1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20 #include <linux/cpuset.h>
21 #include "walt.h"
22
23 struct dl_bandwidth def_dl_bandwidth;
24
dl_task_of(struct sched_dl_entity * dl_se)25 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
26 {
27 return container_of(dl_se, struct task_struct, dl);
28 }
29
rq_of_dl_rq(struct dl_rq * dl_rq)30 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
31 {
32 return container_of(dl_rq, struct rq, dl);
33 }
34
dl_rq_of_se(struct sched_dl_entity * dl_se)35 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
36 {
37 struct task_struct *p = dl_task_of(dl_se);
38 struct rq *rq = task_rq(p);
39
40 return &rq->dl;
41 }
42
on_dl_rq(struct sched_dl_entity * dl_se)43 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
44 {
45 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 }
47
48 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)49 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
50 {
51 return dl_se->pi_se;
52 }
53
is_dl_boosted(struct sched_dl_entity * dl_se)54 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
55 {
56 return pi_of(dl_se) != dl_se;
57 }
58 #else
pi_of(struct sched_dl_entity * dl_se)59 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
60 {
61 return dl_se;
62 }
63
is_dl_boosted(struct sched_dl_entity * dl_se)64 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
65 {
66 return false;
67 }
68 #endif
69
70 #ifdef CONFIG_SMP
dl_bw_of(int i)71 static inline struct dl_bw *dl_bw_of(int i)
72 {
73 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
74 "sched RCU must be held");
75 return &cpu_rq(i)->rd->dl_bw;
76 }
77
dl_bw_cpus(int i)78 static inline int dl_bw_cpus(int i)
79 {
80 struct root_domain *rd = cpu_rq(i)->rd;
81 int cpus;
82
83 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
84 "sched RCU must be held");
85
86 if (cpumask_subset(rd->span, cpu_active_mask))
87 return cpumask_weight(rd->span);
88
89 cpus = 0;
90
91 for_each_cpu_and(i, rd->span, cpu_active_mask)
92 cpus++;
93
94 return cpus;
95 }
96
__dl_bw_capacity(int i)97 static inline unsigned long __dl_bw_capacity(int i)
98 {
99 struct root_domain *rd = cpu_rq(i)->rd;
100 unsigned long cap = 0;
101
102 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
103 "sched RCU must be held");
104
105 for_each_cpu_and(i, rd->span, cpu_active_mask)
106 cap += capacity_orig_of(i);
107
108 return cap;
109 }
110
111 /*
112 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
113 * of the CPU the task is running on rather rd's \Sum CPU capacity.
114 */
dl_bw_capacity(int i)115 static inline unsigned long dl_bw_capacity(int i)
116 {
117 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
118 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
119 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
120 } else {
121 return __dl_bw_capacity(i);
122 }
123 }
124 #else
dl_bw_of(int i)125 static inline struct dl_bw *dl_bw_of(int i)
126 {
127 return &cpu_rq(i)->dl.dl_bw;
128 }
129
dl_bw_cpus(int i)130 static inline int dl_bw_cpus(int i)
131 {
132 return 1;
133 }
134
dl_bw_capacity(int i)135 static inline unsigned long dl_bw_capacity(int i)
136 {
137 return SCHED_CAPACITY_SCALE;
138 }
139 #endif
140
141 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)142 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
143 {
144 u64 old = dl_rq->running_bw;
145
146 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
147 dl_rq->running_bw += dl_bw;
148 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
149 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
150 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
151 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
152 }
153
154 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)155 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
156 {
157 u64 old = dl_rq->running_bw;
158
159 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
160 dl_rq->running_bw -= dl_bw;
161 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
162 if (dl_rq->running_bw > old)
163 dl_rq->running_bw = 0;
164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166 }
167
168 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)169 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
170 {
171 u64 old = dl_rq->this_bw;
172
173 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
174 dl_rq->this_bw += dl_bw;
175 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
176 }
177
178 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)179 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
180 {
181 u64 old = dl_rq->this_bw;
182
183 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
184 dl_rq->this_bw -= dl_bw;
185 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
186 if (dl_rq->this_bw > old)
187 dl_rq->this_bw = 0;
188 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
189 }
190
191 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)192 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
193 {
194 if (!dl_entity_is_special(dl_se))
195 __add_rq_bw(dl_se->dl_bw, dl_rq);
196 }
197
198 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)199 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
200 {
201 if (!dl_entity_is_special(dl_se))
202 __sub_rq_bw(dl_se->dl_bw, dl_rq);
203 }
204
205 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)206 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207 {
208 if (!dl_entity_is_special(dl_se))
209 __add_running_bw(dl_se->dl_bw, dl_rq);
210 }
211
212 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)213 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214 {
215 if (!dl_entity_is_special(dl_se))
216 __sub_running_bw(dl_se->dl_bw, dl_rq);
217 }
218
dl_change_utilization(struct task_struct * p,u64 new_bw)219 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
220 {
221 struct rq *rq;
222
223 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
224
225 if (task_on_rq_queued(p))
226 return;
227
228 rq = task_rq(p);
229 if (p->dl.dl_non_contending) {
230 sub_running_bw(&p->dl, &rq->dl);
231 p->dl.dl_non_contending = 0;
232 /*
233 * If the timer handler is currently running and the
234 * timer cannot be cancelled, inactive_task_timer()
235 * will see that dl_not_contending is not set, and
236 * will not touch the rq's active utilization,
237 * so we are still safe.
238 */
239 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
240 put_task_struct(p);
241 }
242 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
243 __add_rq_bw(new_bw, &rq->dl);
244 }
245
246 /*
247 * The utilization of a task cannot be immediately removed from
248 * the rq active utilization (running_bw) when the task blocks.
249 * Instead, we have to wait for the so called "0-lag time".
250 *
251 * If a task blocks before the "0-lag time", a timer (the inactive
252 * timer) is armed, and running_bw is decreased when the timer
253 * fires.
254 *
255 * If the task wakes up again before the inactive timer fires,
256 * the timer is cancelled, whereas if the task wakes up after the
257 * inactive timer fired (and running_bw has been decreased) the
258 * task's utilization has to be added to running_bw again.
259 * A flag in the deadline scheduling entity (dl_non_contending)
260 * is used to avoid race conditions between the inactive timer handler
261 * and task wakeups.
262 *
263 * The following diagram shows how running_bw is updated. A task is
264 * "ACTIVE" when its utilization contributes to running_bw; an
265 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
266 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
267 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
268 * time already passed, which does not contribute to running_bw anymore.
269 * +------------------+
270 * wakeup | ACTIVE |
271 * +------------------>+ contending |
272 * | add_running_bw | |
273 * | +----+------+------+
274 * | | ^
275 * | dequeue | |
276 * +--------+-------+ | |
277 * | | t >= 0-lag | | wakeup
278 * | INACTIVE |<---------------+ |
279 * | | sub_running_bw | |
280 * +--------+-------+ | |
281 * ^ | |
282 * | t < 0-lag | |
283 * | | |
284 * | V |
285 * | +----+------+------+
286 * | sub_running_bw | ACTIVE |
287 * +-------------------+ |
288 * inactive timer | non contending |
289 * fired +------------------+
290 *
291 * The task_non_contending() function is invoked when a task
292 * blocks, and checks if the 0-lag time already passed or
293 * not (in the first case, it directly updates running_bw;
294 * in the second case, it arms the inactive timer).
295 *
296 * The task_contending() function is invoked when a task wakes
297 * up, and checks if the task is still in the "ACTIVE non contending"
298 * state or not (in the second case, it updates running_bw).
299 */
task_non_contending(struct task_struct * p)300 static void task_non_contending(struct task_struct *p)
301 {
302 struct sched_dl_entity *dl_se = &p->dl;
303 struct hrtimer *timer = &dl_se->inactive_timer;
304 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
305 struct rq *rq = rq_of_dl_rq(dl_rq);
306 s64 zerolag_time;
307
308 /*
309 * If this is a non-deadline task that has been boosted,
310 * do nothing
311 */
312 if (dl_se->dl_runtime == 0)
313 return;
314
315 if (dl_entity_is_special(dl_se))
316 return;
317
318 WARN_ON(dl_se->dl_non_contending);
319
320 zerolag_time = dl_se->deadline -
321 div64_long((dl_se->runtime * dl_se->dl_period),
322 dl_se->dl_runtime);
323
324 /*
325 * Using relative times instead of the absolute "0-lag time"
326 * allows to simplify the code
327 */
328 zerolag_time -= rq_clock(rq);
329
330 /*
331 * If the "0-lag time" already passed, decrease the active
332 * utilization now, instead of starting a timer
333 */
334 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
335 if (dl_task(p))
336 sub_running_bw(dl_se, dl_rq);
337 if (!dl_task(p) || p->state == TASK_DEAD) {
338 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
339
340 if (p->state == TASK_DEAD)
341 sub_rq_bw(&p->dl, &rq->dl);
342 raw_spin_lock(&dl_b->lock);
343 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
344 __dl_clear_params(p);
345 raw_spin_unlock(&dl_b->lock);
346 }
347
348 return;
349 }
350
351 dl_se->dl_non_contending = 1;
352 get_task_struct(p);
353 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
354 }
355
task_contending(struct sched_dl_entity * dl_se,int flags)356 static void task_contending(struct sched_dl_entity *dl_se, int flags)
357 {
358 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
359
360 /*
361 * If this is a non-deadline task that has been boosted,
362 * do nothing
363 */
364 if (dl_se->dl_runtime == 0)
365 return;
366
367 if (flags & ENQUEUE_MIGRATED)
368 add_rq_bw(dl_se, dl_rq);
369
370 if (dl_se->dl_non_contending) {
371 dl_se->dl_non_contending = 0;
372 /*
373 * If the timer handler is currently running and the
374 * timer cannot be cancelled, inactive_task_timer()
375 * will see that dl_not_contending is not set, and
376 * will not touch the rq's active utilization,
377 * so we are still safe.
378 */
379 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
380 put_task_struct(dl_task_of(dl_se));
381 } else {
382 /*
383 * Since "dl_non_contending" is not set, the
384 * task's utilization has already been removed from
385 * active utilization (either when the task blocked,
386 * when the "inactive timer" fired).
387 * So, add it back.
388 */
389 add_running_bw(dl_se, dl_rq);
390 }
391 }
392
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)393 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
394 {
395 struct sched_dl_entity *dl_se = &p->dl;
396
397 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
398 }
399
400 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
401
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)402 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
403 {
404 raw_spin_lock_init(&dl_b->dl_runtime_lock);
405 dl_b->dl_period = period;
406 dl_b->dl_runtime = runtime;
407 }
408
init_dl_bw(struct dl_bw * dl_b)409 void init_dl_bw(struct dl_bw *dl_b)
410 {
411 raw_spin_lock_init(&dl_b->lock);
412 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
413 if (global_rt_runtime() == RUNTIME_INF)
414 dl_b->bw = -1;
415 else
416 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
417 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
418 dl_b->total_bw = 0;
419 }
420
init_dl_rq(struct dl_rq * dl_rq)421 void init_dl_rq(struct dl_rq *dl_rq)
422 {
423 dl_rq->root = RB_ROOT_CACHED;
424
425 #ifdef CONFIG_SMP
426 /* zero means no -deadline tasks */
427 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
428
429 dl_rq->dl_nr_migratory = 0;
430 dl_rq->overloaded = 0;
431 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
432 #else
433 init_dl_bw(&dl_rq->dl_bw);
434 #endif
435
436 dl_rq->running_bw = 0;
437 dl_rq->this_bw = 0;
438 init_dl_rq_bw_ratio(dl_rq);
439 }
440
441 #ifdef CONFIG_SMP
442
dl_overloaded(struct rq * rq)443 static inline int dl_overloaded(struct rq *rq)
444 {
445 return atomic_read(&rq->rd->dlo_count);
446 }
447
dl_set_overload(struct rq * rq)448 static inline void dl_set_overload(struct rq *rq)
449 {
450 if (!rq->online)
451 return;
452
453 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
454 /*
455 * Must be visible before the overload count is
456 * set (as in sched_rt.c).
457 *
458 * Matched by the barrier in pull_dl_task().
459 */
460 smp_wmb();
461 atomic_inc(&rq->rd->dlo_count);
462 }
463
dl_clear_overload(struct rq * rq)464 static inline void dl_clear_overload(struct rq *rq)
465 {
466 if (!rq->online)
467 return;
468
469 atomic_dec(&rq->rd->dlo_count);
470 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
471 }
472
update_dl_migration(struct dl_rq * dl_rq)473 static void update_dl_migration(struct dl_rq *dl_rq)
474 {
475 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
476 if (!dl_rq->overloaded) {
477 dl_set_overload(rq_of_dl_rq(dl_rq));
478 dl_rq->overloaded = 1;
479 }
480 } else if (dl_rq->overloaded) {
481 dl_clear_overload(rq_of_dl_rq(dl_rq));
482 dl_rq->overloaded = 0;
483 }
484 }
485
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)486 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
487 {
488 struct task_struct *p = dl_task_of(dl_se);
489
490 if (p->nr_cpus_allowed > 1)
491 dl_rq->dl_nr_migratory++;
492
493 update_dl_migration(dl_rq);
494 }
495
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)496 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
497 {
498 struct task_struct *p = dl_task_of(dl_se);
499
500 if (p->nr_cpus_allowed > 1)
501 dl_rq->dl_nr_migratory--;
502
503 update_dl_migration(dl_rq);
504 }
505
506 /*
507 * The list of pushable -deadline task is not a plist, like in
508 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
509 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)510 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
511 {
512 struct dl_rq *dl_rq = &rq->dl;
513 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
514 struct rb_node *parent = NULL;
515 struct task_struct *entry;
516 bool leftmost = true;
517
518 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
519
520 while (*link) {
521 parent = *link;
522 entry = rb_entry(parent, struct task_struct,
523 pushable_dl_tasks);
524 if (dl_entity_preempt(&p->dl, &entry->dl))
525 link = &parent->rb_left;
526 else {
527 link = &parent->rb_right;
528 leftmost = false;
529 }
530 }
531
532 if (leftmost)
533 dl_rq->earliest_dl.next = p->dl.deadline;
534
535 rb_link_node(&p->pushable_dl_tasks, parent, link);
536 rb_insert_color_cached(&p->pushable_dl_tasks,
537 &dl_rq->pushable_dl_tasks_root, leftmost);
538 }
539
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)540 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
541 {
542 struct dl_rq *dl_rq = &rq->dl;
543
544 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
545 return;
546
547 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
548 struct rb_node *next_node;
549
550 next_node = rb_next(&p->pushable_dl_tasks);
551 if (next_node) {
552 dl_rq->earliest_dl.next = rb_entry(next_node,
553 struct task_struct, pushable_dl_tasks)->dl.deadline;
554 }
555 }
556
557 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
558 RB_CLEAR_NODE(&p->pushable_dl_tasks);
559 }
560
has_pushable_dl_tasks(struct rq * rq)561 static inline int has_pushable_dl_tasks(struct rq *rq)
562 {
563 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
564 }
565
566 static int push_dl_task(struct rq *rq);
567
need_pull_dl_task(struct rq * rq,struct task_struct * prev)568 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
569 {
570 return dl_task(prev);
571 }
572
573 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
574 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
575
576 static void push_dl_tasks(struct rq *);
577 static void pull_dl_task(struct rq *);
578
deadline_queue_push_tasks(struct rq * rq)579 static inline void deadline_queue_push_tasks(struct rq *rq)
580 {
581 if (!has_pushable_dl_tasks(rq))
582 return;
583
584 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
585 }
586
deadline_queue_pull_task(struct rq * rq)587 static inline void deadline_queue_pull_task(struct rq *rq)
588 {
589 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
590 }
591
592 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
593
dl_task_offline_migration(struct rq * rq,struct task_struct * p)594 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
595 {
596 struct rq *later_rq = NULL;
597 struct dl_bw *dl_b;
598
599 later_rq = find_lock_later_rq(p, rq);
600 if (!later_rq) {
601 int cpu;
602
603 /*
604 * If we cannot preempt any rq, fall back to pick any
605 * online CPU:
606 */
607 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
608 if (cpu >= nr_cpu_ids) {
609 /*
610 * Failed to find any suitable CPU.
611 * The task will never come back!
612 */
613 BUG_ON(dl_bandwidth_enabled());
614
615 /*
616 * If admission control is disabled we
617 * try a little harder to let the task
618 * run.
619 */
620 cpu = cpumask_any(cpu_active_mask);
621 }
622 later_rq = cpu_rq(cpu);
623 double_lock_balance(rq, later_rq);
624 }
625
626 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
627 /*
628 * Inactive timer is armed (or callback is running, but
629 * waiting for us to release rq locks). In any case, when it
630 * will fire (or continue), it will see running_bw of this
631 * task migrated to later_rq (and correctly handle it).
632 */
633 sub_running_bw(&p->dl, &rq->dl);
634 sub_rq_bw(&p->dl, &rq->dl);
635
636 add_rq_bw(&p->dl, &later_rq->dl);
637 add_running_bw(&p->dl, &later_rq->dl);
638 } else {
639 sub_rq_bw(&p->dl, &rq->dl);
640 add_rq_bw(&p->dl, &later_rq->dl);
641 }
642
643 /*
644 * And we finally need to fixup root_domain(s) bandwidth accounting,
645 * since p is still hanging out in the old (now moved to default) root
646 * domain.
647 */
648 dl_b = &rq->rd->dl_bw;
649 raw_spin_lock(&dl_b->lock);
650 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
651 raw_spin_unlock(&dl_b->lock);
652
653 dl_b = &later_rq->rd->dl_bw;
654 raw_spin_lock(&dl_b->lock);
655 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
656 raw_spin_unlock(&dl_b->lock);
657
658 set_task_cpu(p, later_rq->cpu);
659 double_unlock_balance(later_rq, rq);
660
661 return later_rq;
662 }
663
664 #else
665
666 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)667 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
668 {
669 }
670
671 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)672 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
673 {
674 }
675
676 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)677 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
678 {
679 }
680
681 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)682 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
683 {
684 }
685
need_pull_dl_task(struct rq * rq,struct task_struct * prev)686 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
687 {
688 return false;
689 }
690
pull_dl_task(struct rq * rq)691 static inline void pull_dl_task(struct rq *rq)
692 {
693 }
694
deadline_queue_push_tasks(struct rq * rq)695 static inline void deadline_queue_push_tasks(struct rq *rq)
696 {
697 }
698
deadline_queue_pull_task(struct rq * rq)699 static inline void deadline_queue_pull_task(struct rq *rq)
700 {
701 }
702 #endif /* CONFIG_SMP */
703
704 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
705 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
706 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
707
708 /*
709 * We are being explicitly informed that a new instance is starting,
710 * and this means that:
711 * - the absolute deadline of the entity has to be placed at
712 * current time + relative deadline;
713 * - the runtime of the entity has to be set to the maximum value.
714 *
715 * The capability of specifying such event is useful whenever a -deadline
716 * entity wants to (try to!) synchronize its behaviour with the scheduler's
717 * one, and to (try to!) reconcile itself with its own scheduling
718 * parameters.
719 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)720 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
721 {
722 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
723 struct rq *rq = rq_of_dl_rq(dl_rq);
724
725 WARN_ON(is_dl_boosted(dl_se));
726 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
727
728 /*
729 * We are racing with the deadline timer. So, do nothing because
730 * the deadline timer handler will take care of properly recharging
731 * the runtime and postponing the deadline
732 */
733 if (dl_se->dl_throttled)
734 return;
735
736 /*
737 * We use the regular wall clock time to set deadlines in the
738 * future; in fact, we must consider execution overheads (time
739 * spent on hardirq context, etc.).
740 */
741 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
742 dl_se->runtime = dl_se->dl_runtime;
743 }
744
745 /*
746 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
747 * possibility of a entity lasting more than what it declared, and thus
748 * exhausting its runtime.
749 *
750 * Here we are interested in making runtime overrun possible, but we do
751 * not want a entity which is misbehaving to affect the scheduling of all
752 * other entities.
753 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
754 * is used, in order to confine each entity within its own bandwidth.
755 *
756 * This function deals exactly with that, and ensures that when the runtime
757 * of a entity is replenished, its deadline is also postponed. That ensures
758 * the overrunning entity can't interfere with other entity in the system and
759 * can't make them miss their deadlines. Reasons why this kind of overruns
760 * could happen are, typically, a entity voluntarily trying to overcome its
761 * runtime, or it just underestimated it during sched_setattr().
762 */
replenish_dl_entity(struct sched_dl_entity * dl_se)763 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
764 {
765 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
766 struct rq *rq = rq_of_dl_rq(dl_rq);
767
768 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
769
770 /*
771 * This could be the case for a !-dl task that is boosted.
772 * Just go with full inherited parameters.
773 */
774 if (dl_se->dl_deadline == 0) {
775 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
776 dl_se->runtime = pi_of(dl_se)->dl_runtime;
777 }
778
779 if (dl_se->dl_yielded && dl_se->runtime > 0)
780 dl_se->runtime = 0;
781
782 /*
783 * We keep moving the deadline away until we get some
784 * available runtime for the entity. This ensures correct
785 * handling of situations where the runtime overrun is
786 * arbitrary large.
787 */
788 while (dl_se->runtime <= 0) {
789 dl_se->deadline += pi_of(dl_se)->dl_period;
790 dl_se->runtime += pi_of(dl_se)->dl_runtime;
791 }
792
793 /*
794 * At this point, the deadline really should be "in
795 * the future" with respect to rq->clock. If it's
796 * not, we are, for some reason, lagging too much!
797 * Anyway, after having warn userspace abut that,
798 * we still try to keep the things running by
799 * resetting the deadline and the budget of the
800 * entity.
801 */
802 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
803 printk_deferred_once("sched: DL replenish lagged too much\n");
804 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 }
807
808 if (dl_se->dl_yielded)
809 dl_se->dl_yielded = 0;
810 if (dl_se->dl_throttled)
811 dl_se->dl_throttled = 0;
812 }
813
814 /*
815 * Here we check if --at time t-- an entity (which is probably being
816 * [re]activated or, in general, enqueued) can use its remaining runtime
817 * and its current deadline _without_ exceeding the bandwidth it is
818 * assigned (function returns true if it can't). We are in fact applying
819 * one of the CBS rules: when a task wakes up, if the residual runtime
820 * over residual deadline fits within the allocated bandwidth, then we
821 * can keep the current (absolute) deadline and residual budget without
822 * disrupting the schedulability of the system. Otherwise, we should
823 * refill the runtime and set the deadline a period in the future,
824 * because keeping the current (absolute) deadline of the task would
825 * result in breaking guarantees promised to other tasks (refer to
826 * Documentation/scheduler/sched-deadline.rst for more information).
827 *
828 * This function returns true if:
829 *
830 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
831 *
832 * IOW we can't recycle current parameters.
833 *
834 * Notice that the bandwidth check is done against the deadline. For
835 * task with deadline equal to period this is the same of using
836 * dl_period instead of dl_deadline in the equation above.
837 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)838 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
839 {
840 u64 left, right;
841
842 /*
843 * left and right are the two sides of the equation above,
844 * after a bit of shuffling to use multiplications instead
845 * of divisions.
846 *
847 * Note that none of the time values involved in the two
848 * multiplications are absolute: dl_deadline and dl_runtime
849 * are the relative deadline and the maximum runtime of each
850 * instance, runtime is the runtime left for the last instance
851 * and (deadline - t), since t is rq->clock, is the time left
852 * to the (absolute) deadline. Even if overflowing the u64 type
853 * is very unlikely to occur in both cases, here we scale down
854 * as we want to avoid that risk at all. Scaling down by 10
855 * means that we reduce granularity to 1us. We are fine with it,
856 * since this is only a true/false check and, anyway, thinking
857 * of anything below microseconds resolution is actually fiction
858 * (but still we want to give the user that illusion >;).
859 */
860 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
861 right = ((dl_se->deadline - t) >> DL_SCALE) *
862 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
863
864 return dl_time_before(right, left);
865 }
866
867 /*
868 * Revised wakeup rule [1]: For self-suspending tasks, rather then
869 * re-initializing task's runtime and deadline, the revised wakeup
870 * rule adjusts the task's runtime to avoid the task to overrun its
871 * density.
872 *
873 * Reasoning: a task may overrun the density if:
874 * runtime / (deadline - t) > dl_runtime / dl_deadline
875 *
876 * Therefore, runtime can be adjusted to:
877 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
878 *
879 * In such way that runtime will be equal to the maximum density
880 * the task can use without breaking any rule.
881 *
882 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
883 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
884 */
885 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)886 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
887 {
888 u64 laxity = dl_se->deadline - rq_clock(rq);
889
890 /*
891 * If the task has deadline < period, and the deadline is in the past,
892 * it should already be throttled before this check.
893 *
894 * See update_dl_entity() comments for further details.
895 */
896 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
897
898 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
899 }
900
901 /*
902 * Regarding the deadline, a task with implicit deadline has a relative
903 * deadline == relative period. A task with constrained deadline has a
904 * relative deadline <= relative period.
905 *
906 * We support constrained deadline tasks. However, there are some restrictions
907 * applied only for tasks which do not have an implicit deadline. See
908 * update_dl_entity() to know more about such restrictions.
909 *
910 * The dl_is_implicit() returns true if the task has an implicit deadline.
911 */
dl_is_implicit(struct sched_dl_entity * dl_se)912 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
913 {
914 return dl_se->dl_deadline == dl_se->dl_period;
915 }
916
917 /*
918 * When a deadline entity is placed in the runqueue, its runtime and deadline
919 * might need to be updated. This is done by a CBS wake up rule. There are two
920 * different rules: 1) the original CBS; and 2) the Revisited CBS.
921 *
922 * When the task is starting a new period, the Original CBS is used. In this
923 * case, the runtime is replenished and a new absolute deadline is set.
924 *
925 * When a task is queued before the begin of the next period, using the
926 * remaining runtime and deadline could make the entity to overflow, see
927 * dl_entity_overflow() to find more about runtime overflow. When such case
928 * is detected, the runtime and deadline need to be updated.
929 *
930 * If the task has an implicit deadline, i.e., deadline == period, the Original
931 * CBS is applied. the runtime is replenished and a new absolute deadline is
932 * set, as in the previous cases.
933 *
934 * However, the Original CBS does not work properly for tasks with
935 * deadline < period, which are said to have a constrained deadline. By
936 * applying the Original CBS, a constrained deadline task would be able to run
937 * runtime/deadline in a period. With deadline < period, the task would
938 * overrun the runtime/period allowed bandwidth, breaking the admission test.
939 *
940 * In order to prevent this misbehave, the Revisited CBS is used for
941 * constrained deadline tasks when a runtime overflow is detected. In the
942 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
943 * the remaining runtime of the task is reduced to avoid runtime overflow.
944 * Please refer to the comments update_dl_revised_wakeup() function to find
945 * more about the Revised CBS rule.
946 */
update_dl_entity(struct sched_dl_entity * dl_se)947 static void update_dl_entity(struct sched_dl_entity *dl_se)
948 {
949 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
950 struct rq *rq = rq_of_dl_rq(dl_rq);
951
952 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
953 dl_entity_overflow(dl_se, rq_clock(rq))) {
954
955 if (unlikely(!dl_is_implicit(dl_se) &&
956 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
957 !is_dl_boosted(dl_se))) {
958 update_dl_revised_wakeup(dl_se, rq);
959 return;
960 }
961
962 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
963 dl_se->runtime = pi_of(dl_se)->dl_runtime;
964 }
965 }
966
dl_next_period(struct sched_dl_entity * dl_se)967 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
968 {
969 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
970 }
971
972 /*
973 * If the entity depleted all its runtime, and if we want it to sleep
974 * while waiting for some new execution time to become available, we
975 * set the bandwidth replenishment timer to the replenishment instant
976 * and try to activate it.
977 *
978 * Notice that it is important for the caller to know if the timer
979 * actually started or not (i.e., the replenishment instant is in
980 * the future or in the past).
981 */
start_dl_timer(struct task_struct * p)982 static int start_dl_timer(struct task_struct *p)
983 {
984 struct sched_dl_entity *dl_se = &p->dl;
985 struct hrtimer *timer = &dl_se->dl_timer;
986 struct rq *rq = task_rq(p);
987 ktime_t now, act;
988 s64 delta;
989
990 lockdep_assert_held(&rq->lock);
991
992 /*
993 * We want the timer to fire at the deadline, but considering
994 * that it is actually coming from rq->clock and not from
995 * hrtimer's time base reading.
996 */
997 act = ns_to_ktime(dl_next_period(dl_se));
998 now = hrtimer_cb_get_time(timer);
999 delta = ktime_to_ns(now) - rq_clock(rq);
1000 act = ktime_add_ns(act, delta);
1001
1002 /*
1003 * If the expiry time already passed, e.g., because the value
1004 * chosen as the deadline is too small, don't even try to
1005 * start the timer in the past!
1006 */
1007 if (ktime_us_delta(act, now) < 0)
1008 return 0;
1009
1010 /*
1011 * !enqueued will guarantee another callback; even if one is already in
1012 * progress. This ensures a balanced {get,put}_task_struct().
1013 *
1014 * The race against __run_timer() clearing the enqueued state is
1015 * harmless because we're holding task_rq()->lock, therefore the timer
1016 * expiring after we've done the check will wait on its task_rq_lock()
1017 * and observe our state.
1018 */
1019 if (!hrtimer_is_queued(timer)) {
1020 get_task_struct(p);
1021 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1022 }
1023
1024 return 1;
1025 }
1026
1027 /*
1028 * This is the bandwidth enforcement timer callback. If here, we know
1029 * a task is not on its dl_rq, since the fact that the timer was running
1030 * means the task is throttled and needs a runtime replenishment.
1031 *
1032 * However, what we actually do depends on the fact the task is active,
1033 * (it is on its rq) or has been removed from there by a call to
1034 * dequeue_task_dl(). In the former case we must issue the runtime
1035 * replenishment and add the task back to the dl_rq; in the latter, we just
1036 * do nothing but clearing dl_throttled, so that runtime and deadline
1037 * updating (and the queueing back to dl_rq) will be done by the
1038 * next call to enqueue_task_dl().
1039 */
dl_task_timer(struct hrtimer * timer)1040 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1041 {
1042 struct sched_dl_entity *dl_se = container_of(timer,
1043 struct sched_dl_entity,
1044 dl_timer);
1045 struct task_struct *p = dl_task_of(dl_se);
1046 struct rq_flags rf;
1047 struct rq *rq;
1048
1049 rq = task_rq_lock(p, &rf);
1050
1051 /*
1052 * The task might have changed its scheduling policy to something
1053 * different than SCHED_DEADLINE (through switched_from_dl()).
1054 */
1055 if (!dl_task(p))
1056 goto unlock;
1057
1058 /*
1059 * The task might have been boosted by someone else and might be in the
1060 * boosting/deboosting path, its not throttled.
1061 */
1062 if (is_dl_boosted(dl_se))
1063 goto unlock;
1064
1065 /*
1066 * Spurious timer due to start_dl_timer() race; or we already received
1067 * a replenishment from rt_mutex_setprio().
1068 */
1069 if (!dl_se->dl_throttled)
1070 goto unlock;
1071
1072 sched_clock_tick();
1073 update_rq_clock(rq);
1074
1075 /*
1076 * If the throttle happened during sched-out; like:
1077 *
1078 * schedule()
1079 * deactivate_task()
1080 * dequeue_task_dl()
1081 * update_curr_dl()
1082 * start_dl_timer()
1083 * __dequeue_task_dl()
1084 * prev->on_rq = 0;
1085 *
1086 * We can be both throttled and !queued. Replenish the counter
1087 * but do not enqueue -- wait for our wakeup to do that.
1088 */
1089 if (!task_on_rq_queued(p)) {
1090 replenish_dl_entity(dl_se);
1091 goto unlock;
1092 }
1093
1094 #ifdef CONFIG_SMP
1095 if (unlikely(!rq->online)) {
1096 /*
1097 * If the runqueue is no longer available, migrate the
1098 * task elsewhere. This necessarily changes rq.
1099 */
1100 lockdep_unpin_lock(&rq->lock, rf.cookie);
1101 rq = dl_task_offline_migration(rq, p);
1102 rf.cookie = lockdep_pin_lock(&rq->lock);
1103 update_rq_clock(rq);
1104
1105 /*
1106 * Now that the task has been migrated to the new RQ and we
1107 * have that locked, proceed as normal and enqueue the task
1108 * there.
1109 */
1110 }
1111 #endif
1112
1113 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1114 if (dl_task(rq->curr))
1115 check_preempt_curr_dl(rq, p, 0);
1116 else
1117 resched_curr(rq);
1118
1119 #ifdef CONFIG_SMP
1120 /*
1121 * Queueing this task back might have overloaded rq, check if we need
1122 * to kick someone away.
1123 */
1124 if (has_pushable_dl_tasks(rq)) {
1125 /*
1126 * Nothing relies on rq->lock after this, so its safe to drop
1127 * rq->lock.
1128 */
1129 rq_unpin_lock(rq, &rf);
1130 push_dl_task(rq);
1131 rq_repin_lock(rq, &rf);
1132 }
1133 #endif
1134
1135 unlock:
1136 task_rq_unlock(rq, p, &rf);
1137
1138 /*
1139 * This can free the task_struct, including this hrtimer, do not touch
1140 * anything related to that after this.
1141 */
1142 put_task_struct(p);
1143
1144 return HRTIMER_NORESTART;
1145 }
1146
init_dl_task_timer(struct sched_dl_entity * dl_se)1147 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1148 {
1149 struct hrtimer *timer = &dl_se->dl_timer;
1150
1151 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1152 timer->function = dl_task_timer;
1153 }
1154
1155 /*
1156 * During the activation, CBS checks if it can reuse the current task's
1157 * runtime and period. If the deadline of the task is in the past, CBS
1158 * cannot use the runtime, and so it replenishes the task. This rule
1159 * works fine for implicit deadline tasks (deadline == period), and the
1160 * CBS was designed for implicit deadline tasks. However, a task with
1161 * constrained deadline (deadline < period) might be awakened after the
1162 * deadline, but before the next period. In this case, replenishing the
1163 * task would allow it to run for runtime / deadline. As in this case
1164 * deadline < period, CBS enables a task to run for more than the
1165 * runtime / period. In a very loaded system, this can cause a domino
1166 * effect, making other tasks miss their deadlines.
1167 *
1168 * To avoid this problem, in the activation of a constrained deadline
1169 * task after the deadline but before the next period, throttle the
1170 * task and set the replenishing timer to the begin of the next period,
1171 * unless it is boosted.
1172 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1173 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1174 {
1175 struct task_struct *p = dl_task_of(dl_se);
1176 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1177
1178 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1179 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1180 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1181 return;
1182 dl_se->dl_throttled = 1;
1183 if (dl_se->runtime > 0)
1184 dl_se->runtime = 0;
1185 }
1186 }
1187
1188 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1189 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1190 {
1191 return (dl_se->runtime <= 0);
1192 }
1193
1194 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1195
1196 /*
1197 * This function implements the GRUB accounting rule:
1198 * according to the GRUB reclaiming algorithm, the runtime is
1199 * not decreased as "dq = -dt", but as
1200 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1201 * where u is the utilization of the task, Umax is the maximum reclaimable
1202 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1203 * as the difference between the "total runqueue utilization" and the
1204 * runqueue active utilization, and Uextra is the (per runqueue) extra
1205 * reclaimable utilization.
1206 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1207 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1208 * BW_SHIFT.
1209 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1210 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1211 * Since delta is a 64 bit variable, to have an overflow its value
1212 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1213 * So, overflow is not an issue here.
1214 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1215 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1216 {
1217 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1218 u64 u_act;
1219 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1220
1221 /*
1222 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1223 * we compare u_inact + rq->dl.extra_bw with
1224 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1225 * u_inact + rq->dl.extra_bw can be larger than
1226 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1227 * leading to wrong results)
1228 */
1229 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1230 u_act = u_act_min;
1231 else
1232 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1233
1234 return (delta * u_act) >> BW_SHIFT;
1235 }
1236
1237 /*
1238 * Update the current task's runtime statistics (provided it is still
1239 * a -deadline task and has not been removed from the dl_rq).
1240 */
update_curr_dl(struct rq * rq)1241 static void update_curr_dl(struct rq *rq)
1242 {
1243 struct task_struct *curr = rq->curr;
1244 struct sched_dl_entity *dl_se = &curr->dl;
1245 u64 delta_exec, scaled_delta_exec;
1246 int cpu = cpu_of(rq);
1247 u64 now;
1248
1249 if (!dl_task(curr) || !on_dl_rq(dl_se))
1250 return;
1251
1252 /*
1253 * Consumed budget is computed considering the time as
1254 * observed by schedulable tasks (excluding time spent
1255 * in hardirq context, etc.). Deadlines are instead
1256 * computed using hard walltime. This seems to be the more
1257 * natural solution, but the full ramifications of this
1258 * approach need further study.
1259 */
1260 now = rq_clock_task(rq);
1261 delta_exec = now - curr->se.exec_start;
1262 if (unlikely((s64)delta_exec <= 0)) {
1263 if (unlikely(dl_se->dl_yielded))
1264 goto throttle;
1265 return;
1266 }
1267
1268 schedstat_set(curr->se.statistics.exec_max,
1269 max(curr->se.statistics.exec_max, delta_exec));
1270
1271 curr->se.sum_exec_runtime += delta_exec;
1272 account_group_exec_runtime(curr, delta_exec);
1273
1274 curr->se.exec_start = now;
1275 cgroup_account_cputime(curr, delta_exec);
1276
1277 if (dl_entity_is_special(dl_se))
1278 return;
1279
1280 /*
1281 * For tasks that participate in GRUB, we implement GRUB-PA: the
1282 * spare reclaimed bandwidth is used to clock down frequency.
1283 *
1284 * For the others, we still need to scale reservation parameters
1285 * according to current frequency and CPU maximum capacity.
1286 */
1287 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1288 scaled_delta_exec = grub_reclaim(delta_exec,
1289 rq,
1290 &curr->dl);
1291 } else {
1292 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1293 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1294
1295 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1296 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1297 }
1298
1299 dl_se->runtime -= scaled_delta_exec;
1300
1301 throttle:
1302 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1303 dl_se->dl_throttled = 1;
1304
1305 /* If requested, inform the user about runtime overruns. */
1306 if (dl_runtime_exceeded(dl_se) &&
1307 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1308 dl_se->dl_overrun = 1;
1309
1310 __dequeue_task_dl(rq, curr, 0);
1311 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1312 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1313
1314 if (!is_leftmost(curr, &rq->dl))
1315 resched_curr(rq);
1316 }
1317
1318 /*
1319 * Because -- for now -- we share the rt bandwidth, we need to
1320 * account our runtime there too, otherwise actual rt tasks
1321 * would be able to exceed the shared quota.
1322 *
1323 * Account to the root rt group for now.
1324 *
1325 * The solution we're working towards is having the RT groups scheduled
1326 * using deadline servers -- however there's a few nasties to figure
1327 * out before that can happen.
1328 */
1329 if (rt_bandwidth_enabled()) {
1330 struct rt_rq *rt_rq = &rq->rt;
1331
1332 raw_spin_lock(&rt_rq->rt_runtime_lock);
1333 /*
1334 * We'll let actual RT tasks worry about the overflow here, we
1335 * have our own CBS to keep us inline; only account when RT
1336 * bandwidth is relevant.
1337 */
1338 if (sched_rt_bandwidth_account(rt_rq))
1339 rt_rq->rt_time += delta_exec;
1340 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1341 }
1342 }
1343
inactive_task_timer(struct hrtimer * timer)1344 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1345 {
1346 struct sched_dl_entity *dl_se = container_of(timer,
1347 struct sched_dl_entity,
1348 inactive_timer);
1349 struct task_struct *p = dl_task_of(dl_se);
1350 struct rq_flags rf;
1351 struct rq *rq;
1352
1353 rq = task_rq_lock(p, &rf);
1354
1355 sched_clock_tick();
1356 update_rq_clock(rq);
1357
1358 if (!dl_task(p) || p->state == TASK_DEAD) {
1359 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1360
1361 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1362 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1363 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1364 dl_se->dl_non_contending = 0;
1365 }
1366
1367 raw_spin_lock(&dl_b->lock);
1368 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1369 raw_spin_unlock(&dl_b->lock);
1370 __dl_clear_params(p);
1371
1372 goto unlock;
1373 }
1374 if (dl_se->dl_non_contending == 0)
1375 goto unlock;
1376
1377 sub_running_bw(dl_se, &rq->dl);
1378 dl_se->dl_non_contending = 0;
1379 unlock:
1380 task_rq_unlock(rq, p, &rf);
1381 put_task_struct(p);
1382
1383 return HRTIMER_NORESTART;
1384 }
1385
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1386 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1387 {
1388 struct hrtimer *timer = &dl_se->inactive_timer;
1389
1390 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1391 timer->function = inactive_task_timer;
1392 }
1393
1394 #ifdef CONFIG_SMP
1395
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1396 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1397 {
1398 struct rq *rq = rq_of_dl_rq(dl_rq);
1399
1400 if (dl_rq->earliest_dl.curr == 0 ||
1401 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1402 dl_rq->earliest_dl.curr = deadline;
1403 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1404 }
1405 }
1406
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1407 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1408 {
1409 struct rq *rq = rq_of_dl_rq(dl_rq);
1410
1411 /*
1412 * Since we may have removed our earliest (and/or next earliest)
1413 * task we must recompute them.
1414 */
1415 if (!dl_rq->dl_nr_running) {
1416 dl_rq->earliest_dl.curr = 0;
1417 dl_rq->earliest_dl.next = 0;
1418 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1419 } else {
1420 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1421 struct sched_dl_entity *entry;
1422
1423 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1424 dl_rq->earliest_dl.curr = entry->deadline;
1425 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1426 }
1427 }
1428
1429 #else
1430
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1431 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1432 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1433
1434 #endif /* CONFIG_SMP */
1435
1436 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1437 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1438 {
1439 int prio = dl_task_of(dl_se)->prio;
1440 u64 deadline = dl_se->deadline;
1441
1442 WARN_ON(!dl_prio(prio));
1443 dl_rq->dl_nr_running++;
1444 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1445 walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1446
1447 inc_dl_deadline(dl_rq, deadline);
1448 inc_dl_migration(dl_se, dl_rq);
1449 }
1450
1451 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1452 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1453 {
1454 int prio = dl_task_of(dl_se)->prio;
1455
1456 WARN_ON(!dl_prio(prio));
1457 WARN_ON(!dl_rq->dl_nr_running);
1458 dl_rq->dl_nr_running--;
1459 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1460 walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1461
1462 dec_dl_deadline(dl_rq, dl_se->deadline);
1463 dec_dl_migration(dl_se, dl_rq);
1464 }
1465
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1466 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1467 {
1468 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1469 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1470 struct rb_node *parent = NULL;
1471 struct sched_dl_entity *entry;
1472 int leftmost = 1;
1473
1474 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1475
1476 while (*link) {
1477 parent = *link;
1478 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1479 if (dl_time_before(dl_se->deadline, entry->deadline))
1480 link = &parent->rb_left;
1481 else {
1482 link = &parent->rb_right;
1483 leftmost = 0;
1484 }
1485 }
1486
1487 rb_link_node(&dl_se->rb_node, parent, link);
1488 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1489
1490 inc_dl_tasks(dl_se, dl_rq);
1491 }
1492
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1493 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1494 {
1495 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1496
1497 if (RB_EMPTY_NODE(&dl_se->rb_node))
1498 return;
1499
1500 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1501 RB_CLEAR_NODE(&dl_se->rb_node);
1502
1503 dec_dl_tasks(dl_se, dl_rq);
1504 }
1505
1506 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1507 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1508 {
1509 BUG_ON(on_dl_rq(dl_se));
1510
1511 /*
1512 * If this is a wakeup or a new instance, the scheduling
1513 * parameters of the task might need updating. Otherwise,
1514 * we want a replenishment of its runtime.
1515 */
1516 if (flags & ENQUEUE_WAKEUP) {
1517 task_contending(dl_se, flags);
1518 update_dl_entity(dl_se);
1519 } else if (flags & ENQUEUE_REPLENISH) {
1520 replenish_dl_entity(dl_se);
1521 } else if ((flags & ENQUEUE_RESTORE) &&
1522 dl_time_before(dl_se->deadline,
1523 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1524 setup_new_dl_entity(dl_se);
1525 }
1526
1527 __enqueue_dl_entity(dl_se);
1528 }
1529
dequeue_dl_entity(struct sched_dl_entity * dl_se)1530 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1531 {
1532 __dequeue_dl_entity(dl_se);
1533 }
1534
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1535 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1536 {
1537 if (is_dl_boosted(&p->dl)) {
1538 /*
1539 * Because of delays in the detection of the overrun of a
1540 * thread's runtime, it might be the case that a thread
1541 * goes to sleep in a rt mutex with negative runtime. As
1542 * a consequence, the thread will be throttled.
1543 *
1544 * While waiting for the mutex, this thread can also be
1545 * boosted via PI, resulting in a thread that is throttled
1546 * and boosted at the same time.
1547 *
1548 * In this case, the boost overrides the throttle.
1549 */
1550 if (p->dl.dl_throttled) {
1551 /*
1552 * The replenish timer needs to be canceled. No
1553 * problem if it fires concurrently: boosted threads
1554 * are ignored in dl_task_timer().
1555 */
1556 hrtimer_try_to_cancel(&p->dl.dl_timer);
1557 p->dl.dl_throttled = 0;
1558 }
1559 } else if (!dl_prio(p->normal_prio)) {
1560 /*
1561 * Special case in which we have a !SCHED_DEADLINE task that is going
1562 * to be deboosted, but exceeds its runtime while doing so. No point in
1563 * replenishing it, as it's going to return back to its original
1564 * scheduling class after this. If it has been throttled, we need to
1565 * clear the flag, otherwise the task may wake up as throttled after
1566 * being boosted again with no means to replenish the runtime and clear
1567 * the throttle.
1568 */
1569 p->dl.dl_throttled = 0;
1570 if (!(flags & ENQUEUE_REPLENISH))
1571 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1572 task_pid_nr(p));
1573
1574 return;
1575 }
1576
1577 /*
1578 * Check if a constrained deadline task was activated
1579 * after the deadline but before the next period.
1580 * If that is the case, the task will be throttled and
1581 * the replenishment timer will be set to the next period.
1582 */
1583 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1584 dl_check_constrained_dl(&p->dl);
1585
1586 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1587 add_rq_bw(&p->dl, &rq->dl);
1588 add_running_bw(&p->dl, &rq->dl);
1589 }
1590
1591 /*
1592 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1593 * its budget it needs a replenishment and, since it now is on
1594 * its rq, the bandwidth timer callback (which clearly has not
1595 * run yet) will take care of this.
1596 * However, the active utilization does not depend on the fact
1597 * that the task is on the runqueue or not (but depends on the
1598 * task's state - in GRUB parlance, "inactive" vs "active contending").
1599 * In other words, even if a task is throttled its utilization must
1600 * be counted in the active utilization; hence, we need to call
1601 * add_running_bw().
1602 */
1603 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1604 if (flags & ENQUEUE_WAKEUP)
1605 task_contending(&p->dl, flags);
1606
1607 return;
1608 }
1609
1610 enqueue_dl_entity(&p->dl, flags);
1611
1612 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1613 enqueue_pushable_dl_task(rq, p);
1614 }
1615
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1616 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1617 {
1618 dequeue_dl_entity(&p->dl);
1619 dequeue_pushable_dl_task(rq, p);
1620 }
1621
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1622 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1623 {
1624 update_curr_dl(rq);
1625 __dequeue_task_dl(rq, p, flags);
1626
1627 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1628 sub_running_bw(&p->dl, &rq->dl);
1629 sub_rq_bw(&p->dl, &rq->dl);
1630 }
1631
1632 /*
1633 * This check allows to start the inactive timer (or to immediately
1634 * decrease the active utilization, if needed) in two cases:
1635 * when the task blocks and when it is terminating
1636 * (p->state == TASK_DEAD). We can handle the two cases in the same
1637 * way, because from GRUB's point of view the same thing is happening
1638 * (the task moves from "active contending" to "active non contending"
1639 * or "inactive")
1640 */
1641 if (flags & DEQUEUE_SLEEP)
1642 task_non_contending(p);
1643 }
1644
1645 /*
1646 * Yield task semantic for -deadline tasks is:
1647 *
1648 * get off from the CPU until our next instance, with
1649 * a new runtime. This is of little use now, since we
1650 * don't have a bandwidth reclaiming mechanism. Anyway,
1651 * bandwidth reclaiming is planned for the future, and
1652 * yield_task_dl will indicate that some spare budget
1653 * is available for other task instances to use it.
1654 */
yield_task_dl(struct rq * rq)1655 static void yield_task_dl(struct rq *rq)
1656 {
1657 /*
1658 * We make the task go to sleep until its current deadline by
1659 * forcing its runtime to zero. This way, update_curr_dl() stops
1660 * it and the bandwidth timer will wake it up and will give it
1661 * new scheduling parameters (thanks to dl_yielded=1).
1662 */
1663 rq->curr->dl.dl_yielded = 1;
1664
1665 update_rq_clock(rq);
1666 update_curr_dl(rq);
1667 /*
1668 * Tell update_rq_clock() that we've just updated,
1669 * so we don't do microscopic update in schedule()
1670 * and double the fastpath cost.
1671 */
1672 rq_clock_skip_update(rq);
1673 }
1674
1675 #ifdef CONFIG_SMP
1676
1677 static int find_later_rq(struct task_struct *task);
1678
1679 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags)1680 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1681 {
1682 struct task_struct *curr;
1683 bool select_rq;
1684 struct rq *rq;
1685
1686 if (sd_flag != SD_BALANCE_WAKE)
1687 goto out;
1688
1689 rq = cpu_rq(cpu);
1690
1691 rcu_read_lock();
1692 curr = READ_ONCE(rq->curr); /* unlocked access */
1693
1694 /*
1695 * If we are dealing with a -deadline task, we must
1696 * decide where to wake it up.
1697 * If it has a later deadline and the current task
1698 * on this rq can't move (provided the waking task
1699 * can!) we prefer to send it somewhere else. On the
1700 * other hand, if it has a shorter deadline, we
1701 * try to make it stay here, it might be important.
1702 */
1703 select_rq = unlikely(dl_task(curr)) &&
1704 (curr->nr_cpus_allowed < 2 ||
1705 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1706 p->nr_cpus_allowed > 1;
1707
1708 /*
1709 * Take the capacity of the CPU into account to
1710 * ensure it fits the requirement of the task.
1711 */
1712 if (static_branch_unlikely(&sched_asym_cpucapacity))
1713 select_rq |= !dl_task_fits_capacity(p, cpu);
1714
1715 if (select_rq) {
1716 int target = find_later_rq(p);
1717
1718 if (target != -1 &&
1719 (dl_time_before(p->dl.deadline,
1720 cpu_rq(target)->dl.earliest_dl.curr) ||
1721 (cpu_rq(target)->dl.dl_nr_running == 0)))
1722 cpu = target;
1723 }
1724 rcu_read_unlock();
1725
1726 out:
1727 return cpu;
1728 }
1729
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1730 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1731 {
1732 struct rq *rq;
1733
1734 if (p->state != TASK_WAKING)
1735 return;
1736
1737 rq = task_rq(p);
1738 /*
1739 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1740 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1741 * rq->lock is not... So, lock it
1742 */
1743 raw_spin_lock(&rq->lock);
1744 if (p->dl.dl_non_contending) {
1745 update_rq_clock(rq);
1746 sub_running_bw(&p->dl, &rq->dl);
1747 p->dl.dl_non_contending = 0;
1748 /*
1749 * If the timer handler is currently running and the
1750 * timer cannot be cancelled, inactive_task_timer()
1751 * will see that dl_not_contending is not set, and
1752 * will not touch the rq's active utilization,
1753 * so we are still safe.
1754 */
1755 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1756 put_task_struct(p);
1757 }
1758 sub_rq_bw(&p->dl, &rq->dl);
1759 raw_spin_unlock(&rq->lock);
1760 }
1761
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1762 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1763 {
1764 /*
1765 * Current can't be migrated, useless to reschedule,
1766 * let's hope p can move out.
1767 */
1768 if (rq->curr->nr_cpus_allowed == 1 ||
1769 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1770 return;
1771
1772 /*
1773 * p is migratable, so let's not schedule it and
1774 * see if it is pushed or pulled somewhere else.
1775 */
1776 if (p->nr_cpus_allowed != 1 &&
1777 cpudl_find(&rq->rd->cpudl, p, NULL))
1778 return;
1779
1780 resched_curr(rq);
1781 }
1782
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1783 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1784 {
1785 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1786 /*
1787 * This is OK, because current is on_cpu, which avoids it being
1788 * picked for load-balance and preemption/IRQs are still
1789 * disabled avoiding further scheduler activity on it and we've
1790 * not yet started the picking loop.
1791 */
1792 rq_unpin_lock(rq, rf);
1793 pull_dl_task(rq);
1794 rq_repin_lock(rq, rf);
1795 }
1796
1797 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1798 }
1799 #endif /* CONFIG_SMP */
1800
1801 /*
1802 * Only called when both the current and waking task are -deadline
1803 * tasks.
1804 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1805 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1806 int flags)
1807 {
1808 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1809 resched_curr(rq);
1810 return;
1811 }
1812
1813 #ifdef CONFIG_SMP
1814 /*
1815 * In the unlikely case current and p have the same deadline
1816 * let us try to decide what's the best thing to do...
1817 */
1818 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1819 !test_tsk_need_resched(rq->curr))
1820 check_preempt_equal_dl(rq, p);
1821 #endif /* CONFIG_SMP */
1822 }
1823
1824 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1825 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1826 {
1827 hrtick_start(rq, p->dl.runtime);
1828 }
1829 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1830 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1831 {
1832 }
1833 #endif
1834
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1835 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1836 {
1837 p->se.exec_start = rq_clock_task(rq);
1838
1839 /* You can't push away the running task */
1840 dequeue_pushable_dl_task(rq, p);
1841
1842 if (!first)
1843 return;
1844
1845 if (hrtick_enabled(rq))
1846 start_hrtick_dl(rq, p);
1847
1848 if (rq->curr->sched_class != &dl_sched_class)
1849 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1850
1851 deadline_queue_push_tasks(rq);
1852 }
1853
pick_next_dl_entity(struct dl_rq * dl_rq)1854 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1855 {
1856 struct rb_node *left = rb_first_cached(&dl_rq->root);
1857
1858 if (!left)
1859 return NULL;
1860
1861 return rb_entry(left, struct sched_dl_entity, rb_node);
1862 }
1863
pick_next_task_dl(struct rq * rq)1864 static struct task_struct *pick_next_task_dl(struct rq *rq)
1865 {
1866 struct sched_dl_entity *dl_se;
1867 struct dl_rq *dl_rq = &rq->dl;
1868 struct task_struct *p;
1869
1870 if (!sched_dl_runnable(rq))
1871 return NULL;
1872
1873 dl_se = pick_next_dl_entity(dl_rq);
1874 BUG_ON(!dl_se);
1875 p = dl_task_of(dl_se);
1876 set_next_task_dl(rq, p, true);
1877 return p;
1878 }
1879
put_prev_task_dl(struct rq * rq,struct task_struct * p)1880 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1881 {
1882 update_curr_dl(rq);
1883
1884 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1885 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1886 enqueue_pushable_dl_task(rq, p);
1887 }
1888
1889 /*
1890 * scheduler tick hitting a task of our scheduling class.
1891 *
1892 * NOTE: This function can be called remotely by the tick offload that
1893 * goes along full dynticks. Therefore no local assumption can be made
1894 * and everything must be accessed through the @rq and @curr passed in
1895 * parameters.
1896 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1897 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1898 {
1899 update_curr_dl(rq);
1900
1901 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1902 /*
1903 * Even when we have runtime, update_curr_dl() might have resulted in us
1904 * not being the leftmost task anymore. In that case NEED_RESCHED will
1905 * be set and schedule() will start a new hrtick for the next task.
1906 */
1907 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1908 is_leftmost(p, &rq->dl))
1909 start_hrtick_dl(rq, p);
1910 }
1911
task_fork_dl(struct task_struct * p)1912 static void task_fork_dl(struct task_struct *p)
1913 {
1914 /*
1915 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1916 * sched_fork()
1917 */
1918 }
1919
1920 #ifdef CONFIG_SMP
1921
1922 /* Only try algorithms three times */
1923 #define DL_MAX_TRIES 3
1924
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1925 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1926 {
1927 if (!task_running(rq, p) &&
1928 cpumask_test_cpu(cpu, p->cpus_ptr))
1929 return 1;
1930 return 0;
1931 }
1932
1933 /*
1934 * Return the earliest pushable rq's task, which is suitable to be executed
1935 * on the CPU, NULL otherwise:
1936 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1937 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1938 {
1939 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1940 struct task_struct *p = NULL;
1941
1942 if (!has_pushable_dl_tasks(rq))
1943 return NULL;
1944
1945 next_node:
1946 if (next_node) {
1947 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1948
1949 if (pick_dl_task(rq, p, cpu))
1950 return p;
1951
1952 next_node = rb_next(next_node);
1953 goto next_node;
1954 }
1955
1956 return NULL;
1957 }
1958
1959 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1960
find_later_rq(struct task_struct * task)1961 static int find_later_rq(struct task_struct *task)
1962 {
1963 struct sched_domain *sd;
1964 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1965 int this_cpu = smp_processor_id();
1966 int cpu = task_cpu(task);
1967
1968 /* Make sure the mask is initialized first */
1969 if (unlikely(!later_mask))
1970 return -1;
1971
1972 if (task->nr_cpus_allowed == 1)
1973 return -1;
1974
1975 /*
1976 * We have to consider system topology and task affinity
1977 * first, then we can look for a suitable CPU.
1978 */
1979 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1980 return -1;
1981
1982 /*
1983 * If we are here, some targets have been found, including
1984 * the most suitable which is, among the runqueues where the
1985 * current tasks have later deadlines than the task's one, the
1986 * rq with the latest possible one.
1987 *
1988 * Now we check how well this matches with task's
1989 * affinity and system topology.
1990 *
1991 * The last CPU where the task run is our first
1992 * guess, since it is most likely cache-hot there.
1993 */
1994 if (cpumask_test_cpu(cpu, later_mask))
1995 return cpu;
1996 /*
1997 * Check if this_cpu is to be skipped (i.e., it is
1998 * not in the mask) or not.
1999 */
2000 if (!cpumask_test_cpu(this_cpu, later_mask))
2001 this_cpu = -1;
2002
2003 rcu_read_lock();
2004 for_each_domain(cpu, sd) {
2005 if (sd->flags & SD_WAKE_AFFINE) {
2006 int best_cpu;
2007
2008 /*
2009 * If possible, preempting this_cpu is
2010 * cheaper than migrating.
2011 */
2012 if (this_cpu != -1 &&
2013 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2014 rcu_read_unlock();
2015 return this_cpu;
2016 }
2017
2018 best_cpu = cpumask_first_and(later_mask,
2019 sched_domain_span(sd));
2020 /*
2021 * Last chance: if a CPU being in both later_mask
2022 * and current sd span is valid, that becomes our
2023 * choice. Of course, the latest possible CPU is
2024 * already under consideration through later_mask.
2025 */
2026 if (best_cpu < nr_cpu_ids) {
2027 rcu_read_unlock();
2028 return best_cpu;
2029 }
2030 }
2031 }
2032 rcu_read_unlock();
2033
2034 /*
2035 * At this point, all our guesses failed, we just return
2036 * 'something', and let the caller sort the things out.
2037 */
2038 if (this_cpu != -1)
2039 return this_cpu;
2040
2041 cpu = cpumask_any(later_mask);
2042 if (cpu < nr_cpu_ids)
2043 return cpu;
2044
2045 return -1;
2046 }
2047
pick_next_pushable_dl_task(struct rq * rq)2048 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2049 {
2050 struct task_struct *p;
2051
2052 if (!has_pushable_dl_tasks(rq))
2053 return NULL;
2054
2055 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2056 struct task_struct, pushable_dl_tasks);
2057
2058 BUG_ON(rq->cpu != task_cpu(p));
2059 BUG_ON(task_current(rq, p));
2060 BUG_ON(p->nr_cpus_allowed <= 1);
2061
2062 BUG_ON(!task_on_rq_queued(p));
2063 BUG_ON(!dl_task(p));
2064
2065 return p;
2066 }
2067
2068 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2069 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2070 {
2071 struct rq *later_rq = NULL;
2072 int tries;
2073 int cpu;
2074
2075 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2076 cpu = find_later_rq(task);
2077
2078 if ((cpu == -1) || (cpu == rq->cpu))
2079 break;
2080
2081 later_rq = cpu_rq(cpu);
2082
2083 if (later_rq->dl.dl_nr_running &&
2084 !dl_time_before(task->dl.deadline,
2085 later_rq->dl.earliest_dl.curr)) {
2086 /*
2087 * Target rq has tasks of equal or earlier deadline,
2088 * retrying does not release any lock and is unlikely
2089 * to yield a different result.
2090 */
2091 later_rq = NULL;
2092 break;
2093 }
2094
2095 /* Retry if something changed. */
2096 if (double_lock_balance(rq, later_rq)) {
2097 struct task_struct *next_task;
2098 /*
2099 * We had to unlock the run queue. In
2100 * the mean time, task could have
2101 * migrated already or had its affinity changed.
2102 * Also make sure that it wasn't scheduled on its rq.
2103 */
2104 next_task = pick_next_pushable_dl_task(rq);
2105 if (unlikely(next_task != task ||
2106 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr))) {
2107 double_unlock_balance(rq, later_rq);
2108 later_rq = NULL;
2109 break;
2110 }
2111 }
2112
2113 /*
2114 * If the rq we found has no -deadline task, or
2115 * its earliest one has a later deadline than our
2116 * task, the rq is a good one.
2117 */
2118 if (!later_rq->dl.dl_nr_running ||
2119 dl_time_before(task->dl.deadline,
2120 later_rq->dl.earliest_dl.curr))
2121 break;
2122
2123 /* Otherwise we try again. */
2124 double_unlock_balance(rq, later_rq);
2125 later_rq = NULL;
2126 }
2127
2128 return later_rq;
2129 }
2130
2131 /*
2132 * See if the non running -deadline tasks on this rq
2133 * can be sent to some other CPU where they can preempt
2134 * and start executing.
2135 */
push_dl_task(struct rq * rq)2136 static int push_dl_task(struct rq *rq)
2137 {
2138 struct task_struct *next_task;
2139 struct rq *later_rq;
2140 int ret = 0;
2141
2142 if (!rq->dl.overloaded)
2143 return 0;
2144
2145 next_task = pick_next_pushable_dl_task(rq);
2146 if (!next_task)
2147 return 0;
2148
2149 retry:
2150 if (WARN_ON(next_task == rq->curr))
2151 return 0;
2152
2153 /*
2154 * If next_task preempts rq->curr, and rq->curr
2155 * can move away, it makes sense to just reschedule
2156 * without going further in pushing next_task.
2157 */
2158 if (dl_task(rq->curr) &&
2159 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2160 rq->curr->nr_cpus_allowed > 1) {
2161 resched_curr(rq);
2162 return 0;
2163 }
2164
2165 /* We might release rq lock */
2166 get_task_struct(next_task);
2167
2168 /* Will lock the rq it'll find */
2169 later_rq = find_lock_later_rq(next_task, rq);
2170 if (!later_rq) {
2171 struct task_struct *task;
2172
2173 /*
2174 * We must check all this again, since
2175 * find_lock_later_rq releases rq->lock and it is
2176 * then possible that next_task has migrated.
2177 */
2178 task = pick_next_pushable_dl_task(rq);
2179 if (task == next_task) {
2180 /*
2181 * The task is still there. We don't try
2182 * again, some other CPU will pull it when ready.
2183 */
2184 goto out;
2185 }
2186
2187 if (!task)
2188 /* No more tasks */
2189 goto out;
2190
2191 put_task_struct(next_task);
2192 next_task = task;
2193 goto retry;
2194 }
2195
2196 deactivate_task(rq, next_task, 0);
2197 set_task_cpu(next_task, later_rq->cpu);
2198
2199 /*
2200 * Update the later_rq clock here, because the clock is used
2201 * by the cpufreq_update_util() inside __add_running_bw().
2202 */
2203 update_rq_clock(later_rq);
2204 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2205 ret = 1;
2206
2207 resched_curr(later_rq);
2208
2209 double_unlock_balance(rq, later_rq);
2210
2211 out:
2212 put_task_struct(next_task);
2213
2214 return ret;
2215 }
2216
push_dl_tasks(struct rq * rq)2217 static void push_dl_tasks(struct rq *rq)
2218 {
2219 /* push_dl_task() will return true if it moved a -deadline task */
2220 while (push_dl_task(rq))
2221 ;
2222 }
2223
pull_dl_task(struct rq * this_rq)2224 static void pull_dl_task(struct rq *this_rq)
2225 {
2226 int this_cpu = this_rq->cpu, cpu;
2227 struct task_struct *p;
2228 bool resched = false;
2229 struct rq *src_rq;
2230 u64 dmin = LONG_MAX;
2231
2232 if (likely(!dl_overloaded(this_rq)))
2233 return;
2234
2235 /*
2236 * Match the barrier from dl_set_overloaded; this guarantees that if we
2237 * see overloaded we must also see the dlo_mask bit.
2238 */
2239 smp_rmb();
2240
2241 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2242 if (this_cpu == cpu)
2243 continue;
2244
2245 src_rq = cpu_rq(cpu);
2246
2247 /*
2248 * It looks racy, abd it is! However, as in sched_rt.c,
2249 * we are fine with this.
2250 */
2251 if (this_rq->dl.dl_nr_running &&
2252 dl_time_before(this_rq->dl.earliest_dl.curr,
2253 src_rq->dl.earliest_dl.next))
2254 continue;
2255
2256 /* Might drop this_rq->lock */
2257 double_lock_balance(this_rq, src_rq);
2258
2259 /*
2260 * If there are no more pullable tasks on the
2261 * rq, we're done with it.
2262 */
2263 if (src_rq->dl.dl_nr_running <= 1)
2264 goto skip;
2265
2266 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2267
2268 /*
2269 * We found a task to be pulled if:
2270 * - it preempts our current (if there's one),
2271 * - it will preempt the last one we pulled (if any).
2272 */
2273 if (p && dl_time_before(p->dl.deadline, dmin) &&
2274 (!this_rq->dl.dl_nr_running ||
2275 dl_time_before(p->dl.deadline,
2276 this_rq->dl.earliest_dl.curr))) {
2277 WARN_ON(p == src_rq->curr);
2278 WARN_ON(!task_on_rq_queued(p));
2279
2280 /*
2281 * Then we pull iff p has actually an earlier
2282 * deadline than the current task of its runqueue.
2283 */
2284 if (dl_time_before(p->dl.deadline,
2285 src_rq->curr->dl.deadline))
2286 goto skip;
2287
2288 resched = true;
2289
2290 deactivate_task(src_rq, p, 0);
2291 set_task_cpu(p, this_cpu);
2292 activate_task(this_rq, p, 0);
2293 dmin = p->dl.deadline;
2294
2295 /* Is there any other task even earlier? */
2296 }
2297 skip:
2298 double_unlock_balance(this_rq, src_rq);
2299 }
2300
2301 if (resched)
2302 resched_curr(this_rq);
2303 }
2304
2305 /*
2306 * Since the task is not running and a reschedule is not going to happen
2307 * anytime soon on its runqueue, we try pushing it away now.
2308 */
task_woken_dl(struct rq * rq,struct task_struct * p)2309 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2310 {
2311 if (!task_running(rq, p) &&
2312 !test_tsk_need_resched(rq->curr) &&
2313 p->nr_cpus_allowed > 1 &&
2314 dl_task(rq->curr) &&
2315 (rq->curr->nr_cpus_allowed < 2 ||
2316 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2317 push_dl_tasks(rq);
2318 }
2319 }
2320
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2321 static void set_cpus_allowed_dl(struct task_struct *p,
2322 const struct cpumask *new_mask)
2323 {
2324 struct root_domain *src_rd;
2325 struct rq *rq;
2326
2327 BUG_ON(!dl_task(p));
2328
2329 rq = task_rq(p);
2330 src_rd = rq->rd;
2331 /*
2332 * Migrating a SCHED_DEADLINE task between exclusive
2333 * cpusets (different root_domains) entails a bandwidth
2334 * update. We already made space for us in the destination
2335 * domain (see cpuset_can_attach()).
2336 */
2337 if (!cpumask_intersects(src_rd->span, new_mask)) {
2338 struct dl_bw *src_dl_b;
2339
2340 src_dl_b = dl_bw_of(cpu_of(rq));
2341 /*
2342 * We now free resources of the root_domain we are migrating
2343 * off. In the worst case, sched_setattr() may temporary fail
2344 * until we complete the update.
2345 */
2346 raw_spin_lock(&src_dl_b->lock);
2347 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2348 raw_spin_unlock(&src_dl_b->lock);
2349 }
2350
2351 set_cpus_allowed_common(p, new_mask);
2352 }
2353
2354 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2355 static void rq_online_dl(struct rq *rq)
2356 {
2357 if (rq->dl.overloaded)
2358 dl_set_overload(rq);
2359
2360 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2361 if (rq->dl.dl_nr_running > 0)
2362 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2363 }
2364
2365 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2366 static void rq_offline_dl(struct rq *rq)
2367 {
2368 if (rq->dl.overloaded)
2369 dl_clear_overload(rq);
2370
2371 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2372 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2373 }
2374
init_sched_dl_class(void)2375 void __init init_sched_dl_class(void)
2376 {
2377 unsigned int i;
2378
2379 for_each_possible_cpu(i)
2380 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2381 GFP_KERNEL, cpu_to_node(i));
2382 }
2383
dl_add_task_root_domain(struct task_struct * p)2384 void dl_add_task_root_domain(struct task_struct *p)
2385 {
2386 struct rq_flags rf;
2387 struct rq *rq;
2388 struct dl_bw *dl_b;
2389
2390 rq = task_rq_lock(p, &rf);
2391 if (!dl_task(p))
2392 goto unlock;
2393
2394 dl_b = &rq->rd->dl_bw;
2395 raw_spin_lock(&dl_b->lock);
2396
2397 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2398
2399 raw_spin_unlock(&dl_b->lock);
2400
2401 unlock:
2402 task_rq_unlock(rq, p, &rf);
2403 }
2404
dl_clear_root_domain(struct root_domain * rd)2405 void dl_clear_root_domain(struct root_domain *rd)
2406 {
2407 unsigned long flags;
2408
2409 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2410 rd->dl_bw.total_bw = 0;
2411 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2412 }
2413
2414 #endif /* CONFIG_SMP */
2415
switched_from_dl(struct rq * rq,struct task_struct * p)2416 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2417 {
2418 /*
2419 * task_non_contending() can start the "inactive timer" (if the 0-lag
2420 * time is in the future). If the task switches back to dl before
2421 * the "inactive timer" fires, it can continue to consume its current
2422 * runtime using its current deadline. If it stays outside of
2423 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2424 * will reset the task parameters.
2425 */
2426 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2427 task_non_contending(p);
2428
2429 /*
2430 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2431 * keep track of that on its cpuset (for correct bandwidth tracking).
2432 */
2433 dec_dl_tasks_cs(p);
2434
2435 if (!task_on_rq_queued(p)) {
2436 /*
2437 * Inactive timer is armed. However, p is leaving DEADLINE and
2438 * might migrate away from this rq while continuing to run on
2439 * some other class. We need to remove its contribution from
2440 * this rq running_bw now, or sub_rq_bw (below) will complain.
2441 */
2442 if (p->dl.dl_non_contending)
2443 sub_running_bw(&p->dl, &rq->dl);
2444 sub_rq_bw(&p->dl, &rq->dl);
2445 }
2446
2447 /*
2448 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2449 * at the 0-lag time, because the task could have been migrated
2450 * while SCHED_OTHER in the meanwhile.
2451 */
2452 if (p->dl.dl_non_contending)
2453 p->dl.dl_non_contending = 0;
2454
2455 /*
2456 * Since this might be the only -deadline task on the rq,
2457 * this is the right place to try to pull some other one
2458 * from an overloaded CPU, if any.
2459 */
2460 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2461 return;
2462
2463 deadline_queue_pull_task(rq);
2464 }
2465
2466 /*
2467 * When switching to -deadline, we may overload the rq, then
2468 * we try to push someone off, if possible.
2469 */
switched_to_dl(struct rq * rq,struct task_struct * p)2470 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2471 {
2472 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2473 put_task_struct(p);
2474
2475 /*
2476 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2477 * track of that on its cpuset (for correct bandwidth tracking).
2478 */
2479 inc_dl_tasks_cs(p);
2480
2481 /* If p is not queued we will update its parameters at next wakeup. */
2482 if (!task_on_rq_queued(p)) {
2483 add_rq_bw(&p->dl, &rq->dl);
2484
2485 return;
2486 }
2487
2488 if (rq->curr != p) {
2489 #ifdef CONFIG_SMP
2490 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2491 deadline_queue_push_tasks(rq);
2492 #endif
2493 if (dl_task(rq->curr))
2494 check_preempt_curr_dl(rq, p, 0);
2495 else
2496 resched_curr(rq);
2497 } else {
2498 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2499 }
2500 }
2501
2502 /*
2503 * If the scheduling parameters of a -deadline task changed,
2504 * a push or pull operation might be needed.
2505 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2506 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2507 int oldprio)
2508 {
2509 if (task_on_rq_queued(p) || rq->curr == p) {
2510 #ifdef CONFIG_SMP
2511 /*
2512 * This might be too much, but unfortunately
2513 * we don't have the old deadline value, and
2514 * we can't argue if the task is increasing
2515 * or lowering its prio, so...
2516 */
2517 if (!rq->dl.overloaded)
2518 deadline_queue_pull_task(rq);
2519
2520 /*
2521 * If we now have a earlier deadline task than p,
2522 * then reschedule, provided p is still on this
2523 * runqueue.
2524 */
2525 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2526 resched_curr(rq);
2527 #else
2528 /*
2529 * Again, we don't know if p has a earlier
2530 * or later deadline, so let's blindly set a
2531 * (maybe not needed) rescheduling point.
2532 */
2533 resched_curr(rq);
2534 #endif /* CONFIG_SMP */
2535 }
2536 }
2537
2538 const struct sched_class dl_sched_class
2539 __section("__dl_sched_class") = {
2540 .enqueue_task = enqueue_task_dl,
2541 .dequeue_task = dequeue_task_dl,
2542 .yield_task = yield_task_dl,
2543
2544 .check_preempt_curr = check_preempt_curr_dl,
2545
2546 .pick_next_task = pick_next_task_dl,
2547 .put_prev_task = put_prev_task_dl,
2548 .set_next_task = set_next_task_dl,
2549
2550 #ifdef CONFIG_SMP
2551 .balance = balance_dl,
2552 .select_task_rq = select_task_rq_dl,
2553 .migrate_task_rq = migrate_task_rq_dl,
2554 .set_cpus_allowed = set_cpus_allowed_dl,
2555 .rq_online = rq_online_dl,
2556 .rq_offline = rq_offline_dl,
2557 .task_woken = task_woken_dl,
2558 #endif
2559
2560 .task_tick = task_tick_dl,
2561 .task_fork = task_fork_dl,
2562
2563 .prio_changed = prio_changed_dl,
2564 .switched_from = switched_from_dl,
2565 .switched_to = switched_to_dl,
2566
2567 .update_curr = update_curr_dl,
2568 #ifdef CONFIG_SCHED_WALT
2569 .fixup_walt_sched_stats = fixup_walt_sched_stats_common,
2570 #endif
2571 };
2572
sched_dl_global_validate(void)2573 int sched_dl_global_validate(void)
2574 {
2575 u64 runtime = global_rt_runtime();
2576 u64 period = global_rt_period();
2577 u64 new_bw = to_ratio(period, runtime);
2578 struct dl_bw *dl_b;
2579 int cpu, cpus, ret = 0;
2580 unsigned long flags;
2581
2582 /*
2583 * Here we want to check the bandwidth not being set to some
2584 * value smaller than the currently allocated bandwidth in
2585 * any of the root_domains.
2586 *
2587 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2588 * cycling on root_domains... Discussion on different/better
2589 * solutions is welcome!
2590 */
2591 for_each_possible_cpu(cpu) {
2592 rcu_read_lock_sched();
2593 dl_b = dl_bw_of(cpu);
2594 cpus = dl_bw_cpus(cpu);
2595
2596 raw_spin_lock_irqsave(&dl_b->lock, flags);
2597 if (new_bw * cpus < dl_b->total_bw)
2598 ret = -EBUSY;
2599 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2600
2601 rcu_read_unlock_sched();
2602
2603 if (ret)
2604 break;
2605 }
2606
2607 return ret;
2608 }
2609
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2610 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2611 {
2612 if (global_rt_runtime() == RUNTIME_INF) {
2613 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2614 dl_rq->extra_bw = 1 << BW_SHIFT;
2615 } else {
2616 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2617 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2618 dl_rq->extra_bw = to_ratio(global_rt_period(),
2619 global_rt_runtime());
2620 }
2621 }
2622
sched_dl_do_global(void)2623 void sched_dl_do_global(void)
2624 {
2625 u64 new_bw = -1;
2626 struct dl_bw *dl_b;
2627 int cpu;
2628 unsigned long flags;
2629
2630 def_dl_bandwidth.dl_period = global_rt_period();
2631 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2632
2633 if (global_rt_runtime() != RUNTIME_INF)
2634 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2635
2636 /*
2637 * FIXME: As above...
2638 */
2639 for_each_possible_cpu(cpu) {
2640 rcu_read_lock_sched();
2641 dl_b = dl_bw_of(cpu);
2642
2643 raw_spin_lock_irqsave(&dl_b->lock, flags);
2644 dl_b->bw = new_bw;
2645 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2646
2647 rcu_read_unlock_sched();
2648 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2649 }
2650 }
2651
2652 /*
2653 * We must be sure that accepting a new task (or allowing changing the
2654 * parameters of an existing one) is consistent with the bandwidth
2655 * constraints. If yes, this function also accordingly updates the currently
2656 * allocated bandwidth to reflect the new situation.
2657 *
2658 * This function is called while holding p's rq->lock.
2659 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2660 int sched_dl_overflow(struct task_struct *p, int policy,
2661 const struct sched_attr *attr)
2662 {
2663 u64 period = attr->sched_period ?: attr->sched_deadline;
2664 u64 runtime = attr->sched_runtime;
2665 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2666 int cpus, err = -1, cpu = task_cpu(p);
2667 struct dl_bw *dl_b = dl_bw_of(cpu);
2668 unsigned long cap;
2669
2670 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2671 return 0;
2672
2673 /* !deadline task may carry old deadline bandwidth */
2674 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2675 return 0;
2676
2677 /*
2678 * Either if a task, enters, leave, or stays -deadline but changes
2679 * its parameters, we may need to update accordingly the total
2680 * allocated bandwidth of the container.
2681 */
2682 raw_spin_lock(&dl_b->lock);
2683 cpus = dl_bw_cpus(cpu);
2684 cap = dl_bw_capacity(cpu);
2685
2686 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2687 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2688 if (hrtimer_active(&p->dl.inactive_timer))
2689 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2690 __dl_add(dl_b, new_bw, cpus);
2691 err = 0;
2692 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2693 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2694 /*
2695 * XXX this is slightly incorrect: when the task
2696 * utilization decreases, we should delay the total
2697 * utilization change until the task's 0-lag point.
2698 * But this would require to set the task's "inactive
2699 * timer" when the task is not inactive.
2700 */
2701 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2702 __dl_add(dl_b, new_bw, cpus);
2703 dl_change_utilization(p, new_bw);
2704 err = 0;
2705 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2706 /*
2707 * Do not decrease the total deadline utilization here,
2708 * switched_from_dl() will take care to do it at the correct
2709 * (0-lag) time.
2710 */
2711 err = 0;
2712 }
2713 raw_spin_unlock(&dl_b->lock);
2714
2715 return err;
2716 }
2717
2718 /*
2719 * This function initializes the sched_dl_entity of a newly becoming
2720 * SCHED_DEADLINE task.
2721 *
2722 * Only the static values are considered here, the actual runtime and the
2723 * absolute deadline will be properly calculated when the task is enqueued
2724 * for the first time with its new policy.
2725 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2726 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2727 {
2728 struct sched_dl_entity *dl_se = &p->dl;
2729
2730 dl_se->dl_runtime = attr->sched_runtime;
2731 dl_se->dl_deadline = attr->sched_deadline;
2732 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2733 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2734 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2735 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2736 }
2737
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2738 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2739 {
2740 struct sched_dl_entity *dl_se = &p->dl;
2741
2742 attr->sched_priority = p->rt_priority;
2743 attr->sched_runtime = dl_se->dl_runtime;
2744 attr->sched_deadline = dl_se->dl_deadline;
2745 attr->sched_period = dl_se->dl_period;
2746 attr->sched_flags &= ~SCHED_DL_FLAGS;
2747 attr->sched_flags |= dl_se->flags;
2748 }
2749
2750 /*
2751 * Default limits for DL period; on the top end we guard against small util
2752 * tasks still getting rediculous long effective runtimes, on the bottom end we
2753 * guard against timer DoS.
2754 */
2755 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2756 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2757
2758 /*
2759 * This function validates the new parameters of a -deadline task.
2760 * We ask for the deadline not being zero, and greater or equal
2761 * than the runtime, as well as the period of being zero or
2762 * greater than deadline. Furthermore, we have to be sure that
2763 * user parameters are above the internal resolution of 1us (we
2764 * check sched_runtime only since it is always the smaller one) and
2765 * below 2^63 ns (we have to check both sched_deadline and
2766 * sched_period, as the latter can be zero).
2767 */
__checkparam_dl(const struct sched_attr * attr)2768 bool __checkparam_dl(const struct sched_attr *attr)
2769 {
2770 u64 period, max, min;
2771
2772 /* special dl tasks don't actually use any parameter */
2773 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2774 return true;
2775
2776 /* deadline != 0 */
2777 if (attr->sched_deadline == 0)
2778 return false;
2779
2780 /*
2781 * Since we truncate DL_SCALE bits, make sure we're at least
2782 * that big.
2783 */
2784 if (attr->sched_runtime < (1ULL << DL_SCALE))
2785 return false;
2786
2787 /*
2788 * Since we use the MSB for wrap-around and sign issues, make
2789 * sure it's not set (mind that period can be equal to zero).
2790 */
2791 if (attr->sched_deadline & (1ULL << 63) ||
2792 attr->sched_period & (1ULL << 63))
2793 return false;
2794
2795 period = attr->sched_period;
2796 if (!period)
2797 period = attr->sched_deadline;
2798
2799 /* runtime <= deadline <= period (if period != 0) */
2800 if (period < attr->sched_deadline ||
2801 attr->sched_deadline < attr->sched_runtime)
2802 return false;
2803
2804 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2805 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2806
2807 if (period < min || period > max)
2808 return false;
2809
2810 return true;
2811 }
2812
2813 /*
2814 * This function clears the sched_dl_entity static params.
2815 */
__dl_clear_params(struct task_struct * p)2816 void __dl_clear_params(struct task_struct *p)
2817 {
2818 struct sched_dl_entity *dl_se = &p->dl;
2819
2820 dl_se->dl_runtime = 0;
2821 dl_se->dl_deadline = 0;
2822 dl_se->dl_period = 0;
2823 dl_se->flags = 0;
2824 dl_se->dl_bw = 0;
2825 dl_se->dl_density = 0;
2826
2827 dl_se->dl_throttled = 0;
2828 dl_se->dl_yielded = 0;
2829 dl_se->dl_non_contending = 0;
2830 dl_se->dl_overrun = 0;
2831
2832 #ifdef CONFIG_RT_MUTEXES
2833 dl_se->pi_se = dl_se;
2834 #endif
2835 }
2836
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2837 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2838 {
2839 struct sched_dl_entity *dl_se = &p->dl;
2840
2841 if (dl_se->dl_runtime != attr->sched_runtime ||
2842 dl_se->dl_deadline != attr->sched_deadline ||
2843 dl_se->dl_period != attr->sched_period ||
2844 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2845 return true;
2846
2847 return false;
2848 }
2849
2850 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2851 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2852 const struct cpumask *trial)
2853 {
2854 int ret = 1, trial_cpus;
2855 struct dl_bw *cur_dl_b;
2856 unsigned long flags;
2857
2858 rcu_read_lock_sched();
2859 cur_dl_b = dl_bw_of(cpumask_any(cur));
2860 trial_cpus = cpumask_weight(trial);
2861
2862 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2863 if (cur_dl_b->bw != -1 &&
2864 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2865 ret = 0;
2866 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2867 rcu_read_unlock_sched();
2868
2869 return ret;
2870 }
2871
2872 enum dl_bw_request {
2873 dl_bw_req_check_overflow = 0,
2874 dl_bw_req_alloc,
2875 dl_bw_req_free
2876 };
2877
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)2878 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
2879 {
2880 unsigned long flags;
2881 struct dl_bw *dl_b;
2882 bool overflow = 0;
2883
2884 rcu_read_lock_sched();
2885 dl_b = dl_bw_of(cpu);
2886 raw_spin_lock_irqsave(&dl_b->lock, flags);
2887
2888 if (req == dl_bw_req_free) {
2889 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
2890 } else {
2891 unsigned long cap = dl_bw_capacity(cpu);
2892
2893 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
2894
2895 if (req == dl_bw_req_alloc && !overflow) {
2896 /*
2897 * We reserve space in the destination
2898 * root_domain, as we can't fail after this point.
2899 * We will free resources in the source root_domain
2900 * later on (see set_cpus_allowed_dl()).
2901 */
2902 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
2903 }
2904 }
2905
2906 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2907 rcu_read_unlock_sched();
2908
2909 return overflow ? -EBUSY : 0;
2910 }
2911
dl_bw_check_overflow(int cpu)2912 int dl_bw_check_overflow(int cpu)
2913 {
2914 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
2915 }
2916
dl_bw_alloc(int cpu,u64 dl_bw)2917 int dl_bw_alloc(int cpu, u64 dl_bw)
2918 {
2919 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
2920 }
2921
dl_bw_free(int cpu,u64 dl_bw)2922 void dl_bw_free(int cpu, u64 dl_bw)
2923 {
2924 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
2925 }
2926 #endif
2927
2928 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2929 void print_dl_stats(struct seq_file *m, int cpu)
2930 {
2931 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2932 }
2933 #endif /* CONFIG_SCHED_DEBUG */
2934