* words) {
1485   if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) {
1486     return ThrowBigIntTooBig<BigInt>(isolate);
1487   }
1488   if (words64_count == 0) return MutableBigInt::Zero(isolate);
1489   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1490   int length = (64 / kDigitBits) * words64_count;
1491   DCHECK_GT(length, 0);
1492   if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--;
1493 
1494   Handle<MutableBigInt> result;
1495   if (!MutableBigInt::New(isolate, length).ToHandle(&result)) {
1496     return MaybeHandle<BigInt>();
1497   }
1498 
1499   result->set_sign(sign_bit);
1500   if (kDigitBits == 64) {
1501     for (int i = 0; i < length; ++i) {
1502       result->set_digit(i, static_cast<digit_t>(words[i]));
1503     }
1504   } else {
1505     for (int i = 0; i < length; i += 2) {
1506       digit_t lo = static_cast<digit_t>(words[i / 2]);
1507       digit_t hi = static_cast<digit_t>(words[i / 2] >> 32);
1508       result->set_digit(i, lo);
1509       if (i + 1 < length) result->set_digit(i + 1, hi);
1510     }
1511   }
1512 
1513   return MutableBigInt::MakeImmutable(result);
1514 }
1515 
Words64Count()1516 int BigInt::Words64Count() {
1517   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1518   return length() / (64 / kDigitBits) +
1519          (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0);
1520 }
1521 
ToWordsArray64(int * sign_bit,int * words64_count,uint64_t * words)1522 void BigInt::ToWordsArray64(int* sign_bit, int* words64_count,
1523                             uint64_t* words) {
1524   DCHECK_NE(sign_bit, nullptr);
1525   DCHECK_NE(words64_count, nullptr);
1526   *sign_bit = sign();
1527   int available_words = *words64_count;
1528   *words64_count = Words64Count();
1529   if (available_words == 0) return;
1530   DCHECK_NE(words, nullptr);
1531 
1532   int len = length();
1533   if (kDigitBits == 64) {
1534     for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i);
1535   } else {
1536     for (int i = 0; i < len && available_words > 0; i += 2) {
1537       uint64_t lo = digit(i);
1538       uint64_t hi = (i + 1) < len ? digit(i + 1) : 0;
1539       words[i / 2] = lo | (hi << 32);
1540       available_words--;
1541     }
1542   }
1543 }
1544 
GetRawBits(BigIntBase x,bool * lossless)1545 uint64_t MutableBigInt::GetRawBits(BigIntBase x, bool* lossless) {
1546   if (lossless != nullptr) *lossless = true;
1547   if (x.is_zero()) return 0;
1548   int len = x.length();
1549   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1550   if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false;
1551   uint64_t raw = static_cast<uint64_t>(x.digit(0));
1552   if (kDigitBits == 32 && len > 1) {
1553     raw |= static_cast<uint64_t>(x.digit(1)) << 32;
1554   }
1555   // Simulate two's complement. MSVC dislikes "-raw".
1556   return x.sign() ? ((~raw) + 1u) : raw;
1557 }
1558 
AsInt64(bool * lossless)1559 int64_t BigInt::AsInt64(bool* lossless) {
1560   uint64_t raw = MutableBigInt::GetRawBits(*this, lossless);
1561   int64_t result = static_cast<int64_t>(raw);
1562   if (lossless != nullptr && (result < 0) != sign()) *lossless = false;
1563   return result;
1564 }
1565 
AsUint64(bool * lossless)1566 uint64_t BigInt::AsUint64(bool* lossless) {
1567   uint64_t result = MutableBigInt::GetRawBits(*this, lossless);
1568   if (lossless != nullptr && sign()) *lossless = false;
1569   return result;
1570 }
1571 
set_64_bits(uint64_t bits)1572 void MutableBigInt::set_64_bits(uint64_t bits) {
1573   STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
1574   if (kDigitBits == 64) {
1575     set_digit(0, static_cast<digit_t>(bits));
1576   } else {
1577     set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu));
1578     set_digit(1, static_cast<digit_t>(bits >> 32));
1579   }
1580 }
1581 
1582 #ifdef OBJECT_PRINT
BigIntBasePrint(std::ostream & os)1583 void BigIntBase::BigIntBasePrint(std::ostream& os) {
1584   DisallowGarbageCollection no_gc;
1585   PrintHeader(os, "BigInt");
1586   int len = length();
1587   os << "\n- length: " << len;
1588   os << "\n- sign: " << sign();
1589   if (len > 0) {
1590     os << "\n- digits:";
1591     for (int i = 0; i < len; i++) {
1592       os << "\n    0x" << std::hex << digit(i);
1593     }
1594   }
1595   os << std::dec << "\n";
1596 }
1597 #endif  // OBJECT_PRINT
1598 
MutableBigInt_AbsoluteAddAndCanonicalize(Address result_addr,Address x_addr,Address y_addr)1599 void MutableBigInt_AbsoluteAddAndCanonicalize(Address result_addr,
1600                                               Address x_addr, Address y_addr) {
1601   BigInt x = BigInt::cast(Object(x_addr));
1602   BigInt y = BigInt::cast(Object(y_addr));
1603   MutableBigInt result = MutableBigInt::cast(Object(result_addr));
1604 
1605   bigint::Add(GetRWDigits(result), GetDigits(x), GetDigits(y));
1606   MutableBigInt::Canonicalize(result);
1607 }
1608 
MutableBigInt_AbsoluteCompare(Address x_addr,Address y_addr)1609 int32_t MutableBigInt_AbsoluteCompare(Address x_addr, Address y_addr) {
1610   BigInt x = BigInt::cast(Object(x_addr));
1611   BigInt y = BigInt::cast(Object(y_addr));
1612 
1613   return bigint::Compare(GetDigits(x), GetDigits(y));
1614 }
1615 
MutableBigInt_AbsoluteSubAndCanonicalize(Address result_addr,Address x_addr,Address y_addr)1616 void MutableBigInt_AbsoluteSubAndCanonicalize(Address result_addr,
1617                                               Address x_addr, Address y_addr) {
1618   BigInt x = BigInt::cast(Object(x_addr));
1619   BigInt y = BigInt::cast(Object(y_addr));
1620   MutableBigInt result = MutableBigInt::cast(Object(result_addr));
1621 
1622   bigint::Subtract(GetRWDigits(result), GetDigits(x), GetDigits(y));
1623   MutableBigInt::Canonicalize(result);
1624 }
1625 
1626 }  // namespace internal
1627 }  // namespace v8
1628