• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 #include <linux/cpuset.h>
21 #include "walt.h"
22 
23 struct dl_bandwidth def_dl_bandwidth;
24 
dl_task_of(struct sched_dl_entity * dl_se)25 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
26 {
27 	return container_of(dl_se, struct task_struct, dl);
28 }
29 
rq_of_dl_rq(struct dl_rq * dl_rq)30 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
31 {
32 	return container_of(dl_rq, struct rq, dl);
33 }
34 
dl_rq_of_se(struct sched_dl_entity * dl_se)35 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
36 {
37 	struct task_struct *p = dl_task_of(dl_se);
38 	struct rq *rq = task_rq(p);
39 
40 	return &rq->dl;
41 }
42 
on_dl_rq(struct sched_dl_entity * dl_se)43 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
44 {
45 	return !RB_EMPTY_NODE(&dl_se->rb_node);
46 }
47 
48 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)49 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
50 {
51 	return dl_se->pi_se;
52 }
53 
is_dl_boosted(struct sched_dl_entity * dl_se)54 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
55 {
56 	return pi_of(dl_se) != dl_se;
57 }
58 #else
pi_of(struct sched_dl_entity * dl_se)59 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
60 {
61 	return dl_se;
62 }
63 
is_dl_boosted(struct sched_dl_entity * dl_se)64 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
65 {
66 	return false;
67 }
68 #endif
69 
70 #ifdef CONFIG_SMP
dl_bw_of(int i)71 static inline struct dl_bw *dl_bw_of(int i)
72 {
73 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
74 			 "sched RCU must be held");
75 	return &cpu_rq(i)->rd->dl_bw;
76 }
77 
dl_bw_cpus(int i)78 static inline int dl_bw_cpus(int i)
79 {
80 	struct root_domain *rd = cpu_rq(i)->rd;
81 	int cpus;
82 
83 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
84 			 "sched RCU must be held");
85 
86 	if (cpumask_subset(rd->span, cpu_active_mask))
87 		return cpumask_weight(rd->span);
88 
89 	cpus = 0;
90 
91 	for_each_cpu_and(i, rd->span, cpu_active_mask)
92 		cpus++;
93 
94 	return cpus;
95 }
96 
__dl_bw_capacity(int i)97 static inline unsigned long __dl_bw_capacity(int i)
98 {
99 	struct root_domain *rd = cpu_rq(i)->rd;
100 	unsigned long cap = 0;
101 
102 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
103 			 "sched RCU must be held");
104 
105 	for_each_cpu_and(i, rd->span, cpu_active_mask)
106 		cap += capacity_orig_of(i);
107 
108 	return cap;
109 }
110 
111 /*
112  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
113  * of the CPU the task is running on rather rd's \Sum CPU capacity.
114  */
dl_bw_capacity(int i)115 static inline unsigned long dl_bw_capacity(int i)
116 {
117 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
118 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
119 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
120 	} else {
121 		return __dl_bw_capacity(i);
122 	}
123 }
124 #else
dl_bw_of(int i)125 static inline struct dl_bw *dl_bw_of(int i)
126 {
127 	return &cpu_rq(i)->dl.dl_bw;
128 }
129 
dl_bw_cpus(int i)130 static inline int dl_bw_cpus(int i)
131 {
132 	return 1;
133 }
134 
dl_bw_capacity(int i)135 static inline unsigned long dl_bw_capacity(int i)
136 {
137 	return SCHED_CAPACITY_SCALE;
138 }
139 #endif
140 
141 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)142 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
143 {
144 	u64 old = dl_rq->running_bw;
145 
146 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
147 	dl_rq->running_bw += dl_bw;
148 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
149 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
150 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
151 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
152 }
153 
154 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)155 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
156 {
157 	u64 old = dl_rq->running_bw;
158 
159 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
160 	dl_rq->running_bw -= dl_bw;
161 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
162 	if (dl_rq->running_bw > old)
163 		dl_rq->running_bw = 0;
164 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166 }
167 
168 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)169 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
170 {
171 	u64 old = dl_rq->this_bw;
172 
173 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
174 	dl_rq->this_bw += dl_bw;
175 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
176 }
177 
178 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)179 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
180 {
181 	u64 old = dl_rq->this_bw;
182 
183 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
184 	dl_rq->this_bw -= dl_bw;
185 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
186 	if (dl_rq->this_bw > old)
187 		dl_rq->this_bw = 0;
188 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
189 }
190 
191 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)192 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
193 {
194 	if (!dl_entity_is_special(dl_se))
195 		__add_rq_bw(dl_se->dl_bw, dl_rq);
196 }
197 
198 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)199 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
200 {
201 	if (!dl_entity_is_special(dl_se))
202 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
203 }
204 
205 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)206 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207 {
208 	if (!dl_entity_is_special(dl_se))
209 		__add_running_bw(dl_se->dl_bw, dl_rq);
210 }
211 
212 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)213 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214 {
215 	if (!dl_entity_is_special(dl_se))
216 		__sub_running_bw(dl_se->dl_bw, dl_rq);
217 }
218 
dl_change_utilization(struct task_struct * p,u64 new_bw)219 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
220 {
221 	struct rq *rq;
222 
223 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
224 
225 	if (task_on_rq_queued(p))
226 		return;
227 
228 	rq = task_rq(p);
229 	if (p->dl.dl_non_contending) {
230 		sub_running_bw(&p->dl, &rq->dl);
231 		p->dl.dl_non_contending = 0;
232 		/*
233 		 * If the timer handler is currently running and the
234 		 * timer cannot be cancelled, inactive_task_timer()
235 		 * will see that dl_not_contending is not set, and
236 		 * will not touch the rq's active utilization,
237 		 * so we are still safe.
238 		 */
239 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
240 			put_task_struct(p);
241 	}
242 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
243 	__add_rq_bw(new_bw, &rq->dl);
244 }
245 
246 /*
247  * The utilization of a task cannot be immediately removed from
248  * the rq active utilization (running_bw) when the task blocks.
249  * Instead, we have to wait for the so called "0-lag time".
250  *
251  * If a task blocks before the "0-lag time", a timer (the inactive
252  * timer) is armed, and running_bw is decreased when the timer
253  * fires.
254  *
255  * If the task wakes up again before the inactive timer fires,
256  * the timer is cancelled, whereas if the task wakes up after the
257  * inactive timer fired (and running_bw has been decreased) the
258  * task's utilization has to be added to running_bw again.
259  * A flag in the deadline scheduling entity (dl_non_contending)
260  * is used to avoid race conditions between the inactive timer handler
261  * and task wakeups.
262  *
263  * The following diagram shows how running_bw is updated. A task is
264  * "ACTIVE" when its utilization contributes to running_bw; an
265  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
266  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
267  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
268  * time already passed, which does not contribute to running_bw anymore.
269  *                              +------------------+
270  *             wakeup           |    ACTIVE        |
271  *          +------------------>+   contending     |
272  *          | add_running_bw    |                  |
273  *          |                   +----+------+------+
274  *          |                        |      ^
275  *          |                dequeue |      |
276  * +--------+-------+                |      |
277  * |                |   t >= 0-lag   |      | wakeup
278  * |    INACTIVE    |<---------------+      |
279  * |                | sub_running_bw |      |
280  * +--------+-------+                |      |
281  *          ^                        |      |
282  *          |              t < 0-lag |      |
283  *          |                        |      |
284  *          |                        V      |
285  *          |                   +----+------+------+
286  *          | sub_running_bw    |    ACTIVE        |
287  *          +-------------------+                  |
288  *            inactive timer    |  non contending  |
289  *            fired             +------------------+
290  *
291  * The task_non_contending() function is invoked when a task
292  * blocks, and checks if the 0-lag time already passed or
293  * not (in the first case, it directly updates running_bw;
294  * in the second case, it arms the inactive timer).
295  *
296  * The task_contending() function is invoked when a task wakes
297  * up, and checks if the task is still in the "ACTIVE non contending"
298  * state or not (in the second case, it updates running_bw).
299  */
task_non_contending(struct task_struct * p)300 static void task_non_contending(struct task_struct *p)
301 {
302 	struct sched_dl_entity *dl_se = &p->dl;
303 	struct hrtimer *timer = &dl_se->inactive_timer;
304 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
305 	struct rq *rq = rq_of_dl_rq(dl_rq);
306 	s64 zerolag_time;
307 
308 	/*
309 	 * If this is a non-deadline task that has been boosted,
310 	 * do nothing
311 	 */
312 	if (dl_se->dl_runtime == 0)
313 		return;
314 
315 	if (dl_entity_is_special(dl_se))
316 		return;
317 
318 	WARN_ON(dl_se->dl_non_contending);
319 
320 	zerolag_time = dl_se->deadline -
321 		 div64_long((dl_se->runtime * dl_se->dl_period),
322 			dl_se->dl_runtime);
323 
324 	/*
325 	 * Using relative times instead of the absolute "0-lag time"
326 	 * allows to simplify the code
327 	 */
328 	zerolag_time -= rq_clock(rq);
329 
330 	/*
331 	 * If the "0-lag time" already passed, decrease the active
332 	 * utilization now, instead of starting a timer
333 	 */
334 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
335 		if (dl_task(p))
336 			sub_running_bw(dl_se, dl_rq);
337 		if (!dl_task(p) || p->state == TASK_DEAD) {
338 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
339 
340 			if (p->state == TASK_DEAD)
341 				sub_rq_bw(&p->dl, &rq->dl);
342 			raw_spin_lock(&dl_b->lock);
343 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
344 			__dl_clear_params(p);
345 			raw_spin_unlock(&dl_b->lock);
346 		}
347 
348 		return;
349 	}
350 
351 	dl_se->dl_non_contending = 1;
352 	get_task_struct(p);
353 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
354 }
355 
task_contending(struct sched_dl_entity * dl_se,int flags)356 static void task_contending(struct sched_dl_entity *dl_se, int flags)
357 {
358 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
359 
360 	/*
361 	 * If this is a non-deadline task that has been boosted,
362 	 * do nothing
363 	 */
364 	if (dl_se->dl_runtime == 0)
365 		return;
366 
367 	if (flags & ENQUEUE_MIGRATED)
368 		add_rq_bw(dl_se, dl_rq);
369 
370 	if (dl_se->dl_non_contending) {
371 		dl_se->dl_non_contending = 0;
372 		/*
373 		 * If the timer handler is currently running and the
374 		 * timer cannot be cancelled, inactive_task_timer()
375 		 * will see that dl_not_contending is not set, and
376 		 * will not touch the rq's active utilization,
377 		 * so we are still safe.
378 		 */
379 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
380 			put_task_struct(dl_task_of(dl_se));
381 	} else {
382 		/*
383 		 * Since "dl_non_contending" is not set, the
384 		 * task's utilization has already been removed from
385 		 * active utilization (either when the task blocked,
386 		 * when the "inactive timer" fired).
387 		 * So, add it back.
388 		 */
389 		add_running_bw(dl_se, dl_rq);
390 	}
391 }
392 
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)393 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
394 {
395 	struct sched_dl_entity *dl_se = &p->dl;
396 
397 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
398 }
399 
400 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
401 
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)402 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
403 {
404 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
405 	dl_b->dl_period = period;
406 	dl_b->dl_runtime = runtime;
407 }
408 
init_dl_bw(struct dl_bw * dl_b)409 void init_dl_bw(struct dl_bw *dl_b)
410 {
411 	raw_spin_lock_init(&dl_b->lock);
412 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
413 	if (global_rt_runtime() == RUNTIME_INF)
414 		dl_b->bw = -1;
415 	else
416 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
417 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
418 	dl_b->total_bw = 0;
419 }
420 
init_dl_rq(struct dl_rq * dl_rq)421 void init_dl_rq(struct dl_rq *dl_rq)
422 {
423 	dl_rq->root = RB_ROOT_CACHED;
424 
425 #ifdef CONFIG_SMP
426 	/* zero means no -deadline tasks */
427 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
428 
429 	dl_rq->dl_nr_migratory = 0;
430 	dl_rq->overloaded = 0;
431 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
432 #else
433 	init_dl_bw(&dl_rq->dl_bw);
434 #endif
435 
436 	dl_rq->running_bw = 0;
437 	dl_rq->this_bw = 0;
438 	init_dl_rq_bw_ratio(dl_rq);
439 }
440 
441 #ifdef CONFIG_SMP
442 
dl_overloaded(struct rq * rq)443 static inline int dl_overloaded(struct rq *rq)
444 {
445 	return atomic_read(&rq->rd->dlo_count);
446 }
447 
dl_set_overload(struct rq * rq)448 static inline void dl_set_overload(struct rq *rq)
449 {
450 	if (!rq->online)
451 		return;
452 
453 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
454 	/*
455 	 * Must be visible before the overload count is
456 	 * set (as in sched_rt.c).
457 	 *
458 	 * Matched by the barrier in pull_dl_task().
459 	 */
460 	smp_wmb();
461 	atomic_inc(&rq->rd->dlo_count);
462 }
463 
dl_clear_overload(struct rq * rq)464 static inline void dl_clear_overload(struct rq *rq)
465 {
466 	if (!rq->online)
467 		return;
468 
469 	atomic_dec(&rq->rd->dlo_count);
470 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
471 }
472 
update_dl_migration(struct dl_rq * dl_rq)473 static void update_dl_migration(struct dl_rq *dl_rq)
474 {
475 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
476 		if (!dl_rq->overloaded) {
477 			dl_set_overload(rq_of_dl_rq(dl_rq));
478 			dl_rq->overloaded = 1;
479 		}
480 	} else if (dl_rq->overloaded) {
481 		dl_clear_overload(rq_of_dl_rq(dl_rq));
482 		dl_rq->overloaded = 0;
483 	}
484 }
485 
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)486 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
487 {
488 	struct task_struct *p = dl_task_of(dl_se);
489 
490 	if (p->nr_cpus_allowed > 1)
491 		dl_rq->dl_nr_migratory++;
492 
493 	update_dl_migration(dl_rq);
494 }
495 
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)496 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
497 {
498 	struct task_struct *p = dl_task_of(dl_se);
499 
500 	if (p->nr_cpus_allowed > 1)
501 		dl_rq->dl_nr_migratory--;
502 
503 	update_dl_migration(dl_rq);
504 }
505 
506 /*
507  * The list of pushable -deadline task is not a plist, like in
508  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
509  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)510 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
511 {
512 	struct dl_rq *dl_rq = &rq->dl;
513 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
514 	struct rb_node *parent = NULL;
515 	struct task_struct *entry;
516 	bool leftmost = true;
517 
518 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
519 
520 	while (*link) {
521 		parent = *link;
522 		entry = rb_entry(parent, struct task_struct,
523 				 pushable_dl_tasks);
524 		if (dl_entity_preempt(&p->dl, &entry->dl))
525 			link = &parent->rb_left;
526 		else {
527 			link = &parent->rb_right;
528 			leftmost = false;
529 		}
530 	}
531 
532 	if (leftmost)
533 		dl_rq->earliest_dl.next = p->dl.deadline;
534 
535 	rb_link_node(&p->pushable_dl_tasks, parent, link);
536 	rb_insert_color_cached(&p->pushable_dl_tasks,
537 			       &dl_rq->pushable_dl_tasks_root, leftmost);
538 }
539 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)540 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
541 {
542 	struct dl_rq *dl_rq = &rq->dl;
543 
544 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
545 		return;
546 
547 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
548 		struct rb_node *next_node;
549 
550 		next_node = rb_next(&p->pushable_dl_tasks);
551 		if (next_node) {
552 			dl_rq->earliest_dl.next = rb_entry(next_node,
553 				struct task_struct, pushable_dl_tasks)->dl.deadline;
554 		}
555 	}
556 
557 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
558 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
559 }
560 
has_pushable_dl_tasks(struct rq * rq)561 static inline int has_pushable_dl_tasks(struct rq *rq)
562 {
563 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
564 }
565 
566 static int push_dl_task(struct rq *rq);
567 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)568 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
569 {
570 	return dl_task(prev);
571 }
572 
573 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
574 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
575 
576 static void push_dl_tasks(struct rq *);
577 static void pull_dl_task(struct rq *);
578 
deadline_queue_push_tasks(struct rq * rq)579 static inline void deadline_queue_push_tasks(struct rq *rq)
580 {
581 	if (!has_pushable_dl_tasks(rq))
582 		return;
583 
584 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
585 }
586 
deadline_queue_pull_task(struct rq * rq)587 static inline void deadline_queue_pull_task(struct rq *rq)
588 {
589 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
590 }
591 
592 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
593 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)594 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
595 {
596 	struct rq *later_rq = NULL;
597 	struct dl_bw *dl_b;
598 
599 	later_rq = find_lock_later_rq(p, rq);
600 	if (!later_rq) {
601 		int cpu;
602 
603 		/*
604 		 * If we cannot preempt any rq, fall back to pick any
605 		 * online CPU:
606 		 */
607 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
608 		if (cpu >= nr_cpu_ids) {
609 			/*
610 			 * Failed to find any suitable CPU.
611 			 * The task will never come back!
612 			 */
613 			BUG_ON(dl_bandwidth_enabled());
614 
615 			/*
616 			 * If admission control is disabled we
617 			 * try a little harder to let the task
618 			 * run.
619 			 */
620 			cpu = cpumask_any(cpu_active_mask);
621 		}
622 		later_rq = cpu_rq(cpu);
623 		double_lock_balance(rq, later_rq);
624 	}
625 
626 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
627 		/*
628 		 * Inactive timer is armed (or callback is running, but
629 		 * waiting for us to release rq locks). In any case, when it
630 		 * will fire (or continue), it will see running_bw of this
631 		 * task migrated to later_rq (and correctly handle it).
632 		 */
633 		sub_running_bw(&p->dl, &rq->dl);
634 		sub_rq_bw(&p->dl, &rq->dl);
635 
636 		add_rq_bw(&p->dl, &later_rq->dl);
637 		add_running_bw(&p->dl, &later_rq->dl);
638 	} else {
639 		sub_rq_bw(&p->dl, &rq->dl);
640 		add_rq_bw(&p->dl, &later_rq->dl);
641 	}
642 
643 	/*
644 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
645 	 * since p is still hanging out in the old (now moved to default) root
646 	 * domain.
647 	 */
648 	dl_b = &rq->rd->dl_bw;
649 	raw_spin_lock(&dl_b->lock);
650 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
651 	raw_spin_unlock(&dl_b->lock);
652 
653 	dl_b = &later_rq->rd->dl_bw;
654 	raw_spin_lock(&dl_b->lock);
655 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
656 	raw_spin_unlock(&dl_b->lock);
657 
658 	set_task_cpu(p, later_rq->cpu);
659 	double_unlock_balance(later_rq, rq);
660 
661 	return later_rq;
662 }
663 
664 #else
665 
666 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)667 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
668 {
669 }
670 
671 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)672 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
673 {
674 }
675 
676 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)677 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
678 {
679 }
680 
681 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)682 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
683 {
684 }
685 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)686 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
687 {
688 	return false;
689 }
690 
pull_dl_task(struct rq * rq)691 static inline void pull_dl_task(struct rq *rq)
692 {
693 }
694 
deadline_queue_push_tasks(struct rq * rq)695 static inline void deadline_queue_push_tasks(struct rq *rq)
696 {
697 }
698 
deadline_queue_pull_task(struct rq * rq)699 static inline void deadline_queue_pull_task(struct rq *rq)
700 {
701 }
702 #endif /* CONFIG_SMP */
703 
704 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
705 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
706 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
707 
708 /*
709  * We are being explicitly informed that a new instance is starting,
710  * and this means that:
711  *  - the absolute deadline of the entity has to be placed at
712  *    current time + relative deadline;
713  *  - the runtime of the entity has to be set to the maximum value.
714  *
715  * The capability of specifying such event is useful whenever a -deadline
716  * entity wants to (try to!) synchronize its behaviour with the scheduler's
717  * one, and to (try to!) reconcile itself with its own scheduling
718  * parameters.
719  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)720 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
721 {
722 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
723 	struct rq *rq = rq_of_dl_rq(dl_rq);
724 
725 	WARN_ON(is_dl_boosted(dl_se));
726 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
727 
728 	/*
729 	 * We are racing with the deadline timer. So, do nothing because
730 	 * the deadline timer handler will take care of properly recharging
731 	 * the runtime and postponing the deadline
732 	 */
733 	if (dl_se->dl_throttled)
734 		return;
735 
736 	/*
737 	 * We use the regular wall clock time to set deadlines in the
738 	 * future; in fact, we must consider execution overheads (time
739 	 * spent on hardirq context, etc.).
740 	 */
741 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
742 	dl_se->runtime = dl_se->dl_runtime;
743 }
744 
745 /*
746  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
747  * possibility of a entity lasting more than what it declared, and thus
748  * exhausting its runtime.
749  *
750  * Here we are interested in making runtime overrun possible, but we do
751  * not want a entity which is misbehaving to affect the scheduling of all
752  * other entities.
753  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
754  * is used, in order to confine each entity within its own bandwidth.
755  *
756  * This function deals exactly with that, and ensures that when the runtime
757  * of a entity is replenished, its deadline is also postponed. That ensures
758  * the overrunning entity can't interfere with other entity in the system and
759  * can't make them miss their deadlines. Reasons why this kind of overruns
760  * could happen are, typically, a entity voluntarily trying to overcome its
761  * runtime, or it just underestimated it during sched_setattr().
762  */
replenish_dl_entity(struct sched_dl_entity * dl_se)763 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
764 {
765 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
766 	struct rq *rq = rq_of_dl_rq(dl_rq);
767 
768 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
769 
770 	/*
771 	 * This could be the case for a !-dl task that is boosted.
772 	 * Just go with full inherited parameters.
773 	 */
774 	if (dl_se->dl_deadline == 0) {
775 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
776 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
777 	}
778 
779 	if (dl_se->dl_yielded && dl_se->runtime > 0)
780 		dl_se->runtime = 0;
781 
782 	/*
783 	 * We keep moving the deadline away until we get some
784 	 * available runtime for the entity. This ensures correct
785 	 * handling of situations where the runtime overrun is
786 	 * arbitrary large.
787 	 */
788 	while (dl_se->runtime <= 0) {
789 		dl_se->deadline += pi_of(dl_se)->dl_period;
790 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
791 	}
792 
793 	/*
794 	 * At this point, the deadline really should be "in
795 	 * the future" with respect to rq->clock. If it's
796 	 * not, we are, for some reason, lagging too much!
797 	 * Anyway, after having warn userspace abut that,
798 	 * we still try to keep the things running by
799 	 * resetting the deadline and the budget of the
800 	 * entity.
801 	 */
802 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
803 		printk_deferred_once("sched: DL replenish lagged too much\n");
804 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 	}
807 
808 	if (dl_se->dl_yielded)
809 		dl_se->dl_yielded = 0;
810 	if (dl_se->dl_throttled)
811 		dl_se->dl_throttled = 0;
812 }
813 
814 /*
815  * Here we check if --at time t-- an entity (which is probably being
816  * [re]activated or, in general, enqueued) can use its remaining runtime
817  * and its current deadline _without_ exceeding the bandwidth it is
818  * assigned (function returns true if it can't). We are in fact applying
819  * one of the CBS rules: when a task wakes up, if the residual runtime
820  * over residual deadline fits within the allocated bandwidth, then we
821  * can keep the current (absolute) deadline and residual budget without
822  * disrupting the schedulability of the system. Otherwise, we should
823  * refill the runtime and set the deadline a period in the future,
824  * because keeping the current (absolute) deadline of the task would
825  * result in breaking guarantees promised to other tasks (refer to
826  * Documentation/scheduler/sched-deadline.rst for more information).
827  *
828  * This function returns true if:
829  *
830  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
831  *
832  * IOW we can't recycle current parameters.
833  *
834  * Notice that the bandwidth check is done against the deadline. For
835  * task with deadline equal to period this is the same of using
836  * dl_period instead of dl_deadline in the equation above.
837  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)838 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
839 {
840 	u64 left, right;
841 
842 	/*
843 	 * left and right are the two sides of the equation above,
844 	 * after a bit of shuffling to use multiplications instead
845 	 * of divisions.
846 	 *
847 	 * Note that none of the time values involved in the two
848 	 * multiplications are absolute: dl_deadline and dl_runtime
849 	 * are the relative deadline and the maximum runtime of each
850 	 * instance, runtime is the runtime left for the last instance
851 	 * and (deadline - t), since t is rq->clock, is the time left
852 	 * to the (absolute) deadline. Even if overflowing the u64 type
853 	 * is very unlikely to occur in both cases, here we scale down
854 	 * as we want to avoid that risk at all. Scaling down by 10
855 	 * means that we reduce granularity to 1us. We are fine with it,
856 	 * since this is only a true/false check and, anyway, thinking
857 	 * of anything below microseconds resolution is actually fiction
858 	 * (but still we want to give the user that illusion >;).
859 	 */
860 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
861 	right = ((dl_se->deadline - t) >> DL_SCALE) *
862 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
863 
864 	return dl_time_before(right, left);
865 }
866 
867 /*
868  * Revised wakeup rule [1]: For self-suspending tasks, rather then
869  * re-initializing task's runtime and deadline, the revised wakeup
870  * rule adjusts the task's runtime to avoid the task to overrun its
871  * density.
872  *
873  * Reasoning: a task may overrun the density if:
874  *    runtime / (deadline - t) > dl_runtime / dl_deadline
875  *
876  * Therefore, runtime can be adjusted to:
877  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
878  *
879  * In such way that runtime will be equal to the maximum density
880  * the task can use without breaking any rule.
881  *
882  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
883  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
884  */
885 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)886 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
887 {
888 	u64 laxity = dl_se->deadline - rq_clock(rq);
889 
890 	/*
891 	 * If the task has deadline < period, and the deadline is in the past,
892 	 * it should already be throttled before this check.
893 	 *
894 	 * See update_dl_entity() comments for further details.
895 	 */
896 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
897 
898 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
899 }
900 
901 /*
902  * Regarding the deadline, a task with implicit deadline has a relative
903  * deadline == relative period. A task with constrained deadline has a
904  * relative deadline <= relative period.
905  *
906  * We support constrained deadline tasks. However, there are some restrictions
907  * applied only for tasks which do not have an implicit deadline. See
908  * update_dl_entity() to know more about such restrictions.
909  *
910  * The dl_is_implicit() returns true if the task has an implicit deadline.
911  */
dl_is_implicit(struct sched_dl_entity * dl_se)912 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
913 {
914 	return dl_se->dl_deadline == dl_se->dl_period;
915 }
916 
917 /*
918  * When a deadline entity is placed in the runqueue, its runtime and deadline
919  * might need to be updated. This is done by a CBS wake up rule. There are two
920  * different rules: 1) the original CBS; and 2) the Revisited CBS.
921  *
922  * When the task is starting a new period, the Original CBS is used. In this
923  * case, the runtime is replenished and a new absolute deadline is set.
924  *
925  * When a task is queued before the begin of the next period, using the
926  * remaining runtime and deadline could make the entity to overflow, see
927  * dl_entity_overflow() to find more about runtime overflow. When such case
928  * is detected, the runtime and deadline need to be updated.
929  *
930  * If the task has an implicit deadline, i.e., deadline == period, the Original
931  * CBS is applied. the runtime is replenished and a new absolute deadline is
932  * set, as in the previous cases.
933  *
934  * However, the Original CBS does not work properly for tasks with
935  * deadline < period, which are said to have a constrained deadline. By
936  * applying the Original CBS, a constrained deadline task would be able to run
937  * runtime/deadline in a period. With deadline < period, the task would
938  * overrun the runtime/period allowed bandwidth, breaking the admission test.
939  *
940  * In order to prevent this misbehave, the Revisited CBS is used for
941  * constrained deadline tasks when a runtime overflow is detected. In the
942  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
943  * the remaining runtime of the task is reduced to avoid runtime overflow.
944  * Please refer to the comments update_dl_revised_wakeup() function to find
945  * more about the Revised CBS rule.
946  */
update_dl_entity(struct sched_dl_entity * dl_se)947 static void update_dl_entity(struct sched_dl_entity *dl_se)
948 {
949 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
950 	struct rq *rq = rq_of_dl_rq(dl_rq);
951 
952 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
953 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
954 
955 		if (unlikely(!dl_is_implicit(dl_se) &&
956 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
957 			     !is_dl_boosted(dl_se))) {
958 			update_dl_revised_wakeup(dl_se, rq);
959 			return;
960 		}
961 
962 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
963 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
964 	}
965 }
966 
dl_next_period(struct sched_dl_entity * dl_se)967 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
968 {
969 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
970 }
971 
972 /*
973  * If the entity depleted all its runtime, and if we want it to sleep
974  * while waiting for some new execution time to become available, we
975  * set the bandwidth replenishment timer to the replenishment instant
976  * and try to activate it.
977  *
978  * Notice that it is important for the caller to know if the timer
979  * actually started or not (i.e., the replenishment instant is in
980  * the future or in the past).
981  */
start_dl_timer(struct task_struct * p)982 static int start_dl_timer(struct task_struct *p)
983 {
984 	struct sched_dl_entity *dl_se = &p->dl;
985 	struct hrtimer *timer = &dl_se->dl_timer;
986 	struct rq *rq = task_rq(p);
987 	ktime_t now, act;
988 	s64 delta;
989 
990 	lockdep_assert_held(&rq->lock);
991 
992 	/*
993 	 * We want the timer to fire at the deadline, but considering
994 	 * that it is actually coming from rq->clock and not from
995 	 * hrtimer's time base reading.
996 	 */
997 	act = ns_to_ktime(dl_next_period(dl_se));
998 	now = hrtimer_cb_get_time(timer);
999 	delta = ktime_to_ns(now) - rq_clock(rq);
1000 	act = ktime_add_ns(act, delta);
1001 
1002 	/*
1003 	 * If the expiry time already passed, e.g., because the value
1004 	 * chosen as the deadline is too small, don't even try to
1005 	 * start the timer in the past!
1006 	 */
1007 	if (ktime_us_delta(act, now) < 0)
1008 		return 0;
1009 
1010 	/*
1011 	 * !enqueued will guarantee another callback; even if one is already in
1012 	 * progress. This ensures a balanced {get,put}_task_struct().
1013 	 *
1014 	 * The race against __run_timer() clearing the enqueued state is
1015 	 * harmless because we're holding task_rq()->lock, therefore the timer
1016 	 * expiring after we've done the check will wait on its task_rq_lock()
1017 	 * and observe our state.
1018 	 */
1019 	if (!hrtimer_is_queued(timer)) {
1020 		get_task_struct(p);
1021 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1022 	}
1023 
1024 	return 1;
1025 }
1026 
1027 /*
1028  * This is the bandwidth enforcement timer callback. If here, we know
1029  * a task is not on its dl_rq, since the fact that the timer was running
1030  * means the task is throttled and needs a runtime replenishment.
1031  *
1032  * However, what we actually do depends on the fact the task is active,
1033  * (it is on its rq) or has been removed from there by a call to
1034  * dequeue_task_dl(). In the former case we must issue the runtime
1035  * replenishment and add the task back to the dl_rq; in the latter, we just
1036  * do nothing but clearing dl_throttled, so that runtime and deadline
1037  * updating (and the queueing back to dl_rq) will be done by the
1038  * next call to enqueue_task_dl().
1039  */
dl_task_timer(struct hrtimer * timer)1040 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1041 {
1042 	struct sched_dl_entity *dl_se = container_of(timer,
1043 						     struct sched_dl_entity,
1044 						     dl_timer);
1045 	struct task_struct *p = dl_task_of(dl_se);
1046 	struct rq_flags rf;
1047 	struct rq *rq;
1048 
1049 	rq = task_rq_lock(p, &rf);
1050 
1051 	/*
1052 	 * The task might have changed its scheduling policy to something
1053 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1054 	 */
1055 	if (!dl_task(p))
1056 		goto unlock;
1057 
1058 	/*
1059 	 * The task might have been boosted by someone else and might be in the
1060 	 * boosting/deboosting path, its not throttled.
1061 	 */
1062 	if (is_dl_boosted(dl_se))
1063 		goto unlock;
1064 
1065 	/*
1066 	 * Spurious timer due to start_dl_timer() race; or we already received
1067 	 * a replenishment from rt_mutex_setprio().
1068 	 */
1069 	if (!dl_se->dl_throttled)
1070 		goto unlock;
1071 
1072 	sched_clock_tick();
1073 	update_rq_clock(rq);
1074 
1075 	/*
1076 	 * If the throttle happened during sched-out; like:
1077 	 *
1078 	 *   schedule()
1079 	 *     deactivate_task()
1080 	 *       dequeue_task_dl()
1081 	 *         update_curr_dl()
1082 	 *           start_dl_timer()
1083 	 *         __dequeue_task_dl()
1084 	 *     prev->on_rq = 0;
1085 	 *
1086 	 * We can be both throttled and !queued. Replenish the counter
1087 	 * but do not enqueue -- wait for our wakeup to do that.
1088 	 */
1089 	if (!task_on_rq_queued(p)) {
1090 		replenish_dl_entity(dl_se);
1091 		goto unlock;
1092 	}
1093 
1094 #ifdef CONFIG_SMP
1095 	if (unlikely(!rq->online)) {
1096 		/*
1097 		 * If the runqueue is no longer available, migrate the
1098 		 * task elsewhere. This necessarily changes rq.
1099 		 */
1100 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1101 		rq = dl_task_offline_migration(rq, p);
1102 		rf.cookie = lockdep_pin_lock(&rq->lock);
1103 		update_rq_clock(rq);
1104 
1105 		/*
1106 		 * Now that the task has been migrated to the new RQ and we
1107 		 * have that locked, proceed as normal and enqueue the task
1108 		 * there.
1109 		 */
1110 	}
1111 #endif
1112 
1113 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1114 	if (dl_task(rq->curr))
1115 		check_preempt_curr_dl(rq, p, 0);
1116 	else
1117 		resched_curr(rq);
1118 
1119 #ifdef CONFIG_SMP
1120 	/*
1121 	 * Queueing this task back might have overloaded rq, check if we need
1122 	 * to kick someone away.
1123 	 */
1124 	if (has_pushable_dl_tasks(rq)) {
1125 		/*
1126 		 * Nothing relies on rq->lock after this, so its safe to drop
1127 		 * rq->lock.
1128 		 */
1129 		rq_unpin_lock(rq, &rf);
1130 		push_dl_task(rq);
1131 		rq_repin_lock(rq, &rf);
1132 	}
1133 #endif
1134 
1135 unlock:
1136 	task_rq_unlock(rq, p, &rf);
1137 
1138 	/*
1139 	 * This can free the task_struct, including this hrtimer, do not touch
1140 	 * anything related to that after this.
1141 	 */
1142 	put_task_struct(p);
1143 
1144 	return HRTIMER_NORESTART;
1145 }
1146 
init_dl_task_timer(struct sched_dl_entity * dl_se)1147 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1148 {
1149 	struct hrtimer *timer = &dl_se->dl_timer;
1150 
1151 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1152 	timer->function = dl_task_timer;
1153 }
1154 
1155 /*
1156  * During the activation, CBS checks if it can reuse the current task's
1157  * runtime and period. If the deadline of the task is in the past, CBS
1158  * cannot use the runtime, and so it replenishes the task. This rule
1159  * works fine for implicit deadline tasks (deadline == period), and the
1160  * CBS was designed for implicit deadline tasks. However, a task with
1161  * constrained deadline (deadline < period) might be awakened after the
1162  * deadline, but before the next period. In this case, replenishing the
1163  * task would allow it to run for runtime / deadline. As in this case
1164  * deadline < period, CBS enables a task to run for more than the
1165  * runtime / period. In a very loaded system, this can cause a domino
1166  * effect, making other tasks miss their deadlines.
1167  *
1168  * To avoid this problem, in the activation of a constrained deadline
1169  * task after the deadline but before the next period, throttle the
1170  * task and set the replenishing timer to the begin of the next period,
1171  * unless it is boosted.
1172  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1173 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1174 {
1175 	struct task_struct *p = dl_task_of(dl_se);
1176 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1177 
1178 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1179 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1180 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1181 			return;
1182 		dl_se->dl_throttled = 1;
1183 		if (dl_se->runtime > 0)
1184 			dl_se->runtime = 0;
1185 	}
1186 }
1187 
1188 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1189 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1190 {
1191 	return (dl_se->runtime <= 0);
1192 }
1193 
1194 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1195 
1196 /*
1197  * This function implements the GRUB accounting rule:
1198  * according to the GRUB reclaiming algorithm, the runtime is
1199  * not decreased as "dq = -dt", but as
1200  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1201  * where u is the utilization of the task, Umax is the maximum reclaimable
1202  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1203  * as the difference between the "total runqueue utilization" and the
1204  * runqueue active utilization, and Uextra is the (per runqueue) extra
1205  * reclaimable utilization.
1206  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1207  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1208  * BW_SHIFT.
1209  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1210  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1211  * Since delta is a 64 bit variable, to have an overflow its value
1212  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1213  * So, overflow is not an issue here.
1214  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1215 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1216 {
1217 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1218 	u64 u_act;
1219 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1220 
1221 	/*
1222 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1223 	 * we compare u_inact + rq->dl.extra_bw with
1224 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1225 	 * u_inact + rq->dl.extra_bw can be larger than
1226 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1227 	 * leading to wrong results)
1228 	 */
1229 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1230 		u_act = u_act_min;
1231 	else
1232 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1233 
1234 	return (delta * u_act) >> BW_SHIFT;
1235 }
1236 
1237 /*
1238  * Update the current task's runtime statistics (provided it is still
1239  * a -deadline task and has not been removed from the dl_rq).
1240  */
update_curr_dl(struct rq * rq)1241 static void update_curr_dl(struct rq *rq)
1242 {
1243 	struct task_struct *curr = rq->curr;
1244 	struct sched_dl_entity *dl_se = &curr->dl;
1245 	u64 delta_exec, scaled_delta_exec;
1246 	int cpu = cpu_of(rq);
1247 	u64 now;
1248 
1249 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1250 		return;
1251 
1252 	/*
1253 	 * Consumed budget is computed considering the time as
1254 	 * observed by schedulable tasks (excluding time spent
1255 	 * in hardirq context, etc.). Deadlines are instead
1256 	 * computed using hard walltime. This seems to be the more
1257 	 * natural solution, but the full ramifications of this
1258 	 * approach need further study.
1259 	 */
1260 	now = rq_clock_task(rq);
1261 	delta_exec = now - curr->se.exec_start;
1262 	if (unlikely((s64)delta_exec <= 0)) {
1263 		if (unlikely(dl_se->dl_yielded))
1264 			goto throttle;
1265 		return;
1266 	}
1267 
1268 	schedstat_set(curr->se.statistics.exec_max,
1269 		      max(curr->se.statistics.exec_max, delta_exec));
1270 
1271 	curr->se.sum_exec_runtime += delta_exec;
1272 	account_group_exec_runtime(curr, delta_exec);
1273 
1274 	curr->se.exec_start = now;
1275 	cgroup_account_cputime(curr, delta_exec);
1276 
1277 	if (dl_entity_is_special(dl_se))
1278 		return;
1279 
1280 	/*
1281 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1282 	 * spare reclaimed bandwidth is used to clock down frequency.
1283 	 *
1284 	 * For the others, we still need to scale reservation parameters
1285 	 * according to current frequency and CPU maximum capacity.
1286 	 */
1287 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1288 		scaled_delta_exec = grub_reclaim(delta_exec,
1289 						 rq,
1290 						 &curr->dl);
1291 	} else {
1292 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1293 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1294 
1295 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1296 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1297 	}
1298 
1299 	dl_se->runtime -= scaled_delta_exec;
1300 
1301 throttle:
1302 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1303 		dl_se->dl_throttled = 1;
1304 
1305 		/* If requested, inform the user about runtime overruns. */
1306 		if (dl_runtime_exceeded(dl_se) &&
1307 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1308 			dl_se->dl_overrun = 1;
1309 
1310 		__dequeue_task_dl(rq, curr, 0);
1311 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1312 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1313 
1314 		if (!is_leftmost(curr, &rq->dl))
1315 			resched_curr(rq);
1316 	}
1317 
1318 	/*
1319 	 * Because -- for now -- we share the rt bandwidth, we need to
1320 	 * account our runtime there too, otherwise actual rt tasks
1321 	 * would be able to exceed the shared quota.
1322 	 *
1323 	 * Account to the root rt group for now.
1324 	 *
1325 	 * The solution we're working towards is having the RT groups scheduled
1326 	 * using deadline servers -- however there's a few nasties to figure
1327 	 * out before that can happen.
1328 	 */
1329 	if (rt_bandwidth_enabled()) {
1330 		struct rt_rq *rt_rq = &rq->rt;
1331 
1332 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1333 		/*
1334 		 * We'll let actual RT tasks worry about the overflow here, we
1335 		 * have our own CBS to keep us inline; only account when RT
1336 		 * bandwidth is relevant.
1337 		 */
1338 		if (sched_rt_bandwidth_account(rt_rq))
1339 			rt_rq->rt_time += delta_exec;
1340 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1341 	}
1342 }
1343 
inactive_task_timer(struct hrtimer * timer)1344 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1345 {
1346 	struct sched_dl_entity *dl_se = container_of(timer,
1347 						     struct sched_dl_entity,
1348 						     inactive_timer);
1349 	struct task_struct *p = dl_task_of(dl_se);
1350 	struct rq_flags rf;
1351 	struct rq *rq;
1352 
1353 	rq = task_rq_lock(p, &rf);
1354 
1355 	sched_clock_tick();
1356 	update_rq_clock(rq);
1357 
1358 	if (!dl_task(p) || p->state == TASK_DEAD) {
1359 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1360 
1361 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1362 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1363 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1364 			dl_se->dl_non_contending = 0;
1365 		}
1366 
1367 		raw_spin_lock(&dl_b->lock);
1368 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1369 		raw_spin_unlock(&dl_b->lock);
1370 		__dl_clear_params(p);
1371 
1372 		goto unlock;
1373 	}
1374 	if (dl_se->dl_non_contending == 0)
1375 		goto unlock;
1376 
1377 	sub_running_bw(dl_se, &rq->dl);
1378 	dl_se->dl_non_contending = 0;
1379 unlock:
1380 	task_rq_unlock(rq, p, &rf);
1381 	put_task_struct(p);
1382 
1383 	return HRTIMER_NORESTART;
1384 }
1385 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1386 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1387 {
1388 	struct hrtimer *timer = &dl_se->inactive_timer;
1389 
1390 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1391 	timer->function = inactive_task_timer;
1392 }
1393 
1394 #ifdef CONFIG_SMP
1395 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1396 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1397 {
1398 	struct rq *rq = rq_of_dl_rq(dl_rq);
1399 
1400 	if (dl_rq->earliest_dl.curr == 0 ||
1401 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1402 		dl_rq->earliest_dl.curr = deadline;
1403 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1404 	}
1405 }
1406 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1407 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1408 {
1409 	struct rq *rq = rq_of_dl_rq(dl_rq);
1410 
1411 	/*
1412 	 * Since we may have removed our earliest (and/or next earliest)
1413 	 * task we must recompute them.
1414 	 */
1415 	if (!dl_rq->dl_nr_running) {
1416 		dl_rq->earliest_dl.curr = 0;
1417 		dl_rq->earliest_dl.next = 0;
1418 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1419 	} else {
1420 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1421 		struct sched_dl_entity *entry;
1422 
1423 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1424 		dl_rq->earliest_dl.curr = entry->deadline;
1425 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1426 	}
1427 }
1428 
1429 #else
1430 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1431 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1432 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1433 
1434 #endif /* CONFIG_SMP */
1435 
1436 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1437 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1438 {
1439 	int prio = dl_task_of(dl_se)->prio;
1440 	u64 deadline = dl_se->deadline;
1441 
1442 	WARN_ON(!dl_prio(prio));
1443 	dl_rq->dl_nr_running++;
1444 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1445 	walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1446 
1447 	inc_dl_deadline(dl_rq, deadline);
1448 	inc_dl_migration(dl_se, dl_rq);
1449 }
1450 
1451 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1452 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1453 {
1454 	int prio = dl_task_of(dl_se)->prio;
1455 
1456 	WARN_ON(!dl_prio(prio));
1457 	WARN_ON(!dl_rq->dl_nr_running);
1458 	dl_rq->dl_nr_running--;
1459 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1460 	walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1461 
1462 	dec_dl_deadline(dl_rq, dl_se->deadline);
1463 	dec_dl_migration(dl_se, dl_rq);
1464 }
1465 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1466 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1467 {
1468 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1469 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1470 	struct rb_node *parent = NULL;
1471 	struct sched_dl_entity *entry;
1472 	int leftmost = 1;
1473 
1474 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1475 
1476 	while (*link) {
1477 		parent = *link;
1478 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1479 		if (dl_time_before(dl_se->deadline, entry->deadline))
1480 			link = &parent->rb_left;
1481 		else {
1482 			link = &parent->rb_right;
1483 			leftmost = 0;
1484 		}
1485 	}
1486 
1487 	rb_link_node(&dl_se->rb_node, parent, link);
1488 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1489 
1490 	inc_dl_tasks(dl_se, dl_rq);
1491 }
1492 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1493 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1494 {
1495 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1496 
1497 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1498 		return;
1499 
1500 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1501 	RB_CLEAR_NODE(&dl_se->rb_node);
1502 
1503 	dec_dl_tasks(dl_se, dl_rq);
1504 }
1505 
1506 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1507 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1508 {
1509 	BUG_ON(on_dl_rq(dl_se));
1510 
1511 	/*
1512 	 * If this is a wakeup or a new instance, the scheduling
1513 	 * parameters of the task might need updating. Otherwise,
1514 	 * we want a replenishment of its runtime.
1515 	 */
1516 	if (flags & ENQUEUE_WAKEUP) {
1517 		task_contending(dl_se, flags);
1518 		update_dl_entity(dl_se);
1519 	} else if (flags & ENQUEUE_REPLENISH) {
1520 		replenish_dl_entity(dl_se);
1521 	} else if ((flags & ENQUEUE_RESTORE) &&
1522 		  dl_time_before(dl_se->deadline,
1523 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1524 		setup_new_dl_entity(dl_se);
1525 	}
1526 
1527 	__enqueue_dl_entity(dl_se);
1528 }
1529 
dequeue_dl_entity(struct sched_dl_entity * dl_se)1530 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1531 {
1532 	__dequeue_dl_entity(dl_se);
1533 }
1534 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1535 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1536 {
1537 	if (is_dl_boosted(&p->dl)) {
1538 		/*
1539 		 * Because of delays in the detection of the overrun of a
1540 		 * thread's runtime, it might be the case that a thread
1541 		 * goes to sleep in a rt mutex with negative runtime. As
1542 		 * a consequence, the thread will be throttled.
1543 		 *
1544 		 * While waiting for the mutex, this thread can also be
1545 		 * boosted via PI, resulting in a thread that is throttled
1546 		 * and boosted at the same time.
1547 		 *
1548 		 * In this case, the boost overrides the throttle.
1549 		 */
1550 		if (p->dl.dl_throttled) {
1551 			/*
1552 			 * The replenish timer needs to be canceled. No
1553 			 * problem if it fires concurrently: boosted threads
1554 			 * are ignored in dl_task_timer().
1555 			 */
1556 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1557 			p->dl.dl_throttled = 0;
1558 		}
1559 	} else if (!dl_prio(p->normal_prio)) {
1560 		/*
1561 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1562 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1563 		 * replenishing it, as it's going to return back to its original
1564 		 * scheduling class after this. If it has been throttled, we need to
1565 		 * clear the flag, otherwise the task may wake up as throttled after
1566 		 * being boosted again with no means to replenish the runtime and clear
1567 		 * the throttle.
1568 		 */
1569 		p->dl.dl_throttled = 0;
1570 		if (!(flags & ENQUEUE_REPLENISH))
1571 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1572 					     task_pid_nr(p));
1573 
1574 		return;
1575 	}
1576 
1577 	/*
1578 	 * Check if a constrained deadline task was activated
1579 	 * after the deadline but before the next period.
1580 	 * If that is the case, the task will be throttled and
1581 	 * the replenishment timer will be set to the next period.
1582 	 */
1583 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1584 		dl_check_constrained_dl(&p->dl);
1585 
1586 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1587 		add_rq_bw(&p->dl, &rq->dl);
1588 		add_running_bw(&p->dl, &rq->dl);
1589 	}
1590 
1591 	/*
1592 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1593 	 * its budget it needs a replenishment and, since it now is on
1594 	 * its rq, the bandwidth timer callback (which clearly has not
1595 	 * run yet) will take care of this.
1596 	 * However, the active utilization does not depend on the fact
1597 	 * that the task is on the runqueue or not (but depends on the
1598 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1599 	 * In other words, even if a task is throttled its utilization must
1600 	 * be counted in the active utilization; hence, we need to call
1601 	 * add_running_bw().
1602 	 */
1603 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1604 		if (flags & ENQUEUE_WAKEUP)
1605 			task_contending(&p->dl, flags);
1606 
1607 		return;
1608 	}
1609 
1610 	enqueue_dl_entity(&p->dl, flags);
1611 
1612 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1613 		enqueue_pushable_dl_task(rq, p);
1614 }
1615 
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1616 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1617 {
1618 	dequeue_dl_entity(&p->dl);
1619 	dequeue_pushable_dl_task(rq, p);
1620 }
1621 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1622 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1623 {
1624 	update_curr_dl(rq);
1625 	__dequeue_task_dl(rq, p, flags);
1626 
1627 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1628 		sub_running_bw(&p->dl, &rq->dl);
1629 		sub_rq_bw(&p->dl, &rq->dl);
1630 	}
1631 
1632 	/*
1633 	 * This check allows to start the inactive timer (or to immediately
1634 	 * decrease the active utilization, if needed) in two cases:
1635 	 * when the task blocks and when it is terminating
1636 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1637 	 * way, because from GRUB's point of view the same thing is happening
1638 	 * (the task moves from "active contending" to "active non contending"
1639 	 * or "inactive")
1640 	 */
1641 	if (flags & DEQUEUE_SLEEP)
1642 		task_non_contending(p);
1643 }
1644 
1645 /*
1646  * Yield task semantic for -deadline tasks is:
1647  *
1648  *   get off from the CPU until our next instance, with
1649  *   a new runtime. This is of little use now, since we
1650  *   don't have a bandwidth reclaiming mechanism. Anyway,
1651  *   bandwidth reclaiming is planned for the future, and
1652  *   yield_task_dl will indicate that some spare budget
1653  *   is available for other task instances to use it.
1654  */
yield_task_dl(struct rq * rq)1655 static void yield_task_dl(struct rq *rq)
1656 {
1657 	/*
1658 	 * We make the task go to sleep until its current deadline by
1659 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1660 	 * it and the bandwidth timer will wake it up and will give it
1661 	 * new scheduling parameters (thanks to dl_yielded=1).
1662 	 */
1663 	rq->curr->dl.dl_yielded = 1;
1664 
1665 	update_rq_clock(rq);
1666 	update_curr_dl(rq);
1667 	/*
1668 	 * Tell update_rq_clock() that we've just updated,
1669 	 * so we don't do microscopic update in schedule()
1670 	 * and double the fastpath cost.
1671 	 */
1672 	rq_clock_skip_update(rq);
1673 }
1674 
1675 #ifdef CONFIG_SMP
1676 
1677 static int find_later_rq(struct task_struct *task);
1678 
1679 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags)1680 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1681 {
1682 	struct task_struct *curr;
1683 	bool select_rq;
1684 	struct rq *rq;
1685 
1686 	if (sd_flag != SD_BALANCE_WAKE)
1687 		goto out;
1688 
1689 	rq = cpu_rq(cpu);
1690 
1691 	rcu_read_lock();
1692 	curr = READ_ONCE(rq->curr); /* unlocked access */
1693 
1694 	/*
1695 	 * If we are dealing with a -deadline task, we must
1696 	 * decide where to wake it up.
1697 	 * If it has a later deadline and the current task
1698 	 * on this rq can't move (provided the waking task
1699 	 * can!) we prefer to send it somewhere else. On the
1700 	 * other hand, if it has a shorter deadline, we
1701 	 * try to make it stay here, it might be important.
1702 	 */
1703 	select_rq = unlikely(dl_task(curr)) &&
1704 		    (curr->nr_cpus_allowed < 2 ||
1705 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1706 		    p->nr_cpus_allowed > 1;
1707 
1708 	/*
1709 	 * Take the capacity of the CPU into account to
1710 	 * ensure it fits the requirement of the task.
1711 	 */
1712 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1713 		select_rq |= !dl_task_fits_capacity(p, cpu);
1714 
1715 	if (select_rq) {
1716 		int target = find_later_rq(p);
1717 
1718 		if (target != -1 &&
1719 				(dl_time_before(p->dl.deadline,
1720 					cpu_rq(target)->dl.earliest_dl.curr) ||
1721 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1722 			cpu = target;
1723 	}
1724 	rcu_read_unlock();
1725 
1726 out:
1727 	return cpu;
1728 }
1729 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1730 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1731 {
1732 	struct rq *rq;
1733 
1734 	if (p->state != TASK_WAKING)
1735 		return;
1736 
1737 	rq = task_rq(p);
1738 	/*
1739 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1740 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1741 	 * rq->lock is not... So, lock it
1742 	 */
1743 	raw_spin_lock(&rq->lock);
1744 	if (p->dl.dl_non_contending) {
1745 		update_rq_clock(rq);
1746 		sub_running_bw(&p->dl, &rq->dl);
1747 		p->dl.dl_non_contending = 0;
1748 		/*
1749 		 * If the timer handler is currently running and the
1750 		 * timer cannot be cancelled, inactive_task_timer()
1751 		 * will see that dl_not_contending is not set, and
1752 		 * will not touch the rq's active utilization,
1753 		 * so we are still safe.
1754 		 */
1755 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1756 			put_task_struct(p);
1757 	}
1758 	sub_rq_bw(&p->dl, &rq->dl);
1759 	raw_spin_unlock(&rq->lock);
1760 }
1761 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1762 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1763 {
1764 	/*
1765 	 * Current can't be migrated, useless to reschedule,
1766 	 * let's hope p can move out.
1767 	 */
1768 	if (rq->curr->nr_cpus_allowed == 1 ||
1769 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1770 		return;
1771 
1772 	/*
1773 	 * p is migratable, so let's not schedule it and
1774 	 * see if it is pushed or pulled somewhere else.
1775 	 */
1776 	if (p->nr_cpus_allowed != 1 &&
1777 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1778 		return;
1779 
1780 	resched_curr(rq);
1781 }
1782 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1783 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1784 {
1785 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1786 		/*
1787 		 * This is OK, because current is on_cpu, which avoids it being
1788 		 * picked for load-balance and preemption/IRQs are still
1789 		 * disabled avoiding further scheduler activity on it and we've
1790 		 * not yet started the picking loop.
1791 		 */
1792 		rq_unpin_lock(rq, rf);
1793 		pull_dl_task(rq);
1794 		rq_repin_lock(rq, rf);
1795 	}
1796 
1797 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1798 }
1799 #endif /* CONFIG_SMP */
1800 
1801 /*
1802  * Only called when both the current and waking task are -deadline
1803  * tasks.
1804  */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1805 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1806 				  int flags)
1807 {
1808 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1809 		resched_curr(rq);
1810 		return;
1811 	}
1812 
1813 #ifdef CONFIG_SMP
1814 	/*
1815 	 * In the unlikely case current and p have the same deadline
1816 	 * let us try to decide what's the best thing to do...
1817 	 */
1818 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1819 	    !test_tsk_need_resched(rq->curr))
1820 		check_preempt_equal_dl(rq, p);
1821 #endif /* CONFIG_SMP */
1822 }
1823 
1824 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1825 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1826 {
1827 	hrtick_start(rq, p->dl.runtime);
1828 }
1829 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1830 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1831 {
1832 }
1833 #endif
1834 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1835 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1836 {
1837 	p->se.exec_start = rq_clock_task(rq);
1838 
1839 	/* You can't push away the running task */
1840 	dequeue_pushable_dl_task(rq, p);
1841 
1842 	if (!first)
1843 		return;
1844 
1845 	if (hrtick_enabled(rq))
1846 		start_hrtick_dl(rq, p);
1847 
1848 	if (rq->curr->sched_class != &dl_sched_class)
1849 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1850 
1851 	deadline_queue_push_tasks(rq);
1852 }
1853 
pick_next_dl_entity(struct dl_rq * dl_rq)1854 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1855 {
1856 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1857 
1858 	if (!left)
1859 		return NULL;
1860 
1861 	return rb_entry(left, struct sched_dl_entity, rb_node);
1862 }
1863 
pick_next_task_dl(struct rq * rq)1864 static struct task_struct *pick_next_task_dl(struct rq *rq)
1865 {
1866 	struct sched_dl_entity *dl_se;
1867 	struct dl_rq *dl_rq = &rq->dl;
1868 	struct task_struct *p;
1869 
1870 	if (!sched_dl_runnable(rq))
1871 		return NULL;
1872 
1873 	dl_se = pick_next_dl_entity(dl_rq);
1874 	BUG_ON(!dl_se);
1875 	p = dl_task_of(dl_se);
1876 	set_next_task_dl(rq, p, true);
1877 	return p;
1878 }
1879 
put_prev_task_dl(struct rq * rq,struct task_struct * p)1880 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1881 {
1882 	update_curr_dl(rq);
1883 
1884 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1885 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1886 		enqueue_pushable_dl_task(rq, p);
1887 }
1888 
1889 /*
1890  * scheduler tick hitting a task of our scheduling class.
1891  *
1892  * NOTE: This function can be called remotely by the tick offload that
1893  * goes along full dynticks. Therefore no local assumption can be made
1894  * and everything must be accessed through the @rq and @curr passed in
1895  * parameters.
1896  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1897 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1898 {
1899 	update_curr_dl(rq);
1900 
1901 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1902 	/*
1903 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1904 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1905 	 * be set and schedule() will start a new hrtick for the next task.
1906 	 */
1907 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1908 	    is_leftmost(p, &rq->dl))
1909 		start_hrtick_dl(rq, p);
1910 }
1911 
task_fork_dl(struct task_struct * p)1912 static void task_fork_dl(struct task_struct *p)
1913 {
1914 	/*
1915 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1916 	 * sched_fork()
1917 	 */
1918 }
1919 
1920 #ifdef CONFIG_SMP
1921 
1922 /* Only try algorithms three times */
1923 #define DL_MAX_TRIES 3
1924 
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1925 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1926 {
1927 	if (!task_running(rq, p) &&
1928 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1929 		return 1;
1930 	return 0;
1931 }
1932 
1933 /*
1934  * Return the earliest pushable rq's task, which is suitable to be executed
1935  * on the CPU, NULL otherwise:
1936  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1937 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1938 {
1939 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1940 	struct task_struct *p = NULL;
1941 
1942 	if (!has_pushable_dl_tasks(rq))
1943 		return NULL;
1944 
1945 next_node:
1946 	if (next_node) {
1947 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1948 
1949 		if (pick_dl_task(rq, p, cpu))
1950 			return p;
1951 
1952 		next_node = rb_next(next_node);
1953 		goto next_node;
1954 	}
1955 
1956 	return NULL;
1957 }
1958 
1959 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1960 
find_later_rq(struct task_struct * task)1961 static int find_later_rq(struct task_struct *task)
1962 {
1963 	struct sched_domain *sd;
1964 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1965 	int this_cpu = smp_processor_id();
1966 	int cpu = task_cpu(task);
1967 
1968 	/* Make sure the mask is initialized first */
1969 	if (unlikely(!later_mask))
1970 		return -1;
1971 
1972 	if (task->nr_cpus_allowed == 1)
1973 		return -1;
1974 
1975 	/*
1976 	 * We have to consider system topology and task affinity
1977 	 * first, then we can look for a suitable CPU.
1978 	 */
1979 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1980 		return -1;
1981 
1982 	/*
1983 	 * If we are here, some targets have been found, including
1984 	 * the most suitable which is, among the runqueues where the
1985 	 * current tasks have later deadlines than the task's one, the
1986 	 * rq with the latest possible one.
1987 	 *
1988 	 * Now we check how well this matches with task's
1989 	 * affinity and system topology.
1990 	 *
1991 	 * The last CPU where the task run is our first
1992 	 * guess, since it is most likely cache-hot there.
1993 	 */
1994 	if (cpumask_test_cpu(cpu, later_mask))
1995 		return cpu;
1996 	/*
1997 	 * Check if this_cpu is to be skipped (i.e., it is
1998 	 * not in the mask) or not.
1999 	 */
2000 	if (!cpumask_test_cpu(this_cpu, later_mask))
2001 		this_cpu = -1;
2002 
2003 	rcu_read_lock();
2004 	for_each_domain(cpu, sd) {
2005 		if (sd->flags & SD_WAKE_AFFINE) {
2006 			int best_cpu;
2007 
2008 			/*
2009 			 * If possible, preempting this_cpu is
2010 			 * cheaper than migrating.
2011 			 */
2012 			if (this_cpu != -1 &&
2013 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2014 				rcu_read_unlock();
2015 				return this_cpu;
2016 			}
2017 
2018 			best_cpu = cpumask_first_and(later_mask,
2019 							sched_domain_span(sd));
2020 			/*
2021 			 * Last chance: if a CPU being in both later_mask
2022 			 * and current sd span is valid, that becomes our
2023 			 * choice. Of course, the latest possible CPU is
2024 			 * already under consideration through later_mask.
2025 			 */
2026 			if (best_cpu < nr_cpu_ids) {
2027 				rcu_read_unlock();
2028 				return best_cpu;
2029 			}
2030 		}
2031 	}
2032 	rcu_read_unlock();
2033 
2034 	/*
2035 	 * At this point, all our guesses failed, we just return
2036 	 * 'something', and let the caller sort the things out.
2037 	 */
2038 	if (this_cpu != -1)
2039 		return this_cpu;
2040 
2041 	cpu = cpumask_any(later_mask);
2042 	if (cpu < nr_cpu_ids)
2043 		return cpu;
2044 
2045 	return -1;
2046 }
2047 
pick_next_pushable_dl_task(struct rq * rq)2048 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2049 {
2050 	struct task_struct *p;
2051 
2052 	if (!has_pushable_dl_tasks(rq))
2053 		return NULL;
2054 
2055 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2056 		     struct task_struct, pushable_dl_tasks);
2057 
2058 	BUG_ON(rq->cpu != task_cpu(p));
2059 	BUG_ON(task_current(rq, p));
2060 	BUG_ON(p->nr_cpus_allowed <= 1);
2061 
2062 	BUG_ON(!task_on_rq_queued(p));
2063 	BUG_ON(!dl_task(p));
2064 
2065 	return p;
2066 }
2067 
2068 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2069 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2070 {
2071 	struct rq *later_rq = NULL;
2072 	int tries;
2073 	int cpu;
2074 
2075 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2076 		cpu = find_later_rq(task);
2077 
2078 		if ((cpu == -1) || (cpu == rq->cpu))
2079 			break;
2080 
2081 		later_rq = cpu_rq(cpu);
2082 
2083 		if (later_rq->dl.dl_nr_running &&
2084 		    !dl_time_before(task->dl.deadline,
2085 					later_rq->dl.earliest_dl.curr)) {
2086 			/*
2087 			 * Target rq has tasks of equal or earlier deadline,
2088 			 * retrying does not release any lock and is unlikely
2089 			 * to yield a different result.
2090 			 */
2091 			later_rq = NULL;
2092 			break;
2093 		}
2094 
2095 		/* Retry if something changed. */
2096 		if (double_lock_balance(rq, later_rq)) {
2097 			struct task_struct *next_task;
2098 			/*
2099 			 * We had to unlock the run queue. In
2100 			 * the mean time, task could have
2101 			 * migrated already or had its affinity changed.
2102 			 * Also make sure that it wasn't scheduled on its rq.
2103 			 */
2104 			next_task = pick_next_pushable_dl_task(rq);
2105 			if (unlikely(next_task != task ||
2106 						!cpumask_test_cpu(later_rq->cpu, task->cpus_ptr))) {
2107 				double_unlock_balance(rq, later_rq);
2108 				later_rq = NULL;
2109 				break;
2110 			}
2111 		}
2112 
2113 		/*
2114 		 * If the rq we found has no -deadline task, or
2115 		 * its earliest one has a later deadline than our
2116 		 * task, the rq is a good one.
2117 		 */
2118 		if (!later_rq->dl.dl_nr_running ||
2119 		    dl_time_before(task->dl.deadline,
2120 				   later_rq->dl.earliest_dl.curr))
2121 			break;
2122 
2123 		/* Otherwise we try again. */
2124 		double_unlock_balance(rq, later_rq);
2125 		later_rq = NULL;
2126 	}
2127 
2128 	return later_rq;
2129 }
2130 
2131 /*
2132  * See if the non running -deadline tasks on this rq
2133  * can be sent to some other CPU where they can preempt
2134  * and start executing.
2135  */
push_dl_task(struct rq * rq)2136 static int push_dl_task(struct rq *rq)
2137 {
2138 	struct task_struct *next_task;
2139 	struct rq *later_rq;
2140 	int ret = 0;
2141 
2142 	if (!rq->dl.overloaded)
2143 		return 0;
2144 
2145 	next_task = pick_next_pushable_dl_task(rq);
2146 	if (!next_task)
2147 		return 0;
2148 
2149 retry:
2150 	if (WARN_ON(next_task == rq->curr))
2151 		return 0;
2152 
2153 	/*
2154 	 * If next_task preempts rq->curr, and rq->curr
2155 	 * can move away, it makes sense to just reschedule
2156 	 * without going further in pushing next_task.
2157 	 */
2158 	if (dl_task(rq->curr) &&
2159 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2160 	    rq->curr->nr_cpus_allowed > 1) {
2161 		resched_curr(rq);
2162 		return 0;
2163 	}
2164 
2165 	/* We might release rq lock */
2166 	get_task_struct(next_task);
2167 
2168 	/* Will lock the rq it'll find */
2169 	later_rq = find_lock_later_rq(next_task, rq);
2170 	if (!later_rq) {
2171 		struct task_struct *task;
2172 
2173 		/*
2174 		 * We must check all this again, since
2175 		 * find_lock_later_rq releases rq->lock and it is
2176 		 * then possible that next_task has migrated.
2177 		 */
2178 		task = pick_next_pushable_dl_task(rq);
2179 		if (task == next_task) {
2180 			/*
2181 			 * The task is still there. We don't try
2182 			 * again, some other CPU will pull it when ready.
2183 			 */
2184 			goto out;
2185 		}
2186 
2187 		if (!task)
2188 			/* No more tasks */
2189 			goto out;
2190 
2191 		put_task_struct(next_task);
2192 		next_task = task;
2193 		goto retry;
2194 	}
2195 
2196 	deactivate_task(rq, next_task, 0);
2197 	set_task_cpu(next_task, later_rq->cpu);
2198 
2199 	/*
2200 	 * Update the later_rq clock here, because the clock is used
2201 	 * by the cpufreq_update_util() inside __add_running_bw().
2202 	 */
2203 	update_rq_clock(later_rq);
2204 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2205 	ret = 1;
2206 
2207 	resched_curr(later_rq);
2208 
2209 	double_unlock_balance(rq, later_rq);
2210 
2211 out:
2212 	put_task_struct(next_task);
2213 
2214 	return ret;
2215 }
2216 
push_dl_tasks(struct rq * rq)2217 static void push_dl_tasks(struct rq *rq)
2218 {
2219 	/* push_dl_task() will return true if it moved a -deadline task */
2220 	while (push_dl_task(rq))
2221 		;
2222 }
2223 
pull_dl_task(struct rq * this_rq)2224 static void pull_dl_task(struct rq *this_rq)
2225 {
2226 	int this_cpu = this_rq->cpu, cpu;
2227 	struct task_struct *p;
2228 	bool resched = false;
2229 	struct rq *src_rq;
2230 	u64 dmin = LONG_MAX;
2231 
2232 	if (likely(!dl_overloaded(this_rq)))
2233 		return;
2234 
2235 	/*
2236 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2237 	 * see overloaded we must also see the dlo_mask bit.
2238 	 */
2239 	smp_rmb();
2240 
2241 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2242 		if (this_cpu == cpu)
2243 			continue;
2244 
2245 		src_rq = cpu_rq(cpu);
2246 
2247 		/*
2248 		 * It looks racy, abd it is! However, as in sched_rt.c,
2249 		 * we are fine with this.
2250 		 */
2251 		if (this_rq->dl.dl_nr_running &&
2252 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2253 				   src_rq->dl.earliest_dl.next))
2254 			continue;
2255 
2256 		/* Might drop this_rq->lock */
2257 		double_lock_balance(this_rq, src_rq);
2258 
2259 		/*
2260 		 * If there are no more pullable tasks on the
2261 		 * rq, we're done with it.
2262 		 */
2263 		if (src_rq->dl.dl_nr_running <= 1)
2264 			goto skip;
2265 
2266 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2267 
2268 		/*
2269 		 * We found a task to be pulled if:
2270 		 *  - it preempts our current (if there's one),
2271 		 *  - it will preempt the last one we pulled (if any).
2272 		 */
2273 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2274 		    (!this_rq->dl.dl_nr_running ||
2275 		     dl_time_before(p->dl.deadline,
2276 				    this_rq->dl.earliest_dl.curr))) {
2277 			WARN_ON(p == src_rq->curr);
2278 			WARN_ON(!task_on_rq_queued(p));
2279 
2280 			/*
2281 			 * Then we pull iff p has actually an earlier
2282 			 * deadline than the current task of its runqueue.
2283 			 */
2284 			if (dl_time_before(p->dl.deadline,
2285 					   src_rq->curr->dl.deadline))
2286 				goto skip;
2287 
2288 			resched = true;
2289 
2290 			deactivate_task(src_rq, p, 0);
2291 			set_task_cpu(p, this_cpu);
2292 			activate_task(this_rq, p, 0);
2293 			dmin = p->dl.deadline;
2294 
2295 			/* Is there any other task even earlier? */
2296 		}
2297 skip:
2298 		double_unlock_balance(this_rq, src_rq);
2299 	}
2300 
2301 	if (resched)
2302 		resched_curr(this_rq);
2303 }
2304 
2305 /*
2306  * Since the task is not running and a reschedule is not going to happen
2307  * anytime soon on its runqueue, we try pushing it away now.
2308  */
task_woken_dl(struct rq * rq,struct task_struct * p)2309 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2310 {
2311 	if (!task_running(rq, p) &&
2312 	    !test_tsk_need_resched(rq->curr) &&
2313 	    p->nr_cpus_allowed > 1 &&
2314 	    dl_task(rq->curr) &&
2315 	    (rq->curr->nr_cpus_allowed < 2 ||
2316 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2317 		push_dl_tasks(rq);
2318 	}
2319 }
2320 
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2321 static void set_cpus_allowed_dl(struct task_struct *p,
2322 				const struct cpumask *new_mask)
2323 {
2324 	struct root_domain *src_rd;
2325 	struct rq *rq;
2326 
2327 	BUG_ON(!dl_task(p));
2328 
2329 	rq = task_rq(p);
2330 	src_rd = rq->rd;
2331 	/*
2332 	 * Migrating a SCHED_DEADLINE task between exclusive
2333 	 * cpusets (different root_domains) entails a bandwidth
2334 	 * update. We already made space for us in the destination
2335 	 * domain (see cpuset_can_attach()).
2336 	 */
2337 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2338 		struct dl_bw *src_dl_b;
2339 
2340 		src_dl_b = dl_bw_of(cpu_of(rq));
2341 		/*
2342 		 * We now free resources of the root_domain we are migrating
2343 		 * off. In the worst case, sched_setattr() may temporary fail
2344 		 * until we complete the update.
2345 		 */
2346 		raw_spin_lock(&src_dl_b->lock);
2347 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2348 		raw_spin_unlock(&src_dl_b->lock);
2349 	}
2350 
2351 	set_cpus_allowed_common(p, new_mask);
2352 }
2353 
2354 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2355 static void rq_online_dl(struct rq *rq)
2356 {
2357 	if (rq->dl.overloaded)
2358 		dl_set_overload(rq);
2359 
2360 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2361 	if (rq->dl.dl_nr_running > 0)
2362 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2363 }
2364 
2365 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2366 static void rq_offline_dl(struct rq *rq)
2367 {
2368 	if (rq->dl.overloaded)
2369 		dl_clear_overload(rq);
2370 
2371 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2372 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2373 }
2374 
init_sched_dl_class(void)2375 void __init init_sched_dl_class(void)
2376 {
2377 	unsigned int i;
2378 
2379 	for_each_possible_cpu(i)
2380 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2381 					GFP_KERNEL, cpu_to_node(i));
2382 }
2383 
dl_add_task_root_domain(struct task_struct * p)2384 void dl_add_task_root_domain(struct task_struct *p)
2385 {
2386 	struct rq_flags rf;
2387 	struct rq *rq;
2388 	struct dl_bw *dl_b;
2389 
2390 	rq = task_rq_lock(p, &rf);
2391 	if (!dl_task(p))
2392 		goto unlock;
2393 
2394 	dl_b = &rq->rd->dl_bw;
2395 	raw_spin_lock(&dl_b->lock);
2396 
2397 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2398 
2399 	raw_spin_unlock(&dl_b->lock);
2400 
2401 unlock:
2402 	task_rq_unlock(rq, p, &rf);
2403 }
2404 
dl_clear_root_domain(struct root_domain * rd)2405 void dl_clear_root_domain(struct root_domain *rd)
2406 {
2407 	unsigned long flags;
2408 
2409 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2410 	rd->dl_bw.total_bw = 0;
2411 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2412 }
2413 
2414 #endif /* CONFIG_SMP */
2415 
switched_from_dl(struct rq * rq,struct task_struct * p)2416 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2417 {
2418 	/*
2419 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2420 	 * time is in the future). If the task switches back to dl before
2421 	 * the "inactive timer" fires, it can continue to consume its current
2422 	 * runtime using its current deadline. If it stays outside of
2423 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2424 	 * will reset the task parameters.
2425 	 */
2426 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2427 		task_non_contending(p);
2428 
2429 	/*
2430 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2431 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2432 	 */
2433 	dec_dl_tasks_cs(p);
2434 
2435 	if (!task_on_rq_queued(p)) {
2436 		/*
2437 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2438 		 * might migrate away from this rq while continuing to run on
2439 		 * some other class. We need to remove its contribution from
2440 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2441 		 */
2442 		if (p->dl.dl_non_contending)
2443 			sub_running_bw(&p->dl, &rq->dl);
2444 		sub_rq_bw(&p->dl, &rq->dl);
2445 	}
2446 
2447 	/*
2448 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2449 	 * at the 0-lag time, because the task could have been migrated
2450 	 * while SCHED_OTHER in the meanwhile.
2451 	 */
2452 	if (p->dl.dl_non_contending)
2453 		p->dl.dl_non_contending = 0;
2454 
2455 	/*
2456 	 * Since this might be the only -deadline task on the rq,
2457 	 * this is the right place to try to pull some other one
2458 	 * from an overloaded CPU, if any.
2459 	 */
2460 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2461 		return;
2462 
2463 	deadline_queue_pull_task(rq);
2464 }
2465 
2466 /*
2467  * When switching to -deadline, we may overload the rq, then
2468  * we try to push someone off, if possible.
2469  */
switched_to_dl(struct rq * rq,struct task_struct * p)2470 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2471 {
2472 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2473 		put_task_struct(p);
2474 
2475 	/*
2476 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2477 	 * track of that on its cpuset (for correct bandwidth tracking).
2478 	 */
2479 	inc_dl_tasks_cs(p);
2480 
2481 	/* If p is not queued we will update its parameters at next wakeup. */
2482 	if (!task_on_rq_queued(p)) {
2483 		add_rq_bw(&p->dl, &rq->dl);
2484 
2485 		return;
2486 	}
2487 
2488 	if (rq->curr != p) {
2489 #ifdef CONFIG_SMP
2490 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2491 			deadline_queue_push_tasks(rq);
2492 #endif
2493 		if (dl_task(rq->curr))
2494 			check_preempt_curr_dl(rq, p, 0);
2495 		else
2496 			resched_curr(rq);
2497 	} else {
2498 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2499 	}
2500 }
2501 
2502 /*
2503  * If the scheduling parameters of a -deadline task changed,
2504  * a push or pull operation might be needed.
2505  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2506 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2507 			    int oldprio)
2508 {
2509 	if (task_on_rq_queued(p) || rq->curr == p) {
2510 #ifdef CONFIG_SMP
2511 		/*
2512 		 * This might be too much, but unfortunately
2513 		 * we don't have the old deadline value, and
2514 		 * we can't argue if the task is increasing
2515 		 * or lowering its prio, so...
2516 		 */
2517 		if (!rq->dl.overloaded)
2518 			deadline_queue_pull_task(rq);
2519 
2520 		/*
2521 		 * If we now have a earlier deadline task than p,
2522 		 * then reschedule, provided p is still on this
2523 		 * runqueue.
2524 		 */
2525 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2526 			resched_curr(rq);
2527 #else
2528 		/*
2529 		 * Again, we don't know if p has a earlier
2530 		 * or later deadline, so let's blindly set a
2531 		 * (maybe not needed) rescheduling point.
2532 		 */
2533 		resched_curr(rq);
2534 #endif /* CONFIG_SMP */
2535 	}
2536 }
2537 
2538 const struct sched_class dl_sched_class
2539 	__section("__dl_sched_class") = {
2540 	.enqueue_task		= enqueue_task_dl,
2541 	.dequeue_task		= dequeue_task_dl,
2542 	.yield_task		= yield_task_dl,
2543 
2544 	.check_preempt_curr	= check_preempt_curr_dl,
2545 
2546 	.pick_next_task		= pick_next_task_dl,
2547 	.put_prev_task		= put_prev_task_dl,
2548 	.set_next_task		= set_next_task_dl,
2549 
2550 #ifdef CONFIG_SMP
2551 	.balance		= balance_dl,
2552 	.select_task_rq		= select_task_rq_dl,
2553 	.migrate_task_rq	= migrate_task_rq_dl,
2554 	.set_cpus_allowed       = set_cpus_allowed_dl,
2555 	.rq_online              = rq_online_dl,
2556 	.rq_offline             = rq_offline_dl,
2557 	.task_woken		= task_woken_dl,
2558 #endif
2559 
2560 	.task_tick		= task_tick_dl,
2561 	.task_fork              = task_fork_dl,
2562 
2563 	.prio_changed           = prio_changed_dl,
2564 	.switched_from		= switched_from_dl,
2565 	.switched_to		= switched_to_dl,
2566 
2567 	.update_curr		= update_curr_dl,
2568 #ifdef CONFIG_SCHED_WALT
2569 	.fixup_walt_sched_stats	= fixup_walt_sched_stats_common,
2570 #endif
2571 };
2572 
sched_dl_global_validate(void)2573 int sched_dl_global_validate(void)
2574 {
2575 	u64 runtime = global_rt_runtime();
2576 	u64 period = global_rt_period();
2577 	u64 new_bw = to_ratio(period, runtime);
2578 	struct dl_bw *dl_b;
2579 	int cpu, cpus, ret = 0;
2580 	unsigned long flags;
2581 
2582 	/*
2583 	 * Here we want to check the bandwidth not being set to some
2584 	 * value smaller than the currently allocated bandwidth in
2585 	 * any of the root_domains.
2586 	 *
2587 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2588 	 * cycling on root_domains... Discussion on different/better
2589 	 * solutions is welcome!
2590 	 */
2591 	for_each_possible_cpu(cpu) {
2592 		rcu_read_lock_sched();
2593 		dl_b = dl_bw_of(cpu);
2594 		cpus = dl_bw_cpus(cpu);
2595 
2596 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2597 		if (new_bw * cpus < dl_b->total_bw)
2598 			ret = -EBUSY;
2599 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2600 
2601 		rcu_read_unlock_sched();
2602 
2603 		if (ret)
2604 			break;
2605 	}
2606 
2607 	return ret;
2608 }
2609 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2610 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2611 {
2612 	if (global_rt_runtime() == RUNTIME_INF) {
2613 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2614 		dl_rq->extra_bw = 1 << BW_SHIFT;
2615 	} else {
2616 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2617 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2618 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2619 						    global_rt_runtime());
2620 	}
2621 }
2622 
sched_dl_do_global(void)2623 void sched_dl_do_global(void)
2624 {
2625 	u64 new_bw = -1;
2626 	struct dl_bw *dl_b;
2627 	int cpu;
2628 	unsigned long flags;
2629 
2630 	def_dl_bandwidth.dl_period = global_rt_period();
2631 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2632 
2633 	if (global_rt_runtime() != RUNTIME_INF)
2634 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2635 
2636 	/*
2637 	 * FIXME: As above...
2638 	 */
2639 	for_each_possible_cpu(cpu) {
2640 		rcu_read_lock_sched();
2641 		dl_b = dl_bw_of(cpu);
2642 
2643 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2644 		dl_b->bw = new_bw;
2645 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2646 
2647 		rcu_read_unlock_sched();
2648 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2649 	}
2650 }
2651 
2652 /*
2653  * We must be sure that accepting a new task (or allowing changing the
2654  * parameters of an existing one) is consistent with the bandwidth
2655  * constraints. If yes, this function also accordingly updates the currently
2656  * allocated bandwidth to reflect the new situation.
2657  *
2658  * This function is called while holding p's rq->lock.
2659  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2660 int sched_dl_overflow(struct task_struct *p, int policy,
2661 		      const struct sched_attr *attr)
2662 {
2663 	u64 period = attr->sched_period ?: attr->sched_deadline;
2664 	u64 runtime = attr->sched_runtime;
2665 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2666 	int cpus, err = -1, cpu = task_cpu(p);
2667 	struct dl_bw *dl_b = dl_bw_of(cpu);
2668 	unsigned long cap;
2669 
2670 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2671 		return 0;
2672 
2673 	/* !deadline task may carry old deadline bandwidth */
2674 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2675 		return 0;
2676 
2677 	/*
2678 	 * Either if a task, enters, leave, or stays -deadline but changes
2679 	 * its parameters, we may need to update accordingly the total
2680 	 * allocated bandwidth of the container.
2681 	 */
2682 	raw_spin_lock(&dl_b->lock);
2683 	cpus = dl_bw_cpus(cpu);
2684 	cap = dl_bw_capacity(cpu);
2685 
2686 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2687 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2688 		if (hrtimer_active(&p->dl.inactive_timer))
2689 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2690 		__dl_add(dl_b, new_bw, cpus);
2691 		err = 0;
2692 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2693 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2694 		/*
2695 		 * XXX this is slightly incorrect: when the task
2696 		 * utilization decreases, we should delay the total
2697 		 * utilization change until the task's 0-lag point.
2698 		 * But this would require to set the task's "inactive
2699 		 * timer" when the task is not inactive.
2700 		 */
2701 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2702 		__dl_add(dl_b, new_bw, cpus);
2703 		dl_change_utilization(p, new_bw);
2704 		err = 0;
2705 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2706 		/*
2707 		 * Do not decrease the total deadline utilization here,
2708 		 * switched_from_dl() will take care to do it at the correct
2709 		 * (0-lag) time.
2710 		 */
2711 		err = 0;
2712 	}
2713 	raw_spin_unlock(&dl_b->lock);
2714 
2715 	return err;
2716 }
2717 
2718 /*
2719  * This function initializes the sched_dl_entity of a newly becoming
2720  * SCHED_DEADLINE task.
2721  *
2722  * Only the static values are considered here, the actual runtime and the
2723  * absolute deadline will be properly calculated when the task is enqueued
2724  * for the first time with its new policy.
2725  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2726 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2727 {
2728 	struct sched_dl_entity *dl_se = &p->dl;
2729 
2730 	dl_se->dl_runtime = attr->sched_runtime;
2731 	dl_se->dl_deadline = attr->sched_deadline;
2732 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2733 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2734 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2735 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2736 }
2737 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2738 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2739 {
2740 	struct sched_dl_entity *dl_se = &p->dl;
2741 
2742 	attr->sched_priority = p->rt_priority;
2743 	attr->sched_runtime = dl_se->dl_runtime;
2744 	attr->sched_deadline = dl_se->dl_deadline;
2745 	attr->sched_period = dl_se->dl_period;
2746 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2747 	attr->sched_flags |= dl_se->flags;
2748 }
2749 
2750 /*
2751  * Default limits for DL period; on the top end we guard against small util
2752  * tasks still getting rediculous long effective runtimes, on the bottom end we
2753  * guard against timer DoS.
2754  */
2755 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2756 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2757 
2758 /*
2759  * This function validates the new parameters of a -deadline task.
2760  * We ask for the deadline not being zero, and greater or equal
2761  * than the runtime, as well as the period of being zero or
2762  * greater than deadline. Furthermore, we have to be sure that
2763  * user parameters are above the internal resolution of 1us (we
2764  * check sched_runtime only since it is always the smaller one) and
2765  * below 2^63 ns (we have to check both sched_deadline and
2766  * sched_period, as the latter can be zero).
2767  */
__checkparam_dl(const struct sched_attr * attr)2768 bool __checkparam_dl(const struct sched_attr *attr)
2769 {
2770 	u64 period, max, min;
2771 
2772 	/* special dl tasks don't actually use any parameter */
2773 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2774 		return true;
2775 
2776 	/* deadline != 0 */
2777 	if (attr->sched_deadline == 0)
2778 		return false;
2779 
2780 	/*
2781 	 * Since we truncate DL_SCALE bits, make sure we're at least
2782 	 * that big.
2783 	 */
2784 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2785 		return false;
2786 
2787 	/*
2788 	 * Since we use the MSB for wrap-around and sign issues, make
2789 	 * sure it's not set (mind that period can be equal to zero).
2790 	 */
2791 	if (attr->sched_deadline & (1ULL << 63) ||
2792 	    attr->sched_period & (1ULL << 63))
2793 		return false;
2794 
2795 	period = attr->sched_period;
2796 	if (!period)
2797 		period = attr->sched_deadline;
2798 
2799 	/* runtime <= deadline <= period (if period != 0) */
2800 	if (period < attr->sched_deadline ||
2801 	    attr->sched_deadline < attr->sched_runtime)
2802 		return false;
2803 
2804 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2805 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2806 
2807 	if (period < min || period > max)
2808 		return false;
2809 
2810 	return true;
2811 }
2812 
2813 /*
2814  * This function clears the sched_dl_entity static params.
2815  */
__dl_clear_params(struct task_struct * p)2816 void __dl_clear_params(struct task_struct *p)
2817 {
2818 	struct sched_dl_entity *dl_se = &p->dl;
2819 
2820 	dl_se->dl_runtime		= 0;
2821 	dl_se->dl_deadline		= 0;
2822 	dl_se->dl_period		= 0;
2823 	dl_se->flags			= 0;
2824 	dl_se->dl_bw			= 0;
2825 	dl_se->dl_density		= 0;
2826 
2827 	dl_se->dl_throttled		= 0;
2828 	dl_se->dl_yielded		= 0;
2829 	dl_se->dl_non_contending	= 0;
2830 	dl_se->dl_overrun		= 0;
2831 
2832 #ifdef CONFIG_RT_MUTEXES
2833 	dl_se->pi_se			= dl_se;
2834 #endif
2835 }
2836 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2837 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2838 {
2839 	struct sched_dl_entity *dl_se = &p->dl;
2840 
2841 	if (dl_se->dl_runtime != attr->sched_runtime ||
2842 	    dl_se->dl_deadline != attr->sched_deadline ||
2843 	    dl_se->dl_period != attr->sched_period ||
2844 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2845 		return true;
2846 
2847 	return false;
2848 }
2849 
2850 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2851 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2852 				 const struct cpumask *trial)
2853 {
2854 	int ret = 1, trial_cpus;
2855 	struct dl_bw *cur_dl_b;
2856 	unsigned long flags;
2857 
2858 	rcu_read_lock_sched();
2859 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2860 	trial_cpus = cpumask_weight(trial);
2861 
2862 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2863 	if (cur_dl_b->bw != -1 &&
2864 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2865 		ret = 0;
2866 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2867 	rcu_read_unlock_sched();
2868 
2869 	return ret;
2870 }
2871 
2872 enum dl_bw_request {
2873 	dl_bw_req_check_overflow = 0,
2874 	dl_bw_req_alloc,
2875 	dl_bw_req_free
2876 };
2877 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)2878 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
2879 {
2880 	unsigned long flags;
2881 	struct dl_bw *dl_b;
2882 	bool overflow = 0;
2883 
2884 	rcu_read_lock_sched();
2885 	dl_b = dl_bw_of(cpu);
2886 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2887 
2888 	if (req == dl_bw_req_free) {
2889 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
2890 	} else {
2891 		unsigned long cap = dl_bw_capacity(cpu);
2892 
2893 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
2894 
2895 		if (req == dl_bw_req_alloc && !overflow) {
2896 			/*
2897 			 * We reserve space in the destination
2898 			 * root_domain, as we can't fail after this point.
2899 			 * We will free resources in the source root_domain
2900 			 * later on (see set_cpus_allowed_dl()).
2901 			 */
2902 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
2903 		}
2904 	}
2905 
2906 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2907 	rcu_read_unlock_sched();
2908 
2909 	return overflow ? -EBUSY : 0;
2910 }
2911 
dl_bw_check_overflow(int cpu)2912 int dl_bw_check_overflow(int cpu)
2913 {
2914 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
2915 }
2916 
dl_bw_alloc(int cpu,u64 dl_bw)2917 int dl_bw_alloc(int cpu, u64 dl_bw)
2918 {
2919 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
2920 }
2921 
dl_bw_free(int cpu,u64 dl_bw)2922 void dl_bw_free(int cpu, u64 dl_bw)
2923 {
2924 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
2925 }
2926 #endif
2927 
2928 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2929 void print_dl_stats(struct seq_file *m, int cpu)
2930 {
2931 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2932 }
2933 #endif /* CONFIG_SCHED_DEBUG */
2934