• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk, unsigned int log)
136 {
137 	struct sock *sk2;
138 	kuid_t uid = sock_i_uid(sk);
139 
140 	sk_for_each(sk2, &hslot->head) {
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    inet_rcv_saddr_equal(sk, sk2, true)) {
148 			if (sk2->sk_reuseport && sk->sk_reuseport &&
149 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 			    uid_eq(uid, sock_i_uid(sk2))) {
151 				if (!bitmap)
152 					return 0;
153 			} else {
154 				if (!bitmap)
155 					return 1;
156 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 					  bitmap);
158 			}
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Note: we still hold spinlock of primary hash chain, so no other writer
166  * can insert/delete a socket with local_port == num
167  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 				struct udp_hslot *hslot2,
170 				struct sock *sk)
171 {
172 	struct sock *sk2;
173 	kuid_t uid = sock_i_uid(sk);
174 	int res = 0;
175 
176 	spin_lock(&hslot2->lock);
177 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 		if (net_eq(sock_net(sk2), net) &&
179 		    sk2 != sk &&
180 		    (udp_sk(sk2)->udp_port_hash == num) &&
181 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 		    inet_rcv_saddr_equal(sk, sk2, true)) {
185 			if (sk2->sk_reuseport && sk->sk_reuseport &&
186 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 			    uid_eq(uid, sock_i_uid(sk2))) {
188 				res = 0;
189 			} else {
190 				res = 1;
191 			}
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 	struct net *net = sock_net(sk);
202 	kuid_t uid = sock_i_uid(sk);
203 	struct sock *sk2;
204 
205 	sk_for_each(sk2, &hslot->head) {
206 		if (net_eq(sock_net(sk2), net) &&
207 		    sk2 != sk &&
208 		    sk2->sk_family == sk->sk_family &&
209 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 		    inet_rcv_saddr_equal(sk, sk2, false)) {
214 			return reuseport_add_sock(sk, sk2,
215 						  inet_rcv_saddr_any(sk));
216 		}
217 	}
218 
219 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221 
222 /**
223  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224  *
225  *  @sk:          socket struct in question
226  *  @snum:        port number to look up
227  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228  *                   with NULL address
229  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 		     unsigned int hash2_nulladdr)
232 {
233 	struct udp_hslot *hslot, *hslot2;
234 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 	int    error = 1;
236 	struct net *net = sock_net(sk);
237 
238 	if (!snum) {
239 		int low, high, remaining;
240 		unsigned int rand;
241 		unsigned short first, last;
242 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 
244 		inet_get_local_port_range(net, &low, &high);
245 		remaining = (high - low) + 1;
246 
247 		rand = prandom_u32();
248 		first = reciprocal_scale(rand, remaining) + low;
249 		/*
250 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 		 */
252 		rand = (rand | 1) * (udptable->mask + 1);
253 		last = first + udptable->mask + 1;
254 		do {
255 			hslot = udp_hashslot(udptable, net, first);
256 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 			spin_lock_bh(&hslot->lock);
258 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 					    udptable->log);
260 
261 			snum = first;
262 			/*
263 			 * Iterate on all possible values of snum for this hash.
264 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 			 * give us randomization and full range coverage.
266 			 */
267 			do {
268 				if (low <= snum && snum <= high &&
269 				    !test_bit(snum >> udptable->log, bitmap) &&
270 				    !inet_is_local_reserved_port(net, snum))
271 					goto found;
272 				snum += rand;
273 			} while (snum != first);
274 			spin_unlock_bh(&hslot->lock);
275 			cond_resched();
276 		} while (++first != last);
277 		goto fail;
278 	} else {
279 		hslot = udp_hashslot(udptable, net, snum);
280 		spin_lock_bh(&hslot->lock);
281 		if (hslot->count > 10) {
282 			int exist;
283 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 
285 			slot2          &= udptable->mask;
286 			hash2_nulladdr &= udptable->mask;
287 
288 			hslot2 = udp_hashslot2(udptable, slot2);
289 			if (hslot->count < hslot2->count)
290 				goto scan_primary_hash;
291 
292 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 			if (!exist && (hash2_nulladdr != slot2)) {
294 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 							     sk);
297 			}
298 			if (exist)
299 				goto fail_unlock;
300 			else
301 				goto found;
302 		}
303 scan_primary_hash:
304 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 			goto fail_unlock;
306 	}
307 found:
308 	inet_sk(sk)->inet_num = snum;
309 	udp_sk(sk)->udp_port_hash = snum;
310 	udp_sk(sk)->udp_portaddr_hash ^= snum;
311 	if (sk_unhashed(sk)) {
312 		if (sk->sk_reuseport &&
313 		    udp_reuseport_add_sock(sk, hslot)) {
314 			inet_sk(sk)->inet_num = 0;
315 			udp_sk(sk)->udp_port_hash = 0;
316 			udp_sk(sk)->udp_portaddr_hash ^= snum;
317 			goto fail_unlock;
318 		}
319 
320 		sk_add_node_rcu(sk, &hslot->head);
321 		hslot->count++;
322 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 
324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 		spin_lock(&hslot2->lock);
326 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 		    sk->sk_family == AF_INET6)
328 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 					   &hslot2->head);
330 		else
331 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 					   &hslot2->head);
333 		hslot2->count++;
334 		spin_unlock(&hslot2->lock);
335 	}
336 	sock_set_flag(sk, SOCK_RCU_FREE);
337 	error = 0;
338 fail_unlock:
339 	spin_unlock_bh(&hslot->lock);
340 fail:
341 	return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344 
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 	unsigned int hash2_nulladdr =
348 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 	unsigned int hash2_partial =
350 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 
352 	/* precompute partial secondary hash */
353 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 			 __be32 saddr, __be16 sport,
359 			 __be32 daddr, unsigned short hnum,
360 			 int dif, int sdif)
361 {
362 	int score;
363 	struct inet_sock *inet;
364 	bool dev_match;
365 
366 	if (!net_eq(sock_net(sk), net) ||
367 	    udp_sk(sk)->udp_port_hash != hnum ||
368 	    ipv6_only_sock(sk))
369 		return -1;
370 
371 	if (sk->sk_rcv_saddr != daddr)
372 		return -1;
373 
374 	score = (sk->sk_family == PF_INET) ? 2 : 1;
375 
376 	inet = inet_sk(sk);
377 	if (inet->inet_daddr) {
378 		if (inet->inet_daddr != saddr)
379 			return -1;
380 		score += 4;
381 	}
382 
383 	if (inet->inet_dport) {
384 		if (inet->inet_dport != sport)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 					dif, sdif);
391 	if (!dev_match)
392 		return -1;
393 	if (sk->sk_bound_dev_if)
394 		score += 4;
395 
396 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 		score++;
398 	return score;
399 }
400 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 		       const __u16 lport, const __be32 faddr,
403 		       const __be16 fport)
404 {
405 	static u32 udp_ehash_secret __read_mostly;
406 
407 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408 
409 	return __inet_ehashfn(laddr, lport, faddr, fport,
410 			      udp_ehash_secret + net_hash_mix(net));
411 }
412 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 				     struct sk_buff *skb,
415 				     __be32 saddr, __be16 sport,
416 				     __be32 daddr, unsigned short hnum)
417 {
418 	struct sock *reuse_sk = NULL;
419 	u32 hash;
420 
421 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 		reuse_sk = reuseport_select_sock(sk, hash, skb,
424 						 sizeof(struct udphdr));
425 	}
426 	return reuse_sk;
427 }
428 
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 				     __be32 saddr, __be16 sport,
432 				     __be32 daddr, unsigned int hnum,
433 				     int dif, int sdif,
434 				     struct udp_hslot *hslot2,
435 				     struct sk_buff *skb)
436 {
437 	struct sock *sk, *result;
438 	int score, badness;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif);
445 		if (score > badness) {
446 			badness = score;
447 			result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)469 static struct sock *udp4_lookup_run_bpf(struct net *net,
470 					struct udp_table *udptable,
471 					struct sk_buff *skb,
472 					__be32 saddr, __be16 sport,
473 					__be32 daddr, u16 hnum)
474 {
475 	struct sock *sk, *reuse_sk;
476 	bool no_reuseport;
477 
478 	if (udptable != &udp_table)
479 		return NULL; /* only UDP is supported */
480 
481 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
482 					    saddr, sport, daddr, hnum, &sk);
483 	if (no_reuseport || IS_ERR_OR_NULL(sk))
484 		return sk;
485 
486 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
487 	if (reuse_sk)
488 		sk = reuse_sk;
489 	return sk;
490 }
491 
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493  * harder than this. -DaveM
494  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 		__be16 sport, __be32 daddr, __be16 dport, int dif,
497 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
498 {
499 	unsigned short hnum = ntohs(dport);
500 	unsigned int hash2, slot2;
501 	struct udp_hslot *hslot2;
502 	struct sock *result, *sk;
503 
504 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
505 	slot2 = hash2 & udptable->mask;
506 	hslot2 = &udptable->hash2[slot2];
507 
508 	/* Lookup connected or non-wildcard socket */
509 	result = udp4_lib_lookup2(net, saddr, sport,
510 				  daddr, hnum, dif, sdif,
511 				  hslot2, skb);
512 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
513 		goto done;
514 
515 	/* Lookup redirect from BPF */
516 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
517 		sk = udp4_lookup_run_bpf(net, udptable, skb,
518 					 saddr, sport, daddr, hnum);
519 		if (sk) {
520 			result = sk;
521 			goto done;
522 		}
523 	}
524 
525 	/* Got non-wildcard socket or error on first lookup */
526 	if (result)
527 		goto done;
528 
529 	/* Lookup wildcard sockets */
530 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
531 	slot2 = hash2 & udptable->mask;
532 	hslot2 = &udptable->hash2[slot2];
533 
534 	result = udp4_lib_lookup2(net, saddr, sport,
535 				  htonl(INADDR_ANY), hnum, dif, sdif,
536 				  hslot2, skb);
537 done:
538 	if (IS_ERR(result))
539 		return NULL;
540 	return result;
541 }
542 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
543 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)544 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
545 						 __be16 sport, __be16 dport,
546 						 struct udp_table *udptable)
547 {
548 	const struct iphdr *iph = ip_hdr(skb);
549 
550 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 				 iph->daddr, dport, inet_iif(skb),
552 				 inet_sdif(skb), udptable, skb);
553 }
554 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)555 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
556 				 __be16 sport, __be16 dport)
557 {
558 	const struct iphdr *iph = ip_hdr(skb);
559 
560 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
561 				 iph->daddr, dport, inet_iif(skb),
562 				 inet_sdif(skb), &udp_table, NULL);
563 }
564 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
565 
566 /* Must be called under rcu_read_lock().
567  * Does increment socket refcount.
568  */
569 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 			     __be32 daddr, __be16 dport, int dif)
572 {
573 	struct sock *sk;
574 
575 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
576 			       dif, 0, &udp_table, NULL);
577 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
578 		sk = NULL;
579 	return sk;
580 }
581 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
582 #endif
583 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)584 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
585 				       __be16 loc_port, __be32 loc_addr,
586 				       __be16 rmt_port, __be32 rmt_addr,
587 				       int dif, int sdif, unsigned short hnum)
588 {
589 	struct inet_sock *inet = inet_sk(sk);
590 
591 	if (!net_eq(sock_net(sk), net) ||
592 	    udp_sk(sk)->udp_port_hash != hnum ||
593 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
594 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
595 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
596 	    ipv6_only_sock(sk) ||
597 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
598 		return false;
599 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
600 		return false;
601 	return true;
602 }
603 
604 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)605 void udp_encap_enable(void)
606 {
607 	static_branch_inc(&udp_encap_needed_key);
608 }
609 EXPORT_SYMBOL(udp_encap_enable);
610 
udp_encap_disable(void)611 void udp_encap_disable(void)
612 {
613 	static_branch_dec(&udp_encap_needed_key);
614 }
615 EXPORT_SYMBOL(udp_encap_disable);
616 
617 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
618  * through error handlers in encapsulations looking for a match.
619  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)620 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
621 {
622 	int i;
623 
624 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
625 		int (*handler)(struct sk_buff *skb, u32 info);
626 		const struct ip_tunnel_encap_ops *encap;
627 
628 		encap = rcu_dereference(iptun_encaps[i]);
629 		if (!encap)
630 			continue;
631 		handler = encap->err_handler;
632 		if (handler && !handler(skb, info))
633 			return 0;
634 	}
635 
636 	return -ENOENT;
637 }
638 
639 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
640  * reversing source and destination port: this will match tunnels that force the
641  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
642  * lwtunnels might actually break this assumption by being configured with
643  * different destination ports on endpoints, in this case we won't be able to
644  * trace ICMP messages back to them.
645  *
646  * If this doesn't match any socket, probe tunnels with arbitrary destination
647  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
648  * we've sent packets to won't necessarily match the local destination port.
649  *
650  * Then ask the tunnel implementation to match the error against a valid
651  * association.
652  *
653  * Return an error if we can't find a match, the socket if we need further
654  * processing, zero otherwise.
655  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)656 static struct sock *__udp4_lib_err_encap(struct net *net,
657 					 const struct iphdr *iph,
658 					 struct udphdr *uh,
659 					 struct udp_table *udptable,
660 					 struct sk_buff *skb, u32 info)
661 {
662 	int network_offset, transport_offset;
663 	struct sock *sk;
664 
665 	network_offset = skb_network_offset(skb);
666 	transport_offset = skb_transport_offset(skb);
667 
668 	/* Network header needs to point to the outer IPv4 header inside ICMP */
669 	skb_reset_network_header(skb);
670 
671 	/* Transport header needs to point to the UDP header */
672 	skb_set_transport_header(skb, iph->ihl << 2);
673 
674 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
675 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
676 			       udptable, NULL);
677 	if (sk) {
678 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
679 		struct udp_sock *up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (!lookup || lookup(sk, skb))
683 			sk = NULL;
684 	}
685 
686 	if (!sk)
687 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
688 
689 	skb_set_transport_header(skb, transport_offset);
690 	skb_set_network_header(skb, network_offset);
691 
692 	return sk;
693 }
694 
695 /*
696  * This routine is called by the ICMP module when it gets some
697  * sort of error condition.  If err < 0 then the socket should
698  * be closed and the error returned to the user.  If err > 0
699  * it's just the icmp type << 8 | icmp code.
700  * Header points to the ip header of the error packet. We move
701  * on past this. Then (as it used to claim before adjustment)
702  * header points to the first 8 bytes of the udp header.  We need
703  * to find the appropriate port.
704  */
705 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)706 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
707 {
708 	struct inet_sock *inet;
709 	const struct iphdr *iph = (const struct iphdr *)skb->data;
710 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
711 	const int type = icmp_hdr(skb)->type;
712 	const int code = icmp_hdr(skb)->code;
713 	bool tunnel = false;
714 	struct sock *sk;
715 	int harderr;
716 	int err;
717 	struct net *net = dev_net(skb->dev);
718 
719 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
720 			       iph->saddr, uh->source, skb->dev->ifindex,
721 			       inet_sdif(skb), udptable, NULL);
722 	if (!sk) {
723 		/* No socket for error: try tunnels before discarding */
724 		sk = ERR_PTR(-ENOENT);
725 		if (static_branch_unlikely(&udp_encap_needed_key)) {
726 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
727 						  info);
728 			if (!sk)
729 				return 0;
730 		}
731 
732 		if (IS_ERR(sk)) {
733 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
734 			return PTR_ERR(sk);
735 		}
736 
737 		tunnel = true;
738 	}
739 
740 	err = 0;
741 	harderr = 0;
742 	inet = inet_sk(sk);
743 
744 	switch (type) {
745 	default:
746 	case ICMP_TIME_EXCEEDED:
747 		err = EHOSTUNREACH;
748 		break;
749 	case ICMP_SOURCE_QUENCH:
750 		goto out;
751 	case ICMP_PARAMETERPROB:
752 		err = EPROTO;
753 		harderr = 1;
754 		break;
755 	case ICMP_DEST_UNREACH:
756 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
757 			ipv4_sk_update_pmtu(skb, sk, info);
758 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
759 				err = EMSGSIZE;
760 				harderr = 1;
761 				break;
762 			}
763 			goto out;
764 		}
765 		err = EHOSTUNREACH;
766 		if (code <= NR_ICMP_UNREACH) {
767 			harderr = icmp_err_convert[code].fatal;
768 			err = icmp_err_convert[code].errno;
769 		}
770 		break;
771 	case ICMP_REDIRECT:
772 		ipv4_sk_redirect(skb, sk);
773 		goto out;
774 	}
775 
776 	/*
777 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
778 	 *	4.1.3.3.
779 	 */
780 	if (tunnel) {
781 		/* ...not for tunnels though: we don't have a sending socket */
782 		goto out;
783 	}
784 	if (!inet->recverr) {
785 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
786 			goto out;
787 	} else
788 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
789 
790 	sk->sk_err = err;
791 	sk->sk_error_report(sk);
792 out:
793 	return 0;
794 }
795 
udp_err(struct sk_buff * skb,u32 info)796 int udp_err(struct sk_buff *skb, u32 info)
797 {
798 	return __udp4_lib_err(skb, info, &udp_table);
799 }
800 
801 /*
802  * Throw away all pending data and cancel the corking. Socket is locked.
803  */
udp_flush_pending_frames(struct sock * sk)804 void udp_flush_pending_frames(struct sock *sk)
805 {
806 	struct udp_sock *up = udp_sk(sk);
807 
808 	if (up->pending) {
809 		up->len = 0;
810 		up->pending = 0;
811 		ip_flush_pending_frames(sk);
812 	}
813 }
814 EXPORT_SYMBOL(udp_flush_pending_frames);
815 
816 /**
817  * 	udp4_hwcsum  -  handle outgoing HW checksumming
818  * 	@skb: 	sk_buff containing the filled-in UDP header
819  * 	        (checksum field must be zeroed out)
820  *	@src:	source IP address
821  *	@dst:	destination IP address
822  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)823 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
824 {
825 	struct udphdr *uh = udp_hdr(skb);
826 	int offset = skb_transport_offset(skb);
827 	int len = skb->len - offset;
828 	int hlen = len;
829 	__wsum csum = 0;
830 
831 	if (!skb_has_frag_list(skb)) {
832 		/*
833 		 * Only one fragment on the socket.
834 		 */
835 		skb->csum_start = skb_transport_header(skb) - skb->head;
836 		skb->csum_offset = offsetof(struct udphdr, check);
837 		uh->check = ~csum_tcpudp_magic(src, dst, len,
838 					       IPPROTO_UDP, 0);
839 	} else {
840 		struct sk_buff *frags;
841 
842 		/*
843 		 * HW-checksum won't work as there are two or more
844 		 * fragments on the socket so that all csums of sk_buffs
845 		 * should be together
846 		 */
847 		skb_walk_frags(skb, frags) {
848 			csum = csum_add(csum, frags->csum);
849 			hlen -= frags->len;
850 		}
851 
852 		csum = skb_checksum(skb, offset, hlen, csum);
853 		skb->ip_summed = CHECKSUM_NONE;
854 
855 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
856 		if (uh->check == 0)
857 			uh->check = CSUM_MANGLED_0;
858 	}
859 }
860 EXPORT_SYMBOL_GPL(udp4_hwcsum);
861 
862 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
863  * for the simple case like when setting the checksum for a UDP tunnel.
864  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)865 void udp_set_csum(bool nocheck, struct sk_buff *skb,
866 		  __be32 saddr, __be32 daddr, int len)
867 {
868 	struct udphdr *uh = udp_hdr(skb);
869 
870 	if (nocheck) {
871 		uh->check = 0;
872 	} else if (skb_is_gso(skb)) {
873 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
874 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
875 		uh->check = 0;
876 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
877 		if (uh->check == 0)
878 			uh->check = CSUM_MANGLED_0;
879 	} else {
880 		skb->ip_summed = CHECKSUM_PARTIAL;
881 		skb->csum_start = skb_transport_header(skb) - skb->head;
882 		skb->csum_offset = offsetof(struct udphdr, check);
883 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
884 	}
885 }
886 EXPORT_SYMBOL(udp_set_csum);
887 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)888 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
889 			struct inet_cork *cork)
890 {
891 	struct sock *sk = skb->sk;
892 	struct inet_sock *inet = inet_sk(sk);
893 	struct udphdr *uh;
894 	int err = 0;
895 	int is_udplite = IS_UDPLITE(sk);
896 	int offset = skb_transport_offset(skb);
897 	int len = skb->len - offset;
898 	int datalen = len - sizeof(*uh);
899 	__wsum csum = 0;
900 
901 	/*
902 	 * Create a UDP header
903 	 */
904 	uh = udp_hdr(skb);
905 	uh->source = inet->inet_sport;
906 	uh->dest = fl4->fl4_dport;
907 	uh->len = htons(len);
908 	uh->check = 0;
909 
910 	if (cork->gso_size) {
911 		const int hlen = skb_network_header_len(skb) +
912 				 sizeof(struct udphdr);
913 
914 		if (hlen + cork->gso_size > cork->fragsize) {
915 			kfree_skb(skb);
916 			return -EINVAL;
917 		}
918 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
919 			kfree_skb(skb);
920 			return -EINVAL;
921 		}
922 		if (sk->sk_no_check_tx) {
923 			kfree_skb(skb);
924 			return -EINVAL;
925 		}
926 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
927 		    dst_xfrm(skb_dst(skb))) {
928 			kfree_skb(skb);
929 			return -EIO;
930 		}
931 
932 		if (datalen > cork->gso_size) {
933 			skb_shinfo(skb)->gso_size = cork->gso_size;
934 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
935 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
936 								 cork->gso_size);
937 		}
938 		goto csum_partial;
939 	}
940 
941 	if (is_udplite)  				 /*     UDP-Lite      */
942 		csum = udplite_csum(skb);
943 
944 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
945 
946 		skb->ip_summed = CHECKSUM_NONE;
947 		goto send;
948 
949 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
950 csum_partial:
951 
952 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
953 		goto send;
954 
955 	} else
956 		csum = udp_csum(skb);
957 
958 	/* add protocol-dependent pseudo-header */
959 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
960 				      sk->sk_protocol, csum);
961 	if (uh->check == 0)
962 		uh->check = CSUM_MANGLED_0;
963 
964 send:
965 	err = ip_send_skb(sock_net(sk), skb);
966 	if (err) {
967 		if (err == -ENOBUFS && !inet->recverr) {
968 			UDP_INC_STATS(sock_net(sk),
969 				      UDP_MIB_SNDBUFERRORS, is_udplite);
970 			err = 0;
971 		}
972 	} else
973 		UDP_INC_STATS(sock_net(sk),
974 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
975 	return err;
976 }
977 
978 /*
979  * Push out all pending data as one UDP datagram. Socket is locked.
980  */
udp_push_pending_frames(struct sock * sk)981 int udp_push_pending_frames(struct sock *sk)
982 {
983 	struct udp_sock  *up = udp_sk(sk);
984 	struct inet_sock *inet = inet_sk(sk);
985 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
986 	struct sk_buff *skb;
987 	int err = 0;
988 
989 	skb = ip_finish_skb(sk, fl4);
990 	if (!skb)
991 		goto out;
992 
993 	err = udp_send_skb(skb, fl4, &inet->cork.base);
994 
995 out:
996 	up->len = 0;
997 	up->pending = 0;
998 	return err;
999 }
1000 EXPORT_SYMBOL(udp_push_pending_frames);
1001 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1002 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1003 {
1004 	switch (cmsg->cmsg_type) {
1005 	case UDP_SEGMENT:
1006 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1007 			return -EINVAL;
1008 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1009 		return 0;
1010 	default:
1011 		return -EINVAL;
1012 	}
1013 }
1014 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1015 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1016 {
1017 	struct cmsghdr *cmsg;
1018 	bool need_ip = false;
1019 	int err;
1020 
1021 	for_each_cmsghdr(cmsg, msg) {
1022 		if (!CMSG_OK(msg, cmsg))
1023 			return -EINVAL;
1024 
1025 		if (cmsg->cmsg_level != SOL_UDP) {
1026 			need_ip = true;
1027 			continue;
1028 		}
1029 
1030 		err = __udp_cmsg_send(cmsg, gso_size);
1031 		if (err)
1032 			return err;
1033 	}
1034 
1035 	return need_ip;
1036 }
1037 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1038 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1039 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1040 {
1041 	struct inet_sock *inet = inet_sk(sk);
1042 	struct udp_sock *up = udp_sk(sk);
1043 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1044 	struct flowi4 fl4_stack;
1045 	struct flowi4 *fl4;
1046 	int ulen = len;
1047 	struct ipcm_cookie ipc;
1048 	struct rtable *rt = NULL;
1049 	int free = 0;
1050 	int connected = 0;
1051 	__be32 daddr, faddr, saddr;
1052 	__be16 dport;
1053 	u8  tos;
1054 	int err, is_udplite = IS_UDPLITE(sk);
1055 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1056 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1057 	struct sk_buff *skb;
1058 	struct ip_options_data opt_copy;
1059 
1060 	if (len > 0xFFFF)
1061 		return -EMSGSIZE;
1062 
1063 	/*
1064 	 *	Check the flags.
1065 	 */
1066 
1067 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1068 		return -EOPNOTSUPP;
1069 
1070 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1071 
1072 	fl4 = &inet->cork.fl.u.ip4;
1073 	if (up->pending) {
1074 		/*
1075 		 * There are pending frames.
1076 		 * The socket lock must be held while it's corked.
1077 		 */
1078 		lock_sock(sk);
1079 		if (likely(up->pending)) {
1080 			if (unlikely(up->pending != AF_INET)) {
1081 				release_sock(sk);
1082 				return -EINVAL;
1083 			}
1084 			goto do_append_data;
1085 		}
1086 		release_sock(sk);
1087 	}
1088 	ulen += sizeof(struct udphdr);
1089 
1090 	/*
1091 	 *	Get and verify the address.
1092 	 */
1093 	if (usin) {
1094 		if (msg->msg_namelen < sizeof(*usin))
1095 			return -EINVAL;
1096 		if (usin->sin_family != AF_INET) {
1097 			if (usin->sin_family != AF_UNSPEC)
1098 				return -EAFNOSUPPORT;
1099 		}
1100 
1101 		daddr = usin->sin_addr.s_addr;
1102 		dport = usin->sin_port;
1103 		if (dport == 0)
1104 			return -EINVAL;
1105 	} else {
1106 		if (sk->sk_state != TCP_ESTABLISHED)
1107 			return -EDESTADDRREQ;
1108 		daddr = inet->inet_daddr;
1109 		dport = inet->inet_dport;
1110 		/* Open fast path for connected socket.
1111 		   Route will not be used, if at least one option is set.
1112 		 */
1113 		connected = 1;
1114 	}
1115 
1116 	ipcm_init_sk(&ipc, inet);
1117 	ipc.gso_size = READ_ONCE(up->gso_size);
1118 
1119 	if (msg->msg_controllen) {
1120 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1121 		if (err > 0)
1122 			err = ip_cmsg_send(sk, msg, &ipc,
1123 					   sk->sk_family == AF_INET6);
1124 		if (unlikely(err < 0)) {
1125 			kfree(ipc.opt);
1126 			return err;
1127 		}
1128 		if (ipc.opt)
1129 			free = 1;
1130 		connected = 0;
1131 	}
1132 	if (!ipc.opt) {
1133 		struct ip_options_rcu *inet_opt;
1134 
1135 		rcu_read_lock();
1136 		inet_opt = rcu_dereference(inet->inet_opt);
1137 		if (inet_opt) {
1138 			memcpy(&opt_copy, inet_opt,
1139 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1140 			ipc.opt = &opt_copy.opt;
1141 		}
1142 		rcu_read_unlock();
1143 	}
1144 
1145 	if (cgroup_bpf_enabled && !connected) {
1146 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1147 					    (struct sockaddr *)usin, &ipc.addr);
1148 		if (err)
1149 			goto out_free;
1150 		if (usin) {
1151 			if (usin->sin_port == 0) {
1152 				/* BPF program set invalid port. Reject it. */
1153 				err = -EINVAL;
1154 				goto out_free;
1155 			}
1156 			daddr = usin->sin_addr.s_addr;
1157 			dport = usin->sin_port;
1158 		}
1159 	}
1160 
1161 	saddr = ipc.addr;
1162 	ipc.addr = faddr = daddr;
1163 
1164 	if (ipc.opt && ipc.opt->opt.srr) {
1165 		if (!daddr) {
1166 			err = -EINVAL;
1167 			goto out_free;
1168 		}
1169 		faddr = ipc.opt->opt.faddr;
1170 		connected = 0;
1171 	}
1172 	tos = get_rttos(&ipc, inet);
1173 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1174 	    (msg->msg_flags & MSG_DONTROUTE) ||
1175 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1176 		tos |= RTO_ONLINK;
1177 		connected = 0;
1178 	}
1179 
1180 	if (ipv4_is_multicast(daddr)) {
1181 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1182 			ipc.oif = inet->mc_index;
1183 		if (!saddr)
1184 			saddr = inet->mc_addr;
1185 		connected = 0;
1186 	} else if (!ipc.oif) {
1187 		ipc.oif = inet->uc_index;
1188 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1189 		/* oif is set, packet is to local broadcast and
1190 		 * uc_index is set. oif is most likely set
1191 		 * by sk_bound_dev_if. If uc_index != oif check if the
1192 		 * oif is an L3 master and uc_index is an L3 slave.
1193 		 * If so, we want to allow the send using the uc_index.
1194 		 */
1195 		if (ipc.oif != inet->uc_index &&
1196 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1197 							      inet->uc_index)) {
1198 			ipc.oif = inet->uc_index;
1199 		}
1200 	}
1201 
1202 	if (connected)
1203 		rt = (struct rtable *)sk_dst_check(sk, 0);
1204 
1205 	if (!rt) {
1206 		struct net *net = sock_net(sk);
1207 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1208 
1209 		fl4 = &fl4_stack;
1210 
1211 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1212 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1213 				   flow_flags,
1214 				   faddr, saddr, dport, inet->inet_sport,
1215 				   sk->sk_uid);
1216 
1217 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1218 		rt = ip_route_output_flow(net, fl4, sk);
1219 		if (IS_ERR(rt)) {
1220 			err = PTR_ERR(rt);
1221 			rt = NULL;
1222 			if (err == -ENETUNREACH)
1223 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1224 			goto out;
1225 		}
1226 
1227 		err = -EACCES;
1228 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1229 		    !sock_flag(sk, SOCK_BROADCAST))
1230 			goto out;
1231 		if (connected)
1232 			sk_dst_set(sk, dst_clone(&rt->dst));
1233 	}
1234 
1235 	if (msg->msg_flags&MSG_CONFIRM)
1236 		goto do_confirm;
1237 back_from_confirm:
1238 
1239 	saddr = fl4->saddr;
1240 	if (!ipc.addr)
1241 		daddr = ipc.addr = fl4->daddr;
1242 
1243 	/* Lockless fast path for the non-corking case. */
1244 	if (!corkreq) {
1245 		struct inet_cork cork;
1246 
1247 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1248 				  sizeof(struct udphdr), &ipc, &rt,
1249 				  &cork, msg->msg_flags);
1250 		err = PTR_ERR(skb);
1251 		if (!IS_ERR_OR_NULL(skb))
1252 			err = udp_send_skb(skb, fl4, &cork);
1253 		goto out;
1254 	}
1255 
1256 	lock_sock(sk);
1257 	if (unlikely(up->pending)) {
1258 		/* The socket is already corked while preparing it. */
1259 		/* ... which is an evident application bug. --ANK */
1260 		release_sock(sk);
1261 
1262 		net_dbg_ratelimited("socket already corked\n");
1263 		err = -EINVAL;
1264 		goto out;
1265 	}
1266 	/*
1267 	 *	Now cork the socket to pend data.
1268 	 */
1269 	fl4 = &inet->cork.fl.u.ip4;
1270 	fl4->daddr = daddr;
1271 	fl4->saddr = saddr;
1272 	fl4->fl4_dport = dport;
1273 	fl4->fl4_sport = inet->inet_sport;
1274 	up->pending = AF_INET;
1275 
1276 do_append_data:
1277 	up->len += ulen;
1278 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1279 			     sizeof(struct udphdr), &ipc, &rt,
1280 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1281 	if (err)
1282 		udp_flush_pending_frames(sk);
1283 	else if (!corkreq)
1284 		err = udp_push_pending_frames(sk);
1285 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1286 		up->pending = 0;
1287 	release_sock(sk);
1288 
1289 out:
1290 	ip_rt_put(rt);
1291 out_free:
1292 	if (free)
1293 		kfree(ipc.opt);
1294 	if (!err)
1295 		return len;
1296 	/*
1297 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1298 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1299 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1300 	 * things).  We could add another new stat but at least for now that
1301 	 * seems like overkill.
1302 	 */
1303 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1304 		UDP_INC_STATS(sock_net(sk),
1305 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1306 	}
1307 	return err;
1308 
1309 do_confirm:
1310 	if (msg->msg_flags & MSG_PROBE)
1311 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1312 	if (!(msg->msg_flags&MSG_PROBE) || len)
1313 		goto back_from_confirm;
1314 	err = 0;
1315 	goto out;
1316 }
1317 EXPORT_SYMBOL(udp_sendmsg);
1318 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1319 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1320 		 size_t size, int flags)
1321 {
1322 	struct inet_sock *inet = inet_sk(sk);
1323 	struct udp_sock *up = udp_sk(sk);
1324 	int ret;
1325 
1326 	if (flags & MSG_SENDPAGE_NOTLAST)
1327 		flags |= MSG_MORE;
1328 
1329 	if (!up->pending) {
1330 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1331 
1332 		/* Call udp_sendmsg to specify destination address which
1333 		 * sendpage interface can't pass.
1334 		 * This will succeed only when the socket is connected.
1335 		 */
1336 		ret = udp_sendmsg(sk, &msg, 0);
1337 		if (ret < 0)
1338 			return ret;
1339 	}
1340 
1341 	lock_sock(sk);
1342 
1343 	if (unlikely(!up->pending)) {
1344 		release_sock(sk);
1345 
1346 		net_dbg_ratelimited("cork failed\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1351 			     page, offset, size, flags);
1352 	if (ret == -EOPNOTSUPP) {
1353 		release_sock(sk);
1354 		return sock_no_sendpage(sk->sk_socket, page, offset,
1355 					size, flags);
1356 	}
1357 	if (ret < 0) {
1358 		udp_flush_pending_frames(sk);
1359 		goto out;
1360 	}
1361 
1362 	up->len += size;
1363 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1364 		ret = udp_push_pending_frames(sk);
1365 	if (!ret)
1366 		ret = size;
1367 out:
1368 	release_sock(sk);
1369 	return ret;
1370 }
1371 
1372 #define UDP_SKB_IS_STATELESS 0x80000000
1373 
1374 /* all head states (dst, sk, nf conntrack) except skb extensions are
1375  * cleared by udp_rcv().
1376  *
1377  * We need to preserve secpath, if present, to eventually process
1378  * IP_CMSG_PASSSEC at recvmsg() time.
1379  *
1380  * Other extensions can be cleared.
1381  */
udp_try_make_stateless(struct sk_buff * skb)1382 static bool udp_try_make_stateless(struct sk_buff *skb)
1383 {
1384 	if (!skb_has_extensions(skb))
1385 		return true;
1386 
1387 	if (!secpath_exists(skb)) {
1388 		skb_ext_reset(skb);
1389 		return true;
1390 	}
1391 
1392 	return false;
1393 }
1394 
udp_set_dev_scratch(struct sk_buff * skb)1395 static void udp_set_dev_scratch(struct sk_buff *skb)
1396 {
1397 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1398 
1399 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1400 	scratch->_tsize_state = skb->truesize;
1401 #if BITS_PER_LONG == 64
1402 	scratch->len = skb->len;
1403 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1404 	scratch->is_linear = !skb_is_nonlinear(skb);
1405 #endif
1406 	if (udp_try_make_stateless(skb))
1407 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1408 }
1409 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1410 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1411 {
1412 	/* We come here after udp_lib_checksum_complete() returned 0.
1413 	 * This means that __skb_checksum_complete() might have
1414 	 * set skb->csum_valid to 1.
1415 	 * On 64bit platforms, we can set csum_unnecessary
1416 	 * to true, but only if the skb is not shared.
1417 	 */
1418 #if BITS_PER_LONG == 64
1419 	if (!skb_shared(skb))
1420 		udp_skb_scratch(skb)->csum_unnecessary = true;
1421 #endif
1422 }
1423 
udp_skb_truesize(struct sk_buff * skb)1424 static int udp_skb_truesize(struct sk_buff *skb)
1425 {
1426 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1427 }
1428 
udp_skb_has_head_state(struct sk_buff * skb)1429 static bool udp_skb_has_head_state(struct sk_buff *skb)
1430 {
1431 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1432 }
1433 
1434 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1435 static void udp_rmem_release(struct sock *sk, int size, int partial,
1436 			     bool rx_queue_lock_held)
1437 {
1438 	struct udp_sock *up = udp_sk(sk);
1439 	struct sk_buff_head *sk_queue;
1440 	int amt;
1441 
1442 	if (likely(partial)) {
1443 		up->forward_deficit += size;
1444 		size = up->forward_deficit;
1445 		if (size < (sk->sk_rcvbuf >> 2) &&
1446 		    !skb_queue_empty(&up->reader_queue))
1447 			return;
1448 	} else {
1449 		size += up->forward_deficit;
1450 	}
1451 	up->forward_deficit = 0;
1452 
1453 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1454 	 * if the called don't held it already
1455 	 */
1456 	sk_queue = &sk->sk_receive_queue;
1457 	if (!rx_queue_lock_held)
1458 		spin_lock(&sk_queue->lock);
1459 
1460 
1461 	sk->sk_forward_alloc += size;
1462 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1463 	sk->sk_forward_alloc -= amt;
1464 
1465 	if (amt)
1466 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1467 
1468 	atomic_sub(size, &sk->sk_rmem_alloc);
1469 
1470 	/* this can save us from acquiring the rx queue lock on next receive */
1471 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1472 
1473 	if (!rx_queue_lock_held)
1474 		spin_unlock(&sk_queue->lock);
1475 }
1476 
1477 /* Note: called with reader_queue.lock held.
1478  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1479  * This avoids a cache line miss while receive_queue lock is held.
1480  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1481  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1482 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1483 {
1484 	prefetch(&skb->data);
1485 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1486 }
1487 EXPORT_SYMBOL(udp_skb_destructor);
1488 
1489 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1490 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1491 {
1492 	prefetch(&skb->data);
1493 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1494 }
1495 
1496 /* Idea of busylocks is to let producers grab an extra spinlock
1497  * to relieve pressure on the receive_queue spinlock shared by consumer.
1498  * Under flood, this means that only one producer can be in line
1499  * trying to acquire the receive_queue spinlock.
1500  * These busylock can be allocated on a per cpu manner, instead of a
1501  * per socket one (that would consume a cache line per socket)
1502  */
1503 static int udp_busylocks_log __read_mostly;
1504 static spinlock_t *udp_busylocks __read_mostly;
1505 
busylock_acquire(void * ptr)1506 static spinlock_t *busylock_acquire(void *ptr)
1507 {
1508 	spinlock_t *busy;
1509 
1510 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1511 	spin_lock(busy);
1512 	return busy;
1513 }
1514 
busylock_release(spinlock_t * busy)1515 static void busylock_release(spinlock_t *busy)
1516 {
1517 	if (busy)
1518 		spin_unlock(busy);
1519 }
1520 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1521 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1522 {
1523 	struct sk_buff_head *list = &sk->sk_receive_queue;
1524 	int rmem, delta, amt, err = -ENOMEM;
1525 	spinlock_t *busy = NULL;
1526 	int size;
1527 
1528 	/* try to avoid the costly atomic add/sub pair when the receive
1529 	 * queue is full; always allow at least a packet
1530 	 */
1531 	rmem = atomic_read(&sk->sk_rmem_alloc);
1532 	if (rmem > sk->sk_rcvbuf)
1533 		goto drop;
1534 
1535 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1536 	 * having linear skbs :
1537 	 * - Reduce memory overhead and thus increase receive queue capacity
1538 	 * - Less cache line misses at copyout() time
1539 	 * - Less work at consume_skb() (less alien page frag freeing)
1540 	 */
1541 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1542 		skb_condense(skb);
1543 
1544 		busy = busylock_acquire(sk);
1545 	}
1546 	size = skb->truesize;
1547 	udp_set_dev_scratch(skb);
1548 
1549 	/* we drop only if the receive buf is full and the receive
1550 	 * queue contains some other skb
1551 	 */
1552 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1553 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1554 		goto uncharge_drop;
1555 
1556 	spin_lock(&list->lock);
1557 	if (size >= sk->sk_forward_alloc) {
1558 		amt = sk_mem_pages(size);
1559 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1560 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1561 			err = -ENOBUFS;
1562 			spin_unlock(&list->lock);
1563 			goto uncharge_drop;
1564 		}
1565 
1566 		sk->sk_forward_alloc += delta;
1567 	}
1568 
1569 	sk->sk_forward_alloc -= size;
1570 
1571 	/* no need to setup a destructor, we will explicitly release the
1572 	 * forward allocated memory on dequeue
1573 	 */
1574 	sock_skb_set_dropcount(sk, skb);
1575 
1576 	__skb_queue_tail(list, skb);
1577 	spin_unlock(&list->lock);
1578 
1579 	if (!sock_flag(sk, SOCK_DEAD))
1580 		sk->sk_data_ready(sk);
1581 
1582 	busylock_release(busy);
1583 	return 0;
1584 
1585 uncharge_drop:
1586 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1587 
1588 drop:
1589 	atomic_inc(&sk->sk_drops);
1590 	busylock_release(busy);
1591 	return err;
1592 }
1593 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1594 
udp_destruct_common(struct sock * sk)1595 void udp_destruct_common(struct sock *sk)
1596 {
1597 	/* reclaim completely the forward allocated memory */
1598 	struct udp_sock *up = udp_sk(sk);
1599 	unsigned int total = 0;
1600 	struct sk_buff *skb;
1601 
1602 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1603 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1604 		total += skb->truesize;
1605 		kfree_skb(skb);
1606 	}
1607 	udp_rmem_release(sk, total, 0, true);
1608 }
1609 EXPORT_SYMBOL_GPL(udp_destruct_common);
1610 
udp_destruct_sock(struct sock * sk)1611 static void udp_destruct_sock(struct sock *sk)
1612 {
1613 	udp_destruct_common(sk);
1614 	inet_sock_destruct(sk);
1615 }
1616 
udp_init_sock(struct sock * sk)1617 int udp_init_sock(struct sock *sk)
1618 {
1619 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1620 	sk->sk_destruct = udp_destruct_sock;
1621 	return 0;
1622 }
1623 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1624 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1625 {
1626 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1627 		bool slow = lock_sock_fast(sk);
1628 
1629 		sk_peek_offset_bwd(sk, len);
1630 		unlock_sock_fast(sk, slow);
1631 	}
1632 
1633 	if (!skb_unref(skb))
1634 		return;
1635 
1636 	/* In the more common cases we cleared the head states previously,
1637 	 * see __udp_queue_rcv_skb().
1638 	 */
1639 	if (unlikely(udp_skb_has_head_state(skb)))
1640 		skb_release_head_state(skb);
1641 	__consume_stateless_skb(skb);
1642 }
1643 EXPORT_SYMBOL_GPL(skb_consume_udp);
1644 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1645 static struct sk_buff *__first_packet_length(struct sock *sk,
1646 					     struct sk_buff_head *rcvq,
1647 					     int *total)
1648 {
1649 	struct sk_buff *skb;
1650 
1651 	while ((skb = skb_peek(rcvq)) != NULL) {
1652 		if (udp_lib_checksum_complete(skb)) {
1653 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1654 					IS_UDPLITE(sk));
1655 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1656 					IS_UDPLITE(sk));
1657 			atomic_inc(&sk->sk_drops);
1658 			__skb_unlink(skb, rcvq);
1659 			*total += skb->truesize;
1660 			kfree_skb(skb);
1661 		} else {
1662 			udp_skb_csum_unnecessary_set(skb);
1663 			break;
1664 		}
1665 	}
1666 	return skb;
1667 }
1668 
1669 /**
1670  *	first_packet_length	- return length of first packet in receive queue
1671  *	@sk: socket
1672  *
1673  *	Drops all bad checksum frames, until a valid one is found.
1674  *	Returns the length of found skb, or -1 if none is found.
1675  */
first_packet_length(struct sock * sk)1676 static int first_packet_length(struct sock *sk)
1677 {
1678 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1679 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1680 	struct sk_buff *skb;
1681 	int total = 0;
1682 	int res;
1683 
1684 	spin_lock_bh(&rcvq->lock);
1685 	skb = __first_packet_length(sk, rcvq, &total);
1686 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1687 		spin_lock(&sk_queue->lock);
1688 		skb_queue_splice_tail_init(sk_queue, rcvq);
1689 		spin_unlock(&sk_queue->lock);
1690 
1691 		skb = __first_packet_length(sk, rcvq, &total);
1692 	}
1693 	res = skb ? skb->len : -1;
1694 	if (total)
1695 		udp_rmem_release(sk, total, 1, false);
1696 	spin_unlock_bh(&rcvq->lock);
1697 	return res;
1698 }
1699 
1700 /*
1701  *	IOCTL requests applicable to the UDP protocol
1702  */
1703 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1704 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1705 {
1706 	switch (cmd) {
1707 	case SIOCOUTQ:
1708 	{
1709 		int amount = sk_wmem_alloc_get(sk);
1710 
1711 		return put_user(amount, (int __user *)arg);
1712 	}
1713 
1714 	case SIOCINQ:
1715 	{
1716 		int amount = max_t(int, 0, first_packet_length(sk));
1717 
1718 		return put_user(amount, (int __user *)arg);
1719 	}
1720 
1721 	default:
1722 		return -ENOIOCTLCMD;
1723 	}
1724 
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(udp_ioctl);
1728 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1729 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1730 			       int noblock, int *off, int *err)
1731 {
1732 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1733 	struct sk_buff_head *queue;
1734 	struct sk_buff *last;
1735 	long timeo;
1736 	int error;
1737 
1738 	queue = &udp_sk(sk)->reader_queue;
1739 	flags |= noblock ? MSG_DONTWAIT : 0;
1740 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741 	do {
1742 		struct sk_buff *skb;
1743 
1744 		error = sock_error(sk);
1745 		if (error)
1746 			break;
1747 
1748 		error = -EAGAIN;
1749 		do {
1750 			spin_lock_bh(&queue->lock);
1751 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1752 							err, &last);
1753 			if (skb) {
1754 				if (!(flags & MSG_PEEK))
1755 					udp_skb_destructor(sk, skb);
1756 				spin_unlock_bh(&queue->lock);
1757 				return skb;
1758 			}
1759 
1760 			if (skb_queue_empty_lockless(sk_queue)) {
1761 				spin_unlock_bh(&queue->lock);
1762 				goto busy_check;
1763 			}
1764 
1765 			/* refill the reader queue and walk it again
1766 			 * keep both queues locked to avoid re-acquiring
1767 			 * the sk_receive_queue lock if fwd memory scheduling
1768 			 * is needed.
1769 			 */
1770 			spin_lock(&sk_queue->lock);
1771 			skb_queue_splice_tail_init(sk_queue, queue);
1772 
1773 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1774 							err, &last);
1775 			if (skb && !(flags & MSG_PEEK))
1776 				udp_skb_dtor_locked(sk, skb);
1777 			spin_unlock(&sk_queue->lock);
1778 			spin_unlock_bh(&queue->lock);
1779 			if (skb)
1780 				return skb;
1781 
1782 busy_check:
1783 			if (!sk_can_busy_loop(sk))
1784 				break;
1785 
1786 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1787 		} while (!skb_queue_empty_lockless(sk_queue));
1788 
1789 		/* sk_queue is empty, reader_queue may contain peeked packets */
1790 	} while (timeo &&
1791 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1792 					      &error, &timeo,
1793 					      (struct sk_buff *)sk_queue));
1794 
1795 	*err = error;
1796 	return NULL;
1797 }
1798 EXPORT_SYMBOL(__skb_recv_udp);
1799 
1800 /*
1801  * 	This should be easy, if there is something there we
1802  * 	return it, otherwise we block.
1803  */
1804 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1805 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1806 		int flags, int *addr_len)
1807 {
1808 	struct inet_sock *inet = inet_sk(sk);
1809 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1810 	struct sk_buff *skb;
1811 	unsigned int ulen, copied;
1812 	int off, err, peeking = flags & MSG_PEEK;
1813 	int is_udplite = IS_UDPLITE(sk);
1814 	bool checksum_valid = false;
1815 
1816 	if (flags & MSG_ERRQUEUE)
1817 		return ip_recv_error(sk, msg, len, addr_len);
1818 
1819 try_again:
1820 	off = sk_peek_offset(sk, flags);
1821 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1822 	if (!skb)
1823 		return err;
1824 
1825 	ulen = udp_skb_len(skb);
1826 	copied = len;
1827 	if (copied > ulen - off)
1828 		copied = ulen - off;
1829 	else if (copied < ulen)
1830 		msg->msg_flags |= MSG_TRUNC;
1831 
1832 	/*
1833 	 * If checksum is needed at all, try to do it while copying the
1834 	 * data.  If the data is truncated, or if we only want a partial
1835 	 * coverage checksum (UDP-Lite), do it before the copy.
1836 	 */
1837 
1838 	if (copied < ulen || peeking ||
1839 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1840 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1841 				!__udp_lib_checksum_complete(skb);
1842 		if (!checksum_valid)
1843 			goto csum_copy_err;
1844 	}
1845 
1846 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1847 		if (udp_skb_is_linear(skb))
1848 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1849 		else
1850 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1851 	} else {
1852 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1853 
1854 		if (err == -EINVAL)
1855 			goto csum_copy_err;
1856 	}
1857 
1858 	if (unlikely(err)) {
1859 		if (!peeking) {
1860 			atomic_inc(&sk->sk_drops);
1861 			UDP_INC_STATS(sock_net(sk),
1862 				      UDP_MIB_INERRORS, is_udplite);
1863 		}
1864 		kfree_skb(skb);
1865 		return err;
1866 	}
1867 
1868 	if (!peeking)
1869 		UDP_INC_STATS(sock_net(sk),
1870 			      UDP_MIB_INDATAGRAMS, is_udplite);
1871 
1872 	sock_recv_ts_and_drops(msg, sk, skb);
1873 
1874 	/* Copy the address. */
1875 	if (sin) {
1876 		sin->sin_family = AF_INET;
1877 		sin->sin_port = udp_hdr(skb)->source;
1878 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1879 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1880 		*addr_len = sizeof(*sin);
1881 
1882 		if (cgroup_bpf_enabled)
1883 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1884 							(struct sockaddr *)sin);
1885 	}
1886 
1887 	if (udp_sk(sk)->gro_enabled)
1888 		udp_cmsg_recv(msg, sk, skb);
1889 
1890 	if (inet->cmsg_flags)
1891 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1892 
1893 	err = copied;
1894 	if (flags & MSG_TRUNC)
1895 		err = ulen;
1896 
1897 	skb_consume_udp(sk, skb, peeking ? -err : err);
1898 	return err;
1899 
1900 csum_copy_err:
1901 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1902 				 udp_skb_destructor)) {
1903 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1904 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1905 	}
1906 	kfree_skb(skb);
1907 
1908 	/* starting over for a new packet, but check if we need to yield */
1909 	cond_resched();
1910 	msg->msg_flags &= ~MSG_TRUNC;
1911 	goto try_again;
1912 }
1913 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1914 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1915 {
1916 	/* This check is replicated from __ip4_datagram_connect() and
1917 	 * intended to prevent BPF program called below from accessing bytes
1918 	 * that are out of the bound specified by user in addr_len.
1919 	 */
1920 	if (addr_len < sizeof(struct sockaddr_in))
1921 		return -EINVAL;
1922 
1923 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1924 }
1925 EXPORT_SYMBOL(udp_pre_connect);
1926 
__udp_disconnect(struct sock * sk,int flags)1927 int __udp_disconnect(struct sock *sk, int flags)
1928 {
1929 	struct inet_sock *inet = inet_sk(sk);
1930 	/*
1931 	 *	1003.1g - break association.
1932 	 */
1933 
1934 	sk->sk_state = TCP_CLOSE;
1935 	inet->inet_daddr = 0;
1936 	inet->inet_dport = 0;
1937 	sock_rps_reset_rxhash(sk);
1938 	sk->sk_bound_dev_if = 0;
1939 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1940 		inet_reset_saddr(sk);
1941 		if (sk->sk_prot->rehash &&
1942 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1943 			sk->sk_prot->rehash(sk);
1944 	}
1945 
1946 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1947 		sk->sk_prot->unhash(sk);
1948 		inet->inet_sport = 0;
1949 	}
1950 	sk_dst_reset(sk);
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL(__udp_disconnect);
1954 
udp_disconnect(struct sock * sk,int flags)1955 int udp_disconnect(struct sock *sk, int flags)
1956 {
1957 	lock_sock(sk);
1958 	__udp_disconnect(sk, flags);
1959 	release_sock(sk);
1960 	return 0;
1961 }
1962 EXPORT_SYMBOL(udp_disconnect);
1963 
udp_lib_unhash(struct sock * sk)1964 void udp_lib_unhash(struct sock *sk)
1965 {
1966 	if (sk_hashed(sk)) {
1967 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1968 		struct udp_hslot *hslot, *hslot2;
1969 
1970 		hslot  = udp_hashslot(udptable, sock_net(sk),
1971 				      udp_sk(sk)->udp_port_hash);
1972 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1973 
1974 		spin_lock_bh(&hslot->lock);
1975 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1976 			reuseport_detach_sock(sk);
1977 		if (sk_del_node_init_rcu(sk)) {
1978 			hslot->count--;
1979 			inet_sk(sk)->inet_num = 0;
1980 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1981 
1982 			spin_lock(&hslot2->lock);
1983 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1984 			hslot2->count--;
1985 			spin_unlock(&hslot2->lock);
1986 		}
1987 		spin_unlock_bh(&hslot->lock);
1988 	}
1989 }
1990 EXPORT_SYMBOL(udp_lib_unhash);
1991 
1992 /*
1993  * inet_rcv_saddr was changed, we must rehash secondary hash
1994  */
udp_lib_rehash(struct sock * sk,u16 newhash)1995 void udp_lib_rehash(struct sock *sk, u16 newhash)
1996 {
1997 	if (sk_hashed(sk)) {
1998 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1999 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2000 
2001 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2002 		nhslot2 = udp_hashslot2(udptable, newhash);
2003 		udp_sk(sk)->udp_portaddr_hash = newhash;
2004 
2005 		if (hslot2 != nhslot2 ||
2006 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2007 			hslot = udp_hashslot(udptable, sock_net(sk),
2008 					     udp_sk(sk)->udp_port_hash);
2009 			/* we must lock primary chain too */
2010 			spin_lock_bh(&hslot->lock);
2011 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2012 				reuseport_detach_sock(sk);
2013 
2014 			if (hslot2 != nhslot2) {
2015 				spin_lock(&hslot2->lock);
2016 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2017 				hslot2->count--;
2018 				spin_unlock(&hslot2->lock);
2019 
2020 				spin_lock(&nhslot2->lock);
2021 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2022 							 &nhslot2->head);
2023 				nhslot2->count++;
2024 				spin_unlock(&nhslot2->lock);
2025 			}
2026 
2027 			spin_unlock_bh(&hslot->lock);
2028 		}
2029 	}
2030 }
2031 EXPORT_SYMBOL(udp_lib_rehash);
2032 
udp_v4_rehash(struct sock * sk)2033 void udp_v4_rehash(struct sock *sk)
2034 {
2035 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2036 					  inet_sk(sk)->inet_rcv_saddr,
2037 					  inet_sk(sk)->inet_num);
2038 	udp_lib_rehash(sk, new_hash);
2039 }
2040 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2041 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2042 {
2043 	int rc;
2044 
2045 	if (inet_sk(sk)->inet_daddr) {
2046 		sock_rps_save_rxhash(sk, skb);
2047 		sk_mark_napi_id(sk, skb);
2048 		sk_incoming_cpu_update(sk);
2049 	} else {
2050 		sk_mark_napi_id_once(sk, skb);
2051 	}
2052 
2053 	rc = __udp_enqueue_schedule_skb(sk, skb);
2054 	if (rc < 0) {
2055 		int is_udplite = IS_UDPLITE(sk);
2056 
2057 		/* Note that an ENOMEM error is charged twice */
2058 		if (rc == -ENOMEM)
2059 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2060 					is_udplite);
2061 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2062 		kfree_skb(skb);
2063 		trace_udp_fail_queue_rcv_skb(rc, sk);
2064 		return -1;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 /* returns:
2071  *  -1: error
2072  *   0: success
2073  *  >0: "udp encap" protocol resubmission
2074  *
2075  * Note that in the success and error cases, the skb is assumed to
2076  * have either been requeued or freed.
2077  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2078 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2079 {
2080 	struct udp_sock *up = udp_sk(sk);
2081 	int is_udplite = IS_UDPLITE(sk);
2082 
2083 	/*
2084 	 *	Charge it to the socket, dropping if the queue is full.
2085 	 */
2086 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2087 		goto drop;
2088 	nf_reset_ct(skb);
2089 
2090 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2091 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2092 
2093 		/*
2094 		 * This is an encapsulation socket so pass the skb to
2095 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2096 		 * fall through and pass this up the UDP socket.
2097 		 * up->encap_rcv() returns the following value:
2098 		 * =0 if skb was successfully passed to the encap
2099 		 *    handler or was discarded by it.
2100 		 * >0 if skb should be passed on to UDP.
2101 		 * <0 if skb should be resubmitted as proto -N
2102 		 */
2103 
2104 		/* if we're overly short, let UDP handle it */
2105 		encap_rcv = READ_ONCE(up->encap_rcv);
2106 		if (encap_rcv) {
2107 			int ret;
2108 
2109 			/* Verify checksum before giving to encap */
2110 			if (udp_lib_checksum_complete(skb))
2111 				goto csum_error;
2112 
2113 			ret = encap_rcv(sk, skb);
2114 			if (ret <= 0) {
2115 				__UDP_INC_STATS(sock_net(sk),
2116 						UDP_MIB_INDATAGRAMS,
2117 						is_udplite);
2118 				return -ret;
2119 			}
2120 		}
2121 
2122 		/* FALLTHROUGH -- it's a UDP Packet */
2123 	}
2124 
2125 	/*
2126 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2127 	 */
2128 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2129 
2130 		/*
2131 		 * MIB statistics other than incrementing the error count are
2132 		 * disabled for the following two types of errors: these depend
2133 		 * on the application settings, not on the functioning of the
2134 		 * protocol stack as such.
2135 		 *
2136 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2137 		 * way ... to ... at least let the receiving application block
2138 		 * delivery of packets with coverage values less than a value
2139 		 * provided by the application."
2140 		 */
2141 		if (up->pcrlen == 0) {          /* full coverage was set  */
2142 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2143 					    UDP_SKB_CB(skb)->cscov, skb->len);
2144 			goto drop;
2145 		}
2146 		/* The next case involves violating the min. coverage requested
2147 		 * by the receiver. This is subtle: if receiver wants x and x is
2148 		 * greater than the buffersize/MTU then receiver will complain
2149 		 * that it wants x while sender emits packets of smaller size y.
2150 		 * Therefore the above ...()->partial_cov statement is essential.
2151 		 */
2152 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2153 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2154 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2155 			goto drop;
2156 		}
2157 	}
2158 
2159 	prefetch(&sk->sk_rmem_alloc);
2160 	if (rcu_access_pointer(sk->sk_filter) &&
2161 	    udp_lib_checksum_complete(skb))
2162 			goto csum_error;
2163 
2164 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2165 		goto drop;
2166 
2167 	udp_csum_pull_header(skb);
2168 
2169 	ipv4_pktinfo_prepare(sk, skb);
2170 	return __udp_queue_rcv_skb(sk, skb);
2171 
2172 csum_error:
2173 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2174 drop:
2175 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2176 	atomic_inc(&sk->sk_drops);
2177 	kfree_skb(skb);
2178 	return -1;
2179 }
2180 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2181 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2182 {
2183 	struct sk_buff *next, *segs;
2184 	int ret;
2185 
2186 	if (likely(!udp_unexpected_gso(sk, skb)))
2187 		return udp_queue_rcv_one_skb(sk, skb);
2188 
2189 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2190 	__skb_push(skb, -skb_mac_offset(skb));
2191 	segs = udp_rcv_segment(sk, skb, true);
2192 	skb_list_walk_safe(segs, skb, next) {
2193 		__skb_pull(skb, skb_transport_offset(skb));
2194 		ret = udp_queue_rcv_one_skb(sk, skb);
2195 		if (ret > 0)
2196 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2197 	}
2198 	return 0;
2199 }
2200 
2201 /* For TCP sockets, sk_rx_dst is protected by socket lock
2202  * For UDP, we use xchg() to guard against concurrent changes.
2203  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2204 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2205 {
2206 	struct dst_entry *old;
2207 
2208 	if (dst_hold_safe(dst)) {
2209 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2210 		dst_release(old);
2211 		return old != dst;
2212 	}
2213 	return false;
2214 }
2215 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2216 
2217 /*
2218  *	Multicasts and broadcasts go to each listener.
2219  *
2220  *	Note: called only from the BH handler context.
2221  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2222 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2223 				    struct udphdr  *uh,
2224 				    __be32 saddr, __be32 daddr,
2225 				    struct udp_table *udptable,
2226 				    int proto)
2227 {
2228 	struct sock *sk, *first = NULL;
2229 	unsigned short hnum = ntohs(uh->dest);
2230 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2231 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2232 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2233 	int dif = skb->dev->ifindex;
2234 	int sdif = inet_sdif(skb);
2235 	struct hlist_node *node;
2236 	struct sk_buff *nskb;
2237 
2238 	if (use_hash2) {
2239 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2240 			    udptable->mask;
2241 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2242 start_lookup:
2243 		hslot = &udptable->hash2[hash2];
2244 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2245 	}
2246 
2247 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2248 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2249 					 uh->source, saddr, dif, sdif, hnum))
2250 			continue;
2251 
2252 		if (!first) {
2253 			first = sk;
2254 			continue;
2255 		}
2256 		nskb = skb_clone(skb, GFP_ATOMIC);
2257 
2258 		if (unlikely(!nskb)) {
2259 			atomic_inc(&sk->sk_drops);
2260 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2261 					IS_UDPLITE(sk));
2262 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2263 					IS_UDPLITE(sk));
2264 			continue;
2265 		}
2266 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2267 			consume_skb(nskb);
2268 	}
2269 
2270 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2271 	if (use_hash2 && hash2 != hash2_any) {
2272 		hash2 = hash2_any;
2273 		goto start_lookup;
2274 	}
2275 
2276 	if (first) {
2277 		if (udp_queue_rcv_skb(first, skb) > 0)
2278 			consume_skb(skb);
2279 	} else {
2280 		kfree_skb(skb);
2281 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2282 				proto == IPPROTO_UDPLITE);
2283 	}
2284 	return 0;
2285 }
2286 
2287 /* Initialize UDP checksum. If exited with zero value (success),
2288  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2289  * Otherwise, csum completion requires checksumming packet body,
2290  * including udp header and folding it to skb->csum.
2291  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2292 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2293 				 int proto)
2294 {
2295 	int err;
2296 
2297 	UDP_SKB_CB(skb)->partial_cov = 0;
2298 	UDP_SKB_CB(skb)->cscov = skb->len;
2299 
2300 	if (proto == IPPROTO_UDPLITE) {
2301 		err = udplite_checksum_init(skb, uh);
2302 		if (err)
2303 			return err;
2304 
2305 		if (UDP_SKB_CB(skb)->partial_cov) {
2306 			skb->csum = inet_compute_pseudo(skb, proto);
2307 			return 0;
2308 		}
2309 	}
2310 
2311 	/* Note, we are only interested in != 0 or == 0, thus the
2312 	 * force to int.
2313 	 */
2314 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2315 							inet_compute_pseudo);
2316 	if (err)
2317 		return err;
2318 
2319 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2320 		/* If SW calculated the value, we know it's bad */
2321 		if (skb->csum_complete_sw)
2322 			return 1;
2323 
2324 		/* HW says the value is bad. Let's validate that.
2325 		 * skb->csum is no longer the full packet checksum,
2326 		 * so don't treat it as such.
2327 		 */
2328 		skb_checksum_complete_unset(skb);
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2335  * return code conversion for ip layer consumption
2336  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2337 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2338 			       struct udphdr *uh)
2339 {
2340 	int ret;
2341 
2342 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2343 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2344 
2345 	ret = udp_queue_rcv_skb(sk, skb);
2346 
2347 	/* a return value > 0 means to resubmit the input, but
2348 	 * it wants the return to be -protocol, or 0
2349 	 */
2350 	if (ret > 0)
2351 		return -ret;
2352 	return 0;
2353 }
2354 
2355 /*
2356  *	All we need to do is get the socket, and then do a checksum.
2357  */
2358 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2359 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2360 		   int proto)
2361 {
2362 	struct sock *sk;
2363 	struct udphdr *uh;
2364 	unsigned short ulen;
2365 	struct rtable *rt = skb_rtable(skb);
2366 	__be32 saddr, daddr;
2367 	struct net *net = dev_net(skb->dev);
2368 	bool refcounted;
2369 
2370 	/*
2371 	 *  Validate the packet.
2372 	 */
2373 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2374 		goto drop;		/* No space for header. */
2375 
2376 	uh   = udp_hdr(skb);
2377 	ulen = ntohs(uh->len);
2378 	saddr = ip_hdr(skb)->saddr;
2379 	daddr = ip_hdr(skb)->daddr;
2380 
2381 	if (ulen > skb->len)
2382 		goto short_packet;
2383 
2384 	if (proto == IPPROTO_UDP) {
2385 		/* UDP validates ulen. */
2386 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2387 			goto short_packet;
2388 		uh = udp_hdr(skb);
2389 	}
2390 
2391 	if (udp4_csum_init(skb, uh, proto))
2392 		goto csum_error;
2393 
2394 	sk = skb_steal_sock(skb, &refcounted);
2395 	if (sk) {
2396 		struct dst_entry *dst = skb_dst(skb);
2397 		int ret;
2398 
2399 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2400 			udp_sk_rx_dst_set(sk, dst);
2401 
2402 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2403 		if (refcounted)
2404 			sock_put(sk);
2405 		return ret;
2406 	}
2407 
2408 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2409 		return __udp4_lib_mcast_deliver(net, skb, uh,
2410 						saddr, daddr, udptable, proto);
2411 
2412 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2413 	if (sk)
2414 		return udp_unicast_rcv_skb(sk, skb, uh);
2415 
2416 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2417 		goto drop;
2418 	nf_reset_ct(skb);
2419 
2420 	/* No socket. Drop packet silently, if checksum is wrong */
2421 	if (udp_lib_checksum_complete(skb))
2422 		goto csum_error;
2423 
2424 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2425 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2426 
2427 	/*
2428 	 * Hmm.  We got an UDP packet to a port to which we
2429 	 * don't wanna listen.  Ignore it.
2430 	 */
2431 	kfree_skb(skb);
2432 	return 0;
2433 
2434 short_packet:
2435 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2436 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2437 			    &saddr, ntohs(uh->source),
2438 			    ulen, skb->len,
2439 			    &daddr, ntohs(uh->dest));
2440 	goto drop;
2441 
2442 csum_error:
2443 	/*
2444 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2445 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2446 	 */
2447 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2448 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2449 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2450 			    ulen);
2451 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2452 drop:
2453 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2454 	kfree_skb(skb);
2455 	return 0;
2456 }
2457 
2458 /* We can only early demux multicast if there is a single matching socket.
2459  * If more than one socket found returns NULL
2460  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2461 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2462 						  __be16 loc_port, __be32 loc_addr,
2463 						  __be16 rmt_port, __be32 rmt_addr,
2464 						  int dif, int sdif)
2465 {
2466 	struct sock *sk, *result;
2467 	unsigned short hnum = ntohs(loc_port);
2468 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2469 	struct udp_hslot *hslot = &udp_table.hash[slot];
2470 
2471 	/* Do not bother scanning a too big list */
2472 	if (hslot->count > 10)
2473 		return NULL;
2474 
2475 	result = NULL;
2476 	sk_for_each_rcu(sk, &hslot->head) {
2477 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2478 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2479 			if (result)
2480 				return NULL;
2481 			result = sk;
2482 		}
2483 	}
2484 
2485 	return result;
2486 }
2487 
2488 /* For unicast we should only early demux connected sockets or we can
2489  * break forwarding setups.  The chains here can be long so only check
2490  * if the first socket is an exact match and if not move on.
2491  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2492 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2493 					    __be16 loc_port, __be32 loc_addr,
2494 					    __be16 rmt_port, __be32 rmt_addr,
2495 					    int dif, int sdif)
2496 {
2497 	unsigned short hnum = ntohs(loc_port);
2498 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2499 	unsigned int slot2 = hash2 & udp_table.mask;
2500 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2501 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2502 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2503 	struct sock *sk;
2504 
2505 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2506 		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2507 			return sk;
2508 		/* Only check first socket in chain */
2509 		break;
2510 	}
2511 	return NULL;
2512 }
2513 
udp_v4_early_demux(struct sk_buff * skb)2514 int udp_v4_early_demux(struct sk_buff *skb)
2515 {
2516 	struct net *net = dev_net(skb->dev);
2517 	struct in_device *in_dev = NULL;
2518 	const struct iphdr *iph;
2519 	const struct udphdr *uh;
2520 	struct sock *sk = NULL;
2521 	struct dst_entry *dst;
2522 	int dif = skb->dev->ifindex;
2523 	int sdif = inet_sdif(skb);
2524 	int ours;
2525 
2526 	/* validate the packet */
2527 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2528 		return 0;
2529 
2530 	iph = ip_hdr(skb);
2531 	uh = udp_hdr(skb);
2532 
2533 	if (skb->pkt_type == PACKET_MULTICAST) {
2534 		in_dev = __in_dev_get_rcu(skb->dev);
2535 
2536 		if (!in_dev)
2537 			return 0;
2538 
2539 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2540 				       iph->protocol);
2541 		if (!ours)
2542 			return 0;
2543 
2544 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2545 						   uh->source, iph->saddr,
2546 						   dif, sdif);
2547 	} else if (skb->pkt_type == PACKET_HOST) {
2548 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2549 					     uh->source, iph->saddr, dif, sdif);
2550 	}
2551 
2552 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2553 		return 0;
2554 
2555 	skb->sk = sk;
2556 	skb->destructor = sock_efree;
2557 	dst = rcu_dereference(sk->sk_rx_dst);
2558 
2559 	if (dst)
2560 		dst = dst_check(dst, 0);
2561 	if (dst) {
2562 		u32 itag = 0;
2563 
2564 		/* set noref for now.
2565 		 * any place which wants to hold dst has to call
2566 		 * dst_hold_safe()
2567 		 */
2568 		skb_dst_set_noref(skb, dst);
2569 
2570 		/* for unconnected multicast sockets we need to validate
2571 		 * the source on each packet
2572 		 */
2573 		if (!inet_sk(sk)->inet_daddr && in_dev)
2574 			return ip_mc_validate_source(skb, iph->daddr,
2575 						     iph->saddr,
2576 						     iph->tos & IPTOS_RT_MASK,
2577 						     skb->dev, in_dev, &itag);
2578 	}
2579 	return 0;
2580 }
2581 
udp_rcv(struct sk_buff * skb)2582 int udp_rcv(struct sk_buff *skb)
2583 {
2584 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2585 }
2586 
udp_destroy_sock(struct sock * sk)2587 void udp_destroy_sock(struct sock *sk)
2588 {
2589 	struct udp_sock *up = udp_sk(sk);
2590 	bool slow = lock_sock_fast(sk);
2591 
2592 	/* protects from races with udp_abort() */
2593 	sock_set_flag(sk, SOCK_DEAD);
2594 	udp_flush_pending_frames(sk);
2595 	unlock_sock_fast(sk, slow);
2596 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2597 		if (up->encap_type) {
2598 			void (*encap_destroy)(struct sock *sk);
2599 			encap_destroy = READ_ONCE(up->encap_destroy);
2600 			if (encap_destroy)
2601 				encap_destroy(sk);
2602 		}
2603 		if (up->encap_enabled)
2604 			static_branch_dec(&udp_encap_needed_key);
2605 	}
2606 }
2607 
2608 /*
2609  *	Socket option code for UDP
2610  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2611 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2612 		       sockptr_t optval, unsigned int optlen,
2613 		       int (*push_pending_frames)(struct sock *))
2614 {
2615 	struct udp_sock *up = udp_sk(sk);
2616 	int val, valbool;
2617 	int err = 0;
2618 	int is_udplite = IS_UDPLITE(sk);
2619 
2620 	if (optlen < sizeof(int))
2621 		return -EINVAL;
2622 
2623 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2624 		return -EFAULT;
2625 
2626 	valbool = val ? 1 : 0;
2627 
2628 	switch (optname) {
2629 	case UDP_CORK:
2630 		if (val != 0) {
2631 			WRITE_ONCE(up->corkflag, 1);
2632 		} else {
2633 			WRITE_ONCE(up->corkflag, 0);
2634 			lock_sock(sk);
2635 			push_pending_frames(sk);
2636 			release_sock(sk);
2637 		}
2638 		break;
2639 
2640 	case UDP_ENCAP:
2641 		switch (val) {
2642 		case 0:
2643 #ifdef CONFIG_XFRM
2644 		case UDP_ENCAP_ESPINUDP:
2645 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2646 #if IS_ENABLED(CONFIG_IPV6)
2647 			if (sk->sk_family == AF_INET6)
2648 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2649 			else
2650 #endif
2651 				up->encap_rcv = xfrm4_udp_encap_rcv;
2652 #endif
2653 			fallthrough;
2654 		case UDP_ENCAP_L2TPINUDP:
2655 			up->encap_type = val;
2656 			lock_sock(sk);
2657 			udp_tunnel_encap_enable(sk->sk_socket);
2658 			release_sock(sk);
2659 			break;
2660 		default:
2661 			err = -ENOPROTOOPT;
2662 			break;
2663 		}
2664 		break;
2665 
2666 	case UDP_NO_CHECK6_TX:
2667 		up->no_check6_tx = valbool;
2668 		break;
2669 
2670 	case UDP_NO_CHECK6_RX:
2671 		up->no_check6_rx = valbool;
2672 		break;
2673 
2674 	case UDP_SEGMENT:
2675 		if (val < 0 || val > USHRT_MAX)
2676 			return -EINVAL;
2677 		WRITE_ONCE(up->gso_size, val);
2678 		break;
2679 
2680 	case UDP_GRO:
2681 		lock_sock(sk);
2682 
2683 		/* when enabling GRO, accept the related GSO packet type */
2684 		if (valbool)
2685 			udp_tunnel_encap_enable(sk->sk_socket);
2686 		up->gro_enabled = valbool;
2687 		up->accept_udp_l4 = valbool;
2688 		release_sock(sk);
2689 		break;
2690 
2691 	/*
2692 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2693 	 */
2694 	/* The sender sets actual checksum coverage length via this option.
2695 	 * The case coverage > packet length is handled by send module. */
2696 	case UDPLITE_SEND_CSCOV:
2697 		if (!is_udplite)         /* Disable the option on UDP sockets */
2698 			return -ENOPROTOOPT;
2699 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2700 			val = 8;
2701 		else if (val > USHRT_MAX)
2702 			val = USHRT_MAX;
2703 		up->pcslen = val;
2704 		up->pcflag |= UDPLITE_SEND_CC;
2705 		break;
2706 
2707 	/* The receiver specifies a minimum checksum coverage value. To make
2708 	 * sense, this should be set to at least 8 (as done below). If zero is
2709 	 * used, this again means full checksum coverage.                     */
2710 	case UDPLITE_RECV_CSCOV:
2711 		if (!is_udplite)         /* Disable the option on UDP sockets */
2712 			return -ENOPROTOOPT;
2713 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2714 			val = 8;
2715 		else if (val > USHRT_MAX)
2716 			val = USHRT_MAX;
2717 		up->pcrlen = val;
2718 		up->pcflag |= UDPLITE_RECV_CC;
2719 		break;
2720 
2721 	default:
2722 		err = -ENOPROTOOPT;
2723 		break;
2724 	}
2725 
2726 	return err;
2727 }
2728 EXPORT_SYMBOL(udp_lib_setsockopt);
2729 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2730 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2731 		   unsigned int optlen)
2732 {
2733 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2734 		return udp_lib_setsockopt(sk, level, optname,
2735 					  optval, optlen,
2736 					  udp_push_pending_frames);
2737 	return ip_setsockopt(sk, level, optname, optval, optlen);
2738 }
2739 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2740 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2741 		       char __user *optval, int __user *optlen)
2742 {
2743 	struct udp_sock *up = udp_sk(sk);
2744 	int val, len;
2745 
2746 	if (get_user(len, optlen))
2747 		return -EFAULT;
2748 
2749 	len = min_t(unsigned int, len, sizeof(int));
2750 
2751 	if (len < 0)
2752 		return -EINVAL;
2753 
2754 	switch (optname) {
2755 	case UDP_CORK:
2756 		val = READ_ONCE(up->corkflag);
2757 		break;
2758 
2759 	case UDP_ENCAP:
2760 		val = up->encap_type;
2761 		break;
2762 
2763 	case UDP_NO_CHECK6_TX:
2764 		val = up->no_check6_tx;
2765 		break;
2766 
2767 	case UDP_NO_CHECK6_RX:
2768 		val = up->no_check6_rx;
2769 		break;
2770 
2771 	case UDP_SEGMENT:
2772 		val = READ_ONCE(up->gso_size);
2773 		break;
2774 
2775 	case UDP_GRO:
2776 		val = up->gro_enabled;
2777 		break;
2778 
2779 	/* The following two cannot be changed on UDP sockets, the return is
2780 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2781 	case UDPLITE_SEND_CSCOV:
2782 		val = up->pcslen;
2783 		break;
2784 
2785 	case UDPLITE_RECV_CSCOV:
2786 		val = up->pcrlen;
2787 		break;
2788 
2789 	default:
2790 		return -ENOPROTOOPT;
2791 	}
2792 
2793 	if (put_user(len, optlen))
2794 		return -EFAULT;
2795 	if (copy_to_user(optval, &val, len))
2796 		return -EFAULT;
2797 	return 0;
2798 }
2799 EXPORT_SYMBOL(udp_lib_getsockopt);
2800 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2801 int udp_getsockopt(struct sock *sk, int level, int optname,
2802 		   char __user *optval, int __user *optlen)
2803 {
2804 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2805 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2806 	return ip_getsockopt(sk, level, optname, optval, optlen);
2807 }
2808 
2809 /**
2810  * 	udp_poll - wait for a UDP event.
2811  *	@file: - file struct
2812  *	@sock: - socket
2813  *	@wait: - poll table
2814  *
2815  *	This is same as datagram poll, except for the special case of
2816  *	blocking sockets. If application is using a blocking fd
2817  *	and a packet with checksum error is in the queue;
2818  *	then it could get return from select indicating data available
2819  *	but then block when reading it. Add special case code
2820  *	to work around these arguably broken applications.
2821  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2822 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2823 {
2824 	__poll_t mask = datagram_poll(file, sock, wait);
2825 	struct sock *sk = sock->sk;
2826 
2827 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2828 		mask |= EPOLLIN | EPOLLRDNORM;
2829 
2830 	/* Check for false positives due to checksum errors */
2831 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2832 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2833 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2834 
2835 	return mask;
2836 
2837 }
2838 EXPORT_SYMBOL(udp_poll);
2839 
udp_abort(struct sock * sk,int err)2840 int udp_abort(struct sock *sk, int err)
2841 {
2842 	lock_sock(sk);
2843 
2844 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2845 	 * with close()
2846 	 */
2847 	if (sock_flag(sk, SOCK_DEAD))
2848 		goto out;
2849 
2850 	sk->sk_err = err;
2851 	sk->sk_error_report(sk);
2852 	__udp_disconnect(sk, 0);
2853 
2854 out:
2855 	release_sock(sk);
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(udp_abort);
2860 
2861 struct proto udp_prot = {
2862 	.name			= "UDP",
2863 	.owner			= THIS_MODULE,
2864 	.close			= udp_lib_close,
2865 	.pre_connect		= udp_pre_connect,
2866 	.connect		= ip4_datagram_connect,
2867 	.disconnect		= udp_disconnect,
2868 	.ioctl			= udp_ioctl,
2869 	.init			= udp_init_sock,
2870 	.destroy		= udp_destroy_sock,
2871 	.setsockopt		= udp_setsockopt,
2872 	.getsockopt		= udp_getsockopt,
2873 	.sendmsg		= udp_sendmsg,
2874 	.recvmsg		= udp_recvmsg,
2875 	.sendpage		= udp_sendpage,
2876 	.release_cb		= ip4_datagram_release_cb,
2877 	.hash			= udp_lib_hash,
2878 	.unhash			= udp_lib_unhash,
2879 	.rehash			= udp_v4_rehash,
2880 	.get_port		= udp_v4_get_port,
2881 	.memory_allocated	= &udp_memory_allocated,
2882 	.sysctl_mem		= sysctl_udp_mem,
2883 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2884 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2885 	.obj_size		= sizeof(struct udp_sock),
2886 	.h.udp_table		= &udp_table,
2887 	.diag_destroy		= udp_abort,
2888 };
2889 EXPORT_SYMBOL(udp_prot);
2890 
2891 /* ------------------------------------------------------------------------ */
2892 #ifdef CONFIG_PROC_FS
2893 
udp_get_first(struct seq_file * seq,int start)2894 static struct sock *udp_get_first(struct seq_file *seq, int start)
2895 {
2896 	struct sock *sk;
2897 	struct udp_seq_afinfo *afinfo;
2898 	struct udp_iter_state *state = seq->private;
2899 	struct net *net = seq_file_net(seq);
2900 
2901 	if (state->bpf_seq_afinfo)
2902 		afinfo = state->bpf_seq_afinfo;
2903 	else
2904 		afinfo = PDE_DATA(file_inode(seq->file));
2905 
2906 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2907 	     ++state->bucket) {
2908 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2909 
2910 		if (hlist_empty(&hslot->head))
2911 			continue;
2912 
2913 		spin_lock_bh(&hslot->lock);
2914 		sk_for_each(sk, &hslot->head) {
2915 			if (!net_eq(sock_net(sk), net))
2916 				continue;
2917 			if (afinfo->family == AF_UNSPEC ||
2918 			    sk->sk_family == afinfo->family)
2919 				goto found;
2920 		}
2921 		spin_unlock_bh(&hslot->lock);
2922 	}
2923 	sk = NULL;
2924 found:
2925 	return sk;
2926 }
2927 
udp_get_next(struct seq_file * seq,struct sock * sk)2928 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2929 {
2930 	struct udp_seq_afinfo *afinfo;
2931 	struct udp_iter_state *state = seq->private;
2932 	struct net *net = seq_file_net(seq);
2933 
2934 	if (state->bpf_seq_afinfo)
2935 		afinfo = state->bpf_seq_afinfo;
2936 	else
2937 		afinfo = PDE_DATA(file_inode(seq->file));
2938 
2939 	do {
2940 		sk = sk_next(sk);
2941 	} while (sk && (!net_eq(sock_net(sk), net) ||
2942 			(afinfo->family != AF_UNSPEC &&
2943 			 sk->sk_family != afinfo->family)));
2944 
2945 	if (!sk) {
2946 		if (state->bucket <= afinfo->udp_table->mask)
2947 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2948 		return udp_get_first(seq, state->bucket + 1);
2949 	}
2950 	return sk;
2951 }
2952 
udp_get_idx(struct seq_file * seq,loff_t pos)2953 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2954 {
2955 	struct sock *sk = udp_get_first(seq, 0);
2956 
2957 	if (sk)
2958 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2959 			--pos;
2960 	return pos ? NULL : sk;
2961 }
2962 
udp_seq_start(struct seq_file * seq,loff_t * pos)2963 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2964 {
2965 	struct udp_iter_state *state = seq->private;
2966 	state->bucket = MAX_UDP_PORTS;
2967 
2968 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2969 }
2970 EXPORT_SYMBOL(udp_seq_start);
2971 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2972 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2973 {
2974 	struct sock *sk;
2975 
2976 	if (v == SEQ_START_TOKEN)
2977 		sk = udp_get_idx(seq, 0);
2978 	else
2979 		sk = udp_get_next(seq, v);
2980 
2981 	++*pos;
2982 	return sk;
2983 }
2984 EXPORT_SYMBOL(udp_seq_next);
2985 
udp_seq_stop(struct seq_file * seq,void * v)2986 void udp_seq_stop(struct seq_file *seq, void *v)
2987 {
2988 	struct udp_seq_afinfo *afinfo;
2989 	struct udp_iter_state *state = seq->private;
2990 
2991 	if (state->bpf_seq_afinfo)
2992 		afinfo = state->bpf_seq_afinfo;
2993 	else
2994 		afinfo = PDE_DATA(file_inode(seq->file));
2995 
2996 	if (state->bucket <= afinfo->udp_table->mask)
2997 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2998 }
2999 EXPORT_SYMBOL(udp_seq_stop);
3000 
3001 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3002 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3003 		int bucket)
3004 {
3005 	struct inet_sock *inet = inet_sk(sp);
3006 	__be32 dest = inet->inet_daddr;
3007 	__be32 src  = inet->inet_rcv_saddr;
3008 	__u16 destp	  = ntohs(inet->inet_dport);
3009 	__u16 srcp	  = ntohs(inet->inet_sport);
3010 
3011 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3012 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3013 		bucket, src, srcp, dest, destp, sp->sk_state,
3014 		sk_wmem_alloc_get(sp),
3015 		udp_rqueue_get(sp),
3016 		0, 0L, 0,
3017 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3018 		0, sock_i_ino(sp),
3019 		refcount_read(&sp->sk_refcnt), sp,
3020 		atomic_read(&sp->sk_drops));
3021 }
3022 
udp4_seq_show(struct seq_file * seq,void * v)3023 int udp4_seq_show(struct seq_file *seq, void *v)
3024 {
3025 	seq_setwidth(seq, 127);
3026 	if (v == SEQ_START_TOKEN)
3027 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3028 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3029 			   "inode ref pointer drops");
3030 	else {
3031 		struct udp_iter_state *state = seq->private;
3032 
3033 		udp4_format_sock(v, seq, state->bucket);
3034 	}
3035 	seq_pad(seq, '\n');
3036 	return 0;
3037 }
3038 
3039 #ifdef CONFIG_BPF_SYSCALL
3040 struct bpf_iter__udp {
3041 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3042 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3043 	uid_t uid __aligned(8);
3044 	int bucket __aligned(8);
3045 };
3046 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3047 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3048 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3049 {
3050 	struct bpf_iter__udp ctx;
3051 
3052 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3053 	ctx.meta = meta;
3054 	ctx.udp_sk = udp_sk;
3055 	ctx.uid = uid;
3056 	ctx.bucket = bucket;
3057 	return bpf_iter_run_prog(prog, &ctx);
3058 }
3059 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3060 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3061 {
3062 	struct udp_iter_state *state = seq->private;
3063 	struct bpf_iter_meta meta;
3064 	struct bpf_prog *prog;
3065 	struct sock *sk = v;
3066 	uid_t uid;
3067 
3068 	if (v == SEQ_START_TOKEN)
3069 		return 0;
3070 
3071 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3072 	meta.seq = seq;
3073 	prog = bpf_iter_get_info(&meta, false);
3074 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3075 }
3076 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3077 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3078 {
3079 	struct bpf_iter_meta meta;
3080 	struct bpf_prog *prog;
3081 
3082 	if (!v) {
3083 		meta.seq = seq;
3084 		prog = bpf_iter_get_info(&meta, true);
3085 		if (prog)
3086 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3087 	}
3088 
3089 	udp_seq_stop(seq, v);
3090 }
3091 
3092 static const struct seq_operations bpf_iter_udp_seq_ops = {
3093 	.start		= udp_seq_start,
3094 	.next		= udp_seq_next,
3095 	.stop		= bpf_iter_udp_seq_stop,
3096 	.show		= bpf_iter_udp_seq_show,
3097 };
3098 #endif
3099 
3100 const struct seq_operations udp_seq_ops = {
3101 	.start		= udp_seq_start,
3102 	.next		= udp_seq_next,
3103 	.stop		= udp_seq_stop,
3104 	.show		= udp4_seq_show,
3105 };
3106 EXPORT_SYMBOL(udp_seq_ops);
3107 
3108 static struct udp_seq_afinfo udp4_seq_afinfo = {
3109 	.family		= AF_INET,
3110 	.udp_table	= &udp_table,
3111 };
3112 
udp4_proc_init_net(struct net * net)3113 static int __net_init udp4_proc_init_net(struct net *net)
3114 {
3115 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3116 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3117 		return -ENOMEM;
3118 	return 0;
3119 }
3120 
udp4_proc_exit_net(struct net * net)3121 static void __net_exit udp4_proc_exit_net(struct net *net)
3122 {
3123 	remove_proc_entry("udp", net->proc_net);
3124 }
3125 
3126 static struct pernet_operations udp4_net_ops = {
3127 	.init = udp4_proc_init_net,
3128 	.exit = udp4_proc_exit_net,
3129 };
3130 
udp4_proc_init(void)3131 int __init udp4_proc_init(void)
3132 {
3133 	return register_pernet_subsys(&udp4_net_ops);
3134 }
3135 
udp4_proc_exit(void)3136 void udp4_proc_exit(void)
3137 {
3138 	unregister_pernet_subsys(&udp4_net_ops);
3139 }
3140 #endif /* CONFIG_PROC_FS */
3141 
3142 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3143 static int __init set_uhash_entries(char *str)
3144 {
3145 	ssize_t ret;
3146 
3147 	if (!str)
3148 		return 0;
3149 
3150 	ret = kstrtoul(str, 0, &uhash_entries);
3151 	if (ret)
3152 		return 0;
3153 
3154 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3155 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3156 	return 1;
3157 }
3158 __setup("uhash_entries=", set_uhash_entries);
3159 
udp_table_init(struct udp_table * table,const char * name)3160 void __init udp_table_init(struct udp_table *table, const char *name)
3161 {
3162 	unsigned int i;
3163 
3164 	table->hash = alloc_large_system_hash(name,
3165 					      2 * sizeof(struct udp_hslot),
3166 					      uhash_entries,
3167 					      21, /* one slot per 2 MB */
3168 					      0,
3169 					      &table->log,
3170 					      &table->mask,
3171 					      UDP_HTABLE_SIZE_MIN,
3172 					      64 * 1024);
3173 
3174 	table->hash2 = table->hash + (table->mask + 1);
3175 	for (i = 0; i <= table->mask; i++) {
3176 		INIT_HLIST_HEAD(&table->hash[i].head);
3177 		table->hash[i].count = 0;
3178 		spin_lock_init(&table->hash[i].lock);
3179 	}
3180 	for (i = 0; i <= table->mask; i++) {
3181 		INIT_HLIST_HEAD(&table->hash2[i].head);
3182 		table->hash2[i].count = 0;
3183 		spin_lock_init(&table->hash2[i].lock);
3184 	}
3185 }
3186 
udp_flow_hashrnd(void)3187 u32 udp_flow_hashrnd(void)
3188 {
3189 	static u32 hashrnd __read_mostly;
3190 
3191 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3192 
3193 	return hashrnd;
3194 }
3195 EXPORT_SYMBOL(udp_flow_hashrnd);
3196 
__udp_sysctl_init(struct net * net)3197 static void __udp_sysctl_init(struct net *net)
3198 {
3199 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3200 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3201 
3202 #ifdef CONFIG_NET_L3_MASTER_DEV
3203 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3204 #endif
3205 }
3206 
udp_sysctl_init(struct net * net)3207 static int __net_init udp_sysctl_init(struct net *net)
3208 {
3209 	__udp_sysctl_init(net);
3210 	return 0;
3211 }
3212 
3213 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3214 	.init	= udp_sysctl_init,
3215 };
3216 
3217 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3218 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3219 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3220 
3221 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3222 {
3223 	struct udp_iter_state *st = priv_data;
3224 	struct udp_seq_afinfo *afinfo;
3225 	int ret;
3226 
3227 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3228 	if (!afinfo)
3229 		return -ENOMEM;
3230 
3231 	afinfo->family = AF_UNSPEC;
3232 	afinfo->udp_table = &udp_table;
3233 	st->bpf_seq_afinfo = afinfo;
3234 	ret = bpf_iter_init_seq_net(priv_data, aux);
3235 	if (ret)
3236 		kfree(afinfo);
3237 	return ret;
3238 }
3239 
bpf_iter_fini_udp(void * priv_data)3240 static void bpf_iter_fini_udp(void *priv_data)
3241 {
3242 	struct udp_iter_state *st = priv_data;
3243 
3244 	kfree(st->bpf_seq_afinfo);
3245 	bpf_iter_fini_seq_net(priv_data);
3246 }
3247 
3248 static const struct bpf_iter_seq_info udp_seq_info = {
3249 	.seq_ops		= &bpf_iter_udp_seq_ops,
3250 	.init_seq_private	= bpf_iter_init_udp,
3251 	.fini_seq_private	= bpf_iter_fini_udp,
3252 	.seq_priv_size		= sizeof(struct udp_iter_state),
3253 };
3254 
3255 static struct bpf_iter_reg udp_reg_info = {
3256 	.target			= "udp",
3257 	.ctx_arg_info_size	= 1,
3258 	.ctx_arg_info		= {
3259 		{ offsetof(struct bpf_iter__udp, udp_sk),
3260 		  PTR_TO_BTF_ID_OR_NULL },
3261 	},
3262 	.seq_info		= &udp_seq_info,
3263 };
3264 
bpf_iter_register(void)3265 static void __init bpf_iter_register(void)
3266 {
3267 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3268 	if (bpf_iter_reg_target(&udp_reg_info))
3269 		pr_warn("Warning: could not register bpf iterator udp\n");
3270 }
3271 #endif
3272 
udp_init(void)3273 void __init udp_init(void)
3274 {
3275 	unsigned long limit;
3276 	unsigned int i;
3277 
3278 	udp_table_init(&udp_table, "UDP");
3279 	limit = nr_free_buffer_pages() / 8;
3280 	limit = max(limit, 128UL);
3281 	sysctl_udp_mem[0] = limit / 4 * 3;
3282 	sysctl_udp_mem[1] = limit;
3283 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3284 
3285 	__udp_sysctl_init(&init_net);
3286 
3287 	/* 16 spinlocks per cpu */
3288 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3289 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3290 				GFP_KERNEL);
3291 	if (!udp_busylocks)
3292 		panic("UDP: failed to alloc udp_busylocks\n");
3293 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3294 		spin_lock_init(udp_busylocks + i);
3295 
3296 	if (register_pernet_subsys(&udp_sysctl_ops))
3297 		panic("UDP: failed to init sysctl parameters.\n");
3298 
3299 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3300 	bpf_iter_register();
3301 #endif
3302 }
3303