• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2005 Robert Edele <yartrebo@earthlink.net>
3  * Copyright (c) 2012 Stefano Sabatini
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Advanced blur-based logo removing filter
25  *
26  * This filter loads an image mask file showing where a logo is and
27  * uses a blur transform to remove the logo.
28  *
29  * Based on the libmpcodecs remove-logo filter by Robert Edele.
30  */
31 
32 /**
33  * This code implements a filter to remove annoying TV logos and other annoying
34  * images placed onto a video stream. It works by filling in the pixels that
35  * comprise the logo with neighboring pixels. The transform is very loosely
36  * based on a gaussian blur, but it is different enough to merit its own
37  * paragraph later on. It is a major improvement on the old delogo filter as it
38  * both uses a better blurring algorithm and uses a bitmap to use an arbitrary
39  * and generally much tighter fitting shape than a rectangle.
40  *
41  * The logo removal algorithm has two key points. The first is that it
42  * distinguishes between pixels in the logo and those not in the logo by using
43  * the passed-in bitmap. Pixels not in the logo are copied over directly without
44  * being modified and they also serve as source pixels for the logo
45  * fill-in. Pixels inside the logo have the mask applied.
46  *
47  * At init-time the bitmap is reprocessed internally, and the distance to the
48  * nearest edge of the logo (Manhattan distance), along with a little extra to
49  * remove rough edges, is stored in each pixel. This is done using an in-place
50  * erosion algorithm, and incrementing each pixel that survives any given
51  * erosion.  Once every pixel is eroded, the maximum value is recorded, and a
52  * set of masks from size 0 to this size are generaged. The masks are circular
53  * binary masks, where each pixel within a radius N (where N is the size of the
54  * mask) is a 1, and all other pixels are a 0. Although a gaussian mask would be
55  * more mathematically accurate, a binary mask works better in practice because
56  * we generally do not use the central pixels in the mask (because they are in
57  * the logo region), and thus a gaussian mask will cause too little blur and
58  * thus a very unstable image.
59  *
60  * The mask is applied in a special way. Namely, only pixels in the mask that
61  * line up to pixels outside the logo are used. The dynamic mask size means that
62  * the mask is just big enough so that the edges touch pixels outside the logo,
63  * so the blurring is kept to a minimum and at least the first boundary
64  * condition is met (that the image function itself is continuous), even if the
65  * second boundary condition (that the derivative of the image function is
66  * continuous) is not met. A masking algorithm that does preserve the second
67  * boundary coundition (perhaps something based on a highly-modified bi-cubic
68  * algorithm) should offer even better results on paper, but the noise in a
69  * typical TV signal should make anything based on derivatives hopelessly noisy.
70  */
71 
72 #include "libavutil/imgutils.h"
73 #include "libavutil/opt.h"
74 #include "avfilter.h"
75 #include "formats.h"
76 #include "internal.h"
77 #include "video.h"
78 #include "bbox.h"
79 #include "lavfutils.h"
80 #include "lswsutils.h"
81 
82 typedef struct RemovelogoContext {
83     const AVClass *class;
84     char *filename;
85     /* Stores our collection of masks. The first is for an array of
86        the second for the y axis, and the third for the x axis. */
87     int ***mask;
88     int max_mask_size;
89     int mask_w, mask_h;
90 
91     uint8_t      *full_mask_data;
92     FFBoundingBox full_mask_bbox;
93     uint8_t      *half_mask_data;
94     FFBoundingBox half_mask_bbox;
95 } RemovelogoContext;
96 
97 #define OFFSET(x) offsetof(RemovelogoContext, x)
98 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
99 static const AVOption removelogo_options[] = {
100     { "filename", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
101     { "f",        "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
102     { NULL }
103 };
104 
105 AVFILTER_DEFINE_CLASS(removelogo);
106 
107 /**
108  * Choose a slightly larger mask size to improve performance.
109  *
110  * This function maps the absolute minimum mask size needed to the
111  * mask size we'll actually use. f(x) = x (the smallest that will
112  * work) will produce the sharpest results, but will be quite
113  * jittery. f(x) = 1.25x (what I'm using) is a good tradeoff in my
114  * opinion. This will calculate only at init-time, so you can put a
115  * long expression here without effecting performance.
116  */
117 #define apply_mask_fudge_factor(x) (((x) >> 2) + (x))
118 
119 /**
120  * Pre-process an image to give distance information.
121  *
122  * This function takes a bitmap image and converts it in place into a
123  * distance image. A distance image is zero for pixels outside of the
124  * logo and is the Manhattan distance (|dx| + |dy|) from the logo edge
125  * for pixels inside of the logo. This will overestimate the distance,
126  * but that is safe, and is far easier to implement than a proper
127  * pythagorean distance since I'm using a modified erosion algorithm
128  * to compute the distances.
129  *
130  * @param mask image which will be converted from a greyscale image
131  * into a distance image.
132  */
convert_mask_to_strength_mask(uint8_t * data,int linesize,int w,int h,int min_val,int * max_mask_size)133 static void convert_mask_to_strength_mask(uint8_t *data, int linesize,
134                                           int w, int h, int min_val,
135                                           int *max_mask_size)
136 {
137     int x, y;
138 
139     /* How many times we've gone through the loop. Used in the
140        in-place erosion algorithm and to get us max_mask_size later on. */
141     int current_pass = 0;
142 
143     /* set all non-zero values to 1 */
144     for (y = 0; y < h; y++)
145         for (x = 0; x < w; x++)
146             data[y*linesize + x] = data[y*linesize + x] > min_val;
147 
148     /* For each pass, if a pixel is itself the same value as the
149        current pass, and its four neighbors are too, then it is
150        incremented. If no pixels are incremented by the end of the
151        pass, then we go again. Edge pixels are counted as always
152        excluded (this should be true anyway for any sane mask, but if
153        it isn't this will ensure that we eventually exit). */
154     while (1) {
155         /* If this doesn't get set by the end of this pass, then we're done. */
156         int has_anything_changed = 0;
157         uint8_t *current_pixel0 = data + 1 + linesize, *current_pixel;
158         current_pass++;
159 
160         for (y = 1; y < h-1; y++) {
161             current_pixel = current_pixel0;
162             for (x = 1; x < w-1; x++) {
163                 /* Apply the in-place erosion transform. It is based
164                    on the following two premises:
165                    1 - Any pixel that fails 1 erosion will fail all
166                        future erosions.
167 
168                    2 - Only pixels having survived all erosions up to
169                        the present will be >= to current_pass.
170                    It doesn't matter if it survived the current pass,
171                    failed it, or hasn't been tested yet.  By using >=
172                    instead of ==, we allow the algorithm to work in
173                    place. */
174                 if ( *current_pixel      >= current_pass &&
175                     *(current_pixel + 1) >= current_pass &&
176                     *(current_pixel - 1) >= current_pass &&
177                     *(current_pixel + linesize) >= current_pass &&
178                     *(current_pixel - linesize) >= current_pass) {
179                     /* Increment the value since it still has not been
180                      * eroded, as evidenced by the if statement that
181                      * just evaluated to true. */
182                     (*current_pixel)++;
183                     has_anything_changed = 1;
184                 }
185                 current_pixel++;
186             }
187             current_pixel0 += linesize;
188         }
189         if (!has_anything_changed)
190             break;
191     }
192 
193     /* Apply the fudge factor, which will increase the size of the
194      * mask a little to reduce jitter at the cost of more blur. */
195     for (y = 1; y < h - 1; y++)
196         for (x = 1; x < w - 1; x++)
197             data[(y * linesize) + x] = apply_mask_fudge_factor(data[(y * linesize) + x]);
198 
199     /* As a side-effect, we now know the maximum mask size, which
200      * we'll use to generate our masks. */
201     /* Apply the fudge factor to this number too, since we must ensure
202      * that enough masks are generated. */
203     *max_mask_size = apply_mask_fudge_factor(current_pass + 1);
204 }
205 
load_mask(uint8_t ** mask,int * w,int * h,const char * filename,void * log_ctx)206 static int load_mask(uint8_t **mask, int *w, int *h,
207                      const char *filename, void *log_ctx)
208 {
209     int ret;
210     enum AVPixelFormat pix_fmt;
211     uint8_t *src_data[4], *gray_data[4];
212     int src_linesize[4], gray_linesize[4];
213 
214     /* load image from file */
215     if ((ret = ff_load_image(src_data, src_linesize, w, h, &pix_fmt, filename, log_ctx)) < 0)
216         return ret;
217 
218     /* convert the image to GRAY8 */
219     if ((ret = ff_scale_image(gray_data, gray_linesize, *w, *h, AV_PIX_FMT_GRAY8,
220                               src_data, src_linesize, *w, *h, pix_fmt,
221                               log_ctx)) < 0)
222         goto end;
223 
224     /* copy mask to a newly allocated array */
225     *mask = av_malloc(*w * *h);
226     if (!*mask)
227         ret = AVERROR(ENOMEM);
228     av_image_copy_plane(*mask, *w, gray_data[0], gray_linesize[0], *w, *h);
229 
230 end:
231     av_freep(&src_data[0]);
232     av_freep(&gray_data[0]);
233     return ret;
234 }
235 
236 /**
237  * Generate a scaled down image with half width, height, and intensity.
238  *
239  * This function not only scales down an image, but halves the value
240  * in each pixel too. The purpose of this is to produce a chroma
241  * filter image out of a luma filter image. The pixel values store the
242  * distance to the edge of the logo and halving the dimensions halves
243  * the distance. This function rounds up, because a downwards rounding
244  * error could cause the filter to fail, but an upwards rounding error
245  * will only cause a minor amount of excess blur in the chroma planes.
246  */
generate_half_size_image(const uint8_t * src_data,int src_linesize,uint8_t * dst_data,int dst_linesize,int src_w,int src_h,int * max_mask_size)247 static void generate_half_size_image(const uint8_t *src_data, int src_linesize,
248                                      uint8_t *dst_data, int dst_linesize,
249                                      int src_w, int src_h,
250                                      int *max_mask_size)
251 {
252     int x, y;
253 
254     /* Copy over the image data, using the average of 4 pixels for to
255      * calculate each downsampled pixel. */
256     for (y = 0; y < src_h/2; y++) {
257         for (x = 0; x < src_w/2; x++) {
258             /* Set the pixel if there exists a non-zero value in the
259              * source pixels, else clear it. */
260             dst_data[(y * dst_linesize) + x] =
261                 src_data[((y << 1) * src_linesize) + (x << 1)] ||
262                 src_data[((y << 1) * src_linesize) + (x << 1) + 1] ||
263                 src_data[(((y << 1) + 1) * src_linesize) + (x << 1)] ||
264                 src_data[(((y << 1) + 1) * src_linesize) + (x << 1) + 1];
265             dst_data[(y * dst_linesize) + x] = FFMIN(1, dst_data[(y * dst_linesize) + x]);
266         }
267     }
268 
269     convert_mask_to_strength_mask(dst_data, dst_linesize,
270                                   src_w/2, src_h/2, 0, max_mask_size);
271 }
272 
init(AVFilterContext * ctx)273 static av_cold int init(AVFilterContext *ctx)
274 {
275     RemovelogoContext *s = ctx->priv;
276     int ***mask;
277     int ret = 0;
278     int a, b, c, w, h;
279     int full_max_mask_size, half_max_mask_size;
280 
281     if (!s->filename) {
282         av_log(ctx, AV_LOG_ERROR, "The bitmap file name is mandatory\n");
283         return AVERROR(EINVAL);
284     }
285 
286     /* Load our mask image. */
287     if ((ret = load_mask(&s->full_mask_data, &w, &h, s->filename, ctx)) < 0)
288         return ret;
289     s->mask_w = w;
290     s->mask_h = h;
291 
292     convert_mask_to_strength_mask(s->full_mask_data, w, w, h,
293                                   16, &full_max_mask_size);
294 
295     /* Create the scaled down mask image for the chroma planes. */
296     if (!(s->half_mask_data = av_mallocz(w/2 * h/2)))
297         return AVERROR(ENOMEM);
298     generate_half_size_image(s->full_mask_data, w,
299                              s->half_mask_data, w/2,
300                              w, h, &half_max_mask_size);
301 
302     s->max_mask_size = FFMAX(full_max_mask_size, half_max_mask_size);
303 
304     /* Create a circular mask for each size up to max_mask_size. When
305        the filter is applied, the mask size is determined on a pixel
306        by pixel basis, with pixels nearer the edge of the logo getting
307        smaller mask sizes. */
308     mask = (int ***)av_malloc_array(s->max_mask_size + 1, sizeof(int **));
309     if (!mask)
310         return AVERROR(ENOMEM);
311 
312     for (a = 0; a <= s->max_mask_size; a++) {
313         mask[a] = (int **)av_malloc_array((a * 2) + 1, sizeof(int *));
314         if (!mask[a]) {
315             av_free(mask);
316             return AVERROR(ENOMEM);
317         }
318         for (b = -a; b <= a; b++) {
319             mask[a][b + a] = (int *)av_malloc_array((a * 2) + 1, sizeof(int));
320             if (!mask[a][b + a]) {
321                 av_free(mask);
322                 return AVERROR(ENOMEM);
323             }
324             for (c = -a; c <= a; c++) {
325                 if ((b * b) + (c * c) <= (a * a)) /* Circular 0/1 mask. */
326                     mask[a][b + a][c + a] = 1;
327                 else
328                     mask[a][b + a][c + a] = 0;
329             }
330         }
331     }
332     s->mask = mask;
333 
334     /* Calculate our bounding rectangles, which determine in what
335      * region the logo resides for faster processing. */
336     ff_calculate_bounding_box(&s->full_mask_bbox, s->full_mask_data, w, w, h, 0, 8);
337     ff_calculate_bounding_box(&s->half_mask_bbox, s->half_mask_data, w/2, w/2, h/2, 0, 8);
338 
339 #define SHOW_LOGO_INFO(mask_type)                                       \
340     av_log(ctx, AV_LOG_VERBOSE, #mask_type " x1:%d x2:%d y1:%d y2:%d max_mask_size:%d\n", \
341            s->mask_type##_mask_bbox.x1, s->mask_type##_mask_bbox.x2, \
342            s->mask_type##_mask_bbox.y1, s->mask_type##_mask_bbox.y2, \
343            mask_type##_max_mask_size);
344     SHOW_LOGO_INFO(full);
345     SHOW_LOGO_INFO(half);
346 
347     return 0;
348 }
349 
config_props_input(AVFilterLink * inlink)350 static int config_props_input(AVFilterLink *inlink)
351 {
352     AVFilterContext *ctx = inlink->dst;
353     RemovelogoContext *s = ctx->priv;
354 
355     if (inlink->w != s->mask_w || inlink->h != s->mask_h) {
356         av_log(ctx, AV_LOG_INFO,
357                "Mask image size %dx%d does not match with the input video size %dx%d\n",
358                s->mask_w, s->mask_h, inlink->w, inlink->h);
359         return AVERROR(EINVAL);
360     }
361 
362     return 0;
363 }
364 
365 /**
366  * Blur image.
367  *
368  * It takes a pixel that is inside the mask and blurs it. It does so
369  * by finding the average of all the pixels within the mask and
370  * outside of the mask.
371  *
372  * @param mask_data  the mask plane to use for averaging
373  * @param image_data the image plane to blur
374  * @param w width of the image
375  * @param h height of the image
376  * @param x x-coordinate of the pixel to blur
377  * @param y y-coordinate of the pixel to blur
378  */
blur_pixel(int *** mask,const uint8_t * mask_data,int mask_linesize,uint8_t * image_data,int image_linesize,int w,int h,int x,int y)379 static unsigned int blur_pixel(int ***mask,
380                                const uint8_t *mask_data, int mask_linesize,
381                                uint8_t       *image_data, int image_linesize,
382                                int w, int h, int x, int y)
383 {
384     /* Mask size tells how large a circle to use. The radius is about
385      * (slightly larger than) mask size. */
386     int mask_size;
387     int start_posx, start_posy, end_posx, end_posy;
388     int i, j;
389     unsigned int accumulator = 0, divisor = 0;
390     /* What pixel we are reading out of the circular blur mask. */
391     const uint8_t *image_read_position;
392     /* What pixel we are reading out of the filter image. */
393     const uint8_t *mask_read_position;
394 
395     /* Prepare our bounding rectangle and clip it if need be. */
396     mask_size  = mask_data[y * mask_linesize + x];
397     start_posx = FFMAX(0, x - mask_size);
398     start_posy = FFMAX(0, y - mask_size);
399     end_posx   = FFMIN(w - 1, x + mask_size);
400     end_posy   = FFMIN(h - 1, y + mask_size);
401 
402     image_read_position = image_data + image_linesize * start_posy + start_posx;
403     mask_read_position  = mask_data  + mask_linesize  * start_posy + start_posx;
404 
405     for (j = start_posy; j <= end_posy; j++) {
406         for (i = start_posx; i <= end_posx; i++) {
407             /* Check if this pixel is in the mask or not. Only use the
408              * pixel if it is not. */
409             if (!(*mask_read_position) && mask[mask_size][i - start_posx][j - start_posy]) {
410                 accumulator += *image_read_position;
411                 divisor++;
412             }
413 
414             image_read_position++;
415             mask_read_position++;
416         }
417 
418         image_read_position += (image_linesize - ((end_posx + 1) - start_posx));
419         mask_read_position  += (mask_linesize - ((end_posx + 1) - start_posx));
420     }
421 
422     /* If divisor is 0, it means that not a single pixel is outside of
423        the logo, so we have no data.  Else we need to normalise the
424        data using the divisor. */
425     return divisor == 0 ? 255:
426         (accumulator + (divisor / 2)) / divisor;  /* divide, taking into account average rounding error */
427 }
428 
429 /**
430  * Blur image plane using a mask.
431  *
432  * @param source The image to have it's logo removed.
433  * @param destination Where the output image will be stored.
434  * @param source_stride How far apart (in memory) two consecutive lines are.
435  * @param destination Same as source_stride, but for the destination image.
436  * @param width Width of the image. This is the same for source and destination.
437  * @param height Height of the image. This is the same for source and destination.
438  * @param is_image_direct If the image is direct, then source and destination are
439  *        the same and we can save a lot of time by not copying pixels that
440  *        haven't changed.
441  * @param filter The image that stores the distance to the edge of the logo for
442  *        each pixel.
443  * @param logo_start_x smallest x-coordinate that contains at least 1 logo pixel.
444  * @param logo_start_y smallest y-coordinate that contains at least 1 logo pixel.
445  * @param logo_end_x   largest x-coordinate that contains at least 1 logo pixel.
446  * @param logo_end_y   largest y-coordinate that contains at least 1 logo pixel.
447  *
448  * This function processes an entire plane. Pixels outside of the logo are copied
449  * to the output without change, and pixels inside the logo have the de-blurring
450  * function applied.
451  */
blur_image(int *** mask,const uint8_t * src_data,int src_linesize,uint8_t * dst_data,int dst_linesize,const uint8_t * mask_data,int mask_linesize,int w,int h,int direct,FFBoundingBox * bbox)452 static void blur_image(int ***mask,
453                        const uint8_t *src_data,  int src_linesize,
454                              uint8_t *dst_data,  int dst_linesize,
455                        const uint8_t *mask_data, int mask_linesize,
456                        int w, int h, int direct,
457                        FFBoundingBox *bbox)
458 {
459     int x, y;
460     uint8_t *dst_line;
461     const uint8_t *src_line;
462 
463     if (!direct)
464         av_image_copy_plane(dst_data, dst_linesize, src_data, src_linesize, w, h);
465 
466     for (y = bbox->y1; y <= bbox->y2; y++) {
467         src_line = src_data + src_linesize * y;
468         dst_line = dst_data + dst_linesize * y;
469 
470         for (x = bbox->x1; x <= bbox->x2; x++) {
471              if (mask_data[y * mask_linesize + x]) {
472                 /* Only process if we are in the mask. */
473                  dst_line[x] = blur_pixel(mask,
474                                           mask_data, mask_linesize,
475                                           dst_data, dst_linesize,
476                                           w, h, x, y);
477             } else {
478                 /* Else just copy the data. */
479                 if (!direct)
480                     dst_line[x] = src_line[x];
481             }
482         }
483     }
484 }
485 
filter_frame(AVFilterLink * inlink,AVFrame * inpicref)486 static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
487 {
488     RemovelogoContext *s = inlink->dst->priv;
489     AVFilterLink *outlink = inlink->dst->outputs[0];
490     AVFrame *outpicref;
491     int direct = 0;
492 
493     if (av_frame_is_writable(inpicref)) {
494         direct = 1;
495         outpicref = inpicref;
496     } else {
497         outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
498         if (!outpicref) {
499             av_frame_free(&inpicref);
500             return AVERROR(ENOMEM);
501         }
502         av_frame_copy_props(outpicref, inpicref);
503     }
504 
505     blur_image(s->mask,
506                inpicref ->data[0], inpicref ->linesize[0],
507                outpicref->data[0], outpicref->linesize[0],
508                s->full_mask_data, inlink->w,
509                inlink->w, inlink->h, direct, &s->full_mask_bbox);
510     blur_image(s->mask,
511                inpicref ->data[1], inpicref ->linesize[1],
512                outpicref->data[1], outpicref->linesize[1],
513                s->half_mask_data, inlink->w/2,
514                inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
515     blur_image(s->mask,
516                inpicref ->data[2], inpicref ->linesize[2],
517                outpicref->data[2], outpicref->linesize[2],
518                s->half_mask_data, inlink->w/2,
519                inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
520 
521     if (!direct)
522         av_frame_free(&inpicref);
523 
524     return ff_filter_frame(outlink, outpicref);
525 }
526 
uninit(AVFilterContext * ctx)527 static av_cold void uninit(AVFilterContext *ctx)
528 {
529     RemovelogoContext *s = ctx->priv;
530     int a, b;
531 
532     av_freep(&s->full_mask_data);
533     av_freep(&s->half_mask_data);
534 
535     if (s->mask) {
536         /* Loop through each mask. */
537         for (a = 0; a <= s->max_mask_size; a++) {
538             /* Loop through each scanline in a mask. */
539             for (b = -a; b <= a; b++) {
540                 av_freep(&s->mask[a][b + a]); /* Free a scanline. */
541             }
542             av_freep(&s->mask[a]);
543         }
544         /* Free the array of pointers pointing to the masks. */
545         av_freep(&s->mask);
546     }
547 }
548 
549 static const AVFilterPad removelogo_inputs[] = {
550     {
551         .name         = "default",
552         .type         = AVMEDIA_TYPE_VIDEO,
553         .config_props = config_props_input,
554         .filter_frame = filter_frame,
555     },
556 };
557 
558 static const AVFilterPad removelogo_outputs[] = {
559     {
560         .name = "default",
561         .type = AVMEDIA_TYPE_VIDEO,
562     },
563 };
564 
565 const AVFilter ff_vf_removelogo = {
566     .name          = "removelogo",
567     .description   = NULL_IF_CONFIG_SMALL("Remove a TV logo based on a mask image."),
568     .priv_size     = sizeof(RemovelogoContext),
569     .init          = init,
570     .uninit        = uninit,
571     FILTER_INPUTS(removelogo_inputs),
572     FILTER_OUTPUTS(removelogo_outputs),
573     FILTER_SINGLE_PIXFMT(AV_PIX_FMT_YUV420P),
574     .priv_class    = &removelogo_class,
575     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
576 };
577