1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Platform-specific code for Win32.
6
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif // MINGW_HAS_SECURE_API
16 #endif // __MINGW32__
17
18 #include <windows.h>
19
20 // This has to come after windows.h.
21 #include <VersionHelpers.h>
22 #include <dbghelp.h> // For SymLoadModule64 and al.
23 #include <mmsystem.h> // For timeGetTime().
24 #include <tlhelp32.h> // For Module32First and al.
25
26 #include <limits>
27
28 #include "src/base/bits.h"
29 #include "src/base/lazy-instance.h"
30 #include "src/base/macros.h"
31 #include "src/base/platform/platform.h"
32 #include "src/base/platform/time.h"
33 #include "src/base/timezone-cache.h"
34 #include "src/base/utils/random-number-generator.h"
35 #include "src/base/win32-headers.h"
36
37 #if defined(_MSC_VER)
38 #include <crtdbg.h>
39 #endif // defined(_MSC_VER)
40
41 // Check that type sizes and alignments match.
42 STATIC_ASSERT(sizeof(V8_CONDITION_VARIABLE) == sizeof(CONDITION_VARIABLE));
43 STATIC_ASSERT(alignof(V8_CONDITION_VARIABLE) == alignof(CONDITION_VARIABLE));
44 STATIC_ASSERT(sizeof(V8_SRWLOCK) == sizeof(SRWLOCK));
45 STATIC_ASSERT(alignof(V8_SRWLOCK) == alignof(SRWLOCK));
46 STATIC_ASSERT(sizeof(V8_CRITICAL_SECTION) == sizeof(CRITICAL_SECTION));
47 STATIC_ASSERT(alignof(V8_CRITICAL_SECTION) == alignof(CRITICAL_SECTION));
48
49 // Check that CRITICAL_SECTION offsets match.
50 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, DebugInfo) ==
51 offsetof(CRITICAL_SECTION, DebugInfo));
52 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, LockCount) ==
53 offsetof(CRITICAL_SECTION, LockCount));
54 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, RecursionCount) ==
55 offsetof(CRITICAL_SECTION, RecursionCount));
56 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, OwningThread) ==
57 offsetof(CRITICAL_SECTION, OwningThread));
58 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, LockSemaphore) ==
59 offsetof(CRITICAL_SECTION, LockSemaphore));
60 STATIC_ASSERT(offsetof(V8_CRITICAL_SECTION, SpinCount) ==
61 offsetof(CRITICAL_SECTION, SpinCount));
62
63 // Extra functions for MinGW. Most of these are the _s functions which are in
64 // the Microsoft Visual Studio C++ CRT.
65 #ifdef __MINGW32__
66
67
68 #ifndef __MINGW64_VERSION_MAJOR
69
70 #define _TRUNCATE 0
71 #define STRUNCATE 80
72
MemoryFence()73 inline void MemoryFence() {
74 int barrier = 0;
75 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
76 }
77
78 #endif // __MINGW64_VERSION_MAJOR
79
80
localtime_s(tm * out_tm,const time_t * time)81 int localtime_s(tm* out_tm, const time_t* time) {
82 tm* posix_local_time_struct = localtime_r(time, out_tm);
83 if (posix_local_time_struct == nullptr) return 1;
84 return 0;
85 }
86
87
fopen_s(FILE ** pFile,const char * filename,const char * mode)88 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
89 *pFile = fopen(filename, mode);
90 return *pFile != nullptr ? 0 : 1;
91 }
92
_wfopen_s(FILE ** pFile,const wchar_t * filename,const wchar_t * mode)93 int _wfopen_s(FILE** pFile, const wchar_t* filename, const wchar_t* mode) {
94 *pFile = _wfopen(filename, mode);
95 return *pFile != nullptr ? 0 : 1;
96 }
97
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)98 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
99 const char* format, va_list argptr) {
100 DCHECK(count == _TRUNCATE);
101 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
102 }
103
104
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)105 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
106 CHECK(source != nullptr);
107 CHECK(dest != nullptr);
108 CHECK_GT(dest_size, 0);
109
110 if (count == _TRUNCATE) {
111 while (dest_size > 0 && *source != 0) {
112 *(dest++) = *(source++);
113 --dest_size;
114 }
115 if (dest_size == 0) {
116 *(dest - 1) = 0;
117 return STRUNCATE;
118 }
119 } else {
120 while (dest_size > 0 && count > 0 && *source != 0) {
121 *(dest++) = *(source++);
122 --dest_size;
123 --count;
124 }
125 }
126 CHECK_GT(dest_size, 0);
127 *dest = 0;
128 return 0;
129 }
130
131 #endif // __MINGW32__
132
133 namespace v8 {
134 namespace base {
135
136 namespace {
137
138 bool g_hard_abort = false;
139
140 } // namespace
141
142 class WindowsTimezoneCache : public TimezoneCache {
143 public:
WindowsTimezoneCache()144 WindowsTimezoneCache() : initialized_(false) {}
145
~WindowsTimezoneCache()146 ~WindowsTimezoneCache() override {}
147
Clear(TimeZoneDetection)148 void Clear(TimeZoneDetection) override { initialized_ = false; }
149
150 const char* LocalTimezone(double time) override;
151
152 double LocalTimeOffset(double time, bool is_utc) override;
153
154 double DaylightSavingsOffset(double time) override;
155
156 // Initialize timezone information. The timezone information is obtained from
157 // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()158 void InitializeIfNeeded() {
159 // Just return if timezone information has already been initialized.
160 if (initialized_) return;
161
162 // Initialize POSIX time zone data.
163 _tzset();
164 // Obtain timezone information from operating system.
165 memset(&tzinfo_, 0, sizeof(tzinfo_));
166 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
167 // If we cannot get timezone information we fall back to CET.
168 tzinfo_.Bias = -60;
169 tzinfo_.StandardDate.wMonth = 10;
170 tzinfo_.StandardDate.wDay = 5;
171 tzinfo_.StandardDate.wHour = 3;
172 tzinfo_.StandardBias = 0;
173 tzinfo_.DaylightDate.wMonth = 3;
174 tzinfo_.DaylightDate.wDay = 5;
175 tzinfo_.DaylightDate.wHour = 2;
176 tzinfo_.DaylightBias = -60;
177 }
178
179 // Make standard and DST timezone names.
180 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, std_tz_name_,
181 kTzNameSize, nullptr, nullptr);
182 std_tz_name_[kTzNameSize - 1] = '\0';
183 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, dst_tz_name_,
184 kTzNameSize, nullptr, nullptr);
185 dst_tz_name_[kTzNameSize - 1] = '\0';
186
187 // If OS returned empty string or resource id (like "@tzres.dll,-211")
188 // simply guess the name from the UTC bias of the timezone.
189 // To properly resolve the resource identifier requires a library load,
190 // which is not possible in a sandbox.
191 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
192 OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
193 "%s Standard Time",
194 GuessTimezoneNameFromBias(tzinfo_.Bias));
195 }
196 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
197 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
198 "%s Daylight Time",
199 GuessTimezoneNameFromBias(tzinfo_.Bias));
200 }
201 // Timezone information initialized.
202 initialized_ = true;
203 }
204
205 // Guess the name of the timezone from the bias.
206 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)207 const char* GuessTimezoneNameFromBias(int bias) {
208 static const int kHour = 60;
209 switch (-bias) {
210 case -9*kHour: return "Alaska";
211 case -8*kHour: return "Pacific";
212 case -7*kHour: return "Mountain";
213 case -6*kHour: return "Central";
214 case -5*kHour: return "Eastern";
215 case -4*kHour: return "Atlantic";
216 case 0*kHour: return "GMT";
217 case +1*kHour: return "Central Europe";
218 case +2*kHour: return "Eastern Europe";
219 case +3*kHour: return "Russia";
220 case +5*kHour + 30: return "India";
221 case +8*kHour: return "China";
222 case +9*kHour: return "Japan";
223 case +12*kHour: return "New Zealand";
224 default: return "Local";
225 }
226 }
227
228
229 private:
230 static const int kTzNameSize = 128;
231 bool initialized_;
232 char std_tz_name_[kTzNameSize];
233 char dst_tz_name_[kTzNameSize];
234 TIME_ZONE_INFORMATION tzinfo_;
235 friend class Win32Time;
236 };
237
238
239 // ----------------------------------------------------------------------------
240 // The Time class represents time on win32. A timestamp is represented as
241 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
242 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
243 // January 1, 1970.
244
245 class Win32Time {
246 public:
247 // Constructors.
248 Win32Time();
249 explicit Win32Time(double jstime);
250 Win32Time(int year, int mon, int day, int hour, int min, int sec);
251
252 // Convert timestamp to JavaScript representation.
253 double ToJSTime();
254
255 // Set timestamp to current time.
256 void SetToCurrentTime();
257
258 // Returns the local timezone offset in milliseconds east of UTC. This is
259 // the number of milliseconds you must add to UTC to get local time, i.e.
260 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
261 // routine also takes into account whether daylight saving is effect
262 // at the time.
263 int64_t LocalOffset(WindowsTimezoneCache* cache);
264
265 // Returns the daylight savings time offset for the time in milliseconds.
266 int64_t DaylightSavingsOffset(WindowsTimezoneCache* cache);
267
268 // Returns a string identifying the current timezone for the
269 // timestamp taking into account daylight saving.
270 char* LocalTimezone(WindowsTimezoneCache* cache);
271
272 private:
273 // Constants for time conversion.
274 static const int64_t kTimeEpoc = 116444736000000000LL;
275 static const int64_t kTimeScaler = 10000;
276 static const int64_t kMsPerMinute = 60000;
277
278 // Constants for timezone information.
279 static const bool kShortTzNames = false;
280
281 // Return whether or not daylight savings time is in effect at this time.
282 bool InDST(WindowsTimezoneCache* cache);
283
284 // Accessor for FILETIME representation.
ft()285 FILETIME& ft() { return time_.ft_; }
286
287 // Accessor for integer representation.
t()288 int64_t& t() { return time_.t_; }
289
290 // Although win32 uses 64-bit integers for representing timestamps,
291 // these are packed into a FILETIME structure. The FILETIME structure
292 // is just a struct representing a 64-bit integer. The TimeStamp union
293 // allows access to both a FILETIME and an integer representation of
294 // the timestamp.
295 union TimeStamp {
296 FILETIME ft_;
297 int64_t t_;
298 };
299
300 TimeStamp time_;
301 };
302
303
304 // Initialize timestamp to start of epoc.
Win32Time()305 Win32Time::Win32Time() {
306 t() = 0;
307 }
308
309
310 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)311 Win32Time::Win32Time(double jstime) {
312 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
313 }
314
315
316 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)317 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
318 SYSTEMTIME st;
319 st.wYear = year;
320 st.wMonth = mon;
321 st.wDay = day;
322 st.wHour = hour;
323 st.wMinute = min;
324 st.wSecond = sec;
325 st.wMilliseconds = 0;
326 SystemTimeToFileTime(&st, &ft());
327 }
328
329
330 // Convert timestamp to JavaScript timestamp.
ToJSTime()331 double Win32Time::ToJSTime() {
332 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
333 }
334
335
336 // Set timestamp to current time.
SetToCurrentTime()337 void Win32Time::SetToCurrentTime() {
338 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
339 // Because we're fast, we like fast timers which have at least a
340 // 1ms resolution.
341 //
342 // timeGetTime() provides 1ms granularity when combined with
343 // timeBeginPeriod(). If the host application for v8 wants fast
344 // timers, it can use timeBeginPeriod to increase the resolution.
345 //
346 // Using timeGetTime() has a drawback because it is a 32bit value
347 // and hence rolls-over every ~49days.
348 //
349 // To use the clock, we use GetSystemTimeAsFileTime as our base;
350 // and then use timeGetTime to extrapolate current time from the
351 // start time. To deal with rollovers, we resync the clock
352 // any time when more than kMaxClockElapsedTime has passed or
353 // whenever timeGetTime creates a rollover.
354
355 static bool initialized = false;
356 static TimeStamp init_time;
357 static DWORD init_ticks;
358 static const int64_t kHundredNanosecondsPerSecond = 10000000;
359 static const int64_t kMaxClockElapsedTime =
360 60*kHundredNanosecondsPerSecond; // 1 minute
361
362 // If we are uninitialized, we need to resync the clock.
363 bool needs_resync = !initialized;
364
365 // Get the current time.
366 TimeStamp time_now;
367 GetSystemTimeAsFileTime(&time_now.ft_);
368 DWORD ticks_now = timeGetTime();
369
370 // Check if we need to resync due to clock rollover.
371 needs_resync |= ticks_now < init_ticks;
372
373 // Check if we need to resync due to elapsed time.
374 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
375
376 // Check if we need to resync due to backwards time change.
377 needs_resync |= time_now.t_ < init_time.t_;
378
379 // Resync the clock if necessary.
380 if (needs_resync) {
381 GetSystemTimeAsFileTime(&init_time.ft_);
382 init_ticks = ticks_now = timeGetTime();
383 initialized = true;
384 }
385
386 // Finally, compute the actual time. Why is this so hard.
387 DWORD elapsed = ticks_now - init_ticks;
388 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
389 }
390
391
392 // Return the local timezone offset in milliseconds east of UTC. This
393 // takes into account whether daylight saving is in effect at the time.
394 // Only times in the 32-bit Unix range may be passed to this function.
395 // Also, adding the time-zone offset to the input must not overflow.
396 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(WindowsTimezoneCache * cache)397 int64_t Win32Time::LocalOffset(WindowsTimezoneCache* cache) {
398 cache->InitializeIfNeeded();
399
400 Win32Time rounded_to_second(*this);
401 rounded_to_second.t() =
402 rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
403 // Convert to local time using POSIX localtime function.
404 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
405 // very slow. Other browsers use localtime().
406
407 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
408 // POSIX seconds past 1/1/1970 0:00:00.
409 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
410 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
411 return 0;
412 }
413 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
414 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
415
416 // Convert to local time, as struct with fields for day, hour, year, etc.
417 tm posix_local_time_struct;
418 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
419
420 if (posix_local_time_struct.tm_isdst > 0) {
421 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
422 } else if (posix_local_time_struct.tm_isdst == 0) {
423 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
424 } else {
425 return cache->tzinfo_.Bias * -kMsPerMinute;
426 }
427 }
428
429
430 // Return whether or not daylight savings time is in effect at this time.
InDST(WindowsTimezoneCache * cache)431 bool Win32Time::InDST(WindowsTimezoneCache* cache) {
432 cache->InitializeIfNeeded();
433
434 // Determine if DST is in effect at the specified time.
435 bool in_dst = false;
436 if (cache->tzinfo_.StandardDate.wMonth != 0 ||
437 cache->tzinfo_.DaylightDate.wMonth != 0) {
438 // Get the local timezone offset for the timestamp in milliseconds.
439 int64_t offset = LocalOffset(cache);
440
441 // Compute the offset for DST. The bias parameters in the timezone info
442 // are specified in minutes. These must be converted to milliseconds.
443 int64_t dstofs =
444 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
445
446 // If the local time offset equals the timezone bias plus the daylight
447 // bias then DST is in effect.
448 in_dst = offset == dstofs;
449 }
450
451 return in_dst;
452 }
453
454
455 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(WindowsTimezoneCache * cache)456 int64_t Win32Time::DaylightSavingsOffset(WindowsTimezoneCache* cache) {
457 return InDST(cache) ? 60 * kMsPerMinute : 0;
458 }
459
460
461 // Returns a string identifying the current timezone for the
462 // timestamp taking into account daylight saving.
LocalTimezone(WindowsTimezoneCache * cache)463 char* Win32Time::LocalTimezone(WindowsTimezoneCache* cache) {
464 // Return the standard or DST time zone name based on whether daylight
465 // saving is in effect at the given time.
466 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
467 }
468
469
470 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)471 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
472 FILETIME dummy;
473 uint64_t usertime;
474
475 // Get the amount of time that the thread has executed in user mode.
476 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
477 reinterpret_cast<FILETIME*>(&usertime))) return -1;
478
479 // Adjust the resolution to micro-seconds.
480 usertime /= 10;
481
482 // Convert to seconds and microseconds
483 *secs = static_cast<uint32_t>(usertime / 1000000);
484 *usecs = static_cast<uint32_t>(usertime % 1000000);
485 return 0;
486 }
487
488
489 // Returns current time as the number of milliseconds since
490 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()491 double OS::TimeCurrentMillis() {
492 return Time::Now().ToJsTime();
493 }
494
495 // Returns a string identifying the current timezone taking into
496 // account daylight saving.
LocalTimezone(double time)497 const char* WindowsTimezoneCache::LocalTimezone(double time) {
498 return Win32Time(time).LocalTimezone(this);
499 }
500
501 // Returns the local time offset in milliseconds east of UTC without
502 // taking daylight savings time into account.
LocalTimeOffset(double time_ms,bool is_utc)503 double WindowsTimezoneCache::LocalTimeOffset(double time_ms, bool is_utc) {
504 // Ignore is_utc and time_ms for now. That way, the behavior wouldn't
505 // change with icu_timezone_data disabled.
506 // Use current time, rounded to the millisecond.
507 Win32Time t(OS::TimeCurrentMillis());
508 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
509 return static_cast<double>(t.LocalOffset(this) -
510 t.DaylightSavingsOffset(this));
511 }
512
513 // Returns the daylight savings offset in milliseconds for the given
514 // time.
DaylightSavingsOffset(double time)515 double WindowsTimezoneCache::DaylightSavingsOffset(double time) {
516 int64_t offset = Win32Time(time).DaylightSavingsOffset(this);
517 return static_cast<double>(offset);
518 }
519
CreateTimezoneCache()520 TimezoneCache* OS::CreateTimezoneCache() { return new WindowsTimezoneCache(); }
521
GetLastError()522 int OS::GetLastError() {
523 return ::GetLastError();
524 }
525
526
GetCurrentProcessId()527 int OS::GetCurrentProcessId() {
528 return static_cast<int>(::GetCurrentProcessId());
529 }
530
531
GetCurrentThreadId()532 int OS::GetCurrentThreadId() {
533 return static_cast<int>(::GetCurrentThreadId());
534 }
535
ExitProcess(int exit_code)536 void OS::ExitProcess(int exit_code) {
537 // Use TerminateProcess to avoid races between isolate threads and
538 // static destructors.
539 fflush(stdout);
540 fflush(stderr);
541 TerminateProcess(GetCurrentProcess(), exit_code);
542 // Termination the current process does not return. {TerminateProcess} is not
543 // marked [[noreturn]] though, since it can also be used to terminate another
544 // process.
545 UNREACHABLE();
546 }
547
548 // ----------------------------------------------------------------------------
549 // Win32 console output.
550 //
551 // If a Win32 application is linked as a console application it has a normal
552 // standard output and standard error. In this case normal printf works fine
553 // for output. However, if the application is linked as a GUI application,
554 // the process doesn't have a console, and therefore (debugging) output is lost.
555 // This is the case if we are embedded in a windows program (like a browser).
556 // In order to be able to get debug output in this case the the debugging
557 // facility using OutputDebugString. This output goes to the active debugger
558 // for the process (if any). Else the output can be monitored using DBMON.EXE.
559
560 enum OutputMode {
561 UNKNOWN, // Output method has not yet been determined.
562 CONSOLE, // Output is written to stdout.
563 ODS // Output is written to debug facility.
564 };
565
566 static OutputMode output_mode = UNKNOWN; // Current output mode.
567
568
569 // Determine if the process has a console for output.
HasConsole()570 static bool HasConsole() {
571 // Only check the first time. Eventual race conditions are not a problem,
572 // because all threads will eventually determine the same mode.
573 if (output_mode == UNKNOWN) {
574 // We cannot just check that the standard output is attached to a console
575 // because this would fail if output is redirected to a file. Therefore we
576 // say that a process does not have an output console if either the
577 // standard output handle is invalid or its file type is unknown.
578 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
579 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
580 output_mode = CONSOLE;
581 else
582 output_mode = ODS;
583 }
584 return output_mode == CONSOLE;
585 }
586
587
VPrintHelper(FILE * stream,const char * format,va_list args)588 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
589 if ((stream == stdout || stream == stderr) && !HasConsole()) {
590 // It is important to use safe print here in order to avoid
591 // overflowing the buffer. We might truncate the output, but this
592 // does not crash.
593 char buffer[4096];
594 OS::VSNPrintF(buffer, sizeof(buffer), format, args);
595 OutputDebugStringA(buffer);
596 } else {
597 vfprintf(stream, format, args);
598 }
599 }
600
601 // Convert utf-8 encoded string to utf-16 encoded.
ConvertUtf8StringToUtf16(const char * str)602 static std::wstring ConvertUtf8StringToUtf16(const char* str) {
603 // On Windows wchar_t must be a 16-bit value.
604 static_assert(sizeof(wchar_t) == 2, "wrong wchar_t size");
605 std::wstring utf16_str;
606 int name_length = static_cast<int>(strlen(str));
607 int len = MultiByteToWideChar(CP_UTF8, 0, str, name_length, nullptr, 0);
608 if (len > 0) {
609 utf16_str.resize(len);
610 MultiByteToWideChar(CP_UTF8, 0, str, name_length, &utf16_str[0], len);
611 }
612 return utf16_str;
613 }
614
FOpen(const char * path,const char * mode)615 FILE* OS::FOpen(const char* path, const char* mode) {
616 FILE* result;
617 std::wstring utf16_path = ConvertUtf8StringToUtf16(path);
618 std::wstring utf16_mode = ConvertUtf8StringToUtf16(mode);
619 if (_wfopen_s(&result, utf16_path.c_str(), utf16_mode.c_str()) == 0) {
620 return result;
621 } else {
622 return nullptr;
623 }
624 }
625
626
Remove(const char * path)627 bool OS::Remove(const char* path) {
628 return (DeleteFileA(path) != 0);
629 }
630
DirectorySeparator()631 char OS::DirectorySeparator() { return '\\'; }
632
isDirectorySeparator(const char ch)633 bool OS::isDirectorySeparator(const char ch) {
634 return ch == '/' || ch == '\\';
635 }
636
637
OpenTemporaryFile()638 FILE* OS::OpenTemporaryFile() {
639 // tmpfile_s tries to use the root dir, don't use it.
640 char tempPathBuffer[MAX_PATH];
641 DWORD path_result = 0;
642 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
643 if (path_result > MAX_PATH || path_result == 0) return nullptr;
644 UINT name_result = 0;
645 char tempNameBuffer[MAX_PATH];
646 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
647 if (name_result == 0) return nullptr;
648 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
649 if (result != nullptr) {
650 Remove(tempNameBuffer); // Delete on close.
651 }
652 return result;
653 }
654
655
656 // Open log file in binary mode to avoid /n -> /r/n conversion.
657 const char* const OS::LogFileOpenMode = "wb+";
658
659 // Print (debug) message to console.
Print(const char * format,...)660 void OS::Print(const char* format, ...) {
661 va_list args;
662 va_start(args, format);
663 VPrint(format, args);
664 va_end(args);
665 }
666
667
VPrint(const char * format,va_list args)668 void OS::VPrint(const char* format, va_list args) {
669 VPrintHelper(stdout, format, args);
670 }
671
672
FPrint(FILE * out,const char * format,...)673 void OS::FPrint(FILE* out, const char* format, ...) {
674 va_list args;
675 va_start(args, format);
676 VFPrint(out, format, args);
677 va_end(args);
678 }
679
680
VFPrint(FILE * out,const char * format,va_list args)681 void OS::VFPrint(FILE* out, const char* format, va_list args) {
682 VPrintHelper(out, format, args);
683 }
684
685
686 // Print error message to console.
PrintError(const char * format,...)687 void OS::PrintError(const char* format, ...) {
688 va_list args;
689 va_start(args, format);
690 VPrintError(format, args);
691 va_end(args);
692 }
693
694
VPrintError(const char * format,va_list args)695 void OS::VPrintError(const char* format, va_list args) {
696 VPrintHelper(stderr, format, args);
697 }
698
699
SNPrintF(char * str,int length,const char * format,...)700 int OS::SNPrintF(char* str, int length, const char* format, ...) {
701 va_list args;
702 va_start(args, format);
703 int result = VSNPrintF(str, length, format, args);
704 va_end(args);
705 return result;
706 }
707
708
VSNPrintF(char * str,int length,const char * format,va_list args)709 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
710 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
711 // Make sure to zero-terminate the string if the output was
712 // truncated or if there was an error.
713 if (n < 0 || n >= length) {
714 if (length > 0)
715 str[length - 1] = '\0';
716 return -1;
717 } else {
718 return n;
719 }
720 }
721
722
StrNCpy(char * dest,int length,const char * src,size_t n)723 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
724 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
725 size_t buffer_size = static_cast<size_t>(length);
726 if (n + 1 > buffer_size) // count for trailing '\0'
727 n = _TRUNCATE;
728 int result = strncpy_s(dest, length, src, n);
729 USE(result);
730 DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
731 }
732
733
734 #undef _TRUNCATE
735 #undef STRUNCATE
736
737 DEFINE_LAZY_LEAKY_OBJECT_GETTER(RandomNumberGenerator,
738 GetPlatformRandomNumberGenerator)
739 static LazyMutex rng_mutex = LAZY_MUTEX_INITIALIZER;
740
Initialize(bool hard_abort,const char * const gc_fake_mmap)741 void OS::Initialize(bool hard_abort, const char* const gc_fake_mmap) {
742 g_hard_abort = hard_abort;
743 }
744
745 typedef PVOID(__stdcall* VirtualAlloc2_t)(HANDLE, PVOID, SIZE_T, ULONG, ULONG,
746 MEM_EXTENDED_PARAMETER*, ULONG);
747 VirtualAlloc2_t VirtualAlloc2 = nullptr;
748
749 typedef PVOID(__stdcall* MapViewOfFile3_t)(HANDLE, HANDLE, PVOID, ULONG64,
750 SIZE_T, ULONG, ULONG,
751 MEM_EXTENDED_PARAMETER*, ULONG);
752 MapViewOfFile3_t MapViewOfFile3 = nullptr;
753
754 typedef PVOID(__stdcall* UnmapViewOfFile2_t)(HANDLE, PVOID, ULONG);
755 UnmapViewOfFile2_t UnmapViewOfFile2 = nullptr;
756
EnsureWin32MemoryAPILoaded()757 void OS::EnsureWin32MemoryAPILoaded() {
758 static bool loaded = false;
759 if (!loaded) {
760 VirtualAlloc2 = (VirtualAlloc2_t)GetProcAddress(
761 GetModuleHandle(L"kernelbase.dll"), "VirtualAlloc2");
762
763 MapViewOfFile3 = (MapViewOfFile3_t)GetProcAddress(
764 GetModuleHandle(L"kernelbase.dll"), "MapViewOfFile3");
765
766 UnmapViewOfFile2 = (UnmapViewOfFile2_t)GetProcAddress(
767 GetModuleHandle(L"kernelbase.dll"), "UnmapViewOfFile2");
768
769 loaded = true;
770 }
771 }
772
773 // static
AllocatePageSize()774 size_t OS::AllocatePageSize() {
775 static size_t allocate_alignment = 0;
776 if (allocate_alignment == 0) {
777 SYSTEM_INFO info;
778 GetSystemInfo(&info);
779 allocate_alignment = info.dwAllocationGranularity;
780 }
781 return allocate_alignment;
782 }
783
784 // static
CommitPageSize()785 size_t OS::CommitPageSize() {
786 static size_t page_size = 0;
787 if (page_size == 0) {
788 SYSTEM_INFO info;
789 GetSystemInfo(&info);
790 page_size = info.dwPageSize;
791 DCHECK_EQ(4096, page_size);
792 }
793 return page_size;
794 }
795
796 // static
SetRandomMmapSeed(int64_t seed)797 void OS::SetRandomMmapSeed(int64_t seed) {
798 if (seed) {
799 MutexGuard guard(rng_mutex.Pointer());
800 GetPlatformRandomNumberGenerator()->SetSeed(seed);
801 }
802 }
803
804 // static
GetRandomMmapAddr()805 void* OS::GetRandomMmapAddr() {
806 // The address range used to randomize RWX allocations in OS::Allocate
807 // Try not to map pages into the default range that windows loads DLLs
808 // Use a multiple of 64k to prevent committing unused memory.
809 // Note: This does not guarantee RWX regions will be within the
810 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
811 #ifdef V8_HOST_ARCH_64_BIT
812 static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
813 static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
814 #else
815 static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
816 static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
817 #endif
818 uintptr_t address;
819 {
820 MutexGuard guard(rng_mutex.Pointer());
821 GetPlatformRandomNumberGenerator()->NextBytes(&address, sizeof(address));
822 }
823 address <<= kPageSizeBits;
824 address += kAllocationRandomAddressMin;
825 address &= kAllocationRandomAddressMax;
826 return reinterpret_cast<void*>(address);
827 }
828
829 namespace {
830
GetProtectionFromMemoryPermission(OS::MemoryPermission access)831 DWORD GetProtectionFromMemoryPermission(OS::MemoryPermission access) {
832 switch (access) {
833 case OS::MemoryPermission::kNoAccess:
834 case OS::MemoryPermission::kNoAccessWillJitLater:
835 return PAGE_NOACCESS;
836 case OS::MemoryPermission::kRead:
837 return PAGE_READONLY;
838 case OS::MemoryPermission::kReadWrite:
839 return PAGE_READWRITE;
840 case OS::MemoryPermission::kReadWriteExecute:
841 if (IsWindows10OrGreater())
842 return PAGE_EXECUTE_READWRITE | PAGE_TARGETS_INVALID;
843 return PAGE_EXECUTE_READWRITE;
844 case OS::MemoryPermission::kReadExecute:
845 if (IsWindows10OrGreater())
846 return PAGE_EXECUTE_READ | PAGE_TARGETS_INVALID;
847 return PAGE_EXECUTE_READ;
848 }
849 UNREACHABLE();
850 }
851
852 // Desired access parameter for MapViewOfFile
GetFileViewAccessFromMemoryPermission(OS::MemoryPermission access)853 DWORD GetFileViewAccessFromMemoryPermission(OS::MemoryPermission access) {
854 switch (access) {
855 case OS::MemoryPermission::kNoAccess:
856 case OS::MemoryPermission::kNoAccessWillJitLater:
857 case OS::MemoryPermission::kRead:
858 return FILE_MAP_READ;
859 case OS::MemoryPermission::kReadWrite:
860 return FILE_MAP_READ | FILE_MAP_WRITE;
861 default:
862 // Execute access is not supported
863 break;
864 }
865 UNREACHABLE();
866 }
867
VirtualAllocWrapper(void * address,size_t size,DWORD flags,DWORD protect)868 void* VirtualAllocWrapper(void* address, size_t size, DWORD flags,
869 DWORD protect) {
870 if (VirtualAlloc2) {
871 return VirtualAlloc2(nullptr, address, size, flags, protect, NULL, 0);
872 } else {
873 return VirtualAlloc(address, size, flags, protect);
874 }
875 }
876
VirtualAllocWithHint(size_t size,DWORD flags,DWORD protect,void * hint)877 uint8_t* VirtualAllocWithHint(size_t size, DWORD flags, DWORD protect,
878 void* hint) {
879 LPVOID base = VirtualAllocWrapper(hint, size, flags, protect);
880
881 // On failure, let the OS find an address to use.
882 if (hint && base == nullptr) {
883 base = VirtualAllocWrapper(nullptr, size, flags, protect);
884 }
885
886 return reinterpret_cast<uint8_t*>(base);
887 }
888
AllocateInternal(void * hint,size_t size,size_t alignment,size_t page_size,DWORD flags,DWORD protect)889 void* AllocateInternal(void* hint, size_t size, size_t alignment,
890 size_t page_size, DWORD flags, DWORD protect) {
891 // First, try an exact size aligned allocation.
892 uint8_t* base = VirtualAllocWithHint(size, flags, protect, hint);
893 if (base == nullptr) return nullptr; // Can't allocate, we're OOM.
894
895 // If address is suitably aligned, we're done.
896 uint8_t* aligned_base = reinterpret_cast<uint8_t*>(
897 RoundUp(reinterpret_cast<uintptr_t>(base), alignment));
898 if (base == aligned_base) return reinterpret_cast<void*>(base);
899
900 // Otherwise, free it and try a larger allocation.
901 CHECK(VirtualFree(base, 0, MEM_RELEASE));
902
903 // Clear the hint. It's unlikely we can allocate at this address.
904 hint = nullptr;
905
906 // Add the maximum misalignment so we are guaranteed an aligned base address
907 // in the allocated region.
908 size_t padded_size = size + (alignment - page_size);
909 const int kMaxAttempts = 3;
910 aligned_base = nullptr;
911 for (int i = 0; i < kMaxAttempts; ++i) {
912 base = VirtualAllocWithHint(padded_size, flags, protect, hint);
913 if (base == nullptr) return nullptr; // Can't allocate, we're OOM.
914
915 // Try to trim the allocation by freeing the padded allocation and then
916 // calling VirtualAlloc at the aligned base.
917 CHECK(VirtualFree(base, 0, MEM_RELEASE));
918 aligned_base = reinterpret_cast<uint8_t*>(
919 RoundUp(reinterpret_cast<uintptr_t>(base), alignment));
920 base = reinterpret_cast<uint8_t*>(
921 VirtualAllocWrapper(aligned_base, size, flags, protect));
922 // We might not get the reduced allocation due to a race. In that case,
923 // base will be nullptr.
924 if (base != nullptr) break;
925 }
926 DCHECK_IMPLIES(base, base == aligned_base);
927 return reinterpret_cast<void*>(base);
928 }
929
930 } // namespace
931
932 // static
Allocate(void * hint,size_t size,size_t alignment,MemoryPermission access)933 void* OS::Allocate(void* hint, size_t size, size_t alignment,
934 MemoryPermission access) {
935 size_t page_size = AllocatePageSize();
936 DCHECK_EQ(0, size % page_size);
937 DCHECK_EQ(0, alignment % page_size);
938 DCHECK_LE(page_size, alignment);
939 hint = AlignedAddress(hint, alignment);
940
941 DWORD flags = (access == OS::MemoryPermission::kNoAccess)
942 ? MEM_RESERVE
943 : MEM_RESERVE | MEM_COMMIT;
944 DWORD protect = GetProtectionFromMemoryPermission(access);
945
946 return AllocateInternal(hint, size, alignment, page_size, flags, protect);
947 }
948
949 // static
Free(void * address,size_t size)950 void OS::Free(void* address, size_t size) {
951 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % AllocatePageSize());
952 DCHECK_EQ(0, size % AllocatePageSize());
953 USE(size);
954 CHECK_NE(0, VirtualFree(address, 0, MEM_RELEASE));
955 }
956
957 // static
AllocateShared(void * hint,size_t size,MemoryPermission permission,PlatformSharedMemoryHandle handle,uint64_t offset)958 void* OS::AllocateShared(void* hint, size_t size, MemoryPermission permission,
959 PlatformSharedMemoryHandle handle, uint64_t offset) {
960 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(hint) % AllocatePageSize());
961 DCHECK_EQ(0, size % AllocatePageSize());
962 DCHECK_EQ(0, offset % AllocatePageSize());
963
964 DWORD off_hi = static_cast<DWORD>(offset >> 32);
965 DWORD off_lo = static_cast<DWORD>(offset);
966 DWORD access = GetFileViewAccessFromMemoryPermission(permission);
967
968 HANDLE file_mapping = FileMappingFromSharedMemoryHandle(handle);
969 void* result =
970 MapViewOfFileEx(file_mapping, access, off_hi, off_lo, size, hint);
971
972 if (!result) {
973 // Retry without hint.
974 result = MapViewOfFile(file_mapping, access, off_hi, off_lo, size);
975 }
976
977 return result;
978 }
979
980 // static
FreeShared(void * address,size_t size)981 void OS::FreeShared(void* address, size_t size) {
982 CHECK(UnmapViewOfFile(address));
983 }
984
985 // static
Release(void * address,size_t size)986 void OS::Release(void* address, size_t size) {
987 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
988 DCHECK_EQ(0, size % CommitPageSize());
989 CHECK_NE(0, VirtualFree(address, size, MEM_DECOMMIT));
990 }
991
992 // static
SetPermissions(void * address,size_t size,MemoryPermission access)993 bool OS::SetPermissions(void* address, size_t size, MemoryPermission access) {
994 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
995 DCHECK_EQ(0, size % CommitPageSize());
996 if (access == MemoryPermission::kNoAccess) {
997 return VirtualFree(address, size, MEM_DECOMMIT) != 0;
998 }
999 DWORD protect = GetProtectionFromMemoryPermission(access);
1000 return VirtualAllocWrapper(address, size, MEM_COMMIT, protect) != nullptr;
1001 }
1002
1003 // static
DiscardSystemPages(void * address,size_t size)1004 bool OS::DiscardSystemPages(void* address, size_t size) {
1005 // On Windows, discarded pages are not returned to the system immediately and
1006 // not guaranteed to be zeroed when returned to the application.
1007 using DiscardVirtualMemoryFunction =
1008 DWORD(WINAPI*)(PVOID virtualAddress, SIZE_T size);
1009 static std::atomic<DiscardVirtualMemoryFunction> discard_virtual_memory(
1010 reinterpret_cast<DiscardVirtualMemoryFunction>(-1));
1011 if (discard_virtual_memory ==
1012 reinterpret_cast<DiscardVirtualMemoryFunction>(-1))
1013 discard_virtual_memory =
1014 reinterpret_cast<DiscardVirtualMemoryFunction>(GetProcAddress(
1015 GetModuleHandle(L"Kernel32.dll"), "DiscardVirtualMemory"));
1016 // Use DiscardVirtualMemory when available because it releases faster than
1017 // MEM_RESET.
1018 DiscardVirtualMemoryFunction discard_function = discard_virtual_memory.load();
1019 if (discard_function) {
1020 DWORD ret = discard_function(address, size);
1021 if (!ret) return true;
1022 }
1023 // DiscardVirtualMemory is buggy in Win10 SP0, so fall back to MEM_RESET on
1024 // failure.
1025 void* ptr = VirtualAllocWrapper(address, size, MEM_RESET, PAGE_READWRITE);
1026 CHECK(ptr);
1027 return ptr;
1028 }
1029
1030 // static
DecommitPages(void * address,size_t size)1031 bool OS::DecommitPages(void* address, size_t size) {
1032 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize());
1033 DCHECK_EQ(0, size % CommitPageSize());
1034 // https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree:
1035 // "If a page is decommitted but not released, its state changes to reserved.
1036 // Subsequently, you can call VirtualAlloc to commit it, or VirtualFree to
1037 // release it. Attempts to read from or write to a reserved page results in an
1038 // access violation exception."
1039 // https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
1040 // for MEM_COMMIT: "The function also guarantees that when the caller later
1041 // initially accesses the memory, the contents will be zero."
1042 return VirtualFree(address, size, MEM_DECOMMIT) != 0;
1043 }
1044
1045 // static
CanReserveAddressSpace()1046 bool OS::CanReserveAddressSpace() {
1047 return VirtualAlloc2 != nullptr && MapViewOfFile3 != nullptr &&
1048 UnmapViewOfFile2 != nullptr;
1049 }
1050
1051 // static
CreateAddressSpaceReservation(void * hint,size_t size,size_t alignment,MemoryPermission max_permission)1052 Optional<AddressSpaceReservation> OS::CreateAddressSpaceReservation(
1053 void* hint, size_t size, size_t alignment,
1054 MemoryPermission max_permission) {
1055 CHECK(CanReserveAddressSpace());
1056
1057 size_t page_size = AllocatePageSize();
1058 DCHECK_EQ(0, size % page_size);
1059 DCHECK_EQ(0, alignment % page_size);
1060 DCHECK_LE(page_size, alignment);
1061 hint = AlignedAddress(hint, alignment);
1062
1063 // On Windows, address space reservations are backed by placeholder mappings.
1064 void* reservation =
1065 AllocateInternal(hint, size, alignment, page_size,
1066 MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS);
1067 if (!reservation) return {};
1068
1069 return AddressSpaceReservation(reservation, size);
1070 }
1071
1072 // static
FreeAddressSpaceReservation(AddressSpaceReservation reservation)1073 void OS::FreeAddressSpaceReservation(AddressSpaceReservation reservation) {
1074 OS::Free(reservation.base(), reservation.size());
1075 }
1076
1077 // static
CreateSharedMemoryHandleForTesting(size_t size)1078 PlatformSharedMemoryHandle OS::CreateSharedMemoryHandleForTesting(size_t size) {
1079 HANDLE handle = CreateFileMapping(INVALID_HANDLE_VALUE, nullptr,
1080 PAGE_READWRITE, 0, size, nullptr);
1081 if (!handle) return kInvalidSharedMemoryHandle;
1082 return SharedMemoryHandleFromFileMapping(handle);
1083 }
1084
1085 // static
DestroySharedMemoryHandle(PlatformSharedMemoryHandle handle)1086 void OS::DestroySharedMemoryHandle(PlatformSharedMemoryHandle handle) {
1087 DCHECK_NE(kInvalidSharedMemoryHandle, handle);
1088 HANDLE file_mapping = FileMappingFromSharedMemoryHandle(handle);
1089 CHECK(CloseHandle(file_mapping));
1090 }
1091
1092 // static
HasLazyCommits()1093 bool OS::HasLazyCommits() {
1094 // TODO(alph): implement for the platform.
1095 return false;
1096 }
1097
Sleep(TimeDelta interval)1098 void OS::Sleep(TimeDelta interval) {
1099 ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
1100 }
1101
1102
Abort()1103 void OS::Abort() {
1104 // Give a chance to debug the failure.
1105 if (IsDebuggerPresent()) {
1106 DebugBreak();
1107 }
1108
1109 // Before aborting, make sure to flush output buffers.
1110 fflush(stdout);
1111 fflush(stderr);
1112
1113 if (g_hard_abort) {
1114 IMMEDIATE_CRASH();
1115 }
1116 // Make the MSVCRT do a silent abort.
1117 raise(SIGABRT);
1118
1119 // Make sure function doesn't return.
1120 abort();
1121 }
1122
1123
DebugBreak()1124 void OS::DebugBreak() {
1125 #if V8_CC_MSVC
1126 // To avoid Visual Studio runtime support the following code can be used
1127 // instead
1128 // __asm { int 3 }
1129 __debugbreak();
1130 #else
1131 ::DebugBreak();
1132 #endif
1133 }
1134
1135
1136 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
1137 public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,size_t size)1138 Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
1139 size_t size)
1140 : file_(file),
1141 file_mapping_(file_mapping),
1142 memory_(memory),
1143 size_(size) {}
1144 ~Win32MemoryMappedFile() final;
memory() const1145 void* memory() const final { return memory_; }
size() const1146 size_t size() const final { return size_; }
1147
1148 private:
1149 HANDLE const file_;
1150 HANDLE const file_mapping_;
1151 void* const memory_;
1152 size_t const size_;
1153 };
1154
1155
1156 // static
open(const char * name,FileMode mode)1157 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name,
1158 FileMode mode) {
1159 // Open a physical file.
1160 DWORD access = GENERIC_READ;
1161 if (mode == FileMode::kReadWrite) {
1162 access |= GENERIC_WRITE;
1163 }
1164
1165 std::wstring utf16_name = ConvertUtf8StringToUtf16(name);
1166 HANDLE file = CreateFileW(utf16_name.c_str(), access,
1167 FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
1168 OPEN_EXISTING, 0, nullptr);
1169 if (file == INVALID_HANDLE_VALUE) return nullptr;
1170
1171 DWORD size = GetFileSize(file, nullptr);
1172 if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0);
1173
1174 DWORD protection =
1175 (mode == FileMode::kReadOnly) ? PAGE_READONLY : PAGE_READWRITE;
1176 // Create a file mapping for the physical file.
1177 HANDLE file_mapping =
1178 CreateFileMapping(file, nullptr, protection, 0, size, nullptr);
1179 if (file_mapping == nullptr) return nullptr;
1180
1181 // Map a view of the file into memory.
1182 DWORD view_access =
1183 (mode == FileMode::kReadOnly) ? FILE_MAP_READ : FILE_MAP_ALL_ACCESS;
1184 void* memory = MapViewOfFile(file_mapping, view_access, 0, 0, size);
1185 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1186 }
1187
1188 // static
create(const char * name,size_t size,void * initial)1189 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
1190 size_t size, void* initial) {
1191 std::wstring utf16_name = ConvertUtf8StringToUtf16(name);
1192 // Open a physical file.
1193 HANDLE file = CreateFileW(utf16_name.c_str(), GENERIC_READ | GENERIC_WRITE,
1194 FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
1195 OPEN_ALWAYS, 0, nullptr);
1196 if (file == nullptr) return nullptr;
1197 if (size == 0) return new Win32MemoryMappedFile(file, nullptr, nullptr, 0);
1198 // Create a file mapping for the physical file.
1199 HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0,
1200 static_cast<DWORD>(size), nullptr);
1201 if (file_mapping == nullptr) return nullptr;
1202 // Map a view of the file into memory.
1203 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1204 if (memory) memmove(memory, initial, size);
1205 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
1206 }
1207
1208
~Win32MemoryMappedFile()1209 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1210 if (memory_) UnmapViewOfFile(memory_);
1211 if (file_mapping_) CloseHandle(file_mapping_);
1212 CloseHandle(file_);
1213 }
1214
CreateSubReservation(void * address,size_t size,OS::MemoryPermission max_permission)1215 Optional<AddressSpaceReservation> AddressSpaceReservation::CreateSubReservation(
1216 void* address, size_t size, OS::MemoryPermission max_permission) {
1217 // Nothing to do, the sub reservation must already have been split by now.
1218 DCHECK(Contains(address, size));
1219 DCHECK_EQ(0, size % OS::AllocatePageSize());
1220 DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % OS::AllocatePageSize());
1221
1222 return AddressSpaceReservation(address, size);
1223 }
1224
FreeSubReservation(AddressSpaceReservation reservation)1225 bool AddressSpaceReservation::FreeSubReservation(
1226 AddressSpaceReservation reservation) {
1227 // Nothing to do.
1228 // Pages allocated inside the reservation must've already been freed.
1229 return true;
1230 }
1231
SplitPlaceholder(void * address,size_t size)1232 bool AddressSpaceReservation::SplitPlaceholder(void* address, size_t size) {
1233 DCHECK(Contains(address, size));
1234 return VirtualFree(address, size, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
1235 }
1236
MergePlaceholders(void * address,size_t size)1237 bool AddressSpaceReservation::MergePlaceholders(void* address, size_t size) {
1238 DCHECK(Contains(address, size));
1239 return VirtualFree(address, size, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS);
1240 }
1241
Allocate(void * address,size_t size,OS::MemoryPermission access)1242 bool AddressSpaceReservation::Allocate(void* address, size_t size,
1243 OS::MemoryPermission access) {
1244 DCHECK(Contains(address, size));
1245 CHECK(VirtualAlloc2);
1246 DWORD flags = (access == OS::MemoryPermission::kNoAccess)
1247 ? MEM_RESERVE | MEM_REPLACE_PLACEHOLDER
1248 : MEM_RESERVE | MEM_COMMIT | MEM_REPLACE_PLACEHOLDER;
1249 DWORD protect = GetProtectionFromMemoryPermission(access);
1250 return VirtualAlloc2(nullptr, address, size, flags, protect, nullptr, 0);
1251 }
1252
Free(void * address,size_t size)1253 bool AddressSpaceReservation::Free(void* address, size_t size) {
1254 DCHECK(Contains(address, size));
1255 return VirtualFree(address, size, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
1256 }
1257
AllocateShared(void * address,size_t size,OS::MemoryPermission access,PlatformSharedMemoryHandle handle,uint64_t offset)1258 bool AddressSpaceReservation::AllocateShared(void* address, size_t size,
1259 OS::MemoryPermission access,
1260 PlatformSharedMemoryHandle handle,
1261 uint64_t offset) {
1262 DCHECK(Contains(address, size));
1263 CHECK(MapViewOfFile3);
1264
1265 DWORD protect = GetProtectionFromMemoryPermission(access);
1266 HANDLE file_mapping = FileMappingFromSharedMemoryHandle(handle);
1267 return MapViewOfFile3(file_mapping, nullptr, address, offset, size,
1268 MEM_REPLACE_PLACEHOLDER, protect, nullptr, 0);
1269 }
1270
FreeShared(void * address,size_t size)1271 bool AddressSpaceReservation::FreeShared(void* address, size_t size) {
1272 DCHECK(Contains(address, size));
1273 CHECK(UnmapViewOfFile2);
1274
1275 return UnmapViewOfFile2(nullptr, address, MEM_PRESERVE_PLACEHOLDER);
1276 }
1277
SetPermissions(void * address,size_t size,OS::MemoryPermission access)1278 bool AddressSpaceReservation::SetPermissions(void* address, size_t size,
1279 OS::MemoryPermission access) {
1280 DCHECK(Contains(address, size));
1281 return OS::SetPermissions(address, size, access);
1282 }
1283
DiscardSystemPages(void * address,size_t size)1284 bool AddressSpaceReservation::DiscardSystemPages(void* address, size_t size) {
1285 DCHECK(Contains(address, size));
1286 return OS::DiscardSystemPages(address, size);
1287 }
1288
DecommitPages(void * address,size_t size)1289 bool AddressSpaceReservation::DecommitPages(void* address, size_t size) {
1290 DCHECK(Contains(address, size));
1291 return OS::DecommitPages(address, size);
1292 }
1293
1294 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
1295 // dynamically. This is to avoid being depending on dbghelp.dll and
1296 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1297 // kernel32.dll at some point so loading functions defines in TlHelp32.h
1298 // dynamically might not be necessary any more - for some versions of Windows?).
1299
1300 // Function pointers to functions dynamically loaded from dbghelp.dll.
1301 #define DBGHELP_FUNCTION_LIST(V) \
1302 V(SymInitialize) \
1303 V(SymGetOptions) \
1304 V(SymSetOptions) \
1305 V(SymGetSearchPath) \
1306 V(SymLoadModule64) \
1307 V(StackWalk64) \
1308 V(SymGetSymFromAddr64) \
1309 V(SymGetLineFromAddr64) \
1310 V(SymFunctionTableAccess64) \
1311 V(SymGetModuleBase64)
1312
1313 // Function pointers to functions dynamically loaded from dbghelp.dll.
1314 #define TLHELP32_FUNCTION_LIST(V) \
1315 V(CreateToolhelp32Snapshot) \
1316 V(Module32FirstW) \
1317 V(Module32NextW)
1318
1319 // Define the decoration to use for the type and variable name used for
1320 // dynamically loaded DLL function..
1321 #define DLL_FUNC_TYPE(name) _##name##_
1322 #define DLL_FUNC_VAR(name) _##name
1323
1324 // Define the type for each dynamically loaded DLL function. The function
1325 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1326 // from the Windows include files are redefined here to have the function
1327 // definitions to be as close to the ones in the original .h files as possible.
1328 #ifndef IN
1329 #define IN
1330 #endif
1331 #ifndef VOID
1332 #define VOID void
1333 #endif
1334
1335 // DbgHelp isn't supported on MinGW yet
1336 #ifndef __MINGW32__
1337 // DbgHelp.h functions.
1338 using DLL_FUNC_TYPE(SymInitialize) = BOOL(__stdcall*)(IN HANDLE hProcess,
1339 IN PSTR UserSearchPath,
1340 IN BOOL fInvadeProcess);
1341 using DLL_FUNC_TYPE(SymGetOptions) = DWORD(__stdcall*)(VOID);
1342 using DLL_FUNC_TYPE(SymSetOptions) = DWORD(__stdcall*)(IN DWORD SymOptions);
1343 using DLL_FUNC_TYPE(SymGetSearchPath) = BOOL(__stdcall*)(
1344 IN HANDLE hProcess, OUT PSTR SearchPath, IN DWORD SearchPathLength);
1345 using DLL_FUNC_TYPE(SymLoadModule64) = DWORD64(__stdcall*)(
1346 IN HANDLE hProcess, IN HANDLE hFile, IN PSTR ImageName, IN PSTR ModuleName,
1347 IN DWORD64 BaseOfDll, IN DWORD SizeOfDll);
1348 using DLL_FUNC_TYPE(StackWalk64) = BOOL(__stdcall*)(
1349 DWORD MachineType, HANDLE hProcess, HANDLE hThread,
1350 LPSTACKFRAME64 StackFrame, PVOID ContextRecord,
1351 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1352 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1353 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1354 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1355 using DLL_FUNC_TYPE(SymGetSymFromAddr64) = BOOL(__stdcall*)(
1356 IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD64 pdwDisplacement,
1357 OUT PIMAGEHLP_SYMBOL64 Symbol);
1358 using DLL_FUNC_TYPE(SymGetLineFromAddr64) =
1359 BOOL(__stdcall*)(IN HANDLE hProcess, IN DWORD64 qwAddr,
1360 OUT PDWORD pdwDisplacement, OUT PIMAGEHLP_LINE64 Line64);
1361 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1362 using DLL_FUNC_TYPE(SymFunctionTableAccess64) = PVOID(__stdcall*)(
1363 HANDLE hProcess,
1364 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1365 using DLL_FUNC_TYPE(SymGetModuleBase64) = DWORD64(__stdcall*)(
1366 HANDLE hProcess,
1367 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1368
1369 // TlHelp32.h functions.
1370 using DLL_FUNC_TYPE(CreateToolhelp32Snapshot) =
1371 HANDLE(__stdcall*)(DWORD dwFlags, DWORD th32ProcessID);
1372 using DLL_FUNC_TYPE(Module32FirstW) = BOOL(__stdcall*)(HANDLE hSnapshot,
1373 LPMODULEENTRY32W lpme);
1374 using DLL_FUNC_TYPE(Module32NextW) = BOOL(__stdcall*)(HANDLE hSnapshot,
1375 LPMODULEENTRY32W lpme);
1376
1377 #undef IN
1378 #undef VOID
1379
1380 // Declare a variable for each dynamically loaded DLL function.
1381 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = nullptr;
1382 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1383 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1384 #undef DEF_DLL_FUNCTION
1385
1386 // Load the functions. This function has a lot of "ugly" macros in order to
1387 // keep down code duplication.
1388
1389 static bool LoadDbgHelpAndTlHelp32() {
1390 static bool dbghelp_loaded = false;
1391
1392 if (dbghelp_loaded) return true;
1393
1394 HMODULE module;
1395
1396 // Load functions from the dbghelp.dll module.
1397 module = LoadLibrary(TEXT("dbghelp.dll"));
1398 if (module == nullptr) {
1399 return false;
1400 }
1401
1402 #define LOAD_DLL_FUNC(name) \
1403 DLL_FUNC_VAR(name) = \
1404 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1405
1406 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1407
1408 #undef LOAD_DLL_FUNC
1409
1410 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1411 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1412 module = LoadLibrary(TEXT("kernel32.dll"));
1413 if (module == nullptr) {
1414 return false;
1415 }
1416
1417 #define LOAD_DLL_FUNC(name) \
1418 DLL_FUNC_VAR(name) = \
1419 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1420
1421 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1422
1423 #undef LOAD_DLL_FUNC
1424
1425 // Check that all functions where loaded.
1426 bool result =
1427 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != nullptr)&&
1428
1429 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1430 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1431
1432 #undef DLL_FUNC_LOADED
1433 true;
1434
1435 dbghelp_loaded = result;
1436 return result;
1437 // NOTE: The modules are never unloaded and will stay around until the
1438 // application is closed.
1439 }
1440
1441 #undef DBGHELP_FUNCTION_LIST
1442 #undef TLHELP32_FUNCTION_LIST
1443 #undef DLL_FUNC_VAR
1444 #undef DLL_FUNC_TYPE
1445
1446
1447 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1448 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1449 HANDLE process_handle) {
1450 static std::vector<OS::SharedLibraryAddress> result;
1451
1452 static bool symbols_loaded = false;
1453
1454 if (symbols_loaded) return result;
1455
1456 BOOL ok;
1457
1458 // Initialize the symbol engine.
1459 ok = _SymInitialize(process_handle, // hProcess
1460 nullptr, // UserSearchPath
1461 false); // fInvadeProcess
1462 if (!ok) return result;
1463
1464 DWORD options = _SymGetOptions();
1465 options |= SYMOPT_LOAD_LINES;
1466 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1467 options = _SymSetOptions(options);
1468
1469 char buf[OS::kStackWalkMaxNameLen] = {0};
1470 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1471 if (!ok) {
1472 int err = GetLastError();
1473 OS::Print("%d\n", err);
1474 return result;
1475 }
1476
1477 HANDLE snapshot = _CreateToolhelp32Snapshot(
1478 TH32CS_SNAPMODULE, // dwFlags
1479 GetCurrentProcessId()); // th32ProcessId
1480 if (snapshot == INVALID_HANDLE_VALUE) return result;
1481 MODULEENTRY32W module_entry;
1482 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1483 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1484 while (cont) {
1485 DWORD64 base;
1486 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1487 // both unicode and ASCII strings even though the parameter is PSTR.
1488 base = _SymLoadModule64(
1489 process_handle, // hProcess
1490 0, // hFile
1491 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1492 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1493 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1494 module_entry.modBaseSize); // SizeOfDll
1495 if (base == 0) {
1496 int err = GetLastError();
1497 if (err != ERROR_MOD_NOT_FOUND &&
1498 err != ERROR_INVALID_HANDLE) {
1499 result.clear();
1500 return result;
1501 }
1502 }
1503 int lib_name_length = WideCharToMultiByte(
1504 CP_UTF8, 0, module_entry.szExePath, -1, nullptr, 0, nullptr, nullptr);
1505 std::string lib_name(lib_name_length, 0);
1506 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1507 lib_name_length, nullptr, nullptr);
1508 result.push_back(OS::SharedLibraryAddress(
1509 lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
1510 reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
1511 module_entry.modBaseSize)));
1512 cont = _Module32NextW(snapshot, &module_entry);
1513 }
1514 CloseHandle(snapshot);
1515
1516 symbols_loaded = true;
1517 return result;
1518 }
1519
1520
GetSharedLibraryAddresses()1521 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1522 // SharedLibraryEvents are logged when loading symbol information.
1523 // Only the shared libraries loaded at the time of the call to
1524 // GetSharedLibraryAddresses are logged. DLLs loaded after
1525 // initialization are not accounted for.
1526 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1527 HANDLE process_handle = GetCurrentProcess();
1528 return LoadSymbols(process_handle);
1529 }
1530
SignalCodeMovingGC()1531 void OS::SignalCodeMovingGC() {}
1532
1533 #else // __MINGW32__
GetSharedLibraryAddresses()1534 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1535 return std::vector<OS::SharedLibraryAddress>();
1536 }
1537
SignalCodeMovingGC()1538 void OS::SignalCodeMovingGC() {}
1539 #endif // __MINGW32__
1540
1541
ActivationFrameAlignment()1542 int OS::ActivationFrameAlignment() {
1543 #ifdef _WIN64
1544 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1545 #elif defined(__MINGW32__)
1546 // With gcc 4.4 the tree vectorization optimizer can generate code
1547 // that requires 16 byte alignment such as movdqa on x86.
1548 return 16;
1549 #else
1550 return 8; // Floating-point math runs faster with 8-byte alignment.
1551 #endif
1552 }
1553
1554 #if (defined(_WIN32) || defined(_WIN64))
EnsureConsoleOutputWin32()1555 void EnsureConsoleOutputWin32() {
1556 UINT new_flags =
1557 SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX;
1558 UINT existing_flags = SetErrorMode(new_flags);
1559 SetErrorMode(existing_flags | new_flags);
1560 #if defined(_MSC_VER)
1561 _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1562 _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
1563 _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1564 _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
1565 _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
1566 _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);
1567 _set_error_mode(_OUT_TO_STDERR);
1568 #endif // defined(_MSC_VER)
1569 }
1570 #endif // (defined(_WIN32) || defined(_WIN64))
1571
1572 // ----------------------------------------------------------------------------
1573 // Win32 thread support.
1574
1575 // Definition of invalid thread handle and id.
1576 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1577
1578 // Entry point for threads. The supplied argument is a pointer to the thread
1579 // object. The entry function dispatches to the run method in the thread
1580 // object. It is important that this function has __stdcall calling
1581 // convention.
ThreadEntry(void * arg)1582 static unsigned int __stdcall ThreadEntry(void* arg) {
1583 Thread* thread = reinterpret_cast<Thread*>(arg);
1584 thread->NotifyStartedAndRun();
1585 return 0;
1586 }
1587
1588
1589 class Thread::PlatformData {
1590 public:
PlatformData(HANDLE thread)1591 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1592 HANDLE thread_;
1593 unsigned thread_id_;
1594 };
1595
1596
1597 // Initialize a Win32 thread object. The thread has an invalid thread
1598 // handle until it is started.
1599
Thread(const Options & options)1600 Thread::Thread(const Options& options)
1601 : stack_size_(options.stack_size()), start_semaphore_(nullptr) {
1602 data_ = new PlatformData(kNoThread);
1603 set_name(options.name());
1604 }
1605
1606
set_name(const char * name)1607 void Thread::set_name(const char* name) {
1608 OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1609 name_[sizeof(name_) - 1] = '\0';
1610 }
1611
1612
1613 // Close our own handle for the thread.
~Thread()1614 Thread::~Thread() {
1615 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1616 delete data_;
1617 }
1618
1619
1620 // Create a new thread. It is important to use _beginthreadex() instead of
1621 // the Win32 function CreateThread(), because the CreateThread() does not
1622 // initialize thread specific structures in the C runtime library.
Start()1623 bool Thread::Start() {
1624 uintptr_t result = _beginthreadex(nullptr, static_cast<unsigned>(stack_size_),
1625 ThreadEntry, this, 0, &data_->thread_id_);
1626 data_->thread_ = reinterpret_cast<HANDLE>(result);
1627 return result != 0;
1628 }
1629
1630 // Wait for thread to terminate.
Join()1631 void Thread::Join() {
1632 if (data_->thread_id_ != GetCurrentThreadId()) {
1633 WaitForSingleObject(data_->thread_, INFINITE);
1634 }
1635 }
1636
1637
CreateThreadLocalKey()1638 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1639 DWORD result = TlsAlloc();
1640 DCHECK(result != TLS_OUT_OF_INDEXES);
1641 return static_cast<LocalStorageKey>(result);
1642 }
1643
1644
DeleteThreadLocalKey(LocalStorageKey key)1645 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1646 BOOL result = TlsFree(static_cast<DWORD>(key));
1647 USE(result);
1648 DCHECK(result);
1649 }
1650
1651
GetThreadLocal(LocalStorageKey key)1652 void* Thread::GetThreadLocal(LocalStorageKey key) {
1653 return TlsGetValue(static_cast<DWORD>(key));
1654 }
1655
1656
SetThreadLocal(LocalStorageKey key,void * value)1657 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1658 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1659 USE(result);
1660 DCHECK(result);
1661 }
1662
AdjustSchedulingParams()1663 void OS::AdjustSchedulingParams() {}
1664
GetFreeMemoryRangesWithin(OS::Address boundary_start,OS::Address boundary_end,size_t minimum_size,size_t alignment)1665 std::vector<OS::MemoryRange> OS::GetFreeMemoryRangesWithin(
1666 OS::Address boundary_start, OS::Address boundary_end, size_t minimum_size,
1667 size_t alignment) {
1668 std::vector<OS::MemoryRange> result = {};
1669
1670 // Search for the virtual memory (vm) ranges within the boundary.
1671 // If a range is free and larger than {minimum_size}, then push it to the
1672 // returned vector.
1673 uintptr_t vm_start = RoundUp(boundary_start, alignment);
1674 uintptr_t vm_end = 0;
1675 MEMORY_BASIC_INFORMATION mi;
1676 // This loop will terminate once the scanning reaches the higher address
1677 // to the end of boundary or the function VirtualQuery fails.
1678 while (vm_start < boundary_end &&
1679 VirtualQuery(reinterpret_cast<LPCVOID>(vm_start), &mi, sizeof(mi)) !=
1680 0) {
1681 vm_start = reinterpret_cast<uintptr_t>(mi.BaseAddress);
1682 vm_end = vm_start + mi.RegionSize;
1683 if (mi.State == MEM_FREE) {
1684 // The available area is the overlap of the virtual memory range and
1685 // boundary. Push the overlapped memory range to the vector if there is
1686 // enough space.
1687 const uintptr_t overlap_start =
1688 RoundUp(std::max(vm_start, boundary_start), alignment);
1689 const uintptr_t overlap_end =
1690 RoundDown(std::min(vm_end, boundary_end), alignment);
1691 if (overlap_start < overlap_end &&
1692 overlap_end - overlap_start >= minimum_size) {
1693 result.push_back({overlap_start, overlap_end});
1694 }
1695 }
1696 // Continue to visit the next virtual memory range.
1697 vm_start = vm_end;
1698 }
1699
1700 return result;
1701 }
1702
1703 // static
GetStackStart()1704 Stack::StackSlot Stack::GetStackStart() {
1705 #if defined(V8_TARGET_ARCH_X64)
1706 return reinterpret_cast<void*>(
1707 reinterpret_cast<NT_TIB64*>(NtCurrentTeb())->StackBase);
1708 #elif defined(V8_TARGET_ARCH_32_BIT)
1709 return reinterpret_cast<void*>(
1710 reinterpret_cast<NT_TIB*>(NtCurrentTeb())->StackBase);
1711 #elif defined(V8_TARGET_ARCH_ARM64)
1712 // Windows 8 and later, see
1713 // https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentthreadstacklimits
1714 ULONG_PTR lowLimit, highLimit;
1715 ::GetCurrentThreadStackLimits(&lowLimit, &highLimit);
1716 return reinterpret_cast<void*>(highLimit);
1717 #else
1718 #error Unsupported GetStackStart.
1719 #endif
1720 }
1721
1722 // static
GetCurrentStackPosition()1723 Stack::StackSlot Stack::GetCurrentStackPosition() {
1724 #if V8_CC_MSVC
1725 return _AddressOfReturnAddress();
1726 #else
1727 return __builtin_frame_address(0);
1728 #endif
1729 }
1730
1731 } // namespace base
1732 } // namespace v8
1733