• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #ifdef HAVE_LIBELF
47 #include <libelf.h>
48 #include <gelf.h>
49 #endif
50 
51 #include <zlib.h>
52 
53 #include "libbpf.h"
54 #include "bpf.h"
55 #include "btf.h"
56 #include "str_error.h"
57 #include "libbpf_internal.h"
58 #include "hashmap.h"
59 #include "bpf_gen_internal.h"
60 #include "zip.h"
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 };
136 
137 static const char * const link_type_name[] = {
138 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
139 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
140 	[BPF_LINK_TYPE_TRACING]			= "tracing",
141 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
142 	[BPF_LINK_TYPE_ITER]			= "iter",
143 	[BPF_LINK_TYPE_NETNS]			= "netns",
144 	[BPF_LINK_TYPE_XDP]			= "xdp",
145 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
146 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
147 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
148 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
149 	[BPF_LINK_TYPE_TCX]			= "tcx",
150 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
151 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
152 };
153 
154 static const char * const map_type_name[] = {
155 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
156 	[BPF_MAP_TYPE_HASH]			= "hash",
157 	[BPF_MAP_TYPE_ARRAY]			= "array",
158 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
159 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
160 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
161 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
162 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
163 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
164 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
165 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
166 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
167 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
168 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
169 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
170 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
171 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
172 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
173 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
174 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
175 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
176 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
177 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
178 	[BPF_MAP_TYPE_QUEUE]			= "queue",
179 	[BPF_MAP_TYPE_STACK]			= "stack",
180 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
181 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
182 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
183 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
184 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
185 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
186 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
187 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
188 };
189 
190 static const char * const prog_type_name[] = {
191 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
192 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
193 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
194 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
195 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
196 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
197 	[BPF_PROG_TYPE_XDP]			= "xdp",
198 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
199 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
200 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
201 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
202 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
203 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
204 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
205 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
206 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
207 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
208 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
209 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
210 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
211 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
212 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
213 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
214 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
215 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
216 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
217 	[BPF_PROG_TYPE_TRACING]			= "tracing",
218 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
219 	[BPF_PROG_TYPE_EXT]			= "ext",
220 	[BPF_PROG_TYPE_LSM]			= "lsm",
221 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
222 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
223 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
224 };
225 
__base_pr(enum libbpf_print_level level,const char * format,va_list args)226 static int __base_pr(enum libbpf_print_level level, const char *format,
227 		     va_list args)
228 {
229 	if (level == LIBBPF_DEBUG)
230 		return 0;
231 
232 	return vfprintf(stderr, format, args);
233 }
234 
235 static libbpf_print_fn_t __libbpf_pr = __base_pr;
236 
libbpf_set_print(libbpf_print_fn_t fn)237 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
238 {
239 	libbpf_print_fn_t old_print_fn;
240 
241 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
242 
243 	return old_print_fn;
244 }
245 
246 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)247 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
248 {
249 	va_list args;
250 	int old_errno;
251 	libbpf_print_fn_t print_fn;
252 
253 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
254 	if (!print_fn)
255 		return;
256 
257 	old_errno = errno;
258 
259 	va_start(args, format);
260 	__libbpf_pr(level, format, args);
261 	va_end(args);
262 
263 	errno = old_errno;
264 }
265 
pr_perm_msg(int err)266 static void pr_perm_msg(int err)
267 {
268 	struct rlimit limit;
269 	char buf[100];
270 
271 	if (err != -EPERM || geteuid() != 0)
272 		return;
273 
274 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
275 	if (err)
276 		return;
277 
278 	if (limit.rlim_cur == RLIM_INFINITY)
279 		return;
280 
281 	if (limit.rlim_cur < 1024)
282 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
283 	else if (limit.rlim_cur < 1024*1024)
284 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
285 	else
286 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
287 
288 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
289 		buf);
290 }
291 
292 #define STRERR_BUFSIZE  128
293 
294 /* Copied from tools/perf/util/util.h */
295 #ifndef zfree
296 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
297 #endif
298 
299 #ifndef zclose
300 # define zclose(fd) ({			\
301 	int ___err = 0;			\
302 	if ((fd) >= 0)			\
303 		___err = close((fd));	\
304 	fd = -1;			\
305 	___err; })
306 #endif
307 
ptr_to_u64(const void * ptr)308 static inline __u64 ptr_to_u64(const void *ptr)
309 {
310 	return (__u64) (unsigned long) ptr;
311 }
312 
libbpf_set_strict_mode(enum libbpf_strict_mode mode)313 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
314 {
315 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
316 	return 0;
317 }
318 
libbpf_major_version(void)319 __u32 libbpf_major_version(void)
320 {
321 	return LIBBPF_MAJOR_VERSION;
322 }
323 
libbpf_minor_version(void)324 __u32 libbpf_minor_version(void)
325 {
326 	return LIBBPF_MINOR_VERSION;
327 }
328 
libbpf_version_string(void)329 const char *libbpf_version_string(void)
330 {
331 #define __S(X) #X
332 #define _S(X) __S(X)
333 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
334 #undef _S
335 #undef __S
336 }
337 
338 enum reloc_type {
339 	RELO_LD64,
340 	RELO_CALL,
341 	RELO_DATA,
342 	RELO_EXTERN_LD64,
343 	RELO_EXTERN_CALL,
344 	RELO_SUBPROG_ADDR,
345 	RELO_CORE,
346 };
347 
348 struct reloc_desc {
349 	enum reloc_type type;
350 	int insn_idx;
351 	union {
352 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
353 		struct {
354 			int map_idx;
355 			int sym_off;
356 			int ext_idx;
357 		};
358 	};
359 };
360 
361 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
362 enum sec_def_flags {
363 	SEC_NONE = 0,
364 	/* expected_attach_type is optional, if kernel doesn't support that */
365 	SEC_EXP_ATTACH_OPT = 1,
366 	/* legacy, only used by libbpf_get_type_names() and
367 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
368 	 * This used to be associated with cgroup (and few other) BPF programs
369 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
370 	 * meaningless nowadays, though.
371 	 */
372 	SEC_ATTACHABLE = 2,
373 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
374 	/* attachment target is specified through BTF ID in either kernel or
375 	 * other BPF program's BTF object
376 	 */
377 	SEC_ATTACH_BTF = 4,
378 	/* BPF program type allows sleeping/blocking in kernel */
379 	SEC_SLEEPABLE = 8,
380 	/* BPF program support non-linear XDP buffer */
381 	SEC_XDP_FRAGS = 16,
382 	/* Setup proper attach type for usdt probes. */
383 	SEC_USDT = 32,
384 };
385 
386 struct bpf_sec_def {
387 	char *sec;
388 	enum bpf_prog_type prog_type;
389 	enum bpf_attach_type expected_attach_type;
390 	long cookie;
391 	int handler_id;
392 
393 	libbpf_prog_setup_fn_t prog_setup_fn;
394 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
395 	libbpf_prog_attach_fn_t prog_attach_fn;
396 };
397 
398 /*
399  * bpf_prog should be a better name but it has been used in
400  * linux/filter.h.
401  */
402 struct bpf_program {
403 	char *name;
404 	char *sec_name;
405 	size_t sec_idx;
406 	const struct bpf_sec_def *sec_def;
407 	/* this program's instruction offset (in number of instructions)
408 	 * within its containing ELF section
409 	 */
410 	size_t sec_insn_off;
411 	/* number of original instructions in ELF section belonging to this
412 	 * program, not taking into account subprogram instructions possible
413 	 * appended later during relocation
414 	 */
415 	size_t sec_insn_cnt;
416 	/* Offset (in number of instructions) of the start of instruction
417 	 * belonging to this BPF program  within its containing main BPF
418 	 * program. For the entry-point (main) BPF program, this is always
419 	 * zero. For a sub-program, this gets reset before each of main BPF
420 	 * programs are processed and relocated and is used to determined
421 	 * whether sub-program was already appended to the main program, and
422 	 * if yes, at which instruction offset.
423 	 */
424 	size_t sub_insn_off;
425 
426 	/* instructions that belong to BPF program; insns[0] is located at
427 	 * sec_insn_off instruction within its ELF section in ELF file, so
428 	 * when mapping ELF file instruction index to the local instruction,
429 	 * one needs to subtract sec_insn_off; and vice versa.
430 	 */
431 	struct bpf_insn *insns;
432 	/* actual number of instruction in this BPF program's image; for
433 	 * entry-point BPF programs this includes the size of main program
434 	 * itself plus all the used sub-programs, appended at the end
435 	 */
436 	size_t insns_cnt;
437 
438 	struct reloc_desc *reloc_desc;
439 	int nr_reloc;
440 
441 	/* BPF verifier log settings */
442 	char *log_buf;
443 	size_t log_size;
444 	__u32 log_level;
445 
446 	struct bpf_object *obj;
447 
448 	int fd;
449 	bool autoload;
450 	bool autoattach;
451 	bool sym_global;
452 	bool mark_btf_static;
453 	enum bpf_prog_type type;
454 	enum bpf_attach_type expected_attach_type;
455 	int exception_cb_idx;
456 
457 	int prog_ifindex;
458 	__u32 attach_btf_obj_fd;
459 	__u32 attach_btf_id;
460 	__u32 attach_prog_fd;
461 
462 	void *func_info;
463 	__u32 func_info_rec_size;
464 	__u32 func_info_cnt;
465 
466 	void *line_info;
467 	__u32 line_info_rec_size;
468 	__u32 line_info_cnt;
469 	__u32 prog_flags;
470 };
471 
472 struct bpf_struct_ops {
473 	const char *tname;
474 	const struct btf_type *type;
475 	struct bpf_program **progs;
476 	__u32 *kern_func_off;
477 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
478 	void *data;
479 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
480 	 *      btf_vmlinux's format.
481 	 * struct bpf_struct_ops_tcp_congestion_ops {
482 	 *	[... some other kernel fields ...]
483 	 *	struct tcp_congestion_ops data;
484 	 * }
485 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
486 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
487 	 * from "data".
488 	 */
489 	void *kern_vdata;
490 	__u32 type_id;
491 };
492 
493 #define DATA_SEC ".data"
494 #define BSS_SEC ".bss"
495 #define RODATA_SEC ".rodata"
496 #define KCONFIG_SEC ".kconfig"
497 #define KSYMS_SEC ".ksyms"
498 #define STRUCT_OPS_SEC ".struct_ops"
499 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
500 
501 enum libbpf_map_type {
502 	LIBBPF_MAP_UNSPEC,
503 	LIBBPF_MAP_DATA,
504 	LIBBPF_MAP_BSS,
505 	LIBBPF_MAP_RODATA,
506 	LIBBPF_MAP_KCONFIG,
507 };
508 
509 struct bpf_map_def {
510 	unsigned int type;
511 	unsigned int key_size;
512 	unsigned int value_size;
513 	unsigned int max_entries;
514 	unsigned int map_flags;
515 };
516 
517 struct bpf_map {
518 	struct bpf_object *obj;
519 	char *name;
520 	/* real_name is defined for special internal maps (.rodata*,
521 	 * .data*, .bss, .kconfig) and preserves their original ELF section
522 	 * name. This is important to be able to find corresponding BTF
523 	 * DATASEC information.
524 	 */
525 	char *real_name;
526 	int fd;
527 	int sec_idx;
528 	size_t sec_offset;
529 	int map_ifindex;
530 	int inner_map_fd;
531 	struct bpf_map_def def;
532 	__u32 numa_node;
533 	__u32 btf_var_idx;
534 	__u32 btf_key_type_id;
535 	__u32 btf_value_type_id;
536 	__u32 btf_vmlinux_value_type_id;
537 	enum libbpf_map_type libbpf_type;
538 	void *mmaped;
539 	struct bpf_struct_ops *st_ops;
540 	struct bpf_map *inner_map;
541 	void **init_slots;
542 	int init_slots_sz;
543 	char *pin_path;
544 	bool pinned;
545 	bool reused;
546 	bool autocreate;
547 	__u64 map_extra;
548 };
549 
550 enum extern_type {
551 	EXT_UNKNOWN,
552 	EXT_KCFG,
553 	EXT_KSYM,
554 };
555 
556 enum kcfg_type {
557 	KCFG_UNKNOWN,
558 	KCFG_CHAR,
559 	KCFG_BOOL,
560 	KCFG_INT,
561 	KCFG_TRISTATE,
562 	KCFG_CHAR_ARR,
563 };
564 
565 struct extern_desc {
566 	enum extern_type type;
567 	int sym_idx;
568 	int btf_id;
569 	int sec_btf_id;
570 	const char *name;
571 	char *essent_name;
572 	bool is_set;
573 	bool is_weak;
574 	union {
575 		struct {
576 			enum kcfg_type type;
577 			int sz;
578 			int align;
579 			int data_off;
580 			bool is_signed;
581 		} kcfg;
582 		struct {
583 			unsigned long long addr;
584 
585 			/* target btf_id of the corresponding kernel var. */
586 			int kernel_btf_obj_fd;
587 			int kernel_btf_id;
588 
589 			/* local btf_id of the ksym extern's type. */
590 			__u32 type_id;
591 			/* BTF fd index to be patched in for insn->off, this is
592 			 * 0 for vmlinux BTF, index in obj->fd_array for module
593 			 * BTF
594 			 */
595 			__s16 btf_fd_idx;
596 		} ksym;
597 	};
598 };
599 
600 struct module_btf {
601 	struct btf *btf;
602 	char *name;
603 	__u32 id;
604 	int fd;
605 	int fd_array_idx;
606 };
607 
608 enum sec_type {
609 	SEC_UNUSED = 0,
610 	SEC_RELO,
611 	SEC_BSS,
612 	SEC_DATA,
613 	SEC_RODATA,
614 };
615 
616 struct elf_sec_desc {
617 	enum sec_type sec_type;
618 #if defined HAVE_LIBELF
619 	Elf64_Shdr *shdr;
620 #elif defined HAVE_ELFIO
621 	psection_t psection;
622 	Elf_Data realdata;
623 #endif
624 	Elf_Data *data;
625 };
626 
627 struct elf_state {
628 	int fd;
629 	const void *obj_buf;
630 	size_t obj_buf_sz;
631 #if defined HAVE_LIBELF
632 	Elf *elf;
633 #elif defined HAVE_ELFIO
634 	pelfio_t elf;
635 	Elf64_Ehdr eheader;
636 	pstring_t shstring;
637 	pstring_t strstring;
638 	Elf_Data realsymbols;
639 	Elf_Data realst_ops_data;
640 #endif
641 	Elf64_Ehdr *ehdr;
642 	Elf_Data *symbols;
643 	Elf_Data *st_ops_data;
644 	Elf_Data *st_ops_link_data;
645 	size_t shstrndx; /* section index for section name strings */
646 	size_t strtabidx;
647 	struct elf_sec_desc *secs;
648 	size_t sec_cnt;
649 	int btf_maps_shndx;
650 	__u32 btf_maps_sec_btf_id;
651 	int text_shndx;
652 	int symbols_shndx;
653 	int st_ops_shndx;
654 	int st_ops_link_shndx;
655 };
656 
657 struct usdt_manager;
658 
659 struct bpf_object {
660 	char name[BPF_OBJ_NAME_LEN];
661 	char license[64];
662 	__u32 kern_version;
663 
664 	struct bpf_program *programs;
665 	size_t nr_programs;
666 	struct bpf_map *maps;
667 	size_t nr_maps;
668 	size_t maps_cap;
669 
670 	char *kconfig;
671 	struct extern_desc *externs;
672 	int nr_extern;
673 	int kconfig_map_idx;
674 
675 	bool loaded;
676 	bool has_subcalls;
677 	bool has_rodata;
678 
679 	struct bpf_gen *gen_loader;
680 
681 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
682 	struct elf_state efile;
683 
684 	struct btf *btf;
685 	struct btf_ext *btf_ext;
686 
687 	/* Parse and load BTF vmlinux if any of the programs in the object need
688 	 * it at load time.
689 	 */
690 	struct btf *btf_vmlinux;
691 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
692 	 * override for vmlinux BTF.
693 	 */
694 	char *btf_custom_path;
695 	/* vmlinux BTF override for CO-RE relocations */
696 	struct btf *btf_vmlinux_override;
697 	/* Lazily initialized kernel module BTFs */
698 	struct module_btf *btf_modules;
699 	bool btf_modules_loaded;
700 	size_t btf_module_cnt;
701 	size_t btf_module_cap;
702 
703 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
704 	char *log_buf;
705 	size_t log_size;
706 	__u32 log_level;
707 
708 	int *fd_array;
709 	size_t fd_array_cap;
710 	size_t fd_array_cnt;
711 
712 	struct usdt_manager *usdt_man;
713 
714 	char path[];
715 };
716 
717 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
718 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
719 #ifdef HAVE_LIBELF
720 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
721 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
722 #endif
723 #if defined HAVE_LIBELF
724 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
725 #elif defined HAVE_ELFIO
726 static Elf64_Shdr *elf_sec_hdr_by_idx(const struct bpf_object *obj, size_t idx, Elf64_Shdr *sheader);
727 #endif
728 #if defined HAVE_LIBELF
729 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
730 #elif defined HAVE_ELFIO
731 static const char *elf_sec_name_by_idx(const struct bpf_object *obj, size_t idx);
732 #endif
733 #if defined HAVE_LIBELF
734 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
735 #elif defined HAVE_ELFIO
736 static Elf_Data *elf_sec_data_by_name(const struct bpf_object *obj, const char *name, Elf_Data *data);
737 static Elf_Data *elf_sec_data_by_idx(const struct bpf_object *obj, size_t idx, Elf_Data *data);
738 #endif
739 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
740 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
741 
bpf_program__unload(struct bpf_program * prog)742 void bpf_program__unload(struct bpf_program *prog)
743 {
744 	if (!prog)
745 		return;
746 
747 	zclose(prog->fd);
748 
749 	zfree(&prog->func_info);
750 	zfree(&prog->line_info);
751 }
752 
bpf_program__exit(struct bpf_program * prog)753 static void bpf_program__exit(struct bpf_program *prog)
754 {
755 	if (!prog)
756 		return;
757 
758 	bpf_program__unload(prog);
759 	zfree(&prog->name);
760 	zfree(&prog->sec_name);
761 	zfree(&prog->insns);
762 	zfree(&prog->reloc_desc);
763 
764 	prog->nr_reloc = 0;
765 	prog->insns_cnt = 0;
766 	prog->sec_idx = -1;
767 }
768 
insn_is_subprog_call(const struct bpf_insn * insn)769 static bool insn_is_subprog_call(const struct bpf_insn *insn)
770 {
771 	return BPF_CLASS(insn->code) == BPF_JMP &&
772 	       BPF_OP(insn->code) == BPF_CALL &&
773 	       BPF_SRC(insn->code) == BPF_K &&
774 	       insn->src_reg == BPF_PSEUDO_CALL &&
775 	       insn->dst_reg == 0 &&
776 	       insn->off == 0;
777 }
778 
is_call_insn(const struct bpf_insn * insn)779 static bool is_call_insn(const struct bpf_insn *insn)
780 {
781 	return insn->code == (BPF_JMP | BPF_CALL);
782 }
783 
insn_is_pseudo_func(struct bpf_insn * insn)784 static bool insn_is_pseudo_func(struct bpf_insn *insn)
785 {
786 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
787 }
788 
789 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)790 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
791 		      const char *name, size_t sec_idx, const char *sec_name,
792 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
793 {
794 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
795 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
796 			sec_name, name, sec_off, insn_data_sz);
797 		return -EINVAL;
798 	}
799 
800 	memset(prog, 0, sizeof(*prog));
801 	prog->obj = obj;
802 
803 	prog->sec_idx = sec_idx;
804 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
805 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
806 	/* insns_cnt can later be increased by appending used subprograms */
807 	prog->insns_cnt = prog->sec_insn_cnt;
808 
809 	prog->type = BPF_PROG_TYPE_UNSPEC;
810 	prog->fd = -1;
811 	prog->exception_cb_idx = -1;
812 
813 	/* libbpf's convention for SEC("?abc...") is that it's just like
814 	 * SEC("abc...") but the corresponding bpf_program starts out with
815 	 * autoload set to false.
816 	 */
817 	if (sec_name[0] == '?') {
818 		prog->autoload = false;
819 		/* from now on forget there was ? in section name */
820 		sec_name++;
821 	} else {
822 		prog->autoload = true;
823 	}
824 
825 	prog->autoattach = true;
826 
827 	/* inherit object's log_level */
828 	prog->log_level = obj->log_level;
829 
830 	prog->sec_name = strdup(sec_name);
831 	if (!prog->sec_name)
832 		goto errout;
833 
834 	prog->name = strdup(name);
835 	if (!prog->name)
836 		goto errout;
837 
838 	prog->insns = malloc(insn_data_sz);
839 	if (!prog->insns)
840 		goto errout;
841 	memcpy(prog->insns, insn_data, insn_data_sz);
842 
843 	return 0;
844 errout:
845 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
846 	bpf_program__exit(prog);
847 	return -ENOMEM;
848 }
849 
850 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)851 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
852 			 const char *sec_name, int sec_idx)
853 {
854 	Elf_Data *symbols = obj->efile.symbols;
855 	struct bpf_program *prog, *progs;
856 	void *data = sec_data->d_buf;
857 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
858 	int nr_progs, err, i;
859 	const char *name;
860 	Elf64_Sym *sym;
861 
862 	progs = obj->programs;
863 	nr_progs = obj->nr_programs;
864 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
865 
866 	for (i = 0; i < nr_syms; i++) {
867 		sym = elf_sym_by_idx(obj, i);
868 
869 		if (sym->st_shndx != sec_idx)
870 			continue;
871 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
872 			continue;
873 
874 		prog_sz = sym->st_size;
875 		sec_off = sym->st_value;
876 
877 		name = elf_sym_str(obj, sym->st_name);
878 		if (!name) {
879 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
880 				sec_name, sec_off);
881 			return -LIBBPF_ERRNO__FORMAT;
882 		}
883 
884 		if (sec_off + prog_sz > sec_sz) {
885 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
886 				sec_name, sec_off);
887 			return -LIBBPF_ERRNO__FORMAT;
888 		}
889 
890 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
891 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
892 			return -ENOTSUP;
893 		}
894 
895 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
896 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
897 
898 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
899 		if (!progs) {
900 			/*
901 			 * In this case the original obj->programs
902 			 * is still valid, so don't need special treat for
903 			 * bpf_close_object().
904 			 */
905 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
906 				sec_name, name);
907 			return -ENOMEM;
908 		}
909 		obj->programs = progs;
910 
911 		prog = &progs[nr_progs];
912 
913 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
914 					    sec_off, data + sec_off, prog_sz);
915 		if (err)
916 			return err;
917 
918 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
919 			prog->sym_global = true;
920 
921 		/* if function is a global/weak symbol, but has restricted
922 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
923 		 * as static to enable more permissive BPF verification mode
924 		 * with more outside context available to BPF verifier
925 		 */
926 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
927 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
928 			prog->mark_btf_static = true;
929 
930 		nr_progs++;
931 		obj->nr_programs = nr_progs;
932 	}
933 
934 	return 0;
935 }
936 
937 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)938 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
939 {
940 	struct btf_member *m;
941 	int i;
942 
943 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
944 		if (btf_member_bit_offset(t, i) == bit_offset)
945 			return m;
946 	}
947 
948 	return NULL;
949 }
950 
951 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)952 find_member_by_name(const struct btf *btf, const struct btf_type *t,
953 		    const char *name)
954 {
955 	struct btf_member *m;
956 	int i;
957 
958 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
959 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
960 			return m;
961 	}
962 
963 	return NULL;
964 }
965 
966 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
967 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
968 				   const char *name, __u32 kind);
969 
970 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)971 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
972 			   const struct btf_type **type, __u32 *type_id,
973 			   const struct btf_type **vtype, __u32 *vtype_id,
974 			   const struct btf_member **data_member)
975 {
976 	const struct btf_type *kern_type, *kern_vtype;
977 	const struct btf_member *kern_data_member;
978 	__s32 kern_vtype_id, kern_type_id;
979 	__u32 i;
980 
981 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
982 	if (kern_type_id < 0) {
983 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
984 			tname);
985 		return kern_type_id;
986 	}
987 	kern_type = btf__type_by_id(btf, kern_type_id);
988 
989 	/* Find the corresponding "map_value" type that will be used
990 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
991 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
992 	 * btf_vmlinux.
993 	 */
994 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
995 						tname, BTF_KIND_STRUCT);
996 	if (kern_vtype_id < 0) {
997 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
998 			STRUCT_OPS_VALUE_PREFIX, tname);
999 		return kern_vtype_id;
1000 	}
1001 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1002 
1003 	/* Find "struct tcp_congestion_ops" from
1004 	 * struct bpf_struct_ops_tcp_congestion_ops {
1005 	 *	[ ... ]
1006 	 *	struct tcp_congestion_ops data;
1007 	 * }
1008 	 */
1009 	kern_data_member = btf_members(kern_vtype);
1010 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1011 		if (kern_data_member->type == kern_type_id)
1012 			break;
1013 	}
1014 	if (i == btf_vlen(kern_vtype)) {
1015 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1016 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1017 		return -EINVAL;
1018 	}
1019 
1020 	*type = kern_type;
1021 	*type_id = kern_type_id;
1022 	*vtype = kern_vtype;
1023 	*vtype_id = kern_vtype_id;
1024 	*data_member = kern_data_member;
1025 
1026 	return 0;
1027 }
1028 
bpf_map__is_struct_ops(const struct bpf_map * map)1029 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1030 {
1031 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1032 }
1033 
1034 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)1035 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1036 					 const struct btf *btf,
1037 					 const struct btf *kern_btf)
1038 {
1039 	const struct btf_member *member, *kern_member, *kern_data_member;
1040 	const struct btf_type *type, *kern_type, *kern_vtype;
1041 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1042 	struct bpf_struct_ops *st_ops;
1043 	void *data, *kern_data;
1044 	const char *tname;
1045 	int err;
1046 
1047 	st_ops = map->st_ops;
1048 	type = st_ops->type;
1049 	tname = st_ops->tname;
1050 	err = find_struct_ops_kern_types(kern_btf, tname,
1051 					 &kern_type, &kern_type_id,
1052 					 &kern_vtype, &kern_vtype_id,
1053 					 &kern_data_member);
1054 	if (err)
1055 		return err;
1056 
1057 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1058 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1059 
1060 	map->def.value_size = kern_vtype->size;
1061 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1062 
1063 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1064 	if (!st_ops->kern_vdata)
1065 		return -ENOMEM;
1066 
1067 	data = st_ops->data;
1068 	kern_data_off = kern_data_member->offset / 8;
1069 	kern_data = st_ops->kern_vdata + kern_data_off;
1070 
1071 	member = btf_members(type);
1072 	for (i = 0; i < btf_vlen(type); i++, member++) {
1073 		const struct btf_type *mtype, *kern_mtype;
1074 		__u32 mtype_id, kern_mtype_id;
1075 		void *mdata, *kern_mdata;
1076 		__s64 msize, kern_msize;
1077 		__u32 moff, kern_moff;
1078 		__u32 kern_member_idx;
1079 		const char *mname;
1080 
1081 		mname = btf__name_by_offset(btf, member->name_off);
1082 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1083 		if (!kern_member) {
1084 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1085 				map->name, mname);
1086 			return -ENOTSUP;
1087 		}
1088 
1089 		kern_member_idx = kern_member - btf_members(kern_type);
1090 		if (btf_member_bitfield_size(type, i) ||
1091 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1092 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1093 				map->name, mname);
1094 			return -ENOTSUP;
1095 		}
1096 
1097 		moff = member->offset / 8;
1098 		kern_moff = kern_member->offset / 8;
1099 
1100 		mdata = data + moff;
1101 		kern_mdata = kern_data + kern_moff;
1102 
1103 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1104 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1105 						    &kern_mtype_id);
1106 		if (BTF_INFO_KIND(mtype->info) !=
1107 		    BTF_INFO_KIND(kern_mtype->info)) {
1108 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1109 				map->name, mname, BTF_INFO_KIND(mtype->info),
1110 				BTF_INFO_KIND(kern_mtype->info));
1111 			return -ENOTSUP;
1112 		}
1113 
1114 		if (btf_is_ptr(mtype)) {
1115 			struct bpf_program *prog;
1116 
1117 			prog = st_ops->progs[i];
1118 			if (!prog)
1119 				continue;
1120 
1121 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1122 							    kern_mtype->type,
1123 							    &kern_mtype_id);
1124 
1125 			/* mtype->type must be a func_proto which was
1126 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1127 			 * so only check kern_mtype for func_proto here.
1128 			 */
1129 			if (!btf_is_func_proto(kern_mtype)) {
1130 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1131 					map->name, mname);
1132 				return -ENOTSUP;
1133 			}
1134 
1135 			prog->attach_btf_id = kern_type_id;
1136 			prog->expected_attach_type = kern_member_idx;
1137 
1138 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1139 
1140 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1141 				 map->name, mname, prog->name, moff,
1142 				 kern_moff);
1143 
1144 			continue;
1145 		}
1146 
1147 		msize = btf__resolve_size(btf, mtype_id);
1148 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1149 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1150 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1151 				map->name, mname, (ssize_t)msize,
1152 				(ssize_t)kern_msize);
1153 			return -ENOTSUP;
1154 		}
1155 
1156 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1157 			 map->name, mname, (unsigned int)msize,
1158 			 moff, kern_moff);
1159 		memcpy(kern_mdata, mdata, msize);
1160 	}
1161 
1162 	return 0;
1163 }
1164 
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1165 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1166 {
1167 	struct bpf_map *map;
1168 	size_t i;
1169 	int err;
1170 
1171 	for (i = 0; i < obj->nr_maps; i++) {
1172 		map = &obj->maps[i];
1173 
1174 		if (!bpf_map__is_struct_ops(map))
1175 			continue;
1176 
1177 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1178 						    obj->btf_vmlinux);
1179 		if (err)
1180 			return err;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1186 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1187 				int shndx, Elf_Data *data, __u32 map_flags)
1188 {
1189 	const struct btf_type *type, *datasec;
1190 	const struct btf_var_secinfo *vsi;
1191 	struct bpf_struct_ops *st_ops;
1192 	const char *tname, *var_name;
1193 	__s32 type_id, datasec_id;
1194 	const struct btf *btf;
1195 	struct bpf_map *map;
1196 	__u32 i;
1197 
1198 	if (shndx == -1)
1199 		return 0;
1200 
1201 	btf = obj->btf;
1202 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1203 					    BTF_KIND_DATASEC);
1204 	if (datasec_id < 0) {
1205 		pr_warn("struct_ops init: DATASEC %s not found\n",
1206 			sec_name);
1207 		return -EINVAL;
1208 	}
1209 
1210 	datasec = btf__type_by_id(btf, datasec_id);
1211 	vsi = btf_var_secinfos(datasec);
1212 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1213 		type = btf__type_by_id(obj->btf, vsi->type);
1214 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1215 
1216 		type_id = btf__resolve_type(obj->btf, vsi->type);
1217 		if (type_id < 0) {
1218 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1219 				vsi->type, sec_name);
1220 			return -EINVAL;
1221 		}
1222 
1223 		type = btf__type_by_id(obj->btf, type_id);
1224 		tname = btf__name_by_offset(obj->btf, type->name_off);
1225 		if (!tname[0]) {
1226 			pr_warn("struct_ops init: anonymous type is not supported\n");
1227 			return -ENOTSUP;
1228 		}
1229 		if (!btf_is_struct(type)) {
1230 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1231 			return -EINVAL;
1232 		}
1233 
1234 		map = bpf_object__add_map(obj);
1235 		if (IS_ERR(map))
1236 			return PTR_ERR(map);
1237 
1238 		map->sec_idx = shndx;
1239 		map->sec_offset = vsi->offset;
1240 		map->name = strdup(var_name);
1241 		if (!map->name)
1242 			return -ENOMEM;
1243 
1244 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1245 		map->def.key_size = sizeof(int);
1246 		map->def.value_size = type->size;
1247 		map->def.max_entries = 1;
1248 		map->def.map_flags = map_flags;
1249 
1250 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1251 		if (!map->st_ops)
1252 			return -ENOMEM;
1253 		st_ops = map->st_ops;
1254 		st_ops->data = malloc(type->size);
1255 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1256 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1257 					       sizeof(*st_ops->kern_func_off));
1258 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1259 			return -ENOMEM;
1260 
1261 		if (vsi->offset + type->size > data->d_size) {
1262 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1263 				var_name, sec_name);
1264 			return -EINVAL;
1265 		}
1266 
1267 		memcpy(st_ops->data,
1268 		       data->d_buf + vsi->offset,
1269 		       type->size);
1270 		st_ops->tname = tname;
1271 		st_ops->type = type;
1272 		st_ops->type_id = type_id;
1273 
1274 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1275 			 tname, type_id, var_name, vsi->offset);
1276 	}
1277 
1278 	return 0;
1279 }
1280 
bpf_object_init_struct_ops(struct bpf_object * obj)1281 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1282 {
1283 	int err;
1284 
1285 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1286 				   obj->efile.st_ops_data, 0);
1287 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1288 					  obj->efile.st_ops_link_shndx,
1289 					  obj->efile.st_ops_link_data,
1290 					  BPF_F_LINK);
1291 	return err;
1292 }
1293 
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1294 static struct bpf_object *bpf_object__new(const char *path,
1295 					  const void *obj_buf,
1296 					  size_t obj_buf_sz,
1297 					  const char *obj_name)
1298 {
1299 	struct bpf_object *obj;
1300 	char *end;
1301 
1302 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1303 	if (!obj) {
1304 		pr_warn("alloc memory failed for %s\n", path);
1305 		return ERR_PTR(-ENOMEM);
1306 	}
1307 
1308 	strcpy(obj->path, path);
1309 	if (obj_name) {
1310 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1311 	} else {
1312 		/* Using basename() GNU version which doesn't modify arg. */
1313 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1314 		end = strchr(obj->name, '.');
1315 		if (end)
1316 			*end = 0;
1317 	}
1318 
1319 	obj->efile.fd = -1;
1320 	/*
1321 	 * Caller of this function should also call
1322 	 * bpf_object__elf_finish() after data collection to return
1323 	 * obj_buf to user. If not, we should duplicate the buffer to
1324 	 * avoid user freeing them before elf finish.
1325 	 */
1326 	obj->efile.obj_buf = obj_buf;
1327 	obj->efile.obj_buf_sz = obj_buf_sz;
1328 	obj->efile.btf_maps_shndx = -1;
1329 	obj->efile.st_ops_shndx = -1;
1330 	obj->efile.st_ops_link_shndx = -1;
1331 	obj->kconfig_map_idx = -1;
1332 
1333 	obj->kern_version = get_kernel_version();
1334 	obj->loaded = false;
1335 
1336 	return obj;
1337 }
1338 
bpf_object__elf_finish(struct bpf_object * obj)1339 static void bpf_object__elf_finish(struct bpf_object *obj)
1340 {
1341 	if (!obj->efile.elf)
1342 		return;
1343 #if defined HAVE_LIBELF
1344 	elf_end(obj->efile.elf);
1345 #elif defined HAVE_ELFIO
1346 		if (obj->efile.shstring) {
1347 			elfio_string_section_accessor_delete(obj->efile.shstring);
1348 		}
1349 		if (obj->efile.strstring) {
1350 			elfio_string_section_accessor_delete(obj->efile.strstring);
1351 		}
1352 		elfio_delete(obj->efile.elf);
1353 #endif
1354 	obj->efile.elf = NULL;
1355 	obj->efile.symbols = NULL;
1356 	obj->efile.st_ops_data = NULL;
1357 	obj->efile.st_ops_link_data = NULL;
1358 
1359 	zfree(&obj->efile.secs);
1360 	obj->efile.sec_cnt = 0;
1361 	zclose(obj->efile.fd);
1362 	obj->efile.obj_buf = NULL;
1363 	obj->efile.obj_buf_sz = 0;
1364 }
1365 
bpf_object__elf_init(struct bpf_object * obj)1366 static int bpf_object__elf_init(struct bpf_object *obj)
1367 {
1368 	Elf64_Ehdr *ehdr;
1369 	int err = 0;
1370 #ifdef HAVE_LIBELF
1371 	Elf *elf;
1372 #elif defined HAVE_ELFIO
1373 	pelfio_t elf;
1374 #endif
1375 
1376 	if (obj->efile.elf) {
1377 		pr_warn("elf: init internal error\n");
1378 		return -LIBBPF_ERRNO__LIBELF;
1379 	}
1380 
1381 	if (obj->efile.obj_buf_sz > 0) {
1382 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1383 #ifdef HAVE_LIBELF
1384 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1385 #elif defined HAVE_ELFIO
1386 		char  memfd_path[PATH_MAX] = {0};
1387 		elf = elfio_new();
1388 		int fdm = syscall(__NR_memfd_create, "bpfelf", MFD_CLOEXEC);
1389 		ftruncate(fdm, obj->efile.obj_buf_sz);
1390 		write(fdm, (char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1391 		snprintf(memfd_path, PATH_MAX, "/proc/self/fd/%d", fdm);
1392 		elfio_load(elf, memfd_path);
1393 #endif
1394 	} else {
1395 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1396 		if (obj->efile.fd < 0) {
1397 			char errmsg[STRERR_BUFSIZE], *cp;
1398 
1399 			err = -errno;
1400 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1401 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1402 			return err;
1403 		}
1404 #ifdef HAVE_LIBELF
1405 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1406 #endif
1407 	}
1408 
1409 	if (!elf) {
1410 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1411 		err = -LIBBPF_ERRNO__LIBELF;
1412 		goto errout;
1413 	}
1414 
1415 	obj->efile.elf = elf;
1416 #ifdef HAVE_LIBELF
1417 	if (elf_kind(elf) != ELF_K_ELF) {
1418 		err = -LIBBPF_ERRNO__FORMAT;
1419 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1420 		goto errout;
1421 	}
1422 
1423 	if (gelf_getclass(elf) != ELFCLASS64) {
1424 #elif defined HAVE_ELFIO
1425 	if (elfio_get_class(elf) != ELFCLASS64 ) {
1426 #endif
1427 		err = -LIBBPF_ERRNO__FORMAT;
1428 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1429 		goto errout;
1430 	}
1431 #ifdef HAVE_LIBELF
1432 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1433 #elif defined HAVE_ELFIO
1434 	obj->efile.ehdr = ehdr = (Elf64_Ehdr*)obj->efile.obj_buf;
1435 #endif
1436 	if (!obj->efile.ehdr) {
1437 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1438 		err = -LIBBPF_ERRNO__FORMAT;
1439 		goto errout;
1440 	}
1441 
1442 #ifdef HAVE_LIBELF
1443 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1444 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1445 			obj->path, elf_errmsg(-1));
1446 		err = -LIBBPF_ERRNO__FORMAT;
1447 		goto errout;
1448 	}
1449 
1450 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1451 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1452 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1453 			obj->path, elf_errmsg(-1));
1454 		err = -LIBBPF_ERRNO__FORMAT;
1455 		goto errout;
1456 	}
1457 #elif defined HAVE_ELFIO
1458      obj->efile.shstrndx = elfio_get_section_name_str_index(elf);
1459 #endif
1460 	/* Old LLVM set e_machine to EM_NONE */
1461 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1462 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1463 		err = -LIBBPF_ERRNO__FORMAT;
1464 		goto errout;
1465 	}
1466 
1467 	return 0;
1468 errout:
1469 	bpf_object__elf_finish(obj);
1470 	return err;
1471 }
1472 
1473 static int bpf_object__check_endianness(struct bpf_object *obj)
1474 {
1475 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1476 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1477 		return 0;
1478 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1479 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1480 		return 0;
1481 #else
1482 # error "Unrecognized __BYTE_ORDER__"
1483 #endif
1484 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1485 	return -LIBBPF_ERRNO__ENDIAN;
1486 }
1487 
1488 static int
1489 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1490 {
1491 	if (!data) {
1492 		pr_warn("invalid license section in %s\n", obj->path);
1493 		return -LIBBPF_ERRNO__FORMAT;
1494 	}
1495 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1496 	 * go over allowed ELF data section buffer
1497 	 */
1498 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1499 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1500 	return 0;
1501 }
1502 
1503 static int
1504 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1505 {
1506 	__u32 kver;
1507 
1508 	if (!data || size != sizeof(kver)) {
1509 		pr_warn("invalid kver section in %s\n", obj->path);
1510 		return -LIBBPF_ERRNO__FORMAT;
1511 	}
1512 	memcpy(&kver, data, sizeof(kver));
1513 	obj->kern_version = kver;
1514 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1515 	return 0;
1516 }
1517 
1518 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1519 {
1520 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1521 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1522 		return true;
1523 	return false;
1524 }
1525 
1526 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1527 {
1528 	Elf_Data *data;
1529 #ifdef HAVE_LIBELF
1530 	Elf_Scn *scn;
1531 #endif
1532 
1533 	if (!name)
1534 		return -EINVAL;
1535 #if defined HAVE_LIBELF
1536 	scn = elf_sec_by_name(obj, name);
1537 	data = elf_sec_data(obj, scn);
1538 #elif defined HAVE_ELFIO
1539 	Elf_Data realdata;
1540 	data = &realdata;
1541 	data = elf_sec_data_by_name(obj, name, data);
1542 #endif
1543 	if (data) {
1544 		*size = data->d_size;
1545 		return 0; /* found it */
1546 	}
1547 
1548 	return -ENOENT;
1549 }
1550 
1551 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1552 {
1553 	Elf_Data *symbols = obj->efile.symbols;
1554 	const char *sname;
1555 	size_t si;
1556 
1557 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1558 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1559 
1560 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1561 			continue;
1562 
1563 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1564 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1565 			continue;
1566 
1567 		sname = elf_sym_str(obj, sym->st_name);
1568 		if (!sname) {
1569 			pr_warn("failed to get sym name string for var %s\n", name);
1570 			return ERR_PTR(-EIO);
1571 		}
1572 		if (strcmp(name, sname) == 0)
1573 			return sym;
1574 	}
1575 
1576 	return ERR_PTR(-ENOENT);
1577 }
1578 
1579 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1580 {
1581 	struct bpf_map *map;
1582 	int err;
1583 
1584 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1585 				sizeof(*obj->maps), obj->nr_maps + 1);
1586 	if (err)
1587 		return ERR_PTR(err);
1588 
1589 	map = &obj->maps[obj->nr_maps++];
1590 	map->obj = obj;
1591 	map->fd = -1;
1592 	map->inner_map_fd = -1;
1593 	map->autocreate = true;
1594 
1595 	return map;
1596 }
1597 
1598 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1599 {
1600 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1601 	size_t map_sz;
1602 
1603 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1604 	map_sz = roundup(map_sz, page_sz);
1605 	return map_sz;
1606 }
1607 
1608 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1609 {
1610 	void *mmaped;
1611 
1612 	if (!map->mmaped)
1613 		return -EINVAL;
1614 
1615 	if (old_sz == new_sz)
1616 		return 0;
1617 
1618 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1619 	if (mmaped == MAP_FAILED)
1620 		return -errno;
1621 
1622 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1623 	munmap(map->mmaped, old_sz);
1624 	map->mmaped = mmaped;
1625 	return 0;
1626 }
1627 
1628 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1629 {
1630 	char map_name[BPF_OBJ_NAME_LEN], *p;
1631 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1632 
1633 	/* This is one of the more confusing parts of libbpf for various
1634 	 * reasons, some of which are historical. The original idea for naming
1635 	 * internal names was to include as much of BPF object name prefix as
1636 	 * possible, so that it can be distinguished from similar internal
1637 	 * maps of a different BPF object.
1638 	 * As an example, let's say we have bpf_object named 'my_object_name'
1639 	 * and internal map corresponding to '.rodata' ELF section. The final
1640 	 * map name advertised to user and to the kernel will be
1641 	 * 'my_objec.rodata', taking first 8 characters of object name and
1642 	 * entire 7 characters of '.rodata'.
1643 	 * Somewhat confusingly, if internal map ELF section name is shorter
1644 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1645 	 * for the suffix, even though we only have 4 actual characters, and
1646 	 * resulting map will be called 'my_objec.bss', not even using all 15
1647 	 * characters allowed by the kernel. Oh well, at least the truncated
1648 	 * object name is somewhat consistent in this case. But if the map
1649 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1650 	 * (8 chars) and thus will be left with only first 7 characters of the
1651 	 * object name ('my_obje'). Happy guessing, user, that the final map
1652 	 * name will be "my_obje.kconfig".
1653 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1654 	 * and .data.* data sections, it's possible that ELF section name is
1655 	 * longer than allowed 15 chars, so we now need to be careful to take
1656 	 * only up to 15 first characters of ELF name, taking no BPF object
1657 	 * name characters at all. So '.rodata.abracadabra' will result in
1658 	 * '.rodata.abracad' kernel and user-visible name.
1659 	 * We need to keep this convoluted logic intact for .data, .bss and
1660 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1661 	 * maps we use their ELF names as is, not prepending bpf_object name
1662 	 * in front. We still need to truncate them to 15 characters for the
1663 	 * kernel. Full name can be recovered for such maps by using DATASEC
1664 	 * BTF type associated with such map's value type, though.
1665 	 */
1666 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1667 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1668 
1669 	/* if there are two or more dots in map name, it's a custom dot map */
1670 	if (strchr(real_name + 1, '.') != NULL)
1671 		pfx_len = 0;
1672 	else
1673 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1674 
1675 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1676 		 sfx_len, real_name);
1677 
1678 	/* sanitise map name to characters allowed by kernel */
1679 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1680 		if (!isalnum(*p) && *p != '_' && *p != '.')
1681 			*p = '_';
1682 
1683 	return strdup(map_name);
1684 }
1685 
1686 static int
1687 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1688 
1689 /* Internal BPF map is mmap()'able only if at least one of corresponding
1690  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1691  * variable and it's not marked as __hidden (which turns it into, effectively,
1692  * a STATIC variable).
1693  */
1694 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1695 {
1696 	const struct btf_type *t, *vt;
1697 	struct btf_var_secinfo *vsi;
1698 	int i, n;
1699 
1700 	if (!map->btf_value_type_id)
1701 		return false;
1702 
1703 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1704 	if (!btf_is_datasec(t))
1705 		return false;
1706 
1707 	vsi = btf_var_secinfos(t);
1708 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1709 		vt = btf__type_by_id(obj->btf, vsi->type);
1710 		if (!btf_is_var(vt))
1711 			continue;
1712 
1713 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1714 			return true;
1715 	}
1716 
1717 	return false;
1718 }
1719 
1720 static int
1721 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1722 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1723 {
1724 	struct bpf_map_def *def;
1725 	struct bpf_map *map;
1726 	size_t mmap_sz;
1727 	int err;
1728 
1729 	map = bpf_object__add_map(obj);
1730 	if (IS_ERR(map))
1731 		return PTR_ERR(map);
1732 
1733 	map->libbpf_type = type;
1734 	map->sec_idx = sec_idx;
1735 	map->sec_offset = 0;
1736 	map->real_name = strdup(real_name);
1737 	map->name = internal_map_name(obj, real_name);
1738 	if (!map->real_name || !map->name) {
1739 		zfree(&map->real_name);
1740 		zfree(&map->name);
1741 		return -ENOMEM;
1742 	}
1743 
1744 	def = &map->def;
1745 	def->type = BPF_MAP_TYPE_ARRAY;
1746 	def->key_size = sizeof(int);
1747 	def->value_size = data_sz;
1748 	def->max_entries = 1;
1749 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1750 			 ? BPF_F_RDONLY_PROG : 0;
1751 
1752 	/* failures are fine because of maps like .rodata.str1.1 */
1753 	(void) map_fill_btf_type_info(obj, map);
1754 
1755 	if (map_is_mmapable(obj, map))
1756 		def->map_flags |= BPF_F_MMAPABLE;
1757 
1758 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1759 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1760 
1761 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1762 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1763 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1764 	if (map->mmaped == MAP_FAILED) {
1765 		err = -errno;
1766 		map->mmaped = NULL;
1767 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1768 			map->name, err);
1769 		zfree(&map->real_name);
1770 		zfree(&map->name);
1771 		return err;
1772 	}
1773 
1774 	if (data)
1775 		memcpy(map->mmaped, data, data_sz);
1776 
1777 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1778 	return 0;
1779 }
1780 
1781 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1782 {
1783 	struct elf_sec_desc *sec_desc;
1784 	const char *sec_name;
1785 	int err = 0, sec_idx;
1786 
1787 	/*
1788 	 * Populate obj->maps with libbpf internal maps.
1789 	 */
1790 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1791 		sec_desc = &obj->efile.secs[sec_idx];
1792 
1793 		/* Skip recognized sections with size 0. */
1794 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1795 			continue;
1796 
1797 		switch (sec_desc->sec_type) {
1798 		case SEC_DATA:
1799 #if defined HAVE_LIBELF
1800 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1801 #elif defined HAVE_ELFIO
1802 			sec_name = elf_sec_name_by_idx(obj, sec_idx);
1803 #endif
1804 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1805 							    sec_name, sec_idx,
1806 							    sec_desc->data->d_buf,
1807 							    sec_desc->data->d_size);
1808 			break;
1809 		case SEC_RODATA:
1810 			obj->has_rodata = true;
1811 #if defined HAVE_LIBELF
1812 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1813 #elif defined HAVE_ELFIO
1814 			sec_name = elf_sec_name_by_idx(obj, sec_idx);
1815 #endif
1816 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1817 							    sec_name, sec_idx,
1818 							    sec_desc->data->d_buf,
1819 							    sec_desc->data->d_size);
1820 			break;
1821 		case SEC_BSS:
1822 #if defined HAVE_LIBELF
1823 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1824 #elif defined HAVE_ELFIO
1825 			sec_name = elf_sec_name_by_idx(obj, sec_idx);
1826 #endif
1827 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1828 							    sec_name, sec_idx,
1829 							    NULL,
1830 							    sec_desc->data->d_size);
1831 			break;
1832 		default:
1833 			/* skip */
1834 			break;
1835 		}
1836 		if (err)
1837 			return err;
1838 	}
1839 	return 0;
1840 }
1841 
1842 
1843 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1844 					       const void *name)
1845 {
1846 	int i;
1847 
1848 	for (i = 0; i < obj->nr_extern; i++) {
1849 		if (strcmp(obj->externs[i].name, name) == 0)
1850 			return &obj->externs[i];
1851 	}
1852 	return NULL;
1853 }
1854 
1855 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1856 			      char value)
1857 {
1858 	switch (ext->kcfg.type) {
1859 	case KCFG_BOOL:
1860 		if (value == 'm') {
1861 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1862 				ext->name, value);
1863 			return -EINVAL;
1864 		}
1865 		*(bool *)ext_val = value == 'y' ? true : false;
1866 		break;
1867 	case KCFG_TRISTATE:
1868 		if (value == 'y')
1869 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1870 		else if (value == 'm')
1871 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1872 		else /* value == 'n' */
1873 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1874 		break;
1875 	case KCFG_CHAR:
1876 		*(char *)ext_val = value;
1877 		break;
1878 	case KCFG_UNKNOWN:
1879 	case KCFG_INT:
1880 	case KCFG_CHAR_ARR:
1881 	default:
1882 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1883 			ext->name, value);
1884 		return -EINVAL;
1885 	}
1886 	ext->is_set = true;
1887 	return 0;
1888 }
1889 
1890 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1891 			      const char *value)
1892 {
1893 	size_t len;
1894 
1895 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1896 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1897 			ext->name, value);
1898 		return -EINVAL;
1899 	}
1900 
1901 	len = strlen(value);
1902 	if (value[len - 1] != '"') {
1903 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1904 			ext->name, value);
1905 		return -EINVAL;
1906 	}
1907 
1908 	/* strip quotes */
1909 	len -= 2;
1910 	if (len >= ext->kcfg.sz) {
1911 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1912 			ext->name, value, len, ext->kcfg.sz - 1);
1913 		len = ext->kcfg.sz - 1;
1914 	}
1915 	memcpy(ext_val, value + 1, len);
1916 	ext_val[len] = '\0';
1917 	ext->is_set = true;
1918 	return 0;
1919 }
1920 
1921 static int parse_u64(const char *value, __u64 *res)
1922 {
1923 	char *value_end;
1924 	int err;
1925 
1926 	errno = 0;
1927 	*res = strtoull(value, &value_end, 0);
1928 	if (errno) {
1929 		err = -errno;
1930 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1931 		return err;
1932 	}
1933 	if (*value_end) {
1934 		pr_warn("failed to parse '%s' as integer completely\n", value);
1935 		return -EINVAL;
1936 	}
1937 	return 0;
1938 }
1939 
1940 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1941 {
1942 	int bit_sz = ext->kcfg.sz * 8;
1943 
1944 	if (ext->kcfg.sz == 8)
1945 		return true;
1946 
1947 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1948 	 * bytes size without any loss of information. If the target integer
1949 	 * is signed, we rely on the following limits of integer type of
1950 	 * Y bits and subsequent transformation:
1951 	 *
1952 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1953 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1954 	 *            0 <= X + 2^(Y-1) <  2^Y
1955 	 *
1956 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1957 	 *  zero.
1958 	 */
1959 	if (ext->kcfg.is_signed)
1960 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1961 	else
1962 		return (v >> bit_sz) == 0;
1963 }
1964 
1965 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1966 			      __u64 value)
1967 {
1968 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1969 	    ext->kcfg.type != KCFG_BOOL) {
1970 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1971 			ext->name, (unsigned long long)value);
1972 		return -EINVAL;
1973 	}
1974 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1975 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1976 			ext->name, (unsigned long long)value);
1977 		return -EINVAL;
1978 
1979 	}
1980 	if (!is_kcfg_value_in_range(ext, value)) {
1981 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1982 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1983 		return -ERANGE;
1984 	}
1985 	switch (ext->kcfg.sz) {
1986 	case 1:
1987 		*(__u8 *)ext_val = value;
1988 		break;
1989 	case 2:
1990 		*(__u16 *)ext_val = value;
1991 		break;
1992 	case 4:
1993 		*(__u32 *)ext_val = value;
1994 		break;
1995 	case 8:
1996 		*(__u64 *)ext_val = value;
1997 		break;
1998 	default:
1999 		return -EINVAL;
2000 	}
2001 	ext->is_set = true;
2002 	return 0;
2003 }
2004 
2005 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2006 					    char *buf, void *data)
2007 {
2008 	struct extern_desc *ext;
2009 	char *sep, *value;
2010 	int len, err = 0;
2011 	void *ext_val;
2012 	__u64 num;
2013 
2014 	if (!str_has_pfx(buf, "CONFIG_"))
2015 		return 0;
2016 
2017 	sep = strchr(buf, '=');
2018 	if (!sep) {
2019 		pr_warn("failed to parse '%s': no separator\n", buf);
2020 		return -EINVAL;
2021 	}
2022 
2023 	/* Trim ending '\n' */
2024 	len = strlen(buf);
2025 	if (buf[len - 1] == '\n')
2026 		buf[len - 1] = '\0';
2027 	/* Split on '=' and ensure that a value is present. */
2028 	*sep = '\0';
2029 	if (!sep[1]) {
2030 		*sep = '=';
2031 		pr_warn("failed to parse '%s': no value\n", buf);
2032 		return -EINVAL;
2033 	}
2034 
2035 	ext = find_extern_by_name(obj, buf);
2036 	if (!ext || ext->is_set)
2037 		return 0;
2038 
2039 	ext_val = data + ext->kcfg.data_off;
2040 	value = sep + 1;
2041 
2042 	switch (*value) {
2043 	case 'y': case 'n': case 'm':
2044 		err = set_kcfg_value_tri(ext, ext_val, *value);
2045 		break;
2046 	case '"':
2047 		err = set_kcfg_value_str(ext, ext_val, value);
2048 		break;
2049 	default:
2050 		/* assume integer */
2051 		err = parse_u64(value, &num);
2052 		if (err) {
2053 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2054 			return err;
2055 		}
2056 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2057 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2058 			return -EINVAL;
2059 		}
2060 		err = set_kcfg_value_num(ext, ext_val, num);
2061 		break;
2062 	}
2063 	if (err)
2064 		return err;
2065 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2066 	return 0;
2067 }
2068 
2069 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2070 {
2071 	char buf[PATH_MAX];
2072 	struct utsname uts;
2073 	int len, err = 0;
2074 	gzFile file;
2075 
2076 	uname(&uts);
2077 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2078 	if (len < 0)
2079 		return -EINVAL;
2080 	else if (len >= PATH_MAX)
2081 		return -ENAMETOOLONG;
2082 
2083 	/* gzopen also accepts uncompressed files. */
2084 	file = gzopen(buf, "re");
2085 	if (!file)
2086 		file = gzopen("/proc/config.gz", "re");
2087 
2088 	if (!file) {
2089 		pr_warn("failed to open system Kconfig\n");
2090 		return -ENOENT;
2091 	}
2092 
2093 	while (gzgets(file, buf, sizeof(buf))) {
2094 		err = bpf_object__process_kconfig_line(obj, buf, data);
2095 		if (err) {
2096 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2097 				buf, err);
2098 			goto out;
2099 		}
2100 	}
2101 
2102 out:
2103 	gzclose(file);
2104 	return err;
2105 }
2106 
2107 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2108 					const char *config, void *data)
2109 {
2110 	char buf[PATH_MAX];
2111 	int err = 0;
2112 	FILE *file;
2113 
2114 	file = fmemopen((void *)config, strlen(config), "r");
2115 	if (!file) {
2116 		err = -errno;
2117 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2118 		return err;
2119 	}
2120 
2121 	while (fgets(buf, sizeof(buf), file)) {
2122 		err = bpf_object__process_kconfig_line(obj, buf, data);
2123 		if (err) {
2124 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2125 				buf, err);
2126 			break;
2127 		}
2128 	}
2129 
2130 	fclose(file);
2131 	return err;
2132 }
2133 
2134 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2135 {
2136 	struct extern_desc *last_ext = NULL, *ext;
2137 	size_t map_sz;
2138 	int i, err;
2139 
2140 	for (i = 0; i < obj->nr_extern; i++) {
2141 		ext = &obj->externs[i];
2142 		if (ext->type == EXT_KCFG)
2143 			last_ext = ext;
2144 	}
2145 
2146 	if (!last_ext)
2147 		return 0;
2148 
2149 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2150 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2151 					    ".kconfig", obj->efile.symbols_shndx,
2152 					    NULL, map_sz);
2153 	if (err)
2154 		return err;
2155 
2156 	obj->kconfig_map_idx = obj->nr_maps - 1;
2157 
2158 	return 0;
2159 }
2160 
2161 const struct btf_type *
2162 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2163 {
2164 	const struct btf_type *t = btf__type_by_id(btf, id);
2165 
2166 	if (res_id)
2167 		*res_id = id;
2168 
2169 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2170 		if (res_id)
2171 			*res_id = t->type;
2172 		t = btf__type_by_id(btf, t->type);
2173 	}
2174 
2175 	return t;
2176 }
2177 
2178 static const struct btf_type *
2179 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2180 {
2181 	const struct btf_type *t;
2182 
2183 	t = skip_mods_and_typedefs(btf, id, NULL);
2184 	if (!btf_is_ptr(t))
2185 		return NULL;
2186 
2187 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2188 
2189 	return btf_is_func_proto(t) ? t : NULL;
2190 }
2191 
2192 static const char *__btf_kind_str(__u16 kind)
2193 {
2194 	switch (kind) {
2195 	case BTF_KIND_UNKN: return "void";
2196 	case BTF_KIND_INT: return "int";
2197 	case BTF_KIND_PTR: return "ptr";
2198 	case BTF_KIND_ARRAY: return "array";
2199 	case BTF_KIND_STRUCT: return "struct";
2200 	case BTF_KIND_UNION: return "union";
2201 	case BTF_KIND_ENUM: return "enum";
2202 	case BTF_KIND_FWD: return "fwd";
2203 	case BTF_KIND_TYPEDEF: return "typedef";
2204 	case BTF_KIND_VOLATILE: return "volatile";
2205 	case BTF_KIND_CONST: return "const";
2206 	case BTF_KIND_RESTRICT: return "restrict";
2207 	case BTF_KIND_FUNC: return "func";
2208 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2209 	case BTF_KIND_VAR: return "var";
2210 	case BTF_KIND_DATASEC: return "datasec";
2211 	case BTF_KIND_FLOAT: return "float";
2212 	case BTF_KIND_DECL_TAG: return "decl_tag";
2213 	case BTF_KIND_TYPE_TAG: return "type_tag";
2214 	case BTF_KIND_ENUM64: return "enum64";
2215 	default: return "unknown";
2216 	}
2217 }
2218 
2219 const char *btf_kind_str(const struct btf_type *t)
2220 {
2221 	return __btf_kind_str(btf_kind(t));
2222 }
2223 
2224 /*
2225  * Fetch integer attribute of BTF map definition. Such attributes are
2226  * represented using a pointer to an array, in which dimensionality of array
2227  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2228  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2229  * type definition, while using only sizeof(void *) space in ELF data section.
2230  */
2231 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2232 			      const struct btf_member *m, __u32 *res)
2233 {
2234 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2235 	const char *name = btf__name_by_offset(btf, m->name_off);
2236 	const struct btf_array *arr_info;
2237 	const struct btf_type *arr_t;
2238 
2239 	if (!btf_is_ptr(t)) {
2240 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2241 			map_name, name, btf_kind_str(t));
2242 		return false;
2243 	}
2244 
2245 	arr_t = btf__type_by_id(btf, t->type);
2246 	if (!arr_t) {
2247 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2248 			map_name, name, t->type);
2249 		return false;
2250 	}
2251 	if (!btf_is_array(arr_t)) {
2252 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2253 			map_name, name, btf_kind_str(arr_t));
2254 		return false;
2255 	}
2256 	arr_info = btf_array(arr_t);
2257 	*res = arr_info->nelems;
2258 	return true;
2259 }
2260 
2261 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2262 {
2263 	int len;
2264 
2265 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2266 	if (len < 0)
2267 		return -EINVAL;
2268 	if (len >= buf_sz)
2269 		return -ENAMETOOLONG;
2270 
2271 	return 0;
2272 }
2273 
2274 static int build_map_pin_path(struct bpf_map *map, const char *path)
2275 {
2276 	char buf[PATH_MAX];
2277 	int err;
2278 
2279 	if (!path)
2280 		path = "/sys/fs/bpf";
2281 
2282 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2283 	if (err)
2284 		return err;
2285 
2286 	return bpf_map__set_pin_path(map, buf);
2287 }
2288 
2289 /* should match definition in bpf_helpers.h */
2290 enum libbpf_pin_type {
2291 	LIBBPF_PIN_NONE,
2292 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2293 	LIBBPF_PIN_BY_NAME,
2294 };
2295 
2296 int parse_btf_map_def(const char *map_name, struct btf *btf,
2297 		      const struct btf_type *def_t, bool strict,
2298 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2299 {
2300 	const struct btf_type *t;
2301 	const struct btf_member *m;
2302 	bool is_inner = inner_def == NULL;
2303 	int vlen, i;
2304 
2305 	vlen = btf_vlen(def_t);
2306 	m = btf_members(def_t);
2307 	for (i = 0; i < vlen; i++, m++) {
2308 		const char *name = btf__name_by_offset(btf, m->name_off);
2309 
2310 		if (!name) {
2311 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2312 			return -EINVAL;
2313 		}
2314 		if (strcmp(name, "type") == 0) {
2315 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2316 				return -EINVAL;
2317 			map_def->parts |= MAP_DEF_MAP_TYPE;
2318 		} else if (strcmp(name, "max_entries") == 0) {
2319 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2320 				return -EINVAL;
2321 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2322 		} else if (strcmp(name, "map_flags") == 0) {
2323 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2324 				return -EINVAL;
2325 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2326 		} else if (strcmp(name, "numa_node") == 0) {
2327 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2328 				return -EINVAL;
2329 			map_def->parts |= MAP_DEF_NUMA_NODE;
2330 		} else if (strcmp(name, "key_size") == 0) {
2331 			__u32 sz;
2332 
2333 			if (!get_map_field_int(map_name, btf, m, &sz))
2334 				return -EINVAL;
2335 			if (map_def->key_size && map_def->key_size != sz) {
2336 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2337 					map_name, map_def->key_size, sz);
2338 				return -EINVAL;
2339 			}
2340 			map_def->key_size = sz;
2341 			map_def->parts |= MAP_DEF_KEY_SIZE;
2342 		} else if (strcmp(name, "key") == 0) {
2343 			__s64 sz;
2344 
2345 			t = btf__type_by_id(btf, m->type);
2346 			if (!t) {
2347 				pr_warn("map '%s': key type [%d] not found.\n",
2348 					map_name, m->type);
2349 				return -EINVAL;
2350 			}
2351 			if (!btf_is_ptr(t)) {
2352 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2353 					map_name, btf_kind_str(t));
2354 				return -EINVAL;
2355 			}
2356 			sz = btf__resolve_size(btf, t->type);
2357 			if (sz < 0) {
2358 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2359 					map_name, t->type, (ssize_t)sz);
2360 				return sz;
2361 			}
2362 			if (map_def->key_size && map_def->key_size != sz) {
2363 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2364 					map_name, map_def->key_size, (ssize_t)sz);
2365 				return -EINVAL;
2366 			}
2367 			map_def->key_size = sz;
2368 			map_def->key_type_id = t->type;
2369 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2370 		} else if (strcmp(name, "value_size") == 0) {
2371 			__u32 sz;
2372 
2373 			if (!get_map_field_int(map_name, btf, m, &sz))
2374 				return -EINVAL;
2375 			if (map_def->value_size && map_def->value_size != sz) {
2376 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2377 					map_name, map_def->value_size, sz);
2378 				return -EINVAL;
2379 			}
2380 			map_def->value_size = sz;
2381 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2382 		} else if (strcmp(name, "value") == 0) {
2383 			__s64 sz;
2384 
2385 			t = btf__type_by_id(btf, m->type);
2386 			if (!t) {
2387 				pr_warn("map '%s': value type [%d] not found.\n",
2388 					map_name, m->type);
2389 				return -EINVAL;
2390 			}
2391 			if (!btf_is_ptr(t)) {
2392 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2393 					map_name, btf_kind_str(t));
2394 				return -EINVAL;
2395 			}
2396 			sz = btf__resolve_size(btf, t->type);
2397 			if (sz < 0) {
2398 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2399 					map_name, t->type, (ssize_t)sz);
2400 				return sz;
2401 			}
2402 			if (map_def->value_size && map_def->value_size != sz) {
2403 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2404 					map_name, map_def->value_size, (ssize_t)sz);
2405 				return -EINVAL;
2406 			}
2407 			map_def->value_size = sz;
2408 			map_def->value_type_id = t->type;
2409 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2410 		}
2411 		else if (strcmp(name, "values") == 0) {
2412 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2413 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2414 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2415 			char inner_map_name[128];
2416 			int err;
2417 
2418 			if (is_inner) {
2419 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2420 					map_name);
2421 				return -ENOTSUP;
2422 			}
2423 			if (i != vlen - 1) {
2424 				pr_warn("map '%s': '%s' member should be last.\n",
2425 					map_name, name);
2426 				return -EINVAL;
2427 			}
2428 			if (!is_map_in_map && !is_prog_array) {
2429 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2430 					map_name);
2431 				return -ENOTSUP;
2432 			}
2433 			if (map_def->value_size && map_def->value_size != 4) {
2434 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2435 					map_name, map_def->value_size);
2436 				return -EINVAL;
2437 			}
2438 			map_def->value_size = 4;
2439 			t = btf__type_by_id(btf, m->type);
2440 			if (!t) {
2441 				pr_warn("map '%s': %s type [%d] not found.\n",
2442 					map_name, desc, m->type);
2443 				return -EINVAL;
2444 			}
2445 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2446 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2447 					map_name, desc);
2448 				return -EINVAL;
2449 			}
2450 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2451 			if (!btf_is_ptr(t)) {
2452 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2453 					map_name, desc, btf_kind_str(t));
2454 				return -EINVAL;
2455 			}
2456 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2457 			if (is_prog_array) {
2458 				if (!btf_is_func_proto(t)) {
2459 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2460 						map_name, btf_kind_str(t));
2461 					return -EINVAL;
2462 				}
2463 				continue;
2464 			}
2465 			if (!btf_is_struct(t)) {
2466 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2467 					map_name, btf_kind_str(t));
2468 				return -EINVAL;
2469 			}
2470 
2471 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2472 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2473 			if (err)
2474 				return err;
2475 
2476 			map_def->parts |= MAP_DEF_INNER_MAP;
2477 		} else if (strcmp(name, "pinning") == 0) {
2478 			__u32 val;
2479 
2480 			if (is_inner) {
2481 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2482 				return -EINVAL;
2483 			}
2484 			if (!get_map_field_int(map_name, btf, m, &val))
2485 				return -EINVAL;
2486 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2487 				pr_warn("map '%s': invalid pinning value %u.\n",
2488 					map_name, val);
2489 				return -EINVAL;
2490 			}
2491 			map_def->pinning = val;
2492 			map_def->parts |= MAP_DEF_PINNING;
2493 		} else if (strcmp(name, "map_extra") == 0) {
2494 			__u32 map_extra;
2495 
2496 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2497 				return -EINVAL;
2498 			map_def->map_extra = map_extra;
2499 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2500 		} else {
2501 			if (strict) {
2502 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2503 				return -ENOTSUP;
2504 			}
2505 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2506 		}
2507 	}
2508 
2509 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2510 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2511 		return -EINVAL;
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static size_t adjust_ringbuf_sz(size_t sz)
2518 {
2519 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2520 	__u32 mul;
2521 
2522 	/* if user forgot to set any size, make sure they see error */
2523 	if (sz == 0)
2524 		return 0;
2525 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2526 	 * a power-of-2 multiple of kernel's page size. If user diligently
2527 	 * satisified these conditions, pass the size through.
2528 	 */
2529 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2530 		return sz;
2531 
2532 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2533 	 * user-set size to satisfy both user size request and kernel
2534 	 * requirements and substitute correct max_entries for map creation.
2535 	 */
2536 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2537 		if (mul * page_sz > sz)
2538 			return mul * page_sz;
2539 	}
2540 
2541 	/* if it's impossible to satisfy the conditions (i.e., user size is
2542 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2543 	 * page_size) then just return original size and let kernel reject it
2544 	 */
2545 	return sz;
2546 }
2547 
2548 static bool map_is_ringbuf(const struct bpf_map *map)
2549 {
2550 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2551 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2552 }
2553 
2554 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2555 {
2556 	map->def.type = def->map_type;
2557 	map->def.key_size = def->key_size;
2558 	map->def.value_size = def->value_size;
2559 	map->def.max_entries = def->max_entries;
2560 	map->def.map_flags = def->map_flags;
2561 	map->map_extra = def->map_extra;
2562 
2563 	map->numa_node = def->numa_node;
2564 	map->btf_key_type_id = def->key_type_id;
2565 	map->btf_value_type_id = def->value_type_id;
2566 
2567 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2568 	if (map_is_ringbuf(map))
2569 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2570 
2571 	if (def->parts & MAP_DEF_MAP_TYPE)
2572 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2573 
2574 	if (def->parts & MAP_DEF_KEY_TYPE)
2575 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2576 			 map->name, def->key_type_id, def->key_size);
2577 	else if (def->parts & MAP_DEF_KEY_SIZE)
2578 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2579 
2580 	if (def->parts & MAP_DEF_VALUE_TYPE)
2581 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2582 			 map->name, def->value_type_id, def->value_size);
2583 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2584 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2585 
2586 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2587 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2588 	if (def->parts & MAP_DEF_MAP_FLAGS)
2589 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2590 	if (def->parts & MAP_DEF_MAP_EXTRA)
2591 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2592 			 (unsigned long long)def->map_extra);
2593 	if (def->parts & MAP_DEF_PINNING)
2594 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2595 	if (def->parts & MAP_DEF_NUMA_NODE)
2596 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2597 
2598 	if (def->parts & MAP_DEF_INNER_MAP)
2599 		pr_debug("map '%s': found inner map definition.\n", map->name);
2600 }
2601 
2602 static const char *btf_var_linkage_str(__u32 linkage)
2603 {
2604 	switch (linkage) {
2605 	case BTF_VAR_STATIC: return "static";
2606 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2607 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2608 	default: return "unknown";
2609 	}
2610 }
2611 
2612 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2613 					 const struct btf_type *sec,
2614 					 int var_idx, int sec_idx,
2615 					 const Elf_Data *data, bool strict,
2616 					 const char *pin_root_path)
2617 {
2618 	struct btf_map_def map_def = {}, inner_def = {};
2619 	const struct btf_type *var, *def;
2620 	const struct btf_var_secinfo *vi;
2621 	const struct btf_var *var_extra;
2622 	const char *map_name;
2623 	struct bpf_map *map;
2624 	int err;
2625 
2626 	vi = btf_var_secinfos(sec) + var_idx;
2627 	var = btf__type_by_id(obj->btf, vi->type);
2628 	var_extra = btf_var(var);
2629 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2630 
2631 	if (map_name == NULL || map_name[0] == '\0') {
2632 		pr_warn("map #%d: empty name.\n", var_idx);
2633 		return -EINVAL;
2634 	}
2635 	if ((__u64)vi->offset + vi->size > data->d_size) {
2636 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2637 		return -EINVAL;
2638 	}
2639 	if (!btf_is_var(var)) {
2640 		pr_warn("map '%s': unexpected var kind %s.\n",
2641 			map_name, btf_kind_str(var));
2642 		return -EINVAL;
2643 	}
2644 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2645 		pr_warn("map '%s': unsupported map linkage %s.\n",
2646 			map_name, btf_var_linkage_str(var_extra->linkage));
2647 		return -EOPNOTSUPP;
2648 	}
2649 
2650 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2651 	if (!btf_is_struct(def)) {
2652 		pr_warn("map '%s': unexpected def kind %s.\n",
2653 			map_name, btf_kind_str(var));
2654 		return -EINVAL;
2655 	}
2656 	if (def->size > vi->size) {
2657 		pr_warn("map '%s': invalid def size.\n", map_name);
2658 		return -EINVAL;
2659 	}
2660 
2661 	map = bpf_object__add_map(obj);
2662 	if (IS_ERR(map))
2663 		return PTR_ERR(map);
2664 	map->name = strdup(map_name);
2665 	if (!map->name) {
2666 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2667 		return -ENOMEM;
2668 	}
2669 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2670 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2671 	map->sec_idx = sec_idx;
2672 	map->sec_offset = vi->offset;
2673 	map->btf_var_idx = var_idx;
2674 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2675 		 map_name, map->sec_idx, map->sec_offset);
2676 
2677 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2678 	if (err)
2679 		return err;
2680 
2681 	fill_map_from_def(map, &map_def);
2682 
2683 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2684 		err = build_map_pin_path(map, pin_root_path);
2685 		if (err) {
2686 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2687 			return err;
2688 		}
2689 	}
2690 
2691 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2692 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2693 		if (!map->inner_map)
2694 			return -ENOMEM;
2695 		map->inner_map->fd = -1;
2696 		map->inner_map->sec_idx = sec_idx;
2697 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2698 		if (!map->inner_map->name)
2699 			return -ENOMEM;
2700 		sprintf(map->inner_map->name, "%s.inner", map_name);
2701 
2702 		fill_map_from_def(map->inner_map, &inner_def);
2703 	}
2704 
2705 	err = map_fill_btf_type_info(obj, map);
2706 	if (err)
2707 		return err;
2708 
2709 	return 0;
2710 }
2711 
2712 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2713 					  const char *pin_root_path)
2714 {
2715 	const struct btf_type *sec = NULL;
2716 	int nr_types, i, vlen, err;
2717 	const struct btf_type *t;
2718 	const char *name;
2719 	Elf_Data *data;
2720 #ifdef HAVE_LIBELF
2721 	Elf_Scn *scn;
2722 #endif
2723 
2724 	if (obj->efile.btf_maps_shndx < 0)
2725 		return 0;
2726 #if defined HAVE_LIBELF
2727 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2728 	data = elf_sec_data(obj, scn);
2729 	if (!scn || !data) {
2730 #elif defined HAVE_ELFIO
2731 	Elf_Data realdata;
2732 	data = elf_sec_data_by_idx(obj, obj->efile.btf_maps_shndx, &realdata);
2733 	if (!data) {
2734 #endif
2735 		pr_warn("elf: failed to get %s map definitions for %s\n",
2736 			MAPS_ELF_SEC, obj->path);
2737 		return -EINVAL;
2738 	}
2739 
2740 	nr_types = btf__type_cnt(obj->btf);
2741 	for (i = 1; i < nr_types; i++) {
2742 		t = btf__type_by_id(obj->btf, i);
2743 		if (!btf_is_datasec(t))
2744 			continue;
2745 		name = btf__name_by_offset(obj->btf, t->name_off);
2746 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2747 			sec = t;
2748 			obj->efile.btf_maps_sec_btf_id = i;
2749 			break;
2750 		}
2751 	}
2752 
2753 	if (!sec) {
2754 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2755 		return -ENOENT;
2756 	}
2757 
2758 	vlen = btf_vlen(sec);
2759 	for (i = 0; i < vlen; i++) {
2760 		err = bpf_object__init_user_btf_map(obj, sec, i,
2761 						    obj->efile.btf_maps_shndx,
2762 						    data, strict,
2763 						    pin_root_path);
2764 		if (err)
2765 			return err;
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 static int bpf_object__init_maps(struct bpf_object *obj,
2772 				 const struct bpf_object_open_opts *opts)
2773 {
2774 	const char *pin_root_path;
2775 	bool strict;
2776 	int err = 0;
2777 
2778 	strict = !OPTS_GET(opts, relaxed_maps, false);
2779 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2780 
2781 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2782 	err = err ?: bpf_object__init_global_data_maps(obj);
2783 	err = err ?: bpf_object__init_kconfig_map(obj);
2784 	err = err ?: bpf_object_init_struct_ops(obj);
2785 
2786 	return err;
2787 }
2788 
2789 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2790 {
2791 	Elf64_Shdr *sh;
2792 #if defined HAVE_LIBELF
2793 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2794 #elif defined HAVE_ELFIO
2795 	Elf64_Shdr header;
2796 	sh = elf_sec_hdr_by_idx(obj, idx, &header);
2797 #endif
2798 	if (!sh)
2799 		return false;
2800 
2801 	return sh->sh_flags & SHF_EXECINSTR;
2802 }
2803 
2804 static bool btf_needs_sanitization(struct bpf_object *obj)
2805 {
2806 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2807 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2808 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2809 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2810 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2811 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2812 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2813 
2814 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2815 	       !has_decl_tag || !has_type_tag || !has_enum64;
2816 }
2817 
2818 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2819 {
2820 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2821 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2822 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2823 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2824 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2825 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2826 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2827 	int enum64_placeholder_id = 0;
2828 	struct btf_type *t;
2829 	int i, j, vlen;
2830 
2831 	for (i = 1; i < btf__type_cnt(btf); i++) {
2832 		t = (struct btf_type *)btf__type_by_id(btf, i);
2833 
2834 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2835 			/* replace VAR/DECL_TAG with INT */
2836 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2837 			/*
2838 			 * using size = 1 is the safest choice, 4 will be too
2839 			 * big and cause kernel BTF validation failure if
2840 			 * original variable took less than 4 bytes
2841 			 */
2842 			t->size = 1;
2843 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2844 		} else if (!has_datasec && btf_is_datasec(t)) {
2845 			/* replace DATASEC with STRUCT */
2846 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2847 			struct btf_member *m = btf_members(t);
2848 			struct btf_type *vt;
2849 			char *name;
2850 
2851 			name = (char *)btf__name_by_offset(btf, t->name_off);
2852 			while (*name) {
2853 				if (*name == '.')
2854 					*name = '_';
2855 				name++;
2856 			}
2857 
2858 			vlen = btf_vlen(t);
2859 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2860 			for (j = 0; j < vlen; j++, v++, m++) {
2861 				/* order of field assignments is important */
2862 				m->offset = v->offset * 8;
2863 				m->type = v->type;
2864 				/* preserve variable name as member name */
2865 				vt = (void *)btf__type_by_id(btf, v->type);
2866 				m->name_off = vt->name_off;
2867 			}
2868 		} else if (!has_func && btf_is_func_proto(t)) {
2869 			/* replace FUNC_PROTO with ENUM */
2870 			vlen = btf_vlen(t);
2871 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2872 			t->size = sizeof(__u32); /* kernel enforced */
2873 		} else if (!has_func && btf_is_func(t)) {
2874 			/* replace FUNC with TYPEDEF */
2875 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2876 		} else if (!has_func_global && btf_is_func(t)) {
2877 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2878 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2879 		} else if (!has_float && btf_is_float(t)) {
2880 			/* replace FLOAT with an equally-sized empty STRUCT;
2881 			 * since C compilers do not accept e.g. "float" as a
2882 			 * valid struct name, make it anonymous
2883 			 */
2884 			t->name_off = 0;
2885 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2886 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2887 			/* replace TYPE_TAG with a CONST */
2888 			t->name_off = 0;
2889 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2890 		} else if (!has_enum64 && btf_is_enum(t)) {
2891 			/* clear the kflag */
2892 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2893 		} else if (!has_enum64 && btf_is_enum64(t)) {
2894 			/* replace ENUM64 with a union */
2895 			struct btf_member *m;
2896 
2897 			if (enum64_placeholder_id == 0) {
2898 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2899 				if (enum64_placeholder_id < 0)
2900 					return enum64_placeholder_id;
2901 
2902 				t = (struct btf_type *)btf__type_by_id(btf, i);
2903 			}
2904 
2905 			m = btf_members(t);
2906 			vlen = btf_vlen(t);
2907 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2908 			for (j = 0; j < vlen; j++, m++) {
2909 				m->type = enum64_placeholder_id;
2910 				m->offset = 0;
2911 			}
2912 		}
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 static bool libbpf_needs_btf(const struct bpf_object *obj)
2919 {
2920 	return obj->efile.btf_maps_shndx >= 0 ||
2921 	       obj->efile.st_ops_shndx >= 0 ||
2922 	       obj->efile.st_ops_link_shndx >= 0 ||
2923 	       obj->nr_extern > 0;
2924 }
2925 
2926 static bool kernel_needs_btf(const struct bpf_object *obj)
2927 {
2928 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2929 }
2930 
2931 static int bpf_object__init_btf(struct bpf_object *obj,
2932 				Elf_Data *btf_data,
2933 				Elf_Data *btf_ext_data)
2934 {
2935 	int err = -ENOENT;
2936 
2937 	if (btf_data) {
2938 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2939 		err = libbpf_get_error(obj->btf);
2940 		if (err) {
2941 			obj->btf = NULL;
2942 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2943 			goto out;
2944 		}
2945 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2946 		btf__set_pointer_size(obj->btf, 8);
2947 	}
2948 	if (btf_ext_data) {
2949 		struct btf_ext_info *ext_segs[3];
2950 		int seg_num, sec_num;
2951 
2952 		if (!obj->btf) {
2953 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2954 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2955 			goto out;
2956 		}
2957 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2958 		err = libbpf_get_error(obj->btf_ext);
2959 		if (err) {
2960 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2961 				BTF_EXT_ELF_SEC, err);
2962 			obj->btf_ext = NULL;
2963 			goto out;
2964 		}
2965 
2966 		/* setup .BTF.ext to ELF section mapping */
2967 		ext_segs[0] = &obj->btf_ext->func_info;
2968 		ext_segs[1] = &obj->btf_ext->line_info;
2969 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2970 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2971 			struct btf_ext_info *seg = ext_segs[seg_num];
2972 			const struct btf_ext_info_sec *sec;
2973 			const char *sec_name;
2974 #ifdef HAVE_LIBELF
2975 			Elf_Scn *scn;
2976 #elif defined HAVE_ELFIO
2977 			psection_t sec_obj;
2978 #endif
2979 
2980 			if (seg->sec_cnt == 0)
2981 				continue;
2982 
2983 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2984 			if (!seg->sec_idxs) {
2985 				err = -ENOMEM;
2986 				goto out;
2987 			}
2988 
2989 			sec_num = 0;
2990 			for_each_btf_ext_sec(seg, sec) {
2991 				/* preventively increment index to avoid doing
2992 				 * this before every continue below
2993 				 */
2994 				sec_num++;
2995 
2996 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2997 				if (str_is_empty(sec_name))
2998 					continue;
2999 #ifdef  HAVE_LIBELF
3000 				scn = elf_sec_by_name(obj, sec_name);
3001 				if (!scn)
3002 					continue;
3003 #elif defined HAVE_ELFIO
3004 				pelfio_t elf = obj->efile.elf;
3005 				sec_obj = elfio_get_section_by_name(elf, sec_name);
3006 				if (!sec_obj)
3007 					continue;
3008 #endif
3009 #ifdef  HAVE_LIBELF
3010 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3011 #elif defined HAVE_ELFIO
3012 				seg->sec_idxs[sec_num - 1] = elfio_section_get_index(sec_obj);
3013 #endif
3014 			}
3015 		}
3016 	}
3017 out:
3018 	if (err && libbpf_needs_btf(obj)) {
3019 		pr_warn("BTF is required, but is missing or corrupted.\n");
3020 		return err;
3021 	}
3022 	return 0;
3023 }
3024 
3025 static int compare_vsi_off(const void *_a, const void *_b)
3026 {
3027 	const struct btf_var_secinfo *a = _a;
3028 	const struct btf_var_secinfo *b = _b;
3029 
3030 	return a->offset - b->offset;
3031 }
3032 
3033 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3034 			     struct btf_type *t)
3035 {
3036 	__u32 size = 0, i, vars = btf_vlen(t);
3037 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3038 	struct btf_var_secinfo *vsi;
3039 	bool fixup_offsets = false;
3040 	int err;
3041 
3042 	if (!sec_name) {
3043 		pr_debug("No name found in string section for DATASEC kind.\n");
3044 		return -ENOENT;
3045 	}
3046 
3047 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3048 	 * variable offsets set at the previous step. Further, not every
3049 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3050 	 * all fixups altogether for such sections and go straight to sorting
3051 	 * VARs within their DATASEC.
3052 	 */
3053 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3054 		goto sort_vars;
3055 
3056 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3057 	 * fix this up. But BPF static linker already fixes this up and fills
3058 	 * all the sizes and offsets during static linking. So this step has
3059 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3060 	 * non-extern DATASEC, so the variable fixup loop below handles both
3061 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3062 	 * symbol matching just once.
3063 	 */
3064 	if (t->size == 0) {
3065 		err = find_elf_sec_sz(obj, sec_name, &size);
3066 		if (err || !size) {
3067 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3068 				 sec_name, size, err);
3069 			return -ENOENT;
3070 		}
3071 
3072 		t->size = size;
3073 		fixup_offsets = true;
3074 	}
3075 
3076 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3077 		const struct btf_type *t_var;
3078 		struct btf_var *var;
3079 		const char *var_name;
3080 		Elf64_Sym *sym;
3081 
3082 		t_var = btf__type_by_id(btf, vsi->type);
3083 		if (!t_var || !btf_is_var(t_var)) {
3084 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3085 			return -EINVAL;
3086 		}
3087 
3088 		var = btf_var(t_var);
3089 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3090 			continue;
3091 
3092 		var_name = btf__name_by_offset(btf, t_var->name_off);
3093 		if (!var_name) {
3094 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3095 				 sec_name, i);
3096 			return -ENOENT;
3097 		}
3098 
3099 		sym = find_elf_var_sym(obj, var_name);
3100 		if (IS_ERR(sym)) {
3101 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3102 				 sec_name, var_name);
3103 			return -ENOENT;
3104 		}
3105 
3106 		if (fixup_offsets)
3107 			vsi->offset = sym->st_value;
3108 
3109 		/* if variable is a global/weak symbol, but has restricted
3110 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3111 		 * as static. This follows similar logic for functions (BPF
3112 		 * subprogs) and influences libbpf's further decisions about
3113 		 * whether to make global data BPF array maps as
3114 		 * BPF_F_MMAPABLE.
3115 		 */
3116 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3117 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3118 			var->linkage = BTF_VAR_STATIC;
3119 	}
3120 
3121 sort_vars:
3122 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3123 	return 0;
3124 }
3125 
3126 static int bpf_object_fixup_btf(struct bpf_object *obj)
3127 {
3128 	int i, n, err = 0;
3129 
3130 	if (!obj->btf)
3131 		return 0;
3132 
3133 	n = btf__type_cnt(obj->btf);
3134 	for (i = 1; i < n; i++) {
3135 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3136 
3137 		/* Loader needs to fix up some of the things compiler
3138 		 * couldn't get its hands on while emitting BTF. This
3139 		 * is section size and global variable offset. We use
3140 		 * the info from the ELF itself for this purpose.
3141 		 */
3142 		if (btf_is_datasec(t)) {
3143 			err = btf_fixup_datasec(obj, obj->btf, t);
3144 			if (err)
3145 				return err;
3146 		}
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3153 {
3154 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3155 	    prog->type == BPF_PROG_TYPE_LSM)
3156 		return true;
3157 
3158 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3159 	 * also need vmlinux BTF
3160 	 */
3161 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3162 		return true;
3163 
3164 	return false;
3165 }
3166 
3167 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3168 {
3169 	struct bpf_program *prog;
3170 	int i;
3171 
3172 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3173 	 * is not specified
3174 	 */
3175 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3176 		return true;
3177 
3178 	/* Support for typed ksyms needs kernel BTF */
3179 	for (i = 0; i < obj->nr_extern; i++) {
3180 		const struct extern_desc *ext;
3181 
3182 		ext = &obj->externs[i];
3183 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3184 			return true;
3185 	}
3186 
3187 	bpf_object__for_each_program(prog, obj) {
3188 		if (!prog->autoload)
3189 			continue;
3190 		if (prog_needs_vmlinux_btf(prog))
3191 			return true;
3192 	}
3193 
3194 	return false;
3195 }
3196 
3197 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3198 {
3199 	int err;
3200 
3201 	/* btf_vmlinux could be loaded earlier */
3202 	if (obj->btf_vmlinux || obj->gen_loader)
3203 		return 0;
3204 
3205 	if (!force && !obj_needs_vmlinux_btf(obj))
3206 		return 0;
3207 
3208 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3209 	err = libbpf_get_error(obj->btf_vmlinux);
3210 	if (err) {
3211 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3212 		obj->btf_vmlinux = NULL;
3213 		return err;
3214 	}
3215 	return 0;
3216 }
3217 
3218 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3219 {
3220 	struct btf *kern_btf = obj->btf;
3221 	bool btf_mandatory, sanitize;
3222 	int i, err = 0;
3223 
3224 	if (!obj->btf)
3225 		return 0;
3226 
3227 	if (!kernel_supports(obj, FEAT_BTF)) {
3228 		if (kernel_needs_btf(obj)) {
3229 			err = -EOPNOTSUPP;
3230 			goto report;
3231 		}
3232 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3233 		return 0;
3234 	}
3235 
3236 	/* Even though some subprogs are global/weak, user might prefer more
3237 	 * permissive BPF verification process that BPF verifier performs for
3238 	 * static functions, taking into account more context from the caller
3239 	 * functions. In such case, they need to mark such subprogs with
3240 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3241 	 * corresponding FUNC BTF type to be marked as static and trigger more
3242 	 * involved BPF verification process.
3243 	 */
3244 	for (i = 0; i < obj->nr_programs; i++) {
3245 		struct bpf_program *prog = &obj->programs[i];
3246 		struct btf_type *t;
3247 		const char *name;
3248 		int j, n;
3249 
3250 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3251 			continue;
3252 
3253 		n = btf__type_cnt(obj->btf);
3254 		for (j = 1; j < n; j++) {
3255 			t = btf_type_by_id(obj->btf, j);
3256 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3257 				continue;
3258 
3259 			name = btf__str_by_offset(obj->btf, t->name_off);
3260 			if (strcmp(name, prog->name) != 0)
3261 				continue;
3262 
3263 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3264 			break;
3265 		}
3266 	}
3267 
3268 	if (!kernel_supports(obj, FEAT_BTF_DECL_TAG))
3269 		goto skip_exception_cb;
3270 	for (i = 0; i < obj->nr_programs; i++) {
3271 		struct bpf_program *prog = &obj->programs[i];
3272 		int j, k, n;
3273 
3274 		if (prog_is_subprog(obj, prog))
3275 			continue;
3276 		n = btf__type_cnt(obj->btf);
3277 		for (j = 1; j < n; j++) {
3278 			const char *str = "exception_callback:", *name;
3279 			size_t len = strlen(str);
3280 			struct btf_type *t;
3281 
3282 			t = btf_type_by_id(obj->btf, j);
3283 			if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
3284 				continue;
3285 
3286 			name = btf__str_by_offset(obj->btf, t->name_off);
3287 			if (strncmp(name, str, len))
3288 				continue;
3289 
3290 			t = btf_type_by_id(obj->btf, t->type);
3291 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3292 				pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
3293 					prog->name);
3294 				return -EINVAL;
3295 			}
3296 			if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)))
3297 				continue;
3298 			/* Multiple callbacks are specified for the same prog,
3299 			 * the verifier will eventually return an error for this
3300 			 * case, hence simply skip appending a subprog.
3301 			 */
3302 			if (prog->exception_cb_idx >= 0) {
3303 				prog->exception_cb_idx = -1;
3304 				break;
3305 			}
3306 
3307 			name += len;
3308 			if (str_is_empty(name)) {
3309 				pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
3310 					prog->name);
3311 				return -EINVAL;
3312 			}
3313 
3314 			for (k = 0; k < obj->nr_programs; k++) {
3315 				struct bpf_program *subprog = &obj->programs[k];
3316 
3317 				if (!prog_is_subprog(obj, subprog))
3318 					continue;
3319 				if (strcmp(name, subprog->name))
3320 					continue;
3321 				/* Enforce non-hidden, as from verifier point of
3322 				 * view it expects global functions, whereas the
3323 				 * mark_btf_static fixes up linkage as static.
3324 				 */
3325 				if (!subprog->sym_global || subprog->mark_btf_static) {
3326 					pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
3327 						prog->name, subprog->name);
3328 					return -EINVAL;
3329 				}
3330 				/* Let's see if we already saw a static exception callback with the same name */
3331 				if (prog->exception_cb_idx >= 0) {
3332 					pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
3333 					        prog->name, subprog->name);
3334 					return -EINVAL;
3335 				}
3336 				prog->exception_cb_idx = k;
3337 				break;
3338 			}
3339 
3340 			if (prog->exception_cb_idx >= 0)
3341 				continue;
3342 			pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
3343 			return -ENOENT;
3344 		}
3345 	}
3346 skip_exception_cb:
3347 
3348 	sanitize = btf_needs_sanitization(obj);
3349 	if (sanitize) {
3350 		const void *raw_data;
3351 		__u32 sz;
3352 
3353 		/* clone BTF to sanitize a copy and leave the original intact */
3354 		raw_data = btf__raw_data(obj->btf, &sz);
3355 		kern_btf = btf__new(raw_data, sz);
3356 		err = libbpf_get_error(kern_btf);
3357 		if (err)
3358 			return err;
3359 
3360 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3361 		btf__set_pointer_size(obj->btf, 8);
3362 		err = bpf_object__sanitize_btf(obj, kern_btf);
3363 		if (err)
3364 			return err;
3365 	}
3366 
3367 	if (obj->gen_loader) {
3368 		__u32 raw_size = 0;
3369 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3370 
3371 		if (!raw_data)
3372 			return -ENOMEM;
3373 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3374 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3375 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3376 		 */
3377 		btf__set_fd(kern_btf, 0);
3378 	} else {
3379 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3380 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3381 					   obj->log_level ? 1 : 0);
3382 	}
3383 	if (sanitize) {
3384 		if (!err) {
3385 			/* move fd to libbpf's BTF */
3386 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3387 			btf__set_fd(kern_btf, -1);
3388 		}
3389 		btf__free(kern_btf);
3390 	}
3391 report:
3392 	if (err) {
3393 		btf_mandatory = kernel_needs_btf(obj);
3394 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3395 			btf_mandatory ? "BTF is mandatory, can't proceed."
3396 				      : "BTF is optional, ignoring.");
3397 		if (!btf_mandatory)
3398 			err = 0;
3399 	}
3400 	return err;
3401 }
3402 
3403 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3404 {
3405 	const char *name;
3406 #if defined HAVE_LIBELF
3407 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3408 #elif defined HAVE_ELFIO
3409 	name = elfio_string_get_string(obj->efile.strstring, off);
3410 #endif
3411 	if (!name) {
3412 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3413 			off, obj->path, elf_errmsg(-1));
3414 		return NULL;
3415 	}
3416 
3417 	return name;
3418 }
3419 
3420 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3421 {
3422 	const char *name;
3423 #if defined HAVE_LIBELF
3424 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3425 #elif defined HAVE_ELFIO
3426 	name = elfio_string_get_string(obj->efile.shstring, off);
3427 #endif
3428 
3429 	if (!name) {
3430 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3431 			off, obj->path, elf_errmsg(-1));
3432 		return NULL;
3433 	}
3434 
3435 	return name;
3436 }
3437 
3438 #ifdef HAVE_LIBELF
3439 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3440 {
3441 	Elf_Scn *scn;
3442 
3443 	scn = elf_getscn(obj->efile.elf, idx);
3444 	if (!scn) {
3445 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3446 			idx, obj->path, elf_errmsg(-1));
3447 		return NULL;
3448 	}
3449 	return scn;
3450 }
3451 
3452 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3453 {
3454 	Elf_Scn *scn = NULL;
3455 	Elf *elf = obj->efile.elf;
3456 	const char *sec_name;
3457 
3458 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3459 		sec_name = elf_sec_name(obj, scn);
3460 		if (!sec_name)
3461 			return NULL;
3462 
3463 		if (strcmp(sec_name, name) != 0)
3464 			continue;
3465 
3466 		return scn;
3467 	}
3468 	return NULL;
3469 }
3470 
3471 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3472 {
3473 	Elf64_Shdr *shdr;
3474 
3475 	if (!scn)
3476 		return NULL;
3477 
3478 	shdr = elf64_getshdr(scn);
3479 	if (!shdr) {
3480 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3481 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3482 		return NULL;
3483 	}
3484 
3485 	return shdr;
3486 }
3487 
3488 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3489 {
3490 	const char *name;
3491 	Elf64_Shdr *sh;
3492 
3493 	if (!scn)
3494 		return NULL;
3495 
3496 	sh = elf_sec_hdr(obj, scn);
3497 	if (!sh)
3498 		return NULL;
3499 
3500 	name = elf_sec_str(obj, sh->sh_name);
3501 	if (!name) {
3502 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3503 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3504 		return NULL;
3505 	}
3506 
3507 	return name;
3508 }
3509 #elif defined HAVE_ELFIO
3510 static Elf64_Shdr *elf_sec_hdr_by_idx(const struct bpf_object *obj, size_t idx, Elf64_Shdr *sheader)
3511 {
3512 	psection_t psection = elfio_get_section_by_index(obj->efile.elf, idx);
3513 
3514 	sheader->sh_name = elfio_section_get_name_string_offset(psection);
3515 	sheader->sh_type = elfio_section_get_type(psection);
3516 	sheader->sh_flags = elfio_section_get_flags(psection);
3517 	sheader->sh_addr = elfio_section_get_address(psection);
3518 	sheader->sh_offset = elfio_section_get_offset(psection);
3519 	sheader->sh_size = elfio_section_get_size(psection);
3520 	sheader->sh_link = elfio_section_get_link(psection);
3521 	sheader->sh_info = elfio_section_get_info(psection);
3522 	sheader->sh_addralign = elfio_section_get_addr_align(psection);
3523 	sheader->sh_entsize = elfio_section_get_entry_size(psection);
3524 
3525 	return sheader;
3526 }
3527 
3528 static const char *elf_sec_name_by_idx(const struct bpf_object *obj, size_t idx)
3529 {
3530 	const char *name;
3531 	Elf64_Shdr sh;
3532 
3533 	elf_sec_hdr_by_idx(obj, idx, &sh);
3534 
3535 	name = elf_sec_str(obj, sh.sh_name);
3536 	if (!name) {
3537 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3538 			idx, obj->path, elf_errmsg(-1));
3539 		return NULL;
3540 	}
3541 
3542 	return name;
3543 }
3544 #endif
3545 
3546 #if defined HAVE_LIBELF
3547 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3548 {
3549 	Elf_Data *data;
3550 
3551 	if (!scn)
3552 		return NULL;
3553 
3554 	data = elf_getdata(scn, 0);
3555 	if (!data) {
3556 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3557 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3558 			obj->path, elf_errmsg(-1));
3559 		return NULL;
3560 	}
3561 
3562 	return data;
3563 }
3564 #elif defined HAVE_ELFIO
3565 static Elf_Data *elf_sec_data_by_name(const struct bpf_object *obj, const char *name, Elf_Data *data)
3566 {
3567 	pelfio_t elf = obj->efile.elf;
3568 	psection_t psection_name = elfio_get_section_by_name(elf, name);
3569 	data->d_buf = (void*)elfio_section_get_data(psection_name);
3570 	data->d_size = elfio_section_get_size(psection_name);
3571 
3572 	return data;
3573 }
3574 
3575 static Elf_Data *elf_sec_data_by_idx(const struct bpf_object *obj, size_t idx, Elf_Data *data)
3576 {
3577 	pelfio_t elf = obj->efile.elf;
3578 	psection_t psection_index = elfio_get_section_by_index(elf, idx);
3579 	data->d_buf = (void*)elfio_section_get_data(psection_index);
3580 	data->d_size = elfio_section_get_size(psection_index);
3581 
3582 	return data;
3583 }
3584 #endif
3585 
3586 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3587 {
3588 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3589 		return NULL;
3590 
3591 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3592 }
3593 
3594 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3595 {
3596 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3597 		return NULL;
3598 
3599 	return (Elf64_Rel *)data->d_buf + idx;
3600 }
3601 
3602 static bool is_sec_name_dwarf(const char *name)
3603 {
3604 	/* approximation, but the actual list is too long */
3605 	return str_has_pfx(name, ".debug_");
3606 }
3607 
3608 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3609 {
3610 	/* no special handling of .strtab */
3611 	if (hdr->sh_type == SHT_STRTAB)
3612 		return true;
3613 
3614 	/* ignore .llvm_addrsig section as well */
3615 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3616 		return true;
3617 
3618 	/* no subprograms will lead to an empty .text section, ignore it */
3619 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3620 	    strcmp(name, ".text") == 0)
3621 		return true;
3622 
3623 	/* DWARF sections */
3624 	if (is_sec_name_dwarf(name))
3625 		return true;
3626 
3627 	if (str_has_pfx(name, ".rel")) {
3628 		name += sizeof(".rel") - 1;
3629 		/* DWARF section relocations */
3630 		if (is_sec_name_dwarf(name))
3631 			return true;
3632 
3633 		/* .BTF and .BTF.ext don't need relocations */
3634 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3635 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3636 			return true;
3637 	}
3638 
3639 	return false;
3640 }
3641 
3642 static int cmp_progs(const void *_a, const void *_b)
3643 {
3644 	const struct bpf_program *a = _a;
3645 	const struct bpf_program *b = _b;
3646 
3647 	if (a->sec_idx != b->sec_idx)
3648 		return a->sec_idx < b->sec_idx ? -1 : 1;
3649 
3650 	/* sec_insn_off can't be the same within the section */
3651 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3652 }
3653 
3654 static int bpf_object__elf_collect(struct bpf_object *obj)
3655 {
3656 	struct elf_sec_desc *sec_desc;
3657 #if defined HAVE_LIBELF
3658 	Elf *elf = obj->efile.elf;
3659 #elif defined HAVE_ELFIO
3660 	pelfio_t elf = obj->efile.elf;
3661 #endif
3662 	Elf_Data *btf_ext_data = NULL;
3663 	Elf_Data *btf_data = NULL;
3664 	int idx = 0, err = 0;
3665 	const char *name;
3666 	Elf_Data *data;
3667 #ifdef HAVE_LIBELF
3668 	Elf_Scn *scn;
3669 #endif
3670 	Elf64_Shdr *sh;
3671 #ifdef HAVE_ELFIO
3672 	Elf64_Shdr secHeader = {0};
3673 	sh = &secHeader;
3674 #endif
3675 
3676 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3677 	 * section. Since section count retrieved by elf_getshdrnum() does
3678 	 * include sec #0, it is already the necessary size of an array to keep
3679 	 * all the sections.
3680 	 */
3681 #ifdef HAVE_LIBELF
3682 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3683 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3684 			obj->path, elf_errmsg(-1));
3685 		return -LIBBPF_ERRNO__FORMAT;
3686 	}
3687 #elif defined HAVE_ELFIO
3688 	obj->efile.sec_cnt = elfio_get_sections_num(elf);
3689 #endif
3690 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3691 	if (!obj->efile.secs)
3692 		return -ENOMEM;
3693 
3694 	/* a bunch of ELF parsing functionality depends on processing symbols,
3695 	 * so do the first pass and find the symbol table
3696 	 */
3697 #if defined HAVE_LIBELF
3698 	scn = NULL;
3699 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3700 		sh = elf_sec_hdr(obj, scn);
3701 #elif defined HAVE_ELFIO
3702 	int secno = elfio_get_sections_num(elf);
3703     for ( int i = 0; i < secno; i++ ) {
3704 		Elf_Data realdata;
3705 		sh = elf_sec_hdr_by_idx(obj, i, sh);
3706 #endif
3707 		if (!sh)
3708 			return -LIBBPF_ERRNO__FORMAT;
3709 
3710 		if (sh->sh_type == SHT_SYMTAB) {
3711 			if (obj->efile.symbols) {
3712 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3713 				return -LIBBPF_ERRNO__FORMAT;
3714 			}
3715 #if defined HAVE_LIBELF
3716 			data = elf_sec_data(obj, scn);
3717 #elif defined HAVE_ELFIO
3718 			data = elf_sec_data_by_idx(obj, i, &realdata);
3719 #endif
3720 			if (!data)
3721 				return -LIBBPF_ERRNO__FORMAT;
3722 #ifdef HAVE_LIBELF
3723 			idx = elf_ndxscn(scn);
3724 #endif
3725 
3726 #if defined HAVE_LIBELF
3727 			obj->efile.symbols = data;
3728 #elif defined HAVE_ELFIO
3729 			obj->efile.realsymbols.d_buf = data->d_buf;
3730 			obj->efile.realsymbols.d_size = data->d_size;
3731 			obj->efile.symbols = &(obj->efile.realsymbols);
3732 #endif
3733 
3734 #if defined HAVE_LIBELF
3735 			obj->efile.symbols_shndx = idx;
3736 #elif defined HAVE_ELFIO
3737 			obj->efile.symbols_shndx = i;
3738 #endif
3739 			obj->efile.strtabidx = sh->sh_link;
3740 		}
3741 	}
3742 
3743 #ifdef HAVE_ELFIO
3744 	pstring_t shstring;
3745 	pstring_t strstring;
3746 
3747 	psection_t psection = elfio_get_section_by_index(elf, obj->efile.strtabidx);
3748 	if (!psection)
3749 		return -LIBBPF_ERRNO__FORMAT;
3750 	strstring = elfio_string_section_accessor_new(psection);
3751 
3752 	psection = elfio_get_section_by_index(elf, obj->efile.shstrndx);
3753 	if (!psection)
3754 		return -LIBBPF_ERRNO__FORMAT;
3755 	shstring = elfio_string_section_accessor_new(psection);
3756 
3757 	if (!strstring || !shstring)
3758 		return -LIBBPF_ERRNO__FORMAT;
3759 	obj->efile.strstring = strstring;
3760 	obj->efile.shstring = shstring;
3761 #endif
3762 
3763 	if (!obj->efile.symbols) {
3764 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3765 			obj->path);
3766 		return -ENOENT;
3767 	}
3768 
3769 #ifdef HAVE_LIBELF
3770 	scn = NULL;
3771 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3772 #elif defined HAVE_ELFIO
3773 	for ( int i = 0; i < secno; i++ ) {
3774 		psection_t ptmpsection = elfio_get_section_by_index(elf, i);
3775 		elf_sec_hdr_by_idx(obj, i, sh);
3776 #endif
3777 
3778 #if defined HAVE_LIBELF
3779 		idx = elf_ndxscn(scn);
3780 #elif defined HAVE_ELFIO
3781 		idx = i;
3782 #endif
3783 		sec_desc = &obj->efile.secs[idx];
3784 
3785 #if defined HAVE_LIBELF
3786 		sh = elf_sec_hdr(obj, scn);
3787 #elif defined HAVE_ELFIO
3788 		sh = elf_sec_hdr_by_idx(obj, i, sh);
3789 #endif
3790 
3791 		if (!sh)
3792 			return -LIBBPF_ERRNO__FORMAT;
3793 
3794 		name = elf_sec_str(obj, sh->sh_name);
3795 		if (!name)
3796 			return -LIBBPF_ERRNO__FORMAT;
3797 
3798 		if (ignore_elf_section(sh, name))
3799 			continue;
3800 
3801 #if defined HAVE_LIBELF
3802 		data = elf_sec_data(obj, scn);
3803 #elif defined HAVE_ELFIO
3804 		data = elf_sec_data_by_idx(obj, i, &sec_desc->realdata);
3805 #endif
3806 		if (!data)
3807 			return -LIBBPF_ERRNO__FORMAT;
3808 
3809 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3810 			 idx, name, (unsigned long)data->d_size,
3811 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3812 			 (int)sh->sh_type);
3813 
3814 		if (strcmp(name, "license") == 0) {
3815 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3816 			if (err)
3817 				return err;
3818 		} else if (strcmp(name, "version") == 0) {
3819 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3820 			if (err)
3821 				return err;
3822 		} else if (strcmp(name, "maps") == 0) {
3823 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3824 			return -ENOTSUP;
3825 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3826 			obj->efile.btf_maps_shndx = idx;
3827 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3828 			if (sh->sh_type != SHT_PROGBITS)
3829 				return -LIBBPF_ERRNO__FORMAT;
3830 			btf_data = data;
3831 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3832 			if (sh->sh_type != SHT_PROGBITS)
3833 				return -LIBBPF_ERRNO__FORMAT;
3834 			btf_ext_data = data;
3835 		} else if (sh->sh_type == SHT_SYMTAB) {
3836 			/* already processed during the first pass above */
3837 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3838 			if (sh->sh_flags & SHF_EXECINSTR) {
3839 				if (strcmp(name, ".text") == 0)
3840 					obj->efile.text_shndx = idx;
3841 				err = bpf_object__add_programs(obj, data, name, idx);
3842 				if (err)
3843 					return err;
3844 			} else if (strcmp(name, DATA_SEC) == 0 ||
3845 				   str_has_pfx(name, DATA_SEC ".")) {
3846 				sec_desc->sec_type = SEC_DATA;
3847 #if defined HAVE_LIBELF
3848 				sec_desc->shdr = sh;
3849 				sec_desc->data = data;
3850 #elif defined HAVE_ELFIO
3851 				sec_desc->psection = ptmpsection;
3852 				sec_desc->realdata.d_buf = data->d_buf;
3853 				sec_desc->realdata.d_size = data->d_size;
3854 				sec_desc->data = &(sec_desc->realdata);
3855 #endif
3856 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3857 				   str_has_pfx(name, RODATA_SEC ".")) {
3858 				sec_desc->sec_type = SEC_RODATA;
3859 #if defined HAVE_LIBELF
3860 				sec_desc->shdr = sh;
3861 				sec_desc->data = data;
3862 #elif defined HAVE_ELFIO
3863 				sec_desc->psection = ptmpsection;
3864 				sec_desc->realdata.d_buf = data->d_buf;
3865 				sec_desc->realdata.d_size = data->d_size;
3866 				sec_desc->data = &(sec_desc->realdata);
3867 #endif
3868 
3869 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3870 #if defined HAVE_LIBELF
3871 				obj->efile.st_ops_data = data;
3872 #elif defined HAVE_ELFIO
3873 				obj->efile.realst_ops_data.d_buf = data->d_buf;
3874 				obj->efile.realst_ops_data.d_size = data->d_size;
3875 				obj->efile.st_ops_data = &(obj->efile.realst_ops_data);
3876 #endif
3877 				obj->efile.st_ops_shndx = idx;
3878 			} else {
3879 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3880 					idx, name);
3881 			}
3882 		} else if (sh->sh_type == SHT_REL) {
3883 			int targ_sec_idx = sh->sh_info; /* points to other section */
3884 
3885 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3886 			    targ_sec_idx >= obj->efile.sec_cnt)
3887 				return -LIBBPF_ERRNO__FORMAT;
3888 
3889 			/* Only do relo for section with exec instructions */
3890 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3891 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3892 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3893 #if defined HAVE_LIBELF
3894 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3895 					idx, name, targ_sec_idx,
3896 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3897 #elif defined HAVE_ELFIO
3898 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3899 					idx, name, targ_sec_idx,
3900 					elf_sec_name_by_idx(obj, targ_sec_idx) ?: "<?>");
3901 #endif
3902 				continue;
3903 			}
3904 
3905 			sec_desc->sec_type = SEC_RELO;
3906 #if defined HAVE_LIBELF
3907 			sec_desc->shdr = sh;
3908 #elif defined HAVE_ELFIO
3909 			sec_desc->psection = ptmpsection;
3910 #endif
3911 			sec_desc->data = data;
3912 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3913 							 str_has_pfx(name, BSS_SEC "."))) {
3914 			sec_desc->sec_type = SEC_BSS;
3915 #if defined HAVE_LIBELF
3916 			sec_desc->shdr = sh;
3917 #elif defined HAVE_ELFIO
3918 			sec_desc->psection = ptmpsection;
3919 #endif
3920 			sec_desc->data = data;
3921 		} else {
3922 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3923 				(size_t)sh->sh_size);
3924 		}
3925 	}
3926 
3927 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3928 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3929 		return -LIBBPF_ERRNO__FORMAT;
3930 	}
3931 
3932 	/* sort BPF programs by section name and in-section instruction offset
3933 	 * for faster search
3934 	 */
3935 	if (obj->nr_programs)
3936 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3937 
3938 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3939 }
3940 
3941 static bool sym_is_extern(const Elf64_Sym *sym)
3942 {
3943 	int bind = ELF64_ST_BIND(sym->st_info);
3944 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3945 	return sym->st_shndx == SHN_UNDEF &&
3946 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3947 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3948 }
3949 
3950 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3951 {
3952 	int bind = ELF64_ST_BIND(sym->st_info);
3953 	int type = ELF64_ST_TYPE(sym->st_info);
3954 
3955 	/* in .text section */
3956 	if (sym->st_shndx != text_shndx)
3957 		return false;
3958 
3959 	/* local function */
3960 	if (bind == STB_LOCAL && type == STT_SECTION)
3961 		return true;
3962 
3963 	/* global function */
3964 	return bind == STB_GLOBAL && type == STT_FUNC;
3965 }
3966 
3967 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3968 {
3969 	const struct btf_type *t;
3970 	const char *tname;
3971 	int i, n;
3972 
3973 	if (!btf)
3974 		return -ESRCH;
3975 
3976 	n = btf__type_cnt(btf);
3977 	for (i = 1; i < n; i++) {
3978 		t = btf__type_by_id(btf, i);
3979 
3980 		if (!btf_is_var(t) && !btf_is_func(t))
3981 			continue;
3982 
3983 		tname = btf__name_by_offset(btf, t->name_off);
3984 		if (strcmp(tname, ext_name))
3985 			continue;
3986 
3987 		if (btf_is_var(t) &&
3988 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3989 			return -EINVAL;
3990 
3991 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3992 			return -EINVAL;
3993 
3994 		return i;
3995 	}
3996 
3997 	return -ENOENT;
3998 }
3999 
4000 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4001 	const struct btf_var_secinfo *vs;
4002 	const struct btf_type *t;
4003 	int i, j, n;
4004 
4005 	if (!btf)
4006 		return -ESRCH;
4007 
4008 	n = btf__type_cnt(btf);
4009 	for (i = 1; i < n; i++) {
4010 		t = btf__type_by_id(btf, i);
4011 
4012 		if (!btf_is_datasec(t))
4013 			continue;
4014 
4015 		vs = btf_var_secinfos(t);
4016 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4017 			if (vs->type == ext_btf_id)
4018 				return i;
4019 		}
4020 	}
4021 
4022 	return -ENOENT;
4023 }
4024 
4025 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4026 				     bool *is_signed)
4027 {
4028 	const struct btf_type *t;
4029 	const char *name;
4030 
4031 	t = skip_mods_and_typedefs(btf, id, NULL);
4032 	name = btf__name_by_offset(btf, t->name_off);
4033 
4034 	if (is_signed)
4035 		*is_signed = false;
4036 	switch (btf_kind(t)) {
4037 	case BTF_KIND_INT: {
4038 		int enc = btf_int_encoding(t);
4039 
4040 		if (enc & BTF_INT_BOOL)
4041 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4042 		if (is_signed)
4043 			*is_signed = enc & BTF_INT_SIGNED;
4044 		if (t->size == 1)
4045 			return KCFG_CHAR;
4046 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4047 			return KCFG_UNKNOWN;
4048 		return KCFG_INT;
4049 	}
4050 	case BTF_KIND_ENUM:
4051 		if (t->size != 4)
4052 			return KCFG_UNKNOWN;
4053 		if (strcmp(name, "libbpf_tristate"))
4054 			return KCFG_UNKNOWN;
4055 		return KCFG_TRISTATE;
4056 	case BTF_KIND_ENUM64:
4057 		if (strcmp(name, "libbpf_tristate"))
4058 			return KCFG_UNKNOWN;
4059 		return KCFG_TRISTATE;
4060 	case BTF_KIND_ARRAY:
4061 		if (btf_array(t)->nelems == 0)
4062 			return KCFG_UNKNOWN;
4063 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4064 			return KCFG_UNKNOWN;
4065 		return KCFG_CHAR_ARR;
4066 	default:
4067 		return KCFG_UNKNOWN;
4068 	}
4069 }
4070 
4071 static int cmp_externs(const void *_a, const void *_b)
4072 {
4073 	const struct extern_desc *a = _a;
4074 	const struct extern_desc *b = _b;
4075 
4076 	if (a->type != b->type)
4077 		return a->type < b->type ? -1 : 1;
4078 
4079 	if (a->type == EXT_KCFG) {
4080 		/* descending order by alignment requirements */
4081 		if (a->kcfg.align != b->kcfg.align)
4082 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4083 		/* ascending order by size, within same alignment class */
4084 		if (a->kcfg.sz != b->kcfg.sz)
4085 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4086 	}
4087 
4088 	/* resolve ties by name */
4089 	return strcmp(a->name, b->name);
4090 }
4091 
4092 static int find_int_btf_id(const struct btf *btf)
4093 {
4094 	const struct btf_type *t;
4095 	int i, n;
4096 
4097 	n = btf__type_cnt(btf);
4098 	for (i = 1; i < n; i++) {
4099 		t = btf__type_by_id(btf, i);
4100 
4101 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4102 			return i;
4103 	}
4104 
4105 	return 0;
4106 }
4107 
4108 static int add_dummy_ksym_var(struct btf *btf)
4109 {
4110 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4111 	const struct btf_var_secinfo *vs;
4112 	const struct btf_type *sec;
4113 
4114 	if (!btf)
4115 		return 0;
4116 
4117 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4118 					    BTF_KIND_DATASEC);
4119 	if (sec_btf_id < 0)
4120 		return 0;
4121 
4122 	sec = btf__type_by_id(btf, sec_btf_id);
4123 	vs = btf_var_secinfos(sec);
4124 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4125 		const struct btf_type *vt;
4126 
4127 		vt = btf__type_by_id(btf, vs->type);
4128 		if (btf_is_func(vt))
4129 			break;
4130 	}
4131 
4132 	/* No func in ksyms sec.  No need to add dummy var. */
4133 	if (i == btf_vlen(sec))
4134 		return 0;
4135 
4136 	int_btf_id = find_int_btf_id(btf);
4137 	dummy_var_btf_id = btf__add_var(btf,
4138 					"dummy_ksym",
4139 					BTF_VAR_GLOBAL_ALLOCATED,
4140 					int_btf_id);
4141 	if (dummy_var_btf_id < 0)
4142 		pr_warn("cannot create a dummy_ksym var\n");
4143 
4144 	return dummy_var_btf_id;
4145 }
4146 
4147 static int bpf_object__collect_externs(struct bpf_object *obj)
4148 {
4149 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4150 	const struct btf_type *t;
4151 	struct extern_desc *ext;
4152 	int i, n, off, dummy_var_btf_id;
4153 	const char *ext_name, *sec_name;
4154 	size_t ext_essent_len;
4155 #ifdef HAVE_LIBELF
4156 	Elf_Scn *scn;
4157 #endif
4158 	Elf64_Shdr *sh;
4159 	Elf64_Shdr shheader;
4160 
4161 	if (!obj->efile.symbols)
4162 		return 0;
4163 
4164 #if defined HAVE_LIBELF
4165 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4166 	sh = elf_sec_hdr(obj, scn);
4167 #elif defined HAVE_ELFIO
4168 	sh = &shheader;
4169 	sh = elf_sec_hdr_by_idx(obj, obj->efile.symbols_shndx, sh);
4170 #endif
4171 
4172 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4173 		return -LIBBPF_ERRNO__FORMAT;
4174 
4175 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4176 	if (dummy_var_btf_id < 0)
4177 		return dummy_var_btf_id;
4178 
4179 	n = sh->sh_size / sh->sh_entsize;
4180 	pr_debug("looking for externs among %d symbols...\n", n);
4181 
4182 	for (i = 0; i < n; i++) {
4183 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4184 
4185 		if (!sym)
4186 			return -LIBBPF_ERRNO__FORMAT;
4187 		if (!sym_is_extern(sym))
4188 			continue;
4189 		ext_name = elf_sym_str(obj, sym->st_name);
4190 		if (!ext_name || !ext_name[0])
4191 			continue;
4192 
4193 		ext = obj->externs;
4194 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4195 		if (!ext)
4196 			return -ENOMEM;
4197 		obj->externs = ext;
4198 		ext = &ext[obj->nr_extern];
4199 		memset(ext, 0, sizeof(*ext));
4200 		obj->nr_extern++;
4201 
4202 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4203 		if (ext->btf_id <= 0) {
4204 			pr_warn("failed to find BTF for extern '%s': %d\n",
4205 				ext_name, ext->btf_id);
4206 			return ext->btf_id;
4207 		}
4208 		t = btf__type_by_id(obj->btf, ext->btf_id);
4209 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4210 		ext->sym_idx = i;
4211 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4212 
4213 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4214 		ext->essent_name = NULL;
4215 		if (ext_essent_len != strlen(ext->name)) {
4216 			ext->essent_name = strndup(ext->name, ext_essent_len);
4217 			if (!ext->essent_name)
4218 				return -ENOMEM;
4219 		}
4220 
4221 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4222 		if (ext->sec_btf_id <= 0) {
4223 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4224 				ext_name, ext->btf_id, ext->sec_btf_id);
4225 			return ext->sec_btf_id;
4226 		}
4227 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4228 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4229 
4230 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4231 			if (btf_is_func(t)) {
4232 				pr_warn("extern function %s is unsupported under %s section\n",
4233 					ext->name, KCONFIG_SEC);
4234 				return -ENOTSUP;
4235 			}
4236 			kcfg_sec = sec;
4237 			ext->type = EXT_KCFG;
4238 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4239 			if (ext->kcfg.sz <= 0) {
4240 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4241 					ext_name, ext->kcfg.sz);
4242 				return ext->kcfg.sz;
4243 			}
4244 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4245 			if (ext->kcfg.align <= 0) {
4246 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4247 					ext_name, ext->kcfg.align);
4248 				return -EINVAL;
4249 			}
4250 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4251 							&ext->kcfg.is_signed);
4252 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4253 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4254 				return -ENOTSUP;
4255 			}
4256 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4257 			ksym_sec = sec;
4258 			ext->type = EXT_KSYM;
4259 			skip_mods_and_typedefs(obj->btf, t->type,
4260 					       &ext->ksym.type_id);
4261 		} else {
4262 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4263 			return -ENOTSUP;
4264 		}
4265 	}
4266 	pr_debug("collected %d externs total\n", obj->nr_extern);
4267 
4268 	if (!obj->nr_extern)
4269 		return 0;
4270 
4271 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4272 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4273 
4274 	/* for .ksyms section, we need to turn all externs into allocated
4275 	 * variables in BTF to pass kernel verification; we do this by
4276 	 * pretending that each extern is a 8-byte variable
4277 	 */
4278 	if (ksym_sec) {
4279 		/* find existing 4-byte integer type in BTF to use for fake
4280 		 * extern variables in DATASEC
4281 		 */
4282 		int int_btf_id = find_int_btf_id(obj->btf);
4283 		/* For extern function, a dummy_var added earlier
4284 		 * will be used to replace the vs->type and
4285 		 * its name string will be used to refill
4286 		 * the missing param's name.
4287 		 */
4288 		const struct btf_type *dummy_var;
4289 
4290 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4291 		for (i = 0; i < obj->nr_extern; i++) {
4292 			ext = &obj->externs[i];
4293 			if (ext->type != EXT_KSYM)
4294 				continue;
4295 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4296 				 i, ext->sym_idx, ext->name);
4297 		}
4298 
4299 		sec = ksym_sec;
4300 		n = btf_vlen(sec);
4301 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4302 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4303 			struct btf_type *vt;
4304 
4305 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4306 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4307 			ext = find_extern_by_name(obj, ext_name);
4308 			if (!ext) {
4309 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4310 					btf_kind_str(vt), ext_name);
4311 				return -ESRCH;
4312 			}
4313 			if (btf_is_func(vt)) {
4314 				const struct btf_type *func_proto;
4315 				struct btf_param *param;
4316 				int j;
4317 
4318 				func_proto = btf__type_by_id(obj->btf,
4319 							     vt->type);
4320 				param = btf_params(func_proto);
4321 				/* Reuse the dummy_var string if the
4322 				 * func proto does not have param name.
4323 				 */
4324 				for (j = 0; j < btf_vlen(func_proto); j++)
4325 					if (param[j].type && !param[j].name_off)
4326 						param[j].name_off =
4327 							dummy_var->name_off;
4328 				vs->type = dummy_var_btf_id;
4329 				vt->info &= ~0xffff;
4330 				vt->info |= BTF_FUNC_GLOBAL;
4331 			} else {
4332 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4333 				vt->type = int_btf_id;
4334 			}
4335 			vs->offset = off;
4336 			vs->size = sizeof(int);
4337 		}
4338 		sec->size = off;
4339 	}
4340 
4341 	if (kcfg_sec) {
4342 		sec = kcfg_sec;
4343 		/* for kcfg externs calculate their offsets within a .kconfig map */
4344 		off = 0;
4345 		for (i = 0; i < obj->nr_extern; i++) {
4346 			ext = &obj->externs[i];
4347 			if (ext->type != EXT_KCFG)
4348 				continue;
4349 
4350 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4351 			off = ext->kcfg.data_off + ext->kcfg.sz;
4352 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4353 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4354 		}
4355 		sec->size = off;
4356 		n = btf_vlen(sec);
4357 		for (i = 0; i < n; i++) {
4358 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4359 
4360 			t = btf__type_by_id(obj->btf, vs->type);
4361 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4362 			ext = find_extern_by_name(obj, ext_name);
4363 			if (!ext) {
4364 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4365 					ext_name);
4366 				return -ESRCH;
4367 			}
4368 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4369 			vs->offset = ext->kcfg.data_off;
4370 		}
4371 	}
4372 	return 0;
4373 }
4374 
4375 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4376 {
4377 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4378 }
4379 
4380 struct bpf_program *
4381 bpf_object__find_program_by_name(const struct bpf_object *obj,
4382 				 const char *name)
4383 {
4384 	struct bpf_program *prog;
4385 
4386 	bpf_object__for_each_program(prog, obj) {
4387 		if (prog_is_subprog(obj, prog))
4388 			continue;
4389 		if (!strcmp(prog->name, name))
4390 			return prog;
4391 	}
4392 	return errno = ENOENT, NULL;
4393 }
4394 
4395 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4396 				      int shndx)
4397 {
4398 	switch (obj->efile.secs[shndx].sec_type) {
4399 	case SEC_BSS:
4400 	case SEC_DATA:
4401 	case SEC_RODATA:
4402 		return true;
4403 	default:
4404 		return false;
4405 	}
4406 }
4407 
4408 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4409 				      int shndx)
4410 {
4411 	return shndx == obj->efile.btf_maps_shndx;
4412 }
4413 
4414 static enum libbpf_map_type
4415 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4416 {
4417 	if (shndx == obj->efile.symbols_shndx)
4418 		return LIBBPF_MAP_KCONFIG;
4419 
4420 	switch (obj->efile.secs[shndx].sec_type) {
4421 	case SEC_BSS:
4422 		return LIBBPF_MAP_BSS;
4423 	case SEC_DATA:
4424 		return LIBBPF_MAP_DATA;
4425 	case SEC_RODATA:
4426 		return LIBBPF_MAP_RODATA;
4427 	default:
4428 		return LIBBPF_MAP_UNSPEC;
4429 	}
4430 }
4431 
4432 static int bpf_program__record_reloc(struct bpf_program *prog,
4433 				     struct reloc_desc *reloc_desc,
4434 				     __u32 insn_idx, const char *sym_name,
4435 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4436 {
4437 	struct bpf_insn *insn = &prog->insns[insn_idx];
4438 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4439 	struct bpf_object *obj = prog->obj;
4440 	__u32 shdr_idx = sym->st_shndx;
4441 	enum libbpf_map_type type;
4442 	const char *sym_sec_name;
4443 	struct bpf_map *map;
4444 
4445 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4446 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4447 			prog->name, sym_name, insn_idx, insn->code);
4448 		return -LIBBPF_ERRNO__RELOC;
4449 	}
4450 
4451 	if (sym_is_extern(sym)) {
4452 		int sym_idx = ELF64_R_SYM(rel->r_info);
4453 		int i, n = obj->nr_extern;
4454 		struct extern_desc *ext;
4455 
4456 		for (i = 0; i < n; i++) {
4457 			ext = &obj->externs[i];
4458 			if (ext->sym_idx == sym_idx)
4459 				break;
4460 		}
4461 		if (i >= n) {
4462 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4463 				prog->name, sym_name, sym_idx);
4464 			return -LIBBPF_ERRNO__RELOC;
4465 		}
4466 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4467 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4468 		if (insn->code == (BPF_JMP | BPF_CALL))
4469 			reloc_desc->type = RELO_EXTERN_CALL;
4470 		else
4471 			reloc_desc->type = RELO_EXTERN_LD64;
4472 		reloc_desc->insn_idx = insn_idx;
4473 		reloc_desc->ext_idx = i;
4474 		return 0;
4475 	}
4476 
4477 	/* sub-program call relocation */
4478 	if (is_call_insn(insn)) {
4479 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4480 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4481 			return -LIBBPF_ERRNO__RELOC;
4482 		}
4483 		/* text_shndx can be 0, if no default "main" program exists */
4484 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4485 #if defined HAVE_LIBELF
4486 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4487 #elif defined HAVE_ELFIO
4488 			sym_sec_name = elf_sec_name_by_idx(obj, shdr_idx);
4489 #endif
4490 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4491 				prog->name, sym_name, sym_sec_name);
4492 			return -LIBBPF_ERRNO__RELOC;
4493 		}
4494 		if (sym->st_value % BPF_INSN_SZ) {
4495 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4496 				prog->name, sym_name, (size_t)sym->st_value);
4497 			return -LIBBPF_ERRNO__RELOC;
4498 		}
4499 		reloc_desc->type = RELO_CALL;
4500 		reloc_desc->insn_idx = insn_idx;
4501 		reloc_desc->sym_off = sym->st_value;
4502 		return 0;
4503 	}
4504 
4505 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4506 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4507 			prog->name, sym_name, shdr_idx);
4508 		return -LIBBPF_ERRNO__RELOC;
4509 	}
4510 
4511 	/* loading subprog addresses */
4512 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4513 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4514 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4515 		 */
4516 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4517 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4518 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4519 			return -LIBBPF_ERRNO__RELOC;
4520 		}
4521 
4522 		reloc_desc->type = RELO_SUBPROG_ADDR;
4523 		reloc_desc->insn_idx = insn_idx;
4524 		reloc_desc->sym_off = sym->st_value;
4525 		return 0;
4526 	}
4527 
4528 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4529 #if defined HAVE_LIBELF
4530 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4531 #elif defined HAVE_ELFIO
4532 	sym_sec_name = elf_sec_name_by_idx(obj, shdr_idx);
4533 #endif
4534 	/* generic map reference relocation */
4535 	if (type == LIBBPF_MAP_UNSPEC) {
4536 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4537 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4538 				prog->name, sym_name, sym_sec_name);
4539 			return -LIBBPF_ERRNO__RELOC;
4540 		}
4541 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4542 			map = &obj->maps[map_idx];
4543 			if (map->libbpf_type != type ||
4544 			    map->sec_idx != sym->st_shndx ||
4545 			    map->sec_offset != sym->st_value)
4546 				continue;
4547 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4548 				 prog->name, map_idx, map->name, map->sec_idx,
4549 				 map->sec_offset, insn_idx);
4550 			break;
4551 		}
4552 		if (map_idx >= nr_maps) {
4553 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4554 				prog->name, sym_sec_name, (size_t)sym->st_value);
4555 			return -LIBBPF_ERRNO__RELOC;
4556 		}
4557 		reloc_desc->type = RELO_LD64;
4558 		reloc_desc->insn_idx = insn_idx;
4559 		reloc_desc->map_idx = map_idx;
4560 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4561 		return 0;
4562 	}
4563 
4564 	/* global data map relocation */
4565 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4566 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4567 			prog->name, sym_sec_name);
4568 		return -LIBBPF_ERRNO__RELOC;
4569 	}
4570 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4571 		map = &obj->maps[map_idx];
4572 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4573 			continue;
4574 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4575 			 prog->name, map_idx, map->name, map->sec_idx,
4576 			 map->sec_offset, insn_idx);
4577 		break;
4578 	}
4579 	if (map_idx >= nr_maps) {
4580 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4581 			prog->name, sym_sec_name);
4582 		return -LIBBPF_ERRNO__RELOC;
4583 	}
4584 
4585 	reloc_desc->type = RELO_DATA;
4586 	reloc_desc->insn_idx = insn_idx;
4587 	reloc_desc->map_idx = map_idx;
4588 	reloc_desc->sym_off = sym->st_value;
4589 	return 0;
4590 }
4591 
4592 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4593 {
4594 	return insn_idx >= prog->sec_insn_off &&
4595 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4596 }
4597 
4598 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4599 						 size_t sec_idx, size_t insn_idx)
4600 {
4601 	int l = 0, r = obj->nr_programs - 1, m;
4602 	struct bpf_program *prog;
4603 
4604 	if (!obj->nr_programs)
4605 		return NULL;
4606 
4607 	while (l < r) {
4608 		m = l + (r - l + 1) / 2;
4609 		prog = &obj->programs[m];
4610 
4611 		if (prog->sec_idx < sec_idx ||
4612 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4613 			l = m;
4614 		else
4615 			r = m - 1;
4616 	}
4617 	/* matching program could be at index l, but it still might be the
4618 	 * wrong one, so we need to double check conditions for the last time
4619 	 */
4620 	prog = &obj->programs[l];
4621 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4622 		return prog;
4623 	return NULL;
4624 }
4625 
4626 static int
4627 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4628 {
4629 	const char *relo_sec_name, *sec_name;
4630 	size_t sec_idx = shdr->sh_info, sym_idx;
4631 	struct bpf_program *prog;
4632 	struct reloc_desc *relos;
4633 	int err, i, nrels;
4634 	const char *sym_name;
4635 	__u32 insn_idx;
4636 #ifdef HAVE_LIBELF
4637 	Elf_Scn *scn;
4638 #endif
4639 	Elf_Data *scn_data;
4640 	Elf64_Sym *sym;
4641 	Elf64_Rel *rel;
4642 
4643 	if (sec_idx >= obj->efile.sec_cnt)
4644 		return -EINVAL;
4645 
4646 #if defined HAVE_LIBELF
4647 	scn = elf_sec_by_idx(obj, sec_idx);
4648 	scn_data = elf_sec_data(obj, scn);
4649 
4650 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4651 	sec_name = elf_sec_name(obj, scn);
4652 	if (!relo_sec_name || !sec_name)
4653 		return -EINVAL;
4654 #elif defined HAVE_ELFIO
4655 	Elf_Data realdata;
4656 	scn_data = elf_sec_data_by_idx(obj, sec_idx, &realdata);
4657 
4658 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4659 	sec_name = elf_sec_name_by_idx(obj, sec_idx);
4660 	if (!relo_sec_name || !sec_name)
4661 		return -EINVAL;
4662 #endif
4663 
4664 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4665 		 relo_sec_name, sec_idx, sec_name);
4666 	nrels = shdr->sh_size / shdr->sh_entsize;
4667 
4668 	for (i = 0; i < nrels; i++) {
4669 		rel = elf_rel_by_idx(data, i);
4670 		if (!rel) {
4671 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4672 			return -LIBBPF_ERRNO__FORMAT;
4673 		}
4674 
4675 		sym_idx = ELF64_R_SYM(rel->r_info);
4676 		sym = elf_sym_by_idx(obj, sym_idx);
4677 		if (!sym) {
4678 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4679 				relo_sec_name, sym_idx, i);
4680 			return -LIBBPF_ERRNO__FORMAT;
4681 		}
4682 
4683 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4684 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4685 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4686 			return -LIBBPF_ERRNO__FORMAT;
4687 		}
4688 
4689 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4690 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4691 				relo_sec_name, (size_t)rel->r_offset, i);
4692 			return -LIBBPF_ERRNO__FORMAT;
4693 		}
4694 
4695 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4696 		/* relocations against static functions are recorded as
4697 		 * relocations against the section that contains a function;
4698 		 * in such case, symbol will be STT_SECTION and sym.st_name
4699 		 * will point to empty string (0), so fetch section name
4700 		 * instead
4701 		 */
4702 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4703 #if defined HAVE_LIBELF
4704 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4705 #elif defined HAVE_ELFIO
4706 			sym_name = elf_sec_name_by_idx(obj, sym->st_shndx);
4707 #endif
4708 		else
4709 			sym_name = elf_sym_str(obj, sym->st_name);
4710 		sym_name = sym_name ?: "<?";
4711 
4712 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4713 			 relo_sec_name, i, insn_idx, sym_name);
4714 
4715 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4716 		if (!prog) {
4717 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4718 				relo_sec_name, i, sec_name, insn_idx);
4719 			continue;
4720 		}
4721 
4722 		relos = libbpf_reallocarray(prog->reloc_desc,
4723 					    prog->nr_reloc + 1, sizeof(*relos));
4724 		if (!relos)
4725 			return -ENOMEM;
4726 		prog->reloc_desc = relos;
4727 
4728 		/* adjust insn_idx to local BPF program frame of reference */
4729 		insn_idx -= prog->sec_insn_off;
4730 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4731 						insn_idx, sym_name, sym, rel);
4732 		if (err)
4733 			return err;
4734 
4735 		prog->nr_reloc++;
4736 	}
4737 	return 0;
4738 }
4739 
4740 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4741 {
4742 	int id;
4743 
4744 	if (!obj->btf)
4745 		return -ENOENT;
4746 
4747 	/* if it's BTF-defined map, we don't need to search for type IDs.
4748 	 * For struct_ops map, it does not need btf_key_type_id and
4749 	 * btf_value_type_id.
4750 	 */
4751 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4752 		return 0;
4753 
4754 	/*
4755 	 * LLVM annotates global data differently in BTF, that is,
4756 	 * only as '.data', '.bss' or '.rodata'.
4757 	 */
4758 	if (!bpf_map__is_internal(map))
4759 		return -ENOENT;
4760 
4761 	id = btf__find_by_name(obj->btf, map->real_name);
4762 	if (id < 0)
4763 		return id;
4764 
4765 	map->btf_key_type_id = 0;
4766 	map->btf_value_type_id = id;
4767 	return 0;
4768 }
4769 
4770 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4771 {
4772 	char file[PATH_MAX], buff[4096];
4773 	FILE *fp;
4774 	__u32 val;
4775 	int err;
4776 
4777 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4778 	memset(info, 0, sizeof(*info));
4779 
4780 	fp = fopen(file, "re");
4781 	if (!fp) {
4782 		err = -errno;
4783 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4784 			err);
4785 		return err;
4786 	}
4787 
4788 	while (fgets(buff, sizeof(buff), fp)) {
4789 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4790 			info->type = val;
4791 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4792 			info->key_size = val;
4793 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4794 			info->value_size = val;
4795 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4796 			info->max_entries = val;
4797 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4798 			info->map_flags = val;
4799 	}
4800 
4801 	fclose(fp);
4802 
4803 	return 0;
4804 }
4805 
4806 bool bpf_map__autocreate(const struct bpf_map *map)
4807 {
4808 	return map->autocreate;
4809 }
4810 
4811 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4812 {
4813 	if (map->obj->loaded)
4814 		return libbpf_err(-EBUSY);
4815 
4816 	map->autocreate = autocreate;
4817 	return 0;
4818 }
4819 
4820 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4821 {
4822 	struct bpf_map_info info;
4823 	__u32 len = sizeof(info), name_len;
4824 	int new_fd, err;
4825 	char *new_name;
4826 
4827 	memset(&info, 0, len);
4828 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4829 	if (err && errno == EINVAL)
4830 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4831 	if (err)
4832 		return libbpf_err(err);
4833 
4834 	name_len = strlen(info.name);
4835 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4836 		new_name = strdup(map->name);
4837 	else
4838 		new_name = strdup(info.name);
4839 
4840 	if (!new_name)
4841 		return libbpf_err(-errno);
4842 
4843 	/*
4844 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4845 	 * This is similar to what we do in ensure_good_fd(), but without
4846 	 * closing original FD.
4847 	 */
4848 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4849 	if (new_fd < 0) {
4850 		err = -errno;
4851 		goto err_free_new_name;
4852 	}
4853 
4854 	err = zclose(map->fd);
4855 	if (err) {
4856 		err = -errno;
4857 		goto err_close_new_fd;
4858 	}
4859 	free(map->name);
4860 
4861 	map->fd = new_fd;
4862 	map->name = new_name;
4863 	map->def.type = info.type;
4864 	map->def.key_size = info.key_size;
4865 	map->def.value_size = info.value_size;
4866 	map->def.max_entries = info.max_entries;
4867 	map->def.map_flags = info.map_flags;
4868 	map->btf_key_type_id = info.btf_key_type_id;
4869 	map->btf_value_type_id = info.btf_value_type_id;
4870 	map->reused = true;
4871 	map->map_extra = info.map_extra;
4872 
4873 	return 0;
4874 
4875 err_close_new_fd:
4876 	close(new_fd);
4877 err_free_new_name:
4878 	free(new_name);
4879 	return libbpf_err(err);
4880 }
4881 
4882 __u32 bpf_map__max_entries(const struct bpf_map *map)
4883 {
4884 	return map->def.max_entries;
4885 }
4886 
4887 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4888 {
4889 	if (!bpf_map_type__is_map_in_map(map->def.type))
4890 		return errno = EINVAL, NULL;
4891 
4892 	return map->inner_map;
4893 }
4894 
4895 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4896 {
4897 	if (map->obj->loaded)
4898 		return libbpf_err(-EBUSY);
4899 
4900 	map->def.max_entries = max_entries;
4901 
4902 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4903 	if (map_is_ringbuf(map))
4904 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4905 
4906 	return 0;
4907 }
4908 
4909 static int
4910 bpf_object__probe_loading(struct bpf_object *obj)
4911 {
4912 	char *cp, errmsg[STRERR_BUFSIZE];
4913 	struct bpf_insn insns[] = {
4914 		BPF_MOV64_IMM(BPF_REG_0, 0),
4915 		BPF_EXIT_INSN(),
4916 	};
4917 	int ret, insn_cnt = ARRAY_SIZE(insns);
4918 
4919 	if (obj->gen_loader)
4920 		return 0;
4921 
4922 	ret = bump_rlimit_memlock();
4923 	if (ret)
4924 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4925 
4926 	/* make sure basic loading works */
4927 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4928 	if (ret < 0)
4929 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4930 	if (ret < 0) {
4931 		ret = errno;
4932 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4933 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4934 			"program. Make sure your kernel supports BPF "
4935 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4936 			"set to big enough value.\n", __func__, cp, ret);
4937 		return -ret;
4938 	}
4939 	close(ret);
4940 
4941 	return 0;
4942 }
4943 
4944 static int probe_fd(int fd)
4945 {
4946 	if (fd >= 0)
4947 		close(fd);
4948 	return fd >= 0;
4949 }
4950 
4951 static int probe_kern_prog_name(void)
4952 {
4953 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4954 	struct bpf_insn insns[] = {
4955 		BPF_MOV64_IMM(BPF_REG_0, 0),
4956 		BPF_EXIT_INSN(),
4957 	};
4958 	union bpf_attr attr;
4959 	int ret;
4960 
4961 	memset(&attr, 0, attr_sz);
4962 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4963 	attr.license = ptr_to_u64("GPL");
4964 	attr.insns = ptr_to_u64(insns);
4965 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4966 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4967 
4968 	/* make sure loading with name works */
4969 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4970 	return probe_fd(ret);
4971 }
4972 
4973 static int probe_kern_global_data(void)
4974 {
4975 	char *cp, errmsg[STRERR_BUFSIZE];
4976 	struct bpf_insn insns[] = {
4977 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4978 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4979 		BPF_MOV64_IMM(BPF_REG_0, 0),
4980 		BPF_EXIT_INSN(),
4981 	};
4982 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4983 
4984 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4985 	if (map < 0) {
4986 		ret = -errno;
4987 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4988 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4989 			__func__, cp, -ret);
4990 		return ret;
4991 	}
4992 
4993 	insns[0].imm = map;
4994 
4995 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4996 	close(map);
4997 	return probe_fd(ret);
4998 }
4999 
5000 static int probe_kern_btf(void)
5001 {
5002 	static const char strs[] = "\0int";
5003 	__u32 types[] = {
5004 		/* int */
5005 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
5006 	};
5007 
5008 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5009 					     strs, sizeof(strs)));
5010 }
5011 
5012 static int probe_kern_btf_func(void)
5013 {
5014 	static const char strs[] = "\0int\0x\0a";
5015 	/* void x(int a) {} */
5016 	__u32 types[] = {
5017 		/* int */
5018 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
5019 		/* FUNC_PROTO */                                /* [2] */
5020 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
5021 		BTF_PARAM_ENC(7, 1),
5022 		/* FUNC x */                                    /* [3] */
5023 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
5024 	};
5025 
5026 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5027 					     strs, sizeof(strs)));
5028 }
5029 
5030 static int probe_kern_btf_func_global(void)
5031 {
5032 	static const char strs[] = "\0int\0x\0a";
5033 	/* static void x(int a) {} */
5034 	__u32 types[] = {
5035 		/* int */
5036 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
5037 		/* FUNC_PROTO */                                /* [2] */
5038 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
5039 		BTF_PARAM_ENC(7, 1),
5040 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
5041 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
5042 	};
5043 
5044 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5045 					     strs, sizeof(strs)));
5046 }
5047 
5048 static int probe_kern_btf_datasec(void)
5049 {
5050 	static const char strs[] = "\0x\0.data";
5051 	/* static int a; */
5052 	__u32 types[] = {
5053 		/* int */
5054 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
5055 		/* VAR x */                                     /* [2] */
5056 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
5057 		BTF_VAR_STATIC,
5058 		/* DATASEC val */                               /* [3] */
5059 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
5060 		BTF_VAR_SECINFO_ENC(2, 0, 4),
5061 	};
5062 
5063 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5064 					     strs, sizeof(strs)));
5065 }
5066 
5067 static int probe_kern_btf_float(void)
5068 {
5069 	static const char strs[] = "\0float";
5070 	__u32 types[] = {
5071 		/* float */
5072 		BTF_TYPE_FLOAT_ENC(1, 4),
5073 	};
5074 
5075 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5076 					     strs, sizeof(strs)));
5077 }
5078 
5079 static int probe_kern_btf_decl_tag(void)
5080 {
5081 	static const char strs[] = "\0tag";
5082 	__u32 types[] = {
5083 		/* int */
5084 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
5085 		/* VAR x */                                     /* [2] */
5086 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
5087 		BTF_VAR_STATIC,
5088 		/* attr */
5089 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
5090 	};
5091 
5092 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5093 					     strs, sizeof(strs)));
5094 }
5095 
5096 static int probe_kern_btf_type_tag(void)
5097 {
5098 	static const char strs[] = "\0tag";
5099 	__u32 types[] = {
5100 		/* int */
5101 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
5102 		/* attr */
5103 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
5104 		/* ptr */
5105 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
5106 	};
5107 
5108 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5109 					     strs, sizeof(strs)));
5110 }
5111 
5112 static int probe_kern_array_mmap(void)
5113 {
5114 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
5115 	int fd;
5116 
5117 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
5118 	return probe_fd(fd);
5119 }
5120 
5121 static int probe_kern_exp_attach_type(void)
5122 {
5123 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
5124 	struct bpf_insn insns[] = {
5125 		BPF_MOV64_IMM(BPF_REG_0, 0),
5126 		BPF_EXIT_INSN(),
5127 	};
5128 	int fd, insn_cnt = ARRAY_SIZE(insns);
5129 
5130 	/* use any valid combination of program type and (optional)
5131 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
5132 	 * to see if kernel supports expected_attach_type field for
5133 	 * BPF_PROG_LOAD command
5134 	 */
5135 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
5136 	return probe_fd(fd);
5137 }
5138 
5139 static int probe_kern_probe_read_kernel(void)
5140 {
5141 	struct bpf_insn insns[] = {
5142 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
5143 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
5144 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
5145 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
5146 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
5147 		BPF_EXIT_INSN(),
5148 	};
5149 	int fd, insn_cnt = ARRAY_SIZE(insns);
5150 
5151 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
5152 	return probe_fd(fd);
5153 }
5154 
5155 static int probe_prog_bind_map(void)
5156 {
5157 	char *cp, errmsg[STRERR_BUFSIZE];
5158 	struct bpf_insn insns[] = {
5159 		BPF_MOV64_IMM(BPF_REG_0, 0),
5160 		BPF_EXIT_INSN(),
5161 	};
5162 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
5163 
5164 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
5165 	if (map < 0) {
5166 		ret = -errno;
5167 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
5168 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
5169 			__func__, cp, -ret);
5170 		return ret;
5171 	}
5172 
5173 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
5174 	if (prog < 0) {
5175 		close(map);
5176 		return 0;
5177 	}
5178 
5179 	ret = bpf_prog_bind_map(prog, map, NULL);
5180 
5181 	close(map);
5182 	close(prog);
5183 
5184 	return ret >= 0;
5185 }
5186 
5187 static int probe_module_btf(void)
5188 {
5189 	static const char strs[] = "\0int";
5190 	__u32 types[] = {
5191 		/* int */
5192 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
5193 	};
5194 	struct bpf_btf_info info;
5195 	__u32 len = sizeof(info);
5196 	char name[16];
5197 	int fd, err;
5198 
5199 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
5200 	if (fd < 0)
5201 		return 0; /* BTF not supported at all */
5202 
5203 	memset(&info, 0, sizeof(info));
5204 	info.name = ptr_to_u64(name);
5205 	info.name_len = sizeof(name);
5206 
5207 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
5208 	 * kernel's module BTF support coincides with support for
5209 	 * name/name_len fields in struct bpf_btf_info.
5210 	 */
5211 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
5212 	close(fd);
5213 	return !err;
5214 }
5215 
5216 static int probe_perf_link(void)
5217 {
5218 	struct bpf_insn insns[] = {
5219 		BPF_MOV64_IMM(BPF_REG_0, 0),
5220 		BPF_EXIT_INSN(),
5221 	};
5222 	int prog_fd, link_fd, err;
5223 
5224 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
5225 				insns, ARRAY_SIZE(insns), NULL);
5226 	if (prog_fd < 0)
5227 		return -errno;
5228 
5229 	/* use invalid perf_event FD to get EBADF, if link is supported;
5230 	 * otherwise EINVAL should be returned
5231 	 */
5232 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
5233 	err = -errno; /* close() can clobber errno */
5234 
5235 	if (link_fd >= 0)
5236 		close(link_fd);
5237 	close(prog_fd);
5238 
5239 	return link_fd < 0 && err == -EBADF;
5240 }
5241 
5242 static int probe_uprobe_multi_link(void)
5243 {
5244 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
5245 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
5246 	);
5247 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
5248 	struct bpf_insn insns[] = {
5249 		BPF_MOV64_IMM(BPF_REG_0, 0),
5250 		BPF_EXIT_INSN(),
5251 	};
5252 	int prog_fd, link_fd, err;
5253 	unsigned long offset = 0;
5254 
5255 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
5256 				insns, ARRAY_SIZE(insns), &load_opts);
5257 	if (prog_fd < 0)
5258 		return -errno;
5259 
5260 	/* Creating uprobe in '/' binary should fail with -EBADF. */
5261 	link_opts.uprobe_multi.path = "/";
5262 	link_opts.uprobe_multi.offsets = &offset;
5263 	link_opts.uprobe_multi.cnt = 1;
5264 
5265 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
5266 	err = -errno; /* close() can clobber errno */
5267 
5268 	if (link_fd >= 0)
5269 		close(link_fd);
5270 	close(prog_fd);
5271 
5272 	return link_fd < 0 && err == -EBADF;
5273 }
5274 
5275 static int probe_kern_bpf_cookie(void)
5276 {
5277 	struct bpf_insn insns[] = {
5278 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
5279 		BPF_EXIT_INSN(),
5280 	};
5281 	int ret, insn_cnt = ARRAY_SIZE(insns);
5282 
5283 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
5284 	return probe_fd(ret);
5285 }
5286 
5287 static int probe_kern_btf_enum64(void)
5288 {
5289 	static const char strs[] = "\0enum64";
5290 	__u32 types[] = {
5291 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
5292 	};
5293 
5294 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5295 					     strs, sizeof(strs)));
5296 }
5297 
5298 static int probe_kern_syscall_wrapper(void);
5299 
5300 enum kern_feature_result {
5301 	FEAT_UNKNOWN = 0,
5302 	FEAT_SUPPORTED = 1,
5303 	FEAT_MISSING = 2,
5304 };
5305 
5306 typedef int (*feature_probe_fn)(void);
5307 
5308 static struct kern_feature_desc {
5309 	const char *desc;
5310 	feature_probe_fn probe;
5311 	enum kern_feature_result res;
5312 } feature_probes[__FEAT_CNT] = {
5313 	[FEAT_PROG_NAME] = {
5314 		"BPF program name", probe_kern_prog_name,
5315 	},
5316 	[FEAT_GLOBAL_DATA] = {
5317 		"global variables", probe_kern_global_data,
5318 	},
5319 	[FEAT_BTF] = {
5320 		"minimal BTF", probe_kern_btf,
5321 	},
5322 	[FEAT_BTF_FUNC] = {
5323 		"BTF functions", probe_kern_btf_func,
5324 	},
5325 	[FEAT_BTF_GLOBAL_FUNC] = {
5326 		"BTF global function", probe_kern_btf_func_global,
5327 	},
5328 	[FEAT_BTF_DATASEC] = {
5329 		"BTF data section and variable", probe_kern_btf_datasec,
5330 	},
5331 	[FEAT_ARRAY_MMAP] = {
5332 		"ARRAY map mmap()", probe_kern_array_mmap,
5333 	},
5334 	[FEAT_EXP_ATTACH_TYPE] = {
5335 		"BPF_PROG_LOAD expected_attach_type attribute",
5336 		probe_kern_exp_attach_type,
5337 	},
5338 	[FEAT_PROBE_READ_KERN] = {
5339 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
5340 	},
5341 	[FEAT_PROG_BIND_MAP] = {
5342 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
5343 	},
5344 	[FEAT_MODULE_BTF] = {
5345 		"module BTF support", probe_module_btf,
5346 	},
5347 	[FEAT_BTF_FLOAT] = {
5348 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
5349 	},
5350 	[FEAT_PERF_LINK] = {
5351 		"BPF perf link support", probe_perf_link,
5352 	},
5353 	[FEAT_BTF_DECL_TAG] = {
5354 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
5355 	},
5356 	[FEAT_BTF_TYPE_TAG] = {
5357 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
5358 	},
5359 	[FEAT_MEMCG_ACCOUNT] = {
5360 		"memcg-based memory accounting", probe_memcg_account,
5361 	},
5362 	[FEAT_BPF_COOKIE] = {
5363 		"BPF cookie support", probe_kern_bpf_cookie,
5364 	},
5365 	[FEAT_BTF_ENUM64] = {
5366 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5367 	},
5368 	[FEAT_SYSCALL_WRAPPER] = {
5369 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5370 	},
5371 	[FEAT_UPROBE_MULTI_LINK] = {
5372 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
5373 	},
5374 };
5375 
5376 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5377 {
5378 	struct kern_feature_desc *feat = &feature_probes[feat_id];
5379 	int ret;
5380 
5381 	if (obj && obj->gen_loader)
5382 		/* To generate loader program assume the latest kernel
5383 		 * to avoid doing extra prog_load, map_create syscalls.
5384 		 */
5385 		return true;
5386 
5387 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5388 		ret = feat->probe();
5389 		if (ret > 0) {
5390 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5391 		} else if (ret == 0) {
5392 			WRITE_ONCE(feat->res, FEAT_MISSING);
5393 		} else {
5394 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5395 			WRITE_ONCE(feat->res, FEAT_MISSING);
5396 		}
5397 	}
5398 
5399 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5400 }
5401 
5402 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5403 {
5404 	struct bpf_map_info map_info;
5405 	char msg[STRERR_BUFSIZE];
5406 	__u32 map_info_len = sizeof(map_info);
5407 	int err;
5408 
5409 	memset(&map_info, 0, map_info_len);
5410 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5411 	if (err && errno == EINVAL)
5412 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5413 	if (err) {
5414 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5415 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5416 		return false;
5417 	}
5418 
5419 	return (map_info.type == map->def.type &&
5420 		map_info.key_size == map->def.key_size &&
5421 		map_info.value_size == map->def.value_size &&
5422 		map_info.max_entries == map->def.max_entries &&
5423 		map_info.map_flags == map->def.map_flags &&
5424 		map_info.map_extra == map->map_extra);
5425 }
5426 
5427 static int
5428 bpf_object__reuse_map(struct bpf_map *map)
5429 {
5430 	char *cp, errmsg[STRERR_BUFSIZE];
5431 	int err, pin_fd;
5432 
5433 	pin_fd = bpf_obj_get(map->pin_path);
5434 	if (pin_fd < 0) {
5435 		err = -errno;
5436 		if (err == -ENOENT) {
5437 			pr_debug("found no pinned map to reuse at '%s'\n",
5438 				 map->pin_path);
5439 			return 0;
5440 		}
5441 
5442 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5443 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5444 			map->pin_path, cp);
5445 		return err;
5446 	}
5447 
5448 	if (!map_is_reuse_compat(map, pin_fd)) {
5449 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5450 			map->pin_path);
5451 		close(pin_fd);
5452 		return -EINVAL;
5453 	}
5454 
5455 	err = bpf_map__reuse_fd(map, pin_fd);
5456 	close(pin_fd);
5457 	if (err)
5458 		return err;
5459 
5460 	map->pinned = true;
5461 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5462 
5463 	return 0;
5464 }
5465 
5466 static int
5467 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5468 {
5469 	enum libbpf_map_type map_type = map->libbpf_type;
5470 	char *cp, errmsg[STRERR_BUFSIZE];
5471 	int err, zero = 0;
5472 
5473 	if (obj->gen_loader) {
5474 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5475 					 map->mmaped, map->def.value_size);
5476 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5477 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5478 		return 0;
5479 	}
5480 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5481 	if (err) {
5482 		err = -errno;
5483 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5484 		pr_warn("Error setting initial map(%s) contents: %s\n",
5485 			map->name, cp);
5486 		return err;
5487 	}
5488 
5489 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5490 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5491 		err = bpf_map_freeze(map->fd);
5492 		if (err) {
5493 			err = -errno;
5494 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5495 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5496 				map->name, cp);
5497 			return err;
5498 		}
5499 	}
5500 	return 0;
5501 }
5502 
5503 static void bpf_map__destroy(struct bpf_map *map);
5504 
5505 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5506 {
5507 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5508 	struct bpf_map_def *def = &map->def;
5509 	const char *map_name = NULL;
5510 	int err = 0;
5511 
5512 	if (kernel_supports(obj, FEAT_PROG_NAME))
5513 		map_name = map->name;
5514 	create_attr.map_ifindex = map->map_ifindex;
5515 	create_attr.map_flags = def->map_flags;
5516 	create_attr.numa_node = map->numa_node;
5517 	create_attr.map_extra = map->map_extra;
5518 
5519 	if (bpf_map__is_struct_ops(map))
5520 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5521 
5522 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5523 		create_attr.btf_fd = btf__fd(obj->btf);
5524 		create_attr.btf_key_type_id = map->btf_key_type_id;
5525 		create_attr.btf_value_type_id = map->btf_value_type_id;
5526 	}
5527 
5528 	if (bpf_map_type__is_map_in_map(def->type)) {
5529 		if (map->inner_map) {
5530 			err = bpf_object__create_map(obj, map->inner_map, true);
5531 			if (err) {
5532 				pr_warn("map '%s': failed to create inner map: %d\n",
5533 					map->name, err);
5534 				return err;
5535 			}
5536 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5537 		}
5538 		if (map->inner_map_fd >= 0)
5539 			create_attr.inner_map_fd = map->inner_map_fd;
5540 	}
5541 
5542 	switch (def->type) {
5543 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5544 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5545 	case BPF_MAP_TYPE_STACK_TRACE:
5546 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5547 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5548 	case BPF_MAP_TYPE_DEVMAP:
5549 	case BPF_MAP_TYPE_DEVMAP_HASH:
5550 	case BPF_MAP_TYPE_CPUMAP:
5551 	case BPF_MAP_TYPE_XSKMAP:
5552 	case BPF_MAP_TYPE_SOCKMAP:
5553 	case BPF_MAP_TYPE_SOCKHASH:
5554 	case BPF_MAP_TYPE_QUEUE:
5555 	case BPF_MAP_TYPE_STACK:
5556 		create_attr.btf_fd = 0;
5557 		create_attr.btf_key_type_id = 0;
5558 		create_attr.btf_value_type_id = 0;
5559 		map->btf_key_type_id = 0;
5560 		map->btf_value_type_id = 0;
5561 		break;
5562 	default:
5563 		break;
5564 	}
5565 
5566 	if (obj->gen_loader) {
5567 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5568 				    def->key_size, def->value_size, def->max_entries,
5569 				    &create_attr, is_inner ? -1 : map - obj->maps);
5570 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5571 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5572 		 */
5573 		map->fd = 0;
5574 	} else {
5575 		map->fd = bpf_map_create(def->type, map_name,
5576 					 def->key_size, def->value_size,
5577 					 def->max_entries, &create_attr);
5578 	}
5579 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5580 			    create_attr.btf_value_type_id)) {
5581 		char *cp, errmsg[STRERR_BUFSIZE];
5582 
5583 		err = -errno;
5584 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5585 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5586 			map->name, cp, err);
5587 		create_attr.btf_fd = 0;
5588 		create_attr.btf_key_type_id = 0;
5589 		create_attr.btf_value_type_id = 0;
5590 		map->btf_key_type_id = 0;
5591 		map->btf_value_type_id = 0;
5592 		map->fd = bpf_map_create(def->type, map_name,
5593 					 def->key_size, def->value_size,
5594 					 def->max_entries, &create_attr);
5595 	}
5596 
5597 	err = map->fd < 0 ? -errno : 0;
5598 
5599 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5600 		if (obj->gen_loader)
5601 			map->inner_map->fd = -1;
5602 		bpf_map__destroy(map->inner_map);
5603 		zfree(&map->inner_map);
5604 	}
5605 
5606 	return err;
5607 }
5608 
5609 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5610 {
5611 	const struct bpf_map *targ_map;
5612 	unsigned int i;
5613 	int fd, err = 0;
5614 
5615 	for (i = 0; i < map->init_slots_sz; i++) {
5616 		if (!map->init_slots[i])
5617 			continue;
5618 
5619 		targ_map = map->init_slots[i];
5620 		fd = bpf_map__fd(targ_map);
5621 
5622 		if (obj->gen_loader) {
5623 			bpf_gen__populate_outer_map(obj->gen_loader,
5624 						    map - obj->maps, i,
5625 						    targ_map - obj->maps);
5626 		} else {
5627 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5628 		}
5629 		if (err) {
5630 			err = -errno;
5631 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5632 				map->name, i, targ_map->name, fd, err);
5633 			return err;
5634 		}
5635 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5636 			 map->name, i, targ_map->name, fd);
5637 	}
5638 
5639 	zfree(&map->init_slots);
5640 	map->init_slots_sz = 0;
5641 
5642 	return 0;
5643 }
5644 
5645 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5646 {
5647 	const struct bpf_program *targ_prog;
5648 	unsigned int i;
5649 	int fd, err;
5650 
5651 	if (obj->gen_loader)
5652 		return -ENOTSUP;
5653 
5654 	for (i = 0; i < map->init_slots_sz; i++) {
5655 		if (!map->init_slots[i])
5656 			continue;
5657 
5658 		targ_prog = map->init_slots[i];
5659 		fd = bpf_program__fd(targ_prog);
5660 
5661 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5662 		if (err) {
5663 			err = -errno;
5664 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5665 				map->name, i, targ_prog->name, fd, err);
5666 			return err;
5667 		}
5668 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5669 			 map->name, i, targ_prog->name, fd);
5670 	}
5671 
5672 	zfree(&map->init_slots);
5673 	map->init_slots_sz = 0;
5674 
5675 	return 0;
5676 }
5677 
5678 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5679 {
5680 	struct bpf_map *map;
5681 	int i, err;
5682 
5683 	for (i = 0; i < obj->nr_maps; i++) {
5684 		map = &obj->maps[i];
5685 
5686 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5687 			continue;
5688 
5689 		err = init_prog_array_slots(obj, map);
5690 		if (err < 0) {
5691 			zclose(map->fd);
5692 			return err;
5693 		}
5694 	}
5695 	return 0;
5696 }
5697 
5698 static int map_set_def_max_entries(struct bpf_map *map)
5699 {
5700 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5701 		int nr_cpus;
5702 
5703 		nr_cpus = libbpf_num_possible_cpus();
5704 		if (nr_cpus < 0) {
5705 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5706 				map->name, nr_cpus);
5707 			return nr_cpus;
5708 		}
5709 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5710 		map->def.max_entries = nr_cpus;
5711 	}
5712 
5713 	return 0;
5714 }
5715 
5716 static int
5717 bpf_object__create_maps(struct bpf_object *obj)
5718 {
5719 	struct bpf_map *map;
5720 	char *cp, errmsg[STRERR_BUFSIZE];
5721 	unsigned int i, j;
5722 	int err;
5723 	bool retried;
5724 
5725 	for (i = 0; i < obj->nr_maps; i++) {
5726 		map = &obj->maps[i];
5727 
5728 		/* To support old kernels, we skip creating global data maps
5729 		 * (.rodata, .data, .kconfig, etc); later on, during program
5730 		 * loading, if we detect that at least one of the to-be-loaded
5731 		 * programs is referencing any global data map, we'll error
5732 		 * out with program name and relocation index logged.
5733 		 * This approach allows to accommodate Clang emitting
5734 		 * unnecessary .rodata.str1.1 sections for string literals,
5735 		 * but also it allows to have CO-RE applications that use
5736 		 * global variables in some of BPF programs, but not others.
5737 		 * If those global variable-using programs are not loaded at
5738 		 * runtime due to bpf_program__set_autoload(prog, false),
5739 		 * bpf_object loading will succeed just fine even on old
5740 		 * kernels.
5741 		 */
5742 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5743 			map->autocreate = false;
5744 
5745 		if (!map->autocreate) {
5746 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5747 			continue;
5748 		}
5749 
5750 		err = map_set_def_max_entries(map);
5751 		if (err)
5752 			goto err_out;
5753 
5754 		retried = false;
5755 retry:
5756 		if (map->pin_path) {
5757 			err = bpf_object__reuse_map(map);
5758 			if (err) {
5759 				pr_warn("map '%s': error reusing pinned map\n",
5760 					map->name);
5761 				goto err_out;
5762 			}
5763 			if (retried && map->fd < 0) {
5764 				pr_warn("map '%s': cannot find pinned map\n",
5765 					map->name);
5766 				err = -ENOENT;
5767 				goto err_out;
5768 			}
5769 		}
5770 
5771 		if (map->fd >= 0) {
5772 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5773 				 map->name, map->fd);
5774 		} else {
5775 			err = bpf_object__create_map(obj, map, false);
5776 			if (err)
5777 				goto err_out;
5778 
5779 			pr_debug("map '%s': created successfully, fd=%d\n",
5780 				 map->name, map->fd);
5781 
5782 			if (bpf_map__is_internal(map)) {
5783 				err = bpf_object__populate_internal_map(obj, map);
5784 				if (err < 0) {
5785 					zclose(map->fd);
5786 					goto err_out;
5787 				}
5788 			}
5789 
5790 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5791 				err = init_map_in_map_slots(obj, map);
5792 				if (err < 0) {
5793 					zclose(map->fd);
5794 					goto err_out;
5795 				}
5796 			}
5797 		}
5798 
5799 		if (map->pin_path && !map->pinned) {
5800 			err = bpf_map__pin(map, NULL);
5801 			if (err) {
5802 				zclose(map->fd);
5803 				if (!retried && err == -EEXIST) {
5804 					retried = true;
5805 					goto retry;
5806 				}
5807 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5808 					map->name, map->pin_path, err);
5809 				goto err_out;
5810 			}
5811 		}
5812 	}
5813 
5814 	return 0;
5815 
5816 err_out:
5817 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5818 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5819 	pr_perm_msg(err);
5820 	for (j = 0; j < i; j++)
5821 		zclose(obj->maps[j].fd);
5822 	return err;
5823 }
5824 
5825 static bool bpf_core_is_flavor_sep(const char *s)
5826 {
5827 	/* check X___Y name pattern, where X and Y are not underscores */
5828 	return s[0] != '_' &&				      /* X */
5829 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5830 	       s[4] != '_';				      /* Y */
5831 }
5832 
5833 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5834  * before last triple underscore. Struct name part after last triple
5835  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5836  */
5837 size_t bpf_core_essential_name_len(const char *name)
5838 {
5839 	size_t n = strlen(name);
5840 	int i;
5841 
5842 	for (i = n - 5; i >= 0; i--) {
5843 		if (bpf_core_is_flavor_sep(name + i))
5844 			return i + 1;
5845 	}
5846 	return n;
5847 }
5848 
5849 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5850 {
5851 	if (!cands)
5852 		return;
5853 
5854 	free(cands->cands);
5855 	free(cands);
5856 }
5857 
5858 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5859 		       size_t local_essent_len,
5860 		       const struct btf *targ_btf,
5861 		       const char *targ_btf_name,
5862 		       int targ_start_id,
5863 		       struct bpf_core_cand_list *cands)
5864 {
5865 	struct bpf_core_cand *new_cands, *cand;
5866 	const struct btf_type *t, *local_t;
5867 	const char *targ_name, *local_name;
5868 	size_t targ_essent_len;
5869 	int n, i;
5870 
5871 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5872 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5873 
5874 	n = btf__type_cnt(targ_btf);
5875 	for (i = targ_start_id; i < n; i++) {
5876 		t = btf__type_by_id(targ_btf, i);
5877 		if (!btf_kind_core_compat(t, local_t))
5878 			continue;
5879 
5880 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5881 		if (str_is_empty(targ_name))
5882 			continue;
5883 
5884 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5885 		if (targ_essent_len != local_essent_len)
5886 			continue;
5887 
5888 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5889 			continue;
5890 
5891 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5892 			 local_cand->id, btf_kind_str(local_t),
5893 			 local_name, i, btf_kind_str(t), targ_name,
5894 			 targ_btf_name);
5895 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5896 					      sizeof(*cands->cands));
5897 		if (!new_cands)
5898 			return -ENOMEM;
5899 
5900 		cand = &new_cands[cands->len];
5901 		cand->btf = targ_btf;
5902 		cand->id = i;
5903 
5904 		cands->cands = new_cands;
5905 		cands->len++;
5906 	}
5907 	return 0;
5908 }
5909 
5910 static int load_module_btfs(struct bpf_object *obj)
5911 {
5912 	struct bpf_btf_info info;
5913 	struct module_btf *mod_btf;
5914 	struct btf *btf;
5915 	char name[64];
5916 	__u32 id = 0, len;
5917 	int err, fd;
5918 
5919 	if (obj->btf_modules_loaded)
5920 		return 0;
5921 
5922 	if (obj->gen_loader)
5923 		return 0;
5924 
5925 	/* don't do this again, even if we find no module BTFs */
5926 	obj->btf_modules_loaded = true;
5927 
5928 	/* kernel too old to support module BTFs */
5929 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5930 		return 0;
5931 
5932 	while (true) {
5933 		err = bpf_btf_get_next_id(id, &id);
5934 		if (err && errno == ENOENT)
5935 			return 0;
5936 		if (err && errno == EPERM) {
5937 			pr_debug("skipping module BTFs loading, missing privileges\n");
5938 			return 0;
5939 		}
5940 		if (err) {
5941 			err = -errno;
5942 			pr_warn("failed to iterate BTF objects: %d\n", err);
5943 			return err;
5944 		}
5945 
5946 		fd = bpf_btf_get_fd_by_id(id);
5947 		if (fd < 0) {
5948 			if (errno == ENOENT)
5949 				continue; /* expected race: BTF was unloaded */
5950 			err = -errno;
5951 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5952 			return err;
5953 		}
5954 
5955 		len = sizeof(info);
5956 		memset(&info, 0, sizeof(info));
5957 		info.name = ptr_to_u64(name);
5958 		info.name_len = sizeof(name);
5959 
5960 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5961 		if (err) {
5962 			err = -errno;
5963 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5964 			goto err_out;
5965 		}
5966 
5967 		/* ignore non-module BTFs */
5968 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5969 			close(fd);
5970 			continue;
5971 		}
5972 
5973 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5974 		err = libbpf_get_error(btf);
5975 		if (err) {
5976 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5977 				name, id, err);
5978 			goto err_out;
5979 		}
5980 
5981 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5982 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5983 		if (err)
5984 			goto err_out;
5985 
5986 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5987 
5988 		mod_btf->btf = btf;
5989 		mod_btf->id = id;
5990 		mod_btf->fd = fd;
5991 		mod_btf->name = strdup(name);
5992 		if (!mod_btf->name) {
5993 			err = -ENOMEM;
5994 			goto err_out;
5995 		}
5996 		continue;
5997 
5998 err_out:
5999 		close(fd);
6000 		return err;
6001 	}
6002 
6003 	return 0;
6004 }
6005 
6006 static struct bpf_core_cand_list *
6007 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
6008 {
6009 	struct bpf_core_cand local_cand = {};
6010 	struct bpf_core_cand_list *cands;
6011 	const struct btf *main_btf;
6012 	const struct btf_type *local_t;
6013 	const char *local_name;
6014 	size_t local_essent_len;
6015 	int err, i;
6016 
6017 	local_cand.btf = local_btf;
6018 	local_cand.id = local_type_id;
6019 	local_t = btf__type_by_id(local_btf, local_type_id);
6020 	if (!local_t)
6021 		return ERR_PTR(-EINVAL);
6022 
6023 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
6024 	if (str_is_empty(local_name))
6025 		return ERR_PTR(-EINVAL);
6026 	local_essent_len = bpf_core_essential_name_len(local_name);
6027 
6028 	cands = calloc(1, sizeof(*cands));
6029 	if (!cands)
6030 		return ERR_PTR(-ENOMEM);
6031 
6032 	/* Attempt to find target candidates in vmlinux BTF first */
6033 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
6034 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
6035 	if (err)
6036 		goto err_out;
6037 
6038 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
6039 	if (cands->len)
6040 		return cands;
6041 
6042 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
6043 	if (obj->btf_vmlinux_override)
6044 		return cands;
6045 
6046 	/* now look through module BTFs, trying to still find candidates */
6047 	err = load_module_btfs(obj);
6048 	if (err)
6049 		goto err_out;
6050 
6051 	for (i = 0; i < obj->btf_module_cnt; i++) {
6052 		err = bpf_core_add_cands(&local_cand, local_essent_len,
6053 					 obj->btf_modules[i].btf,
6054 					 obj->btf_modules[i].name,
6055 					 btf__type_cnt(obj->btf_vmlinux),
6056 					 cands);
6057 		if (err)
6058 			goto err_out;
6059 	}
6060 
6061 	return cands;
6062 err_out:
6063 	bpf_core_free_cands(cands);
6064 	return ERR_PTR(err);
6065 }
6066 
6067 /* Check local and target types for compatibility. This check is used for
6068  * type-based CO-RE relocations and follow slightly different rules than
6069  * field-based relocations. This function assumes that root types were already
6070  * checked for name match. Beyond that initial root-level name check, names
6071  * are completely ignored. Compatibility rules are as follows:
6072  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
6073  *     kind should match for local and target types (i.e., STRUCT is not
6074  *     compatible with UNION);
6075  *   - for ENUMs, the size is ignored;
6076  *   - for INT, size and signedness are ignored;
6077  *   - for ARRAY, dimensionality is ignored, element types are checked for
6078  *     compatibility recursively;
6079  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
6080  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
6081  *   - FUNC_PROTOs are compatible if they have compatible signature: same
6082  *     number of input args and compatible return and argument types.
6083  * These rules are not set in stone and probably will be adjusted as we get
6084  * more experience with using BPF CO-RE relocations.
6085  */
6086 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6087 			      const struct btf *targ_btf, __u32 targ_id)
6088 {
6089 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
6090 }
6091 
6092 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
6093 			 const struct btf *targ_btf, __u32 targ_id)
6094 {
6095 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
6096 }
6097 
6098 static size_t bpf_core_hash_fn(const long key, void *ctx)
6099 {
6100 	return key;
6101 }
6102 
6103 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
6104 {
6105 	return k1 == k2;
6106 }
6107 
6108 static int record_relo_core(struct bpf_program *prog,
6109 			    const struct bpf_core_relo *core_relo, int insn_idx)
6110 {
6111 	struct reloc_desc *relos, *relo;
6112 
6113 	relos = libbpf_reallocarray(prog->reloc_desc,
6114 				    prog->nr_reloc + 1, sizeof(*relos));
6115 	if (!relos)
6116 		return -ENOMEM;
6117 	relo = &relos[prog->nr_reloc];
6118 	relo->type = RELO_CORE;
6119 	relo->insn_idx = insn_idx;
6120 	relo->core_relo = core_relo;
6121 	prog->reloc_desc = relos;
6122 	prog->nr_reloc++;
6123 	return 0;
6124 }
6125 
6126 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
6127 {
6128 	struct reloc_desc *relo;
6129 	int i;
6130 
6131 	for (i = 0; i < prog->nr_reloc; i++) {
6132 		relo = &prog->reloc_desc[i];
6133 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
6134 			continue;
6135 
6136 		return relo->core_relo;
6137 	}
6138 
6139 	return NULL;
6140 }
6141 
6142 static int bpf_core_resolve_relo(struct bpf_program *prog,
6143 				 const struct bpf_core_relo *relo,
6144 				 int relo_idx,
6145 				 const struct btf *local_btf,
6146 				 struct hashmap *cand_cache,
6147 				 struct bpf_core_relo_res *targ_res)
6148 {
6149 	struct bpf_core_spec specs_scratch[3] = {};
6150 	struct bpf_core_cand_list *cands = NULL;
6151 	const char *prog_name = prog->name;
6152 	const struct btf_type *local_type;
6153 	const char *local_name;
6154 	__u32 local_id = relo->type_id;
6155 	int err;
6156 
6157 	local_type = btf__type_by_id(local_btf, local_id);
6158 	if (!local_type)
6159 		return -EINVAL;
6160 
6161 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
6162 	if (!local_name)
6163 		return -EINVAL;
6164 
6165 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
6166 	    !hashmap__find(cand_cache, local_id, &cands)) {
6167 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6168 		if (IS_ERR(cands)) {
6169 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6170 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
6171 				local_name, PTR_ERR(cands));
6172 			return PTR_ERR(cands);
6173 		}
6174 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
6175 		if (err) {
6176 			bpf_core_free_cands(cands);
6177 			return err;
6178 		}
6179 	}
6180 
6181 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
6182 				       targ_res);
6183 }
6184 
6185 static int
6186 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6187 {
6188 	const struct btf_ext_info_sec *sec;
6189 	struct bpf_core_relo_res targ_res;
6190 	const struct bpf_core_relo *rec;
6191 	const struct btf_ext_info *seg;
6192 	struct hashmap_entry *entry;
6193 	struct hashmap *cand_cache = NULL;
6194 	struct bpf_program *prog;
6195 	struct bpf_insn *insn;
6196 	const char *sec_name;
6197 	int i, err = 0, insn_idx, sec_idx, sec_num;
6198 
6199 	if (obj->btf_ext->core_relo_info.len == 0)
6200 		return 0;
6201 
6202 	if (targ_btf_path) {
6203 #ifdef  HAVE_LIBELF
6204 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6205 #endif
6206 		err = libbpf_get_error(obj->btf_vmlinux_override);
6207 		if (err) {
6208 			pr_warn("failed to parse target BTF: %d\n", err);
6209 			return err;
6210 		}
6211 	}
6212 
6213 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6214 	if (IS_ERR(cand_cache)) {
6215 		err = PTR_ERR(cand_cache);
6216 		goto out;
6217 	}
6218 
6219 	seg = &obj->btf_ext->core_relo_info;
6220 	sec_num = 0;
6221 	for_each_btf_ext_sec(seg, sec) {
6222 		sec_idx = seg->sec_idxs[sec_num];
6223 		sec_num++;
6224 
6225 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6226 		if (str_is_empty(sec_name)) {
6227 			err = -EINVAL;
6228 			goto out;
6229 		}
6230 
6231 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
6232 
6233 		for_each_btf_ext_rec(seg, sec, i, rec) {
6234 			if (rec->insn_off % BPF_INSN_SZ)
6235 				return -EINVAL;
6236 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6237 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6238 			if (!prog) {
6239 				/* When __weak subprog is "overridden" by another instance
6240 				 * of the subprog from a different object file, linker still
6241 				 * appends all the .BTF.ext info that used to belong to that
6242 				 * eliminated subprogram.
6243 				 * This is similar to what x86-64 linker does for relocations.
6244 				 * So just ignore such relocations just like we ignore
6245 				 * subprog instructions when discovering subprograms.
6246 				 */
6247 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
6248 					 sec_name, i, insn_idx);
6249 				continue;
6250 			}
6251 			/* no need to apply CO-RE relocation if the program is
6252 			 * not going to be loaded
6253 			 */
6254 			if (!prog->autoload)
6255 				continue;
6256 
6257 			/* adjust insn_idx from section frame of reference to the local
6258 			 * program's frame of reference; (sub-)program code is not yet
6259 			 * relocated, so it's enough to just subtract in-section offset
6260 			 */
6261 			insn_idx = insn_idx - prog->sec_insn_off;
6262 			if (insn_idx >= prog->insns_cnt)
6263 				return -EINVAL;
6264 			insn = &prog->insns[insn_idx];
6265 
6266 			err = record_relo_core(prog, rec, insn_idx);
6267 			if (err) {
6268 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
6269 					prog->name, i, err);
6270 				goto out;
6271 			}
6272 
6273 			if (prog->obj->gen_loader)
6274 				continue;
6275 
6276 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6277 			if (err) {
6278 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6279 					prog->name, i, err);
6280 				goto out;
6281 			}
6282 
6283 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6284 			if (err) {
6285 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
6286 					prog->name, i, insn_idx, err);
6287 				goto out;
6288 			}
6289 		}
6290 	}
6291 
6292 out:
6293 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6294 	btf__free(obj->btf_vmlinux_override);
6295 	obj->btf_vmlinux_override = NULL;
6296 
6297 	if (!IS_ERR_OR_NULL(cand_cache)) {
6298 		hashmap__for_each_entry(cand_cache, entry, i) {
6299 			bpf_core_free_cands(entry->pvalue);
6300 		}
6301 		hashmap__free(cand_cache);
6302 	}
6303 	return err;
6304 }
6305 
6306 /* base map load ldimm64 special constant, used also for log fixup logic */
6307 #define POISON_LDIMM64_MAP_BASE 2001000000
6308 #define POISON_LDIMM64_MAP_PFX "200100"
6309 
6310 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6311 			       int insn_idx, struct bpf_insn *insn,
6312 			       int map_idx, const struct bpf_map *map)
6313 {
6314 	int i;
6315 
6316 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6317 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6318 
6319 	/* we turn single ldimm64 into two identical invalid calls */
6320 	for (i = 0; i < 2; i++) {
6321 		insn->code = BPF_JMP | BPF_CALL;
6322 		insn->dst_reg = 0;
6323 		insn->src_reg = 0;
6324 		insn->off = 0;
6325 		/* if this instruction is reachable (not a dead code),
6326 		 * verifier will complain with something like:
6327 		 * invalid func unknown#2001000123
6328 		 * where lower 123 is map index into obj->maps[] array
6329 		 */
6330 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6331 
6332 		insn++;
6333 	}
6334 }
6335 
6336 /* unresolved kfunc call special constant, used also for log fixup logic */
6337 #define POISON_CALL_KFUNC_BASE 2002000000
6338 #define POISON_CALL_KFUNC_PFX "2002"
6339 
6340 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6341 			      int insn_idx, struct bpf_insn *insn,
6342 			      int ext_idx, const struct extern_desc *ext)
6343 {
6344 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6345 		 prog->name, relo_idx, insn_idx, ext->name);
6346 
6347 	/* we turn kfunc call into invalid helper call with identifiable constant */
6348 	insn->code = BPF_JMP | BPF_CALL;
6349 	insn->dst_reg = 0;
6350 	insn->src_reg = 0;
6351 	insn->off = 0;
6352 	/* if this instruction is reachable (not a dead code),
6353 	 * verifier will complain with something like:
6354 	 * invalid func unknown#2001000123
6355 	 * where lower 123 is extern index into obj->externs[] array
6356 	 */
6357 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6358 }
6359 
6360 /* Relocate data references within program code:
6361  *  - map references;
6362  *  - global variable references;
6363  *  - extern references.
6364  */
6365 static int
6366 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6367 {
6368 	int i;
6369 
6370 	for (i = 0; i < prog->nr_reloc; i++) {
6371 		struct reloc_desc *relo = &prog->reloc_desc[i];
6372 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6373 		const struct bpf_map *map;
6374 		struct extern_desc *ext;
6375 
6376 		switch (relo->type) {
6377 		case RELO_LD64:
6378 			map = &obj->maps[relo->map_idx];
6379 			if (obj->gen_loader) {
6380 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6381 				insn[0].imm = relo->map_idx;
6382 			} else if (map->autocreate) {
6383 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6384 				insn[0].imm = map->fd;
6385 			} else {
6386 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6387 						   relo->map_idx, map);
6388 			}
6389 			break;
6390 		case RELO_DATA:
6391 			map = &obj->maps[relo->map_idx];
6392 			insn[1].imm = insn[0].imm + relo->sym_off;
6393 			if (obj->gen_loader) {
6394 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6395 				insn[0].imm = relo->map_idx;
6396 			} else if (map->autocreate) {
6397 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6398 				insn[0].imm = map->fd;
6399 			} else {
6400 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6401 						   relo->map_idx, map);
6402 			}
6403 			break;
6404 		case RELO_EXTERN_LD64:
6405 			ext = &obj->externs[relo->ext_idx];
6406 			if (ext->type == EXT_KCFG) {
6407 				if (obj->gen_loader) {
6408 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6409 					insn[0].imm = obj->kconfig_map_idx;
6410 				} else {
6411 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6412 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6413 				}
6414 				insn[1].imm = ext->kcfg.data_off;
6415 			} else /* EXT_KSYM */ {
6416 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6417 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6418 					insn[0].imm = ext->ksym.kernel_btf_id;
6419 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6420 				} else { /* typeless ksyms or unresolved typed ksyms */
6421 					insn[0].imm = (__u32)ext->ksym.addr;
6422 					insn[1].imm = ext->ksym.addr >> 32;
6423 				}
6424 			}
6425 			break;
6426 		case RELO_EXTERN_CALL:
6427 			ext = &obj->externs[relo->ext_idx];
6428 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6429 			if (ext->is_set) {
6430 				insn[0].imm = ext->ksym.kernel_btf_id;
6431 				insn[0].off = ext->ksym.btf_fd_idx;
6432 			} else { /* unresolved weak kfunc call */
6433 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6434 						  relo->ext_idx, ext);
6435 			}
6436 			break;
6437 		case RELO_SUBPROG_ADDR:
6438 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6439 				pr_warn("prog '%s': relo #%d: bad insn\n",
6440 					prog->name, i);
6441 				return -EINVAL;
6442 			}
6443 			/* handled already */
6444 			break;
6445 		case RELO_CALL:
6446 			/* handled already */
6447 			break;
6448 		case RELO_CORE:
6449 			/* will be handled by bpf_program_record_relos() */
6450 			break;
6451 		default:
6452 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6453 				prog->name, i, relo->type);
6454 			return -EINVAL;
6455 		}
6456 	}
6457 
6458 	return 0;
6459 }
6460 
6461 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6462 				    const struct bpf_program *prog,
6463 				    const struct btf_ext_info *ext_info,
6464 				    void **prog_info, __u32 *prog_rec_cnt,
6465 				    __u32 *prog_rec_sz)
6466 {
6467 	void *copy_start = NULL, *copy_end = NULL;
6468 	void *rec, *rec_end, *new_prog_info;
6469 	const struct btf_ext_info_sec *sec;
6470 	size_t old_sz, new_sz;
6471 	int i, sec_num, sec_idx, off_adj;
6472 
6473 	sec_num = 0;
6474 	for_each_btf_ext_sec(ext_info, sec) {
6475 		sec_idx = ext_info->sec_idxs[sec_num];
6476 		sec_num++;
6477 		if (prog->sec_idx != sec_idx)
6478 			continue;
6479 
6480 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6481 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6482 
6483 			if (insn_off < prog->sec_insn_off)
6484 				continue;
6485 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6486 				break;
6487 
6488 			if (!copy_start)
6489 				copy_start = rec;
6490 			copy_end = rec + ext_info->rec_size;
6491 		}
6492 
6493 		if (!copy_start)
6494 			return -ENOENT;
6495 
6496 		/* append func/line info of a given (sub-)program to the main
6497 		 * program func/line info
6498 		 */
6499 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6500 		new_sz = old_sz + (copy_end - copy_start);
6501 		new_prog_info = realloc(*prog_info, new_sz);
6502 		if (!new_prog_info)
6503 			return -ENOMEM;
6504 		*prog_info = new_prog_info;
6505 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6506 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6507 
6508 		/* Kernel instruction offsets are in units of 8-byte
6509 		 * instructions, while .BTF.ext instruction offsets generated
6510 		 * by Clang are in units of bytes. So convert Clang offsets
6511 		 * into kernel offsets and adjust offset according to program
6512 		 * relocated position.
6513 		 */
6514 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6515 		rec = new_prog_info + old_sz;
6516 		rec_end = new_prog_info + new_sz;
6517 		for (; rec < rec_end; rec += ext_info->rec_size) {
6518 			__u32 *insn_off = rec;
6519 
6520 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6521 		}
6522 		*prog_rec_sz = ext_info->rec_size;
6523 		return 0;
6524 	}
6525 
6526 	return -ENOENT;
6527 }
6528 
6529 static int
6530 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6531 			      struct bpf_program *main_prog,
6532 			      const struct bpf_program *prog)
6533 {
6534 	int err;
6535 
6536 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6537 	 * supprot func/line info
6538 	 */
6539 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6540 		return 0;
6541 
6542 	/* only attempt func info relocation if main program's func_info
6543 	 * relocation was successful
6544 	 */
6545 	if (main_prog != prog && !main_prog->func_info)
6546 		goto line_info;
6547 
6548 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6549 				       &main_prog->func_info,
6550 				       &main_prog->func_info_cnt,
6551 				       &main_prog->func_info_rec_size);
6552 	if (err) {
6553 		if (err != -ENOENT) {
6554 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6555 				prog->name, err);
6556 			return err;
6557 		}
6558 		if (main_prog->func_info) {
6559 			/*
6560 			 * Some info has already been found but has problem
6561 			 * in the last btf_ext reloc. Must have to error out.
6562 			 */
6563 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6564 			return err;
6565 		}
6566 		/* Have problem loading the very first info. Ignore the rest. */
6567 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6568 			prog->name);
6569 	}
6570 
6571 line_info:
6572 	/* don't relocate line info if main program's relocation failed */
6573 	if (main_prog != prog && !main_prog->line_info)
6574 		return 0;
6575 
6576 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6577 				       &main_prog->line_info,
6578 				       &main_prog->line_info_cnt,
6579 				       &main_prog->line_info_rec_size);
6580 	if (err) {
6581 		if (err != -ENOENT) {
6582 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6583 				prog->name, err);
6584 			return err;
6585 		}
6586 		if (main_prog->line_info) {
6587 			/*
6588 			 * Some info has already been found but has problem
6589 			 * in the last btf_ext reloc. Must have to error out.
6590 			 */
6591 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6592 			return err;
6593 		}
6594 		/* Have problem loading the very first info. Ignore the rest. */
6595 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6596 			prog->name);
6597 	}
6598 	return 0;
6599 }
6600 
6601 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6602 {
6603 	size_t insn_idx = *(const size_t *)key;
6604 	const struct reloc_desc *relo = elem;
6605 
6606 	if (insn_idx == relo->insn_idx)
6607 		return 0;
6608 	return insn_idx < relo->insn_idx ? -1 : 1;
6609 }
6610 
6611 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6612 {
6613 	if (!prog->nr_reloc)
6614 		return NULL;
6615 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6616 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6617 }
6618 
6619 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6620 {
6621 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6622 	struct reloc_desc *relos;
6623 	int i;
6624 
6625 	if (main_prog == subprog)
6626 		return 0;
6627 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6628 	/* if new count is zero, reallocarray can return a valid NULL result;
6629 	 * in this case the previous pointer will be freed, so we *have to*
6630 	 * reassign old pointer to the new value (even if it's NULL)
6631 	 */
6632 	if (!relos && new_cnt)
6633 		return -ENOMEM;
6634 	if (subprog->nr_reloc)
6635 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6636 		       sizeof(*relos) * subprog->nr_reloc);
6637 
6638 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6639 		relos[i].insn_idx += subprog->sub_insn_off;
6640 	/* After insn_idx adjustment the 'relos' array is still sorted
6641 	 * by insn_idx and doesn't break bsearch.
6642 	 */
6643 	main_prog->reloc_desc = relos;
6644 	main_prog->nr_reloc = new_cnt;
6645 	return 0;
6646 }
6647 
6648 static int
6649 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6650 				struct bpf_program *subprog)
6651 {
6652        struct bpf_insn *insns;
6653        size_t new_cnt;
6654        int err;
6655 
6656        subprog->sub_insn_off = main_prog->insns_cnt;
6657 
6658        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6659        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6660        if (!insns) {
6661                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6662                return -ENOMEM;
6663        }
6664        main_prog->insns = insns;
6665        main_prog->insns_cnt = new_cnt;
6666 
6667        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6668               subprog->insns_cnt * sizeof(*insns));
6669 
6670        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6671                 main_prog->name, subprog->insns_cnt, subprog->name);
6672 
6673        /* The subprog insns are now appended. Append its relos too. */
6674        err = append_subprog_relos(main_prog, subprog);
6675        if (err)
6676                return err;
6677        return 0;
6678 }
6679 
6680 static int
6681 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6682 		       struct bpf_program *prog)
6683 {
6684 	size_t sub_insn_idx, insn_idx;
6685 	struct bpf_program *subprog;
6686 	struct reloc_desc *relo;
6687 	struct bpf_insn *insn;
6688 	int err;
6689 
6690 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6691 	if (err)
6692 		return err;
6693 
6694 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6695 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6696 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6697 			continue;
6698 
6699 		relo = find_prog_insn_relo(prog, insn_idx);
6700 		if (relo && relo->type == RELO_EXTERN_CALL)
6701 			/* kfunc relocations will be handled later
6702 			 * in bpf_object__relocate_data()
6703 			 */
6704 			continue;
6705 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6706 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6707 				prog->name, insn_idx, relo->type);
6708 			return -LIBBPF_ERRNO__RELOC;
6709 		}
6710 		if (relo) {
6711 			/* sub-program instruction index is a combination of
6712 			 * an offset of a symbol pointed to by relocation and
6713 			 * call instruction's imm field; for global functions,
6714 			 * call always has imm = -1, but for static functions
6715 			 * relocation is against STT_SECTION and insn->imm
6716 			 * points to a start of a static function
6717 			 *
6718 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6719 			 * the byte offset in the corresponding section.
6720 			 */
6721 			if (relo->type == RELO_CALL)
6722 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6723 			else
6724 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6725 		} else if (insn_is_pseudo_func(insn)) {
6726 			/*
6727 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6728 			 * functions are in the same section, so it shouldn't reach here.
6729 			 */
6730 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6731 				prog->name, insn_idx);
6732 			return -LIBBPF_ERRNO__RELOC;
6733 		} else {
6734 			/* if subprogram call is to a static function within
6735 			 * the same ELF section, there won't be any relocation
6736 			 * emitted, but it also means there is no additional
6737 			 * offset necessary, insns->imm is relative to
6738 			 * instruction's original position within the section
6739 			 */
6740 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6741 		}
6742 
6743 		/* we enforce that sub-programs should be in .text section */
6744 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6745 		if (!subprog) {
6746 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6747 				prog->name);
6748 			return -LIBBPF_ERRNO__RELOC;
6749 		}
6750 
6751 		/* if it's the first call instruction calling into this
6752 		 * subprogram (meaning this subprog hasn't been processed
6753 		 * yet) within the context of current main program:
6754 		 *   - append it at the end of main program's instructions blog;
6755 		 *   - process is recursively, while current program is put on hold;
6756 		 *   - if that subprogram calls some other not yet processes
6757 		 *   subprogram, same thing will happen recursively until
6758 		 *   there are no more unprocesses subprograms left to append
6759 		 *   and relocate.
6760 		 */
6761 		if (subprog->sub_insn_off == 0) {
6762 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6763 			if (err)
6764 				return err;
6765 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6766 			if (err)
6767 				return err;
6768 		}
6769 
6770 		/* main_prog->insns memory could have been re-allocated, so
6771 		 * calculate pointer again
6772 		 */
6773 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6774 		/* calculate correct instruction position within current main
6775 		 * prog; each main prog can have a different set of
6776 		 * subprograms appended (potentially in different order as
6777 		 * well), so position of any subprog can be different for
6778 		 * different main programs
6779 		 */
6780 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6781 
6782 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6783 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6784 	}
6785 
6786 	return 0;
6787 }
6788 
6789 /*
6790  * Relocate sub-program calls.
6791  *
6792  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6793  * main prog) is processed separately. For each subprog (non-entry functions,
6794  * that can be called from either entry progs or other subprogs) gets their
6795  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6796  * hasn't been yet appended and relocated within current main prog. Once its
6797  * relocated, sub_insn_off will point at the position within current main prog
6798  * where given subprog was appended. This will further be used to relocate all
6799  * the call instructions jumping into this subprog.
6800  *
6801  * We start with main program and process all call instructions. If the call
6802  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6803  * is zero), subprog instructions are appended at the end of main program's
6804  * instruction array. Then main program is "put on hold" while we recursively
6805  * process newly appended subprogram. If that subprogram calls into another
6806  * subprogram that hasn't been appended, new subprogram is appended again to
6807  * the *main* prog's instructions (subprog's instructions are always left
6808  * untouched, as they need to be in unmodified state for subsequent main progs
6809  * and subprog instructions are always sent only as part of a main prog) and
6810  * the process continues recursively. Once all the subprogs called from a main
6811  * prog or any of its subprogs are appended (and relocated), all their
6812  * positions within finalized instructions array are known, so it's easy to
6813  * rewrite call instructions with correct relative offsets, corresponding to
6814  * desired target subprog.
6815  *
6816  * Its important to realize that some subprogs might not be called from some
6817  * main prog and any of its called/used subprogs. Those will keep their
6818  * subprog->sub_insn_off as zero at all times and won't be appended to current
6819  * main prog and won't be relocated within the context of current main prog.
6820  * They might still be used from other main progs later.
6821  *
6822  * Visually this process can be shown as below. Suppose we have two main
6823  * programs mainA and mainB and BPF object contains three subprogs: subA,
6824  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6825  * subC both call subB:
6826  *
6827  *        +--------+ +-------+
6828  *        |        v v       |
6829  *     +--+---+ +--+-+-+ +---+--+
6830  *     | subA | | subB | | subC |
6831  *     +--+---+ +------+ +---+--+
6832  *        ^                  ^
6833  *        |                  |
6834  *    +---+-------+   +------+----+
6835  *    |   mainA   |   |   mainB   |
6836  *    +-----------+   +-----------+
6837  *
6838  * We'll start relocating mainA, will find subA, append it and start
6839  * processing sub A recursively:
6840  *
6841  *    +-----------+------+
6842  *    |   mainA   | subA |
6843  *    +-----------+------+
6844  *
6845  * At this point we notice that subB is used from subA, so we append it and
6846  * relocate (there are no further subcalls from subB):
6847  *
6848  *    +-----------+------+------+
6849  *    |   mainA   | subA | subB |
6850  *    +-----------+------+------+
6851  *
6852  * At this point, we relocate subA calls, then go one level up and finish with
6853  * relocatin mainA calls. mainA is done.
6854  *
6855  * For mainB process is similar but results in different order. We start with
6856  * mainB and skip subA and subB, as mainB never calls them (at least
6857  * directly), but we see subC is needed, so we append and start processing it:
6858  *
6859  *    +-----------+------+
6860  *    |   mainB   | subC |
6861  *    +-----------+------+
6862  * Now we see subC needs subB, so we go back to it, append and relocate it:
6863  *
6864  *    +-----------+------+------+
6865  *    |   mainB   | subC | subB |
6866  *    +-----------+------+------+
6867  *
6868  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6869  */
6870 static int
6871 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6872 {
6873 	struct bpf_program *subprog;
6874 	int i, err;
6875 
6876 	/* mark all subprogs as not relocated (yet) within the context of
6877 	 * current main program
6878 	 */
6879 	for (i = 0; i < obj->nr_programs; i++) {
6880 		subprog = &obj->programs[i];
6881 		if (!prog_is_subprog(obj, subprog))
6882 			continue;
6883 
6884 		subprog->sub_insn_off = 0;
6885 	}
6886 
6887 	err = bpf_object__reloc_code(obj, prog, prog);
6888 	if (err)
6889 		return err;
6890 
6891 	return 0;
6892 }
6893 
6894 static void
6895 bpf_object__free_relocs(struct bpf_object *obj)
6896 {
6897 	struct bpf_program *prog;
6898 	int i;
6899 
6900 	/* free up relocation descriptors */
6901 	for (i = 0; i < obj->nr_programs; i++) {
6902 		prog = &obj->programs[i];
6903 		zfree(&prog->reloc_desc);
6904 		prog->nr_reloc = 0;
6905 	}
6906 }
6907 
6908 static int cmp_relocs(const void *_a, const void *_b)
6909 {
6910 	const struct reloc_desc *a = _a;
6911 	const struct reloc_desc *b = _b;
6912 
6913 	if (a->insn_idx != b->insn_idx)
6914 		return a->insn_idx < b->insn_idx ? -1 : 1;
6915 
6916 	/* no two relocations should have the same insn_idx, but ... */
6917 	if (a->type != b->type)
6918 		return a->type < b->type ? -1 : 1;
6919 
6920 	return 0;
6921 }
6922 
6923 static void bpf_object__sort_relos(struct bpf_object *obj)
6924 {
6925 	int i;
6926 
6927 	for (i = 0; i < obj->nr_programs; i++) {
6928 		struct bpf_program *p = &obj->programs[i];
6929 
6930 		if (!p->nr_reloc)
6931 			continue;
6932 
6933 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6934 	}
6935 }
6936 
6937 static int
6938 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6939 {
6940 	struct bpf_program *prog;
6941 	size_t i, j;
6942 	int err;
6943 
6944 	if (obj->btf_ext) {
6945 		err = bpf_object__relocate_core(obj, targ_btf_path);
6946 		if (err) {
6947 			pr_warn("failed to perform CO-RE relocations: %d\n",
6948 				err);
6949 			return err;
6950 		}
6951 		bpf_object__sort_relos(obj);
6952 	}
6953 
6954 	/* Before relocating calls pre-process relocations and mark
6955 	 * few ld_imm64 instructions that points to subprogs.
6956 	 * Otherwise bpf_object__reloc_code() later would have to consider
6957 	 * all ld_imm64 insns as relocation candidates. That would
6958 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6959 	 * would increase and most of them will fail to find a relo.
6960 	 */
6961 	for (i = 0; i < obj->nr_programs; i++) {
6962 		prog = &obj->programs[i];
6963 		for (j = 0; j < prog->nr_reloc; j++) {
6964 			struct reloc_desc *relo = &prog->reloc_desc[j];
6965 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6966 
6967 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6968 			if (relo->type == RELO_SUBPROG_ADDR)
6969 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6970 		}
6971 	}
6972 
6973 	/* relocate subprogram calls and append used subprograms to main
6974 	 * programs; each copy of subprogram code needs to be relocated
6975 	 * differently for each main program, because its code location might
6976 	 * have changed.
6977 	 * Append subprog relos to main programs to allow data relos to be
6978 	 * processed after text is completely relocated.
6979 	 */
6980 	for (i = 0; i < obj->nr_programs; i++) {
6981 		prog = &obj->programs[i];
6982 		/* sub-program's sub-calls are relocated within the context of
6983 		 * its main program only
6984 		 */
6985 		if (prog_is_subprog(obj, prog))
6986 			continue;
6987 		if (!prog->autoload)
6988 			continue;
6989 
6990 		err = bpf_object__relocate_calls(obj, prog);
6991 		if (err) {
6992 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6993 				prog->name, err);
6994 			return err;
6995 		}
6996 
6997 		/* Now, also append exception callback if it has not been done already. */
6998 		if (prog->exception_cb_idx >= 0) {
6999 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7000 
7001 			/* Calling exception callback directly is disallowed, which the
7002 			 * verifier will reject later. In case it was processed already,
7003 			 * we can skip this step, otherwise for all other valid cases we
7004 			 * have to append exception callback now.
7005 			 */
7006 			if (subprog->sub_insn_off == 0) {
7007 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7008 				if (err)
7009 					return err;
7010 				err = bpf_object__reloc_code(obj, prog, subprog);
7011 				if (err)
7012 					return err;
7013 			}
7014 		}
7015 	}
7016 	/* Process data relos for main programs */
7017 	for (i = 0; i < obj->nr_programs; i++) {
7018 		prog = &obj->programs[i];
7019 		if (prog_is_subprog(obj, prog))
7020 			continue;
7021 		if (!prog->autoload)
7022 			continue;
7023 		err = bpf_object__relocate_data(obj, prog);
7024 		if (err) {
7025 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7026 				prog->name, err);
7027 			return err;
7028 		}
7029 	}
7030 
7031 	return 0;
7032 }
7033 
7034 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7035 					    Elf64_Shdr *shdr, Elf_Data *data);
7036 
7037 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7038 					 Elf64_Shdr *shdr, Elf_Data *data)
7039 {
7040 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7041 	int i, j, nrels, new_sz;
7042 	const struct btf_var_secinfo *vi = NULL;
7043 	const struct btf_type *sec, *var, *def;
7044 	struct bpf_map *map = NULL, *targ_map = NULL;
7045 	struct bpf_program *targ_prog = NULL;
7046 	bool is_prog_array, is_map_in_map;
7047 	const struct btf_member *member;
7048 	const char *name, *mname, *type;
7049 	unsigned int moff;
7050 	Elf64_Sym *sym;
7051 	Elf64_Rel *rel;
7052 	void *tmp;
7053 
7054 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7055 		return -EINVAL;
7056 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7057 	if (!sec)
7058 		return -EINVAL;
7059 
7060 	nrels = shdr->sh_size / shdr->sh_entsize;
7061 	for (i = 0; i < nrels; i++) {
7062 		rel = elf_rel_by_idx(data, i);
7063 		if (!rel) {
7064 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7065 			return -LIBBPF_ERRNO__FORMAT;
7066 		}
7067 
7068 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7069 		if (!sym) {
7070 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7071 				i, (size_t)ELF64_R_SYM(rel->r_info));
7072 			return -LIBBPF_ERRNO__FORMAT;
7073 		}
7074 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7075 
7076 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7077 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7078 			 (size_t)rel->r_offset, sym->st_name, name);
7079 
7080 		for (j = 0; j < obj->nr_maps; j++) {
7081 			map = &obj->maps[j];
7082 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7083 				continue;
7084 
7085 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7086 			if (vi->offset <= rel->r_offset &&
7087 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7088 				break;
7089 		}
7090 		if (j == obj->nr_maps) {
7091 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7092 				i, name, (size_t)rel->r_offset);
7093 			return -EINVAL;
7094 		}
7095 
7096 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7097 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7098 		type = is_map_in_map ? "map" : "prog";
7099 		if (is_map_in_map) {
7100 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7101 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7102 					i, name);
7103 				return -LIBBPF_ERRNO__RELOC;
7104 			}
7105 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7106 			    map->def.key_size != sizeof(int)) {
7107 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7108 					i, map->name, sizeof(int));
7109 				return -EINVAL;
7110 			}
7111 			targ_map = bpf_object__find_map_by_name(obj, name);
7112 			if (!targ_map) {
7113 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7114 					i, name);
7115 				return -ESRCH;
7116 			}
7117 		} else if (is_prog_array) {
7118 			targ_prog = bpf_object__find_program_by_name(obj, name);
7119 			if (!targ_prog) {
7120 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7121 					i, name);
7122 				return -ESRCH;
7123 			}
7124 			if (targ_prog->sec_idx != sym->st_shndx ||
7125 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7126 			    prog_is_subprog(obj, targ_prog)) {
7127 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7128 					i, name);
7129 				return -LIBBPF_ERRNO__RELOC;
7130 			}
7131 		} else {
7132 			return -EINVAL;
7133 		}
7134 
7135 		var = btf__type_by_id(obj->btf, vi->type);
7136 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7137 		if (btf_vlen(def) == 0)
7138 			return -EINVAL;
7139 		member = btf_members(def) + btf_vlen(def) - 1;
7140 		mname = btf__name_by_offset(obj->btf, member->name_off);
7141 		if (strcmp(mname, "values"))
7142 			return -EINVAL;
7143 
7144 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7145 		if (rel->r_offset - vi->offset < moff)
7146 			return -EINVAL;
7147 
7148 		moff = rel->r_offset - vi->offset - moff;
7149 		/* here we use BPF pointer size, which is always 64 bit, as we
7150 		 * are parsing ELF that was built for BPF target
7151 		 */
7152 		if (moff % bpf_ptr_sz)
7153 			return -EINVAL;
7154 		moff /= bpf_ptr_sz;
7155 		if (moff >= map->init_slots_sz) {
7156 			new_sz = moff + 1;
7157 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7158 			if (!tmp)
7159 				return -ENOMEM;
7160 			map->init_slots = tmp;
7161 			memset(map->init_slots + map->init_slots_sz, 0,
7162 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7163 			map->init_slots_sz = new_sz;
7164 		}
7165 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7166 
7167 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7168 			 i, map->name, moff, type, name);
7169 	}
7170 
7171 	return 0;
7172 }
7173 
7174 static int bpf_object__collect_relos(struct bpf_object *obj)
7175 {
7176 	int i, err;
7177 
7178 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7179 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7180 		Elf64_Shdr *shdr;
7181 		Elf_Data *data;
7182 		int idx;
7183 		Elf64_Shdr shdrelf;
7184 
7185 		if (sec_desc->sec_type != SEC_RELO)
7186 			continue;
7187 
7188 #if defined HAVE_LIBELF
7189 		shdr = sec_desc->shdr;
7190 #elif defined HAVE_ELFIO
7191 		shdr = elf_sec_hdr_by_idx(obj, i, &shdrelf);
7192 #endif
7193 		data = sec_desc->data;
7194 		idx = shdr->sh_info;
7195 
7196 		if (shdr->sh_type != SHT_REL) {
7197 			pr_warn("internal error at %d\n", __LINE__);
7198 			return -LIBBPF_ERRNO__INTERNAL;
7199 		}
7200 
7201 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
7202 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7203 		else if (idx == obj->efile.btf_maps_shndx)
7204 			err = bpf_object__collect_map_relos(obj, shdr, data);
7205 		else
7206 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7207 		if (err)
7208 			return err;
7209 	}
7210 
7211 	bpf_object__sort_relos(obj);
7212 	return 0;
7213 }
7214 
7215 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7216 {
7217 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7218 	    BPF_OP(insn->code) == BPF_CALL &&
7219 	    BPF_SRC(insn->code) == BPF_K &&
7220 	    insn->src_reg == 0 &&
7221 	    insn->dst_reg == 0) {
7222 		    *func_id = insn->imm;
7223 		    return true;
7224 	}
7225 	return false;
7226 }
7227 
7228 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7229 {
7230 	struct bpf_insn *insn = prog->insns;
7231 	enum bpf_func_id func_id;
7232 	int i;
7233 
7234 	if (obj->gen_loader)
7235 		return 0;
7236 
7237 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7238 		if (!insn_is_helper_call(insn, &func_id))
7239 			continue;
7240 
7241 		/* on kernels that don't yet support
7242 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7243 		 * to bpf_probe_read() which works well for old kernels
7244 		 */
7245 		switch (func_id) {
7246 		case BPF_FUNC_probe_read_kernel:
7247 		case BPF_FUNC_probe_read_user:
7248 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7249 				insn->imm = BPF_FUNC_probe_read;
7250 			break;
7251 		case BPF_FUNC_probe_read_kernel_str:
7252 		case BPF_FUNC_probe_read_user_str:
7253 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7254 				insn->imm = BPF_FUNC_probe_read_str;
7255 			break;
7256 		default:
7257 			break;
7258 		}
7259 	}
7260 	return 0;
7261 }
7262 
7263 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7264 				     int *btf_obj_fd, int *btf_type_id);
7265 
7266 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7267 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7268 				    struct bpf_prog_load_opts *opts, long cookie)
7269 {
7270 	enum sec_def_flags def = cookie;
7271 
7272 	/* old kernels might not support specifying expected_attach_type */
7273 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7274 		opts->expected_attach_type = 0;
7275 
7276 	if (def & SEC_SLEEPABLE)
7277 		opts->prog_flags |= BPF_F_SLEEPABLE;
7278 
7279 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7280 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7281 
7282 	/* special check for usdt to use uprobe_multi link */
7283 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7284 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7285 
7286 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7287 		int btf_obj_fd = 0, btf_type_id = 0, err;
7288 		const char *attach_name;
7289 
7290 		attach_name = strchr(prog->sec_name, '/');
7291 		if (!attach_name) {
7292 			/* if BPF program is annotated with just SEC("fentry")
7293 			 * (or similar) without declaratively specifying
7294 			 * target, then it is expected that target will be
7295 			 * specified with bpf_program__set_attach_target() at
7296 			 * runtime before BPF object load step. If not, then
7297 			 * there is nothing to load into the kernel as BPF
7298 			 * verifier won't be able to validate BPF program
7299 			 * correctness anyways.
7300 			 */
7301 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7302 				prog->name);
7303 			return -EINVAL;
7304 		}
7305 		attach_name++; /* skip over / */
7306 
7307 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7308 		if (err)
7309 			return err;
7310 
7311 		/* cache resolved BTF FD and BTF type ID in the prog */
7312 		prog->attach_btf_obj_fd = btf_obj_fd;
7313 		prog->attach_btf_id = btf_type_id;
7314 
7315 		/* but by now libbpf common logic is not utilizing
7316 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7317 		 * this callback is called after opts were populated by
7318 		 * libbpf, so this callback has to update opts explicitly here
7319 		 */
7320 		opts->attach_btf_obj_fd = btf_obj_fd;
7321 		opts->attach_btf_id = btf_type_id;
7322 	}
7323 	return 0;
7324 }
7325 
7326 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7327 
7328 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7329 				struct bpf_insn *insns, int insns_cnt,
7330 				const char *license, __u32 kern_version, int *prog_fd)
7331 {
7332 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7333 	const char *prog_name = NULL;
7334 	char *cp, errmsg[STRERR_BUFSIZE];
7335 	size_t log_buf_size = 0;
7336 	char *log_buf = NULL, *tmp;
7337 	int btf_fd, ret, err;
7338 	bool own_log_buf = true;
7339 	__u32 log_level = prog->log_level;
7340 
7341 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7342 		/*
7343 		 * The program type must be set.  Most likely we couldn't find a proper
7344 		 * section definition at load time, and thus we didn't infer the type.
7345 		 */
7346 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7347 			prog->name, prog->sec_name);
7348 		return -EINVAL;
7349 	}
7350 
7351 	if (!insns || !insns_cnt)
7352 		return -EINVAL;
7353 
7354 	if (kernel_supports(obj, FEAT_PROG_NAME))
7355 		prog_name = prog->name;
7356 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7357 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7358 	load_attr.attach_btf_id = prog->attach_btf_id;
7359 	load_attr.kern_version = kern_version;
7360 	load_attr.prog_ifindex = prog->prog_ifindex;
7361 
7362 	/* specify func_info/line_info only if kernel supports them */
7363 	btf_fd = bpf_object__btf_fd(obj);
7364 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7365 		load_attr.prog_btf_fd = btf_fd;
7366 		load_attr.func_info = prog->func_info;
7367 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7368 		load_attr.func_info_cnt = prog->func_info_cnt;
7369 		load_attr.line_info = prog->line_info;
7370 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7371 		load_attr.line_info_cnt = prog->line_info_cnt;
7372 	}
7373 	load_attr.log_level = log_level;
7374 	load_attr.prog_flags = prog->prog_flags;
7375 	load_attr.fd_array = obj->fd_array;
7376 
7377 	/* adjust load_attr if sec_def provides custom preload callback */
7378 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7379 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7380 		if (err < 0) {
7381 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7382 				prog->name, err);
7383 			return err;
7384 		}
7385 		insns = prog->insns;
7386 		insns_cnt = prog->insns_cnt;
7387 	}
7388 
7389 	/* allow prog_prepare_load_fn to change expected_attach_type */
7390 	load_attr.expected_attach_type = prog->expected_attach_type;
7391 
7392 	if (obj->gen_loader) {
7393 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7394 				   license, insns, insns_cnt, &load_attr,
7395 				   prog - obj->programs);
7396 		*prog_fd = -1;
7397 		return 0;
7398 	}
7399 
7400 retry_load:
7401 	/* if log_level is zero, we don't request logs initially even if
7402 	 * custom log_buf is specified; if the program load fails, then we'll
7403 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7404 	 * our own and retry the load to get details on what failed
7405 	 */
7406 	if (log_level) {
7407 		if (prog->log_buf) {
7408 			log_buf = prog->log_buf;
7409 			log_buf_size = prog->log_size;
7410 			own_log_buf = false;
7411 		} else if (obj->log_buf) {
7412 			log_buf = obj->log_buf;
7413 			log_buf_size = obj->log_size;
7414 			own_log_buf = false;
7415 		} else {
7416 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7417 			tmp = realloc(log_buf, log_buf_size);
7418 			if (!tmp) {
7419 				ret = -ENOMEM;
7420 				goto out;
7421 			}
7422 			log_buf = tmp;
7423 			log_buf[0] = '\0';
7424 			own_log_buf = true;
7425 		}
7426 	}
7427 
7428 	load_attr.log_buf = log_buf;
7429 	load_attr.log_size = log_buf_size;
7430 	load_attr.log_level = log_level;
7431 
7432 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7433 	if (ret >= 0) {
7434 		if (log_level && own_log_buf) {
7435 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7436 				 prog->name, log_buf);
7437 		}
7438 
7439 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7440 			struct bpf_map *map;
7441 			int i;
7442 
7443 			for (i = 0; i < obj->nr_maps; i++) {
7444 				map = &prog->obj->maps[i];
7445 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7446 					continue;
7447 
7448 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7449 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7450 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7451 						prog->name, map->real_name, cp);
7452 					/* Don't fail hard if can't bind rodata. */
7453 				}
7454 			}
7455 		}
7456 
7457 		*prog_fd = ret;
7458 		ret = 0;
7459 		goto out;
7460 	}
7461 
7462 	if (log_level == 0) {
7463 		log_level = 1;
7464 		goto retry_load;
7465 	}
7466 	/* On ENOSPC, increase log buffer size and retry, unless custom
7467 	 * log_buf is specified.
7468 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7469 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7470 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7471 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7472 	 */
7473 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7474 		goto retry_load;
7475 
7476 	ret = -errno;
7477 
7478 	/* post-process verifier log to improve error descriptions */
7479 	fixup_verifier_log(prog, log_buf, log_buf_size);
7480 
7481 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7482 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7483 	pr_perm_msg(ret);
7484 
7485 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7486 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7487 			prog->name, log_buf);
7488 	}
7489 
7490 out:
7491 	if (own_log_buf)
7492 		free(log_buf);
7493 	return ret;
7494 }
7495 
7496 static char *find_prev_line(char *buf, char *cur)
7497 {
7498 	char *p;
7499 
7500 	if (cur == buf) /* end of a log buf */
7501 		return NULL;
7502 
7503 	p = cur - 1;
7504 	while (p - 1 >= buf && *(p - 1) != '\n')
7505 		p--;
7506 
7507 	return p;
7508 }
7509 
7510 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7511 		      char *orig, size_t orig_sz, const char *patch)
7512 {
7513 	/* size of the remaining log content to the right from the to-be-replaced part */
7514 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7515 	size_t patch_sz = strlen(patch);
7516 
7517 	if (patch_sz != orig_sz) {
7518 		/* If patch line(s) are longer than original piece of verifier log,
7519 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7520 		 * starting from after to-be-replaced part of the log.
7521 		 *
7522 		 * If patch line(s) are shorter than original piece of verifier log,
7523 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7524 		 * starting from after to-be-replaced part of the log
7525 		 *
7526 		 * We need to be careful about not overflowing available
7527 		 * buf_sz capacity. If that's the case, we'll truncate the end
7528 		 * of the original log, as necessary.
7529 		 */
7530 		if (patch_sz > orig_sz) {
7531 			if (orig + patch_sz >= buf + buf_sz) {
7532 				/* patch is big enough to cover remaining space completely */
7533 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7534 				rem_sz = 0;
7535 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7536 				/* patch causes part of remaining log to be truncated */
7537 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7538 			}
7539 		}
7540 		/* shift remaining log to the right by calculated amount */
7541 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7542 	}
7543 
7544 	memcpy(orig, patch, patch_sz);
7545 }
7546 
7547 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7548 				       char *buf, size_t buf_sz, size_t log_sz,
7549 				       char *line1, char *line2, char *line3)
7550 {
7551 	/* Expected log for failed and not properly guarded CO-RE relocation:
7552 	 * line1 -> 123: (85) call unknown#195896080
7553 	 * line2 -> invalid func unknown#195896080
7554 	 * line3 -> <anything else or end of buffer>
7555 	 *
7556 	 * "123" is the index of the instruction that was poisoned. We extract
7557 	 * instruction index to find corresponding CO-RE relocation and
7558 	 * replace this part of the log with more relevant information about
7559 	 * failed CO-RE relocation.
7560 	 */
7561 	const struct bpf_core_relo *relo;
7562 	struct bpf_core_spec spec;
7563 	char patch[512], spec_buf[256];
7564 	int insn_idx, err, spec_len;
7565 
7566 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7567 		return;
7568 
7569 	relo = find_relo_core(prog, insn_idx);
7570 	if (!relo)
7571 		return;
7572 
7573 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7574 	if (err)
7575 		return;
7576 
7577 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7578 	snprintf(patch, sizeof(patch),
7579 		 "%d: <invalid CO-RE relocation>\n"
7580 		 "failed to resolve CO-RE relocation %s%s\n",
7581 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7582 
7583 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7584 }
7585 
7586 static void fixup_log_missing_map_load(struct bpf_program *prog,
7587 				       char *buf, size_t buf_sz, size_t log_sz,
7588 				       char *line1, char *line2, char *line3)
7589 {
7590 	/* Expected log for failed and not properly guarded map reference:
7591 	 * line1 -> 123: (85) call unknown#2001000345
7592 	 * line2 -> invalid func unknown#2001000345
7593 	 * line3 -> <anything else or end of buffer>
7594 	 *
7595 	 * "123" is the index of the instruction that was poisoned.
7596 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7597 	 */
7598 	struct bpf_object *obj = prog->obj;
7599 	const struct bpf_map *map;
7600 	int insn_idx, map_idx;
7601 	char patch[128];
7602 
7603 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7604 		return;
7605 
7606 	map_idx -= POISON_LDIMM64_MAP_BASE;
7607 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7608 		return;
7609 	map = &obj->maps[map_idx];
7610 
7611 	snprintf(patch, sizeof(patch),
7612 		 "%d: <invalid BPF map reference>\n"
7613 		 "BPF map '%s' is referenced but wasn't created\n",
7614 		 insn_idx, map->name);
7615 
7616 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7617 }
7618 
7619 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7620 					 char *buf, size_t buf_sz, size_t log_sz,
7621 					 char *line1, char *line2, char *line3)
7622 {
7623 	/* Expected log for failed and not properly guarded kfunc call:
7624 	 * line1 -> 123: (85) call unknown#2002000345
7625 	 * line2 -> invalid func unknown#2002000345
7626 	 * line3 -> <anything else or end of buffer>
7627 	 *
7628 	 * "123" is the index of the instruction that was poisoned.
7629 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7630 	 */
7631 	struct bpf_object *obj = prog->obj;
7632 	const struct extern_desc *ext;
7633 	int insn_idx, ext_idx;
7634 	char patch[128];
7635 
7636 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7637 		return;
7638 
7639 	ext_idx -= POISON_CALL_KFUNC_BASE;
7640 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7641 		return;
7642 	ext = &obj->externs[ext_idx];
7643 
7644 	snprintf(patch, sizeof(patch),
7645 		 "%d: <invalid kfunc call>\n"
7646 		 "kfunc '%s' is referenced but wasn't resolved\n",
7647 		 insn_idx, ext->name);
7648 
7649 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7650 }
7651 
7652 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7653 {
7654 	/* look for familiar error patterns in last N lines of the log */
7655 	const size_t max_last_line_cnt = 10;
7656 	char *prev_line, *cur_line, *next_line;
7657 	size_t log_sz;
7658 	int i;
7659 
7660 	if (!buf)
7661 		return;
7662 
7663 	log_sz = strlen(buf) + 1;
7664 	next_line = buf + log_sz - 1;
7665 
7666 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7667 		cur_line = find_prev_line(buf, next_line);
7668 		if (!cur_line)
7669 			return;
7670 
7671 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7672 			prev_line = find_prev_line(buf, cur_line);
7673 			if (!prev_line)
7674 				continue;
7675 
7676 			/* failed CO-RE relocation case */
7677 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7678 						   prev_line, cur_line, next_line);
7679 			return;
7680 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7681 			prev_line = find_prev_line(buf, cur_line);
7682 			if (!prev_line)
7683 				continue;
7684 
7685 			/* reference to uncreated BPF map */
7686 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7687 						   prev_line, cur_line, next_line);
7688 			return;
7689 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7690 			prev_line = find_prev_line(buf, cur_line);
7691 			if (!prev_line)
7692 				continue;
7693 
7694 			/* reference to unresolved kfunc */
7695 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7696 						     prev_line, cur_line, next_line);
7697 			return;
7698 		}
7699 	}
7700 }
7701 
7702 static int bpf_program_record_relos(struct bpf_program *prog)
7703 {
7704 	struct bpf_object *obj = prog->obj;
7705 	int i;
7706 
7707 	for (i = 0; i < prog->nr_reloc; i++) {
7708 		struct reloc_desc *relo = &prog->reloc_desc[i];
7709 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7710 		int kind;
7711 
7712 		switch (relo->type) {
7713 		case RELO_EXTERN_LD64:
7714 			if (ext->type != EXT_KSYM)
7715 				continue;
7716 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7717 				BTF_KIND_VAR : BTF_KIND_FUNC;
7718 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7719 					       ext->is_weak, !ext->ksym.type_id,
7720 					       true, kind, relo->insn_idx);
7721 			break;
7722 		case RELO_EXTERN_CALL:
7723 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7724 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7725 					       relo->insn_idx);
7726 			break;
7727 		case RELO_CORE: {
7728 			struct bpf_core_relo cr = {
7729 				.insn_off = relo->insn_idx * 8,
7730 				.type_id = relo->core_relo->type_id,
7731 				.access_str_off = relo->core_relo->access_str_off,
7732 				.kind = relo->core_relo->kind,
7733 			};
7734 
7735 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7736 			break;
7737 		}
7738 		default:
7739 			continue;
7740 		}
7741 	}
7742 	return 0;
7743 }
7744 
7745 static int
7746 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7747 {
7748 	struct bpf_program *prog;
7749 	size_t i;
7750 	int err;
7751 
7752 	for (i = 0; i < obj->nr_programs; i++) {
7753 		prog = &obj->programs[i];
7754 		err = bpf_object__sanitize_prog(obj, prog);
7755 		if (err)
7756 			return err;
7757 	}
7758 
7759 	for (i = 0; i < obj->nr_programs; i++) {
7760 		prog = &obj->programs[i];
7761 		if (prog_is_subprog(obj, prog))
7762 			continue;
7763 		if (!prog->autoload) {
7764 			pr_debug("prog '%s': skipped loading\n", prog->name);
7765 			continue;
7766 		}
7767 		prog->log_level |= log_level;
7768 
7769 		if (obj->gen_loader)
7770 			bpf_program_record_relos(prog);
7771 
7772 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7773 					   obj->license, obj->kern_version, &prog->fd);
7774 		if (err) {
7775 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7776 			return err;
7777 		}
7778 	}
7779 
7780 	bpf_object__free_relocs(obj);
7781 	return 0;
7782 }
7783 
7784 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7785 
7786 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7787 {
7788 	struct bpf_program *prog;
7789 	int err;
7790 
7791 	bpf_object__for_each_program(prog, obj) {
7792 		prog->sec_def = find_sec_def(prog->sec_name);
7793 		if (!prog->sec_def) {
7794 			/* couldn't guess, but user might manually specify */
7795 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7796 				prog->name, prog->sec_name);
7797 			continue;
7798 		}
7799 
7800 		prog->type = prog->sec_def->prog_type;
7801 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7802 
7803 		/* sec_def can have custom callback which should be called
7804 		 * after bpf_program is initialized to adjust its properties
7805 		 */
7806 		if (prog->sec_def->prog_setup_fn) {
7807 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7808 			if (err < 0) {
7809 				pr_warn("prog '%s': failed to initialize: %d\n",
7810 					prog->name, err);
7811 				return err;
7812 			}
7813 		}
7814 	}
7815 
7816 	return 0;
7817 }
7818 
7819 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7820 					  const struct bpf_object_open_opts *opts)
7821 {
7822 	const char *obj_name, *kconfig, *btf_tmp_path;
7823 	struct bpf_object *obj;
7824 	char tmp_name[64];
7825 	int err;
7826 	char *log_buf;
7827 	size_t log_size;
7828 	__u32 log_level;
7829 
7830 #ifdef HAVE_LIBELF
7831 	if (elf_version(EV_CURRENT) == EV_NONE) {
7832 		pr_warn("failed to init libelf for %s\n",
7833 			path ? : "(mem buf)");
7834 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7835 	}
7836 #endif
7837 
7838 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7839 		return ERR_PTR(-EINVAL);
7840 
7841 	obj_name = OPTS_GET(opts, object_name, NULL);
7842 	if (obj_buf) {
7843 		if (!obj_name) {
7844 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7845 				 (unsigned long)obj_buf,
7846 				 (unsigned long)obj_buf_sz);
7847 			obj_name = tmp_name;
7848 		}
7849 		path = obj_name;
7850 		pr_debug("loading object '%s' from buffer\n", obj_name);
7851 	}
7852 
7853 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7854 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7855 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7856 	if (log_size > UINT_MAX)
7857 		return ERR_PTR(-EINVAL);
7858 	if (log_size && !log_buf)
7859 		return ERR_PTR(-EINVAL);
7860 
7861 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7862 	if (IS_ERR(obj))
7863 		return obj;
7864 
7865 	obj->log_buf = log_buf;
7866 	obj->log_size = log_size;
7867 	obj->log_level = log_level;
7868 
7869 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7870 	if (btf_tmp_path) {
7871 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7872 			err = -ENAMETOOLONG;
7873 			goto out;
7874 		}
7875 		obj->btf_custom_path = strdup(btf_tmp_path);
7876 		if (!obj->btf_custom_path) {
7877 			err = -ENOMEM;
7878 			goto out;
7879 		}
7880 	}
7881 
7882 	kconfig = OPTS_GET(opts, kconfig, NULL);
7883 	if (kconfig) {
7884 		obj->kconfig = strdup(kconfig);
7885 		if (!obj->kconfig) {
7886 			err = -ENOMEM;
7887 			goto out;
7888 		}
7889 	}
7890 
7891 	err = bpf_object__elf_init(obj);
7892 	err = err ? : bpf_object__check_endianness(obj);
7893 	err = err ? : bpf_object__elf_collect(obj);
7894 	err = err ? : bpf_object__collect_externs(obj);
7895 	err = err ? : bpf_object_fixup_btf(obj);
7896 	err = err ? : bpf_object__init_maps(obj, opts);
7897 	err = err ? : bpf_object_init_progs(obj, opts);
7898 	err = err ? : bpf_object__collect_relos(obj);
7899 	if (err)
7900 		goto out;
7901 
7902 	bpf_object__elf_finish(obj);
7903 
7904 	return obj;
7905 out:
7906 	bpf_object__close(obj);
7907 	return ERR_PTR(err);
7908 }
7909 
7910 struct bpf_object *
7911 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7912 {
7913 	if (!path)
7914 		return libbpf_err_ptr(-EINVAL);
7915 
7916 	pr_debug("loading %s\n", path);
7917 
7918 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7919 }
7920 
7921 struct bpf_object *bpf_object__open(const char *path)
7922 {
7923 	return bpf_object__open_file(path, NULL);
7924 }
7925 
7926 struct bpf_object *
7927 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7928 		     const struct bpf_object_open_opts *opts)
7929 {
7930 	if (!obj_buf || obj_buf_sz == 0)
7931 		return libbpf_err_ptr(-EINVAL);
7932 
7933 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7934 }
7935 
7936 static int bpf_object_unload(struct bpf_object *obj)
7937 {
7938 	size_t i;
7939 
7940 	if (!obj)
7941 		return libbpf_err(-EINVAL);
7942 
7943 	for (i = 0; i < obj->nr_maps; i++) {
7944 		zclose(obj->maps[i].fd);
7945 		if (obj->maps[i].st_ops)
7946 			zfree(&obj->maps[i].st_ops->kern_vdata);
7947 	}
7948 
7949 	for (i = 0; i < obj->nr_programs; i++)
7950 		bpf_program__unload(&obj->programs[i]);
7951 
7952 	return 0;
7953 }
7954 
7955 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7956 {
7957 	struct bpf_map *m;
7958 
7959 	bpf_object__for_each_map(m, obj) {
7960 		if (!bpf_map__is_internal(m))
7961 			continue;
7962 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7963 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7964 	}
7965 
7966 	return 0;
7967 }
7968 
7969 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7970 {
7971 	char sym_type, sym_name[500];
7972 	unsigned long long sym_addr;
7973 	int ret, err = 0;
7974 	FILE *f;
7975 
7976 	f = fopen("/proc/kallsyms", "re");
7977 	if (!f) {
7978 		err = -errno;
7979 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7980 		return err;
7981 	}
7982 
7983 	while (true) {
7984 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7985 			     &sym_addr, &sym_type, sym_name);
7986 		if (ret == EOF && feof(f))
7987 			break;
7988 		if (ret != 3) {
7989 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7990 			err = -EINVAL;
7991 			break;
7992 		}
7993 
7994 		err = cb(sym_addr, sym_type, sym_name, ctx);
7995 		if (err)
7996 			break;
7997 	}
7998 
7999 	fclose(f);
8000 	return err;
8001 }
8002 
8003 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8004 		       const char *sym_name, void *ctx)
8005 {
8006 	struct bpf_object *obj = ctx;
8007 	const struct btf_type *t;
8008 	struct extern_desc *ext;
8009 
8010 	ext = find_extern_by_name(obj, sym_name);
8011 	if (!ext || ext->type != EXT_KSYM)
8012 		return 0;
8013 
8014 	t = btf__type_by_id(obj->btf, ext->btf_id);
8015 	if (!btf_is_var(t))
8016 		return 0;
8017 
8018 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8019 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8020 			sym_name, ext->ksym.addr, sym_addr);
8021 		return -EINVAL;
8022 	}
8023 	if (!ext->is_set) {
8024 		ext->is_set = true;
8025 		ext->ksym.addr = sym_addr;
8026 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8027 	}
8028 	return 0;
8029 }
8030 
8031 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8032 {
8033 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8034 }
8035 
8036 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8037 			    __u16 kind, struct btf **res_btf,
8038 			    struct module_btf **res_mod_btf)
8039 {
8040 	struct module_btf *mod_btf;
8041 	struct btf *btf;
8042 	int i, id, err;
8043 
8044 	btf = obj->btf_vmlinux;
8045 	mod_btf = NULL;
8046 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8047 
8048 	if (id == -ENOENT) {
8049 		err = load_module_btfs(obj);
8050 		if (err)
8051 			return err;
8052 
8053 		for (i = 0; i < obj->btf_module_cnt; i++) {
8054 			/* we assume module_btf's BTF FD is always >0 */
8055 			mod_btf = &obj->btf_modules[i];
8056 			btf = mod_btf->btf;
8057 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8058 			if (id != -ENOENT)
8059 				break;
8060 		}
8061 	}
8062 	if (id <= 0)
8063 		return -ESRCH;
8064 
8065 	*res_btf = btf;
8066 	*res_mod_btf = mod_btf;
8067 	return id;
8068 }
8069 
8070 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8071 					       struct extern_desc *ext)
8072 {
8073 	const struct btf_type *targ_var, *targ_type;
8074 	__u32 targ_type_id, local_type_id;
8075 	struct module_btf *mod_btf = NULL;
8076 	const char *targ_var_name;
8077 	struct btf *btf = NULL;
8078 	int id, err;
8079 
8080 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8081 	if (id < 0) {
8082 		if (id == -ESRCH && ext->is_weak)
8083 			return 0;
8084 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8085 			ext->name);
8086 		return id;
8087 	}
8088 
8089 	/* find local type_id */
8090 	local_type_id = ext->ksym.type_id;
8091 
8092 	/* find target type_id */
8093 	targ_var = btf__type_by_id(btf, id);
8094 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8095 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8096 
8097 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8098 					btf, targ_type_id);
8099 	if (err <= 0) {
8100 		const struct btf_type *local_type;
8101 		const char *targ_name, *local_name;
8102 
8103 		local_type = btf__type_by_id(obj->btf, local_type_id);
8104 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8105 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8106 
8107 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8108 			ext->name, local_type_id,
8109 			btf_kind_str(local_type), local_name, targ_type_id,
8110 			btf_kind_str(targ_type), targ_name);
8111 		return -EINVAL;
8112 	}
8113 
8114 	ext->is_set = true;
8115 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8116 	ext->ksym.kernel_btf_id = id;
8117 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8118 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8119 
8120 	return 0;
8121 }
8122 
8123 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8124 						struct extern_desc *ext)
8125 {
8126 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8127 	struct module_btf *mod_btf = NULL;
8128 	const struct btf_type *kern_func;
8129 	struct btf *kern_btf = NULL;
8130 	int ret;
8131 
8132 	local_func_proto_id = ext->ksym.type_id;
8133 
8134 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8135 				    &mod_btf);
8136 	if (kfunc_id < 0) {
8137 		if (kfunc_id == -ESRCH && ext->is_weak)
8138 			return 0;
8139 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8140 			ext->name);
8141 		return kfunc_id;
8142 	}
8143 
8144 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8145 	kfunc_proto_id = kern_func->type;
8146 
8147 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8148 					kern_btf, kfunc_proto_id);
8149 	if (ret <= 0) {
8150 		if (ext->is_weak)
8151 			return 0;
8152 
8153 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8154 			ext->name, local_func_proto_id,
8155 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8156 		return -EINVAL;
8157 	}
8158 
8159 	/* set index for module BTF fd in fd_array, if unset */
8160 	if (mod_btf && !mod_btf->fd_array_idx) {
8161 		/* insn->off is s16 */
8162 		if (obj->fd_array_cnt == INT16_MAX) {
8163 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8164 				ext->name, mod_btf->fd_array_idx);
8165 			return -E2BIG;
8166 		}
8167 		/* Cannot use index 0 for module BTF fd */
8168 		if (!obj->fd_array_cnt)
8169 			obj->fd_array_cnt = 1;
8170 
8171 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8172 					obj->fd_array_cnt + 1);
8173 		if (ret)
8174 			return ret;
8175 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8176 		/* we assume module BTF FD is always >0 */
8177 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8178 	}
8179 
8180 	ext->is_set = true;
8181 	ext->ksym.kernel_btf_id = kfunc_id;
8182 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8183 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8184 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8185 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8186 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8187 	 */
8188 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8189 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8190 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8191 
8192 	return 0;
8193 }
8194 
8195 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8196 {
8197 	const struct btf_type *t;
8198 	struct extern_desc *ext;
8199 	int i, err;
8200 
8201 	for (i = 0; i < obj->nr_extern; i++) {
8202 		ext = &obj->externs[i];
8203 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8204 			continue;
8205 
8206 		if (obj->gen_loader) {
8207 			ext->is_set = true;
8208 			ext->ksym.kernel_btf_obj_fd = 0;
8209 			ext->ksym.kernel_btf_id = 0;
8210 			continue;
8211 		}
8212 		t = btf__type_by_id(obj->btf, ext->btf_id);
8213 		if (btf_is_var(t))
8214 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8215 		else
8216 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8217 		if (err)
8218 			return err;
8219 	}
8220 	return 0;
8221 }
8222 
8223 static int bpf_object__resolve_externs(struct bpf_object *obj,
8224 				       const char *extra_kconfig)
8225 {
8226 	bool need_config = false, need_kallsyms = false;
8227 	bool need_vmlinux_btf = false;
8228 	struct extern_desc *ext;
8229 	void *kcfg_data = NULL;
8230 	int err, i;
8231 
8232 	if (obj->nr_extern == 0)
8233 		return 0;
8234 
8235 	if (obj->kconfig_map_idx >= 0)
8236 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8237 
8238 	for (i = 0; i < obj->nr_extern; i++) {
8239 		ext = &obj->externs[i];
8240 
8241 		if (ext->type == EXT_KSYM) {
8242 			if (ext->ksym.type_id)
8243 				need_vmlinux_btf = true;
8244 			else
8245 				need_kallsyms = true;
8246 			continue;
8247 		} else if (ext->type == EXT_KCFG) {
8248 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8249 			__u64 value = 0;
8250 
8251 			/* Kconfig externs need actual /proc/config.gz */
8252 			if (str_has_pfx(ext->name, "CONFIG_")) {
8253 				need_config = true;
8254 				continue;
8255 			}
8256 
8257 			/* Virtual kcfg externs are customly handled by libbpf */
8258 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8259 				value = get_kernel_version();
8260 				if (!value) {
8261 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8262 					return -EINVAL;
8263 				}
8264 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8265 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8266 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8267 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8268 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8269 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8270 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8271 				 * customly by libbpf (their values don't come from Kconfig).
8272 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8273 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8274 				 * externs.
8275 				 */
8276 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8277 				return -EINVAL;
8278 			}
8279 
8280 			err = set_kcfg_value_num(ext, ext_ptr, value);
8281 			if (err)
8282 				return err;
8283 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8284 				 ext->name, (long long)value);
8285 		} else {
8286 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8287 			return -EINVAL;
8288 		}
8289 	}
8290 	if (need_config && extra_kconfig) {
8291 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8292 		if (err)
8293 			return -EINVAL;
8294 		need_config = false;
8295 		for (i = 0; i < obj->nr_extern; i++) {
8296 			ext = &obj->externs[i];
8297 			if (ext->type == EXT_KCFG && !ext->is_set) {
8298 				need_config = true;
8299 				break;
8300 			}
8301 		}
8302 	}
8303 	if (need_config) {
8304 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8305 		if (err)
8306 			return -EINVAL;
8307 	}
8308 	if (need_kallsyms) {
8309 		err = bpf_object__read_kallsyms_file(obj);
8310 		if (err)
8311 			return -EINVAL;
8312 	}
8313 	if (need_vmlinux_btf) {
8314 		err = bpf_object__resolve_ksyms_btf_id(obj);
8315 		if (err)
8316 			return -EINVAL;
8317 	}
8318 	for (i = 0; i < obj->nr_extern; i++) {
8319 		ext = &obj->externs[i];
8320 
8321 		if (!ext->is_set && !ext->is_weak) {
8322 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8323 			return -ESRCH;
8324 		} else if (!ext->is_set) {
8325 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8326 				 ext->name);
8327 		}
8328 	}
8329 
8330 	return 0;
8331 }
8332 
8333 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8334 {
8335 	struct bpf_struct_ops *st_ops;
8336 	__u32 i;
8337 
8338 	st_ops = map->st_ops;
8339 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8340 		struct bpf_program *prog = st_ops->progs[i];
8341 		void *kern_data;
8342 		int prog_fd;
8343 
8344 		if (!prog)
8345 			continue;
8346 
8347 		prog_fd = bpf_program__fd(prog);
8348 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8349 		*(unsigned long *)kern_data = prog_fd;
8350 	}
8351 }
8352 
8353 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8354 {
8355 	int i;
8356 
8357 	for (i = 0; i < obj->nr_maps; i++)
8358 		if (bpf_map__is_struct_ops(&obj->maps[i]))
8359 			bpf_map_prepare_vdata(&obj->maps[i]);
8360 
8361 	return 0;
8362 }
8363 
8364 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8365 {
8366 	int err, i;
8367 
8368 	if (!obj)
8369 		return libbpf_err(-EINVAL);
8370 
8371 	if (obj->loaded) {
8372 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8373 		return libbpf_err(-EINVAL);
8374 	}
8375 
8376 	if (obj->gen_loader)
8377 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8378 
8379 	err = bpf_object__probe_loading(obj);
8380 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8381 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8382 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8383 	err = err ? : bpf_object__sanitize_maps(obj);
8384 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8385 	err = err ? : bpf_object__create_maps(obj);
8386 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8387 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8388 	err = err ? : bpf_object_init_prog_arrays(obj);
8389 	err = err ? : bpf_object_prepare_struct_ops(obj);
8390 
8391 	if (obj->gen_loader) {
8392 		/* reset FDs */
8393 		if (obj->btf)
8394 			btf__set_fd(obj->btf, -1);
8395 		for (i = 0; i < obj->nr_maps; i++)
8396 			obj->maps[i].fd = -1;
8397 		if (!err)
8398 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8399 	}
8400 
8401 	/* clean up fd_array */
8402 	zfree(&obj->fd_array);
8403 
8404 	/* clean up module BTFs */
8405 	for (i = 0; i < obj->btf_module_cnt; i++) {
8406 		close(obj->btf_modules[i].fd);
8407 		btf__free(obj->btf_modules[i].btf);
8408 		free(obj->btf_modules[i].name);
8409 	}
8410 	free(obj->btf_modules);
8411 
8412 	/* clean up vmlinux BTF */
8413 	btf__free(obj->btf_vmlinux);
8414 	obj->btf_vmlinux = NULL;
8415 
8416 	obj->loaded = true; /* doesn't matter if successfully or not */
8417 
8418 	if (err)
8419 		goto out;
8420 
8421 	return 0;
8422 out:
8423 	/* unpin any maps that were auto-pinned during load */
8424 	for (i = 0; i < obj->nr_maps; i++)
8425 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8426 			bpf_map__unpin(&obj->maps[i], NULL);
8427 
8428 	bpf_object_unload(obj);
8429 	pr_warn("failed to load object '%s'\n", obj->path);
8430 	return libbpf_err(err);
8431 }
8432 
8433 int bpf_object__load(struct bpf_object *obj)
8434 {
8435 	return bpf_object_load(obj, 0, NULL);
8436 }
8437 
8438 static int make_parent_dir(const char *path)
8439 {
8440 	char *cp, errmsg[STRERR_BUFSIZE];
8441 	char *dname, *dir;
8442 	int err = 0;
8443 
8444 	dname = strdup(path);
8445 	if (dname == NULL)
8446 		return -ENOMEM;
8447 
8448 	dir = dirname(dname);
8449 	if (mkdir(dir, 0700) && errno != EEXIST)
8450 		err = -errno;
8451 
8452 	free(dname);
8453 	if (err) {
8454 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8455 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8456 	}
8457 	return err;
8458 }
8459 
8460 static int check_path(const char *path)
8461 {
8462 	char *cp, errmsg[STRERR_BUFSIZE];
8463 	struct statfs st_fs;
8464 	char *dname, *dir;
8465 	int err = 0;
8466 
8467 	if (path == NULL)
8468 		return -EINVAL;
8469 
8470 	dname = strdup(path);
8471 	if (dname == NULL)
8472 		return -ENOMEM;
8473 
8474 	dir = dirname(dname);
8475 	if (statfs(dir, &st_fs)) {
8476 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8477 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8478 		err = -errno;
8479 	}
8480 	free(dname);
8481 
8482 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8483 		pr_warn("specified path %s is not on BPF FS\n", path);
8484 		err = -EINVAL;
8485 	}
8486 
8487 	return err;
8488 }
8489 
8490 int bpf_program__pin(struct bpf_program *prog, const char *path)
8491 {
8492 	char *cp, errmsg[STRERR_BUFSIZE];
8493 	int err;
8494 
8495 	if (prog->fd < 0) {
8496 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8497 		return libbpf_err(-EINVAL);
8498 	}
8499 
8500 	err = make_parent_dir(path);
8501 	if (err)
8502 		return libbpf_err(err);
8503 
8504 	err = check_path(path);
8505 	if (err)
8506 		return libbpf_err(err);
8507 
8508 	if (bpf_obj_pin(prog->fd, path)) {
8509 		err = -errno;
8510 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8511 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8512 		return libbpf_err(err);
8513 	}
8514 
8515 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8516 	return 0;
8517 }
8518 
8519 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8520 {
8521 	int err;
8522 
8523 	if (prog->fd < 0) {
8524 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8525 		return libbpf_err(-EINVAL);
8526 	}
8527 
8528 	err = check_path(path);
8529 	if (err)
8530 		return libbpf_err(err);
8531 
8532 	err = unlink(path);
8533 	if (err)
8534 		return libbpf_err(-errno);
8535 
8536 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8537 	return 0;
8538 }
8539 
8540 int bpf_map__pin(struct bpf_map *map, const char *path)
8541 {
8542 	char *cp, errmsg[STRERR_BUFSIZE];
8543 	int err;
8544 
8545 	if (map == NULL) {
8546 		pr_warn("invalid map pointer\n");
8547 		return libbpf_err(-EINVAL);
8548 	}
8549 
8550 	if (map->pin_path) {
8551 		if (path && strcmp(path, map->pin_path)) {
8552 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8553 				bpf_map__name(map), map->pin_path, path);
8554 			return libbpf_err(-EINVAL);
8555 		} else if (map->pinned) {
8556 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8557 				 bpf_map__name(map), map->pin_path);
8558 			return 0;
8559 		}
8560 	} else {
8561 		if (!path) {
8562 			pr_warn("missing a path to pin map '%s' at\n",
8563 				bpf_map__name(map));
8564 			return libbpf_err(-EINVAL);
8565 		} else if (map->pinned) {
8566 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8567 			return libbpf_err(-EEXIST);
8568 		}
8569 
8570 		map->pin_path = strdup(path);
8571 		if (!map->pin_path) {
8572 			err = -errno;
8573 			goto out_err;
8574 		}
8575 	}
8576 
8577 	err = make_parent_dir(map->pin_path);
8578 	if (err)
8579 		return libbpf_err(err);
8580 
8581 	err = check_path(map->pin_path);
8582 	if (err)
8583 		return libbpf_err(err);
8584 
8585 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8586 		err = -errno;
8587 		goto out_err;
8588 	}
8589 
8590 	map->pinned = true;
8591 	pr_debug("pinned map '%s'\n", map->pin_path);
8592 
8593 	return 0;
8594 
8595 out_err:
8596 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8597 	pr_warn("failed to pin map: %s\n", cp);
8598 	return libbpf_err(err);
8599 }
8600 
8601 int bpf_map__unpin(struct bpf_map *map, const char *path)
8602 {
8603 	int err;
8604 
8605 	if (map == NULL) {
8606 		pr_warn("invalid map pointer\n");
8607 		return libbpf_err(-EINVAL);
8608 	}
8609 
8610 	if (map->pin_path) {
8611 		if (path && strcmp(path, map->pin_path)) {
8612 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8613 				bpf_map__name(map), map->pin_path, path);
8614 			return libbpf_err(-EINVAL);
8615 		}
8616 		path = map->pin_path;
8617 	} else if (!path) {
8618 		pr_warn("no path to unpin map '%s' from\n",
8619 			bpf_map__name(map));
8620 		return libbpf_err(-EINVAL);
8621 	}
8622 
8623 	err = check_path(path);
8624 	if (err)
8625 		return libbpf_err(err);
8626 
8627 	err = unlink(path);
8628 	if (err != 0)
8629 		return libbpf_err(-errno);
8630 
8631 	map->pinned = false;
8632 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8633 
8634 	return 0;
8635 }
8636 
8637 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8638 {
8639 	char *new = NULL;
8640 
8641 	if (path) {
8642 		new = strdup(path);
8643 		if (!new)
8644 			return libbpf_err(-errno);
8645 	}
8646 
8647 	free(map->pin_path);
8648 	map->pin_path = new;
8649 	return 0;
8650 }
8651 
8652 __alias(bpf_map__pin_path)
8653 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8654 
8655 const char *bpf_map__pin_path(const struct bpf_map *map)
8656 {
8657 	return map->pin_path;
8658 }
8659 
8660 bool bpf_map__is_pinned(const struct bpf_map *map)
8661 {
8662 	return map->pinned;
8663 }
8664 
8665 static void sanitize_pin_path(char *s)
8666 {
8667 	/* bpffs disallows periods in path names */
8668 	while (*s) {
8669 		if (*s == '.')
8670 			*s = '_';
8671 		s++;
8672 	}
8673 }
8674 
8675 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8676 {
8677 	struct bpf_map *map;
8678 	int err;
8679 
8680 	if (!obj)
8681 		return libbpf_err(-ENOENT);
8682 
8683 	if (!obj->loaded) {
8684 		pr_warn("object not yet loaded; load it first\n");
8685 		return libbpf_err(-ENOENT);
8686 	}
8687 
8688 	bpf_object__for_each_map(map, obj) {
8689 		char *pin_path = NULL;
8690 		char buf[PATH_MAX];
8691 
8692 		if (!map->autocreate)
8693 			continue;
8694 
8695 		if (path) {
8696 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8697 			if (err)
8698 				goto err_unpin_maps;
8699 			sanitize_pin_path(buf);
8700 			pin_path = buf;
8701 		} else if (!map->pin_path) {
8702 			continue;
8703 		}
8704 
8705 		err = bpf_map__pin(map, pin_path);
8706 		if (err)
8707 			goto err_unpin_maps;
8708 	}
8709 
8710 	return 0;
8711 
8712 err_unpin_maps:
8713 	while ((map = bpf_object__prev_map(obj, map))) {
8714 		if (!map->pin_path)
8715 			continue;
8716 
8717 		bpf_map__unpin(map, NULL);
8718 	}
8719 
8720 	return libbpf_err(err);
8721 }
8722 
8723 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8724 {
8725 	struct bpf_map *map;
8726 	int err;
8727 
8728 	if (!obj)
8729 		return libbpf_err(-ENOENT);
8730 
8731 	bpf_object__for_each_map(map, obj) {
8732 		char *pin_path = NULL;
8733 		char buf[PATH_MAX];
8734 
8735 		if (path) {
8736 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8737 			if (err)
8738 				return libbpf_err(err);
8739 			sanitize_pin_path(buf);
8740 			pin_path = buf;
8741 		} else if (!map->pin_path) {
8742 			continue;
8743 		}
8744 
8745 		err = bpf_map__unpin(map, pin_path);
8746 		if (err)
8747 			return libbpf_err(err);
8748 	}
8749 
8750 	return 0;
8751 }
8752 
8753 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8754 {
8755 	struct bpf_program *prog;
8756 	char buf[PATH_MAX];
8757 	int err;
8758 
8759 	if (!obj)
8760 		return libbpf_err(-ENOENT);
8761 
8762 	if (!obj->loaded) {
8763 		pr_warn("object not yet loaded; load it first\n");
8764 		return libbpf_err(-ENOENT);
8765 	}
8766 
8767 	bpf_object__for_each_program(prog, obj) {
8768 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8769 		if (err)
8770 			goto err_unpin_programs;
8771 
8772 		err = bpf_program__pin(prog, buf);
8773 		if (err)
8774 			goto err_unpin_programs;
8775 	}
8776 
8777 	return 0;
8778 
8779 err_unpin_programs:
8780 	while ((prog = bpf_object__prev_program(obj, prog))) {
8781 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8782 			continue;
8783 
8784 		bpf_program__unpin(prog, buf);
8785 	}
8786 
8787 	return libbpf_err(err);
8788 }
8789 
8790 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8791 {
8792 	struct bpf_program *prog;
8793 	int err;
8794 
8795 	if (!obj)
8796 		return libbpf_err(-ENOENT);
8797 
8798 	bpf_object__for_each_program(prog, obj) {
8799 		char buf[PATH_MAX];
8800 
8801 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8802 		if (err)
8803 			return libbpf_err(err);
8804 
8805 		err = bpf_program__unpin(prog, buf);
8806 		if (err)
8807 			return libbpf_err(err);
8808 	}
8809 
8810 	return 0;
8811 }
8812 
8813 int bpf_object__pin(struct bpf_object *obj, const char *path)
8814 {
8815 	int err;
8816 
8817 	err = bpf_object__pin_maps(obj, path);
8818 	if (err)
8819 		return libbpf_err(err);
8820 
8821 	err = bpf_object__pin_programs(obj, path);
8822 	if (err) {
8823 		bpf_object__unpin_maps(obj, path);
8824 		return libbpf_err(err);
8825 	}
8826 
8827 	return 0;
8828 }
8829 
8830 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8831 {
8832 	int err;
8833 
8834 	err = bpf_object__unpin_programs(obj, path);
8835 	if (err)
8836 		return libbpf_err(err);
8837 
8838 	err = bpf_object__unpin_maps(obj, path);
8839 	if (err)
8840 		return libbpf_err(err);
8841 
8842 	return 0;
8843 }
8844 
8845 static void bpf_map__destroy(struct bpf_map *map)
8846 {
8847 	if (map->inner_map) {
8848 		bpf_map__destroy(map->inner_map);
8849 		zfree(&map->inner_map);
8850 	}
8851 
8852 	zfree(&map->init_slots);
8853 	map->init_slots_sz = 0;
8854 
8855 	if (map->mmaped) {
8856 		size_t mmap_sz;
8857 
8858 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8859 		munmap(map->mmaped, mmap_sz);
8860 		map->mmaped = NULL;
8861 	}
8862 
8863 	if (map->st_ops) {
8864 		zfree(&map->st_ops->data);
8865 		zfree(&map->st_ops->progs);
8866 		zfree(&map->st_ops->kern_func_off);
8867 		zfree(&map->st_ops);
8868 	}
8869 
8870 	zfree(&map->name);
8871 	zfree(&map->real_name);
8872 	zfree(&map->pin_path);
8873 
8874 	if (map->fd >= 0)
8875 		zclose(map->fd);
8876 }
8877 
8878 void bpf_object__close(struct bpf_object *obj)
8879 {
8880 	size_t i;
8881 
8882 	if (IS_ERR_OR_NULL(obj))
8883 		return;
8884 #ifdef  HAVE_LIBELF
8885 	usdt_manager_free(obj->usdt_man);
8886 	obj->usdt_man = NULL;
8887 #endif  //HAVE_LIBELF
8888 	bpf_gen__free(obj->gen_loader);
8889 	bpf_object__elf_finish(obj);
8890 	bpf_object_unload(obj);
8891 	btf__free(obj->btf);
8892 	btf__free(obj->btf_vmlinux);
8893 	btf_ext__free(obj->btf_ext);
8894 
8895 	for (i = 0; i < obj->nr_maps; i++)
8896 		bpf_map__destroy(&obj->maps[i]);
8897 
8898 	zfree(&obj->btf_custom_path);
8899 	zfree(&obj->kconfig);
8900 
8901 	for (i = 0; i < obj->nr_extern; i++)
8902 		zfree(&obj->externs[i].essent_name);
8903 
8904 	zfree(&obj->externs);
8905 	obj->nr_extern = 0;
8906 
8907 	zfree(&obj->maps);
8908 	obj->nr_maps = 0;
8909 
8910 	if (obj->programs && obj->nr_programs) {
8911 		for (i = 0; i < obj->nr_programs; i++)
8912 			bpf_program__exit(&obj->programs[i]);
8913 	}
8914 	zfree(&obj->programs);
8915 
8916 	free(obj);
8917 }
8918 
8919 const char *bpf_object__name(const struct bpf_object *obj)
8920 {
8921 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8922 }
8923 
8924 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8925 {
8926 	return obj ? obj->kern_version : 0;
8927 }
8928 
8929 struct btf *bpf_object__btf(const struct bpf_object *obj)
8930 {
8931 	return obj ? obj->btf : NULL;
8932 }
8933 
8934 int bpf_object__btf_fd(const struct bpf_object *obj)
8935 {
8936 	return obj->btf ? btf__fd(obj->btf) : -1;
8937 }
8938 
8939 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8940 {
8941 	if (obj->loaded)
8942 		return libbpf_err(-EINVAL);
8943 
8944 	obj->kern_version = kern_version;
8945 
8946 	return 0;
8947 }
8948 
8949 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8950 {
8951 	struct bpf_gen *gen;
8952 
8953 	if (!opts)
8954 		return -EFAULT;
8955 	if (!OPTS_VALID(opts, gen_loader_opts))
8956 		return -EINVAL;
8957 	gen = calloc(sizeof(*gen), 1);
8958 	if (!gen)
8959 		return -ENOMEM;
8960 	gen->opts = opts;
8961 	obj->gen_loader = gen;
8962 	return 0;
8963 }
8964 
8965 static struct bpf_program *
8966 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8967 		    bool forward)
8968 {
8969 	size_t nr_programs = obj->nr_programs;
8970 	ssize_t idx;
8971 
8972 	if (!nr_programs)
8973 		return NULL;
8974 
8975 	if (!p)
8976 		/* Iter from the beginning */
8977 		return forward ? &obj->programs[0] :
8978 			&obj->programs[nr_programs - 1];
8979 
8980 	if (p->obj != obj) {
8981 		pr_warn("error: program handler doesn't match object\n");
8982 		return errno = EINVAL, NULL;
8983 	}
8984 
8985 	idx = (p - obj->programs) + (forward ? 1 : -1);
8986 	if (idx >= obj->nr_programs || idx < 0)
8987 		return NULL;
8988 	return &obj->programs[idx];
8989 }
8990 
8991 struct bpf_program *
8992 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8993 {
8994 	struct bpf_program *prog = prev;
8995 
8996 	do {
8997 		prog = __bpf_program__iter(prog, obj, true);
8998 	} while (prog && prog_is_subprog(obj, prog));
8999 
9000 	return prog;
9001 }
9002 
9003 struct bpf_program *
9004 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9005 {
9006 	struct bpf_program *prog = next;
9007 
9008 	do {
9009 		prog = __bpf_program__iter(prog, obj, false);
9010 	} while (prog && prog_is_subprog(obj, prog));
9011 
9012 	return prog;
9013 }
9014 
9015 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9016 {
9017 	prog->prog_ifindex = ifindex;
9018 }
9019 
9020 const char *bpf_program__name(const struct bpf_program *prog)
9021 {
9022 	return prog->name;
9023 }
9024 
9025 const char *bpf_program__section_name(const struct bpf_program *prog)
9026 {
9027 	return prog->sec_name;
9028 }
9029 
9030 bool bpf_program__autoload(const struct bpf_program *prog)
9031 {
9032 	return prog->autoload;
9033 }
9034 
9035 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9036 {
9037 	if (prog->obj->loaded)
9038 		return libbpf_err(-EINVAL);
9039 
9040 	prog->autoload = autoload;
9041 	return 0;
9042 }
9043 
9044 bool bpf_program__autoattach(const struct bpf_program *prog)
9045 {
9046 	return prog->autoattach;
9047 }
9048 
9049 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9050 {
9051 	prog->autoattach = autoattach;
9052 }
9053 
9054 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9055 {
9056 	return prog->insns;
9057 }
9058 
9059 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9060 {
9061 	return prog->insns_cnt;
9062 }
9063 
9064 int bpf_program__set_insns(struct bpf_program *prog,
9065 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9066 {
9067 	struct bpf_insn *insns;
9068 
9069 	if (prog->obj->loaded)
9070 		return -EBUSY;
9071 
9072 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9073 	/* NULL is a valid return from reallocarray if the new count is zero */
9074 	if (!insns && new_insn_cnt) {
9075 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9076 		return -ENOMEM;
9077 	}
9078 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9079 
9080 	prog->insns = insns;
9081 	prog->insns_cnt = new_insn_cnt;
9082 	return 0;
9083 }
9084 
9085 int bpf_program__fd(const struct bpf_program *prog)
9086 {
9087 	if (!prog)
9088 		return libbpf_err(-EINVAL);
9089 
9090 	if (prog->fd < 0)
9091 		return libbpf_err(-ENOENT);
9092 
9093 	return prog->fd;
9094 }
9095 
9096 __alias(bpf_program__type)
9097 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9098 
9099 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9100 {
9101 	return prog->type;
9102 }
9103 
9104 static size_t custom_sec_def_cnt;
9105 static struct bpf_sec_def *custom_sec_defs;
9106 static struct bpf_sec_def custom_fallback_def;
9107 static bool has_custom_fallback_def;
9108 static int last_custom_sec_def_handler_id;
9109 
9110 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9111 {
9112 	if (prog->obj->loaded)
9113 		return libbpf_err(-EBUSY);
9114 
9115 	/* if type is not changed, do nothing */
9116 	if (prog->type == type)
9117 		return 0;
9118 
9119 	prog->type = type;
9120 
9121 	/* If a program type was changed, we need to reset associated SEC()
9122 	 * handler, as it will be invalid now. The only exception is a generic
9123 	 * fallback handler, which by definition is program type-agnostic and
9124 	 * is a catch-all custom handler, optionally set by the application,
9125 	 * so should be able to handle any type of BPF program.
9126 	 */
9127 	if (prog->sec_def != &custom_fallback_def)
9128 		prog->sec_def = NULL;
9129 	return 0;
9130 }
9131 
9132 __alias(bpf_program__expected_attach_type)
9133 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9134 
9135 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9136 {
9137 	return prog->expected_attach_type;
9138 }
9139 
9140 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9141 					   enum bpf_attach_type type)
9142 {
9143 	if (prog->obj->loaded)
9144 		return libbpf_err(-EBUSY);
9145 
9146 	prog->expected_attach_type = type;
9147 	return 0;
9148 }
9149 
9150 __u32 bpf_program__flags(const struct bpf_program *prog)
9151 {
9152 	return prog->prog_flags;
9153 }
9154 
9155 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9156 {
9157 	if (prog->obj->loaded)
9158 		return libbpf_err(-EBUSY);
9159 
9160 	prog->prog_flags = flags;
9161 	return 0;
9162 }
9163 
9164 __u32 bpf_program__log_level(const struct bpf_program *prog)
9165 {
9166 	return prog->log_level;
9167 }
9168 
9169 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9170 {
9171 	if (prog->obj->loaded)
9172 		return libbpf_err(-EBUSY);
9173 
9174 	prog->log_level = log_level;
9175 	return 0;
9176 }
9177 
9178 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9179 {
9180 	*log_size = prog->log_size;
9181 	return prog->log_buf;
9182 }
9183 
9184 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9185 {
9186 	if (log_size && !log_buf)
9187 		return -EINVAL;
9188 	if (prog->log_size > UINT_MAX)
9189 		return -EINVAL;
9190 	if (prog->obj->loaded)
9191 		return -EBUSY;
9192 
9193 	prog->log_buf = log_buf;
9194 	prog->log_size = log_size;
9195 	return 0;
9196 }
9197 
9198 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9199 	.sec = (char *)sec_pfx,						    \
9200 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9201 	.expected_attach_type = atype,					    \
9202 	.cookie = (long)(flags),					    \
9203 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9204 	__VA_ARGS__							    \
9205 }
9206 
9207 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9208 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9209 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9210 #ifdef  HAVE_LIBELF
9211 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9212 #endif  //HAVE_LIBELF
9213 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9214 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9215 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9216 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9217 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9218 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9219 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9220 
9221 static const struct bpf_sec_def section_defs[] = {
9222 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9223 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9224 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9225 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9226 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9227 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9228 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9229 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9230 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9231 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9232 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9233 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9234 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9235 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9236 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9237 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9238 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9239 #ifdef  HAVE_LIBELF
9240 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
9241 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9242 #endif  //HAVE_LIBELF
9243 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9244 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9245 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9246 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9247 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9248 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9249 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9250 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9251 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9252 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9253 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9254 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9255 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9256 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9257 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9258 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9259 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9260 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9261 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9262 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9263 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9264 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9265 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9266 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9267 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9268 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9269 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9270 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9271 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9272 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9273 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9274 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9275 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9276 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9277 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9278 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9279 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9280 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9281 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9282 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9283 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9284 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9285 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9286 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9287 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9288 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9289 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9290 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9291 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9292 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9293 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9294 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9295 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9296 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9297 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9298 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9299 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9300 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9301 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9302 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9303 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9304 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9305 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9306 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9307 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9308 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9309 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9310 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9311 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9312 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9313 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9314 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9315 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9316 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9317 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9318 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9319 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9320 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9321 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9322 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9323 };
9324 
9325 int libbpf_register_prog_handler(const char *sec,
9326 				 enum bpf_prog_type prog_type,
9327 				 enum bpf_attach_type exp_attach_type,
9328 				 const struct libbpf_prog_handler_opts *opts)
9329 {
9330 	struct bpf_sec_def *sec_def;
9331 
9332 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9333 		return libbpf_err(-EINVAL);
9334 
9335 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9336 		return libbpf_err(-E2BIG);
9337 
9338 	if (sec) {
9339 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9340 					      sizeof(*sec_def));
9341 		if (!sec_def)
9342 			return libbpf_err(-ENOMEM);
9343 
9344 		custom_sec_defs = sec_def;
9345 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9346 	} else {
9347 		if (has_custom_fallback_def)
9348 			return libbpf_err(-EBUSY);
9349 
9350 		sec_def = &custom_fallback_def;
9351 	}
9352 
9353 	sec_def->sec = sec ? strdup(sec) : NULL;
9354 	if (sec && !sec_def->sec)
9355 		return libbpf_err(-ENOMEM);
9356 
9357 	sec_def->prog_type = prog_type;
9358 	sec_def->expected_attach_type = exp_attach_type;
9359 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9360 
9361 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9362 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9363 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9364 
9365 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9366 
9367 	if (sec)
9368 		custom_sec_def_cnt++;
9369 	else
9370 		has_custom_fallback_def = true;
9371 
9372 	return sec_def->handler_id;
9373 }
9374 
9375 int libbpf_unregister_prog_handler(int handler_id)
9376 {
9377 	struct bpf_sec_def *sec_defs;
9378 	int i;
9379 
9380 	if (handler_id <= 0)
9381 		return libbpf_err(-EINVAL);
9382 
9383 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9384 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9385 		has_custom_fallback_def = false;
9386 		return 0;
9387 	}
9388 
9389 	for (i = 0; i < custom_sec_def_cnt; i++) {
9390 		if (custom_sec_defs[i].handler_id == handler_id)
9391 			break;
9392 	}
9393 
9394 	if (i == custom_sec_def_cnt)
9395 		return libbpf_err(-ENOENT);
9396 
9397 	free(custom_sec_defs[i].sec);
9398 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9399 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9400 	custom_sec_def_cnt--;
9401 
9402 	/* try to shrink the array, but it's ok if we couldn't */
9403 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9404 	/* if new count is zero, reallocarray can return a valid NULL result;
9405 	 * in this case the previous pointer will be freed, so we *have to*
9406 	 * reassign old pointer to the new value (even if it's NULL)
9407 	 */
9408 	if (sec_defs || custom_sec_def_cnt == 0)
9409 		custom_sec_defs = sec_defs;
9410 
9411 	return 0;
9412 }
9413 
9414 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9415 {
9416 	size_t len = strlen(sec_def->sec);
9417 
9418 	/* "type/" always has to have proper SEC("type/extras") form */
9419 	if (sec_def->sec[len - 1] == '/') {
9420 		if (str_has_pfx(sec_name, sec_def->sec))
9421 			return true;
9422 		return false;
9423 	}
9424 
9425 	/* "type+" means it can be either exact SEC("type") or
9426 	 * well-formed SEC("type/extras") with proper '/' separator
9427 	 */
9428 	if (sec_def->sec[len - 1] == '+') {
9429 		len--;
9430 		/* not even a prefix */
9431 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9432 			return false;
9433 		/* exact match or has '/' separator */
9434 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9435 			return true;
9436 		return false;
9437 	}
9438 
9439 	return strcmp(sec_name, sec_def->sec) == 0;
9440 }
9441 
9442 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9443 {
9444 	const struct bpf_sec_def *sec_def;
9445 	int i, n;
9446 
9447 	n = custom_sec_def_cnt;
9448 	for (i = 0; i < n; i++) {
9449 		sec_def = &custom_sec_defs[i];
9450 		if (sec_def_matches(sec_def, sec_name))
9451 			return sec_def;
9452 	}
9453 
9454 	n = ARRAY_SIZE(section_defs);
9455 	for (i = 0; i < n; i++) {
9456 		sec_def = &section_defs[i];
9457 		if (sec_def_matches(sec_def, sec_name))
9458 			return sec_def;
9459 	}
9460 
9461 	if (has_custom_fallback_def)
9462 		return &custom_fallback_def;
9463 
9464 	return NULL;
9465 }
9466 
9467 #define MAX_TYPE_NAME_SIZE 32
9468 
9469 static char *libbpf_get_type_names(bool attach_type)
9470 {
9471 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9472 	char *buf;
9473 
9474 	buf = malloc(len);
9475 	if (!buf)
9476 		return NULL;
9477 
9478 	buf[0] = '\0';
9479 	/* Forge string buf with all available names */
9480 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9481 		const struct bpf_sec_def *sec_def = &section_defs[i];
9482 
9483 		if (attach_type) {
9484 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9485 				continue;
9486 
9487 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9488 				continue;
9489 		}
9490 
9491 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9492 			free(buf);
9493 			return NULL;
9494 		}
9495 		strcat(buf, " ");
9496 		strcat(buf, section_defs[i].sec);
9497 	}
9498 
9499 	return buf;
9500 }
9501 
9502 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9503 			     enum bpf_attach_type *expected_attach_type)
9504 {
9505 	const struct bpf_sec_def *sec_def;
9506 	char *type_names;
9507 
9508 	if (!name)
9509 		return libbpf_err(-EINVAL);
9510 
9511 	sec_def = find_sec_def(name);
9512 	if (sec_def) {
9513 		*prog_type = sec_def->prog_type;
9514 		*expected_attach_type = sec_def->expected_attach_type;
9515 		return 0;
9516 	}
9517 
9518 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9519 	type_names = libbpf_get_type_names(false);
9520 	if (type_names != NULL) {
9521 		pr_debug("supported section(type) names are:%s\n", type_names);
9522 		free(type_names);
9523 	}
9524 
9525 	return libbpf_err(-ESRCH);
9526 }
9527 
9528 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9529 {
9530 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9531 		return NULL;
9532 
9533 	return attach_type_name[t];
9534 }
9535 
9536 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9537 {
9538 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9539 		return NULL;
9540 
9541 	return link_type_name[t];
9542 }
9543 
9544 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9545 {
9546 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9547 		return NULL;
9548 
9549 	return map_type_name[t];
9550 }
9551 
9552 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9553 {
9554 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9555 		return NULL;
9556 
9557 	return prog_type_name[t];
9558 }
9559 
9560 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9561 						     int sec_idx,
9562 						     size_t offset)
9563 {
9564 	struct bpf_map *map;
9565 	size_t i;
9566 
9567 	for (i = 0; i < obj->nr_maps; i++) {
9568 		map = &obj->maps[i];
9569 		if (!bpf_map__is_struct_ops(map))
9570 			continue;
9571 		if (map->sec_idx == sec_idx &&
9572 		    map->sec_offset <= offset &&
9573 		    offset - map->sec_offset < map->def.value_size)
9574 			return map;
9575 	}
9576 
9577 	return NULL;
9578 }
9579 
9580 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9581 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9582 					    Elf64_Shdr *shdr, Elf_Data *data)
9583 {
9584 	const struct btf_member *member;
9585 	struct bpf_struct_ops *st_ops;
9586 	struct bpf_program *prog;
9587 	unsigned int shdr_idx;
9588 	const struct btf *btf;
9589 	struct bpf_map *map;
9590 	unsigned int moff, insn_idx;
9591 	const char *name;
9592 	__u32 member_idx;
9593 	Elf64_Sym *sym;
9594 	Elf64_Rel *rel;
9595 	int i, nrels;
9596 
9597 	btf = obj->btf;
9598 	nrels = shdr->sh_size / shdr->sh_entsize;
9599 	for (i = 0; i < nrels; i++) {
9600 		rel = elf_rel_by_idx(data, i);
9601 		if (!rel) {
9602 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9603 			return -LIBBPF_ERRNO__FORMAT;
9604 		}
9605 
9606 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9607 		if (!sym) {
9608 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9609 				(size_t)ELF64_R_SYM(rel->r_info));
9610 			return -LIBBPF_ERRNO__FORMAT;
9611 		}
9612 
9613 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9614 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9615 		if (!map) {
9616 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9617 				(size_t)rel->r_offset);
9618 			return -EINVAL;
9619 		}
9620 
9621 		moff = rel->r_offset - map->sec_offset;
9622 		shdr_idx = sym->st_shndx;
9623 		st_ops = map->st_ops;
9624 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9625 			 map->name,
9626 			 (long long)(rel->r_info >> 32),
9627 			 (long long)sym->st_value,
9628 			 shdr_idx, (size_t)rel->r_offset,
9629 			 map->sec_offset, sym->st_name, name);
9630 
9631 		if (shdr_idx >= SHN_LORESERVE) {
9632 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9633 				map->name, (size_t)rel->r_offset, shdr_idx);
9634 			return -LIBBPF_ERRNO__RELOC;
9635 		}
9636 		if (sym->st_value % BPF_INSN_SZ) {
9637 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9638 				map->name, (unsigned long long)sym->st_value);
9639 			return -LIBBPF_ERRNO__FORMAT;
9640 		}
9641 		insn_idx = sym->st_value / BPF_INSN_SZ;
9642 
9643 		member = find_member_by_offset(st_ops->type, moff * 8);
9644 		if (!member) {
9645 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9646 				map->name, moff);
9647 			return -EINVAL;
9648 		}
9649 		member_idx = member - btf_members(st_ops->type);
9650 		name = btf__name_by_offset(btf, member->name_off);
9651 
9652 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9653 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9654 				map->name, name);
9655 			return -EINVAL;
9656 		}
9657 
9658 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9659 		if (!prog) {
9660 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9661 				map->name, shdr_idx, name);
9662 			return -EINVAL;
9663 		}
9664 
9665 		/* prevent the use of BPF prog with invalid type */
9666 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9667 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9668 				map->name, prog->name);
9669 			return -EINVAL;
9670 		}
9671 
9672 		/* if we haven't yet processed this BPF program, record proper
9673 		 * attach_btf_id and member_idx
9674 		 */
9675 		if (!prog->attach_btf_id) {
9676 			prog->attach_btf_id = st_ops->type_id;
9677 			prog->expected_attach_type = member_idx;
9678 		}
9679 
9680 		/* struct_ops BPF prog can be re-used between multiple
9681 		 * .struct_ops & .struct_ops.link as long as it's the
9682 		 * same struct_ops struct definition and the same
9683 		 * function pointer field
9684 		 */
9685 		if (prog->attach_btf_id != st_ops->type_id ||
9686 		    prog->expected_attach_type != member_idx) {
9687 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9688 				map->name, prog->name, prog->sec_name, prog->type,
9689 				prog->attach_btf_id, prog->expected_attach_type, name);
9690 			return -EINVAL;
9691 		}
9692 
9693 		st_ops->progs[member_idx] = prog;
9694 	}
9695 
9696 	return 0;
9697 }
9698 
9699 #define BTF_TRACE_PREFIX "btf_trace_"
9700 #define BTF_LSM_PREFIX "bpf_lsm_"
9701 #define BTF_ITER_PREFIX "bpf_iter_"
9702 #define BTF_MAX_NAME_SIZE 128
9703 
9704 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9705 				const char **prefix, int *kind)
9706 {
9707 	switch (attach_type) {
9708 	case BPF_TRACE_RAW_TP:
9709 		*prefix = BTF_TRACE_PREFIX;
9710 		*kind = BTF_KIND_TYPEDEF;
9711 		break;
9712 	case BPF_LSM_MAC:
9713 	case BPF_LSM_CGROUP:
9714 		*prefix = BTF_LSM_PREFIX;
9715 		*kind = BTF_KIND_FUNC;
9716 		break;
9717 	case BPF_TRACE_ITER:
9718 		*prefix = BTF_ITER_PREFIX;
9719 		*kind = BTF_KIND_FUNC;
9720 		break;
9721 	default:
9722 		*prefix = "";
9723 		*kind = BTF_KIND_FUNC;
9724 	}
9725 }
9726 
9727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9728 				   const char *name, __u32 kind)
9729 {
9730 	char btf_type_name[BTF_MAX_NAME_SIZE];
9731 	int ret;
9732 
9733 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9734 		       "%s%s", prefix, name);
9735 	/* snprintf returns the number of characters written excluding the
9736 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9737 	 * indicates truncation.
9738 	 */
9739 	if (ret < 0 || ret >= sizeof(btf_type_name))
9740 		return -ENAMETOOLONG;
9741 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9742 }
9743 
9744 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9745 				     enum bpf_attach_type attach_type)
9746 {
9747 	const char *prefix;
9748 	int kind;
9749 
9750 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9751 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9752 }
9753 
9754 int libbpf_find_vmlinux_btf_id(const char *name,
9755 			       enum bpf_attach_type attach_type)
9756 {
9757 	struct btf *btf;
9758 	int err;
9759 
9760 	btf = btf__load_vmlinux_btf();
9761 	err = libbpf_get_error(btf);
9762 	if (err) {
9763 		pr_warn("vmlinux BTF is not found\n");
9764 		return libbpf_err(err);
9765 	}
9766 
9767 	err = find_attach_btf_id(btf, name, attach_type);
9768 	if (err <= 0)
9769 		pr_warn("%s is not found in vmlinux BTF\n", name);
9770 
9771 	btf__free(btf);
9772 	return libbpf_err(err);
9773 }
9774 
9775 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9776 {
9777 	struct bpf_prog_info info;
9778 	__u32 info_len = sizeof(info);
9779 	struct btf *btf;
9780 	int err;
9781 
9782 	memset(&info, 0, info_len);
9783 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9784 	if (err) {
9785 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9786 			attach_prog_fd, err);
9787 		return err;
9788 	}
9789 
9790 	err = -EINVAL;
9791 	if (!info.btf_id) {
9792 		pr_warn("The target program doesn't have BTF\n");
9793 		goto out;
9794 	}
9795 	btf = btf__load_from_kernel_by_id(info.btf_id);
9796 	err = libbpf_get_error(btf);
9797 	if (err) {
9798 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9799 		goto out;
9800 	}
9801 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9802 	btf__free(btf);
9803 	if (err <= 0) {
9804 		pr_warn("%s is not found in prog's BTF\n", name);
9805 		goto out;
9806 	}
9807 out:
9808 	return err;
9809 }
9810 
9811 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9812 			      enum bpf_attach_type attach_type,
9813 			      int *btf_obj_fd, int *btf_type_id)
9814 {
9815 	int ret, i;
9816 
9817 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9818 	if (ret > 0) {
9819 		*btf_obj_fd = 0; /* vmlinux BTF */
9820 		*btf_type_id = ret;
9821 		return 0;
9822 	}
9823 	if (ret != -ENOENT)
9824 		return ret;
9825 
9826 	ret = load_module_btfs(obj);
9827 	if (ret)
9828 		return ret;
9829 
9830 	for (i = 0; i < obj->btf_module_cnt; i++) {
9831 		const struct module_btf *mod = &obj->btf_modules[i];
9832 
9833 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9834 		if (ret > 0) {
9835 			*btf_obj_fd = mod->fd;
9836 			*btf_type_id = ret;
9837 			return 0;
9838 		}
9839 		if (ret == -ENOENT)
9840 			continue;
9841 
9842 		return ret;
9843 	}
9844 
9845 	return -ESRCH;
9846 }
9847 
9848 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9849 				     int *btf_obj_fd, int *btf_type_id)
9850 {
9851 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9852 	__u32 attach_prog_fd = prog->attach_prog_fd;
9853 	int err = 0;
9854 
9855 	/* BPF program's BTF ID */
9856 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9857 		if (!attach_prog_fd) {
9858 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9859 			return -EINVAL;
9860 		}
9861 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9862 		if (err < 0) {
9863 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9864 				 prog->name, attach_prog_fd, attach_name, err);
9865 			return err;
9866 		}
9867 		*btf_obj_fd = 0;
9868 		*btf_type_id = err;
9869 		return 0;
9870 	}
9871 
9872 	/* kernel/module BTF ID */
9873 	if (prog->obj->gen_loader) {
9874 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9875 		*btf_obj_fd = 0;
9876 		*btf_type_id = 1;
9877 	} else {
9878 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9879 	}
9880 	if (err) {
9881 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9882 			prog->name, attach_name, err);
9883 		return err;
9884 	}
9885 	return 0;
9886 }
9887 
9888 int libbpf_attach_type_by_name(const char *name,
9889 			       enum bpf_attach_type *attach_type)
9890 {
9891 	char *type_names;
9892 	const struct bpf_sec_def *sec_def;
9893 
9894 	if (!name)
9895 		return libbpf_err(-EINVAL);
9896 
9897 	sec_def = find_sec_def(name);
9898 	if (!sec_def) {
9899 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9900 		type_names = libbpf_get_type_names(true);
9901 		if (type_names != NULL) {
9902 			pr_debug("attachable section(type) names are:%s\n", type_names);
9903 			free(type_names);
9904 		}
9905 
9906 		return libbpf_err(-EINVAL);
9907 	}
9908 
9909 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9910 		return libbpf_err(-EINVAL);
9911 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9912 		return libbpf_err(-EINVAL);
9913 
9914 	*attach_type = sec_def->expected_attach_type;
9915 	return 0;
9916 }
9917 
9918 int bpf_map__fd(const struct bpf_map *map)
9919 {
9920 	return map ? map->fd : libbpf_err(-EINVAL);
9921 }
9922 
9923 static bool map_uses_real_name(const struct bpf_map *map)
9924 {
9925 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9926 	 * their user-visible name differs from kernel-visible name. Users see
9927 	 * such map's corresponding ELF section name as a map name.
9928 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9929 	 * maps to know which name has to be returned to the user.
9930 	 */
9931 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9932 		return true;
9933 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9934 		return true;
9935 	return false;
9936 }
9937 
9938 const char *bpf_map__name(const struct bpf_map *map)
9939 {
9940 	if (!map)
9941 		return NULL;
9942 
9943 	if (map_uses_real_name(map))
9944 		return map->real_name;
9945 
9946 	return map->name;
9947 }
9948 
9949 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9950 {
9951 	return map->def.type;
9952 }
9953 
9954 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9955 {
9956 	if (map->fd >= 0)
9957 		return libbpf_err(-EBUSY);
9958 	map->def.type = type;
9959 	return 0;
9960 }
9961 
9962 __u32 bpf_map__map_flags(const struct bpf_map *map)
9963 {
9964 	return map->def.map_flags;
9965 }
9966 
9967 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9968 {
9969 	if (map->fd >= 0)
9970 		return libbpf_err(-EBUSY);
9971 	map->def.map_flags = flags;
9972 	return 0;
9973 }
9974 
9975 __u64 bpf_map__map_extra(const struct bpf_map *map)
9976 {
9977 	return map->map_extra;
9978 }
9979 
9980 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9981 {
9982 	if (map->fd >= 0)
9983 		return libbpf_err(-EBUSY);
9984 	map->map_extra = map_extra;
9985 	return 0;
9986 }
9987 
9988 __u32 bpf_map__numa_node(const struct bpf_map *map)
9989 {
9990 	return map->numa_node;
9991 }
9992 
9993 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9994 {
9995 	if (map->fd >= 0)
9996 		return libbpf_err(-EBUSY);
9997 	map->numa_node = numa_node;
9998 	return 0;
9999 }
10000 
10001 __u32 bpf_map__key_size(const struct bpf_map *map)
10002 {
10003 	return map->def.key_size;
10004 }
10005 
10006 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10007 {
10008 	if (map->fd >= 0)
10009 		return libbpf_err(-EBUSY);
10010 	map->def.key_size = size;
10011 	return 0;
10012 }
10013 
10014 __u32 bpf_map__value_size(const struct bpf_map *map)
10015 {
10016 	return map->def.value_size;
10017 }
10018 
10019 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10020 {
10021 	struct btf *btf;
10022 	struct btf_type *datasec_type, *var_type;
10023 	struct btf_var_secinfo *var;
10024 	const struct btf_type *array_type;
10025 	const struct btf_array *array;
10026 	int vlen, element_sz, new_array_id;
10027 	__u32 nr_elements;
10028 
10029 	/* check btf existence */
10030 	btf = bpf_object__btf(map->obj);
10031 	if (!btf)
10032 		return -ENOENT;
10033 
10034 	/* verify map is datasec */
10035 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10036 	if (!btf_is_datasec(datasec_type)) {
10037 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10038 			bpf_map__name(map));
10039 		return -EINVAL;
10040 	}
10041 
10042 	/* verify datasec has at least one var */
10043 	vlen = btf_vlen(datasec_type);
10044 	if (vlen == 0) {
10045 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10046 			bpf_map__name(map));
10047 		return -EINVAL;
10048 	}
10049 
10050 	/* verify last var in the datasec is an array */
10051 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10052 	var_type = btf_type_by_id(btf, var->type);
10053 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10054 	if (!btf_is_array(array_type)) {
10055 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10056 			bpf_map__name(map));
10057 		return -EINVAL;
10058 	}
10059 
10060 	/* verify request size aligns with array */
10061 	array = btf_array(array_type);
10062 	element_sz = btf__resolve_size(btf, array->type);
10063 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10064 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10065 			bpf_map__name(map), element_sz, size);
10066 		return -EINVAL;
10067 	}
10068 
10069 	/* create a new array based on the existing array, but with new length */
10070 	nr_elements = (size - var->offset) / element_sz;
10071 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10072 	if (new_array_id < 0)
10073 		return new_array_id;
10074 
10075 	/* adding a new btf type invalidates existing pointers to btf objects,
10076 	 * so refresh pointers before proceeding
10077 	 */
10078 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10079 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10080 	var_type = btf_type_by_id(btf, var->type);
10081 
10082 	/* finally update btf info */
10083 	datasec_type->size = size;
10084 	var->size = size - var->offset;
10085 	var_type->type = new_array_id;
10086 
10087 	return 0;
10088 }
10089 
10090 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10091 {
10092 	if (map->fd >= 0)
10093 		return libbpf_err(-EBUSY);
10094 
10095 	if (map->mmaped) {
10096 		int err;
10097 		size_t mmap_old_sz, mmap_new_sz;
10098 
10099 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
10100 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
10101 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10102 		if (err) {
10103 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10104 				bpf_map__name(map), err);
10105 			return err;
10106 		}
10107 		err = map_btf_datasec_resize(map, size);
10108 		if (err && err != -ENOENT) {
10109 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10110 				bpf_map__name(map), err);
10111 			map->btf_value_type_id = 0;
10112 			map->btf_key_type_id = 0;
10113 		}
10114 	}
10115 
10116 	map->def.value_size = size;
10117 	return 0;
10118 }
10119 
10120 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10121 {
10122 	return map ? map->btf_key_type_id : 0;
10123 }
10124 
10125 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10126 {
10127 	return map ? map->btf_value_type_id : 0;
10128 }
10129 
10130 int bpf_map__set_initial_value(struct bpf_map *map,
10131 			       const void *data, size_t size)
10132 {
10133 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
10134 	    size != map->def.value_size || map->fd >= 0)
10135 		return libbpf_err(-EINVAL);
10136 
10137 	memcpy(map->mmaped, data, size);
10138 	return 0;
10139 }
10140 
10141 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
10142 {
10143 	if (!map->mmaped)
10144 		return NULL;
10145 	*psize = map->def.value_size;
10146 	return map->mmaped;
10147 }
10148 
10149 bool bpf_map__is_internal(const struct bpf_map *map)
10150 {
10151 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10152 }
10153 
10154 __u32 bpf_map__ifindex(const struct bpf_map *map)
10155 {
10156 	return map->map_ifindex;
10157 }
10158 
10159 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10160 {
10161 	if (map->fd >= 0)
10162 		return libbpf_err(-EBUSY);
10163 	map->map_ifindex = ifindex;
10164 	return 0;
10165 }
10166 
10167 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10168 {
10169 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10170 		pr_warn("error: unsupported map type\n");
10171 		return libbpf_err(-EINVAL);
10172 	}
10173 	if (map->inner_map_fd != -1) {
10174 		pr_warn("error: inner_map_fd already specified\n");
10175 		return libbpf_err(-EINVAL);
10176 	}
10177 	if (map->inner_map) {
10178 		bpf_map__destroy(map->inner_map);
10179 		zfree(&map->inner_map);
10180 	}
10181 	map->inner_map_fd = fd;
10182 	return 0;
10183 }
10184 
10185 static struct bpf_map *
10186 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10187 {
10188 	ssize_t idx;
10189 	struct bpf_map *s, *e;
10190 
10191 	if (!obj || !obj->maps)
10192 		return errno = EINVAL, NULL;
10193 
10194 	s = obj->maps;
10195 	e = obj->maps + obj->nr_maps;
10196 
10197 	if ((m < s) || (m >= e)) {
10198 		pr_warn("error in %s: map handler doesn't belong to object\n",
10199 			 __func__);
10200 		return errno = EINVAL, NULL;
10201 	}
10202 
10203 	idx = (m - obj->maps) + i;
10204 	if (idx >= obj->nr_maps || idx < 0)
10205 		return NULL;
10206 	return &obj->maps[idx];
10207 }
10208 
10209 struct bpf_map *
10210 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10211 {
10212 	if (prev == NULL)
10213 		return obj->maps;
10214 
10215 	return __bpf_map__iter(prev, obj, 1);
10216 }
10217 
10218 struct bpf_map *
10219 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10220 {
10221 	if (next == NULL) {
10222 		if (!obj->nr_maps)
10223 			return NULL;
10224 		return obj->maps + obj->nr_maps - 1;
10225 	}
10226 
10227 	return __bpf_map__iter(next, obj, -1);
10228 }
10229 
10230 struct bpf_map *
10231 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10232 {
10233 	struct bpf_map *pos;
10234 
10235 	bpf_object__for_each_map(pos, obj) {
10236 		/* if it's a special internal map name (which always starts
10237 		 * with dot) then check if that special name matches the
10238 		 * real map name (ELF section name)
10239 		 */
10240 		if (name[0] == '.') {
10241 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10242 				return pos;
10243 			continue;
10244 		}
10245 		/* otherwise map name has to be an exact match */
10246 		if (map_uses_real_name(pos)) {
10247 			if (strcmp(pos->real_name, name) == 0)
10248 				return pos;
10249 			continue;
10250 		}
10251 		if (strcmp(pos->name, name) == 0)
10252 			return pos;
10253 	}
10254 	return errno = ENOENT, NULL;
10255 }
10256 
10257 int
10258 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10259 {
10260 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10261 }
10262 
10263 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10264 			   size_t value_sz, bool check_value_sz)
10265 {
10266 	if (map->fd <= 0)
10267 		return -ENOENT;
10268 
10269 	if (map->def.key_size != key_sz) {
10270 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10271 			map->name, key_sz, map->def.key_size);
10272 		return -EINVAL;
10273 	}
10274 
10275 	if (!check_value_sz)
10276 		return 0;
10277 
10278 	switch (map->def.type) {
10279 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10280 	case BPF_MAP_TYPE_PERCPU_HASH:
10281 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10282 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10283 		int num_cpu = libbpf_num_possible_cpus();
10284 		size_t elem_sz = roundup(map->def.value_size, 8);
10285 
10286 		if (value_sz != num_cpu * elem_sz) {
10287 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10288 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10289 			return -EINVAL;
10290 		}
10291 		break;
10292 	}
10293 	default:
10294 		if (map->def.value_size != value_sz) {
10295 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10296 				map->name, value_sz, map->def.value_size);
10297 			return -EINVAL;
10298 		}
10299 		break;
10300 	}
10301 	return 0;
10302 }
10303 
10304 int bpf_map__lookup_elem(const struct bpf_map *map,
10305 			 const void *key, size_t key_sz,
10306 			 void *value, size_t value_sz, __u64 flags)
10307 {
10308 	int err;
10309 
10310 	err = validate_map_op(map, key_sz, value_sz, true);
10311 	if (err)
10312 		return libbpf_err(err);
10313 
10314 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10315 }
10316 
10317 int bpf_map__update_elem(const struct bpf_map *map,
10318 			 const void *key, size_t key_sz,
10319 			 const void *value, size_t value_sz, __u64 flags)
10320 {
10321 	int err;
10322 
10323 	err = validate_map_op(map, key_sz, value_sz, true);
10324 	if (err)
10325 		return libbpf_err(err);
10326 
10327 	return bpf_map_update_elem(map->fd, key, value, flags);
10328 }
10329 
10330 int bpf_map__delete_elem(const struct bpf_map *map,
10331 			 const void *key, size_t key_sz, __u64 flags)
10332 {
10333 	int err;
10334 
10335 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10336 	if (err)
10337 		return libbpf_err(err);
10338 
10339 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10340 }
10341 
10342 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10343 				    const void *key, size_t key_sz,
10344 				    void *value, size_t value_sz, __u64 flags)
10345 {
10346 	int err;
10347 
10348 	err = validate_map_op(map, key_sz, value_sz, true);
10349 	if (err)
10350 		return libbpf_err(err);
10351 
10352 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10353 }
10354 
10355 int bpf_map__get_next_key(const struct bpf_map *map,
10356 			  const void *cur_key, void *next_key, size_t key_sz)
10357 {
10358 	int err;
10359 
10360 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10361 	if (err)
10362 		return libbpf_err(err);
10363 
10364 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10365 }
10366 
10367 long libbpf_get_error(const void *ptr)
10368 {
10369 	if (!IS_ERR_OR_NULL(ptr))
10370 		return 0;
10371 
10372 	if (IS_ERR(ptr))
10373 		errno = -PTR_ERR(ptr);
10374 
10375 	/* If ptr == NULL, then errno should be already set by the failing
10376 	 * API, because libbpf never returns NULL on success and it now always
10377 	 * sets errno on error. So no extra errno handling for ptr == NULL
10378 	 * case.
10379 	 */
10380 	return -errno;
10381 }
10382 
10383 /* Replace link's underlying BPF program with the new one */
10384 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10385 {
10386 	int ret;
10387 
10388 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10389 	return libbpf_err_errno(ret);
10390 }
10391 
10392 /* Release "ownership" of underlying BPF resource (typically, BPF program
10393  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10394  * link, when destructed through bpf_link__destroy() call won't attempt to
10395  * detach/unregisted that BPF resource. This is useful in situations where,
10396  * say, attached BPF program has to outlive userspace program that attached it
10397  * in the system. Depending on type of BPF program, though, there might be
10398  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10399  * exit of userspace program doesn't trigger automatic detachment and clean up
10400  * inside the kernel.
10401  */
10402 void bpf_link__disconnect(struct bpf_link *link)
10403 {
10404 	link->disconnected = true;
10405 }
10406 
10407 int bpf_link__destroy(struct bpf_link *link)
10408 {
10409 	int err = 0;
10410 
10411 	if (IS_ERR_OR_NULL(link))
10412 		return 0;
10413 
10414 	if (!link->disconnected && link->detach)
10415 		err = link->detach(link);
10416 	if (link->pin_path)
10417 		free(link->pin_path);
10418 	if (link->dealloc)
10419 		link->dealloc(link);
10420 	else
10421 		free(link);
10422 
10423 	return libbpf_err(err);
10424 }
10425 
10426 int bpf_link__fd(const struct bpf_link *link)
10427 {
10428 	return link->fd;
10429 }
10430 
10431 const char *bpf_link__pin_path(const struct bpf_link *link)
10432 {
10433 	return link->pin_path;
10434 }
10435 
10436 static int bpf_link__detach_fd(struct bpf_link *link)
10437 {
10438 	return libbpf_err_errno(close(link->fd));
10439 }
10440 
10441 struct bpf_link *bpf_link__open(const char *path)
10442 {
10443 	struct bpf_link *link;
10444 	int fd;
10445 
10446 	fd = bpf_obj_get(path);
10447 	if (fd < 0) {
10448 		fd = -errno;
10449 		pr_warn("failed to open link at %s: %d\n", path, fd);
10450 		return libbpf_err_ptr(fd);
10451 	}
10452 
10453 	link = calloc(1, sizeof(*link));
10454 	if (!link) {
10455 		close(fd);
10456 		return libbpf_err_ptr(-ENOMEM);
10457 	}
10458 	link->detach = &bpf_link__detach_fd;
10459 	link->fd = fd;
10460 
10461 	link->pin_path = strdup(path);
10462 	if (!link->pin_path) {
10463 		bpf_link__destroy(link);
10464 		return libbpf_err_ptr(-ENOMEM);
10465 	}
10466 
10467 	return link;
10468 }
10469 
10470 int bpf_link__detach(struct bpf_link *link)
10471 {
10472 	return bpf_link_detach(link->fd) ? -errno : 0;
10473 }
10474 
10475 int bpf_link__pin(struct bpf_link *link, const char *path)
10476 {
10477 	int err;
10478 
10479 	if (link->pin_path)
10480 		return libbpf_err(-EBUSY);
10481 	err = make_parent_dir(path);
10482 	if (err)
10483 		return libbpf_err(err);
10484 	err = check_path(path);
10485 	if (err)
10486 		return libbpf_err(err);
10487 
10488 	link->pin_path = strdup(path);
10489 	if (!link->pin_path)
10490 		return libbpf_err(-ENOMEM);
10491 
10492 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10493 		err = -errno;
10494 		zfree(&link->pin_path);
10495 		return libbpf_err(err);
10496 	}
10497 
10498 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10499 	return 0;
10500 }
10501 
10502 int bpf_link__unpin(struct bpf_link *link)
10503 {
10504 	int err;
10505 
10506 	if (!link->pin_path)
10507 		return libbpf_err(-EINVAL);
10508 
10509 	err = unlink(link->pin_path);
10510 	if (err != 0)
10511 		return -errno;
10512 
10513 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10514 	zfree(&link->pin_path);
10515 	return 0;
10516 }
10517 
10518 struct bpf_link_perf {
10519 	struct bpf_link link;
10520 	int perf_event_fd;
10521 	/* legacy kprobe support: keep track of probe identifier and type */
10522 	char *legacy_probe_name;
10523 	bool legacy_is_kprobe;
10524 	bool legacy_is_retprobe;
10525 };
10526 
10527 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10528 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10529 
10530 static int bpf_link_perf_detach(struct bpf_link *link)
10531 {
10532 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10533 	int err = 0;
10534 
10535 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10536 		err = -errno;
10537 
10538 	if (perf_link->perf_event_fd != link->fd)
10539 		close(perf_link->perf_event_fd);
10540 	close(link->fd);
10541 
10542 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10543 	if (perf_link->legacy_probe_name) {
10544 		if (perf_link->legacy_is_kprobe) {
10545 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10546 							 perf_link->legacy_is_retprobe);
10547 		} else {
10548 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10549 							 perf_link->legacy_is_retprobe);
10550 		}
10551 	}
10552 
10553 	return err;
10554 }
10555 
10556 static void bpf_link_perf_dealloc(struct bpf_link *link)
10557 {
10558 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10559 
10560 	free(perf_link->legacy_probe_name);
10561 	free(perf_link);
10562 }
10563 
10564 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10565 						     const struct bpf_perf_event_opts *opts)
10566 {
10567 	char errmsg[STRERR_BUFSIZE];
10568 	struct bpf_link_perf *link;
10569 	int prog_fd, link_fd = -1, err;
10570 	bool force_ioctl_attach;
10571 
10572 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10573 		return libbpf_err_ptr(-EINVAL);
10574 
10575 	if (pfd < 0) {
10576 		pr_warn("prog '%s': invalid perf event FD %d\n",
10577 			prog->name, pfd);
10578 		return libbpf_err_ptr(-EINVAL);
10579 	}
10580 	prog_fd = bpf_program__fd(prog);
10581 	if (prog_fd < 0) {
10582 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10583 			prog->name);
10584 		return libbpf_err_ptr(-EINVAL);
10585 	}
10586 
10587 	link = calloc(1, sizeof(*link));
10588 	if (!link)
10589 		return libbpf_err_ptr(-ENOMEM);
10590 	link->link.detach = &bpf_link_perf_detach;
10591 	link->link.dealloc = &bpf_link_perf_dealloc;
10592 	link->perf_event_fd = pfd;
10593 
10594 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10595 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10596 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10597 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10598 
10599 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10600 		if (link_fd < 0) {
10601 			err = -errno;
10602 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10603 				prog->name, pfd,
10604 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10605 			goto err_out;
10606 		}
10607 		link->link.fd = link_fd;
10608 	} else {
10609 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10610 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10611 			err = -EOPNOTSUPP;
10612 			goto err_out;
10613 		}
10614 
10615 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10616 			err = -errno;
10617 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10618 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10619 			if (err == -EPROTO)
10620 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10621 					prog->name, pfd);
10622 			goto err_out;
10623 		}
10624 		link->link.fd = pfd;
10625 	}
10626 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10627 		err = -errno;
10628 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10629 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10630 		goto err_out;
10631 	}
10632 
10633 	return &link->link;
10634 err_out:
10635 	if (link_fd >= 0)
10636 		close(link_fd);
10637 	free(link);
10638 	return libbpf_err_ptr(err);
10639 }
10640 
10641 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10642 {
10643 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10644 }
10645 
10646 /*
10647  * this function is expected to parse integer in the range of [0, 2^31-1] from
10648  * given file using scanf format string fmt. If actual parsed value is
10649  * negative, the result might be indistinguishable from error
10650  */
10651 static int parse_uint_from_file(const char *file, const char *fmt)
10652 {
10653 	char buf[STRERR_BUFSIZE];
10654 	int err, ret;
10655 	FILE *f;
10656 
10657 	f = fopen(file, "re");
10658 	if (!f) {
10659 		err = -errno;
10660 		pr_debug("failed to open '%s': %s\n", file,
10661 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10662 		return err;
10663 	}
10664 	err = fscanf(f, fmt, &ret);
10665 	if (err != 1) {
10666 		err = err == EOF ? -EIO : -errno;
10667 		pr_debug("failed to parse '%s': %s\n", file,
10668 			libbpf_strerror_r(err, buf, sizeof(buf)));
10669 		fclose(f);
10670 		return err;
10671 	}
10672 	fclose(f);
10673 	return ret;
10674 }
10675 
10676 static int determine_kprobe_perf_type(void)
10677 {
10678 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10679 
10680 	return parse_uint_from_file(file, "%d\n");
10681 }
10682 
10683 static int determine_uprobe_perf_type(void)
10684 {
10685 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10686 
10687 	return parse_uint_from_file(file, "%d\n");
10688 }
10689 
10690 static int determine_kprobe_retprobe_bit(void)
10691 {
10692 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10693 
10694 	return parse_uint_from_file(file, "config:%d\n");
10695 }
10696 
10697 static int determine_uprobe_retprobe_bit(void)
10698 {
10699 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10700 
10701 	return parse_uint_from_file(file, "config:%d\n");
10702 }
10703 
10704 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10705 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10706 
10707 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10708 				 uint64_t offset, int pid, size_t ref_ctr_off)
10709 {
10710 	const size_t attr_sz = sizeof(struct perf_event_attr);
10711 	struct perf_event_attr attr;
10712 	char errmsg[STRERR_BUFSIZE];
10713 	int type, pfd;
10714 
10715 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10716 		return -EINVAL;
10717 
10718 	memset(&attr, 0, attr_sz);
10719 
10720 	type = uprobe ? determine_uprobe_perf_type()
10721 		      : determine_kprobe_perf_type();
10722 	if (type < 0) {
10723 		pr_warn("failed to determine %s perf type: %s\n",
10724 			uprobe ? "uprobe" : "kprobe",
10725 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10726 		return type;
10727 	}
10728 	if (retprobe) {
10729 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10730 				 : determine_kprobe_retprobe_bit();
10731 
10732 		if (bit < 0) {
10733 			pr_warn("failed to determine %s retprobe bit: %s\n",
10734 				uprobe ? "uprobe" : "kprobe",
10735 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10736 			return bit;
10737 		}
10738 		attr.config |= 1 << bit;
10739 	}
10740 	attr.size = attr_sz;
10741 	attr.type = type;
10742 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10743 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10744 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10745 
10746 	/* pid filter is meaningful only for uprobes */
10747 	pfd = syscall(__NR_perf_event_open, &attr,
10748 		      pid < 0 ? -1 : pid /* pid */,
10749 		      pid == -1 ? 0 : -1 /* cpu */,
10750 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10751 	return pfd >= 0 ? pfd : -errno;
10752 }
10753 
10754 static int append_to_file(const char *file, const char *fmt, ...)
10755 {
10756 	int fd, n, err = 0;
10757 	va_list ap;
10758 	char buf[1024];
10759 
10760 	va_start(ap, fmt);
10761 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10762 	va_end(ap);
10763 
10764 	if (n < 0 || n >= sizeof(buf))
10765 		return -EINVAL;
10766 
10767 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10768 	if (fd < 0)
10769 		return -errno;
10770 
10771 	if (write(fd, buf, n) < 0)
10772 		err = -errno;
10773 
10774 	close(fd);
10775 	return err;
10776 }
10777 
10778 #define DEBUGFS "/sys/kernel/debug/tracing"
10779 #define TRACEFS "/sys/kernel/tracing"
10780 
10781 static bool use_debugfs(void)
10782 {
10783 	static int has_debugfs = -1;
10784 
10785 	if (has_debugfs < 0)
10786 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10787 
10788 	return has_debugfs == 1;
10789 }
10790 
10791 static const char *tracefs_path(void)
10792 {
10793 	return use_debugfs() ? DEBUGFS : TRACEFS;
10794 }
10795 
10796 static const char *tracefs_kprobe_events(void)
10797 {
10798 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10799 }
10800 
10801 static const char *tracefs_uprobe_events(void)
10802 {
10803 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10804 }
10805 
10806 static const char *tracefs_available_filter_functions(void)
10807 {
10808 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10809 			     : TRACEFS"/available_filter_functions";
10810 }
10811 
10812 static const char *tracefs_available_filter_functions_addrs(void)
10813 {
10814 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10815 			     : TRACEFS"/available_filter_functions_addrs";
10816 }
10817 
10818 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10819 					 const char *kfunc_name, size_t offset)
10820 {
10821 	static int index = 0;
10822 	int i;
10823 
10824 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10825 		 __sync_fetch_and_add(&index, 1));
10826 
10827 	/* sanitize binary_path in the probe name */
10828 	for (i = 0; buf[i]; i++) {
10829 		if (!isalnum(buf[i]))
10830 			buf[i] = '_';
10831 	}
10832 }
10833 
10834 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10835 				   const char *kfunc_name, size_t offset)
10836 {
10837 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10838 			      retprobe ? 'r' : 'p',
10839 			      retprobe ? "kretprobes" : "kprobes",
10840 			      probe_name, kfunc_name, offset);
10841 }
10842 
10843 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10844 {
10845 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10846 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10847 }
10848 
10849 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10850 {
10851 	char file[256];
10852 
10853 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10854 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10855 
10856 	return parse_uint_from_file(file, "%d\n");
10857 }
10858 
10859 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10860 					 const char *kfunc_name, size_t offset, int pid)
10861 {
10862 	const size_t attr_sz = sizeof(struct perf_event_attr);
10863 	struct perf_event_attr attr;
10864 	char errmsg[STRERR_BUFSIZE];
10865 	int type, pfd, err;
10866 
10867 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10868 	if (err < 0) {
10869 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10870 			kfunc_name, offset,
10871 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10872 		return err;
10873 	}
10874 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10875 	if (type < 0) {
10876 		err = type;
10877 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10878 			kfunc_name, offset,
10879 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10880 		goto err_clean_legacy;
10881 	}
10882 
10883 	memset(&attr, 0, attr_sz);
10884 	attr.size = attr_sz;
10885 	attr.config = type;
10886 	attr.type = PERF_TYPE_TRACEPOINT;
10887 
10888 	pfd = syscall(__NR_perf_event_open, &attr,
10889 		      pid < 0 ? -1 : pid, /* pid */
10890 		      pid == -1 ? 0 : -1, /* cpu */
10891 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10892 	if (pfd < 0) {
10893 		err = -errno;
10894 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10895 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10896 		goto err_clean_legacy;
10897 	}
10898 	return pfd;
10899 
10900 err_clean_legacy:
10901 	/* Clear the newly added legacy kprobe_event */
10902 	remove_kprobe_event_legacy(probe_name, retprobe);
10903 	return err;
10904 }
10905 
10906 static const char *arch_specific_syscall_pfx(void)
10907 {
10908 #if defined(__x86_64__)
10909 	return "x64";
10910 #elif defined(__i386__)
10911 	return "ia32";
10912 #elif defined(__s390x__)
10913 	return "s390x";
10914 #elif defined(__s390__)
10915 	return "s390";
10916 #elif defined(__arm__)
10917 	return "arm";
10918 #elif defined(__aarch64__)
10919 	return "arm64";
10920 #elif defined(__mips__)
10921 	return "mips";
10922 #elif defined(__riscv)
10923 	return "riscv";
10924 #elif defined(__powerpc__)
10925 	return "powerpc";
10926 #elif defined(__powerpc64__)
10927 	return "powerpc64";
10928 #else
10929 	return NULL;
10930 #endif
10931 }
10932 
10933 static int probe_kern_syscall_wrapper(void)
10934 {
10935 	char syscall_name[64];
10936 	const char *ksys_pfx;
10937 
10938 	ksys_pfx = arch_specific_syscall_pfx();
10939 	if (!ksys_pfx)
10940 		return 0;
10941 
10942 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10943 
10944 	if (determine_kprobe_perf_type() >= 0) {
10945 		int pfd;
10946 
10947 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10948 		if (pfd >= 0)
10949 			close(pfd);
10950 
10951 		return pfd >= 0 ? 1 : 0;
10952 	} else { /* legacy mode */
10953 		char probe_name[128];
10954 
10955 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10956 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10957 			return 0;
10958 
10959 		(void)remove_kprobe_event_legacy(probe_name, false);
10960 		return 1;
10961 	}
10962 }
10963 
10964 struct bpf_link *
10965 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10966 				const char *func_name,
10967 				const struct bpf_kprobe_opts *opts)
10968 {
10969 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10970 	enum probe_attach_mode attach_mode;
10971 	char errmsg[STRERR_BUFSIZE];
10972 	char *legacy_probe = NULL;
10973 	struct bpf_link *link;
10974 	size_t offset;
10975 	bool retprobe, legacy;
10976 	int pfd, err;
10977 
10978 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10979 		return libbpf_err_ptr(-EINVAL);
10980 
10981 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10982 	retprobe = OPTS_GET(opts, retprobe, false);
10983 	offset = OPTS_GET(opts, offset, 0);
10984 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10985 
10986 	legacy = determine_kprobe_perf_type() < 0;
10987 	switch (attach_mode) {
10988 	case PROBE_ATTACH_MODE_LEGACY:
10989 		legacy = true;
10990 		pe_opts.force_ioctl_attach = true;
10991 		break;
10992 	case PROBE_ATTACH_MODE_PERF:
10993 		if (legacy)
10994 			return libbpf_err_ptr(-ENOTSUP);
10995 		pe_opts.force_ioctl_attach = true;
10996 		break;
10997 	case PROBE_ATTACH_MODE_LINK:
10998 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10999 			return libbpf_err_ptr(-ENOTSUP);
11000 		break;
11001 	case PROBE_ATTACH_MODE_DEFAULT:
11002 		break;
11003 	default:
11004 		return libbpf_err_ptr(-EINVAL);
11005 	}
11006 
11007 	if (!legacy) {
11008 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11009 					    func_name, offset,
11010 					    -1 /* pid */, 0 /* ref_ctr_off */);
11011 	} else {
11012 		char probe_name[256];
11013 
11014 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11015 					     func_name, offset);
11016 
11017 		legacy_probe = strdup(probe_name);
11018 		if (!legacy_probe)
11019 			return libbpf_err_ptr(-ENOMEM);
11020 
11021 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11022 						    offset, -1 /* pid */);
11023 	}
11024 	if (pfd < 0) {
11025 		err = -errno;
11026 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11027 			prog->name, retprobe ? "kretprobe" : "kprobe",
11028 			func_name, offset,
11029 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11030 		goto err_out;
11031 	}
11032 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11033 	err = libbpf_get_error(link);
11034 	if (err) {
11035 		close(pfd);
11036 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11037 			prog->name, retprobe ? "kretprobe" : "kprobe",
11038 			func_name, offset,
11039 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11040 		goto err_clean_legacy;
11041 	}
11042 	if (legacy) {
11043 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11044 
11045 		perf_link->legacy_probe_name = legacy_probe;
11046 		perf_link->legacy_is_kprobe = true;
11047 		perf_link->legacy_is_retprobe = retprobe;
11048 	}
11049 
11050 	return link;
11051 
11052 err_clean_legacy:
11053 	if (legacy)
11054 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11055 err_out:
11056 	free(legacy_probe);
11057 	return libbpf_err_ptr(err);
11058 }
11059 
11060 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11061 					    bool retprobe,
11062 					    const char *func_name)
11063 {
11064 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11065 		.retprobe = retprobe,
11066 	);
11067 
11068 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11069 }
11070 
11071 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11072 					      const char *syscall_name,
11073 					      const struct bpf_ksyscall_opts *opts)
11074 {
11075 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11076 	char func_name[128];
11077 
11078 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11079 		return libbpf_err_ptr(-EINVAL);
11080 
11081 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11082 		/* arch_specific_syscall_pfx() should never return NULL here
11083 		 * because it is guarded by kernel_supports(). However, since
11084 		 * compiler does not know that we have an explicit conditional
11085 		 * as well.
11086 		 */
11087 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11088 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11089 	} else {
11090 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11091 	}
11092 
11093 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11094 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11095 
11096 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11097 }
11098 
11099 /* Adapted from perf/util/string.c */
11100 bool glob_match(const char *str, const char *pat)
11101 {
11102 	while (*str && *pat && *pat != '*') {
11103 		if (*pat == '?') {      /* Matches any single character */
11104 			str++;
11105 			pat++;
11106 			continue;
11107 		}
11108 		if (*str != *pat)
11109 			return false;
11110 		str++;
11111 		pat++;
11112 	}
11113 	/* Check wild card */
11114 	if (*pat == '*') {
11115 		while (*pat == '*')
11116 			pat++;
11117 		if (!*pat) /* Tail wild card matches all */
11118 			return true;
11119 		while (*str)
11120 			if (glob_match(str++, pat))
11121 				return true;
11122 	}
11123 	return !*str && !*pat;
11124 }
11125 
11126 struct kprobe_multi_resolve {
11127 	const char *pattern;
11128 	unsigned long *addrs;
11129 	size_t cap;
11130 	size_t cnt;
11131 };
11132 
11133 struct avail_kallsyms_data {
11134 	char **syms;
11135 	size_t cnt;
11136 	struct kprobe_multi_resolve *res;
11137 };
11138 
11139 static int avail_func_cmp(const void *a, const void *b)
11140 {
11141 	return strcmp(*(const char **)a, *(const char **)b);
11142 }
11143 
11144 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11145 			     const char *sym_name, void *ctx)
11146 {
11147 	struct avail_kallsyms_data *data = ctx;
11148 	struct kprobe_multi_resolve *res = data->res;
11149 	int err;
11150 
11151 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11152 		return 0;
11153 
11154 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11155 	if (err)
11156 		return err;
11157 
11158 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11159 	return 0;
11160 }
11161 
11162 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11163 {
11164 	const char *available_functions_file = tracefs_available_filter_functions();
11165 	struct avail_kallsyms_data data;
11166 	char sym_name[500];
11167 	FILE *f;
11168 	int err = 0, ret, i;
11169 	char **syms = NULL;
11170 	size_t cap = 0, cnt = 0;
11171 
11172 	f = fopen(available_functions_file, "re");
11173 	if (!f) {
11174 		err = -errno;
11175 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11176 		return err;
11177 	}
11178 
11179 	while (true) {
11180 		char *name;
11181 
11182 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11183 		if (ret == EOF && feof(f))
11184 			break;
11185 
11186 		if (ret != 1) {
11187 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11188 			err = -EINVAL;
11189 			goto cleanup;
11190 		}
11191 
11192 		if (!glob_match(sym_name, res->pattern))
11193 			continue;
11194 
11195 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11196 		if (err)
11197 			goto cleanup;
11198 
11199 		name = strdup(sym_name);
11200 		if (!name) {
11201 			err = -errno;
11202 			goto cleanup;
11203 		}
11204 
11205 		syms[cnt++] = name;
11206 	}
11207 
11208 	/* no entries found, bail out */
11209 	if (cnt == 0) {
11210 		err = -ENOENT;
11211 		goto cleanup;
11212 	}
11213 
11214 	/* sort available functions */
11215 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11216 
11217 	data.syms = syms;
11218 	data.res = res;
11219 	data.cnt = cnt;
11220 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11221 
11222 	if (res->cnt == 0)
11223 		err = -ENOENT;
11224 
11225 cleanup:
11226 	for (i = 0; i < cnt; i++)
11227 		free((char *)syms[i]);
11228 	free(syms);
11229 
11230 	fclose(f);
11231 	return err;
11232 }
11233 
11234 static bool has_available_filter_functions_addrs(void)
11235 {
11236 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11237 }
11238 
11239 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11240 {
11241 	const char *available_path = tracefs_available_filter_functions_addrs();
11242 	char sym_name[500];
11243 	FILE *f;
11244 	int ret, err = 0;
11245 	unsigned long long sym_addr;
11246 
11247 	f = fopen(available_path, "re");
11248 	if (!f) {
11249 		err = -errno;
11250 		pr_warn("failed to open %s: %d\n", available_path, err);
11251 		return err;
11252 	}
11253 
11254 	while (true) {
11255 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11256 		if (ret == EOF && feof(f))
11257 			break;
11258 
11259 		if (ret != 2) {
11260 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11261 				ret);
11262 			err = -EINVAL;
11263 			goto cleanup;
11264 		}
11265 
11266 		if (!glob_match(sym_name, res->pattern))
11267 			continue;
11268 
11269 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11270 					sizeof(*res->addrs), res->cnt + 1);
11271 		if (err)
11272 			goto cleanup;
11273 
11274 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11275 	}
11276 
11277 	if (res->cnt == 0)
11278 		err = -ENOENT;
11279 
11280 cleanup:
11281 	fclose(f);
11282 	return err;
11283 }
11284 
11285 struct bpf_link *
11286 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11287 				      const char *pattern,
11288 				      const struct bpf_kprobe_multi_opts *opts)
11289 {
11290 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11291 	struct kprobe_multi_resolve res = {
11292 		.pattern = pattern,
11293 	};
11294 	struct bpf_link *link = NULL;
11295 	char errmsg[STRERR_BUFSIZE];
11296 	const unsigned long *addrs;
11297 	int err, link_fd, prog_fd;
11298 	const __u64 *cookies;
11299 	const char **syms;
11300 	bool retprobe;
11301 	size_t cnt;
11302 
11303 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11304 		return libbpf_err_ptr(-EINVAL);
11305 
11306 	syms    = OPTS_GET(opts, syms, false);
11307 	addrs   = OPTS_GET(opts, addrs, false);
11308 	cnt     = OPTS_GET(opts, cnt, false);
11309 	cookies = OPTS_GET(opts, cookies, false);
11310 
11311 	if (!pattern && !addrs && !syms)
11312 		return libbpf_err_ptr(-EINVAL);
11313 	if (pattern && (addrs || syms || cookies || cnt))
11314 		return libbpf_err_ptr(-EINVAL);
11315 	if (!pattern && !cnt)
11316 		return libbpf_err_ptr(-EINVAL);
11317 	if (addrs && syms)
11318 		return libbpf_err_ptr(-EINVAL);
11319 
11320 	if (pattern) {
11321 		if (has_available_filter_functions_addrs())
11322 			err = libbpf_available_kprobes_parse(&res);
11323 		else
11324 			err = libbpf_available_kallsyms_parse(&res);
11325 		if (err)
11326 			goto error;
11327 		addrs = res.addrs;
11328 		cnt = res.cnt;
11329 	}
11330 
11331 	retprobe = OPTS_GET(opts, retprobe, false);
11332 
11333 	lopts.kprobe_multi.syms = syms;
11334 	lopts.kprobe_multi.addrs = addrs;
11335 	lopts.kprobe_multi.cookies = cookies;
11336 	lopts.kprobe_multi.cnt = cnt;
11337 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11338 
11339 	link = calloc(1, sizeof(*link));
11340 	if (!link) {
11341 		err = -ENOMEM;
11342 		goto error;
11343 	}
11344 	link->detach = &bpf_link__detach_fd;
11345 
11346 	prog_fd = bpf_program__fd(prog);
11347 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11348 	if (link_fd < 0) {
11349 		err = -errno;
11350 		pr_warn("prog '%s': failed to attach: %s\n",
11351 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11352 		goto error;
11353 	}
11354 	link->fd = link_fd;
11355 	free(res.addrs);
11356 	return link;
11357 
11358 error:
11359 	free(link);
11360 	free(res.addrs);
11361 	return libbpf_err_ptr(err);
11362 }
11363 
11364 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11365 {
11366 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11367 	unsigned long offset = 0;
11368 	const char *func_name;
11369 	char *func;
11370 	int n;
11371 
11372 	*link = NULL;
11373 
11374 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11375 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11376 		return 0;
11377 
11378 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11379 	if (opts.retprobe)
11380 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11381 	else
11382 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11383 
11384 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11385 	if (n < 1) {
11386 		pr_warn("kprobe name is invalid: %s\n", func_name);
11387 		return -EINVAL;
11388 	}
11389 	if (opts.retprobe && offset != 0) {
11390 		free(func);
11391 		pr_warn("kretprobes do not support offset specification\n");
11392 		return -EINVAL;
11393 	}
11394 
11395 	opts.offset = offset;
11396 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11397 	free(func);
11398 	return libbpf_get_error(*link);
11399 }
11400 
11401 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11402 {
11403 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11404 	const char *syscall_name;
11405 
11406 	*link = NULL;
11407 
11408 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11409 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11410 		return 0;
11411 
11412 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11413 	if (opts.retprobe)
11414 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11415 	else
11416 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11417 
11418 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11419 	return *link ? 0 : -errno;
11420 }
11421 
11422 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11423 {
11424 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11425 	const char *spec;
11426 	char *pattern;
11427 	int n;
11428 
11429 	*link = NULL;
11430 
11431 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11432 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11433 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11434 		return 0;
11435 
11436 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11437 	if (opts.retprobe)
11438 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11439 	else
11440 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11441 
11442 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11443 	if (n < 1) {
11444 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11445 		return -EINVAL;
11446 	}
11447 
11448 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11449 	free(pattern);
11450 	return libbpf_get_error(*link);
11451 }
11452 
11453 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11454 {
11455 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11456 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11457 	int n, ret = -EINVAL;
11458 
11459 	*link = NULL;
11460 
11461 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11462 		   &probe_type, &binary_path, &func_name);
11463 	switch (n) {
11464 	case 1:
11465 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11466 		ret = 0;
11467 		break;
11468 	case 3:
11469 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11470 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11471 		ret = libbpf_get_error(*link);
11472 		break;
11473 	default:
11474 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11475 			prog->sec_name);
11476 		break;
11477 	}
11478 	free(probe_type);
11479 	free(binary_path);
11480 	free(func_name);
11481 	return ret;
11482 }
11483 
11484 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11485 					 const char *binary_path, uint64_t offset)
11486 {
11487 	int i;
11488 
11489 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11490 
11491 	/* sanitize binary_path in the probe name */
11492 	for (i = 0; buf[i]; i++) {
11493 		if (!isalnum(buf[i]))
11494 			buf[i] = '_';
11495 	}
11496 }
11497 
11498 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11499 					  const char *binary_path, size_t offset)
11500 {
11501 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11502 			      retprobe ? 'r' : 'p',
11503 			      retprobe ? "uretprobes" : "uprobes",
11504 			      probe_name, binary_path, offset);
11505 }
11506 
11507 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11508 {
11509 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11510 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11511 }
11512 
11513 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11514 {
11515 	char file[512];
11516 
11517 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11518 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11519 
11520 	return parse_uint_from_file(file, "%d\n");
11521 }
11522 
11523 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11524 					 const char *binary_path, size_t offset, int pid)
11525 {
11526 	const size_t attr_sz = sizeof(struct perf_event_attr);
11527 	struct perf_event_attr attr;
11528 	int type, pfd, err;
11529 
11530 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11531 	if (err < 0) {
11532 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11533 			binary_path, (size_t)offset, err);
11534 		return err;
11535 	}
11536 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11537 	if (type < 0) {
11538 		err = type;
11539 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11540 			binary_path, offset, err);
11541 		goto err_clean_legacy;
11542 	}
11543 
11544 	memset(&attr, 0, attr_sz);
11545 	attr.size = attr_sz;
11546 	attr.config = type;
11547 	attr.type = PERF_TYPE_TRACEPOINT;
11548 
11549 	pfd = syscall(__NR_perf_event_open, &attr,
11550 		      pid < 0 ? -1 : pid, /* pid */
11551 		      pid == -1 ? 0 : -1, /* cpu */
11552 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11553 	if (pfd < 0) {
11554 		err = -errno;
11555 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11556 		goto err_clean_legacy;
11557 	}
11558 	return pfd;
11559 
11560 err_clean_legacy:
11561 	/* Clear the newly added legacy uprobe_event */
11562 	remove_uprobe_event_legacy(probe_name, retprobe);
11563 	return err;
11564 }
11565 
11566 /* Find offset of function name in object specified by path.  "name" matches
11567  * symbol name or name@@LIB for library functions.
11568  */
11569 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11570 					      const char *func_name)
11571 {
11572 	struct zip_archive *archive;
11573 	struct zip_entry entry;
11574 	long ret;
11575 #ifdef HAVE_LIBELF
11576 	Elf *elf;
11577 #elif defined HAVE_ELFIO
11578 	pelfio_t elf;
11579 #endif
11580 
11581 	archive = zip_archive_open(archive_path);
11582 	if (IS_ERR(archive)) {
11583 		ret = PTR_ERR(archive);
11584 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11585 		return ret;
11586 	}
11587 
11588 	ret = zip_archive_find_entry(archive, file_name, &entry);
11589 	if (ret) {
11590 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11591 			archive_path, ret);
11592 		goto out;
11593 	}
11594 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11595 		 (unsigned long)entry.data_offset);
11596 
11597 	if (entry.compression) {
11598 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11599 			archive_path);
11600 		ret = -LIBBPF_ERRNO__FORMAT;
11601 		goto out;
11602 	}
11603 #ifdef HAVE_LIBELF
11604 		elf = elf_memory((void *)entry.data, entry.data_length);
11605 #elif defined HAVE_ELFIO
11606 		char  memfd_path[PATH_MAX] = {0};
11607 		elf = elfio_new();
11608 		int fdm = syscall(__NR_memfd_create, "bpfelf", MFD_CLOEXEC);
11609 		ftruncate(fdm, entry.data_length);
11610 		write(fdm, (char *)entry.data, entry.data_length);
11611 		snprintf(memfd_path, PATH_MAX, "/proc/self/fd/%d", fdm);
11612 		elfio_load(elf, memfd_path);
11613 #endif
11614 	if (!elf) {
11615 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11616 			elf_errmsg(-1));
11617 		ret = -LIBBPF_ERRNO__LIBELF;
11618 		goto out;
11619 	}
11620 
11621 	ret = elf_find_func_offset(elf, file_name, func_name);
11622 	if (ret > 0) {
11623 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11624 			 func_name, file_name, archive_path, entry.data_offset, ret,
11625 			 ret + entry.data_offset);
11626 		ret += entry.data_offset;
11627 	}
11628 #ifdef  HAVA_LIBELF
11629 	elf_end(elf);
11630 #elif HAVA_ELFIO
11631 	 elfio_delete(elf);
11632 #endif
11633 out:
11634 	zip_archive_close(archive);
11635 	return ret;
11636 }
11637 
11638 static const char *arch_specific_lib_paths(void)
11639 {
11640 	/*
11641 	 * Based on https://packages.debian.org/sid/libc6.
11642 	 *
11643 	 * Assume that the traced program is built for the same architecture
11644 	 * as libbpf, which should cover the vast majority of cases.
11645 	 */
11646 #if defined(__x86_64__)
11647 	return "/lib/x86_64-linux-gnu";
11648 #elif defined(__i386__)
11649 	return "/lib/i386-linux-gnu";
11650 #elif defined(__s390x__)
11651 	return "/lib/s390x-linux-gnu";
11652 #elif defined(__s390__)
11653 	return "/lib/s390-linux-gnu";
11654 #elif defined(__arm__) && defined(__SOFTFP__)
11655 	return "/lib/arm-linux-gnueabi";
11656 #elif defined(__arm__) && !defined(__SOFTFP__)
11657 	return "/lib/arm-linux-gnueabihf";
11658 #elif defined(__aarch64__)
11659 	return "/lib/aarch64-linux-gnu";
11660 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11661 	return "/lib/mips64el-linux-gnuabi64";
11662 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11663 	return "/lib/mipsel-linux-gnu";
11664 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11665 	return "/lib/powerpc64le-linux-gnu";
11666 #elif defined(__sparc__) && defined(__arch64__)
11667 	return "/lib/sparc64-linux-gnu";
11668 #elif defined(__riscv) && __riscv_xlen == 64
11669 	return "/lib/riscv64-linux-gnu";
11670 #else
11671 	return NULL;
11672 #endif
11673 }
11674 
11675 /* Get full path to program/shared library. */
11676 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11677 {
11678 	const char *search_paths[3] = {};
11679 	int i, perm;
11680 
11681 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11682 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11683 		search_paths[1] = "/usr/lib64:/usr/lib";
11684 		search_paths[2] = arch_specific_lib_paths();
11685 		perm = R_OK;
11686 	} else {
11687 		search_paths[0] = getenv("PATH");
11688 		search_paths[1] = "/usr/bin:/usr/sbin";
11689 		perm = R_OK | X_OK;
11690 	}
11691 
11692 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11693 		const char *s;
11694 
11695 		if (!search_paths[i])
11696 			continue;
11697 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11698 			char *next_path;
11699 			int seg_len;
11700 
11701 			if (s[0] == ':')
11702 				s++;
11703 			next_path = strchr(s, ':');
11704 			seg_len = next_path ? next_path - s : strlen(s);
11705 			if (!seg_len)
11706 				continue;
11707 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11708 			/* ensure it has required permissions */
11709 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11710 				continue;
11711 			pr_debug("resolved '%s' to '%s'\n", file, result);
11712 			return 0;
11713 		}
11714 	}
11715 	return -ENOENT;
11716 }
11717 
11718 struct bpf_link *
11719 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11720 				 pid_t pid,
11721 				 const char *path,
11722 				 const char *func_pattern,
11723 				 const struct bpf_uprobe_multi_opts *opts)
11724 {
11725 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11726 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11727 	unsigned long *resolved_offsets = NULL;
11728 	int err = 0, link_fd, prog_fd;
11729 	struct bpf_link *link = NULL;
11730 	char errmsg[STRERR_BUFSIZE];
11731 	char full_path[PATH_MAX];
11732 	const __u64 *cookies;
11733 	const char **syms;
11734 	size_t cnt;
11735 
11736 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11737 		return libbpf_err_ptr(-EINVAL);
11738 
11739 	syms = OPTS_GET(opts, syms, NULL);
11740 	offsets = OPTS_GET(opts, offsets, NULL);
11741 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11742 	cookies = OPTS_GET(opts, cookies, NULL);
11743 	cnt = OPTS_GET(opts, cnt, 0);
11744 
11745 	/*
11746 	 * User can specify 2 mutually exclusive set of inputs:
11747 	 *
11748 	 * 1) use only path/func_pattern/pid arguments
11749 	 *
11750 	 * 2) use path/pid with allowed combinations of:
11751 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11752 	 *
11753 	 *    - syms and offsets are mutually exclusive
11754 	 *    - ref_ctr_offsets and cookies are optional
11755 	 *
11756 	 * Any other usage results in error.
11757 	 */
11758 
11759 	if (!path)
11760 		return libbpf_err_ptr(-EINVAL);
11761 	if (!func_pattern && cnt == 0)
11762 		return libbpf_err_ptr(-EINVAL);
11763 
11764 	if (func_pattern) {
11765 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11766 			return libbpf_err_ptr(-EINVAL);
11767 	} else {
11768 		if (!!syms == !!offsets)
11769 			return libbpf_err_ptr(-EINVAL);
11770 	}
11771 
11772 	if (func_pattern) {
11773 		if (!strchr(path, '/')) {
11774 			err = resolve_full_path(path, full_path, sizeof(full_path));
11775 			if (err) {
11776 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11777 					prog->name, path, err);
11778 				return libbpf_err_ptr(err);
11779 			}
11780 			path = full_path;
11781 		}
11782 
11783 		err = elf_resolve_pattern_offsets(path, func_pattern,
11784 						  &resolved_offsets, &cnt);
11785 		if (err < 0)
11786 			return libbpf_err_ptr(err);
11787 		offsets = resolved_offsets;
11788 	} else if (syms) {
11789 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11790 		if (err < 0)
11791 			return libbpf_err_ptr(err);
11792 		offsets = resolved_offsets;
11793 	}
11794 
11795 	lopts.uprobe_multi.path = path;
11796 	lopts.uprobe_multi.offsets = offsets;
11797 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11798 	lopts.uprobe_multi.cookies = cookies;
11799 	lopts.uprobe_multi.cnt = cnt;
11800 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11801 
11802 	if (pid == 0)
11803 		pid = getpid();
11804 	if (pid > 0)
11805 		lopts.uprobe_multi.pid = pid;
11806 
11807 	link = calloc(1, sizeof(*link));
11808 	if (!link) {
11809 		err = -ENOMEM;
11810 		goto error;
11811 	}
11812 	link->detach = &bpf_link__detach_fd;
11813 
11814 	prog_fd = bpf_program__fd(prog);
11815 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11816 	if (link_fd < 0) {
11817 		err = -errno;
11818 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11819 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11820 		goto error;
11821 	}
11822 	link->fd = link_fd;
11823 	free(resolved_offsets);
11824 	return link;
11825 
11826 error:
11827 	free(resolved_offsets);
11828 	free(link);
11829 	return libbpf_err_ptr(err);
11830 }
11831 
11832 LIBBPF_API struct bpf_link *
11833 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11834 				const char *binary_path, size_t func_offset,
11835 				const struct bpf_uprobe_opts *opts)
11836 {
11837 	const char *archive_path = NULL, *archive_sep = NULL;
11838 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11839 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11840 	enum probe_attach_mode attach_mode;
11841 	char full_path[PATH_MAX];
11842 	struct bpf_link *link;
11843 	size_t ref_ctr_off;
11844 	int pfd, err;
11845 	bool retprobe, legacy;
11846 	const char *func_name;
11847 
11848 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11849 		return libbpf_err_ptr(-EINVAL);
11850 
11851 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11852 	retprobe = OPTS_GET(opts, retprobe, false);
11853 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11854 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11855 
11856 	if (!binary_path)
11857 		return libbpf_err_ptr(-EINVAL);
11858 
11859 	/* Check if "binary_path" refers to an archive. */
11860 	archive_sep = strstr(binary_path, "!/");
11861 	if (archive_sep) {
11862 		full_path[0] = '\0';
11863 		libbpf_strlcpy(full_path, binary_path,
11864 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11865 		archive_path = full_path;
11866 		binary_path = archive_sep + 2;
11867 	} else if (!strchr(binary_path, '/')) {
11868 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11869 		if (err) {
11870 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11871 				prog->name, binary_path, err);
11872 			return libbpf_err_ptr(err);
11873 		}
11874 		binary_path = full_path;
11875 	}
11876 	func_name = OPTS_GET(opts, func_name, NULL);
11877 	if (func_name) {
11878 		long sym_off;
11879 
11880 		if (archive_path) {
11881 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11882 								    func_name);
11883 			binary_path = archive_path;
11884 		} else {
11885 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11886 		}
11887 		if (sym_off < 0)
11888 			return libbpf_err_ptr(sym_off);
11889 		func_offset += sym_off;
11890 	}
11891 
11892 	legacy = determine_uprobe_perf_type() < 0;
11893 	switch (attach_mode) {
11894 	case PROBE_ATTACH_MODE_LEGACY:
11895 		legacy = true;
11896 		pe_opts.force_ioctl_attach = true;
11897 		break;
11898 	case PROBE_ATTACH_MODE_PERF:
11899 		if (legacy)
11900 			return libbpf_err_ptr(-ENOTSUP);
11901 		pe_opts.force_ioctl_attach = true;
11902 		break;
11903 	case PROBE_ATTACH_MODE_LINK:
11904 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11905 			return libbpf_err_ptr(-ENOTSUP);
11906 		break;
11907 	case PROBE_ATTACH_MODE_DEFAULT:
11908 		break;
11909 	default:
11910 		return libbpf_err_ptr(-EINVAL);
11911 	}
11912 
11913 	if (!legacy) {
11914 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11915 					    func_offset, pid, ref_ctr_off);
11916 	} else {
11917 		char probe_name[PATH_MAX + 64];
11918 
11919 		if (ref_ctr_off)
11920 			return libbpf_err_ptr(-EINVAL);
11921 
11922 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11923 					     binary_path, func_offset);
11924 
11925 		legacy_probe = strdup(probe_name);
11926 		if (!legacy_probe)
11927 			return libbpf_err_ptr(-ENOMEM);
11928 
11929 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11930 						    binary_path, func_offset, pid);
11931 	}
11932 	if (pfd < 0) {
11933 		err = -errno;
11934 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11935 			prog->name, retprobe ? "uretprobe" : "uprobe",
11936 			binary_path, func_offset,
11937 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11938 		goto err_out;
11939 	}
11940 
11941 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11942 	err = libbpf_get_error(link);
11943 	if (err) {
11944 		close(pfd);
11945 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11946 			prog->name, retprobe ? "uretprobe" : "uprobe",
11947 			binary_path, func_offset,
11948 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11949 		goto err_clean_legacy;
11950 	}
11951 	if (legacy) {
11952 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11953 
11954 		perf_link->legacy_probe_name = legacy_probe;
11955 		perf_link->legacy_is_kprobe = false;
11956 		perf_link->legacy_is_retprobe = retprobe;
11957 	}
11958 	return link;
11959 
11960 err_clean_legacy:
11961 	if (legacy)
11962 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11963 err_out:
11964 	free(legacy_probe);
11965 	return libbpf_err_ptr(err);
11966 }
11967 
11968 /* Format of u[ret]probe section definition supporting auto-attach:
11969  * u[ret]probe/binary:function[+offset]
11970  *
11971  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11972  * full binary path via bpf_program__attach_uprobe_opts.
11973  *
11974  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11975  * specified (and auto-attach is not possible) or the above format is specified for
11976  * auto-attach.
11977  */
11978 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11979 {
11980 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11981 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
11982 	int n, c, ret = -EINVAL;
11983 	long offset = 0;
11984 
11985 	*link = NULL;
11986 
11987 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11988 		   &probe_type, &binary_path, &func_name);
11989 	switch (n) {
11990 	case 1:
11991 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11992 		ret = 0;
11993 		break;
11994 	case 2:
11995 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11996 			prog->name, prog->sec_name);
11997 		break;
11998 	case 3:
11999 		/* check if user specifies `+offset`, if yes, this should be
12000 		 * the last part of the string, make sure sscanf read to EOL
12001 		 */
12002 		func_off = strrchr(func_name, '+');
12003 		if (func_off) {
12004 			n = sscanf(func_off, "+%li%n", &offset, &c);
12005 			if (n == 1 && *(func_off + c) == '\0')
12006 				func_off[0] = '\0';
12007 			else
12008 				offset = 0;
12009 		}
12010 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12011 				strcmp(probe_type, "uretprobe.s") == 0;
12012 		if (opts.retprobe && offset != 0) {
12013 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12014 				prog->name);
12015 			break;
12016 		}
12017 		opts.func_name = func_name;
12018 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12019 		ret = libbpf_get_error(*link);
12020 		break;
12021 	default:
12022 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12023 			prog->sec_name);
12024 		break;
12025 	}
12026 	free(probe_type);
12027 	free(binary_path);
12028 	free(func_name);
12029 
12030 	return ret;
12031 }
12032 
12033 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12034 					    bool retprobe, pid_t pid,
12035 					    const char *binary_path,
12036 					    size_t func_offset)
12037 {
12038 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12039 
12040 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12041 }
12042 
12043 #ifdef  HAVE_LIBELF
12044 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12045 					  pid_t pid, const char *binary_path,
12046 					  const char *usdt_provider, const char *usdt_name,
12047 					  const struct bpf_usdt_opts *opts)
12048 {
12049 	char resolved_path[512];
12050 	struct bpf_object *obj = prog->obj;
12051 	struct bpf_link *link;
12052 	__u64 usdt_cookie;
12053 	int err;
12054 
12055 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12056 		return libbpf_err_ptr(-EINVAL);
12057 
12058 	if (bpf_program__fd(prog) < 0) {
12059 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12060 			prog->name);
12061 		return libbpf_err_ptr(-EINVAL);
12062 	}
12063 
12064 	if (!binary_path)
12065 		return libbpf_err_ptr(-EINVAL);
12066 
12067 	if (!strchr(binary_path, '/')) {
12068 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12069 		if (err) {
12070 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12071 				prog->name, binary_path, err);
12072 			return libbpf_err_ptr(err);
12073 		}
12074 		binary_path = resolved_path;
12075 	}
12076 
12077 	/* USDT manager is instantiated lazily on first USDT attach. It will
12078 	 * be destroyed together with BPF object in bpf_object__close().
12079 	 */
12080 	if (IS_ERR(obj->usdt_man))
12081 		return libbpf_ptr(obj->usdt_man);
12082 	if (!obj->usdt_man) {
12083 		obj->usdt_man = usdt_manager_new(obj);
12084 		if (IS_ERR(obj->usdt_man))
12085 			return libbpf_ptr(obj->usdt_man);
12086 	}
12087 
12088 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12089 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12090 					usdt_provider, usdt_name, usdt_cookie);
12091 	err = libbpf_get_error(link);
12092 	if (err)
12093 		return libbpf_err_ptr(err);
12094 	return link;
12095 }
12096 #endif  //HAVE_LIBELF
12097 
12098 #ifdef  HAVE_LIBELF
12099 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12100 {
12101 	char *path = NULL, *provider = NULL, *name = NULL;
12102 	const char *sec_name;
12103 	int n, err;
12104 
12105 	sec_name = bpf_program__section_name(prog);
12106 	if (strcmp(sec_name, "usdt") == 0) {
12107 		/* no auto-attach for just SEC("usdt") */
12108 		*link = NULL;
12109 		return 0;
12110 	}
12111 
12112 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12113 	if (n != 3) {
12114 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12115 			sec_name);
12116 		err = -EINVAL;
12117 	} else {
12118 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12119 						 provider, name, NULL);
12120 		err = libbpf_get_error(*link);
12121 	}
12122 	free(path);
12123 	free(provider);
12124 	free(name);
12125 	return err;
12126 }
12127 #endif  //HAVE_LIBELF
12128 
12129 static int determine_tracepoint_id(const char *tp_category,
12130 				   const char *tp_name)
12131 {
12132 	char file[PATH_MAX];
12133 	int ret;
12134 
12135 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12136 		       tracefs_path(), tp_category, tp_name);
12137 	if (ret < 0)
12138 		return -errno;
12139 	if (ret >= sizeof(file)) {
12140 		pr_debug("tracepoint %s/%s path is too long\n",
12141 			 tp_category, tp_name);
12142 		return -E2BIG;
12143 	}
12144 	return parse_uint_from_file(file, "%d\n");
12145 }
12146 
12147 static int perf_event_open_tracepoint(const char *tp_category,
12148 				      const char *tp_name)
12149 {
12150 	const size_t attr_sz = sizeof(struct perf_event_attr);
12151 	struct perf_event_attr attr;
12152 	char errmsg[STRERR_BUFSIZE];
12153 	int tp_id, pfd, err;
12154 
12155 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12156 	if (tp_id < 0) {
12157 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12158 			tp_category, tp_name,
12159 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12160 		return tp_id;
12161 	}
12162 
12163 	memset(&attr, 0, attr_sz);
12164 	attr.type = PERF_TYPE_TRACEPOINT;
12165 	attr.size = attr_sz;
12166 	attr.config = tp_id;
12167 
12168 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12169 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12170 	if (pfd < 0) {
12171 		err = -errno;
12172 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12173 			tp_category, tp_name,
12174 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12175 		return err;
12176 	}
12177 	return pfd;
12178 }
12179 
12180 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12181 						     const char *tp_category,
12182 						     const char *tp_name,
12183 						     const struct bpf_tracepoint_opts *opts)
12184 {
12185 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12186 	char errmsg[STRERR_BUFSIZE];
12187 	struct bpf_link *link;
12188 	int pfd, err;
12189 
12190 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12191 		return libbpf_err_ptr(-EINVAL);
12192 
12193 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12194 
12195 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12196 	if (pfd < 0) {
12197 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12198 			prog->name, tp_category, tp_name,
12199 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12200 		return libbpf_err_ptr(pfd);
12201 	}
12202 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12203 	err = libbpf_get_error(link);
12204 	if (err) {
12205 		close(pfd);
12206 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12207 			prog->name, tp_category, tp_name,
12208 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12209 		return libbpf_err_ptr(err);
12210 	}
12211 	return link;
12212 }
12213 
12214 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12215 						const char *tp_category,
12216 						const char *tp_name)
12217 {
12218 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12219 }
12220 
12221 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12222 {
12223 	char *sec_name, *tp_cat, *tp_name;
12224 
12225 	*link = NULL;
12226 
12227 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12228 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12229 		return 0;
12230 
12231 	sec_name = strdup(prog->sec_name);
12232 	if (!sec_name)
12233 		return -ENOMEM;
12234 
12235 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12236 	if (str_has_pfx(prog->sec_name, "tp/"))
12237 		tp_cat = sec_name + sizeof("tp/") - 1;
12238 	else
12239 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12240 	tp_name = strchr(tp_cat, '/');
12241 	if (!tp_name) {
12242 		free(sec_name);
12243 		return -EINVAL;
12244 	}
12245 	*tp_name = '\0';
12246 	tp_name++;
12247 
12248 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12249 	free(sec_name);
12250 	return libbpf_get_error(*link);
12251 }
12252 
12253 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12254 						    const char *tp_name)
12255 {
12256 	char errmsg[STRERR_BUFSIZE];
12257 	struct bpf_link *link;
12258 	int prog_fd, pfd;
12259 
12260 	prog_fd = bpf_program__fd(prog);
12261 	if (prog_fd < 0) {
12262 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12263 		return libbpf_err_ptr(-EINVAL);
12264 	}
12265 
12266 	link = calloc(1, sizeof(*link));
12267 	if (!link)
12268 		return libbpf_err_ptr(-ENOMEM);
12269 	link->detach = &bpf_link__detach_fd;
12270 
12271 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12272 	if (pfd < 0) {
12273 		pfd = -errno;
12274 		free(link);
12275 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12276 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12277 		return libbpf_err_ptr(pfd);
12278 	}
12279 	link->fd = pfd;
12280 	return link;
12281 }
12282 
12283 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12284 {
12285 	static const char *const prefixes[] = {
12286 		"raw_tp",
12287 		"raw_tracepoint",
12288 		"raw_tp.w",
12289 		"raw_tracepoint.w",
12290 	};
12291 	size_t i;
12292 	const char *tp_name = NULL;
12293 
12294 	*link = NULL;
12295 
12296 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12297 		size_t pfx_len;
12298 
12299 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12300 			continue;
12301 
12302 		pfx_len = strlen(prefixes[i]);
12303 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12304 		if (prog->sec_name[pfx_len] == '\0')
12305 			return 0;
12306 
12307 		if (prog->sec_name[pfx_len] != '/')
12308 			continue;
12309 
12310 		tp_name = prog->sec_name + pfx_len + 1;
12311 		break;
12312 	}
12313 
12314 	if (!tp_name) {
12315 		pr_warn("prog '%s': invalid section name '%s'\n",
12316 			prog->name, prog->sec_name);
12317 		return -EINVAL;
12318 	}
12319 
12320 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12321 	return libbpf_get_error(*link);
12322 }
12323 
12324 /* Common logic for all BPF program types that attach to a btf_id */
12325 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12326 						   const struct bpf_trace_opts *opts)
12327 {
12328 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12329 	char errmsg[STRERR_BUFSIZE];
12330 	struct bpf_link *link;
12331 	int prog_fd, pfd;
12332 
12333 	if (!OPTS_VALID(opts, bpf_trace_opts))
12334 		return libbpf_err_ptr(-EINVAL);
12335 
12336 	prog_fd = bpf_program__fd(prog);
12337 	if (prog_fd < 0) {
12338 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12339 		return libbpf_err_ptr(-EINVAL);
12340 	}
12341 
12342 	link = calloc(1, sizeof(*link));
12343 	if (!link)
12344 		return libbpf_err_ptr(-ENOMEM);
12345 	link->detach = &bpf_link__detach_fd;
12346 
12347 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12348 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12349 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12350 	if (pfd < 0) {
12351 		pfd = -errno;
12352 		free(link);
12353 		pr_warn("prog '%s': failed to attach: %s\n",
12354 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12355 		return libbpf_err_ptr(pfd);
12356 	}
12357 	link->fd = pfd;
12358 	return link;
12359 }
12360 
12361 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12362 {
12363 	return bpf_program__attach_btf_id(prog, NULL);
12364 }
12365 
12366 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12367 						const struct bpf_trace_opts *opts)
12368 {
12369 	return bpf_program__attach_btf_id(prog, opts);
12370 }
12371 
12372 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12373 {
12374 	return bpf_program__attach_btf_id(prog, NULL);
12375 }
12376 
12377 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12378 {
12379 	*link = bpf_program__attach_trace(prog);
12380 	return libbpf_get_error(*link);
12381 }
12382 
12383 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12384 {
12385 	*link = bpf_program__attach_lsm(prog);
12386 	return libbpf_get_error(*link);
12387 }
12388 
12389 static struct bpf_link *
12390 bpf_program_attach_fd(const struct bpf_program *prog,
12391 		      int target_fd, const char *target_name,
12392 		      const struct bpf_link_create_opts *opts)
12393 {
12394 	enum bpf_attach_type attach_type;
12395 	char errmsg[STRERR_BUFSIZE];
12396 	struct bpf_link *link;
12397 	int prog_fd, link_fd;
12398 
12399 	prog_fd = bpf_program__fd(prog);
12400 	if (prog_fd < 0) {
12401 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12402 		return libbpf_err_ptr(-EINVAL);
12403 	}
12404 
12405 	link = calloc(1, sizeof(*link));
12406 	if (!link)
12407 		return libbpf_err_ptr(-ENOMEM);
12408 	link->detach = &bpf_link__detach_fd;
12409 
12410 	attach_type = bpf_program__expected_attach_type(prog);
12411 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12412 	if (link_fd < 0) {
12413 		link_fd = -errno;
12414 		free(link);
12415 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12416 			prog->name, target_name,
12417 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12418 		return libbpf_err_ptr(link_fd);
12419 	}
12420 	link->fd = link_fd;
12421 	return link;
12422 }
12423 
12424 struct bpf_link *
12425 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12426 {
12427 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12428 }
12429 
12430 struct bpf_link *
12431 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12432 {
12433 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12434 }
12435 
12436 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12437 {
12438 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12439 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12440 }
12441 
12442 struct bpf_link *
12443 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12444 			const struct bpf_tcx_opts *opts)
12445 {
12446 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12447 	__u32 relative_id;
12448 	int relative_fd;
12449 
12450 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12451 		return libbpf_err_ptr(-EINVAL);
12452 
12453 	relative_id = OPTS_GET(opts, relative_id, 0);
12454 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12455 
12456 	/* validate we don't have unexpected combinations of non-zero fields */
12457 	if (!ifindex) {
12458 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12459 			prog->name);
12460 		return libbpf_err_ptr(-EINVAL);
12461 	}
12462 	if (relative_fd && relative_id) {
12463 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12464 			prog->name);
12465 		return libbpf_err_ptr(-EINVAL);
12466 	}
12467 
12468 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12469 	link_create_opts.tcx.relative_fd = relative_fd;
12470 	link_create_opts.tcx.relative_id = relative_id;
12471 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12472 
12473 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12474 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12475 }
12476 
12477 struct bpf_link *
12478 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12479 			   const struct bpf_netkit_opts *opts)
12480 {
12481 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12482 	__u32 relative_id;
12483 	int relative_fd;
12484 
12485 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12486 		return libbpf_err_ptr(-EINVAL);
12487 
12488 	relative_id = OPTS_GET(opts, relative_id, 0);
12489 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12490 
12491 	/* validate we don't have unexpected combinations of non-zero fields */
12492 	if (!ifindex) {
12493 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12494 			prog->name);
12495 		return libbpf_err_ptr(-EINVAL);
12496 	}
12497 	if (relative_fd && relative_id) {
12498 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12499 			prog->name);
12500 		return libbpf_err_ptr(-EINVAL);
12501 	}
12502 
12503 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12504 	link_create_opts.netkit.relative_fd = relative_fd;
12505 	link_create_opts.netkit.relative_id = relative_id;
12506 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12507 
12508 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12509 }
12510 
12511 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12512 					      int target_fd,
12513 					      const char *attach_func_name)
12514 {
12515 	int btf_id;
12516 
12517 	if (!!target_fd != !!attach_func_name) {
12518 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12519 			prog->name);
12520 		return libbpf_err_ptr(-EINVAL);
12521 	}
12522 
12523 	if (prog->type != BPF_PROG_TYPE_EXT) {
12524 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12525 			prog->name);
12526 		return libbpf_err_ptr(-EINVAL);
12527 	}
12528 
12529 	if (target_fd) {
12530 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12531 
12532 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12533 		if (btf_id < 0)
12534 			return libbpf_err_ptr(btf_id);
12535 
12536 		target_opts.target_btf_id = btf_id;
12537 
12538 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12539 					     &target_opts);
12540 	} else {
12541 		/* no target, so use raw_tracepoint_open for compatibility
12542 		 * with old kernels
12543 		 */
12544 		return bpf_program__attach_trace(prog);
12545 	}
12546 }
12547 
12548 struct bpf_link *
12549 bpf_program__attach_iter(const struct bpf_program *prog,
12550 			 const struct bpf_iter_attach_opts *opts)
12551 {
12552 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12553 	char errmsg[STRERR_BUFSIZE];
12554 	struct bpf_link *link;
12555 	int prog_fd, link_fd;
12556 	__u32 target_fd = 0;
12557 
12558 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12559 		return libbpf_err_ptr(-EINVAL);
12560 
12561 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12562 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12563 
12564 	prog_fd = bpf_program__fd(prog);
12565 	if (prog_fd < 0) {
12566 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12567 		return libbpf_err_ptr(-EINVAL);
12568 	}
12569 
12570 	link = calloc(1, sizeof(*link));
12571 	if (!link)
12572 		return libbpf_err_ptr(-ENOMEM);
12573 	link->detach = &bpf_link__detach_fd;
12574 
12575 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12576 				  &link_create_opts);
12577 	if (link_fd < 0) {
12578 		link_fd = -errno;
12579 		free(link);
12580 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12581 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12582 		return libbpf_err_ptr(link_fd);
12583 	}
12584 	link->fd = link_fd;
12585 	return link;
12586 }
12587 
12588 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12589 {
12590 	*link = bpf_program__attach_iter(prog, NULL);
12591 	return libbpf_get_error(*link);
12592 }
12593 
12594 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12595 					       const struct bpf_netfilter_opts *opts)
12596 {
12597 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12598 	struct bpf_link *link;
12599 	int prog_fd, link_fd;
12600 
12601 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12602 		return libbpf_err_ptr(-EINVAL);
12603 
12604 	prog_fd = bpf_program__fd(prog);
12605 	if (prog_fd < 0) {
12606 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12607 		return libbpf_err_ptr(-EINVAL);
12608 	}
12609 
12610 	link = calloc(1, sizeof(*link));
12611 	if (!link)
12612 		return libbpf_err_ptr(-ENOMEM);
12613 
12614 	link->detach = &bpf_link__detach_fd;
12615 
12616 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12617 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12618 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12619 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12620 
12621 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12622 	if (link_fd < 0) {
12623 		char errmsg[STRERR_BUFSIZE];
12624 
12625 		link_fd = -errno;
12626 		free(link);
12627 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12628 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12629 		return libbpf_err_ptr(link_fd);
12630 	}
12631 	link->fd = link_fd;
12632 
12633 	return link;
12634 }
12635 
12636 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12637 {
12638 	struct bpf_link *link = NULL;
12639 	int err;
12640 
12641 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12642 		return libbpf_err_ptr(-EOPNOTSUPP);
12643 
12644 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12645 	if (err)
12646 		return libbpf_err_ptr(err);
12647 
12648 	/* When calling bpf_program__attach() explicitly, auto-attach support
12649 	 * is expected to work, so NULL returned link is considered an error.
12650 	 * This is different for skeleton's attach, see comment in
12651 	 * bpf_object__attach_skeleton().
12652 	 */
12653 	if (!link)
12654 		return libbpf_err_ptr(-EOPNOTSUPP);
12655 
12656 	return link;
12657 }
12658 
12659 struct bpf_link_struct_ops {
12660 	struct bpf_link link;
12661 	int map_fd;
12662 };
12663 
12664 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12665 {
12666 	struct bpf_link_struct_ops *st_link;
12667 	__u32 zero = 0;
12668 
12669 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12670 
12671 	if (st_link->map_fd < 0)
12672 		/* w/o a real link */
12673 		return bpf_map_delete_elem(link->fd, &zero);
12674 
12675 	return close(link->fd);
12676 }
12677 
12678 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12679 {
12680 	struct bpf_link_struct_ops *link;
12681 	__u32 zero = 0;
12682 	int err, fd;
12683 
12684 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12685 		return libbpf_err_ptr(-EINVAL);
12686 
12687 	link = calloc(1, sizeof(*link));
12688 	if (!link)
12689 		return libbpf_err_ptr(-EINVAL);
12690 
12691 	/* kern_vdata should be prepared during the loading phase. */
12692 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12693 	/* It can be EBUSY if the map has been used to create or
12694 	 * update a link before.  We don't allow updating the value of
12695 	 * a struct_ops once it is set.  That ensures that the value
12696 	 * never changed.  So, it is safe to skip EBUSY.
12697 	 */
12698 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12699 		free(link);
12700 		return libbpf_err_ptr(err);
12701 	}
12702 
12703 	link->link.detach = bpf_link__detach_struct_ops;
12704 
12705 	if (!(map->def.map_flags & BPF_F_LINK)) {
12706 		/* w/o a real link */
12707 		link->link.fd = map->fd;
12708 		link->map_fd = -1;
12709 		return &link->link;
12710 	}
12711 
12712 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12713 	if (fd < 0) {
12714 		free(link);
12715 		return libbpf_err_ptr(fd);
12716 	}
12717 
12718 	link->link.fd = fd;
12719 	link->map_fd = map->fd;
12720 
12721 	return &link->link;
12722 }
12723 
12724 /*
12725  * Swap the back struct_ops of a link with a new struct_ops map.
12726  */
12727 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12728 {
12729 	struct bpf_link_struct_ops *st_ops_link;
12730 	__u32 zero = 0;
12731 	int err;
12732 
12733 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12734 		return -EINVAL;
12735 
12736 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12737 	/* Ensure the type of a link is correct */
12738 	if (st_ops_link->map_fd < 0)
12739 		return -EINVAL;
12740 
12741 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12742 	/* It can be EBUSY if the map has been used to create or
12743 	 * update a link before.  We don't allow updating the value of
12744 	 * a struct_ops once it is set.  That ensures that the value
12745 	 * never changed.  So, it is safe to skip EBUSY.
12746 	 */
12747 	if (err && err != -EBUSY)
12748 		return err;
12749 
12750 	err = bpf_link_update(link->fd, map->fd, NULL);
12751 	if (err < 0)
12752 		return err;
12753 
12754 	st_ops_link->map_fd = map->fd;
12755 
12756 	return 0;
12757 }
12758 
12759 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12760 							  void *private_data);
12761 
12762 static enum bpf_perf_event_ret
12763 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12764 		       void **copy_mem, size_t *copy_size,
12765 		       bpf_perf_event_print_t fn, void *private_data)
12766 {
12767 	struct perf_event_mmap_page *header = mmap_mem;
12768 	__u64 data_head = ring_buffer_read_head(header);
12769 	__u64 data_tail = header->data_tail;
12770 	void *base = ((__u8 *)header) + page_size;
12771 	int ret = LIBBPF_PERF_EVENT_CONT;
12772 	struct perf_event_header *ehdr;
12773 	size_t ehdr_size;
12774 
12775 	while (data_head != data_tail) {
12776 		ehdr = base + (data_tail & (mmap_size - 1));
12777 		ehdr_size = ehdr->size;
12778 
12779 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12780 			void *copy_start = ehdr;
12781 			size_t len_first = base + mmap_size - copy_start;
12782 			size_t len_secnd = ehdr_size - len_first;
12783 
12784 			if (*copy_size < ehdr_size) {
12785 				free(*copy_mem);
12786 				*copy_mem = malloc(ehdr_size);
12787 				if (!*copy_mem) {
12788 					*copy_size = 0;
12789 					ret = LIBBPF_PERF_EVENT_ERROR;
12790 					break;
12791 				}
12792 				*copy_size = ehdr_size;
12793 			}
12794 
12795 			memcpy(*copy_mem, copy_start, len_first);
12796 			memcpy(*copy_mem + len_first, base, len_secnd);
12797 			ehdr = *copy_mem;
12798 		}
12799 
12800 		ret = fn(ehdr, private_data);
12801 		data_tail += ehdr_size;
12802 		if (ret != LIBBPF_PERF_EVENT_CONT)
12803 			break;
12804 	}
12805 
12806 	ring_buffer_write_tail(header, data_tail);
12807 	return libbpf_err(ret);
12808 }
12809 
12810 struct perf_buffer;
12811 
12812 struct perf_buffer_params {
12813 	struct perf_event_attr *attr;
12814 	/* if event_cb is specified, it takes precendence */
12815 	perf_buffer_event_fn event_cb;
12816 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12817 	perf_buffer_sample_fn sample_cb;
12818 	perf_buffer_lost_fn lost_cb;
12819 	void *ctx;
12820 	int cpu_cnt;
12821 	int *cpus;
12822 	int *map_keys;
12823 };
12824 
12825 struct perf_cpu_buf {
12826 	struct perf_buffer *pb;
12827 	void *base; /* mmap()'ed memory */
12828 	void *buf; /* for reconstructing segmented data */
12829 	size_t buf_size;
12830 	int fd;
12831 	int cpu;
12832 	int map_key;
12833 };
12834 
12835 struct perf_buffer {
12836 	perf_buffer_event_fn event_cb;
12837 	perf_buffer_sample_fn sample_cb;
12838 	perf_buffer_lost_fn lost_cb;
12839 	void *ctx; /* passed into callbacks */
12840 
12841 	size_t page_size;
12842 	size_t mmap_size;
12843 	struct perf_cpu_buf **cpu_bufs;
12844 	struct epoll_event *events;
12845 	int cpu_cnt; /* number of allocated CPU buffers */
12846 	int epoll_fd; /* perf event FD */
12847 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12848 };
12849 
12850 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12851 				      struct perf_cpu_buf *cpu_buf)
12852 {
12853 	if (!cpu_buf)
12854 		return;
12855 	if (cpu_buf->base &&
12856 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12857 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12858 	if (cpu_buf->fd >= 0) {
12859 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12860 		close(cpu_buf->fd);
12861 	}
12862 	free(cpu_buf->buf);
12863 	free(cpu_buf);
12864 }
12865 
12866 void perf_buffer__free(struct perf_buffer *pb)
12867 {
12868 	int i;
12869 
12870 	if (IS_ERR_OR_NULL(pb))
12871 		return;
12872 	if (pb->cpu_bufs) {
12873 		for (i = 0; i < pb->cpu_cnt; i++) {
12874 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12875 
12876 			if (!cpu_buf)
12877 				continue;
12878 
12879 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12880 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12881 		}
12882 		free(pb->cpu_bufs);
12883 	}
12884 	if (pb->epoll_fd >= 0)
12885 		close(pb->epoll_fd);
12886 	free(pb->events);
12887 	free(pb);
12888 }
12889 
12890 static struct perf_cpu_buf *
12891 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12892 			  int cpu, int map_key)
12893 {
12894 	struct perf_cpu_buf *cpu_buf;
12895 	char msg[STRERR_BUFSIZE];
12896 	int err;
12897 
12898 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12899 	if (!cpu_buf)
12900 		return ERR_PTR(-ENOMEM);
12901 
12902 	cpu_buf->pb = pb;
12903 	cpu_buf->cpu = cpu;
12904 	cpu_buf->map_key = map_key;
12905 
12906 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12907 			      -1, PERF_FLAG_FD_CLOEXEC);
12908 	if (cpu_buf->fd < 0) {
12909 		err = -errno;
12910 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12911 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12912 		goto error;
12913 	}
12914 
12915 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12916 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12917 			     cpu_buf->fd, 0);
12918 	if (cpu_buf->base == MAP_FAILED) {
12919 		cpu_buf->base = NULL;
12920 		err = -errno;
12921 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12922 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12923 		goto error;
12924 	}
12925 
12926 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12927 		err = -errno;
12928 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12929 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12930 		goto error;
12931 	}
12932 
12933 	return cpu_buf;
12934 
12935 error:
12936 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12937 	return (struct perf_cpu_buf *)ERR_PTR(err);
12938 }
12939 
12940 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12941 					      struct perf_buffer_params *p);
12942 
12943 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12944 				     perf_buffer_sample_fn sample_cb,
12945 				     perf_buffer_lost_fn lost_cb,
12946 				     void *ctx,
12947 				     const struct perf_buffer_opts *opts)
12948 {
12949 	const size_t attr_sz = sizeof(struct perf_event_attr);
12950 	struct perf_buffer_params p = {};
12951 	struct perf_event_attr attr;
12952 	__u32 sample_period;
12953 
12954 	if (!OPTS_VALID(opts, perf_buffer_opts))
12955 		return libbpf_err_ptr(-EINVAL);
12956 
12957 	sample_period = OPTS_GET(opts, sample_period, 1);
12958 	if (!sample_period)
12959 		sample_period = 1;
12960 
12961 	memset(&attr, 0, attr_sz);
12962 	attr.size = attr_sz;
12963 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12964 	attr.type = PERF_TYPE_SOFTWARE;
12965 	attr.sample_type = PERF_SAMPLE_RAW;
12966 	attr.sample_period = sample_period;
12967 	attr.wakeup_events = sample_period;
12968 
12969 	p.attr = &attr;
12970 	p.sample_cb = sample_cb;
12971 	p.lost_cb = lost_cb;
12972 	p.ctx = ctx;
12973 
12974 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12975 }
12976 
12977 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12978 					 struct perf_event_attr *attr,
12979 					 perf_buffer_event_fn event_cb, void *ctx,
12980 					 const struct perf_buffer_raw_opts *opts)
12981 {
12982 	struct perf_buffer_params p = {};
12983 
12984 	if (!attr)
12985 		return libbpf_err_ptr(-EINVAL);
12986 
12987 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12988 		return libbpf_err_ptr(-EINVAL);
12989 
12990 	p.attr = attr;
12991 	p.event_cb = event_cb;
12992 	p.ctx = ctx;
12993 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12994 	p.cpus = OPTS_GET(opts, cpus, NULL);
12995 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12996 
12997 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12998 }
12999 
13000 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13001 					      struct perf_buffer_params *p)
13002 {
13003 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13004 	struct bpf_map_info map;
13005 	char msg[STRERR_BUFSIZE];
13006 	struct perf_buffer *pb;
13007 	bool *online = NULL;
13008 	__u32 map_info_len;
13009 	int err, i, j, n;
13010 
13011 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13012 		pr_warn("page count should be power of two, but is %zu\n",
13013 			page_cnt);
13014 		return ERR_PTR(-EINVAL);
13015 	}
13016 
13017 	/* best-effort sanity checks */
13018 	memset(&map, 0, sizeof(map));
13019 	map_info_len = sizeof(map);
13020 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13021 	if (err) {
13022 		err = -errno;
13023 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13024 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13025 		 */
13026 		if (err != -EINVAL) {
13027 			pr_warn("failed to get map info for map FD %d: %s\n",
13028 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13029 			return ERR_PTR(err);
13030 		}
13031 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13032 			 map_fd);
13033 	} else {
13034 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13035 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13036 				map.name);
13037 			return ERR_PTR(-EINVAL);
13038 		}
13039 	}
13040 
13041 	pb = calloc(1, sizeof(*pb));
13042 	if (!pb)
13043 		return ERR_PTR(-ENOMEM);
13044 
13045 	pb->event_cb = p->event_cb;
13046 	pb->sample_cb = p->sample_cb;
13047 	pb->lost_cb = p->lost_cb;
13048 	pb->ctx = p->ctx;
13049 
13050 	pb->page_size = getpagesize();
13051 	pb->mmap_size = pb->page_size * page_cnt;
13052 	pb->map_fd = map_fd;
13053 
13054 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13055 	if (pb->epoll_fd < 0) {
13056 		err = -errno;
13057 		pr_warn("failed to create epoll instance: %s\n",
13058 			libbpf_strerror_r(err, msg, sizeof(msg)));
13059 		goto error;
13060 	}
13061 
13062 	if (p->cpu_cnt > 0) {
13063 		pb->cpu_cnt = p->cpu_cnt;
13064 	} else {
13065 		pb->cpu_cnt = libbpf_num_possible_cpus();
13066 		if (pb->cpu_cnt < 0) {
13067 			err = pb->cpu_cnt;
13068 			goto error;
13069 		}
13070 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13071 			pb->cpu_cnt = map.max_entries;
13072 	}
13073 
13074 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13075 	if (!pb->events) {
13076 		err = -ENOMEM;
13077 		pr_warn("failed to allocate events: out of memory\n");
13078 		goto error;
13079 	}
13080 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13081 	if (!pb->cpu_bufs) {
13082 		err = -ENOMEM;
13083 		pr_warn("failed to allocate buffers: out of memory\n");
13084 		goto error;
13085 	}
13086 
13087 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13088 	if (err) {
13089 		pr_warn("failed to get online CPU mask: %d\n", err);
13090 		goto error;
13091 	}
13092 
13093 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13094 		struct perf_cpu_buf *cpu_buf;
13095 		int cpu, map_key;
13096 
13097 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13098 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13099 
13100 		/* in case user didn't explicitly requested particular CPUs to
13101 		 * be attached to, skip offline/not present CPUs
13102 		 */
13103 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13104 			continue;
13105 
13106 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13107 		if (IS_ERR(cpu_buf)) {
13108 			err = PTR_ERR(cpu_buf);
13109 			goto error;
13110 		}
13111 
13112 		pb->cpu_bufs[j] = cpu_buf;
13113 
13114 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13115 					  &cpu_buf->fd, 0);
13116 		if (err) {
13117 			err = -errno;
13118 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13119 				cpu, map_key, cpu_buf->fd,
13120 				libbpf_strerror_r(err, msg, sizeof(msg)));
13121 			goto error;
13122 		}
13123 
13124 		pb->events[j].events = EPOLLIN;
13125 		pb->events[j].data.ptr = cpu_buf;
13126 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13127 			      &pb->events[j]) < 0) {
13128 			err = -errno;
13129 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13130 				cpu, cpu_buf->fd,
13131 				libbpf_strerror_r(err, msg, sizeof(msg)));
13132 			goto error;
13133 		}
13134 		j++;
13135 	}
13136 	pb->cpu_cnt = j;
13137 	free(online);
13138 
13139 	return pb;
13140 
13141 error:
13142 	free(online);
13143 	if (pb)
13144 		perf_buffer__free(pb);
13145 	return ERR_PTR(err);
13146 }
13147 
13148 struct perf_sample_raw {
13149 	struct perf_event_header header;
13150 	uint32_t size;
13151 	char data[];
13152 };
13153 
13154 struct perf_sample_lost {
13155 	struct perf_event_header header;
13156 	uint64_t id;
13157 	uint64_t lost;
13158 	uint64_t sample_id;
13159 };
13160 
13161 static enum bpf_perf_event_ret
13162 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13163 {
13164 	struct perf_cpu_buf *cpu_buf = ctx;
13165 	struct perf_buffer *pb = cpu_buf->pb;
13166 	void *data = e;
13167 
13168 	/* user wants full control over parsing perf event */
13169 	if (pb->event_cb)
13170 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13171 
13172 	switch (e->type) {
13173 	case PERF_RECORD_SAMPLE: {
13174 		struct perf_sample_raw *s = data;
13175 
13176 		if (pb->sample_cb)
13177 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13178 		break;
13179 	}
13180 	case PERF_RECORD_LOST: {
13181 		struct perf_sample_lost *s = data;
13182 
13183 		if (pb->lost_cb)
13184 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13185 		break;
13186 	}
13187 	default:
13188 		pr_warn("unknown perf sample type %d\n", e->type);
13189 		return LIBBPF_PERF_EVENT_ERROR;
13190 	}
13191 	return LIBBPF_PERF_EVENT_CONT;
13192 }
13193 
13194 static int perf_buffer__process_records(struct perf_buffer *pb,
13195 					struct perf_cpu_buf *cpu_buf)
13196 {
13197 	enum bpf_perf_event_ret ret;
13198 
13199 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13200 				     pb->page_size, &cpu_buf->buf,
13201 				     &cpu_buf->buf_size,
13202 				     perf_buffer__process_record, cpu_buf);
13203 	if (ret != LIBBPF_PERF_EVENT_CONT)
13204 		return ret;
13205 	return 0;
13206 }
13207 
13208 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13209 {
13210 	return pb->epoll_fd;
13211 }
13212 
13213 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13214 {
13215 	int i, cnt, err;
13216 
13217 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13218 	if (cnt < 0)
13219 		return -errno;
13220 
13221 	for (i = 0; i < cnt; i++) {
13222 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13223 
13224 		err = perf_buffer__process_records(pb, cpu_buf);
13225 		if (err) {
13226 			pr_warn("error while processing records: %d\n", err);
13227 			return libbpf_err(err);
13228 		}
13229 	}
13230 	return cnt;
13231 }
13232 
13233 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13234  * manager.
13235  */
13236 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13237 {
13238 	return pb->cpu_cnt;
13239 }
13240 
13241 /*
13242  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13243  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13244  * select()/poll()/epoll() Linux syscalls.
13245  */
13246 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13247 {
13248 	struct perf_cpu_buf *cpu_buf;
13249 
13250 	if (buf_idx >= pb->cpu_cnt)
13251 		return libbpf_err(-EINVAL);
13252 
13253 	cpu_buf = pb->cpu_bufs[buf_idx];
13254 	if (!cpu_buf)
13255 		return libbpf_err(-ENOENT);
13256 
13257 	return cpu_buf->fd;
13258 }
13259 
13260 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13261 {
13262 	struct perf_cpu_buf *cpu_buf;
13263 
13264 	if (buf_idx >= pb->cpu_cnt)
13265 		return libbpf_err(-EINVAL);
13266 
13267 	cpu_buf = pb->cpu_bufs[buf_idx];
13268 	if (!cpu_buf)
13269 		return libbpf_err(-ENOENT);
13270 
13271 	*buf = cpu_buf->base;
13272 	*buf_size = pb->mmap_size;
13273 	return 0;
13274 }
13275 
13276 /*
13277  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13278  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13279  * consume, do nothing and return success.
13280  * Returns:
13281  *   - 0 on success;
13282  *   - <0 on failure.
13283  */
13284 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13285 {
13286 	struct perf_cpu_buf *cpu_buf;
13287 
13288 	if (buf_idx >= pb->cpu_cnt)
13289 		return libbpf_err(-EINVAL);
13290 
13291 	cpu_buf = pb->cpu_bufs[buf_idx];
13292 	if (!cpu_buf)
13293 		return libbpf_err(-ENOENT);
13294 
13295 	return perf_buffer__process_records(pb, cpu_buf);
13296 }
13297 
13298 int perf_buffer__consume(struct perf_buffer *pb)
13299 {
13300 	int i, err;
13301 
13302 	for (i = 0; i < pb->cpu_cnt; i++) {
13303 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13304 
13305 		if (!cpu_buf)
13306 			continue;
13307 
13308 		err = perf_buffer__process_records(pb, cpu_buf);
13309 		if (err) {
13310 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13311 			return libbpf_err(err);
13312 		}
13313 	}
13314 	return 0;
13315 }
13316 
13317 int bpf_program__set_attach_target(struct bpf_program *prog,
13318 				   int attach_prog_fd,
13319 				   const char *attach_func_name)
13320 {
13321 	int btf_obj_fd = 0, btf_id = 0, err;
13322 
13323 	if (!prog || attach_prog_fd < 0)
13324 		return libbpf_err(-EINVAL);
13325 
13326 	if (prog->obj->loaded)
13327 		return libbpf_err(-EINVAL);
13328 
13329 	if (attach_prog_fd && !attach_func_name) {
13330 		/* remember attach_prog_fd and let bpf_program__load() find
13331 		 * BTF ID during the program load
13332 		 */
13333 		prog->attach_prog_fd = attach_prog_fd;
13334 		return 0;
13335 	}
13336 
13337 	if (attach_prog_fd) {
13338 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13339 						 attach_prog_fd);
13340 		if (btf_id < 0)
13341 			return libbpf_err(btf_id);
13342 	} else {
13343 		if (!attach_func_name)
13344 			return libbpf_err(-EINVAL);
13345 
13346 		/* load btf_vmlinux, if not yet */
13347 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13348 		if (err)
13349 			return libbpf_err(err);
13350 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13351 					 prog->expected_attach_type,
13352 					 &btf_obj_fd, &btf_id);
13353 		if (err)
13354 			return libbpf_err(err);
13355 	}
13356 
13357 	prog->attach_btf_id = btf_id;
13358 	prog->attach_btf_obj_fd = btf_obj_fd;
13359 	prog->attach_prog_fd = attach_prog_fd;
13360 	return 0;
13361 }
13362 
13363 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13364 {
13365 	int err = 0, n, len, start, end = -1;
13366 	bool *tmp;
13367 
13368 	*mask = NULL;
13369 	*mask_sz = 0;
13370 
13371 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13372 	while (*s) {
13373 		if (*s == ',' || *s == '\n') {
13374 			s++;
13375 			continue;
13376 		}
13377 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13378 		if (n <= 0 || n > 2) {
13379 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13380 			err = -EINVAL;
13381 			goto cleanup;
13382 		} else if (n == 1) {
13383 			end = start;
13384 		}
13385 		if (start < 0 || start > end) {
13386 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13387 				start, end, s);
13388 			err = -EINVAL;
13389 			goto cleanup;
13390 		}
13391 		tmp = realloc(*mask, end + 1);
13392 		if (!tmp) {
13393 			err = -ENOMEM;
13394 			goto cleanup;
13395 		}
13396 		*mask = tmp;
13397 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13398 		memset(tmp + start, 1, end - start + 1);
13399 		*mask_sz = end + 1;
13400 		s += len;
13401 	}
13402 	if (!*mask_sz) {
13403 		pr_warn("Empty CPU range\n");
13404 		return -EINVAL;
13405 	}
13406 	return 0;
13407 cleanup:
13408 	free(*mask);
13409 	*mask = NULL;
13410 	return err;
13411 }
13412 
13413 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13414 {
13415 	int fd, err = 0, len;
13416 	char buf[128];
13417 
13418 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13419 	if (fd < 0) {
13420 		err = -errno;
13421 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13422 		return err;
13423 	}
13424 	len = read(fd, buf, sizeof(buf));
13425 	close(fd);
13426 	if (len <= 0) {
13427 		err = len ? -errno : -EINVAL;
13428 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13429 		return err;
13430 	}
13431 	if (len >= sizeof(buf)) {
13432 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13433 		return -E2BIG;
13434 	}
13435 	buf[len] = '\0';
13436 
13437 	return parse_cpu_mask_str(buf, mask, mask_sz);
13438 }
13439 
13440 int libbpf_num_possible_cpus(void)
13441 {
13442 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13443 	static int cpus;
13444 	int err, n, i, tmp_cpus;
13445 	bool *mask;
13446 
13447 	tmp_cpus = READ_ONCE(cpus);
13448 	if (tmp_cpus > 0)
13449 		return tmp_cpus;
13450 
13451 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13452 	if (err)
13453 		return libbpf_err(err);
13454 
13455 	tmp_cpus = 0;
13456 	for (i = 0; i < n; i++) {
13457 		if (mask[i])
13458 			tmp_cpus++;
13459 	}
13460 	free(mask);
13461 
13462 	WRITE_ONCE(cpus, tmp_cpus);
13463 	return tmp_cpus;
13464 }
13465 
13466 static int populate_skeleton_maps(const struct bpf_object *obj,
13467 				  struct bpf_map_skeleton *maps,
13468 				  size_t map_cnt)
13469 {
13470 	int i;
13471 
13472 	for (i = 0; i < map_cnt; i++) {
13473 		struct bpf_map **map = maps[i].map;
13474 		const char *name = maps[i].name;
13475 		void **mmaped = maps[i].mmaped;
13476 
13477 		*map = bpf_object__find_map_by_name(obj, name);
13478 		if (!*map) {
13479 			pr_warn("failed to find skeleton map '%s'\n", name);
13480 			return -ESRCH;
13481 		}
13482 
13483 		/* externs shouldn't be pre-setup from user code */
13484 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13485 			*mmaped = (*map)->mmaped;
13486 	}
13487 	return 0;
13488 }
13489 
13490 static int populate_skeleton_progs(const struct bpf_object *obj,
13491 				   struct bpf_prog_skeleton *progs,
13492 				   size_t prog_cnt)
13493 {
13494 	int i;
13495 
13496 	for (i = 0; i < prog_cnt; i++) {
13497 		struct bpf_program **prog = progs[i].prog;
13498 		const char *name = progs[i].name;
13499 
13500 		*prog = bpf_object__find_program_by_name(obj, name);
13501 		if (!*prog) {
13502 			pr_warn("failed to find skeleton program '%s'\n", name);
13503 			return -ESRCH;
13504 		}
13505 	}
13506 	return 0;
13507 }
13508 
13509 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13510 			      const struct bpf_object_open_opts *opts)
13511 {
13512 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13513 		.object_name = s->name,
13514 	);
13515 	struct bpf_object *obj;
13516 	int err;
13517 
13518 	/* Attempt to preserve opts->object_name, unless overriden by user
13519 	 * explicitly. Overwriting object name for skeletons is discouraged,
13520 	 * as it breaks global data maps, because they contain object name
13521 	 * prefix as their own map name prefix. When skeleton is generated,
13522 	 * bpftool is making an assumption that this name will stay the same.
13523 	 */
13524 	if (opts) {
13525 		memcpy(&skel_opts, opts, sizeof(*opts));
13526 		if (!opts->object_name)
13527 			skel_opts.object_name = s->name;
13528 	}
13529 
13530 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13531 	err = libbpf_get_error(obj);
13532 	if (err) {
13533 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13534 			s->name, err);
13535 		return libbpf_err(err);
13536 	}
13537 
13538 	*s->obj = obj;
13539 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13540 	if (err) {
13541 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13542 		return libbpf_err(err);
13543 	}
13544 
13545 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13546 	if (err) {
13547 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13548 		return libbpf_err(err);
13549 	}
13550 
13551 	return 0;
13552 }
13553 
13554 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13555 {
13556 	int err, len, var_idx, i;
13557 	const char *var_name;
13558 	const struct bpf_map *map;
13559 	struct btf *btf;
13560 	__u32 map_type_id;
13561 	const struct btf_type *map_type, *var_type;
13562 	const struct bpf_var_skeleton *var_skel;
13563 	struct btf_var_secinfo *var;
13564 
13565 	if (!s->obj)
13566 		return libbpf_err(-EINVAL);
13567 
13568 	btf = bpf_object__btf(s->obj);
13569 	if (!btf) {
13570 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13571 			bpf_object__name(s->obj));
13572 		return libbpf_err(-errno);
13573 	}
13574 
13575 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13576 	if (err) {
13577 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13578 		return libbpf_err(err);
13579 	}
13580 
13581 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13582 	if (err) {
13583 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13584 		return libbpf_err(err);
13585 	}
13586 
13587 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13588 		var_skel = &s->vars[var_idx];
13589 		map = *var_skel->map;
13590 		map_type_id = bpf_map__btf_value_type_id(map);
13591 		map_type = btf__type_by_id(btf, map_type_id);
13592 
13593 		if (!btf_is_datasec(map_type)) {
13594 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13595 				bpf_map__name(map),
13596 				__btf_kind_str(btf_kind(map_type)));
13597 			return libbpf_err(-EINVAL);
13598 		}
13599 
13600 		len = btf_vlen(map_type);
13601 		var = btf_var_secinfos(map_type);
13602 		for (i = 0; i < len; i++, var++) {
13603 			var_type = btf__type_by_id(btf, var->type);
13604 			var_name = btf__name_by_offset(btf, var_type->name_off);
13605 			if (strcmp(var_name, var_skel->name) == 0) {
13606 				*var_skel->addr = map->mmaped + var->offset;
13607 				break;
13608 			}
13609 		}
13610 	}
13611 	return 0;
13612 }
13613 
13614 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13615 {
13616 	if (!s)
13617 		return;
13618 	free(s->maps);
13619 	free(s->progs);
13620 	free(s->vars);
13621 	free(s);
13622 }
13623 
13624 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13625 {
13626 	int i, err;
13627 
13628 	err = bpf_object__load(*s->obj);
13629 	if (err) {
13630 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13631 		return libbpf_err(err);
13632 	}
13633 
13634 	for (i = 0; i < s->map_cnt; i++) {
13635 		struct bpf_map *map = *s->maps[i].map;
13636 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13637 		int prot, map_fd = bpf_map__fd(map);
13638 		void **mmaped = s->maps[i].mmaped;
13639 
13640 		if (!mmaped)
13641 			continue;
13642 
13643 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13644 			*mmaped = NULL;
13645 			continue;
13646 		}
13647 
13648 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13649 			prot = PROT_READ;
13650 		else
13651 			prot = PROT_READ | PROT_WRITE;
13652 
13653 		/* Remap anonymous mmap()-ed "map initialization image" as
13654 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13655 		 * memory address. This will cause kernel to change process'
13656 		 * page table to point to a different piece of kernel memory,
13657 		 * but from userspace point of view memory address (and its
13658 		 * contents, being identical at this point) will stay the
13659 		 * same. This mapping will be released by bpf_object__close()
13660 		 * as per normal clean up procedure, so we don't need to worry
13661 		 * about it from skeleton's clean up perspective.
13662 		 */
13663 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13664 		if (*mmaped == MAP_FAILED) {
13665 			err = -errno;
13666 			*mmaped = NULL;
13667 			pr_warn("failed to re-mmap() map '%s': %d\n",
13668 				 bpf_map__name(map), err);
13669 			return libbpf_err(err);
13670 		}
13671 	}
13672 
13673 	return 0;
13674 }
13675 
13676 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13677 {
13678 	int i, err;
13679 
13680 	for (i = 0; i < s->prog_cnt; i++) {
13681 		struct bpf_program *prog = *s->progs[i].prog;
13682 		struct bpf_link **link = s->progs[i].link;
13683 
13684 		if (!prog->autoload || !prog->autoattach)
13685 			continue;
13686 
13687 		/* auto-attaching not supported for this program */
13688 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13689 			continue;
13690 
13691 		/* if user already set the link manually, don't attempt auto-attach */
13692 		if (*link)
13693 			continue;
13694 
13695 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13696 		if (err) {
13697 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13698 				bpf_program__name(prog), err);
13699 			return libbpf_err(err);
13700 		}
13701 
13702 		/* It's possible that for some SEC() definitions auto-attach
13703 		 * is supported in some cases (e.g., if definition completely
13704 		 * specifies target information), but is not in other cases.
13705 		 * SEC("uprobe") is one such case. If user specified target
13706 		 * binary and function name, such BPF program can be
13707 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13708 		 * attach to fail. It should just be skipped.
13709 		 * attach_fn signals such case with returning 0 (no error) and
13710 		 * setting link to NULL.
13711 		 */
13712 	}
13713 
13714 	return 0;
13715 }
13716 
13717 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13718 {
13719 	int i;
13720 
13721 	for (i = 0; i < s->prog_cnt; i++) {
13722 		struct bpf_link **link = s->progs[i].link;
13723 
13724 		bpf_link__destroy(*link);
13725 		*link = NULL;
13726 	}
13727 }
13728 
13729 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13730 {
13731 	if (!s)
13732 		return;
13733 
13734 	if (s->progs)
13735 		bpf_object__detach_skeleton(s);
13736 	if (s->obj)
13737 		bpf_object__close(*s->obj);
13738 	free(s->maps);
13739 	free(s->progs);
13740 	free(s);
13741 }
13742