1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #ifdef HAVE_LIBELF
47 #include <libelf.h>
48 #include <gelf.h>
49 #endif
50
51 #include <zlib.h>
52
53 #include "libbpf.h"
54 #include "bpf.h"
55 #include "btf.h"
56 #include "str_error.h"
57 #include "libbpf_internal.h"
58 #include "hashmap.h"
59 #include "bpf_gen_internal.h"
60 #include "zip.h"
61
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC 0xcafe4a11
64 #endif
65
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69 * compilation if user enables corresponding warning. Disable it explicitly.
70 */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73 #define __printf(a, b) __attribute__((format(printf, a, b)))
74
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
77
78 static const char * const attach_type_name[] = {
79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
84 [BPF_CGROUP_DEVICE] = "cgroup_device",
85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
111 [BPF_LIRC_MODE2] = "lirc_mode2",
112 [BPF_FLOW_DISSECTOR] = "flow_dissector",
113 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
114 [BPF_TRACE_FENTRY] = "trace_fentry",
115 [BPF_TRACE_FEXIT] = "trace_fexit",
116 [BPF_MODIFY_RETURN] = "modify_return",
117 [BPF_LSM_MAC] = "lsm_mac",
118 [BPF_LSM_CGROUP] = "lsm_cgroup",
119 [BPF_SK_LOOKUP] = "sk_lookup",
120 [BPF_TRACE_ITER] = "trace_iter",
121 [BPF_XDP_DEVMAP] = "xdp_devmap",
122 [BPF_XDP_CPUMAP] = "xdp_cpumap",
123 [BPF_XDP] = "xdp",
124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
126 [BPF_PERF_EVENT] = "perf_event",
127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
128 [BPF_STRUCT_OPS] = "struct_ops",
129 [BPF_NETFILTER] = "netfilter",
130 [BPF_TCX_INGRESS] = "tcx_ingress",
131 [BPF_TCX_EGRESS] = "tcx_egress",
132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
133 [BPF_NETKIT_PRIMARY] = "netkit_primary",
134 [BPF_NETKIT_PEER] = "netkit_peer",
135 };
136
137 static const char * const link_type_name[] = {
138 [BPF_LINK_TYPE_UNSPEC] = "unspec",
139 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
140 [BPF_LINK_TYPE_TRACING] = "tracing",
141 [BPF_LINK_TYPE_CGROUP] = "cgroup",
142 [BPF_LINK_TYPE_ITER] = "iter",
143 [BPF_LINK_TYPE_NETNS] = "netns",
144 [BPF_LINK_TYPE_XDP] = "xdp",
145 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
146 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
147 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
148 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
149 [BPF_LINK_TYPE_TCX] = "tcx",
150 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
151 [BPF_LINK_TYPE_NETKIT] = "netkit",
152 };
153
154 static const char * const map_type_name[] = {
155 [BPF_MAP_TYPE_UNSPEC] = "unspec",
156 [BPF_MAP_TYPE_HASH] = "hash",
157 [BPF_MAP_TYPE_ARRAY] = "array",
158 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
159 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
160 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
161 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
162 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
163 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
164 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
165 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
166 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
167 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
168 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
169 [BPF_MAP_TYPE_DEVMAP] = "devmap",
170 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
171 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
172 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
173 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
174 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
175 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
176 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
177 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
178 [BPF_MAP_TYPE_QUEUE] = "queue",
179 [BPF_MAP_TYPE_STACK] = "stack",
180 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
181 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
182 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
183 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
184 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
185 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
186 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
187 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
188 };
189
190 static const char * const prog_type_name[] = {
191 [BPF_PROG_TYPE_UNSPEC] = "unspec",
192 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
193 [BPF_PROG_TYPE_KPROBE] = "kprobe",
194 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
195 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
196 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
197 [BPF_PROG_TYPE_XDP] = "xdp",
198 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
199 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
200 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
201 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
202 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
203 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
204 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
205 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
206 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
207 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
208 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
209 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
210 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
211 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
212 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
213 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
214 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
215 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
216 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
217 [BPF_PROG_TYPE_TRACING] = "tracing",
218 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
219 [BPF_PROG_TYPE_EXT] = "ext",
220 [BPF_PROG_TYPE_LSM] = "lsm",
221 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
222 [BPF_PROG_TYPE_SYSCALL] = "syscall",
223 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
224 };
225
__base_pr(enum libbpf_print_level level,const char * format,va_list args)226 static int __base_pr(enum libbpf_print_level level, const char *format,
227 va_list args)
228 {
229 if (level == LIBBPF_DEBUG)
230 return 0;
231
232 return vfprintf(stderr, format, args);
233 }
234
235 static libbpf_print_fn_t __libbpf_pr = __base_pr;
236
libbpf_set_print(libbpf_print_fn_t fn)237 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
238 {
239 libbpf_print_fn_t old_print_fn;
240
241 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
242
243 return old_print_fn;
244 }
245
246 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)247 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
248 {
249 va_list args;
250 int old_errno;
251 libbpf_print_fn_t print_fn;
252
253 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
254 if (!print_fn)
255 return;
256
257 old_errno = errno;
258
259 va_start(args, format);
260 __libbpf_pr(level, format, args);
261 va_end(args);
262
263 errno = old_errno;
264 }
265
pr_perm_msg(int err)266 static void pr_perm_msg(int err)
267 {
268 struct rlimit limit;
269 char buf[100];
270
271 if (err != -EPERM || geteuid() != 0)
272 return;
273
274 err = getrlimit(RLIMIT_MEMLOCK, &limit);
275 if (err)
276 return;
277
278 if (limit.rlim_cur == RLIM_INFINITY)
279 return;
280
281 if (limit.rlim_cur < 1024)
282 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
283 else if (limit.rlim_cur < 1024*1024)
284 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
285 else
286 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
287
288 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
289 buf);
290 }
291
292 #define STRERR_BUFSIZE 128
293
294 /* Copied from tools/perf/util/util.h */
295 #ifndef zfree
296 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
297 #endif
298
299 #ifndef zclose
300 # define zclose(fd) ({ \
301 int ___err = 0; \
302 if ((fd) >= 0) \
303 ___err = close((fd)); \
304 fd = -1; \
305 ___err; })
306 #endif
307
ptr_to_u64(const void * ptr)308 static inline __u64 ptr_to_u64(const void *ptr)
309 {
310 return (__u64) (unsigned long) ptr;
311 }
312
libbpf_set_strict_mode(enum libbpf_strict_mode mode)313 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
314 {
315 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
316 return 0;
317 }
318
libbpf_major_version(void)319 __u32 libbpf_major_version(void)
320 {
321 return LIBBPF_MAJOR_VERSION;
322 }
323
libbpf_minor_version(void)324 __u32 libbpf_minor_version(void)
325 {
326 return LIBBPF_MINOR_VERSION;
327 }
328
libbpf_version_string(void)329 const char *libbpf_version_string(void)
330 {
331 #define __S(X) #X
332 #define _S(X) __S(X)
333 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
334 #undef _S
335 #undef __S
336 }
337
338 enum reloc_type {
339 RELO_LD64,
340 RELO_CALL,
341 RELO_DATA,
342 RELO_EXTERN_LD64,
343 RELO_EXTERN_CALL,
344 RELO_SUBPROG_ADDR,
345 RELO_CORE,
346 };
347
348 struct reloc_desc {
349 enum reloc_type type;
350 int insn_idx;
351 union {
352 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
353 struct {
354 int map_idx;
355 int sym_off;
356 int ext_idx;
357 };
358 };
359 };
360
361 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
362 enum sec_def_flags {
363 SEC_NONE = 0,
364 /* expected_attach_type is optional, if kernel doesn't support that */
365 SEC_EXP_ATTACH_OPT = 1,
366 /* legacy, only used by libbpf_get_type_names() and
367 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
368 * This used to be associated with cgroup (and few other) BPF programs
369 * that were attachable through BPF_PROG_ATTACH command. Pretty
370 * meaningless nowadays, though.
371 */
372 SEC_ATTACHABLE = 2,
373 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
374 /* attachment target is specified through BTF ID in either kernel or
375 * other BPF program's BTF object
376 */
377 SEC_ATTACH_BTF = 4,
378 /* BPF program type allows sleeping/blocking in kernel */
379 SEC_SLEEPABLE = 8,
380 /* BPF program support non-linear XDP buffer */
381 SEC_XDP_FRAGS = 16,
382 /* Setup proper attach type for usdt probes. */
383 SEC_USDT = 32,
384 };
385
386 struct bpf_sec_def {
387 char *sec;
388 enum bpf_prog_type prog_type;
389 enum bpf_attach_type expected_attach_type;
390 long cookie;
391 int handler_id;
392
393 libbpf_prog_setup_fn_t prog_setup_fn;
394 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
395 libbpf_prog_attach_fn_t prog_attach_fn;
396 };
397
398 /*
399 * bpf_prog should be a better name but it has been used in
400 * linux/filter.h.
401 */
402 struct bpf_program {
403 char *name;
404 char *sec_name;
405 size_t sec_idx;
406 const struct bpf_sec_def *sec_def;
407 /* this program's instruction offset (in number of instructions)
408 * within its containing ELF section
409 */
410 size_t sec_insn_off;
411 /* number of original instructions in ELF section belonging to this
412 * program, not taking into account subprogram instructions possible
413 * appended later during relocation
414 */
415 size_t sec_insn_cnt;
416 /* Offset (in number of instructions) of the start of instruction
417 * belonging to this BPF program within its containing main BPF
418 * program. For the entry-point (main) BPF program, this is always
419 * zero. For a sub-program, this gets reset before each of main BPF
420 * programs are processed and relocated and is used to determined
421 * whether sub-program was already appended to the main program, and
422 * if yes, at which instruction offset.
423 */
424 size_t sub_insn_off;
425
426 /* instructions that belong to BPF program; insns[0] is located at
427 * sec_insn_off instruction within its ELF section in ELF file, so
428 * when mapping ELF file instruction index to the local instruction,
429 * one needs to subtract sec_insn_off; and vice versa.
430 */
431 struct bpf_insn *insns;
432 /* actual number of instruction in this BPF program's image; for
433 * entry-point BPF programs this includes the size of main program
434 * itself plus all the used sub-programs, appended at the end
435 */
436 size_t insns_cnt;
437
438 struct reloc_desc *reloc_desc;
439 int nr_reloc;
440
441 /* BPF verifier log settings */
442 char *log_buf;
443 size_t log_size;
444 __u32 log_level;
445
446 struct bpf_object *obj;
447
448 int fd;
449 bool autoload;
450 bool autoattach;
451 bool sym_global;
452 bool mark_btf_static;
453 enum bpf_prog_type type;
454 enum bpf_attach_type expected_attach_type;
455 int exception_cb_idx;
456
457 int prog_ifindex;
458 __u32 attach_btf_obj_fd;
459 __u32 attach_btf_id;
460 __u32 attach_prog_fd;
461
462 void *func_info;
463 __u32 func_info_rec_size;
464 __u32 func_info_cnt;
465
466 void *line_info;
467 __u32 line_info_rec_size;
468 __u32 line_info_cnt;
469 __u32 prog_flags;
470 };
471
472 struct bpf_struct_ops {
473 const char *tname;
474 const struct btf_type *type;
475 struct bpf_program **progs;
476 __u32 *kern_func_off;
477 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
478 void *data;
479 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
480 * btf_vmlinux's format.
481 * struct bpf_struct_ops_tcp_congestion_ops {
482 * [... some other kernel fields ...]
483 * struct tcp_congestion_ops data;
484 * }
485 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
486 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
487 * from "data".
488 */
489 void *kern_vdata;
490 __u32 type_id;
491 };
492
493 #define DATA_SEC ".data"
494 #define BSS_SEC ".bss"
495 #define RODATA_SEC ".rodata"
496 #define KCONFIG_SEC ".kconfig"
497 #define KSYMS_SEC ".ksyms"
498 #define STRUCT_OPS_SEC ".struct_ops"
499 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
500
501 enum libbpf_map_type {
502 LIBBPF_MAP_UNSPEC,
503 LIBBPF_MAP_DATA,
504 LIBBPF_MAP_BSS,
505 LIBBPF_MAP_RODATA,
506 LIBBPF_MAP_KCONFIG,
507 };
508
509 struct bpf_map_def {
510 unsigned int type;
511 unsigned int key_size;
512 unsigned int value_size;
513 unsigned int max_entries;
514 unsigned int map_flags;
515 };
516
517 struct bpf_map {
518 struct bpf_object *obj;
519 char *name;
520 /* real_name is defined for special internal maps (.rodata*,
521 * .data*, .bss, .kconfig) and preserves their original ELF section
522 * name. This is important to be able to find corresponding BTF
523 * DATASEC information.
524 */
525 char *real_name;
526 int fd;
527 int sec_idx;
528 size_t sec_offset;
529 int map_ifindex;
530 int inner_map_fd;
531 struct bpf_map_def def;
532 __u32 numa_node;
533 __u32 btf_var_idx;
534 __u32 btf_key_type_id;
535 __u32 btf_value_type_id;
536 __u32 btf_vmlinux_value_type_id;
537 enum libbpf_map_type libbpf_type;
538 void *mmaped;
539 struct bpf_struct_ops *st_ops;
540 struct bpf_map *inner_map;
541 void **init_slots;
542 int init_slots_sz;
543 char *pin_path;
544 bool pinned;
545 bool reused;
546 bool autocreate;
547 __u64 map_extra;
548 };
549
550 enum extern_type {
551 EXT_UNKNOWN,
552 EXT_KCFG,
553 EXT_KSYM,
554 };
555
556 enum kcfg_type {
557 KCFG_UNKNOWN,
558 KCFG_CHAR,
559 KCFG_BOOL,
560 KCFG_INT,
561 KCFG_TRISTATE,
562 KCFG_CHAR_ARR,
563 };
564
565 struct extern_desc {
566 enum extern_type type;
567 int sym_idx;
568 int btf_id;
569 int sec_btf_id;
570 const char *name;
571 char *essent_name;
572 bool is_set;
573 bool is_weak;
574 union {
575 struct {
576 enum kcfg_type type;
577 int sz;
578 int align;
579 int data_off;
580 bool is_signed;
581 } kcfg;
582 struct {
583 unsigned long long addr;
584
585 /* target btf_id of the corresponding kernel var. */
586 int kernel_btf_obj_fd;
587 int kernel_btf_id;
588
589 /* local btf_id of the ksym extern's type. */
590 __u32 type_id;
591 /* BTF fd index to be patched in for insn->off, this is
592 * 0 for vmlinux BTF, index in obj->fd_array for module
593 * BTF
594 */
595 __s16 btf_fd_idx;
596 } ksym;
597 };
598 };
599
600 struct module_btf {
601 struct btf *btf;
602 char *name;
603 __u32 id;
604 int fd;
605 int fd_array_idx;
606 };
607
608 enum sec_type {
609 SEC_UNUSED = 0,
610 SEC_RELO,
611 SEC_BSS,
612 SEC_DATA,
613 SEC_RODATA,
614 };
615
616 struct elf_sec_desc {
617 enum sec_type sec_type;
618 #if defined HAVE_LIBELF
619 Elf64_Shdr *shdr;
620 #elif defined HAVE_ELFIO
621 psection_t psection;
622 Elf_Data realdata;
623 #endif
624 Elf_Data *data;
625 };
626
627 struct elf_state {
628 int fd;
629 const void *obj_buf;
630 size_t obj_buf_sz;
631 #if defined HAVE_LIBELF
632 Elf *elf;
633 #elif defined HAVE_ELFIO
634 pelfio_t elf;
635 Elf64_Ehdr eheader;
636 pstring_t shstring;
637 pstring_t strstring;
638 Elf_Data realsymbols;
639 Elf_Data realst_ops_data;
640 #endif
641 Elf64_Ehdr *ehdr;
642 Elf_Data *symbols;
643 Elf_Data *st_ops_data;
644 Elf_Data *st_ops_link_data;
645 size_t shstrndx; /* section index for section name strings */
646 size_t strtabidx;
647 struct elf_sec_desc *secs;
648 size_t sec_cnt;
649 int btf_maps_shndx;
650 __u32 btf_maps_sec_btf_id;
651 int text_shndx;
652 int symbols_shndx;
653 int st_ops_shndx;
654 int st_ops_link_shndx;
655 };
656
657 struct usdt_manager;
658
659 struct bpf_object {
660 char name[BPF_OBJ_NAME_LEN];
661 char license[64];
662 __u32 kern_version;
663
664 struct bpf_program *programs;
665 size_t nr_programs;
666 struct bpf_map *maps;
667 size_t nr_maps;
668 size_t maps_cap;
669
670 char *kconfig;
671 struct extern_desc *externs;
672 int nr_extern;
673 int kconfig_map_idx;
674
675 bool loaded;
676 bool has_subcalls;
677 bool has_rodata;
678
679 struct bpf_gen *gen_loader;
680
681 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
682 struct elf_state efile;
683
684 struct btf *btf;
685 struct btf_ext *btf_ext;
686
687 /* Parse and load BTF vmlinux if any of the programs in the object need
688 * it at load time.
689 */
690 struct btf *btf_vmlinux;
691 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
692 * override for vmlinux BTF.
693 */
694 char *btf_custom_path;
695 /* vmlinux BTF override for CO-RE relocations */
696 struct btf *btf_vmlinux_override;
697 /* Lazily initialized kernel module BTFs */
698 struct module_btf *btf_modules;
699 bool btf_modules_loaded;
700 size_t btf_module_cnt;
701 size_t btf_module_cap;
702
703 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
704 char *log_buf;
705 size_t log_size;
706 __u32 log_level;
707
708 int *fd_array;
709 size_t fd_array_cap;
710 size_t fd_array_cnt;
711
712 struct usdt_manager *usdt_man;
713
714 char path[];
715 };
716
717 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
718 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
719 #ifdef HAVE_LIBELF
720 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
721 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
722 #endif
723 #if defined HAVE_LIBELF
724 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
725 #elif defined HAVE_ELFIO
726 static Elf64_Shdr *elf_sec_hdr_by_idx(const struct bpf_object *obj, size_t idx, Elf64_Shdr *sheader);
727 #endif
728 #if defined HAVE_LIBELF
729 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
730 #elif defined HAVE_ELFIO
731 static const char *elf_sec_name_by_idx(const struct bpf_object *obj, size_t idx);
732 #endif
733 #if defined HAVE_LIBELF
734 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
735 #elif defined HAVE_ELFIO
736 static Elf_Data *elf_sec_data_by_name(const struct bpf_object *obj, const char *name, Elf_Data *data);
737 static Elf_Data *elf_sec_data_by_idx(const struct bpf_object *obj, size_t idx, Elf_Data *data);
738 #endif
739 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
740 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
741
bpf_program__unload(struct bpf_program * prog)742 void bpf_program__unload(struct bpf_program *prog)
743 {
744 if (!prog)
745 return;
746
747 zclose(prog->fd);
748
749 zfree(&prog->func_info);
750 zfree(&prog->line_info);
751 }
752
bpf_program__exit(struct bpf_program * prog)753 static void bpf_program__exit(struct bpf_program *prog)
754 {
755 if (!prog)
756 return;
757
758 bpf_program__unload(prog);
759 zfree(&prog->name);
760 zfree(&prog->sec_name);
761 zfree(&prog->insns);
762 zfree(&prog->reloc_desc);
763
764 prog->nr_reloc = 0;
765 prog->insns_cnt = 0;
766 prog->sec_idx = -1;
767 }
768
insn_is_subprog_call(const struct bpf_insn * insn)769 static bool insn_is_subprog_call(const struct bpf_insn *insn)
770 {
771 return BPF_CLASS(insn->code) == BPF_JMP &&
772 BPF_OP(insn->code) == BPF_CALL &&
773 BPF_SRC(insn->code) == BPF_K &&
774 insn->src_reg == BPF_PSEUDO_CALL &&
775 insn->dst_reg == 0 &&
776 insn->off == 0;
777 }
778
is_call_insn(const struct bpf_insn * insn)779 static bool is_call_insn(const struct bpf_insn *insn)
780 {
781 return insn->code == (BPF_JMP | BPF_CALL);
782 }
783
insn_is_pseudo_func(struct bpf_insn * insn)784 static bool insn_is_pseudo_func(struct bpf_insn *insn)
785 {
786 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
787 }
788
789 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)790 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
791 const char *name, size_t sec_idx, const char *sec_name,
792 size_t sec_off, void *insn_data, size_t insn_data_sz)
793 {
794 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
795 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
796 sec_name, name, sec_off, insn_data_sz);
797 return -EINVAL;
798 }
799
800 memset(prog, 0, sizeof(*prog));
801 prog->obj = obj;
802
803 prog->sec_idx = sec_idx;
804 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
805 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
806 /* insns_cnt can later be increased by appending used subprograms */
807 prog->insns_cnt = prog->sec_insn_cnt;
808
809 prog->type = BPF_PROG_TYPE_UNSPEC;
810 prog->fd = -1;
811 prog->exception_cb_idx = -1;
812
813 /* libbpf's convention for SEC("?abc...") is that it's just like
814 * SEC("abc...") but the corresponding bpf_program starts out with
815 * autoload set to false.
816 */
817 if (sec_name[0] == '?') {
818 prog->autoload = false;
819 /* from now on forget there was ? in section name */
820 sec_name++;
821 } else {
822 prog->autoload = true;
823 }
824
825 prog->autoattach = true;
826
827 /* inherit object's log_level */
828 prog->log_level = obj->log_level;
829
830 prog->sec_name = strdup(sec_name);
831 if (!prog->sec_name)
832 goto errout;
833
834 prog->name = strdup(name);
835 if (!prog->name)
836 goto errout;
837
838 prog->insns = malloc(insn_data_sz);
839 if (!prog->insns)
840 goto errout;
841 memcpy(prog->insns, insn_data, insn_data_sz);
842
843 return 0;
844 errout:
845 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
846 bpf_program__exit(prog);
847 return -ENOMEM;
848 }
849
850 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)851 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
852 const char *sec_name, int sec_idx)
853 {
854 Elf_Data *symbols = obj->efile.symbols;
855 struct bpf_program *prog, *progs;
856 void *data = sec_data->d_buf;
857 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
858 int nr_progs, err, i;
859 const char *name;
860 Elf64_Sym *sym;
861
862 progs = obj->programs;
863 nr_progs = obj->nr_programs;
864 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
865
866 for (i = 0; i < nr_syms; i++) {
867 sym = elf_sym_by_idx(obj, i);
868
869 if (sym->st_shndx != sec_idx)
870 continue;
871 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
872 continue;
873
874 prog_sz = sym->st_size;
875 sec_off = sym->st_value;
876
877 name = elf_sym_str(obj, sym->st_name);
878 if (!name) {
879 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
880 sec_name, sec_off);
881 return -LIBBPF_ERRNO__FORMAT;
882 }
883
884 if (sec_off + prog_sz > sec_sz) {
885 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
886 sec_name, sec_off);
887 return -LIBBPF_ERRNO__FORMAT;
888 }
889
890 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
891 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
892 return -ENOTSUP;
893 }
894
895 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
896 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
897
898 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
899 if (!progs) {
900 /*
901 * In this case the original obj->programs
902 * is still valid, so don't need special treat for
903 * bpf_close_object().
904 */
905 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
906 sec_name, name);
907 return -ENOMEM;
908 }
909 obj->programs = progs;
910
911 prog = &progs[nr_progs];
912
913 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
914 sec_off, data + sec_off, prog_sz);
915 if (err)
916 return err;
917
918 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
919 prog->sym_global = true;
920
921 /* if function is a global/weak symbol, but has restricted
922 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
923 * as static to enable more permissive BPF verification mode
924 * with more outside context available to BPF verifier
925 */
926 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
927 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
928 prog->mark_btf_static = true;
929
930 nr_progs++;
931 obj->nr_programs = nr_progs;
932 }
933
934 return 0;
935 }
936
937 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)938 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
939 {
940 struct btf_member *m;
941 int i;
942
943 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
944 if (btf_member_bit_offset(t, i) == bit_offset)
945 return m;
946 }
947
948 return NULL;
949 }
950
951 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)952 find_member_by_name(const struct btf *btf, const struct btf_type *t,
953 const char *name)
954 {
955 struct btf_member *m;
956 int i;
957
958 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
959 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
960 return m;
961 }
962
963 return NULL;
964 }
965
966 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
967 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
968 const char *name, __u32 kind);
969
970 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)971 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
972 const struct btf_type **type, __u32 *type_id,
973 const struct btf_type **vtype, __u32 *vtype_id,
974 const struct btf_member **data_member)
975 {
976 const struct btf_type *kern_type, *kern_vtype;
977 const struct btf_member *kern_data_member;
978 __s32 kern_vtype_id, kern_type_id;
979 __u32 i;
980
981 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
982 if (kern_type_id < 0) {
983 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
984 tname);
985 return kern_type_id;
986 }
987 kern_type = btf__type_by_id(btf, kern_type_id);
988
989 /* Find the corresponding "map_value" type that will be used
990 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
991 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
992 * btf_vmlinux.
993 */
994 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
995 tname, BTF_KIND_STRUCT);
996 if (kern_vtype_id < 0) {
997 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
998 STRUCT_OPS_VALUE_PREFIX, tname);
999 return kern_vtype_id;
1000 }
1001 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1002
1003 /* Find "struct tcp_congestion_ops" from
1004 * struct bpf_struct_ops_tcp_congestion_ops {
1005 * [ ... ]
1006 * struct tcp_congestion_ops data;
1007 * }
1008 */
1009 kern_data_member = btf_members(kern_vtype);
1010 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1011 if (kern_data_member->type == kern_type_id)
1012 break;
1013 }
1014 if (i == btf_vlen(kern_vtype)) {
1015 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1016 tname, STRUCT_OPS_VALUE_PREFIX, tname);
1017 return -EINVAL;
1018 }
1019
1020 *type = kern_type;
1021 *type_id = kern_type_id;
1022 *vtype = kern_vtype;
1023 *vtype_id = kern_vtype_id;
1024 *data_member = kern_data_member;
1025
1026 return 0;
1027 }
1028
bpf_map__is_struct_ops(const struct bpf_map * map)1029 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1030 {
1031 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1032 }
1033
1034 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)1035 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1036 const struct btf *btf,
1037 const struct btf *kern_btf)
1038 {
1039 const struct btf_member *member, *kern_member, *kern_data_member;
1040 const struct btf_type *type, *kern_type, *kern_vtype;
1041 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1042 struct bpf_struct_ops *st_ops;
1043 void *data, *kern_data;
1044 const char *tname;
1045 int err;
1046
1047 st_ops = map->st_ops;
1048 type = st_ops->type;
1049 tname = st_ops->tname;
1050 err = find_struct_ops_kern_types(kern_btf, tname,
1051 &kern_type, &kern_type_id,
1052 &kern_vtype, &kern_vtype_id,
1053 &kern_data_member);
1054 if (err)
1055 return err;
1056
1057 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1058 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1059
1060 map->def.value_size = kern_vtype->size;
1061 map->btf_vmlinux_value_type_id = kern_vtype_id;
1062
1063 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1064 if (!st_ops->kern_vdata)
1065 return -ENOMEM;
1066
1067 data = st_ops->data;
1068 kern_data_off = kern_data_member->offset / 8;
1069 kern_data = st_ops->kern_vdata + kern_data_off;
1070
1071 member = btf_members(type);
1072 for (i = 0; i < btf_vlen(type); i++, member++) {
1073 const struct btf_type *mtype, *kern_mtype;
1074 __u32 mtype_id, kern_mtype_id;
1075 void *mdata, *kern_mdata;
1076 __s64 msize, kern_msize;
1077 __u32 moff, kern_moff;
1078 __u32 kern_member_idx;
1079 const char *mname;
1080
1081 mname = btf__name_by_offset(btf, member->name_off);
1082 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1083 if (!kern_member) {
1084 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1085 map->name, mname);
1086 return -ENOTSUP;
1087 }
1088
1089 kern_member_idx = kern_member - btf_members(kern_type);
1090 if (btf_member_bitfield_size(type, i) ||
1091 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1092 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1093 map->name, mname);
1094 return -ENOTSUP;
1095 }
1096
1097 moff = member->offset / 8;
1098 kern_moff = kern_member->offset / 8;
1099
1100 mdata = data + moff;
1101 kern_mdata = kern_data + kern_moff;
1102
1103 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1104 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1105 &kern_mtype_id);
1106 if (BTF_INFO_KIND(mtype->info) !=
1107 BTF_INFO_KIND(kern_mtype->info)) {
1108 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1109 map->name, mname, BTF_INFO_KIND(mtype->info),
1110 BTF_INFO_KIND(kern_mtype->info));
1111 return -ENOTSUP;
1112 }
1113
1114 if (btf_is_ptr(mtype)) {
1115 struct bpf_program *prog;
1116
1117 prog = st_ops->progs[i];
1118 if (!prog)
1119 continue;
1120
1121 kern_mtype = skip_mods_and_typedefs(kern_btf,
1122 kern_mtype->type,
1123 &kern_mtype_id);
1124
1125 /* mtype->type must be a func_proto which was
1126 * guaranteed in bpf_object__collect_st_ops_relos(),
1127 * so only check kern_mtype for func_proto here.
1128 */
1129 if (!btf_is_func_proto(kern_mtype)) {
1130 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1131 map->name, mname);
1132 return -ENOTSUP;
1133 }
1134
1135 prog->attach_btf_id = kern_type_id;
1136 prog->expected_attach_type = kern_member_idx;
1137
1138 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1139
1140 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1141 map->name, mname, prog->name, moff,
1142 kern_moff);
1143
1144 continue;
1145 }
1146
1147 msize = btf__resolve_size(btf, mtype_id);
1148 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1149 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1150 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1151 map->name, mname, (ssize_t)msize,
1152 (ssize_t)kern_msize);
1153 return -ENOTSUP;
1154 }
1155
1156 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1157 map->name, mname, (unsigned int)msize,
1158 moff, kern_moff);
1159 memcpy(kern_mdata, mdata, msize);
1160 }
1161
1162 return 0;
1163 }
1164
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1165 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1166 {
1167 struct bpf_map *map;
1168 size_t i;
1169 int err;
1170
1171 for (i = 0; i < obj->nr_maps; i++) {
1172 map = &obj->maps[i];
1173
1174 if (!bpf_map__is_struct_ops(map))
1175 continue;
1176
1177 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1178 obj->btf_vmlinux);
1179 if (err)
1180 return err;
1181 }
1182
1183 return 0;
1184 }
1185
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1186 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1187 int shndx, Elf_Data *data, __u32 map_flags)
1188 {
1189 const struct btf_type *type, *datasec;
1190 const struct btf_var_secinfo *vsi;
1191 struct bpf_struct_ops *st_ops;
1192 const char *tname, *var_name;
1193 __s32 type_id, datasec_id;
1194 const struct btf *btf;
1195 struct bpf_map *map;
1196 __u32 i;
1197
1198 if (shndx == -1)
1199 return 0;
1200
1201 btf = obj->btf;
1202 datasec_id = btf__find_by_name_kind(btf, sec_name,
1203 BTF_KIND_DATASEC);
1204 if (datasec_id < 0) {
1205 pr_warn("struct_ops init: DATASEC %s not found\n",
1206 sec_name);
1207 return -EINVAL;
1208 }
1209
1210 datasec = btf__type_by_id(btf, datasec_id);
1211 vsi = btf_var_secinfos(datasec);
1212 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1213 type = btf__type_by_id(obj->btf, vsi->type);
1214 var_name = btf__name_by_offset(obj->btf, type->name_off);
1215
1216 type_id = btf__resolve_type(obj->btf, vsi->type);
1217 if (type_id < 0) {
1218 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1219 vsi->type, sec_name);
1220 return -EINVAL;
1221 }
1222
1223 type = btf__type_by_id(obj->btf, type_id);
1224 tname = btf__name_by_offset(obj->btf, type->name_off);
1225 if (!tname[0]) {
1226 pr_warn("struct_ops init: anonymous type is not supported\n");
1227 return -ENOTSUP;
1228 }
1229 if (!btf_is_struct(type)) {
1230 pr_warn("struct_ops init: %s is not a struct\n", tname);
1231 return -EINVAL;
1232 }
1233
1234 map = bpf_object__add_map(obj);
1235 if (IS_ERR(map))
1236 return PTR_ERR(map);
1237
1238 map->sec_idx = shndx;
1239 map->sec_offset = vsi->offset;
1240 map->name = strdup(var_name);
1241 if (!map->name)
1242 return -ENOMEM;
1243
1244 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1245 map->def.key_size = sizeof(int);
1246 map->def.value_size = type->size;
1247 map->def.max_entries = 1;
1248 map->def.map_flags = map_flags;
1249
1250 map->st_ops = calloc(1, sizeof(*map->st_ops));
1251 if (!map->st_ops)
1252 return -ENOMEM;
1253 st_ops = map->st_ops;
1254 st_ops->data = malloc(type->size);
1255 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1256 st_ops->kern_func_off = malloc(btf_vlen(type) *
1257 sizeof(*st_ops->kern_func_off));
1258 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1259 return -ENOMEM;
1260
1261 if (vsi->offset + type->size > data->d_size) {
1262 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1263 var_name, sec_name);
1264 return -EINVAL;
1265 }
1266
1267 memcpy(st_ops->data,
1268 data->d_buf + vsi->offset,
1269 type->size);
1270 st_ops->tname = tname;
1271 st_ops->type = type;
1272 st_ops->type_id = type_id;
1273
1274 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1275 tname, type_id, var_name, vsi->offset);
1276 }
1277
1278 return 0;
1279 }
1280
bpf_object_init_struct_ops(struct bpf_object * obj)1281 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1282 {
1283 int err;
1284
1285 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1286 obj->efile.st_ops_data, 0);
1287 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1288 obj->efile.st_ops_link_shndx,
1289 obj->efile.st_ops_link_data,
1290 BPF_F_LINK);
1291 return err;
1292 }
1293
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1294 static struct bpf_object *bpf_object__new(const char *path,
1295 const void *obj_buf,
1296 size_t obj_buf_sz,
1297 const char *obj_name)
1298 {
1299 struct bpf_object *obj;
1300 char *end;
1301
1302 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1303 if (!obj) {
1304 pr_warn("alloc memory failed for %s\n", path);
1305 return ERR_PTR(-ENOMEM);
1306 }
1307
1308 strcpy(obj->path, path);
1309 if (obj_name) {
1310 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1311 } else {
1312 /* Using basename() GNU version which doesn't modify arg. */
1313 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1314 end = strchr(obj->name, '.');
1315 if (end)
1316 *end = 0;
1317 }
1318
1319 obj->efile.fd = -1;
1320 /*
1321 * Caller of this function should also call
1322 * bpf_object__elf_finish() after data collection to return
1323 * obj_buf to user. If not, we should duplicate the buffer to
1324 * avoid user freeing them before elf finish.
1325 */
1326 obj->efile.obj_buf = obj_buf;
1327 obj->efile.obj_buf_sz = obj_buf_sz;
1328 obj->efile.btf_maps_shndx = -1;
1329 obj->efile.st_ops_shndx = -1;
1330 obj->efile.st_ops_link_shndx = -1;
1331 obj->kconfig_map_idx = -1;
1332
1333 obj->kern_version = get_kernel_version();
1334 obj->loaded = false;
1335
1336 return obj;
1337 }
1338
bpf_object__elf_finish(struct bpf_object * obj)1339 static void bpf_object__elf_finish(struct bpf_object *obj)
1340 {
1341 if (!obj->efile.elf)
1342 return;
1343 #if defined HAVE_LIBELF
1344 elf_end(obj->efile.elf);
1345 #elif defined HAVE_ELFIO
1346 if (obj->efile.shstring) {
1347 elfio_string_section_accessor_delete(obj->efile.shstring);
1348 }
1349 if (obj->efile.strstring) {
1350 elfio_string_section_accessor_delete(obj->efile.strstring);
1351 }
1352 elfio_delete(obj->efile.elf);
1353 #endif
1354 obj->efile.elf = NULL;
1355 obj->efile.symbols = NULL;
1356 obj->efile.st_ops_data = NULL;
1357 obj->efile.st_ops_link_data = NULL;
1358
1359 zfree(&obj->efile.secs);
1360 obj->efile.sec_cnt = 0;
1361 zclose(obj->efile.fd);
1362 obj->efile.obj_buf = NULL;
1363 obj->efile.obj_buf_sz = 0;
1364 }
1365
bpf_object__elf_init(struct bpf_object * obj)1366 static int bpf_object__elf_init(struct bpf_object *obj)
1367 {
1368 Elf64_Ehdr *ehdr;
1369 int err = 0;
1370 #ifdef HAVE_LIBELF
1371 Elf *elf;
1372 #elif defined HAVE_ELFIO
1373 pelfio_t elf;
1374 #endif
1375
1376 if (obj->efile.elf) {
1377 pr_warn("elf: init internal error\n");
1378 return -LIBBPF_ERRNO__LIBELF;
1379 }
1380
1381 if (obj->efile.obj_buf_sz > 0) {
1382 /* obj_buf should have been validated by bpf_object__open_mem(). */
1383 #ifdef HAVE_LIBELF
1384 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1385 #elif defined HAVE_ELFIO
1386 char memfd_path[PATH_MAX] = {0};
1387 elf = elfio_new();
1388 int fdm = syscall(__NR_memfd_create, "bpfelf", MFD_CLOEXEC);
1389 ftruncate(fdm, obj->efile.obj_buf_sz);
1390 write(fdm, (char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1391 snprintf(memfd_path, PATH_MAX, "/proc/self/fd/%d", fdm);
1392 elfio_load(elf, memfd_path);
1393 #endif
1394 } else {
1395 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1396 if (obj->efile.fd < 0) {
1397 char errmsg[STRERR_BUFSIZE], *cp;
1398
1399 err = -errno;
1400 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1401 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1402 return err;
1403 }
1404 #ifdef HAVE_LIBELF
1405 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1406 #endif
1407 }
1408
1409 if (!elf) {
1410 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1411 err = -LIBBPF_ERRNO__LIBELF;
1412 goto errout;
1413 }
1414
1415 obj->efile.elf = elf;
1416 #ifdef HAVE_LIBELF
1417 if (elf_kind(elf) != ELF_K_ELF) {
1418 err = -LIBBPF_ERRNO__FORMAT;
1419 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1420 goto errout;
1421 }
1422
1423 if (gelf_getclass(elf) != ELFCLASS64) {
1424 #elif defined HAVE_ELFIO
1425 if (elfio_get_class(elf) != ELFCLASS64 ) {
1426 #endif
1427 err = -LIBBPF_ERRNO__FORMAT;
1428 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1429 goto errout;
1430 }
1431 #ifdef HAVE_LIBELF
1432 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1433 #elif defined HAVE_ELFIO
1434 obj->efile.ehdr = ehdr = (Elf64_Ehdr*)obj->efile.obj_buf;
1435 #endif
1436 if (!obj->efile.ehdr) {
1437 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1438 err = -LIBBPF_ERRNO__FORMAT;
1439 goto errout;
1440 }
1441
1442 #ifdef HAVE_LIBELF
1443 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1444 pr_warn("elf: failed to get section names section index for %s: %s\n",
1445 obj->path, elf_errmsg(-1));
1446 err = -LIBBPF_ERRNO__FORMAT;
1447 goto errout;
1448 }
1449
1450 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1451 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1452 pr_warn("elf: failed to get section names strings from %s: %s\n",
1453 obj->path, elf_errmsg(-1));
1454 err = -LIBBPF_ERRNO__FORMAT;
1455 goto errout;
1456 }
1457 #elif defined HAVE_ELFIO
1458 obj->efile.shstrndx = elfio_get_section_name_str_index(elf);
1459 #endif
1460 /* Old LLVM set e_machine to EM_NONE */
1461 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1462 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1463 err = -LIBBPF_ERRNO__FORMAT;
1464 goto errout;
1465 }
1466
1467 return 0;
1468 errout:
1469 bpf_object__elf_finish(obj);
1470 return err;
1471 }
1472
1473 static int bpf_object__check_endianness(struct bpf_object *obj)
1474 {
1475 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1476 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1477 return 0;
1478 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1479 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1480 return 0;
1481 #else
1482 # error "Unrecognized __BYTE_ORDER__"
1483 #endif
1484 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1485 return -LIBBPF_ERRNO__ENDIAN;
1486 }
1487
1488 static int
1489 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1490 {
1491 if (!data) {
1492 pr_warn("invalid license section in %s\n", obj->path);
1493 return -LIBBPF_ERRNO__FORMAT;
1494 }
1495 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1496 * go over allowed ELF data section buffer
1497 */
1498 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1499 pr_debug("license of %s is %s\n", obj->path, obj->license);
1500 return 0;
1501 }
1502
1503 static int
1504 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1505 {
1506 __u32 kver;
1507
1508 if (!data || size != sizeof(kver)) {
1509 pr_warn("invalid kver section in %s\n", obj->path);
1510 return -LIBBPF_ERRNO__FORMAT;
1511 }
1512 memcpy(&kver, data, sizeof(kver));
1513 obj->kern_version = kver;
1514 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1515 return 0;
1516 }
1517
1518 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1519 {
1520 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1521 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1522 return true;
1523 return false;
1524 }
1525
1526 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1527 {
1528 Elf_Data *data;
1529 #ifdef HAVE_LIBELF
1530 Elf_Scn *scn;
1531 #endif
1532
1533 if (!name)
1534 return -EINVAL;
1535 #if defined HAVE_LIBELF
1536 scn = elf_sec_by_name(obj, name);
1537 data = elf_sec_data(obj, scn);
1538 #elif defined HAVE_ELFIO
1539 Elf_Data realdata;
1540 data = &realdata;
1541 data = elf_sec_data_by_name(obj, name, data);
1542 #endif
1543 if (data) {
1544 *size = data->d_size;
1545 return 0; /* found it */
1546 }
1547
1548 return -ENOENT;
1549 }
1550
1551 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1552 {
1553 Elf_Data *symbols = obj->efile.symbols;
1554 const char *sname;
1555 size_t si;
1556
1557 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1558 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1559
1560 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1561 continue;
1562
1563 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1564 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1565 continue;
1566
1567 sname = elf_sym_str(obj, sym->st_name);
1568 if (!sname) {
1569 pr_warn("failed to get sym name string for var %s\n", name);
1570 return ERR_PTR(-EIO);
1571 }
1572 if (strcmp(name, sname) == 0)
1573 return sym;
1574 }
1575
1576 return ERR_PTR(-ENOENT);
1577 }
1578
1579 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1580 {
1581 struct bpf_map *map;
1582 int err;
1583
1584 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1585 sizeof(*obj->maps), obj->nr_maps + 1);
1586 if (err)
1587 return ERR_PTR(err);
1588
1589 map = &obj->maps[obj->nr_maps++];
1590 map->obj = obj;
1591 map->fd = -1;
1592 map->inner_map_fd = -1;
1593 map->autocreate = true;
1594
1595 return map;
1596 }
1597
1598 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1599 {
1600 const long page_sz = sysconf(_SC_PAGE_SIZE);
1601 size_t map_sz;
1602
1603 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1604 map_sz = roundup(map_sz, page_sz);
1605 return map_sz;
1606 }
1607
1608 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1609 {
1610 void *mmaped;
1611
1612 if (!map->mmaped)
1613 return -EINVAL;
1614
1615 if (old_sz == new_sz)
1616 return 0;
1617
1618 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1619 if (mmaped == MAP_FAILED)
1620 return -errno;
1621
1622 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1623 munmap(map->mmaped, old_sz);
1624 map->mmaped = mmaped;
1625 return 0;
1626 }
1627
1628 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1629 {
1630 char map_name[BPF_OBJ_NAME_LEN], *p;
1631 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1632
1633 /* This is one of the more confusing parts of libbpf for various
1634 * reasons, some of which are historical. The original idea for naming
1635 * internal names was to include as much of BPF object name prefix as
1636 * possible, so that it can be distinguished from similar internal
1637 * maps of a different BPF object.
1638 * As an example, let's say we have bpf_object named 'my_object_name'
1639 * and internal map corresponding to '.rodata' ELF section. The final
1640 * map name advertised to user and to the kernel will be
1641 * 'my_objec.rodata', taking first 8 characters of object name and
1642 * entire 7 characters of '.rodata'.
1643 * Somewhat confusingly, if internal map ELF section name is shorter
1644 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1645 * for the suffix, even though we only have 4 actual characters, and
1646 * resulting map will be called 'my_objec.bss', not even using all 15
1647 * characters allowed by the kernel. Oh well, at least the truncated
1648 * object name is somewhat consistent in this case. But if the map
1649 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1650 * (8 chars) and thus will be left with only first 7 characters of the
1651 * object name ('my_obje'). Happy guessing, user, that the final map
1652 * name will be "my_obje.kconfig".
1653 * Now, with libbpf starting to support arbitrarily named .rodata.*
1654 * and .data.* data sections, it's possible that ELF section name is
1655 * longer than allowed 15 chars, so we now need to be careful to take
1656 * only up to 15 first characters of ELF name, taking no BPF object
1657 * name characters at all. So '.rodata.abracadabra' will result in
1658 * '.rodata.abracad' kernel and user-visible name.
1659 * We need to keep this convoluted logic intact for .data, .bss and
1660 * .rodata maps, but for new custom .data.custom and .rodata.custom
1661 * maps we use their ELF names as is, not prepending bpf_object name
1662 * in front. We still need to truncate them to 15 characters for the
1663 * kernel. Full name can be recovered for such maps by using DATASEC
1664 * BTF type associated with such map's value type, though.
1665 */
1666 if (sfx_len >= BPF_OBJ_NAME_LEN)
1667 sfx_len = BPF_OBJ_NAME_LEN - 1;
1668
1669 /* if there are two or more dots in map name, it's a custom dot map */
1670 if (strchr(real_name + 1, '.') != NULL)
1671 pfx_len = 0;
1672 else
1673 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1674
1675 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1676 sfx_len, real_name);
1677
1678 /* sanitise map name to characters allowed by kernel */
1679 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1680 if (!isalnum(*p) && *p != '_' && *p != '.')
1681 *p = '_';
1682
1683 return strdup(map_name);
1684 }
1685
1686 static int
1687 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1688
1689 /* Internal BPF map is mmap()'able only if at least one of corresponding
1690 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1691 * variable and it's not marked as __hidden (which turns it into, effectively,
1692 * a STATIC variable).
1693 */
1694 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1695 {
1696 const struct btf_type *t, *vt;
1697 struct btf_var_secinfo *vsi;
1698 int i, n;
1699
1700 if (!map->btf_value_type_id)
1701 return false;
1702
1703 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1704 if (!btf_is_datasec(t))
1705 return false;
1706
1707 vsi = btf_var_secinfos(t);
1708 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1709 vt = btf__type_by_id(obj->btf, vsi->type);
1710 if (!btf_is_var(vt))
1711 continue;
1712
1713 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1714 return true;
1715 }
1716
1717 return false;
1718 }
1719
1720 static int
1721 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1722 const char *real_name, int sec_idx, void *data, size_t data_sz)
1723 {
1724 struct bpf_map_def *def;
1725 struct bpf_map *map;
1726 size_t mmap_sz;
1727 int err;
1728
1729 map = bpf_object__add_map(obj);
1730 if (IS_ERR(map))
1731 return PTR_ERR(map);
1732
1733 map->libbpf_type = type;
1734 map->sec_idx = sec_idx;
1735 map->sec_offset = 0;
1736 map->real_name = strdup(real_name);
1737 map->name = internal_map_name(obj, real_name);
1738 if (!map->real_name || !map->name) {
1739 zfree(&map->real_name);
1740 zfree(&map->name);
1741 return -ENOMEM;
1742 }
1743
1744 def = &map->def;
1745 def->type = BPF_MAP_TYPE_ARRAY;
1746 def->key_size = sizeof(int);
1747 def->value_size = data_sz;
1748 def->max_entries = 1;
1749 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1750 ? BPF_F_RDONLY_PROG : 0;
1751
1752 /* failures are fine because of maps like .rodata.str1.1 */
1753 (void) map_fill_btf_type_info(obj, map);
1754
1755 if (map_is_mmapable(obj, map))
1756 def->map_flags |= BPF_F_MMAPABLE;
1757
1758 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1759 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1760
1761 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1762 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1763 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1764 if (map->mmaped == MAP_FAILED) {
1765 err = -errno;
1766 map->mmaped = NULL;
1767 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1768 map->name, err);
1769 zfree(&map->real_name);
1770 zfree(&map->name);
1771 return err;
1772 }
1773
1774 if (data)
1775 memcpy(map->mmaped, data, data_sz);
1776
1777 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1778 return 0;
1779 }
1780
1781 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1782 {
1783 struct elf_sec_desc *sec_desc;
1784 const char *sec_name;
1785 int err = 0, sec_idx;
1786
1787 /*
1788 * Populate obj->maps with libbpf internal maps.
1789 */
1790 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1791 sec_desc = &obj->efile.secs[sec_idx];
1792
1793 /* Skip recognized sections with size 0. */
1794 if (!sec_desc->data || sec_desc->data->d_size == 0)
1795 continue;
1796
1797 switch (sec_desc->sec_type) {
1798 case SEC_DATA:
1799 #if defined HAVE_LIBELF
1800 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1801 #elif defined HAVE_ELFIO
1802 sec_name = elf_sec_name_by_idx(obj, sec_idx);
1803 #endif
1804 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1805 sec_name, sec_idx,
1806 sec_desc->data->d_buf,
1807 sec_desc->data->d_size);
1808 break;
1809 case SEC_RODATA:
1810 obj->has_rodata = true;
1811 #if defined HAVE_LIBELF
1812 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1813 #elif defined HAVE_ELFIO
1814 sec_name = elf_sec_name_by_idx(obj, sec_idx);
1815 #endif
1816 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1817 sec_name, sec_idx,
1818 sec_desc->data->d_buf,
1819 sec_desc->data->d_size);
1820 break;
1821 case SEC_BSS:
1822 #if defined HAVE_LIBELF
1823 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1824 #elif defined HAVE_ELFIO
1825 sec_name = elf_sec_name_by_idx(obj, sec_idx);
1826 #endif
1827 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1828 sec_name, sec_idx,
1829 NULL,
1830 sec_desc->data->d_size);
1831 break;
1832 default:
1833 /* skip */
1834 break;
1835 }
1836 if (err)
1837 return err;
1838 }
1839 return 0;
1840 }
1841
1842
1843 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1844 const void *name)
1845 {
1846 int i;
1847
1848 for (i = 0; i < obj->nr_extern; i++) {
1849 if (strcmp(obj->externs[i].name, name) == 0)
1850 return &obj->externs[i];
1851 }
1852 return NULL;
1853 }
1854
1855 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1856 char value)
1857 {
1858 switch (ext->kcfg.type) {
1859 case KCFG_BOOL:
1860 if (value == 'm') {
1861 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1862 ext->name, value);
1863 return -EINVAL;
1864 }
1865 *(bool *)ext_val = value == 'y' ? true : false;
1866 break;
1867 case KCFG_TRISTATE:
1868 if (value == 'y')
1869 *(enum libbpf_tristate *)ext_val = TRI_YES;
1870 else if (value == 'm')
1871 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1872 else /* value == 'n' */
1873 *(enum libbpf_tristate *)ext_val = TRI_NO;
1874 break;
1875 case KCFG_CHAR:
1876 *(char *)ext_val = value;
1877 break;
1878 case KCFG_UNKNOWN:
1879 case KCFG_INT:
1880 case KCFG_CHAR_ARR:
1881 default:
1882 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1883 ext->name, value);
1884 return -EINVAL;
1885 }
1886 ext->is_set = true;
1887 return 0;
1888 }
1889
1890 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1891 const char *value)
1892 {
1893 size_t len;
1894
1895 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1896 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1897 ext->name, value);
1898 return -EINVAL;
1899 }
1900
1901 len = strlen(value);
1902 if (value[len - 1] != '"') {
1903 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1904 ext->name, value);
1905 return -EINVAL;
1906 }
1907
1908 /* strip quotes */
1909 len -= 2;
1910 if (len >= ext->kcfg.sz) {
1911 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1912 ext->name, value, len, ext->kcfg.sz - 1);
1913 len = ext->kcfg.sz - 1;
1914 }
1915 memcpy(ext_val, value + 1, len);
1916 ext_val[len] = '\0';
1917 ext->is_set = true;
1918 return 0;
1919 }
1920
1921 static int parse_u64(const char *value, __u64 *res)
1922 {
1923 char *value_end;
1924 int err;
1925
1926 errno = 0;
1927 *res = strtoull(value, &value_end, 0);
1928 if (errno) {
1929 err = -errno;
1930 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1931 return err;
1932 }
1933 if (*value_end) {
1934 pr_warn("failed to parse '%s' as integer completely\n", value);
1935 return -EINVAL;
1936 }
1937 return 0;
1938 }
1939
1940 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1941 {
1942 int bit_sz = ext->kcfg.sz * 8;
1943
1944 if (ext->kcfg.sz == 8)
1945 return true;
1946
1947 /* Validate that value stored in u64 fits in integer of `ext->sz`
1948 * bytes size without any loss of information. If the target integer
1949 * is signed, we rely on the following limits of integer type of
1950 * Y bits and subsequent transformation:
1951 *
1952 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1953 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1954 * 0 <= X + 2^(Y-1) < 2^Y
1955 *
1956 * For unsigned target integer, check that all the (64 - Y) bits are
1957 * zero.
1958 */
1959 if (ext->kcfg.is_signed)
1960 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1961 else
1962 return (v >> bit_sz) == 0;
1963 }
1964
1965 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1966 __u64 value)
1967 {
1968 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1969 ext->kcfg.type != KCFG_BOOL) {
1970 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1971 ext->name, (unsigned long long)value);
1972 return -EINVAL;
1973 }
1974 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1975 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1976 ext->name, (unsigned long long)value);
1977 return -EINVAL;
1978
1979 }
1980 if (!is_kcfg_value_in_range(ext, value)) {
1981 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1982 ext->name, (unsigned long long)value, ext->kcfg.sz);
1983 return -ERANGE;
1984 }
1985 switch (ext->kcfg.sz) {
1986 case 1:
1987 *(__u8 *)ext_val = value;
1988 break;
1989 case 2:
1990 *(__u16 *)ext_val = value;
1991 break;
1992 case 4:
1993 *(__u32 *)ext_val = value;
1994 break;
1995 case 8:
1996 *(__u64 *)ext_val = value;
1997 break;
1998 default:
1999 return -EINVAL;
2000 }
2001 ext->is_set = true;
2002 return 0;
2003 }
2004
2005 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2006 char *buf, void *data)
2007 {
2008 struct extern_desc *ext;
2009 char *sep, *value;
2010 int len, err = 0;
2011 void *ext_val;
2012 __u64 num;
2013
2014 if (!str_has_pfx(buf, "CONFIG_"))
2015 return 0;
2016
2017 sep = strchr(buf, '=');
2018 if (!sep) {
2019 pr_warn("failed to parse '%s': no separator\n", buf);
2020 return -EINVAL;
2021 }
2022
2023 /* Trim ending '\n' */
2024 len = strlen(buf);
2025 if (buf[len - 1] == '\n')
2026 buf[len - 1] = '\0';
2027 /* Split on '=' and ensure that a value is present. */
2028 *sep = '\0';
2029 if (!sep[1]) {
2030 *sep = '=';
2031 pr_warn("failed to parse '%s': no value\n", buf);
2032 return -EINVAL;
2033 }
2034
2035 ext = find_extern_by_name(obj, buf);
2036 if (!ext || ext->is_set)
2037 return 0;
2038
2039 ext_val = data + ext->kcfg.data_off;
2040 value = sep + 1;
2041
2042 switch (*value) {
2043 case 'y': case 'n': case 'm':
2044 err = set_kcfg_value_tri(ext, ext_val, *value);
2045 break;
2046 case '"':
2047 err = set_kcfg_value_str(ext, ext_val, value);
2048 break;
2049 default:
2050 /* assume integer */
2051 err = parse_u64(value, &num);
2052 if (err) {
2053 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2054 return err;
2055 }
2056 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2057 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2058 return -EINVAL;
2059 }
2060 err = set_kcfg_value_num(ext, ext_val, num);
2061 break;
2062 }
2063 if (err)
2064 return err;
2065 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2066 return 0;
2067 }
2068
2069 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2070 {
2071 char buf[PATH_MAX];
2072 struct utsname uts;
2073 int len, err = 0;
2074 gzFile file;
2075
2076 uname(&uts);
2077 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2078 if (len < 0)
2079 return -EINVAL;
2080 else if (len >= PATH_MAX)
2081 return -ENAMETOOLONG;
2082
2083 /* gzopen also accepts uncompressed files. */
2084 file = gzopen(buf, "re");
2085 if (!file)
2086 file = gzopen("/proc/config.gz", "re");
2087
2088 if (!file) {
2089 pr_warn("failed to open system Kconfig\n");
2090 return -ENOENT;
2091 }
2092
2093 while (gzgets(file, buf, sizeof(buf))) {
2094 err = bpf_object__process_kconfig_line(obj, buf, data);
2095 if (err) {
2096 pr_warn("error parsing system Kconfig line '%s': %d\n",
2097 buf, err);
2098 goto out;
2099 }
2100 }
2101
2102 out:
2103 gzclose(file);
2104 return err;
2105 }
2106
2107 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2108 const char *config, void *data)
2109 {
2110 char buf[PATH_MAX];
2111 int err = 0;
2112 FILE *file;
2113
2114 file = fmemopen((void *)config, strlen(config), "r");
2115 if (!file) {
2116 err = -errno;
2117 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2118 return err;
2119 }
2120
2121 while (fgets(buf, sizeof(buf), file)) {
2122 err = bpf_object__process_kconfig_line(obj, buf, data);
2123 if (err) {
2124 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2125 buf, err);
2126 break;
2127 }
2128 }
2129
2130 fclose(file);
2131 return err;
2132 }
2133
2134 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2135 {
2136 struct extern_desc *last_ext = NULL, *ext;
2137 size_t map_sz;
2138 int i, err;
2139
2140 for (i = 0; i < obj->nr_extern; i++) {
2141 ext = &obj->externs[i];
2142 if (ext->type == EXT_KCFG)
2143 last_ext = ext;
2144 }
2145
2146 if (!last_ext)
2147 return 0;
2148
2149 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2150 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2151 ".kconfig", obj->efile.symbols_shndx,
2152 NULL, map_sz);
2153 if (err)
2154 return err;
2155
2156 obj->kconfig_map_idx = obj->nr_maps - 1;
2157
2158 return 0;
2159 }
2160
2161 const struct btf_type *
2162 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2163 {
2164 const struct btf_type *t = btf__type_by_id(btf, id);
2165
2166 if (res_id)
2167 *res_id = id;
2168
2169 while (btf_is_mod(t) || btf_is_typedef(t)) {
2170 if (res_id)
2171 *res_id = t->type;
2172 t = btf__type_by_id(btf, t->type);
2173 }
2174
2175 return t;
2176 }
2177
2178 static const struct btf_type *
2179 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2180 {
2181 const struct btf_type *t;
2182
2183 t = skip_mods_and_typedefs(btf, id, NULL);
2184 if (!btf_is_ptr(t))
2185 return NULL;
2186
2187 t = skip_mods_and_typedefs(btf, t->type, res_id);
2188
2189 return btf_is_func_proto(t) ? t : NULL;
2190 }
2191
2192 static const char *__btf_kind_str(__u16 kind)
2193 {
2194 switch (kind) {
2195 case BTF_KIND_UNKN: return "void";
2196 case BTF_KIND_INT: return "int";
2197 case BTF_KIND_PTR: return "ptr";
2198 case BTF_KIND_ARRAY: return "array";
2199 case BTF_KIND_STRUCT: return "struct";
2200 case BTF_KIND_UNION: return "union";
2201 case BTF_KIND_ENUM: return "enum";
2202 case BTF_KIND_FWD: return "fwd";
2203 case BTF_KIND_TYPEDEF: return "typedef";
2204 case BTF_KIND_VOLATILE: return "volatile";
2205 case BTF_KIND_CONST: return "const";
2206 case BTF_KIND_RESTRICT: return "restrict";
2207 case BTF_KIND_FUNC: return "func";
2208 case BTF_KIND_FUNC_PROTO: return "func_proto";
2209 case BTF_KIND_VAR: return "var";
2210 case BTF_KIND_DATASEC: return "datasec";
2211 case BTF_KIND_FLOAT: return "float";
2212 case BTF_KIND_DECL_TAG: return "decl_tag";
2213 case BTF_KIND_TYPE_TAG: return "type_tag";
2214 case BTF_KIND_ENUM64: return "enum64";
2215 default: return "unknown";
2216 }
2217 }
2218
2219 const char *btf_kind_str(const struct btf_type *t)
2220 {
2221 return __btf_kind_str(btf_kind(t));
2222 }
2223
2224 /*
2225 * Fetch integer attribute of BTF map definition. Such attributes are
2226 * represented using a pointer to an array, in which dimensionality of array
2227 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2228 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2229 * type definition, while using only sizeof(void *) space in ELF data section.
2230 */
2231 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2232 const struct btf_member *m, __u32 *res)
2233 {
2234 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2235 const char *name = btf__name_by_offset(btf, m->name_off);
2236 const struct btf_array *arr_info;
2237 const struct btf_type *arr_t;
2238
2239 if (!btf_is_ptr(t)) {
2240 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2241 map_name, name, btf_kind_str(t));
2242 return false;
2243 }
2244
2245 arr_t = btf__type_by_id(btf, t->type);
2246 if (!arr_t) {
2247 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2248 map_name, name, t->type);
2249 return false;
2250 }
2251 if (!btf_is_array(arr_t)) {
2252 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2253 map_name, name, btf_kind_str(arr_t));
2254 return false;
2255 }
2256 arr_info = btf_array(arr_t);
2257 *res = arr_info->nelems;
2258 return true;
2259 }
2260
2261 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2262 {
2263 int len;
2264
2265 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2266 if (len < 0)
2267 return -EINVAL;
2268 if (len >= buf_sz)
2269 return -ENAMETOOLONG;
2270
2271 return 0;
2272 }
2273
2274 static int build_map_pin_path(struct bpf_map *map, const char *path)
2275 {
2276 char buf[PATH_MAX];
2277 int err;
2278
2279 if (!path)
2280 path = "/sys/fs/bpf";
2281
2282 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2283 if (err)
2284 return err;
2285
2286 return bpf_map__set_pin_path(map, buf);
2287 }
2288
2289 /* should match definition in bpf_helpers.h */
2290 enum libbpf_pin_type {
2291 LIBBPF_PIN_NONE,
2292 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2293 LIBBPF_PIN_BY_NAME,
2294 };
2295
2296 int parse_btf_map_def(const char *map_name, struct btf *btf,
2297 const struct btf_type *def_t, bool strict,
2298 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2299 {
2300 const struct btf_type *t;
2301 const struct btf_member *m;
2302 bool is_inner = inner_def == NULL;
2303 int vlen, i;
2304
2305 vlen = btf_vlen(def_t);
2306 m = btf_members(def_t);
2307 for (i = 0; i < vlen; i++, m++) {
2308 const char *name = btf__name_by_offset(btf, m->name_off);
2309
2310 if (!name) {
2311 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2312 return -EINVAL;
2313 }
2314 if (strcmp(name, "type") == 0) {
2315 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2316 return -EINVAL;
2317 map_def->parts |= MAP_DEF_MAP_TYPE;
2318 } else if (strcmp(name, "max_entries") == 0) {
2319 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2320 return -EINVAL;
2321 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2322 } else if (strcmp(name, "map_flags") == 0) {
2323 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2324 return -EINVAL;
2325 map_def->parts |= MAP_DEF_MAP_FLAGS;
2326 } else if (strcmp(name, "numa_node") == 0) {
2327 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2328 return -EINVAL;
2329 map_def->parts |= MAP_DEF_NUMA_NODE;
2330 } else if (strcmp(name, "key_size") == 0) {
2331 __u32 sz;
2332
2333 if (!get_map_field_int(map_name, btf, m, &sz))
2334 return -EINVAL;
2335 if (map_def->key_size && map_def->key_size != sz) {
2336 pr_warn("map '%s': conflicting key size %u != %u.\n",
2337 map_name, map_def->key_size, sz);
2338 return -EINVAL;
2339 }
2340 map_def->key_size = sz;
2341 map_def->parts |= MAP_DEF_KEY_SIZE;
2342 } else if (strcmp(name, "key") == 0) {
2343 __s64 sz;
2344
2345 t = btf__type_by_id(btf, m->type);
2346 if (!t) {
2347 pr_warn("map '%s': key type [%d] not found.\n",
2348 map_name, m->type);
2349 return -EINVAL;
2350 }
2351 if (!btf_is_ptr(t)) {
2352 pr_warn("map '%s': key spec is not PTR: %s.\n",
2353 map_name, btf_kind_str(t));
2354 return -EINVAL;
2355 }
2356 sz = btf__resolve_size(btf, t->type);
2357 if (sz < 0) {
2358 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2359 map_name, t->type, (ssize_t)sz);
2360 return sz;
2361 }
2362 if (map_def->key_size && map_def->key_size != sz) {
2363 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2364 map_name, map_def->key_size, (ssize_t)sz);
2365 return -EINVAL;
2366 }
2367 map_def->key_size = sz;
2368 map_def->key_type_id = t->type;
2369 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2370 } else if (strcmp(name, "value_size") == 0) {
2371 __u32 sz;
2372
2373 if (!get_map_field_int(map_name, btf, m, &sz))
2374 return -EINVAL;
2375 if (map_def->value_size && map_def->value_size != sz) {
2376 pr_warn("map '%s': conflicting value size %u != %u.\n",
2377 map_name, map_def->value_size, sz);
2378 return -EINVAL;
2379 }
2380 map_def->value_size = sz;
2381 map_def->parts |= MAP_DEF_VALUE_SIZE;
2382 } else if (strcmp(name, "value") == 0) {
2383 __s64 sz;
2384
2385 t = btf__type_by_id(btf, m->type);
2386 if (!t) {
2387 pr_warn("map '%s': value type [%d] not found.\n",
2388 map_name, m->type);
2389 return -EINVAL;
2390 }
2391 if (!btf_is_ptr(t)) {
2392 pr_warn("map '%s': value spec is not PTR: %s.\n",
2393 map_name, btf_kind_str(t));
2394 return -EINVAL;
2395 }
2396 sz = btf__resolve_size(btf, t->type);
2397 if (sz < 0) {
2398 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2399 map_name, t->type, (ssize_t)sz);
2400 return sz;
2401 }
2402 if (map_def->value_size && map_def->value_size != sz) {
2403 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2404 map_name, map_def->value_size, (ssize_t)sz);
2405 return -EINVAL;
2406 }
2407 map_def->value_size = sz;
2408 map_def->value_type_id = t->type;
2409 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2410 }
2411 else if (strcmp(name, "values") == 0) {
2412 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2413 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2414 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2415 char inner_map_name[128];
2416 int err;
2417
2418 if (is_inner) {
2419 pr_warn("map '%s': multi-level inner maps not supported.\n",
2420 map_name);
2421 return -ENOTSUP;
2422 }
2423 if (i != vlen - 1) {
2424 pr_warn("map '%s': '%s' member should be last.\n",
2425 map_name, name);
2426 return -EINVAL;
2427 }
2428 if (!is_map_in_map && !is_prog_array) {
2429 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2430 map_name);
2431 return -ENOTSUP;
2432 }
2433 if (map_def->value_size && map_def->value_size != 4) {
2434 pr_warn("map '%s': conflicting value size %u != 4.\n",
2435 map_name, map_def->value_size);
2436 return -EINVAL;
2437 }
2438 map_def->value_size = 4;
2439 t = btf__type_by_id(btf, m->type);
2440 if (!t) {
2441 pr_warn("map '%s': %s type [%d] not found.\n",
2442 map_name, desc, m->type);
2443 return -EINVAL;
2444 }
2445 if (!btf_is_array(t) || btf_array(t)->nelems) {
2446 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2447 map_name, desc);
2448 return -EINVAL;
2449 }
2450 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2451 if (!btf_is_ptr(t)) {
2452 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2453 map_name, desc, btf_kind_str(t));
2454 return -EINVAL;
2455 }
2456 t = skip_mods_and_typedefs(btf, t->type, NULL);
2457 if (is_prog_array) {
2458 if (!btf_is_func_proto(t)) {
2459 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2460 map_name, btf_kind_str(t));
2461 return -EINVAL;
2462 }
2463 continue;
2464 }
2465 if (!btf_is_struct(t)) {
2466 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2467 map_name, btf_kind_str(t));
2468 return -EINVAL;
2469 }
2470
2471 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2472 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2473 if (err)
2474 return err;
2475
2476 map_def->parts |= MAP_DEF_INNER_MAP;
2477 } else if (strcmp(name, "pinning") == 0) {
2478 __u32 val;
2479
2480 if (is_inner) {
2481 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2482 return -EINVAL;
2483 }
2484 if (!get_map_field_int(map_name, btf, m, &val))
2485 return -EINVAL;
2486 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2487 pr_warn("map '%s': invalid pinning value %u.\n",
2488 map_name, val);
2489 return -EINVAL;
2490 }
2491 map_def->pinning = val;
2492 map_def->parts |= MAP_DEF_PINNING;
2493 } else if (strcmp(name, "map_extra") == 0) {
2494 __u32 map_extra;
2495
2496 if (!get_map_field_int(map_name, btf, m, &map_extra))
2497 return -EINVAL;
2498 map_def->map_extra = map_extra;
2499 map_def->parts |= MAP_DEF_MAP_EXTRA;
2500 } else {
2501 if (strict) {
2502 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2503 return -ENOTSUP;
2504 }
2505 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2506 }
2507 }
2508
2509 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2510 pr_warn("map '%s': map type isn't specified.\n", map_name);
2511 return -EINVAL;
2512 }
2513
2514 return 0;
2515 }
2516
2517 static size_t adjust_ringbuf_sz(size_t sz)
2518 {
2519 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2520 __u32 mul;
2521
2522 /* if user forgot to set any size, make sure they see error */
2523 if (sz == 0)
2524 return 0;
2525 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2526 * a power-of-2 multiple of kernel's page size. If user diligently
2527 * satisified these conditions, pass the size through.
2528 */
2529 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2530 return sz;
2531
2532 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2533 * user-set size to satisfy both user size request and kernel
2534 * requirements and substitute correct max_entries for map creation.
2535 */
2536 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2537 if (mul * page_sz > sz)
2538 return mul * page_sz;
2539 }
2540
2541 /* if it's impossible to satisfy the conditions (i.e., user size is
2542 * very close to UINT_MAX but is not a power-of-2 multiple of
2543 * page_size) then just return original size and let kernel reject it
2544 */
2545 return sz;
2546 }
2547
2548 static bool map_is_ringbuf(const struct bpf_map *map)
2549 {
2550 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2551 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2552 }
2553
2554 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2555 {
2556 map->def.type = def->map_type;
2557 map->def.key_size = def->key_size;
2558 map->def.value_size = def->value_size;
2559 map->def.max_entries = def->max_entries;
2560 map->def.map_flags = def->map_flags;
2561 map->map_extra = def->map_extra;
2562
2563 map->numa_node = def->numa_node;
2564 map->btf_key_type_id = def->key_type_id;
2565 map->btf_value_type_id = def->value_type_id;
2566
2567 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2568 if (map_is_ringbuf(map))
2569 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2570
2571 if (def->parts & MAP_DEF_MAP_TYPE)
2572 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2573
2574 if (def->parts & MAP_DEF_KEY_TYPE)
2575 pr_debug("map '%s': found key [%u], sz = %u.\n",
2576 map->name, def->key_type_id, def->key_size);
2577 else if (def->parts & MAP_DEF_KEY_SIZE)
2578 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2579
2580 if (def->parts & MAP_DEF_VALUE_TYPE)
2581 pr_debug("map '%s': found value [%u], sz = %u.\n",
2582 map->name, def->value_type_id, def->value_size);
2583 else if (def->parts & MAP_DEF_VALUE_SIZE)
2584 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2585
2586 if (def->parts & MAP_DEF_MAX_ENTRIES)
2587 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2588 if (def->parts & MAP_DEF_MAP_FLAGS)
2589 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2590 if (def->parts & MAP_DEF_MAP_EXTRA)
2591 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2592 (unsigned long long)def->map_extra);
2593 if (def->parts & MAP_DEF_PINNING)
2594 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2595 if (def->parts & MAP_DEF_NUMA_NODE)
2596 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2597
2598 if (def->parts & MAP_DEF_INNER_MAP)
2599 pr_debug("map '%s': found inner map definition.\n", map->name);
2600 }
2601
2602 static const char *btf_var_linkage_str(__u32 linkage)
2603 {
2604 switch (linkage) {
2605 case BTF_VAR_STATIC: return "static";
2606 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2607 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2608 default: return "unknown";
2609 }
2610 }
2611
2612 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2613 const struct btf_type *sec,
2614 int var_idx, int sec_idx,
2615 const Elf_Data *data, bool strict,
2616 const char *pin_root_path)
2617 {
2618 struct btf_map_def map_def = {}, inner_def = {};
2619 const struct btf_type *var, *def;
2620 const struct btf_var_secinfo *vi;
2621 const struct btf_var *var_extra;
2622 const char *map_name;
2623 struct bpf_map *map;
2624 int err;
2625
2626 vi = btf_var_secinfos(sec) + var_idx;
2627 var = btf__type_by_id(obj->btf, vi->type);
2628 var_extra = btf_var(var);
2629 map_name = btf__name_by_offset(obj->btf, var->name_off);
2630
2631 if (map_name == NULL || map_name[0] == '\0') {
2632 pr_warn("map #%d: empty name.\n", var_idx);
2633 return -EINVAL;
2634 }
2635 if ((__u64)vi->offset + vi->size > data->d_size) {
2636 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2637 return -EINVAL;
2638 }
2639 if (!btf_is_var(var)) {
2640 pr_warn("map '%s': unexpected var kind %s.\n",
2641 map_name, btf_kind_str(var));
2642 return -EINVAL;
2643 }
2644 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2645 pr_warn("map '%s': unsupported map linkage %s.\n",
2646 map_name, btf_var_linkage_str(var_extra->linkage));
2647 return -EOPNOTSUPP;
2648 }
2649
2650 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2651 if (!btf_is_struct(def)) {
2652 pr_warn("map '%s': unexpected def kind %s.\n",
2653 map_name, btf_kind_str(var));
2654 return -EINVAL;
2655 }
2656 if (def->size > vi->size) {
2657 pr_warn("map '%s': invalid def size.\n", map_name);
2658 return -EINVAL;
2659 }
2660
2661 map = bpf_object__add_map(obj);
2662 if (IS_ERR(map))
2663 return PTR_ERR(map);
2664 map->name = strdup(map_name);
2665 if (!map->name) {
2666 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2667 return -ENOMEM;
2668 }
2669 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2670 map->def.type = BPF_MAP_TYPE_UNSPEC;
2671 map->sec_idx = sec_idx;
2672 map->sec_offset = vi->offset;
2673 map->btf_var_idx = var_idx;
2674 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2675 map_name, map->sec_idx, map->sec_offset);
2676
2677 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2678 if (err)
2679 return err;
2680
2681 fill_map_from_def(map, &map_def);
2682
2683 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2684 err = build_map_pin_path(map, pin_root_path);
2685 if (err) {
2686 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2687 return err;
2688 }
2689 }
2690
2691 if (map_def.parts & MAP_DEF_INNER_MAP) {
2692 map->inner_map = calloc(1, sizeof(*map->inner_map));
2693 if (!map->inner_map)
2694 return -ENOMEM;
2695 map->inner_map->fd = -1;
2696 map->inner_map->sec_idx = sec_idx;
2697 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2698 if (!map->inner_map->name)
2699 return -ENOMEM;
2700 sprintf(map->inner_map->name, "%s.inner", map_name);
2701
2702 fill_map_from_def(map->inner_map, &inner_def);
2703 }
2704
2705 err = map_fill_btf_type_info(obj, map);
2706 if (err)
2707 return err;
2708
2709 return 0;
2710 }
2711
2712 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2713 const char *pin_root_path)
2714 {
2715 const struct btf_type *sec = NULL;
2716 int nr_types, i, vlen, err;
2717 const struct btf_type *t;
2718 const char *name;
2719 Elf_Data *data;
2720 #ifdef HAVE_LIBELF
2721 Elf_Scn *scn;
2722 #endif
2723
2724 if (obj->efile.btf_maps_shndx < 0)
2725 return 0;
2726 #if defined HAVE_LIBELF
2727 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2728 data = elf_sec_data(obj, scn);
2729 if (!scn || !data) {
2730 #elif defined HAVE_ELFIO
2731 Elf_Data realdata;
2732 data = elf_sec_data_by_idx(obj, obj->efile.btf_maps_shndx, &realdata);
2733 if (!data) {
2734 #endif
2735 pr_warn("elf: failed to get %s map definitions for %s\n",
2736 MAPS_ELF_SEC, obj->path);
2737 return -EINVAL;
2738 }
2739
2740 nr_types = btf__type_cnt(obj->btf);
2741 for (i = 1; i < nr_types; i++) {
2742 t = btf__type_by_id(obj->btf, i);
2743 if (!btf_is_datasec(t))
2744 continue;
2745 name = btf__name_by_offset(obj->btf, t->name_off);
2746 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2747 sec = t;
2748 obj->efile.btf_maps_sec_btf_id = i;
2749 break;
2750 }
2751 }
2752
2753 if (!sec) {
2754 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2755 return -ENOENT;
2756 }
2757
2758 vlen = btf_vlen(sec);
2759 for (i = 0; i < vlen; i++) {
2760 err = bpf_object__init_user_btf_map(obj, sec, i,
2761 obj->efile.btf_maps_shndx,
2762 data, strict,
2763 pin_root_path);
2764 if (err)
2765 return err;
2766 }
2767
2768 return 0;
2769 }
2770
2771 static int bpf_object__init_maps(struct bpf_object *obj,
2772 const struct bpf_object_open_opts *opts)
2773 {
2774 const char *pin_root_path;
2775 bool strict;
2776 int err = 0;
2777
2778 strict = !OPTS_GET(opts, relaxed_maps, false);
2779 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2780
2781 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2782 err = err ?: bpf_object__init_global_data_maps(obj);
2783 err = err ?: bpf_object__init_kconfig_map(obj);
2784 err = err ?: bpf_object_init_struct_ops(obj);
2785
2786 return err;
2787 }
2788
2789 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2790 {
2791 Elf64_Shdr *sh;
2792 #if defined HAVE_LIBELF
2793 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2794 #elif defined HAVE_ELFIO
2795 Elf64_Shdr header;
2796 sh = elf_sec_hdr_by_idx(obj, idx, &header);
2797 #endif
2798 if (!sh)
2799 return false;
2800
2801 return sh->sh_flags & SHF_EXECINSTR;
2802 }
2803
2804 static bool btf_needs_sanitization(struct bpf_object *obj)
2805 {
2806 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2807 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2808 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2809 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2810 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2811 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2812 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2813
2814 return !has_func || !has_datasec || !has_func_global || !has_float ||
2815 !has_decl_tag || !has_type_tag || !has_enum64;
2816 }
2817
2818 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2819 {
2820 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2821 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2822 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2823 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2824 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2825 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2826 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2827 int enum64_placeholder_id = 0;
2828 struct btf_type *t;
2829 int i, j, vlen;
2830
2831 for (i = 1; i < btf__type_cnt(btf); i++) {
2832 t = (struct btf_type *)btf__type_by_id(btf, i);
2833
2834 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2835 /* replace VAR/DECL_TAG with INT */
2836 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2837 /*
2838 * using size = 1 is the safest choice, 4 will be too
2839 * big and cause kernel BTF validation failure if
2840 * original variable took less than 4 bytes
2841 */
2842 t->size = 1;
2843 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2844 } else if (!has_datasec && btf_is_datasec(t)) {
2845 /* replace DATASEC with STRUCT */
2846 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2847 struct btf_member *m = btf_members(t);
2848 struct btf_type *vt;
2849 char *name;
2850
2851 name = (char *)btf__name_by_offset(btf, t->name_off);
2852 while (*name) {
2853 if (*name == '.')
2854 *name = '_';
2855 name++;
2856 }
2857
2858 vlen = btf_vlen(t);
2859 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2860 for (j = 0; j < vlen; j++, v++, m++) {
2861 /* order of field assignments is important */
2862 m->offset = v->offset * 8;
2863 m->type = v->type;
2864 /* preserve variable name as member name */
2865 vt = (void *)btf__type_by_id(btf, v->type);
2866 m->name_off = vt->name_off;
2867 }
2868 } else if (!has_func && btf_is_func_proto(t)) {
2869 /* replace FUNC_PROTO with ENUM */
2870 vlen = btf_vlen(t);
2871 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2872 t->size = sizeof(__u32); /* kernel enforced */
2873 } else if (!has_func && btf_is_func(t)) {
2874 /* replace FUNC with TYPEDEF */
2875 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2876 } else if (!has_func_global && btf_is_func(t)) {
2877 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2878 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2879 } else if (!has_float && btf_is_float(t)) {
2880 /* replace FLOAT with an equally-sized empty STRUCT;
2881 * since C compilers do not accept e.g. "float" as a
2882 * valid struct name, make it anonymous
2883 */
2884 t->name_off = 0;
2885 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2886 } else if (!has_type_tag && btf_is_type_tag(t)) {
2887 /* replace TYPE_TAG with a CONST */
2888 t->name_off = 0;
2889 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2890 } else if (!has_enum64 && btf_is_enum(t)) {
2891 /* clear the kflag */
2892 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2893 } else if (!has_enum64 && btf_is_enum64(t)) {
2894 /* replace ENUM64 with a union */
2895 struct btf_member *m;
2896
2897 if (enum64_placeholder_id == 0) {
2898 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2899 if (enum64_placeholder_id < 0)
2900 return enum64_placeholder_id;
2901
2902 t = (struct btf_type *)btf__type_by_id(btf, i);
2903 }
2904
2905 m = btf_members(t);
2906 vlen = btf_vlen(t);
2907 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2908 for (j = 0; j < vlen; j++, m++) {
2909 m->type = enum64_placeholder_id;
2910 m->offset = 0;
2911 }
2912 }
2913 }
2914
2915 return 0;
2916 }
2917
2918 static bool libbpf_needs_btf(const struct bpf_object *obj)
2919 {
2920 return obj->efile.btf_maps_shndx >= 0 ||
2921 obj->efile.st_ops_shndx >= 0 ||
2922 obj->efile.st_ops_link_shndx >= 0 ||
2923 obj->nr_extern > 0;
2924 }
2925
2926 static bool kernel_needs_btf(const struct bpf_object *obj)
2927 {
2928 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2929 }
2930
2931 static int bpf_object__init_btf(struct bpf_object *obj,
2932 Elf_Data *btf_data,
2933 Elf_Data *btf_ext_data)
2934 {
2935 int err = -ENOENT;
2936
2937 if (btf_data) {
2938 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2939 err = libbpf_get_error(obj->btf);
2940 if (err) {
2941 obj->btf = NULL;
2942 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2943 goto out;
2944 }
2945 /* enforce 8-byte pointers for BPF-targeted BTFs */
2946 btf__set_pointer_size(obj->btf, 8);
2947 }
2948 if (btf_ext_data) {
2949 struct btf_ext_info *ext_segs[3];
2950 int seg_num, sec_num;
2951
2952 if (!obj->btf) {
2953 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2954 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2955 goto out;
2956 }
2957 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2958 err = libbpf_get_error(obj->btf_ext);
2959 if (err) {
2960 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2961 BTF_EXT_ELF_SEC, err);
2962 obj->btf_ext = NULL;
2963 goto out;
2964 }
2965
2966 /* setup .BTF.ext to ELF section mapping */
2967 ext_segs[0] = &obj->btf_ext->func_info;
2968 ext_segs[1] = &obj->btf_ext->line_info;
2969 ext_segs[2] = &obj->btf_ext->core_relo_info;
2970 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2971 struct btf_ext_info *seg = ext_segs[seg_num];
2972 const struct btf_ext_info_sec *sec;
2973 const char *sec_name;
2974 #ifdef HAVE_LIBELF
2975 Elf_Scn *scn;
2976 #elif defined HAVE_ELFIO
2977 psection_t sec_obj;
2978 #endif
2979
2980 if (seg->sec_cnt == 0)
2981 continue;
2982
2983 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2984 if (!seg->sec_idxs) {
2985 err = -ENOMEM;
2986 goto out;
2987 }
2988
2989 sec_num = 0;
2990 for_each_btf_ext_sec(seg, sec) {
2991 /* preventively increment index to avoid doing
2992 * this before every continue below
2993 */
2994 sec_num++;
2995
2996 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2997 if (str_is_empty(sec_name))
2998 continue;
2999 #ifdef HAVE_LIBELF
3000 scn = elf_sec_by_name(obj, sec_name);
3001 if (!scn)
3002 continue;
3003 #elif defined HAVE_ELFIO
3004 pelfio_t elf = obj->efile.elf;
3005 sec_obj = elfio_get_section_by_name(elf, sec_name);
3006 if (!sec_obj)
3007 continue;
3008 #endif
3009 #ifdef HAVE_LIBELF
3010 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3011 #elif defined HAVE_ELFIO
3012 seg->sec_idxs[sec_num - 1] = elfio_section_get_index(sec_obj);
3013 #endif
3014 }
3015 }
3016 }
3017 out:
3018 if (err && libbpf_needs_btf(obj)) {
3019 pr_warn("BTF is required, but is missing or corrupted.\n");
3020 return err;
3021 }
3022 return 0;
3023 }
3024
3025 static int compare_vsi_off(const void *_a, const void *_b)
3026 {
3027 const struct btf_var_secinfo *a = _a;
3028 const struct btf_var_secinfo *b = _b;
3029
3030 return a->offset - b->offset;
3031 }
3032
3033 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3034 struct btf_type *t)
3035 {
3036 __u32 size = 0, i, vars = btf_vlen(t);
3037 const char *sec_name = btf__name_by_offset(btf, t->name_off);
3038 struct btf_var_secinfo *vsi;
3039 bool fixup_offsets = false;
3040 int err;
3041
3042 if (!sec_name) {
3043 pr_debug("No name found in string section for DATASEC kind.\n");
3044 return -ENOENT;
3045 }
3046
3047 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3048 * variable offsets set at the previous step. Further, not every
3049 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3050 * all fixups altogether for such sections and go straight to sorting
3051 * VARs within their DATASEC.
3052 */
3053 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3054 goto sort_vars;
3055
3056 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3057 * fix this up. But BPF static linker already fixes this up and fills
3058 * all the sizes and offsets during static linking. So this step has
3059 * to be optional. But the STV_HIDDEN handling is non-optional for any
3060 * non-extern DATASEC, so the variable fixup loop below handles both
3061 * functions at the same time, paying the cost of BTF VAR <-> ELF
3062 * symbol matching just once.
3063 */
3064 if (t->size == 0) {
3065 err = find_elf_sec_sz(obj, sec_name, &size);
3066 if (err || !size) {
3067 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3068 sec_name, size, err);
3069 return -ENOENT;
3070 }
3071
3072 t->size = size;
3073 fixup_offsets = true;
3074 }
3075
3076 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3077 const struct btf_type *t_var;
3078 struct btf_var *var;
3079 const char *var_name;
3080 Elf64_Sym *sym;
3081
3082 t_var = btf__type_by_id(btf, vsi->type);
3083 if (!t_var || !btf_is_var(t_var)) {
3084 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3085 return -EINVAL;
3086 }
3087
3088 var = btf_var(t_var);
3089 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3090 continue;
3091
3092 var_name = btf__name_by_offset(btf, t_var->name_off);
3093 if (!var_name) {
3094 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3095 sec_name, i);
3096 return -ENOENT;
3097 }
3098
3099 sym = find_elf_var_sym(obj, var_name);
3100 if (IS_ERR(sym)) {
3101 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3102 sec_name, var_name);
3103 return -ENOENT;
3104 }
3105
3106 if (fixup_offsets)
3107 vsi->offset = sym->st_value;
3108
3109 /* if variable is a global/weak symbol, but has restricted
3110 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3111 * as static. This follows similar logic for functions (BPF
3112 * subprogs) and influences libbpf's further decisions about
3113 * whether to make global data BPF array maps as
3114 * BPF_F_MMAPABLE.
3115 */
3116 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3117 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3118 var->linkage = BTF_VAR_STATIC;
3119 }
3120
3121 sort_vars:
3122 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3123 return 0;
3124 }
3125
3126 static int bpf_object_fixup_btf(struct bpf_object *obj)
3127 {
3128 int i, n, err = 0;
3129
3130 if (!obj->btf)
3131 return 0;
3132
3133 n = btf__type_cnt(obj->btf);
3134 for (i = 1; i < n; i++) {
3135 struct btf_type *t = btf_type_by_id(obj->btf, i);
3136
3137 /* Loader needs to fix up some of the things compiler
3138 * couldn't get its hands on while emitting BTF. This
3139 * is section size and global variable offset. We use
3140 * the info from the ELF itself for this purpose.
3141 */
3142 if (btf_is_datasec(t)) {
3143 err = btf_fixup_datasec(obj, obj->btf, t);
3144 if (err)
3145 return err;
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3153 {
3154 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3155 prog->type == BPF_PROG_TYPE_LSM)
3156 return true;
3157
3158 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3159 * also need vmlinux BTF
3160 */
3161 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3162 return true;
3163
3164 return false;
3165 }
3166
3167 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3168 {
3169 struct bpf_program *prog;
3170 int i;
3171
3172 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3173 * is not specified
3174 */
3175 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3176 return true;
3177
3178 /* Support for typed ksyms needs kernel BTF */
3179 for (i = 0; i < obj->nr_extern; i++) {
3180 const struct extern_desc *ext;
3181
3182 ext = &obj->externs[i];
3183 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3184 return true;
3185 }
3186
3187 bpf_object__for_each_program(prog, obj) {
3188 if (!prog->autoload)
3189 continue;
3190 if (prog_needs_vmlinux_btf(prog))
3191 return true;
3192 }
3193
3194 return false;
3195 }
3196
3197 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3198 {
3199 int err;
3200
3201 /* btf_vmlinux could be loaded earlier */
3202 if (obj->btf_vmlinux || obj->gen_loader)
3203 return 0;
3204
3205 if (!force && !obj_needs_vmlinux_btf(obj))
3206 return 0;
3207
3208 obj->btf_vmlinux = btf__load_vmlinux_btf();
3209 err = libbpf_get_error(obj->btf_vmlinux);
3210 if (err) {
3211 pr_warn("Error loading vmlinux BTF: %d\n", err);
3212 obj->btf_vmlinux = NULL;
3213 return err;
3214 }
3215 return 0;
3216 }
3217
3218 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3219 {
3220 struct btf *kern_btf = obj->btf;
3221 bool btf_mandatory, sanitize;
3222 int i, err = 0;
3223
3224 if (!obj->btf)
3225 return 0;
3226
3227 if (!kernel_supports(obj, FEAT_BTF)) {
3228 if (kernel_needs_btf(obj)) {
3229 err = -EOPNOTSUPP;
3230 goto report;
3231 }
3232 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3233 return 0;
3234 }
3235
3236 /* Even though some subprogs are global/weak, user might prefer more
3237 * permissive BPF verification process that BPF verifier performs for
3238 * static functions, taking into account more context from the caller
3239 * functions. In such case, they need to mark such subprogs with
3240 * __attribute__((visibility("hidden"))) and libbpf will adjust
3241 * corresponding FUNC BTF type to be marked as static and trigger more
3242 * involved BPF verification process.
3243 */
3244 for (i = 0; i < obj->nr_programs; i++) {
3245 struct bpf_program *prog = &obj->programs[i];
3246 struct btf_type *t;
3247 const char *name;
3248 int j, n;
3249
3250 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3251 continue;
3252
3253 n = btf__type_cnt(obj->btf);
3254 for (j = 1; j < n; j++) {
3255 t = btf_type_by_id(obj->btf, j);
3256 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3257 continue;
3258
3259 name = btf__str_by_offset(obj->btf, t->name_off);
3260 if (strcmp(name, prog->name) != 0)
3261 continue;
3262
3263 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3264 break;
3265 }
3266 }
3267
3268 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG))
3269 goto skip_exception_cb;
3270 for (i = 0; i < obj->nr_programs; i++) {
3271 struct bpf_program *prog = &obj->programs[i];
3272 int j, k, n;
3273
3274 if (prog_is_subprog(obj, prog))
3275 continue;
3276 n = btf__type_cnt(obj->btf);
3277 for (j = 1; j < n; j++) {
3278 const char *str = "exception_callback:", *name;
3279 size_t len = strlen(str);
3280 struct btf_type *t;
3281
3282 t = btf_type_by_id(obj->btf, j);
3283 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
3284 continue;
3285
3286 name = btf__str_by_offset(obj->btf, t->name_off);
3287 if (strncmp(name, str, len))
3288 continue;
3289
3290 t = btf_type_by_id(obj->btf, t->type);
3291 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3292 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
3293 prog->name);
3294 return -EINVAL;
3295 }
3296 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)))
3297 continue;
3298 /* Multiple callbacks are specified for the same prog,
3299 * the verifier will eventually return an error for this
3300 * case, hence simply skip appending a subprog.
3301 */
3302 if (prog->exception_cb_idx >= 0) {
3303 prog->exception_cb_idx = -1;
3304 break;
3305 }
3306
3307 name += len;
3308 if (str_is_empty(name)) {
3309 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
3310 prog->name);
3311 return -EINVAL;
3312 }
3313
3314 for (k = 0; k < obj->nr_programs; k++) {
3315 struct bpf_program *subprog = &obj->programs[k];
3316
3317 if (!prog_is_subprog(obj, subprog))
3318 continue;
3319 if (strcmp(name, subprog->name))
3320 continue;
3321 /* Enforce non-hidden, as from verifier point of
3322 * view it expects global functions, whereas the
3323 * mark_btf_static fixes up linkage as static.
3324 */
3325 if (!subprog->sym_global || subprog->mark_btf_static) {
3326 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
3327 prog->name, subprog->name);
3328 return -EINVAL;
3329 }
3330 /* Let's see if we already saw a static exception callback with the same name */
3331 if (prog->exception_cb_idx >= 0) {
3332 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
3333 prog->name, subprog->name);
3334 return -EINVAL;
3335 }
3336 prog->exception_cb_idx = k;
3337 break;
3338 }
3339
3340 if (prog->exception_cb_idx >= 0)
3341 continue;
3342 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
3343 return -ENOENT;
3344 }
3345 }
3346 skip_exception_cb:
3347
3348 sanitize = btf_needs_sanitization(obj);
3349 if (sanitize) {
3350 const void *raw_data;
3351 __u32 sz;
3352
3353 /* clone BTF to sanitize a copy and leave the original intact */
3354 raw_data = btf__raw_data(obj->btf, &sz);
3355 kern_btf = btf__new(raw_data, sz);
3356 err = libbpf_get_error(kern_btf);
3357 if (err)
3358 return err;
3359
3360 /* enforce 8-byte pointers for BPF-targeted BTFs */
3361 btf__set_pointer_size(obj->btf, 8);
3362 err = bpf_object__sanitize_btf(obj, kern_btf);
3363 if (err)
3364 return err;
3365 }
3366
3367 if (obj->gen_loader) {
3368 __u32 raw_size = 0;
3369 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3370
3371 if (!raw_data)
3372 return -ENOMEM;
3373 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3374 /* Pretend to have valid FD to pass various fd >= 0 checks.
3375 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3376 */
3377 btf__set_fd(kern_btf, 0);
3378 } else {
3379 /* currently BPF_BTF_LOAD only supports log_level 1 */
3380 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3381 obj->log_level ? 1 : 0);
3382 }
3383 if (sanitize) {
3384 if (!err) {
3385 /* move fd to libbpf's BTF */
3386 btf__set_fd(obj->btf, btf__fd(kern_btf));
3387 btf__set_fd(kern_btf, -1);
3388 }
3389 btf__free(kern_btf);
3390 }
3391 report:
3392 if (err) {
3393 btf_mandatory = kernel_needs_btf(obj);
3394 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3395 btf_mandatory ? "BTF is mandatory, can't proceed."
3396 : "BTF is optional, ignoring.");
3397 if (!btf_mandatory)
3398 err = 0;
3399 }
3400 return err;
3401 }
3402
3403 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3404 {
3405 const char *name;
3406 #if defined HAVE_LIBELF
3407 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3408 #elif defined HAVE_ELFIO
3409 name = elfio_string_get_string(obj->efile.strstring, off);
3410 #endif
3411 if (!name) {
3412 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3413 off, obj->path, elf_errmsg(-1));
3414 return NULL;
3415 }
3416
3417 return name;
3418 }
3419
3420 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3421 {
3422 const char *name;
3423 #if defined HAVE_LIBELF
3424 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3425 #elif defined HAVE_ELFIO
3426 name = elfio_string_get_string(obj->efile.shstring, off);
3427 #endif
3428
3429 if (!name) {
3430 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3431 off, obj->path, elf_errmsg(-1));
3432 return NULL;
3433 }
3434
3435 return name;
3436 }
3437
3438 #ifdef HAVE_LIBELF
3439 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3440 {
3441 Elf_Scn *scn;
3442
3443 scn = elf_getscn(obj->efile.elf, idx);
3444 if (!scn) {
3445 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3446 idx, obj->path, elf_errmsg(-1));
3447 return NULL;
3448 }
3449 return scn;
3450 }
3451
3452 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3453 {
3454 Elf_Scn *scn = NULL;
3455 Elf *elf = obj->efile.elf;
3456 const char *sec_name;
3457
3458 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3459 sec_name = elf_sec_name(obj, scn);
3460 if (!sec_name)
3461 return NULL;
3462
3463 if (strcmp(sec_name, name) != 0)
3464 continue;
3465
3466 return scn;
3467 }
3468 return NULL;
3469 }
3470
3471 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3472 {
3473 Elf64_Shdr *shdr;
3474
3475 if (!scn)
3476 return NULL;
3477
3478 shdr = elf64_getshdr(scn);
3479 if (!shdr) {
3480 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3481 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3482 return NULL;
3483 }
3484
3485 return shdr;
3486 }
3487
3488 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3489 {
3490 const char *name;
3491 Elf64_Shdr *sh;
3492
3493 if (!scn)
3494 return NULL;
3495
3496 sh = elf_sec_hdr(obj, scn);
3497 if (!sh)
3498 return NULL;
3499
3500 name = elf_sec_str(obj, sh->sh_name);
3501 if (!name) {
3502 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3503 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3504 return NULL;
3505 }
3506
3507 return name;
3508 }
3509 #elif defined HAVE_ELFIO
3510 static Elf64_Shdr *elf_sec_hdr_by_idx(const struct bpf_object *obj, size_t idx, Elf64_Shdr *sheader)
3511 {
3512 psection_t psection = elfio_get_section_by_index(obj->efile.elf, idx);
3513
3514 sheader->sh_name = elfio_section_get_name_string_offset(psection);
3515 sheader->sh_type = elfio_section_get_type(psection);
3516 sheader->sh_flags = elfio_section_get_flags(psection);
3517 sheader->sh_addr = elfio_section_get_address(psection);
3518 sheader->sh_offset = elfio_section_get_offset(psection);
3519 sheader->sh_size = elfio_section_get_size(psection);
3520 sheader->sh_link = elfio_section_get_link(psection);
3521 sheader->sh_info = elfio_section_get_info(psection);
3522 sheader->sh_addralign = elfio_section_get_addr_align(psection);
3523 sheader->sh_entsize = elfio_section_get_entry_size(psection);
3524
3525 return sheader;
3526 }
3527
3528 static const char *elf_sec_name_by_idx(const struct bpf_object *obj, size_t idx)
3529 {
3530 const char *name;
3531 Elf64_Shdr sh;
3532
3533 elf_sec_hdr_by_idx(obj, idx, &sh);
3534
3535 name = elf_sec_str(obj, sh.sh_name);
3536 if (!name) {
3537 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3538 idx, obj->path, elf_errmsg(-1));
3539 return NULL;
3540 }
3541
3542 return name;
3543 }
3544 #endif
3545
3546 #if defined HAVE_LIBELF
3547 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3548 {
3549 Elf_Data *data;
3550
3551 if (!scn)
3552 return NULL;
3553
3554 data = elf_getdata(scn, 0);
3555 if (!data) {
3556 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3557 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3558 obj->path, elf_errmsg(-1));
3559 return NULL;
3560 }
3561
3562 return data;
3563 }
3564 #elif defined HAVE_ELFIO
3565 static Elf_Data *elf_sec_data_by_name(const struct bpf_object *obj, const char *name, Elf_Data *data)
3566 {
3567 pelfio_t elf = obj->efile.elf;
3568 psection_t psection_name = elfio_get_section_by_name(elf, name);
3569 data->d_buf = (void*)elfio_section_get_data(psection_name);
3570 data->d_size = elfio_section_get_size(psection_name);
3571
3572 return data;
3573 }
3574
3575 static Elf_Data *elf_sec_data_by_idx(const struct bpf_object *obj, size_t idx, Elf_Data *data)
3576 {
3577 pelfio_t elf = obj->efile.elf;
3578 psection_t psection_index = elfio_get_section_by_index(elf, idx);
3579 data->d_buf = (void*)elfio_section_get_data(psection_index);
3580 data->d_size = elfio_section_get_size(psection_index);
3581
3582 return data;
3583 }
3584 #endif
3585
3586 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3587 {
3588 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3589 return NULL;
3590
3591 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3592 }
3593
3594 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3595 {
3596 if (idx >= data->d_size / sizeof(Elf64_Rel))
3597 return NULL;
3598
3599 return (Elf64_Rel *)data->d_buf + idx;
3600 }
3601
3602 static bool is_sec_name_dwarf(const char *name)
3603 {
3604 /* approximation, but the actual list is too long */
3605 return str_has_pfx(name, ".debug_");
3606 }
3607
3608 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3609 {
3610 /* no special handling of .strtab */
3611 if (hdr->sh_type == SHT_STRTAB)
3612 return true;
3613
3614 /* ignore .llvm_addrsig section as well */
3615 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3616 return true;
3617
3618 /* no subprograms will lead to an empty .text section, ignore it */
3619 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3620 strcmp(name, ".text") == 0)
3621 return true;
3622
3623 /* DWARF sections */
3624 if (is_sec_name_dwarf(name))
3625 return true;
3626
3627 if (str_has_pfx(name, ".rel")) {
3628 name += sizeof(".rel") - 1;
3629 /* DWARF section relocations */
3630 if (is_sec_name_dwarf(name))
3631 return true;
3632
3633 /* .BTF and .BTF.ext don't need relocations */
3634 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3635 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3636 return true;
3637 }
3638
3639 return false;
3640 }
3641
3642 static int cmp_progs(const void *_a, const void *_b)
3643 {
3644 const struct bpf_program *a = _a;
3645 const struct bpf_program *b = _b;
3646
3647 if (a->sec_idx != b->sec_idx)
3648 return a->sec_idx < b->sec_idx ? -1 : 1;
3649
3650 /* sec_insn_off can't be the same within the section */
3651 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3652 }
3653
3654 static int bpf_object__elf_collect(struct bpf_object *obj)
3655 {
3656 struct elf_sec_desc *sec_desc;
3657 #if defined HAVE_LIBELF
3658 Elf *elf = obj->efile.elf;
3659 #elif defined HAVE_ELFIO
3660 pelfio_t elf = obj->efile.elf;
3661 #endif
3662 Elf_Data *btf_ext_data = NULL;
3663 Elf_Data *btf_data = NULL;
3664 int idx = 0, err = 0;
3665 const char *name;
3666 Elf_Data *data;
3667 #ifdef HAVE_LIBELF
3668 Elf_Scn *scn;
3669 #endif
3670 Elf64_Shdr *sh;
3671 #ifdef HAVE_ELFIO
3672 Elf64_Shdr secHeader = {0};
3673 sh = &secHeader;
3674 #endif
3675
3676 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3677 * section. Since section count retrieved by elf_getshdrnum() does
3678 * include sec #0, it is already the necessary size of an array to keep
3679 * all the sections.
3680 */
3681 #ifdef HAVE_LIBELF
3682 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3683 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3684 obj->path, elf_errmsg(-1));
3685 return -LIBBPF_ERRNO__FORMAT;
3686 }
3687 #elif defined HAVE_ELFIO
3688 obj->efile.sec_cnt = elfio_get_sections_num(elf);
3689 #endif
3690 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3691 if (!obj->efile.secs)
3692 return -ENOMEM;
3693
3694 /* a bunch of ELF parsing functionality depends on processing symbols,
3695 * so do the first pass and find the symbol table
3696 */
3697 #if defined HAVE_LIBELF
3698 scn = NULL;
3699 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3700 sh = elf_sec_hdr(obj, scn);
3701 #elif defined HAVE_ELFIO
3702 int secno = elfio_get_sections_num(elf);
3703 for ( int i = 0; i < secno; i++ ) {
3704 Elf_Data realdata;
3705 sh = elf_sec_hdr_by_idx(obj, i, sh);
3706 #endif
3707 if (!sh)
3708 return -LIBBPF_ERRNO__FORMAT;
3709
3710 if (sh->sh_type == SHT_SYMTAB) {
3711 if (obj->efile.symbols) {
3712 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3713 return -LIBBPF_ERRNO__FORMAT;
3714 }
3715 #if defined HAVE_LIBELF
3716 data = elf_sec_data(obj, scn);
3717 #elif defined HAVE_ELFIO
3718 data = elf_sec_data_by_idx(obj, i, &realdata);
3719 #endif
3720 if (!data)
3721 return -LIBBPF_ERRNO__FORMAT;
3722 #ifdef HAVE_LIBELF
3723 idx = elf_ndxscn(scn);
3724 #endif
3725
3726 #if defined HAVE_LIBELF
3727 obj->efile.symbols = data;
3728 #elif defined HAVE_ELFIO
3729 obj->efile.realsymbols.d_buf = data->d_buf;
3730 obj->efile.realsymbols.d_size = data->d_size;
3731 obj->efile.symbols = &(obj->efile.realsymbols);
3732 #endif
3733
3734 #if defined HAVE_LIBELF
3735 obj->efile.symbols_shndx = idx;
3736 #elif defined HAVE_ELFIO
3737 obj->efile.symbols_shndx = i;
3738 #endif
3739 obj->efile.strtabidx = sh->sh_link;
3740 }
3741 }
3742
3743 #ifdef HAVE_ELFIO
3744 pstring_t shstring;
3745 pstring_t strstring;
3746
3747 psection_t psection = elfio_get_section_by_index(elf, obj->efile.strtabidx);
3748 if (!psection)
3749 return -LIBBPF_ERRNO__FORMAT;
3750 strstring = elfio_string_section_accessor_new(psection);
3751
3752 psection = elfio_get_section_by_index(elf, obj->efile.shstrndx);
3753 if (!psection)
3754 return -LIBBPF_ERRNO__FORMAT;
3755 shstring = elfio_string_section_accessor_new(psection);
3756
3757 if (!strstring || !shstring)
3758 return -LIBBPF_ERRNO__FORMAT;
3759 obj->efile.strstring = strstring;
3760 obj->efile.shstring = shstring;
3761 #endif
3762
3763 if (!obj->efile.symbols) {
3764 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3765 obj->path);
3766 return -ENOENT;
3767 }
3768
3769 #ifdef HAVE_LIBELF
3770 scn = NULL;
3771 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3772 #elif defined HAVE_ELFIO
3773 for ( int i = 0; i < secno; i++ ) {
3774 psection_t ptmpsection = elfio_get_section_by_index(elf, i);
3775 elf_sec_hdr_by_idx(obj, i, sh);
3776 #endif
3777
3778 #if defined HAVE_LIBELF
3779 idx = elf_ndxscn(scn);
3780 #elif defined HAVE_ELFIO
3781 idx = i;
3782 #endif
3783 sec_desc = &obj->efile.secs[idx];
3784
3785 #if defined HAVE_LIBELF
3786 sh = elf_sec_hdr(obj, scn);
3787 #elif defined HAVE_ELFIO
3788 sh = elf_sec_hdr_by_idx(obj, i, sh);
3789 #endif
3790
3791 if (!sh)
3792 return -LIBBPF_ERRNO__FORMAT;
3793
3794 name = elf_sec_str(obj, sh->sh_name);
3795 if (!name)
3796 return -LIBBPF_ERRNO__FORMAT;
3797
3798 if (ignore_elf_section(sh, name))
3799 continue;
3800
3801 #if defined HAVE_LIBELF
3802 data = elf_sec_data(obj, scn);
3803 #elif defined HAVE_ELFIO
3804 data = elf_sec_data_by_idx(obj, i, &sec_desc->realdata);
3805 #endif
3806 if (!data)
3807 return -LIBBPF_ERRNO__FORMAT;
3808
3809 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3810 idx, name, (unsigned long)data->d_size,
3811 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3812 (int)sh->sh_type);
3813
3814 if (strcmp(name, "license") == 0) {
3815 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3816 if (err)
3817 return err;
3818 } else if (strcmp(name, "version") == 0) {
3819 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3820 if (err)
3821 return err;
3822 } else if (strcmp(name, "maps") == 0) {
3823 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3824 return -ENOTSUP;
3825 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3826 obj->efile.btf_maps_shndx = idx;
3827 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3828 if (sh->sh_type != SHT_PROGBITS)
3829 return -LIBBPF_ERRNO__FORMAT;
3830 btf_data = data;
3831 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3832 if (sh->sh_type != SHT_PROGBITS)
3833 return -LIBBPF_ERRNO__FORMAT;
3834 btf_ext_data = data;
3835 } else if (sh->sh_type == SHT_SYMTAB) {
3836 /* already processed during the first pass above */
3837 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3838 if (sh->sh_flags & SHF_EXECINSTR) {
3839 if (strcmp(name, ".text") == 0)
3840 obj->efile.text_shndx = idx;
3841 err = bpf_object__add_programs(obj, data, name, idx);
3842 if (err)
3843 return err;
3844 } else if (strcmp(name, DATA_SEC) == 0 ||
3845 str_has_pfx(name, DATA_SEC ".")) {
3846 sec_desc->sec_type = SEC_DATA;
3847 #if defined HAVE_LIBELF
3848 sec_desc->shdr = sh;
3849 sec_desc->data = data;
3850 #elif defined HAVE_ELFIO
3851 sec_desc->psection = ptmpsection;
3852 sec_desc->realdata.d_buf = data->d_buf;
3853 sec_desc->realdata.d_size = data->d_size;
3854 sec_desc->data = &(sec_desc->realdata);
3855 #endif
3856 } else if (strcmp(name, RODATA_SEC) == 0 ||
3857 str_has_pfx(name, RODATA_SEC ".")) {
3858 sec_desc->sec_type = SEC_RODATA;
3859 #if defined HAVE_LIBELF
3860 sec_desc->shdr = sh;
3861 sec_desc->data = data;
3862 #elif defined HAVE_ELFIO
3863 sec_desc->psection = ptmpsection;
3864 sec_desc->realdata.d_buf = data->d_buf;
3865 sec_desc->realdata.d_size = data->d_size;
3866 sec_desc->data = &(sec_desc->realdata);
3867 #endif
3868
3869 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3870 #if defined HAVE_LIBELF
3871 obj->efile.st_ops_data = data;
3872 #elif defined HAVE_ELFIO
3873 obj->efile.realst_ops_data.d_buf = data->d_buf;
3874 obj->efile.realst_ops_data.d_size = data->d_size;
3875 obj->efile.st_ops_data = &(obj->efile.realst_ops_data);
3876 #endif
3877 obj->efile.st_ops_shndx = idx;
3878 } else {
3879 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3880 idx, name);
3881 }
3882 } else if (sh->sh_type == SHT_REL) {
3883 int targ_sec_idx = sh->sh_info; /* points to other section */
3884
3885 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3886 targ_sec_idx >= obj->efile.sec_cnt)
3887 return -LIBBPF_ERRNO__FORMAT;
3888
3889 /* Only do relo for section with exec instructions */
3890 if (!section_have_execinstr(obj, targ_sec_idx) &&
3891 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3892 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3893 #if defined HAVE_LIBELF
3894 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3895 idx, name, targ_sec_idx,
3896 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3897 #elif defined HAVE_ELFIO
3898 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3899 idx, name, targ_sec_idx,
3900 elf_sec_name_by_idx(obj, targ_sec_idx) ?: "<?>");
3901 #endif
3902 continue;
3903 }
3904
3905 sec_desc->sec_type = SEC_RELO;
3906 #if defined HAVE_LIBELF
3907 sec_desc->shdr = sh;
3908 #elif defined HAVE_ELFIO
3909 sec_desc->psection = ptmpsection;
3910 #endif
3911 sec_desc->data = data;
3912 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3913 str_has_pfx(name, BSS_SEC "."))) {
3914 sec_desc->sec_type = SEC_BSS;
3915 #if defined HAVE_LIBELF
3916 sec_desc->shdr = sh;
3917 #elif defined HAVE_ELFIO
3918 sec_desc->psection = ptmpsection;
3919 #endif
3920 sec_desc->data = data;
3921 } else {
3922 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3923 (size_t)sh->sh_size);
3924 }
3925 }
3926
3927 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3928 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3929 return -LIBBPF_ERRNO__FORMAT;
3930 }
3931
3932 /* sort BPF programs by section name and in-section instruction offset
3933 * for faster search
3934 */
3935 if (obj->nr_programs)
3936 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3937
3938 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3939 }
3940
3941 static bool sym_is_extern(const Elf64_Sym *sym)
3942 {
3943 int bind = ELF64_ST_BIND(sym->st_info);
3944 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3945 return sym->st_shndx == SHN_UNDEF &&
3946 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3947 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3948 }
3949
3950 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3951 {
3952 int bind = ELF64_ST_BIND(sym->st_info);
3953 int type = ELF64_ST_TYPE(sym->st_info);
3954
3955 /* in .text section */
3956 if (sym->st_shndx != text_shndx)
3957 return false;
3958
3959 /* local function */
3960 if (bind == STB_LOCAL && type == STT_SECTION)
3961 return true;
3962
3963 /* global function */
3964 return bind == STB_GLOBAL && type == STT_FUNC;
3965 }
3966
3967 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3968 {
3969 const struct btf_type *t;
3970 const char *tname;
3971 int i, n;
3972
3973 if (!btf)
3974 return -ESRCH;
3975
3976 n = btf__type_cnt(btf);
3977 for (i = 1; i < n; i++) {
3978 t = btf__type_by_id(btf, i);
3979
3980 if (!btf_is_var(t) && !btf_is_func(t))
3981 continue;
3982
3983 tname = btf__name_by_offset(btf, t->name_off);
3984 if (strcmp(tname, ext_name))
3985 continue;
3986
3987 if (btf_is_var(t) &&
3988 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3989 return -EINVAL;
3990
3991 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3992 return -EINVAL;
3993
3994 return i;
3995 }
3996
3997 return -ENOENT;
3998 }
3999
4000 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4001 const struct btf_var_secinfo *vs;
4002 const struct btf_type *t;
4003 int i, j, n;
4004
4005 if (!btf)
4006 return -ESRCH;
4007
4008 n = btf__type_cnt(btf);
4009 for (i = 1; i < n; i++) {
4010 t = btf__type_by_id(btf, i);
4011
4012 if (!btf_is_datasec(t))
4013 continue;
4014
4015 vs = btf_var_secinfos(t);
4016 for (j = 0; j < btf_vlen(t); j++, vs++) {
4017 if (vs->type == ext_btf_id)
4018 return i;
4019 }
4020 }
4021
4022 return -ENOENT;
4023 }
4024
4025 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4026 bool *is_signed)
4027 {
4028 const struct btf_type *t;
4029 const char *name;
4030
4031 t = skip_mods_and_typedefs(btf, id, NULL);
4032 name = btf__name_by_offset(btf, t->name_off);
4033
4034 if (is_signed)
4035 *is_signed = false;
4036 switch (btf_kind(t)) {
4037 case BTF_KIND_INT: {
4038 int enc = btf_int_encoding(t);
4039
4040 if (enc & BTF_INT_BOOL)
4041 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4042 if (is_signed)
4043 *is_signed = enc & BTF_INT_SIGNED;
4044 if (t->size == 1)
4045 return KCFG_CHAR;
4046 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4047 return KCFG_UNKNOWN;
4048 return KCFG_INT;
4049 }
4050 case BTF_KIND_ENUM:
4051 if (t->size != 4)
4052 return KCFG_UNKNOWN;
4053 if (strcmp(name, "libbpf_tristate"))
4054 return KCFG_UNKNOWN;
4055 return KCFG_TRISTATE;
4056 case BTF_KIND_ENUM64:
4057 if (strcmp(name, "libbpf_tristate"))
4058 return KCFG_UNKNOWN;
4059 return KCFG_TRISTATE;
4060 case BTF_KIND_ARRAY:
4061 if (btf_array(t)->nelems == 0)
4062 return KCFG_UNKNOWN;
4063 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4064 return KCFG_UNKNOWN;
4065 return KCFG_CHAR_ARR;
4066 default:
4067 return KCFG_UNKNOWN;
4068 }
4069 }
4070
4071 static int cmp_externs(const void *_a, const void *_b)
4072 {
4073 const struct extern_desc *a = _a;
4074 const struct extern_desc *b = _b;
4075
4076 if (a->type != b->type)
4077 return a->type < b->type ? -1 : 1;
4078
4079 if (a->type == EXT_KCFG) {
4080 /* descending order by alignment requirements */
4081 if (a->kcfg.align != b->kcfg.align)
4082 return a->kcfg.align > b->kcfg.align ? -1 : 1;
4083 /* ascending order by size, within same alignment class */
4084 if (a->kcfg.sz != b->kcfg.sz)
4085 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4086 }
4087
4088 /* resolve ties by name */
4089 return strcmp(a->name, b->name);
4090 }
4091
4092 static int find_int_btf_id(const struct btf *btf)
4093 {
4094 const struct btf_type *t;
4095 int i, n;
4096
4097 n = btf__type_cnt(btf);
4098 for (i = 1; i < n; i++) {
4099 t = btf__type_by_id(btf, i);
4100
4101 if (btf_is_int(t) && btf_int_bits(t) == 32)
4102 return i;
4103 }
4104
4105 return 0;
4106 }
4107
4108 static int add_dummy_ksym_var(struct btf *btf)
4109 {
4110 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4111 const struct btf_var_secinfo *vs;
4112 const struct btf_type *sec;
4113
4114 if (!btf)
4115 return 0;
4116
4117 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4118 BTF_KIND_DATASEC);
4119 if (sec_btf_id < 0)
4120 return 0;
4121
4122 sec = btf__type_by_id(btf, sec_btf_id);
4123 vs = btf_var_secinfos(sec);
4124 for (i = 0; i < btf_vlen(sec); i++, vs++) {
4125 const struct btf_type *vt;
4126
4127 vt = btf__type_by_id(btf, vs->type);
4128 if (btf_is_func(vt))
4129 break;
4130 }
4131
4132 /* No func in ksyms sec. No need to add dummy var. */
4133 if (i == btf_vlen(sec))
4134 return 0;
4135
4136 int_btf_id = find_int_btf_id(btf);
4137 dummy_var_btf_id = btf__add_var(btf,
4138 "dummy_ksym",
4139 BTF_VAR_GLOBAL_ALLOCATED,
4140 int_btf_id);
4141 if (dummy_var_btf_id < 0)
4142 pr_warn("cannot create a dummy_ksym var\n");
4143
4144 return dummy_var_btf_id;
4145 }
4146
4147 static int bpf_object__collect_externs(struct bpf_object *obj)
4148 {
4149 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4150 const struct btf_type *t;
4151 struct extern_desc *ext;
4152 int i, n, off, dummy_var_btf_id;
4153 const char *ext_name, *sec_name;
4154 size_t ext_essent_len;
4155 #ifdef HAVE_LIBELF
4156 Elf_Scn *scn;
4157 #endif
4158 Elf64_Shdr *sh;
4159 Elf64_Shdr shheader;
4160
4161 if (!obj->efile.symbols)
4162 return 0;
4163
4164 #if defined HAVE_LIBELF
4165 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4166 sh = elf_sec_hdr(obj, scn);
4167 #elif defined HAVE_ELFIO
4168 sh = &shheader;
4169 sh = elf_sec_hdr_by_idx(obj, obj->efile.symbols_shndx, sh);
4170 #endif
4171
4172 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4173 return -LIBBPF_ERRNO__FORMAT;
4174
4175 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4176 if (dummy_var_btf_id < 0)
4177 return dummy_var_btf_id;
4178
4179 n = sh->sh_size / sh->sh_entsize;
4180 pr_debug("looking for externs among %d symbols...\n", n);
4181
4182 for (i = 0; i < n; i++) {
4183 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4184
4185 if (!sym)
4186 return -LIBBPF_ERRNO__FORMAT;
4187 if (!sym_is_extern(sym))
4188 continue;
4189 ext_name = elf_sym_str(obj, sym->st_name);
4190 if (!ext_name || !ext_name[0])
4191 continue;
4192
4193 ext = obj->externs;
4194 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4195 if (!ext)
4196 return -ENOMEM;
4197 obj->externs = ext;
4198 ext = &ext[obj->nr_extern];
4199 memset(ext, 0, sizeof(*ext));
4200 obj->nr_extern++;
4201
4202 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4203 if (ext->btf_id <= 0) {
4204 pr_warn("failed to find BTF for extern '%s': %d\n",
4205 ext_name, ext->btf_id);
4206 return ext->btf_id;
4207 }
4208 t = btf__type_by_id(obj->btf, ext->btf_id);
4209 ext->name = btf__name_by_offset(obj->btf, t->name_off);
4210 ext->sym_idx = i;
4211 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4212
4213 ext_essent_len = bpf_core_essential_name_len(ext->name);
4214 ext->essent_name = NULL;
4215 if (ext_essent_len != strlen(ext->name)) {
4216 ext->essent_name = strndup(ext->name, ext_essent_len);
4217 if (!ext->essent_name)
4218 return -ENOMEM;
4219 }
4220
4221 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4222 if (ext->sec_btf_id <= 0) {
4223 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4224 ext_name, ext->btf_id, ext->sec_btf_id);
4225 return ext->sec_btf_id;
4226 }
4227 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4228 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4229
4230 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4231 if (btf_is_func(t)) {
4232 pr_warn("extern function %s is unsupported under %s section\n",
4233 ext->name, KCONFIG_SEC);
4234 return -ENOTSUP;
4235 }
4236 kcfg_sec = sec;
4237 ext->type = EXT_KCFG;
4238 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4239 if (ext->kcfg.sz <= 0) {
4240 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4241 ext_name, ext->kcfg.sz);
4242 return ext->kcfg.sz;
4243 }
4244 ext->kcfg.align = btf__align_of(obj->btf, t->type);
4245 if (ext->kcfg.align <= 0) {
4246 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4247 ext_name, ext->kcfg.align);
4248 return -EINVAL;
4249 }
4250 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4251 &ext->kcfg.is_signed);
4252 if (ext->kcfg.type == KCFG_UNKNOWN) {
4253 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4254 return -ENOTSUP;
4255 }
4256 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4257 ksym_sec = sec;
4258 ext->type = EXT_KSYM;
4259 skip_mods_and_typedefs(obj->btf, t->type,
4260 &ext->ksym.type_id);
4261 } else {
4262 pr_warn("unrecognized extern section '%s'\n", sec_name);
4263 return -ENOTSUP;
4264 }
4265 }
4266 pr_debug("collected %d externs total\n", obj->nr_extern);
4267
4268 if (!obj->nr_extern)
4269 return 0;
4270
4271 /* sort externs by type, for kcfg ones also by (align, size, name) */
4272 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4273
4274 /* for .ksyms section, we need to turn all externs into allocated
4275 * variables in BTF to pass kernel verification; we do this by
4276 * pretending that each extern is a 8-byte variable
4277 */
4278 if (ksym_sec) {
4279 /* find existing 4-byte integer type in BTF to use for fake
4280 * extern variables in DATASEC
4281 */
4282 int int_btf_id = find_int_btf_id(obj->btf);
4283 /* For extern function, a dummy_var added earlier
4284 * will be used to replace the vs->type and
4285 * its name string will be used to refill
4286 * the missing param's name.
4287 */
4288 const struct btf_type *dummy_var;
4289
4290 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4291 for (i = 0; i < obj->nr_extern; i++) {
4292 ext = &obj->externs[i];
4293 if (ext->type != EXT_KSYM)
4294 continue;
4295 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4296 i, ext->sym_idx, ext->name);
4297 }
4298
4299 sec = ksym_sec;
4300 n = btf_vlen(sec);
4301 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4302 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4303 struct btf_type *vt;
4304
4305 vt = (void *)btf__type_by_id(obj->btf, vs->type);
4306 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4307 ext = find_extern_by_name(obj, ext_name);
4308 if (!ext) {
4309 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4310 btf_kind_str(vt), ext_name);
4311 return -ESRCH;
4312 }
4313 if (btf_is_func(vt)) {
4314 const struct btf_type *func_proto;
4315 struct btf_param *param;
4316 int j;
4317
4318 func_proto = btf__type_by_id(obj->btf,
4319 vt->type);
4320 param = btf_params(func_proto);
4321 /* Reuse the dummy_var string if the
4322 * func proto does not have param name.
4323 */
4324 for (j = 0; j < btf_vlen(func_proto); j++)
4325 if (param[j].type && !param[j].name_off)
4326 param[j].name_off =
4327 dummy_var->name_off;
4328 vs->type = dummy_var_btf_id;
4329 vt->info &= ~0xffff;
4330 vt->info |= BTF_FUNC_GLOBAL;
4331 } else {
4332 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4333 vt->type = int_btf_id;
4334 }
4335 vs->offset = off;
4336 vs->size = sizeof(int);
4337 }
4338 sec->size = off;
4339 }
4340
4341 if (kcfg_sec) {
4342 sec = kcfg_sec;
4343 /* for kcfg externs calculate their offsets within a .kconfig map */
4344 off = 0;
4345 for (i = 0; i < obj->nr_extern; i++) {
4346 ext = &obj->externs[i];
4347 if (ext->type != EXT_KCFG)
4348 continue;
4349
4350 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4351 off = ext->kcfg.data_off + ext->kcfg.sz;
4352 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4353 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4354 }
4355 sec->size = off;
4356 n = btf_vlen(sec);
4357 for (i = 0; i < n; i++) {
4358 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4359
4360 t = btf__type_by_id(obj->btf, vs->type);
4361 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4362 ext = find_extern_by_name(obj, ext_name);
4363 if (!ext) {
4364 pr_warn("failed to find extern definition for BTF var '%s'\n",
4365 ext_name);
4366 return -ESRCH;
4367 }
4368 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4369 vs->offset = ext->kcfg.data_off;
4370 }
4371 }
4372 return 0;
4373 }
4374
4375 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4376 {
4377 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4378 }
4379
4380 struct bpf_program *
4381 bpf_object__find_program_by_name(const struct bpf_object *obj,
4382 const char *name)
4383 {
4384 struct bpf_program *prog;
4385
4386 bpf_object__for_each_program(prog, obj) {
4387 if (prog_is_subprog(obj, prog))
4388 continue;
4389 if (!strcmp(prog->name, name))
4390 return prog;
4391 }
4392 return errno = ENOENT, NULL;
4393 }
4394
4395 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4396 int shndx)
4397 {
4398 switch (obj->efile.secs[shndx].sec_type) {
4399 case SEC_BSS:
4400 case SEC_DATA:
4401 case SEC_RODATA:
4402 return true;
4403 default:
4404 return false;
4405 }
4406 }
4407
4408 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4409 int shndx)
4410 {
4411 return shndx == obj->efile.btf_maps_shndx;
4412 }
4413
4414 static enum libbpf_map_type
4415 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4416 {
4417 if (shndx == obj->efile.symbols_shndx)
4418 return LIBBPF_MAP_KCONFIG;
4419
4420 switch (obj->efile.secs[shndx].sec_type) {
4421 case SEC_BSS:
4422 return LIBBPF_MAP_BSS;
4423 case SEC_DATA:
4424 return LIBBPF_MAP_DATA;
4425 case SEC_RODATA:
4426 return LIBBPF_MAP_RODATA;
4427 default:
4428 return LIBBPF_MAP_UNSPEC;
4429 }
4430 }
4431
4432 static int bpf_program__record_reloc(struct bpf_program *prog,
4433 struct reloc_desc *reloc_desc,
4434 __u32 insn_idx, const char *sym_name,
4435 const Elf64_Sym *sym, const Elf64_Rel *rel)
4436 {
4437 struct bpf_insn *insn = &prog->insns[insn_idx];
4438 size_t map_idx, nr_maps = prog->obj->nr_maps;
4439 struct bpf_object *obj = prog->obj;
4440 __u32 shdr_idx = sym->st_shndx;
4441 enum libbpf_map_type type;
4442 const char *sym_sec_name;
4443 struct bpf_map *map;
4444
4445 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4446 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4447 prog->name, sym_name, insn_idx, insn->code);
4448 return -LIBBPF_ERRNO__RELOC;
4449 }
4450
4451 if (sym_is_extern(sym)) {
4452 int sym_idx = ELF64_R_SYM(rel->r_info);
4453 int i, n = obj->nr_extern;
4454 struct extern_desc *ext;
4455
4456 for (i = 0; i < n; i++) {
4457 ext = &obj->externs[i];
4458 if (ext->sym_idx == sym_idx)
4459 break;
4460 }
4461 if (i >= n) {
4462 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4463 prog->name, sym_name, sym_idx);
4464 return -LIBBPF_ERRNO__RELOC;
4465 }
4466 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4467 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4468 if (insn->code == (BPF_JMP | BPF_CALL))
4469 reloc_desc->type = RELO_EXTERN_CALL;
4470 else
4471 reloc_desc->type = RELO_EXTERN_LD64;
4472 reloc_desc->insn_idx = insn_idx;
4473 reloc_desc->ext_idx = i;
4474 return 0;
4475 }
4476
4477 /* sub-program call relocation */
4478 if (is_call_insn(insn)) {
4479 if (insn->src_reg != BPF_PSEUDO_CALL) {
4480 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4481 return -LIBBPF_ERRNO__RELOC;
4482 }
4483 /* text_shndx can be 0, if no default "main" program exists */
4484 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4485 #if defined HAVE_LIBELF
4486 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4487 #elif defined HAVE_ELFIO
4488 sym_sec_name = elf_sec_name_by_idx(obj, shdr_idx);
4489 #endif
4490 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4491 prog->name, sym_name, sym_sec_name);
4492 return -LIBBPF_ERRNO__RELOC;
4493 }
4494 if (sym->st_value % BPF_INSN_SZ) {
4495 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4496 prog->name, sym_name, (size_t)sym->st_value);
4497 return -LIBBPF_ERRNO__RELOC;
4498 }
4499 reloc_desc->type = RELO_CALL;
4500 reloc_desc->insn_idx = insn_idx;
4501 reloc_desc->sym_off = sym->st_value;
4502 return 0;
4503 }
4504
4505 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4506 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4507 prog->name, sym_name, shdr_idx);
4508 return -LIBBPF_ERRNO__RELOC;
4509 }
4510
4511 /* loading subprog addresses */
4512 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4513 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4514 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4515 */
4516 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4517 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4518 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4519 return -LIBBPF_ERRNO__RELOC;
4520 }
4521
4522 reloc_desc->type = RELO_SUBPROG_ADDR;
4523 reloc_desc->insn_idx = insn_idx;
4524 reloc_desc->sym_off = sym->st_value;
4525 return 0;
4526 }
4527
4528 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4529 #if defined HAVE_LIBELF
4530 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4531 #elif defined HAVE_ELFIO
4532 sym_sec_name = elf_sec_name_by_idx(obj, shdr_idx);
4533 #endif
4534 /* generic map reference relocation */
4535 if (type == LIBBPF_MAP_UNSPEC) {
4536 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4537 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4538 prog->name, sym_name, sym_sec_name);
4539 return -LIBBPF_ERRNO__RELOC;
4540 }
4541 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4542 map = &obj->maps[map_idx];
4543 if (map->libbpf_type != type ||
4544 map->sec_idx != sym->st_shndx ||
4545 map->sec_offset != sym->st_value)
4546 continue;
4547 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4548 prog->name, map_idx, map->name, map->sec_idx,
4549 map->sec_offset, insn_idx);
4550 break;
4551 }
4552 if (map_idx >= nr_maps) {
4553 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4554 prog->name, sym_sec_name, (size_t)sym->st_value);
4555 return -LIBBPF_ERRNO__RELOC;
4556 }
4557 reloc_desc->type = RELO_LD64;
4558 reloc_desc->insn_idx = insn_idx;
4559 reloc_desc->map_idx = map_idx;
4560 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4561 return 0;
4562 }
4563
4564 /* global data map relocation */
4565 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4566 pr_warn("prog '%s': bad data relo against section '%s'\n",
4567 prog->name, sym_sec_name);
4568 return -LIBBPF_ERRNO__RELOC;
4569 }
4570 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4571 map = &obj->maps[map_idx];
4572 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4573 continue;
4574 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4575 prog->name, map_idx, map->name, map->sec_idx,
4576 map->sec_offset, insn_idx);
4577 break;
4578 }
4579 if (map_idx >= nr_maps) {
4580 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4581 prog->name, sym_sec_name);
4582 return -LIBBPF_ERRNO__RELOC;
4583 }
4584
4585 reloc_desc->type = RELO_DATA;
4586 reloc_desc->insn_idx = insn_idx;
4587 reloc_desc->map_idx = map_idx;
4588 reloc_desc->sym_off = sym->st_value;
4589 return 0;
4590 }
4591
4592 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4593 {
4594 return insn_idx >= prog->sec_insn_off &&
4595 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4596 }
4597
4598 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4599 size_t sec_idx, size_t insn_idx)
4600 {
4601 int l = 0, r = obj->nr_programs - 1, m;
4602 struct bpf_program *prog;
4603
4604 if (!obj->nr_programs)
4605 return NULL;
4606
4607 while (l < r) {
4608 m = l + (r - l + 1) / 2;
4609 prog = &obj->programs[m];
4610
4611 if (prog->sec_idx < sec_idx ||
4612 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4613 l = m;
4614 else
4615 r = m - 1;
4616 }
4617 /* matching program could be at index l, but it still might be the
4618 * wrong one, so we need to double check conditions for the last time
4619 */
4620 prog = &obj->programs[l];
4621 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4622 return prog;
4623 return NULL;
4624 }
4625
4626 static int
4627 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4628 {
4629 const char *relo_sec_name, *sec_name;
4630 size_t sec_idx = shdr->sh_info, sym_idx;
4631 struct bpf_program *prog;
4632 struct reloc_desc *relos;
4633 int err, i, nrels;
4634 const char *sym_name;
4635 __u32 insn_idx;
4636 #ifdef HAVE_LIBELF
4637 Elf_Scn *scn;
4638 #endif
4639 Elf_Data *scn_data;
4640 Elf64_Sym *sym;
4641 Elf64_Rel *rel;
4642
4643 if (sec_idx >= obj->efile.sec_cnt)
4644 return -EINVAL;
4645
4646 #if defined HAVE_LIBELF
4647 scn = elf_sec_by_idx(obj, sec_idx);
4648 scn_data = elf_sec_data(obj, scn);
4649
4650 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4651 sec_name = elf_sec_name(obj, scn);
4652 if (!relo_sec_name || !sec_name)
4653 return -EINVAL;
4654 #elif defined HAVE_ELFIO
4655 Elf_Data realdata;
4656 scn_data = elf_sec_data_by_idx(obj, sec_idx, &realdata);
4657
4658 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4659 sec_name = elf_sec_name_by_idx(obj, sec_idx);
4660 if (!relo_sec_name || !sec_name)
4661 return -EINVAL;
4662 #endif
4663
4664 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4665 relo_sec_name, sec_idx, sec_name);
4666 nrels = shdr->sh_size / shdr->sh_entsize;
4667
4668 for (i = 0; i < nrels; i++) {
4669 rel = elf_rel_by_idx(data, i);
4670 if (!rel) {
4671 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4672 return -LIBBPF_ERRNO__FORMAT;
4673 }
4674
4675 sym_idx = ELF64_R_SYM(rel->r_info);
4676 sym = elf_sym_by_idx(obj, sym_idx);
4677 if (!sym) {
4678 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4679 relo_sec_name, sym_idx, i);
4680 return -LIBBPF_ERRNO__FORMAT;
4681 }
4682
4683 if (sym->st_shndx >= obj->efile.sec_cnt) {
4684 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4685 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4686 return -LIBBPF_ERRNO__FORMAT;
4687 }
4688
4689 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4690 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4691 relo_sec_name, (size_t)rel->r_offset, i);
4692 return -LIBBPF_ERRNO__FORMAT;
4693 }
4694
4695 insn_idx = rel->r_offset / BPF_INSN_SZ;
4696 /* relocations against static functions are recorded as
4697 * relocations against the section that contains a function;
4698 * in such case, symbol will be STT_SECTION and sym.st_name
4699 * will point to empty string (0), so fetch section name
4700 * instead
4701 */
4702 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4703 #if defined HAVE_LIBELF
4704 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4705 #elif defined HAVE_ELFIO
4706 sym_name = elf_sec_name_by_idx(obj, sym->st_shndx);
4707 #endif
4708 else
4709 sym_name = elf_sym_str(obj, sym->st_name);
4710 sym_name = sym_name ?: "<?";
4711
4712 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4713 relo_sec_name, i, insn_idx, sym_name);
4714
4715 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4716 if (!prog) {
4717 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4718 relo_sec_name, i, sec_name, insn_idx);
4719 continue;
4720 }
4721
4722 relos = libbpf_reallocarray(prog->reloc_desc,
4723 prog->nr_reloc + 1, sizeof(*relos));
4724 if (!relos)
4725 return -ENOMEM;
4726 prog->reloc_desc = relos;
4727
4728 /* adjust insn_idx to local BPF program frame of reference */
4729 insn_idx -= prog->sec_insn_off;
4730 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4731 insn_idx, sym_name, sym, rel);
4732 if (err)
4733 return err;
4734
4735 prog->nr_reloc++;
4736 }
4737 return 0;
4738 }
4739
4740 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4741 {
4742 int id;
4743
4744 if (!obj->btf)
4745 return -ENOENT;
4746
4747 /* if it's BTF-defined map, we don't need to search for type IDs.
4748 * For struct_ops map, it does not need btf_key_type_id and
4749 * btf_value_type_id.
4750 */
4751 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4752 return 0;
4753
4754 /*
4755 * LLVM annotates global data differently in BTF, that is,
4756 * only as '.data', '.bss' or '.rodata'.
4757 */
4758 if (!bpf_map__is_internal(map))
4759 return -ENOENT;
4760
4761 id = btf__find_by_name(obj->btf, map->real_name);
4762 if (id < 0)
4763 return id;
4764
4765 map->btf_key_type_id = 0;
4766 map->btf_value_type_id = id;
4767 return 0;
4768 }
4769
4770 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4771 {
4772 char file[PATH_MAX], buff[4096];
4773 FILE *fp;
4774 __u32 val;
4775 int err;
4776
4777 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4778 memset(info, 0, sizeof(*info));
4779
4780 fp = fopen(file, "re");
4781 if (!fp) {
4782 err = -errno;
4783 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4784 err);
4785 return err;
4786 }
4787
4788 while (fgets(buff, sizeof(buff), fp)) {
4789 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4790 info->type = val;
4791 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4792 info->key_size = val;
4793 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4794 info->value_size = val;
4795 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4796 info->max_entries = val;
4797 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4798 info->map_flags = val;
4799 }
4800
4801 fclose(fp);
4802
4803 return 0;
4804 }
4805
4806 bool bpf_map__autocreate(const struct bpf_map *map)
4807 {
4808 return map->autocreate;
4809 }
4810
4811 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4812 {
4813 if (map->obj->loaded)
4814 return libbpf_err(-EBUSY);
4815
4816 map->autocreate = autocreate;
4817 return 0;
4818 }
4819
4820 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4821 {
4822 struct bpf_map_info info;
4823 __u32 len = sizeof(info), name_len;
4824 int new_fd, err;
4825 char *new_name;
4826
4827 memset(&info, 0, len);
4828 err = bpf_map_get_info_by_fd(fd, &info, &len);
4829 if (err && errno == EINVAL)
4830 err = bpf_get_map_info_from_fdinfo(fd, &info);
4831 if (err)
4832 return libbpf_err(err);
4833
4834 name_len = strlen(info.name);
4835 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4836 new_name = strdup(map->name);
4837 else
4838 new_name = strdup(info.name);
4839
4840 if (!new_name)
4841 return libbpf_err(-errno);
4842
4843 /*
4844 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4845 * This is similar to what we do in ensure_good_fd(), but without
4846 * closing original FD.
4847 */
4848 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4849 if (new_fd < 0) {
4850 err = -errno;
4851 goto err_free_new_name;
4852 }
4853
4854 err = zclose(map->fd);
4855 if (err) {
4856 err = -errno;
4857 goto err_close_new_fd;
4858 }
4859 free(map->name);
4860
4861 map->fd = new_fd;
4862 map->name = new_name;
4863 map->def.type = info.type;
4864 map->def.key_size = info.key_size;
4865 map->def.value_size = info.value_size;
4866 map->def.max_entries = info.max_entries;
4867 map->def.map_flags = info.map_flags;
4868 map->btf_key_type_id = info.btf_key_type_id;
4869 map->btf_value_type_id = info.btf_value_type_id;
4870 map->reused = true;
4871 map->map_extra = info.map_extra;
4872
4873 return 0;
4874
4875 err_close_new_fd:
4876 close(new_fd);
4877 err_free_new_name:
4878 free(new_name);
4879 return libbpf_err(err);
4880 }
4881
4882 __u32 bpf_map__max_entries(const struct bpf_map *map)
4883 {
4884 return map->def.max_entries;
4885 }
4886
4887 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4888 {
4889 if (!bpf_map_type__is_map_in_map(map->def.type))
4890 return errno = EINVAL, NULL;
4891
4892 return map->inner_map;
4893 }
4894
4895 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4896 {
4897 if (map->obj->loaded)
4898 return libbpf_err(-EBUSY);
4899
4900 map->def.max_entries = max_entries;
4901
4902 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4903 if (map_is_ringbuf(map))
4904 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4905
4906 return 0;
4907 }
4908
4909 static int
4910 bpf_object__probe_loading(struct bpf_object *obj)
4911 {
4912 char *cp, errmsg[STRERR_BUFSIZE];
4913 struct bpf_insn insns[] = {
4914 BPF_MOV64_IMM(BPF_REG_0, 0),
4915 BPF_EXIT_INSN(),
4916 };
4917 int ret, insn_cnt = ARRAY_SIZE(insns);
4918
4919 if (obj->gen_loader)
4920 return 0;
4921
4922 ret = bump_rlimit_memlock();
4923 if (ret)
4924 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4925
4926 /* make sure basic loading works */
4927 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4928 if (ret < 0)
4929 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4930 if (ret < 0) {
4931 ret = errno;
4932 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4933 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4934 "program. Make sure your kernel supports BPF "
4935 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4936 "set to big enough value.\n", __func__, cp, ret);
4937 return -ret;
4938 }
4939 close(ret);
4940
4941 return 0;
4942 }
4943
4944 static int probe_fd(int fd)
4945 {
4946 if (fd >= 0)
4947 close(fd);
4948 return fd >= 0;
4949 }
4950
4951 static int probe_kern_prog_name(void)
4952 {
4953 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4954 struct bpf_insn insns[] = {
4955 BPF_MOV64_IMM(BPF_REG_0, 0),
4956 BPF_EXIT_INSN(),
4957 };
4958 union bpf_attr attr;
4959 int ret;
4960
4961 memset(&attr, 0, attr_sz);
4962 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4963 attr.license = ptr_to_u64("GPL");
4964 attr.insns = ptr_to_u64(insns);
4965 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4966 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4967
4968 /* make sure loading with name works */
4969 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4970 return probe_fd(ret);
4971 }
4972
4973 static int probe_kern_global_data(void)
4974 {
4975 char *cp, errmsg[STRERR_BUFSIZE];
4976 struct bpf_insn insns[] = {
4977 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4978 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4979 BPF_MOV64_IMM(BPF_REG_0, 0),
4980 BPF_EXIT_INSN(),
4981 };
4982 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4983
4984 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4985 if (map < 0) {
4986 ret = -errno;
4987 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4988 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4989 __func__, cp, -ret);
4990 return ret;
4991 }
4992
4993 insns[0].imm = map;
4994
4995 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4996 close(map);
4997 return probe_fd(ret);
4998 }
4999
5000 static int probe_kern_btf(void)
5001 {
5002 static const char strs[] = "\0int";
5003 __u32 types[] = {
5004 /* int */
5005 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
5006 };
5007
5008 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5009 strs, sizeof(strs)));
5010 }
5011
5012 static int probe_kern_btf_func(void)
5013 {
5014 static const char strs[] = "\0int\0x\0a";
5015 /* void x(int a) {} */
5016 __u32 types[] = {
5017 /* int */
5018 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
5019 /* FUNC_PROTO */ /* [2] */
5020 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
5021 BTF_PARAM_ENC(7, 1),
5022 /* FUNC x */ /* [3] */
5023 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
5024 };
5025
5026 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5027 strs, sizeof(strs)));
5028 }
5029
5030 static int probe_kern_btf_func_global(void)
5031 {
5032 static const char strs[] = "\0int\0x\0a";
5033 /* static void x(int a) {} */
5034 __u32 types[] = {
5035 /* int */
5036 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
5037 /* FUNC_PROTO */ /* [2] */
5038 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
5039 BTF_PARAM_ENC(7, 1),
5040 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
5041 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
5042 };
5043
5044 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5045 strs, sizeof(strs)));
5046 }
5047
5048 static int probe_kern_btf_datasec(void)
5049 {
5050 static const char strs[] = "\0x\0.data";
5051 /* static int a; */
5052 __u32 types[] = {
5053 /* int */
5054 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
5055 /* VAR x */ /* [2] */
5056 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
5057 BTF_VAR_STATIC,
5058 /* DATASEC val */ /* [3] */
5059 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
5060 BTF_VAR_SECINFO_ENC(2, 0, 4),
5061 };
5062
5063 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5064 strs, sizeof(strs)));
5065 }
5066
5067 static int probe_kern_btf_float(void)
5068 {
5069 static const char strs[] = "\0float";
5070 __u32 types[] = {
5071 /* float */
5072 BTF_TYPE_FLOAT_ENC(1, 4),
5073 };
5074
5075 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5076 strs, sizeof(strs)));
5077 }
5078
5079 static int probe_kern_btf_decl_tag(void)
5080 {
5081 static const char strs[] = "\0tag";
5082 __u32 types[] = {
5083 /* int */
5084 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
5085 /* VAR x */ /* [2] */
5086 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
5087 BTF_VAR_STATIC,
5088 /* attr */
5089 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
5090 };
5091
5092 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5093 strs, sizeof(strs)));
5094 }
5095
5096 static int probe_kern_btf_type_tag(void)
5097 {
5098 static const char strs[] = "\0tag";
5099 __u32 types[] = {
5100 /* int */
5101 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
5102 /* attr */
5103 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
5104 /* ptr */
5105 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
5106 };
5107
5108 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5109 strs, sizeof(strs)));
5110 }
5111
5112 static int probe_kern_array_mmap(void)
5113 {
5114 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
5115 int fd;
5116
5117 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
5118 return probe_fd(fd);
5119 }
5120
5121 static int probe_kern_exp_attach_type(void)
5122 {
5123 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
5124 struct bpf_insn insns[] = {
5125 BPF_MOV64_IMM(BPF_REG_0, 0),
5126 BPF_EXIT_INSN(),
5127 };
5128 int fd, insn_cnt = ARRAY_SIZE(insns);
5129
5130 /* use any valid combination of program type and (optional)
5131 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
5132 * to see if kernel supports expected_attach_type field for
5133 * BPF_PROG_LOAD command
5134 */
5135 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
5136 return probe_fd(fd);
5137 }
5138
5139 static int probe_kern_probe_read_kernel(void)
5140 {
5141 struct bpf_insn insns[] = {
5142 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
5143 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
5144 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
5145 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
5146 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
5147 BPF_EXIT_INSN(),
5148 };
5149 int fd, insn_cnt = ARRAY_SIZE(insns);
5150
5151 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
5152 return probe_fd(fd);
5153 }
5154
5155 static int probe_prog_bind_map(void)
5156 {
5157 char *cp, errmsg[STRERR_BUFSIZE];
5158 struct bpf_insn insns[] = {
5159 BPF_MOV64_IMM(BPF_REG_0, 0),
5160 BPF_EXIT_INSN(),
5161 };
5162 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
5163
5164 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
5165 if (map < 0) {
5166 ret = -errno;
5167 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
5168 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
5169 __func__, cp, -ret);
5170 return ret;
5171 }
5172
5173 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
5174 if (prog < 0) {
5175 close(map);
5176 return 0;
5177 }
5178
5179 ret = bpf_prog_bind_map(prog, map, NULL);
5180
5181 close(map);
5182 close(prog);
5183
5184 return ret >= 0;
5185 }
5186
5187 static int probe_module_btf(void)
5188 {
5189 static const char strs[] = "\0int";
5190 __u32 types[] = {
5191 /* int */
5192 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
5193 };
5194 struct bpf_btf_info info;
5195 __u32 len = sizeof(info);
5196 char name[16];
5197 int fd, err;
5198
5199 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
5200 if (fd < 0)
5201 return 0; /* BTF not supported at all */
5202
5203 memset(&info, 0, sizeof(info));
5204 info.name = ptr_to_u64(name);
5205 info.name_len = sizeof(name);
5206
5207 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
5208 * kernel's module BTF support coincides with support for
5209 * name/name_len fields in struct bpf_btf_info.
5210 */
5211 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5212 close(fd);
5213 return !err;
5214 }
5215
5216 static int probe_perf_link(void)
5217 {
5218 struct bpf_insn insns[] = {
5219 BPF_MOV64_IMM(BPF_REG_0, 0),
5220 BPF_EXIT_INSN(),
5221 };
5222 int prog_fd, link_fd, err;
5223
5224 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
5225 insns, ARRAY_SIZE(insns), NULL);
5226 if (prog_fd < 0)
5227 return -errno;
5228
5229 /* use invalid perf_event FD to get EBADF, if link is supported;
5230 * otherwise EINVAL should be returned
5231 */
5232 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
5233 err = -errno; /* close() can clobber errno */
5234
5235 if (link_fd >= 0)
5236 close(link_fd);
5237 close(prog_fd);
5238
5239 return link_fd < 0 && err == -EBADF;
5240 }
5241
5242 static int probe_uprobe_multi_link(void)
5243 {
5244 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
5245 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
5246 );
5247 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
5248 struct bpf_insn insns[] = {
5249 BPF_MOV64_IMM(BPF_REG_0, 0),
5250 BPF_EXIT_INSN(),
5251 };
5252 int prog_fd, link_fd, err;
5253 unsigned long offset = 0;
5254
5255 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
5256 insns, ARRAY_SIZE(insns), &load_opts);
5257 if (prog_fd < 0)
5258 return -errno;
5259
5260 /* Creating uprobe in '/' binary should fail with -EBADF. */
5261 link_opts.uprobe_multi.path = "/";
5262 link_opts.uprobe_multi.offsets = &offset;
5263 link_opts.uprobe_multi.cnt = 1;
5264
5265 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
5266 err = -errno; /* close() can clobber errno */
5267
5268 if (link_fd >= 0)
5269 close(link_fd);
5270 close(prog_fd);
5271
5272 return link_fd < 0 && err == -EBADF;
5273 }
5274
5275 static int probe_kern_bpf_cookie(void)
5276 {
5277 struct bpf_insn insns[] = {
5278 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
5279 BPF_EXIT_INSN(),
5280 };
5281 int ret, insn_cnt = ARRAY_SIZE(insns);
5282
5283 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
5284 return probe_fd(ret);
5285 }
5286
5287 static int probe_kern_btf_enum64(void)
5288 {
5289 static const char strs[] = "\0enum64";
5290 __u32 types[] = {
5291 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
5292 };
5293
5294 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
5295 strs, sizeof(strs)));
5296 }
5297
5298 static int probe_kern_syscall_wrapper(void);
5299
5300 enum kern_feature_result {
5301 FEAT_UNKNOWN = 0,
5302 FEAT_SUPPORTED = 1,
5303 FEAT_MISSING = 2,
5304 };
5305
5306 typedef int (*feature_probe_fn)(void);
5307
5308 static struct kern_feature_desc {
5309 const char *desc;
5310 feature_probe_fn probe;
5311 enum kern_feature_result res;
5312 } feature_probes[__FEAT_CNT] = {
5313 [FEAT_PROG_NAME] = {
5314 "BPF program name", probe_kern_prog_name,
5315 },
5316 [FEAT_GLOBAL_DATA] = {
5317 "global variables", probe_kern_global_data,
5318 },
5319 [FEAT_BTF] = {
5320 "minimal BTF", probe_kern_btf,
5321 },
5322 [FEAT_BTF_FUNC] = {
5323 "BTF functions", probe_kern_btf_func,
5324 },
5325 [FEAT_BTF_GLOBAL_FUNC] = {
5326 "BTF global function", probe_kern_btf_func_global,
5327 },
5328 [FEAT_BTF_DATASEC] = {
5329 "BTF data section and variable", probe_kern_btf_datasec,
5330 },
5331 [FEAT_ARRAY_MMAP] = {
5332 "ARRAY map mmap()", probe_kern_array_mmap,
5333 },
5334 [FEAT_EXP_ATTACH_TYPE] = {
5335 "BPF_PROG_LOAD expected_attach_type attribute",
5336 probe_kern_exp_attach_type,
5337 },
5338 [FEAT_PROBE_READ_KERN] = {
5339 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
5340 },
5341 [FEAT_PROG_BIND_MAP] = {
5342 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
5343 },
5344 [FEAT_MODULE_BTF] = {
5345 "module BTF support", probe_module_btf,
5346 },
5347 [FEAT_BTF_FLOAT] = {
5348 "BTF_KIND_FLOAT support", probe_kern_btf_float,
5349 },
5350 [FEAT_PERF_LINK] = {
5351 "BPF perf link support", probe_perf_link,
5352 },
5353 [FEAT_BTF_DECL_TAG] = {
5354 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
5355 },
5356 [FEAT_BTF_TYPE_TAG] = {
5357 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
5358 },
5359 [FEAT_MEMCG_ACCOUNT] = {
5360 "memcg-based memory accounting", probe_memcg_account,
5361 },
5362 [FEAT_BPF_COOKIE] = {
5363 "BPF cookie support", probe_kern_bpf_cookie,
5364 },
5365 [FEAT_BTF_ENUM64] = {
5366 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5367 },
5368 [FEAT_SYSCALL_WRAPPER] = {
5369 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5370 },
5371 [FEAT_UPROBE_MULTI_LINK] = {
5372 "BPF multi-uprobe link support", probe_uprobe_multi_link,
5373 },
5374 };
5375
5376 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5377 {
5378 struct kern_feature_desc *feat = &feature_probes[feat_id];
5379 int ret;
5380
5381 if (obj && obj->gen_loader)
5382 /* To generate loader program assume the latest kernel
5383 * to avoid doing extra prog_load, map_create syscalls.
5384 */
5385 return true;
5386
5387 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5388 ret = feat->probe();
5389 if (ret > 0) {
5390 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5391 } else if (ret == 0) {
5392 WRITE_ONCE(feat->res, FEAT_MISSING);
5393 } else {
5394 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5395 WRITE_ONCE(feat->res, FEAT_MISSING);
5396 }
5397 }
5398
5399 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5400 }
5401
5402 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5403 {
5404 struct bpf_map_info map_info;
5405 char msg[STRERR_BUFSIZE];
5406 __u32 map_info_len = sizeof(map_info);
5407 int err;
5408
5409 memset(&map_info, 0, map_info_len);
5410 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5411 if (err && errno == EINVAL)
5412 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5413 if (err) {
5414 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5415 libbpf_strerror_r(errno, msg, sizeof(msg)));
5416 return false;
5417 }
5418
5419 return (map_info.type == map->def.type &&
5420 map_info.key_size == map->def.key_size &&
5421 map_info.value_size == map->def.value_size &&
5422 map_info.max_entries == map->def.max_entries &&
5423 map_info.map_flags == map->def.map_flags &&
5424 map_info.map_extra == map->map_extra);
5425 }
5426
5427 static int
5428 bpf_object__reuse_map(struct bpf_map *map)
5429 {
5430 char *cp, errmsg[STRERR_BUFSIZE];
5431 int err, pin_fd;
5432
5433 pin_fd = bpf_obj_get(map->pin_path);
5434 if (pin_fd < 0) {
5435 err = -errno;
5436 if (err == -ENOENT) {
5437 pr_debug("found no pinned map to reuse at '%s'\n",
5438 map->pin_path);
5439 return 0;
5440 }
5441
5442 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5443 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5444 map->pin_path, cp);
5445 return err;
5446 }
5447
5448 if (!map_is_reuse_compat(map, pin_fd)) {
5449 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5450 map->pin_path);
5451 close(pin_fd);
5452 return -EINVAL;
5453 }
5454
5455 err = bpf_map__reuse_fd(map, pin_fd);
5456 close(pin_fd);
5457 if (err)
5458 return err;
5459
5460 map->pinned = true;
5461 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5462
5463 return 0;
5464 }
5465
5466 static int
5467 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5468 {
5469 enum libbpf_map_type map_type = map->libbpf_type;
5470 char *cp, errmsg[STRERR_BUFSIZE];
5471 int err, zero = 0;
5472
5473 if (obj->gen_loader) {
5474 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5475 map->mmaped, map->def.value_size);
5476 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5477 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5478 return 0;
5479 }
5480 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5481 if (err) {
5482 err = -errno;
5483 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5484 pr_warn("Error setting initial map(%s) contents: %s\n",
5485 map->name, cp);
5486 return err;
5487 }
5488
5489 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5490 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5491 err = bpf_map_freeze(map->fd);
5492 if (err) {
5493 err = -errno;
5494 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5495 pr_warn("Error freezing map(%s) as read-only: %s\n",
5496 map->name, cp);
5497 return err;
5498 }
5499 }
5500 return 0;
5501 }
5502
5503 static void bpf_map__destroy(struct bpf_map *map);
5504
5505 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5506 {
5507 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5508 struct bpf_map_def *def = &map->def;
5509 const char *map_name = NULL;
5510 int err = 0;
5511
5512 if (kernel_supports(obj, FEAT_PROG_NAME))
5513 map_name = map->name;
5514 create_attr.map_ifindex = map->map_ifindex;
5515 create_attr.map_flags = def->map_flags;
5516 create_attr.numa_node = map->numa_node;
5517 create_attr.map_extra = map->map_extra;
5518
5519 if (bpf_map__is_struct_ops(map))
5520 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5521
5522 if (obj->btf && btf__fd(obj->btf) >= 0) {
5523 create_attr.btf_fd = btf__fd(obj->btf);
5524 create_attr.btf_key_type_id = map->btf_key_type_id;
5525 create_attr.btf_value_type_id = map->btf_value_type_id;
5526 }
5527
5528 if (bpf_map_type__is_map_in_map(def->type)) {
5529 if (map->inner_map) {
5530 err = bpf_object__create_map(obj, map->inner_map, true);
5531 if (err) {
5532 pr_warn("map '%s': failed to create inner map: %d\n",
5533 map->name, err);
5534 return err;
5535 }
5536 map->inner_map_fd = bpf_map__fd(map->inner_map);
5537 }
5538 if (map->inner_map_fd >= 0)
5539 create_attr.inner_map_fd = map->inner_map_fd;
5540 }
5541
5542 switch (def->type) {
5543 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5544 case BPF_MAP_TYPE_CGROUP_ARRAY:
5545 case BPF_MAP_TYPE_STACK_TRACE:
5546 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5547 case BPF_MAP_TYPE_HASH_OF_MAPS:
5548 case BPF_MAP_TYPE_DEVMAP:
5549 case BPF_MAP_TYPE_DEVMAP_HASH:
5550 case BPF_MAP_TYPE_CPUMAP:
5551 case BPF_MAP_TYPE_XSKMAP:
5552 case BPF_MAP_TYPE_SOCKMAP:
5553 case BPF_MAP_TYPE_SOCKHASH:
5554 case BPF_MAP_TYPE_QUEUE:
5555 case BPF_MAP_TYPE_STACK:
5556 create_attr.btf_fd = 0;
5557 create_attr.btf_key_type_id = 0;
5558 create_attr.btf_value_type_id = 0;
5559 map->btf_key_type_id = 0;
5560 map->btf_value_type_id = 0;
5561 break;
5562 default:
5563 break;
5564 }
5565
5566 if (obj->gen_loader) {
5567 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5568 def->key_size, def->value_size, def->max_entries,
5569 &create_attr, is_inner ? -1 : map - obj->maps);
5570 /* Pretend to have valid FD to pass various fd >= 0 checks.
5571 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5572 */
5573 map->fd = 0;
5574 } else {
5575 map->fd = bpf_map_create(def->type, map_name,
5576 def->key_size, def->value_size,
5577 def->max_entries, &create_attr);
5578 }
5579 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5580 create_attr.btf_value_type_id)) {
5581 char *cp, errmsg[STRERR_BUFSIZE];
5582
5583 err = -errno;
5584 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5585 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5586 map->name, cp, err);
5587 create_attr.btf_fd = 0;
5588 create_attr.btf_key_type_id = 0;
5589 create_attr.btf_value_type_id = 0;
5590 map->btf_key_type_id = 0;
5591 map->btf_value_type_id = 0;
5592 map->fd = bpf_map_create(def->type, map_name,
5593 def->key_size, def->value_size,
5594 def->max_entries, &create_attr);
5595 }
5596
5597 err = map->fd < 0 ? -errno : 0;
5598
5599 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5600 if (obj->gen_loader)
5601 map->inner_map->fd = -1;
5602 bpf_map__destroy(map->inner_map);
5603 zfree(&map->inner_map);
5604 }
5605
5606 return err;
5607 }
5608
5609 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5610 {
5611 const struct bpf_map *targ_map;
5612 unsigned int i;
5613 int fd, err = 0;
5614
5615 for (i = 0; i < map->init_slots_sz; i++) {
5616 if (!map->init_slots[i])
5617 continue;
5618
5619 targ_map = map->init_slots[i];
5620 fd = bpf_map__fd(targ_map);
5621
5622 if (obj->gen_loader) {
5623 bpf_gen__populate_outer_map(obj->gen_loader,
5624 map - obj->maps, i,
5625 targ_map - obj->maps);
5626 } else {
5627 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5628 }
5629 if (err) {
5630 err = -errno;
5631 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5632 map->name, i, targ_map->name, fd, err);
5633 return err;
5634 }
5635 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5636 map->name, i, targ_map->name, fd);
5637 }
5638
5639 zfree(&map->init_slots);
5640 map->init_slots_sz = 0;
5641
5642 return 0;
5643 }
5644
5645 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5646 {
5647 const struct bpf_program *targ_prog;
5648 unsigned int i;
5649 int fd, err;
5650
5651 if (obj->gen_loader)
5652 return -ENOTSUP;
5653
5654 for (i = 0; i < map->init_slots_sz; i++) {
5655 if (!map->init_slots[i])
5656 continue;
5657
5658 targ_prog = map->init_slots[i];
5659 fd = bpf_program__fd(targ_prog);
5660
5661 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5662 if (err) {
5663 err = -errno;
5664 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5665 map->name, i, targ_prog->name, fd, err);
5666 return err;
5667 }
5668 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5669 map->name, i, targ_prog->name, fd);
5670 }
5671
5672 zfree(&map->init_slots);
5673 map->init_slots_sz = 0;
5674
5675 return 0;
5676 }
5677
5678 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5679 {
5680 struct bpf_map *map;
5681 int i, err;
5682
5683 for (i = 0; i < obj->nr_maps; i++) {
5684 map = &obj->maps[i];
5685
5686 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5687 continue;
5688
5689 err = init_prog_array_slots(obj, map);
5690 if (err < 0) {
5691 zclose(map->fd);
5692 return err;
5693 }
5694 }
5695 return 0;
5696 }
5697
5698 static int map_set_def_max_entries(struct bpf_map *map)
5699 {
5700 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5701 int nr_cpus;
5702
5703 nr_cpus = libbpf_num_possible_cpus();
5704 if (nr_cpus < 0) {
5705 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5706 map->name, nr_cpus);
5707 return nr_cpus;
5708 }
5709 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5710 map->def.max_entries = nr_cpus;
5711 }
5712
5713 return 0;
5714 }
5715
5716 static int
5717 bpf_object__create_maps(struct bpf_object *obj)
5718 {
5719 struct bpf_map *map;
5720 char *cp, errmsg[STRERR_BUFSIZE];
5721 unsigned int i, j;
5722 int err;
5723 bool retried;
5724
5725 for (i = 0; i < obj->nr_maps; i++) {
5726 map = &obj->maps[i];
5727
5728 /* To support old kernels, we skip creating global data maps
5729 * (.rodata, .data, .kconfig, etc); later on, during program
5730 * loading, if we detect that at least one of the to-be-loaded
5731 * programs is referencing any global data map, we'll error
5732 * out with program name and relocation index logged.
5733 * This approach allows to accommodate Clang emitting
5734 * unnecessary .rodata.str1.1 sections for string literals,
5735 * but also it allows to have CO-RE applications that use
5736 * global variables in some of BPF programs, but not others.
5737 * If those global variable-using programs are not loaded at
5738 * runtime due to bpf_program__set_autoload(prog, false),
5739 * bpf_object loading will succeed just fine even on old
5740 * kernels.
5741 */
5742 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5743 map->autocreate = false;
5744
5745 if (!map->autocreate) {
5746 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5747 continue;
5748 }
5749
5750 err = map_set_def_max_entries(map);
5751 if (err)
5752 goto err_out;
5753
5754 retried = false;
5755 retry:
5756 if (map->pin_path) {
5757 err = bpf_object__reuse_map(map);
5758 if (err) {
5759 pr_warn("map '%s': error reusing pinned map\n",
5760 map->name);
5761 goto err_out;
5762 }
5763 if (retried && map->fd < 0) {
5764 pr_warn("map '%s': cannot find pinned map\n",
5765 map->name);
5766 err = -ENOENT;
5767 goto err_out;
5768 }
5769 }
5770
5771 if (map->fd >= 0) {
5772 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5773 map->name, map->fd);
5774 } else {
5775 err = bpf_object__create_map(obj, map, false);
5776 if (err)
5777 goto err_out;
5778
5779 pr_debug("map '%s': created successfully, fd=%d\n",
5780 map->name, map->fd);
5781
5782 if (bpf_map__is_internal(map)) {
5783 err = bpf_object__populate_internal_map(obj, map);
5784 if (err < 0) {
5785 zclose(map->fd);
5786 goto err_out;
5787 }
5788 }
5789
5790 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5791 err = init_map_in_map_slots(obj, map);
5792 if (err < 0) {
5793 zclose(map->fd);
5794 goto err_out;
5795 }
5796 }
5797 }
5798
5799 if (map->pin_path && !map->pinned) {
5800 err = bpf_map__pin(map, NULL);
5801 if (err) {
5802 zclose(map->fd);
5803 if (!retried && err == -EEXIST) {
5804 retried = true;
5805 goto retry;
5806 }
5807 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5808 map->name, map->pin_path, err);
5809 goto err_out;
5810 }
5811 }
5812 }
5813
5814 return 0;
5815
5816 err_out:
5817 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5818 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5819 pr_perm_msg(err);
5820 for (j = 0; j < i; j++)
5821 zclose(obj->maps[j].fd);
5822 return err;
5823 }
5824
5825 static bool bpf_core_is_flavor_sep(const char *s)
5826 {
5827 /* check X___Y name pattern, where X and Y are not underscores */
5828 return s[0] != '_' && /* X */
5829 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5830 s[4] != '_'; /* Y */
5831 }
5832
5833 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5834 * before last triple underscore. Struct name part after last triple
5835 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5836 */
5837 size_t bpf_core_essential_name_len(const char *name)
5838 {
5839 size_t n = strlen(name);
5840 int i;
5841
5842 for (i = n - 5; i >= 0; i--) {
5843 if (bpf_core_is_flavor_sep(name + i))
5844 return i + 1;
5845 }
5846 return n;
5847 }
5848
5849 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5850 {
5851 if (!cands)
5852 return;
5853
5854 free(cands->cands);
5855 free(cands);
5856 }
5857
5858 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5859 size_t local_essent_len,
5860 const struct btf *targ_btf,
5861 const char *targ_btf_name,
5862 int targ_start_id,
5863 struct bpf_core_cand_list *cands)
5864 {
5865 struct bpf_core_cand *new_cands, *cand;
5866 const struct btf_type *t, *local_t;
5867 const char *targ_name, *local_name;
5868 size_t targ_essent_len;
5869 int n, i;
5870
5871 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5872 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5873
5874 n = btf__type_cnt(targ_btf);
5875 for (i = targ_start_id; i < n; i++) {
5876 t = btf__type_by_id(targ_btf, i);
5877 if (!btf_kind_core_compat(t, local_t))
5878 continue;
5879
5880 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5881 if (str_is_empty(targ_name))
5882 continue;
5883
5884 targ_essent_len = bpf_core_essential_name_len(targ_name);
5885 if (targ_essent_len != local_essent_len)
5886 continue;
5887
5888 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5889 continue;
5890
5891 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5892 local_cand->id, btf_kind_str(local_t),
5893 local_name, i, btf_kind_str(t), targ_name,
5894 targ_btf_name);
5895 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5896 sizeof(*cands->cands));
5897 if (!new_cands)
5898 return -ENOMEM;
5899
5900 cand = &new_cands[cands->len];
5901 cand->btf = targ_btf;
5902 cand->id = i;
5903
5904 cands->cands = new_cands;
5905 cands->len++;
5906 }
5907 return 0;
5908 }
5909
5910 static int load_module_btfs(struct bpf_object *obj)
5911 {
5912 struct bpf_btf_info info;
5913 struct module_btf *mod_btf;
5914 struct btf *btf;
5915 char name[64];
5916 __u32 id = 0, len;
5917 int err, fd;
5918
5919 if (obj->btf_modules_loaded)
5920 return 0;
5921
5922 if (obj->gen_loader)
5923 return 0;
5924
5925 /* don't do this again, even if we find no module BTFs */
5926 obj->btf_modules_loaded = true;
5927
5928 /* kernel too old to support module BTFs */
5929 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5930 return 0;
5931
5932 while (true) {
5933 err = bpf_btf_get_next_id(id, &id);
5934 if (err && errno == ENOENT)
5935 return 0;
5936 if (err && errno == EPERM) {
5937 pr_debug("skipping module BTFs loading, missing privileges\n");
5938 return 0;
5939 }
5940 if (err) {
5941 err = -errno;
5942 pr_warn("failed to iterate BTF objects: %d\n", err);
5943 return err;
5944 }
5945
5946 fd = bpf_btf_get_fd_by_id(id);
5947 if (fd < 0) {
5948 if (errno == ENOENT)
5949 continue; /* expected race: BTF was unloaded */
5950 err = -errno;
5951 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5952 return err;
5953 }
5954
5955 len = sizeof(info);
5956 memset(&info, 0, sizeof(info));
5957 info.name = ptr_to_u64(name);
5958 info.name_len = sizeof(name);
5959
5960 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5961 if (err) {
5962 err = -errno;
5963 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5964 goto err_out;
5965 }
5966
5967 /* ignore non-module BTFs */
5968 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5969 close(fd);
5970 continue;
5971 }
5972
5973 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5974 err = libbpf_get_error(btf);
5975 if (err) {
5976 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5977 name, id, err);
5978 goto err_out;
5979 }
5980
5981 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5982 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5983 if (err)
5984 goto err_out;
5985
5986 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5987
5988 mod_btf->btf = btf;
5989 mod_btf->id = id;
5990 mod_btf->fd = fd;
5991 mod_btf->name = strdup(name);
5992 if (!mod_btf->name) {
5993 err = -ENOMEM;
5994 goto err_out;
5995 }
5996 continue;
5997
5998 err_out:
5999 close(fd);
6000 return err;
6001 }
6002
6003 return 0;
6004 }
6005
6006 static struct bpf_core_cand_list *
6007 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
6008 {
6009 struct bpf_core_cand local_cand = {};
6010 struct bpf_core_cand_list *cands;
6011 const struct btf *main_btf;
6012 const struct btf_type *local_t;
6013 const char *local_name;
6014 size_t local_essent_len;
6015 int err, i;
6016
6017 local_cand.btf = local_btf;
6018 local_cand.id = local_type_id;
6019 local_t = btf__type_by_id(local_btf, local_type_id);
6020 if (!local_t)
6021 return ERR_PTR(-EINVAL);
6022
6023 local_name = btf__name_by_offset(local_btf, local_t->name_off);
6024 if (str_is_empty(local_name))
6025 return ERR_PTR(-EINVAL);
6026 local_essent_len = bpf_core_essential_name_len(local_name);
6027
6028 cands = calloc(1, sizeof(*cands));
6029 if (!cands)
6030 return ERR_PTR(-ENOMEM);
6031
6032 /* Attempt to find target candidates in vmlinux BTF first */
6033 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
6034 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
6035 if (err)
6036 goto err_out;
6037
6038 /* if vmlinux BTF has any candidate, don't got for module BTFs */
6039 if (cands->len)
6040 return cands;
6041
6042 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
6043 if (obj->btf_vmlinux_override)
6044 return cands;
6045
6046 /* now look through module BTFs, trying to still find candidates */
6047 err = load_module_btfs(obj);
6048 if (err)
6049 goto err_out;
6050
6051 for (i = 0; i < obj->btf_module_cnt; i++) {
6052 err = bpf_core_add_cands(&local_cand, local_essent_len,
6053 obj->btf_modules[i].btf,
6054 obj->btf_modules[i].name,
6055 btf__type_cnt(obj->btf_vmlinux),
6056 cands);
6057 if (err)
6058 goto err_out;
6059 }
6060
6061 return cands;
6062 err_out:
6063 bpf_core_free_cands(cands);
6064 return ERR_PTR(err);
6065 }
6066
6067 /* Check local and target types for compatibility. This check is used for
6068 * type-based CO-RE relocations and follow slightly different rules than
6069 * field-based relocations. This function assumes that root types were already
6070 * checked for name match. Beyond that initial root-level name check, names
6071 * are completely ignored. Compatibility rules are as follows:
6072 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
6073 * kind should match for local and target types (i.e., STRUCT is not
6074 * compatible with UNION);
6075 * - for ENUMs, the size is ignored;
6076 * - for INT, size and signedness are ignored;
6077 * - for ARRAY, dimensionality is ignored, element types are checked for
6078 * compatibility recursively;
6079 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
6080 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
6081 * - FUNC_PROTOs are compatible if they have compatible signature: same
6082 * number of input args and compatible return and argument types.
6083 * These rules are not set in stone and probably will be adjusted as we get
6084 * more experience with using BPF CO-RE relocations.
6085 */
6086 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6087 const struct btf *targ_btf, __u32 targ_id)
6088 {
6089 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
6090 }
6091
6092 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
6093 const struct btf *targ_btf, __u32 targ_id)
6094 {
6095 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
6096 }
6097
6098 static size_t bpf_core_hash_fn(const long key, void *ctx)
6099 {
6100 return key;
6101 }
6102
6103 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
6104 {
6105 return k1 == k2;
6106 }
6107
6108 static int record_relo_core(struct bpf_program *prog,
6109 const struct bpf_core_relo *core_relo, int insn_idx)
6110 {
6111 struct reloc_desc *relos, *relo;
6112
6113 relos = libbpf_reallocarray(prog->reloc_desc,
6114 prog->nr_reloc + 1, sizeof(*relos));
6115 if (!relos)
6116 return -ENOMEM;
6117 relo = &relos[prog->nr_reloc];
6118 relo->type = RELO_CORE;
6119 relo->insn_idx = insn_idx;
6120 relo->core_relo = core_relo;
6121 prog->reloc_desc = relos;
6122 prog->nr_reloc++;
6123 return 0;
6124 }
6125
6126 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
6127 {
6128 struct reloc_desc *relo;
6129 int i;
6130
6131 for (i = 0; i < prog->nr_reloc; i++) {
6132 relo = &prog->reloc_desc[i];
6133 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
6134 continue;
6135
6136 return relo->core_relo;
6137 }
6138
6139 return NULL;
6140 }
6141
6142 static int bpf_core_resolve_relo(struct bpf_program *prog,
6143 const struct bpf_core_relo *relo,
6144 int relo_idx,
6145 const struct btf *local_btf,
6146 struct hashmap *cand_cache,
6147 struct bpf_core_relo_res *targ_res)
6148 {
6149 struct bpf_core_spec specs_scratch[3] = {};
6150 struct bpf_core_cand_list *cands = NULL;
6151 const char *prog_name = prog->name;
6152 const struct btf_type *local_type;
6153 const char *local_name;
6154 __u32 local_id = relo->type_id;
6155 int err;
6156
6157 local_type = btf__type_by_id(local_btf, local_id);
6158 if (!local_type)
6159 return -EINVAL;
6160
6161 local_name = btf__name_by_offset(local_btf, local_type->name_off);
6162 if (!local_name)
6163 return -EINVAL;
6164
6165 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
6166 !hashmap__find(cand_cache, local_id, &cands)) {
6167 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6168 if (IS_ERR(cands)) {
6169 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6170 prog_name, relo_idx, local_id, btf_kind_str(local_type),
6171 local_name, PTR_ERR(cands));
6172 return PTR_ERR(cands);
6173 }
6174 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
6175 if (err) {
6176 bpf_core_free_cands(cands);
6177 return err;
6178 }
6179 }
6180
6181 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
6182 targ_res);
6183 }
6184
6185 static int
6186 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6187 {
6188 const struct btf_ext_info_sec *sec;
6189 struct bpf_core_relo_res targ_res;
6190 const struct bpf_core_relo *rec;
6191 const struct btf_ext_info *seg;
6192 struct hashmap_entry *entry;
6193 struct hashmap *cand_cache = NULL;
6194 struct bpf_program *prog;
6195 struct bpf_insn *insn;
6196 const char *sec_name;
6197 int i, err = 0, insn_idx, sec_idx, sec_num;
6198
6199 if (obj->btf_ext->core_relo_info.len == 0)
6200 return 0;
6201
6202 if (targ_btf_path) {
6203 #ifdef HAVE_LIBELF
6204 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6205 #endif
6206 err = libbpf_get_error(obj->btf_vmlinux_override);
6207 if (err) {
6208 pr_warn("failed to parse target BTF: %d\n", err);
6209 return err;
6210 }
6211 }
6212
6213 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6214 if (IS_ERR(cand_cache)) {
6215 err = PTR_ERR(cand_cache);
6216 goto out;
6217 }
6218
6219 seg = &obj->btf_ext->core_relo_info;
6220 sec_num = 0;
6221 for_each_btf_ext_sec(seg, sec) {
6222 sec_idx = seg->sec_idxs[sec_num];
6223 sec_num++;
6224
6225 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6226 if (str_is_empty(sec_name)) {
6227 err = -EINVAL;
6228 goto out;
6229 }
6230
6231 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
6232
6233 for_each_btf_ext_rec(seg, sec, i, rec) {
6234 if (rec->insn_off % BPF_INSN_SZ)
6235 return -EINVAL;
6236 insn_idx = rec->insn_off / BPF_INSN_SZ;
6237 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6238 if (!prog) {
6239 /* When __weak subprog is "overridden" by another instance
6240 * of the subprog from a different object file, linker still
6241 * appends all the .BTF.ext info that used to belong to that
6242 * eliminated subprogram.
6243 * This is similar to what x86-64 linker does for relocations.
6244 * So just ignore such relocations just like we ignore
6245 * subprog instructions when discovering subprograms.
6246 */
6247 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
6248 sec_name, i, insn_idx);
6249 continue;
6250 }
6251 /* no need to apply CO-RE relocation if the program is
6252 * not going to be loaded
6253 */
6254 if (!prog->autoload)
6255 continue;
6256
6257 /* adjust insn_idx from section frame of reference to the local
6258 * program's frame of reference; (sub-)program code is not yet
6259 * relocated, so it's enough to just subtract in-section offset
6260 */
6261 insn_idx = insn_idx - prog->sec_insn_off;
6262 if (insn_idx >= prog->insns_cnt)
6263 return -EINVAL;
6264 insn = &prog->insns[insn_idx];
6265
6266 err = record_relo_core(prog, rec, insn_idx);
6267 if (err) {
6268 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
6269 prog->name, i, err);
6270 goto out;
6271 }
6272
6273 if (prog->obj->gen_loader)
6274 continue;
6275
6276 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6277 if (err) {
6278 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6279 prog->name, i, err);
6280 goto out;
6281 }
6282
6283 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6284 if (err) {
6285 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
6286 prog->name, i, insn_idx, err);
6287 goto out;
6288 }
6289 }
6290 }
6291
6292 out:
6293 /* obj->btf_vmlinux and module BTFs are freed after object load */
6294 btf__free(obj->btf_vmlinux_override);
6295 obj->btf_vmlinux_override = NULL;
6296
6297 if (!IS_ERR_OR_NULL(cand_cache)) {
6298 hashmap__for_each_entry(cand_cache, entry, i) {
6299 bpf_core_free_cands(entry->pvalue);
6300 }
6301 hashmap__free(cand_cache);
6302 }
6303 return err;
6304 }
6305
6306 /* base map load ldimm64 special constant, used also for log fixup logic */
6307 #define POISON_LDIMM64_MAP_BASE 2001000000
6308 #define POISON_LDIMM64_MAP_PFX "200100"
6309
6310 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6311 int insn_idx, struct bpf_insn *insn,
6312 int map_idx, const struct bpf_map *map)
6313 {
6314 int i;
6315
6316 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6317 prog->name, relo_idx, insn_idx, map_idx, map->name);
6318
6319 /* we turn single ldimm64 into two identical invalid calls */
6320 for (i = 0; i < 2; i++) {
6321 insn->code = BPF_JMP | BPF_CALL;
6322 insn->dst_reg = 0;
6323 insn->src_reg = 0;
6324 insn->off = 0;
6325 /* if this instruction is reachable (not a dead code),
6326 * verifier will complain with something like:
6327 * invalid func unknown#2001000123
6328 * where lower 123 is map index into obj->maps[] array
6329 */
6330 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6331
6332 insn++;
6333 }
6334 }
6335
6336 /* unresolved kfunc call special constant, used also for log fixup logic */
6337 #define POISON_CALL_KFUNC_BASE 2002000000
6338 #define POISON_CALL_KFUNC_PFX "2002"
6339
6340 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6341 int insn_idx, struct bpf_insn *insn,
6342 int ext_idx, const struct extern_desc *ext)
6343 {
6344 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6345 prog->name, relo_idx, insn_idx, ext->name);
6346
6347 /* we turn kfunc call into invalid helper call with identifiable constant */
6348 insn->code = BPF_JMP | BPF_CALL;
6349 insn->dst_reg = 0;
6350 insn->src_reg = 0;
6351 insn->off = 0;
6352 /* if this instruction is reachable (not a dead code),
6353 * verifier will complain with something like:
6354 * invalid func unknown#2001000123
6355 * where lower 123 is extern index into obj->externs[] array
6356 */
6357 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6358 }
6359
6360 /* Relocate data references within program code:
6361 * - map references;
6362 * - global variable references;
6363 * - extern references.
6364 */
6365 static int
6366 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6367 {
6368 int i;
6369
6370 for (i = 0; i < prog->nr_reloc; i++) {
6371 struct reloc_desc *relo = &prog->reloc_desc[i];
6372 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6373 const struct bpf_map *map;
6374 struct extern_desc *ext;
6375
6376 switch (relo->type) {
6377 case RELO_LD64:
6378 map = &obj->maps[relo->map_idx];
6379 if (obj->gen_loader) {
6380 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6381 insn[0].imm = relo->map_idx;
6382 } else if (map->autocreate) {
6383 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6384 insn[0].imm = map->fd;
6385 } else {
6386 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6387 relo->map_idx, map);
6388 }
6389 break;
6390 case RELO_DATA:
6391 map = &obj->maps[relo->map_idx];
6392 insn[1].imm = insn[0].imm + relo->sym_off;
6393 if (obj->gen_loader) {
6394 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6395 insn[0].imm = relo->map_idx;
6396 } else if (map->autocreate) {
6397 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6398 insn[0].imm = map->fd;
6399 } else {
6400 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6401 relo->map_idx, map);
6402 }
6403 break;
6404 case RELO_EXTERN_LD64:
6405 ext = &obj->externs[relo->ext_idx];
6406 if (ext->type == EXT_KCFG) {
6407 if (obj->gen_loader) {
6408 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6409 insn[0].imm = obj->kconfig_map_idx;
6410 } else {
6411 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6412 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6413 }
6414 insn[1].imm = ext->kcfg.data_off;
6415 } else /* EXT_KSYM */ {
6416 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6417 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6418 insn[0].imm = ext->ksym.kernel_btf_id;
6419 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6420 } else { /* typeless ksyms or unresolved typed ksyms */
6421 insn[0].imm = (__u32)ext->ksym.addr;
6422 insn[1].imm = ext->ksym.addr >> 32;
6423 }
6424 }
6425 break;
6426 case RELO_EXTERN_CALL:
6427 ext = &obj->externs[relo->ext_idx];
6428 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6429 if (ext->is_set) {
6430 insn[0].imm = ext->ksym.kernel_btf_id;
6431 insn[0].off = ext->ksym.btf_fd_idx;
6432 } else { /* unresolved weak kfunc call */
6433 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6434 relo->ext_idx, ext);
6435 }
6436 break;
6437 case RELO_SUBPROG_ADDR:
6438 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6439 pr_warn("prog '%s': relo #%d: bad insn\n",
6440 prog->name, i);
6441 return -EINVAL;
6442 }
6443 /* handled already */
6444 break;
6445 case RELO_CALL:
6446 /* handled already */
6447 break;
6448 case RELO_CORE:
6449 /* will be handled by bpf_program_record_relos() */
6450 break;
6451 default:
6452 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6453 prog->name, i, relo->type);
6454 return -EINVAL;
6455 }
6456 }
6457
6458 return 0;
6459 }
6460
6461 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6462 const struct bpf_program *prog,
6463 const struct btf_ext_info *ext_info,
6464 void **prog_info, __u32 *prog_rec_cnt,
6465 __u32 *prog_rec_sz)
6466 {
6467 void *copy_start = NULL, *copy_end = NULL;
6468 void *rec, *rec_end, *new_prog_info;
6469 const struct btf_ext_info_sec *sec;
6470 size_t old_sz, new_sz;
6471 int i, sec_num, sec_idx, off_adj;
6472
6473 sec_num = 0;
6474 for_each_btf_ext_sec(ext_info, sec) {
6475 sec_idx = ext_info->sec_idxs[sec_num];
6476 sec_num++;
6477 if (prog->sec_idx != sec_idx)
6478 continue;
6479
6480 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6481 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6482
6483 if (insn_off < prog->sec_insn_off)
6484 continue;
6485 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6486 break;
6487
6488 if (!copy_start)
6489 copy_start = rec;
6490 copy_end = rec + ext_info->rec_size;
6491 }
6492
6493 if (!copy_start)
6494 return -ENOENT;
6495
6496 /* append func/line info of a given (sub-)program to the main
6497 * program func/line info
6498 */
6499 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6500 new_sz = old_sz + (copy_end - copy_start);
6501 new_prog_info = realloc(*prog_info, new_sz);
6502 if (!new_prog_info)
6503 return -ENOMEM;
6504 *prog_info = new_prog_info;
6505 *prog_rec_cnt = new_sz / ext_info->rec_size;
6506 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6507
6508 /* Kernel instruction offsets are in units of 8-byte
6509 * instructions, while .BTF.ext instruction offsets generated
6510 * by Clang are in units of bytes. So convert Clang offsets
6511 * into kernel offsets and adjust offset according to program
6512 * relocated position.
6513 */
6514 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6515 rec = new_prog_info + old_sz;
6516 rec_end = new_prog_info + new_sz;
6517 for (; rec < rec_end; rec += ext_info->rec_size) {
6518 __u32 *insn_off = rec;
6519
6520 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6521 }
6522 *prog_rec_sz = ext_info->rec_size;
6523 return 0;
6524 }
6525
6526 return -ENOENT;
6527 }
6528
6529 static int
6530 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6531 struct bpf_program *main_prog,
6532 const struct bpf_program *prog)
6533 {
6534 int err;
6535
6536 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6537 * supprot func/line info
6538 */
6539 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6540 return 0;
6541
6542 /* only attempt func info relocation if main program's func_info
6543 * relocation was successful
6544 */
6545 if (main_prog != prog && !main_prog->func_info)
6546 goto line_info;
6547
6548 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6549 &main_prog->func_info,
6550 &main_prog->func_info_cnt,
6551 &main_prog->func_info_rec_size);
6552 if (err) {
6553 if (err != -ENOENT) {
6554 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6555 prog->name, err);
6556 return err;
6557 }
6558 if (main_prog->func_info) {
6559 /*
6560 * Some info has already been found but has problem
6561 * in the last btf_ext reloc. Must have to error out.
6562 */
6563 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6564 return err;
6565 }
6566 /* Have problem loading the very first info. Ignore the rest. */
6567 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6568 prog->name);
6569 }
6570
6571 line_info:
6572 /* don't relocate line info if main program's relocation failed */
6573 if (main_prog != prog && !main_prog->line_info)
6574 return 0;
6575
6576 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6577 &main_prog->line_info,
6578 &main_prog->line_info_cnt,
6579 &main_prog->line_info_rec_size);
6580 if (err) {
6581 if (err != -ENOENT) {
6582 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6583 prog->name, err);
6584 return err;
6585 }
6586 if (main_prog->line_info) {
6587 /*
6588 * Some info has already been found but has problem
6589 * in the last btf_ext reloc. Must have to error out.
6590 */
6591 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6592 return err;
6593 }
6594 /* Have problem loading the very first info. Ignore the rest. */
6595 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6596 prog->name);
6597 }
6598 return 0;
6599 }
6600
6601 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6602 {
6603 size_t insn_idx = *(const size_t *)key;
6604 const struct reloc_desc *relo = elem;
6605
6606 if (insn_idx == relo->insn_idx)
6607 return 0;
6608 return insn_idx < relo->insn_idx ? -1 : 1;
6609 }
6610
6611 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6612 {
6613 if (!prog->nr_reloc)
6614 return NULL;
6615 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6616 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6617 }
6618
6619 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6620 {
6621 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6622 struct reloc_desc *relos;
6623 int i;
6624
6625 if (main_prog == subprog)
6626 return 0;
6627 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6628 /* if new count is zero, reallocarray can return a valid NULL result;
6629 * in this case the previous pointer will be freed, so we *have to*
6630 * reassign old pointer to the new value (even if it's NULL)
6631 */
6632 if (!relos && new_cnt)
6633 return -ENOMEM;
6634 if (subprog->nr_reloc)
6635 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6636 sizeof(*relos) * subprog->nr_reloc);
6637
6638 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6639 relos[i].insn_idx += subprog->sub_insn_off;
6640 /* After insn_idx adjustment the 'relos' array is still sorted
6641 * by insn_idx and doesn't break bsearch.
6642 */
6643 main_prog->reloc_desc = relos;
6644 main_prog->nr_reloc = new_cnt;
6645 return 0;
6646 }
6647
6648 static int
6649 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6650 struct bpf_program *subprog)
6651 {
6652 struct bpf_insn *insns;
6653 size_t new_cnt;
6654 int err;
6655
6656 subprog->sub_insn_off = main_prog->insns_cnt;
6657
6658 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6659 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6660 if (!insns) {
6661 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6662 return -ENOMEM;
6663 }
6664 main_prog->insns = insns;
6665 main_prog->insns_cnt = new_cnt;
6666
6667 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6668 subprog->insns_cnt * sizeof(*insns));
6669
6670 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6671 main_prog->name, subprog->insns_cnt, subprog->name);
6672
6673 /* The subprog insns are now appended. Append its relos too. */
6674 err = append_subprog_relos(main_prog, subprog);
6675 if (err)
6676 return err;
6677 return 0;
6678 }
6679
6680 static int
6681 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6682 struct bpf_program *prog)
6683 {
6684 size_t sub_insn_idx, insn_idx;
6685 struct bpf_program *subprog;
6686 struct reloc_desc *relo;
6687 struct bpf_insn *insn;
6688 int err;
6689
6690 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6691 if (err)
6692 return err;
6693
6694 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6695 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6696 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6697 continue;
6698
6699 relo = find_prog_insn_relo(prog, insn_idx);
6700 if (relo && relo->type == RELO_EXTERN_CALL)
6701 /* kfunc relocations will be handled later
6702 * in bpf_object__relocate_data()
6703 */
6704 continue;
6705 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6706 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6707 prog->name, insn_idx, relo->type);
6708 return -LIBBPF_ERRNO__RELOC;
6709 }
6710 if (relo) {
6711 /* sub-program instruction index is a combination of
6712 * an offset of a symbol pointed to by relocation and
6713 * call instruction's imm field; for global functions,
6714 * call always has imm = -1, but for static functions
6715 * relocation is against STT_SECTION and insn->imm
6716 * points to a start of a static function
6717 *
6718 * for subprog addr relocation, the relo->sym_off + insn->imm is
6719 * the byte offset in the corresponding section.
6720 */
6721 if (relo->type == RELO_CALL)
6722 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6723 else
6724 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6725 } else if (insn_is_pseudo_func(insn)) {
6726 /*
6727 * RELO_SUBPROG_ADDR relo is always emitted even if both
6728 * functions are in the same section, so it shouldn't reach here.
6729 */
6730 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6731 prog->name, insn_idx);
6732 return -LIBBPF_ERRNO__RELOC;
6733 } else {
6734 /* if subprogram call is to a static function within
6735 * the same ELF section, there won't be any relocation
6736 * emitted, but it also means there is no additional
6737 * offset necessary, insns->imm is relative to
6738 * instruction's original position within the section
6739 */
6740 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6741 }
6742
6743 /* we enforce that sub-programs should be in .text section */
6744 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6745 if (!subprog) {
6746 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6747 prog->name);
6748 return -LIBBPF_ERRNO__RELOC;
6749 }
6750
6751 /* if it's the first call instruction calling into this
6752 * subprogram (meaning this subprog hasn't been processed
6753 * yet) within the context of current main program:
6754 * - append it at the end of main program's instructions blog;
6755 * - process is recursively, while current program is put on hold;
6756 * - if that subprogram calls some other not yet processes
6757 * subprogram, same thing will happen recursively until
6758 * there are no more unprocesses subprograms left to append
6759 * and relocate.
6760 */
6761 if (subprog->sub_insn_off == 0) {
6762 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6763 if (err)
6764 return err;
6765 err = bpf_object__reloc_code(obj, main_prog, subprog);
6766 if (err)
6767 return err;
6768 }
6769
6770 /* main_prog->insns memory could have been re-allocated, so
6771 * calculate pointer again
6772 */
6773 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6774 /* calculate correct instruction position within current main
6775 * prog; each main prog can have a different set of
6776 * subprograms appended (potentially in different order as
6777 * well), so position of any subprog can be different for
6778 * different main programs
6779 */
6780 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6781
6782 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6783 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6784 }
6785
6786 return 0;
6787 }
6788
6789 /*
6790 * Relocate sub-program calls.
6791 *
6792 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6793 * main prog) is processed separately. For each subprog (non-entry functions,
6794 * that can be called from either entry progs or other subprogs) gets their
6795 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6796 * hasn't been yet appended and relocated within current main prog. Once its
6797 * relocated, sub_insn_off will point at the position within current main prog
6798 * where given subprog was appended. This will further be used to relocate all
6799 * the call instructions jumping into this subprog.
6800 *
6801 * We start with main program and process all call instructions. If the call
6802 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6803 * is zero), subprog instructions are appended at the end of main program's
6804 * instruction array. Then main program is "put on hold" while we recursively
6805 * process newly appended subprogram. If that subprogram calls into another
6806 * subprogram that hasn't been appended, new subprogram is appended again to
6807 * the *main* prog's instructions (subprog's instructions are always left
6808 * untouched, as they need to be in unmodified state for subsequent main progs
6809 * and subprog instructions are always sent only as part of a main prog) and
6810 * the process continues recursively. Once all the subprogs called from a main
6811 * prog or any of its subprogs are appended (and relocated), all their
6812 * positions within finalized instructions array are known, so it's easy to
6813 * rewrite call instructions with correct relative offsets, corresponding to
6814 * desired target subprog.
6815 *
6816 * Its important to realize that some subprogs might not be called from some
6817 * main prog and any of its called/used subprogs. Those will keep their
6818 * subprog->sub_insn_off as zero at all times and won't be appended to current
6819 * main prog and won't be relocated within the context of current main prog.
6820 * They might still be used from other main progs later.
6821 *
6822 * Visually this process can be shown as below. Suppose we have two main
6823 * programs mainA and mainB and BPF object contains three subprogs: subA,
6824 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6825 * subC both call subB:
6826 *
6827 * +--------+ +-------+
6828 * | v v |
6829 * +--+---+ +--+-+-+ +---+--+
6830 * | subA | | subB | | subC |
6831 * +--+---+ +------+ +---+--+
6832 * ^ ^
6833 * | |
6834 * +---+-------+ +------+----+
6835 * | mainA | | mainB |
6836 * +-----------+ +-----------+
6837 *
6838 * We'll start relocating mainA, will find subA, append it and start
6839 * processing sub A recursively:
6840 *
6841 * +-----------+------+
6842 * | mainA | subA |
6843 * +-----------+------+
6844 *
6845 * At this point we notice that subB is used from subA, so we append it and
6846 * relocate (there are no further subcalls from subB):
6847 *
6848 * +-----------+------+------+
6849 * | mainA | subA | subB |
6850 * +-----------+------+------+
6851 *
6852 * At this point, we relocate subA calls, then go one level up and finish with
6853 * relocatin mainA calls. mainA is done.
6854 *
6855 * For mainB process is similar but results in different order. We start with
6856 * mainB and skip subA and subB, as mainB never calls them (at least
6857 * directly), but we see subC is needed, so we append and start processing it:
6858 *
6859 * +-----------+------+
6860 * | mainB | subC |
6861 * +-----------+------+
6862 * Now we see subC needs subB, so we go back to it, append and relocate it:
6863 *
6864 * +-----------+------+------+
6865 * | mainB | subC | subB |
6866 * +-----------+------+------+
6867 *
6868 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6869 */
6870 static int
6871 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6872 {
6873 struct bpf_program *subprog;
6874 int i, err;
6875
6876 /* mark all subprogs as not relocated (yet) within the context of
6877 * current main program
6878 */
6879 for (i = 0; i < obj->nr_programs; i++) {
6880 subprog = &obj->programs[i];
6881 if (!prog_is_subprog(obj, subprog))
6882 continue;
6883
6884 subprog->sub_insn_off = 0;
6885 }
6886
6887 err = bpf_object__reloc_code(obj, prog, prog);
6888 if (err)
6889 return err;
6890
6891 return 0;
6892 }
6893
6894 static void
6895 bpf_object__free_relocs(struct bpf_object *obj)
6896 {
6897 struct bpf_program *prog;
6898 int i;
6899
6900 /* free up relocation descriptors */
6901 for (i = 0; i < obj->nr_programs; i++) {
6902 prog = &obj->programs[i];
6903 zfree(&prog->reloc_desc);
6904 prog->nr_reloc = 0;
6905 }
6906 }
6907
6908 static int cmp_relocs(const void *_a, const void *_b)
6909 {
6910 const struct reloc_desc *a = _a;
6911 const struct reloc_desc *b = _b;
6912
6913 if (a->insn_idx != b->insn_idx)
6914 return a->insn_idx < b->insn_idx ? -1 : 1;
6915
6916 /* no two relocations should have the same insn_idx, but ... */
6917 if (a->type != b->type)
6918 return a->type < b->type ? -1 : 1;
6919
6920 return 0;
6921 }
6922
6923 static void bpf_object__sort_relos(struct bpf_object *obj)
6924 {
6925 int i;
6926
6927 for (i = 0; i < obj->nr_programs; i++) {
6928 struct bpf_program *p = &obj->programs[i];
6929
6930 if (!p->nr_reloc)
6931 continue;
6932
6933 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6934 }
6935 }
6936
6937 static int
6938 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6939 {
6940 struct bpf_program *prog;
6941 size_t i, j;
6942 int err;
6943
6944 if (obj->btf_ext) {
6945 err = bpf_object__relocate_core(obj, targ_btf_path);
6946 if (err) {
6947 pr_warn("failed to perform CO-RE relocations: %d\n",
6948 err);
6949 return err;
6950 }
6951 bpf_object__sort_relos(obj);
6952 }
6953
6954 /* Before relocating calls pre-process relocations and mark
6955 * few ld_imm64 instructions that points to subprogs.
6956 * Otherwise bpf_object__reloc_code() later would have to consider
6957 * all ld_imm64 insns as relocation candidates. That would
6958 * reduce relocation speed, since amount of find_prog_insn_relo()
6959 * would increase and most of them will fail to find a relo.
6960 */
6961 for (i = 0; i < obj->nr_programs; i++) {
6962 prog = &obj->programs[i];
6963 for (j = 0; j < prog->nr_reloc; j++) {
6964 struct reloc_desc *relo = &prog->reloc_desc[j];
6965 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6966
6967 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6968 if (relo->type == RELO_SUBPROG_ADDR)
6969 insn[0].src_reg = BPF_PSEUDO_FUNC;
6970 }
6971 }
6972
6973 /* relocate subprogram calls and append used subprograms to main
6974 * programs; each copy of subprogram code needs to be relocated
6975 * differently for each main program, because its code location might
6976 * have changed.
6977 * Append subprog relos to main programs to allow data relos to be
6978 * processed after text is completely relocated.
6979 */
6980 for (i = 0; i < obj->nr_programs; i++) {
6981 prog = &obj->programs[i];
6982 /* sub-program's sub-calls are relocated within the context of
6983 * its main program only
6984 */
6985 if (prog_is_subprog(obj, prog))
6986 continue;
6987 if (!prog->autoload)
6988 continue;
6989
6990 err = bpf_object__relocate_calls(obj, prog);
6991 if (err) {
6992 pr_warn("prog '%s': failed to relocate calls: %d\n",
6993 prog->name, err);
6994 return err;
6995 }
6996
6997 /* Now, also append exception callback if it has not been done already. */
6998 if (prog->exception_cb_idx >= 0) {
6999 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7000
7001 /* Calling exception callback directly is disallowed, which the
7002 * verifier will reject later. In case it was processed already,
7003 * we can skip this step, otherwise for all other valid cases we
7004 * have to append exception callback now.
7005 */
7006 if (subprog->sub_insn_off == 0) {
7007 err = bpf_object__append_subprog_code(obj, prog, subprog);
7008 if (err)
7009 return err;
7010 err = bpf_object__reloc_code(obj, prog, subprog);
7011 if (err)
7012 return err;
7013 }
7014 }
7015 }
7016 /* Process data relos for main programs */
7017 for (i = 0; i < obj->nr_programs; i++) {
7018 prog = &obj->programs[i];
7019 if (prog_is_subprog(obj, prog))
7020 continue;
7021 if (!prog->autoload)
7022 continue;
7023 err = bpf_object__relocate_data(obj, prog);
7024 if (err) {
7025 pr_warn("prog '%s': failed to relocate data references: %d\n",
7026 prog->name, err);
7027 return err;
7028 }
7029 }
7030
7031 return 0;
7032 }
7033
7034 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7035 Elf64_Shdr *shdr, Elf_Data *data);
7036
7037 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7038 Elf64_Shdr *shdr, Elf_Data *data)
7039 {
7040 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7041 int i, j, nrels, new_sz;
7042 const struct btf_var_secinfo *vi = NULL;
7043 const struct btf_type *sec, *var, *def;
7044 struct bpf_map *map = NULL, *targ_map = NULL;
7045 struct bpf_program *targ_prog = NULL;
7046 bool is_prog_array, is_map_in_map;
7047 const struct btf_member *member;
7048 const char *name, *mname, *type;
7049 unsigned int moff;
7050 Elf64_Sym *sym;
7051 Elf64_Rel *rel;
7052 void *tmp;
7053
7054 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7055 return -EINVAL;
7056 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7057 if (!sec)
7058 return -EINVAL;
7059
7060 nrels = shdr->sh_size / shdr->sh_entsize;
7061 for (i = 0; i < nrels; i++) {
7062 rel = elf_rel_by_idx(data, i);
7063 if (!rel) {
7064 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7065 return -LIBBPF_ERRNO__FORMAT;
7066 }
7067
7068 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7069 if (!sym) {
7070 pr_warn(".maps relo #%d: symbol %zx not found\n",
7071 i, (size_t)ELF64_R_SYM(rel->r_info));
7072 return -LIBBPF_ERRNO__FORMAT;
7073 }
7074 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7075
7076 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7077 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7078 (size_t)rel->r_offset, sym->st_name, name);
7079
7080 for (j = 0; j < obj->nr_maps; j++) {
7081 map = &obj->maps[j];
7082 if (map->sec_idx != obj->efile.btf_maps_shndx)
7083 continue;
7084
7085 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7086 if (vi->offset <= rel->r_offset &&
7087 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7088 break;
7089 }
7090 if (j == obj->nr_maps) {
7091 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7092 i, name, (size_t)rel->r_offset);
7093 return -EINVAL;
7094 }
7095
7096 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7097 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7098 type = is_map_in_map ? "map" : "prog";
7099 if (is_map_in_map) {
7100 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7101 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7102 i, name);
7103 return -LIBBPF_ERRNO__RELOC;
7104 }
7105 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7106 map->def.key_size != sizeof(int)) {
7107 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7108 i, map->name, sizeof(int));
7109 return -EINVAL;
7110 }
7111 targ_map = bpf_object__find_map_by_name(obj, name);
7112 if (!targ_map) {
7113 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7114 i, name);
7115 return -ESRCH;
7116 }
7117 } else if (is_prog_array) {
7118 targ_prog = bpf_object__find_program_by_name(obj, name);
7119 if (!targ_prog) {
7120 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7121 i, name);
7122 return -ESRCH;
7123 }
7124 if (targ_prog->sec_idx != sym->st_shndx ||
7125 targ_prog->sec_insn_off * 8 != sym->st_value ||
7126 prog_is_subprog(obj, targ_prog)) {
7127 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7128 i, name);
7129 return -LIBBPF_ERRNO__RELOC;
7130 }
7131 } else {
7132 return -EINVAL;
7133 }
7134
7135 var = btf__type_by_id(obj->btf, vi->type);
7136 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7137 if (btf_vlen(def) == 0)
7138 return -EINVAL;
7139 member = btf_members(def) + btf_vlen(def) - 1;
7140 mname = btf__name_by_offset(obj->btf, member->name_off);
7141 if (strcmp(mname, "values"))
7142 return -EINVAL;
7143
7144 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7145 if (rel->r_offset - vi->offset < moff)
7146 return -EINVAL;
7147
7148 moff = rel->r_offset - vi->offset - moff;
7149 /* here we use BPF pointer size, which is always 64 bit, as we
7150 * are parsing ELF that was built for BPF target
7151 */
7152 if (moff % bpf_ptr_sz)
7153 return -EINVAL;
7154 moff /= bpf_ptr_sz;
7155 if (moff >= map->init_slots_sz) {
7156 new_sz = moff + 1;
7157 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7158 if (!tmp)
7159 return -ENOMEM;
7160 map->init_slots = tmp;
7161 memset(map->init_slots + map->init_slots_sz, 0,
7162 (new_sz - map->init_slots_sz) * host_ptr_sz);
7163 map->init_slots_sz = new_sz;
7164 }
7165 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7166
7167 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7168 i, map->name, moff, type, name);
7169 }
7170
7171 return 0;
7172 }
7173
7174 static int bpf_object__collect_relos(struct bpf_object *obj)
7175 {
7176 int i, err;
7177
7178 for (i = 0; i < obj->efile.sec_cnt; i++) {
7179 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7180 Elf64_Shdr *shdr;
7181 Elf_Data *data;
7182 int idx;
7183 Elf64_Shdr shdrelf;
7184
7185 if (sec_desc->sec_type != SEC_RELO)
7186 continue;
7187
7188 #if defined HAVE_LIBELF
7189 shdr = sec_desc->shdr;
7190 #elif defined HAVE_ELFIO
7191 shdr = elf_sec_hdr_by_idx(obj, i, &shdrelf);
7192 #endif
7193 data = sec_desc->data;
7194 idx = shdr->sh_info;
7195
7196 if (shdr->sh_type != SHT_REL) {
7197 pr_warn("internal error at %d\n", __LINE__);
7198 return -LIBBPF_ERRNO__INTERNAL;
7199 }
7200
7201 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
7202 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7203 else if (idx == obj->efile.btf_maps_shndx)
7204 err = bpf_object__collect_map_relos(obj, shdr, data);
7205 else
7206 err = bpf_object__collect_prog_relos(obj, shdr, data);
7207 if (err)
7208 return err;
7209 }
7210
7211 bpf_object__sort_relos(obj);
7212 return 0;
7213 }
7214
7215 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7216 {
7217 if (BPF_CLASS(insn->code) == BPF_JMP &&
7218 BPF_OP(insn->code) == BPF_CALL &&
7219 BPF_SRC(insn->code) == BPF_K &&
7220 insn->src_reg == 0 &&
7221 insn->dst_reg == 0) {
7222 *func_id = insn->imm;
7223 return true;
7224 }
7225 return false;
7226 }
7227
7228 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7229 {
7230 struct bpf_insn *insn = prog->insns;
7231 enum bpf_func_id func_id;
7232 int i;
7233
7234 if (obj->gen_loader)
7235 return 0;
7236
7237 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7238 if (!insn_is_helper_call(insn, &func_id))
7239 continue;
7240
7241 /* on kernels that don't yet support
7242 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7243 * to bpf_probe_read() which works well for old kernels
7244 */
7245 switch (func_id) {
7246 case BPF_FUNC_probe_read_kernel:
7247 case BPF_FUNC_probe_read_user:
7248 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7249 insn->imm = BPF_FUNC_probe_read;
7250 break;
7251 case BPF_FUNC_probe_read_kernel_str:
7252 case BPF_FUNC_probe_read_user_str:
7253 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7254 insn->imm = BPF_FUNC_probe_read_str;
7255 break;
7256 default:
7257 break;
7258 }
7259 }
7260 return 0;
7261 }
7262
7263 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7264 int *btf_obj_fd, int *btf_type_id);
7265
7266 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7267 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7268 struct bpf_prog_load_opts *opts, long cookie)
7269 {
7270 enum sec_def_flags def = cookie;
7271
7272 /* old kernels might not support specifying expected_attach_type */
7273 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7274 opts->expected_attach_type = 0;
7275
7276 if (def & SEC_SLEEPABLE)
7277 opts->prog_flags |= BPF_F_SLEEPABLE;
7278
7279 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7280 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7281
7282 /* special check for usdt to use uprobe_multi link */
7283 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7284 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7285
7286 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7287 int btf_obj_fd = 0, btf_type_id = 0, err;
7288 const char *attach_name;
7289
7290 attach_name = strchr(prog->sec_name, '/');
7291 if (!attach_name) {
7292 /* if BPF program is annotated with just SEC("fentry")
7293 * (or similar) without declaratively specifying
7294 * target, then it is expected that target will be
7295 * specified with bpf_program__set_attach_target() at
7296 * runtime before BPF object load step. If not, then
7297 * there is nothing to load into the kernel as BPF
7298 * verifier won't be able to validate BPF program
7299 * correctness anyways.
7300 */
7301 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7302 prog->name);
7303 return -EINVAL;
7304 }
7305 attach_name++; /* skip over / */
7306
7307 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7308 if (err)
7309 return err;
7310
7311 /* cache resolved BTF FD and BTF type ID in the prog */
7312 prog->attach_btf_obj_fd = btf_obj_fd;
7313 prog->attach_btf_id = btf_type_id;
7314
7315 /* but by now libbpf common logic is not utilizing
7316 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7317 * this callback is called after opts were populated by
7318 * libbpf, so this callback has to update opts explicitly here
7319 */
7320 opts->attach_btf_obj_fd = btf_obj_fd;
7321 opts->attach_btf_id = btf_type_id;
7322 }
7323 return 0;
7324 }
7325
7326 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7327
7328 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7329 struct bpf_insn *insns, int insns_cnt,
7330 const char *license, __u32 kern_version, int *prog_fd)
7331 {
7332 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7333 const char *prog_name = NULL;
7334 char *cp, errmsg[STRERR_BUFSIZE];
7335 size_t log_buf_size = 0;
7336 char *log_buf = NULL, *tmp;
7337 int btf_fd, ret, err;
7338 bool own_log_buf = true;
7339 __u32 log_level = prog->log_level;
7340
7341 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7342 /*
7343 * The program type must be set. Most likely we couldn't find a proper
7344 * section definition at load time, and thus we didn't infer the type.
7345 */
7346 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7347 prog->name, prog->sec_name);
7348 return -EINVAL;
7349 }
7350
7351 if (!insns || !insns_cnt)
7352 return -EINVAL;
7353
7354 if (kernel_supports(obj, FEAT_PROG_NAME))
7355 prog_name = prog->name;
7356 load_attr.attach_prog_fd = prog->attach_prog_fd;
7357 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7358 load_attr.attach_btf_id = prog->attach_btf_id;
7359 load_attr.kern_version = kern_version;
7360 load_attr.prog_ifindex = prog->prog_ifindex;
7361
7362 /* specify func_info/line_info only if kernel supports them */
7363 btf_fd = bpf_object__btf_fd(obj);
7364 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7365 load_attr.prog_btf_fd = btf_fd;
7366 load_attr.func_info = prog->func_info;
7367 load_attr.func_info_rec_size = prog->func_info_rec_size;
7368 load_attr.func_info_cnt = prog->func_info_cnt;
7369 load_attr.line_info = prog->line_info;
7370 load_attr.line_info_rec_size = prog->line_info_rec_size;
7371 load_attr.line_info_cnt = prog->line_info_cnt;
7372 }
7373 load_attr.log_level = log_level;
7374 load_attr.prog_flags = prog->prog_flags;
7375 load_attr.fd_array = obj->fd_array;
7376
7377 /* adjust load_attr if sec_def provides custom preload callback */
7378 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7379 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7380 if (err < 0) {
7381 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7382 prog->name, err);
7383 return err;
7384 }
7385 insns = prog->insns;
7386 insns_cnt = prog->insns_cnt;
7387 }
7388
7389 /* allow prog_prepare_load_fn to change expected_attach_type */
7390 load_attr.expected_attach_type = prog->expected_attach_type;
7391
7392 if (obj->gen_loader) {
7393 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7394 license, insns, insns_cnt, &load_attr,
7395 prog - obj->programs);
7396 *prog_fd = -1;
7397 return 0;
7398 }
7399
7400 retry_load:
7401 /* if log_level is zero, we don't request logs initially even if
7402 * custom log_buf is specified; if the program load fails, then we'll
7403 * bump log_level to 1 and use either custom log_buf or we'll allocate
7404 * our own and retry the load to get details on what failed
7405 */
7406 if (log_level) {
7407 if (prog->log_buf) {
7408 log_buf = prog->log_buf;
7409 log_buf_size = prog->log_size;
7410 own_log_buf = false;
7411 } else if (obj->log_buf) {
7412 log_buf = obj->log_buf;
7413 log_buf_size = obj->log_size;
7414 own_log_buf = false;
7415 } else {
7416 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7417 tmp = realloc(log_buf, log_buf_size);
7418 if (!tmp) {
7419 ret = -ENOMEM;
7420 goto out;
7421 }
7422 log_buf = tmp;
7423 log_buf[0] = '\0';
7424 own_log_buf = true;
7425 }
7426 }
7427
7428 load_attr.log_buf = log_buf;
7429 load_attr.log_size = log_buf_size;
7430 load_attr.log_level = log_level;
7431
7432 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7433 if (ret >= 0) {
7434 if (log_level && own_log_buf) {
7435 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7436 prog->name, log_buf);
7437 }
7438
7439 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7440 struct bpf_map *map;
7441 int i;
7442
7443 for (i = 0; i < obj->nr_maps; i++) {
7444 map = &prog->obj->maps[i];
7445 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7446 continue;
7447
7448 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7449 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7450 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7451 prog->name, map->real_name, cp);
7452 /* Don't fail hard if can't bind rodata. */
7453 }
7454 }
7455 }
7456
7457 *prog_fd = ret;
7458 ret = 0;
7459 goto out;
7460 }
7461
7462 if (log_level == 0) {
7463 log_level = 1;
7464 goto retry_load;
7465 }
7466 /* On ENOSPC, increase log buffer size and retry, unless custom
7467 * log_buf is specified.
7468 * Be careful to not overflow u32, though. Kernel's log buf size limit
7469 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7470 * multiply by 2 unless we are sure we'll fit within 32 bits.
7471 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7472 */
7473 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7474 goto retry_load;
7475
7476 ret = -errno;
7477
7478 /* post-process verifier log to improve error descriptions */
7479 fixup_verifier_log(prog, log_buf, log_buf_size);
7480
7481 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7482 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7483 pr_perm_msg(ret);
7484
7485 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7486 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7487 prog->name, log_buf);
7488 }
7489
7490 out:
7491 if (own_log_buf)
7492 free(log_buf);
7493 return ret;
7494 }
7495
7496 static char *find_prev_line(char *buf, char *cur)
7497 {
7498 char *p;
7499
7500 if (cur == buf) /* end of a log buf */
7501 return NULL;
7502
7503 p = cur - 1;
7504 while (p - 1 >= buf && *(p - 1) != '\n')
7505 p--;
7506
7507 return p;
7508 }
7509
7510 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7511 char *orig, size_t orig_sz, const char *patch)
7512 {
7513 /* size of the remaining log content to the right from the to-be-replaced part */
7514 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7515 size_t patch_sz = strlen(patch);
7516
7517 if (patch_sz != orig_sz) {
7518 /* If patch line(s) are longer than original piece of verifier log,
7519 * shift log contents by (patch_sz - orig_sz) bytes to the right
7520 * starting from after to-be-replaced part of the log.
7521 *
7522 * If patch line(s) are shorter than original piece of verifier log,
7523 * shift log contents by (orig_sz - patch_sz) bytes to the left
7524 * starting from after to-be-replaced part of the log
7525 *
7526 * We need to be careful about not overflowing available
7527 * buf_sz capacity. If that's the case, we'll truncate the end
7528 * of the original log, as necessary.
7529 */
7530 if (patch_sz > orig_sz) {
7531 if (orig + patch_sz >= buf + buf_sz) {
7532 /* patch is big enough to cover remaining space completely */
7533 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7534 rem_sz = 0;
7535 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7536 /* patch causes part of remaining log to be truncated */
7537 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7538 }
7539 }
7540 /* shift remaining log to the right by calculated amount */
7541 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7542 }
7543
7544 memcpy(orig, patch, patch_sz);
7545 }
7546
7547 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7548 char *buf, size_t buf_sz, size_t log_sz,
7549 char *line1, char *line2, char *line3)
7550 {
7551 /* Expected log for failed and not properly guarded CO-RE relocation:
7552 * line1 -> 123: (85) call unknown#195896080
7553 * line2 -> invalid func unknown#195896080
7554 * line3 -> <anything else or end of buffer>
7555 *
7556 * "123" is the index of the instruction that was poisoned. We extract
7557 * instruction index to find corresponding CO-RE relocation and
7558 * replace this part of the log with more relevant information about
7559 * failed CO-RE relocation.
7560 */
7561 const struct bpf_core_relo *relo;
7562 struct bpf_core_spec spec;
7563 char patch[512], spec_buf[256];
7564 int insn_idx, err, spec_len;
7565
7566 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7567 return;
7568
7569 relo = find_relo_core(prog, insn_idx);
7570 if (!relo)
7571 return;
7572
7573 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7574 if (err)
7575 return;
7576
7577 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7578 snprintf(patch, sizeof(patch),
7579 "%d: <invalid CO-RE relocation>\n"
7580 "failed to resolve CO-RE relocation %s%s\n",
7581 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7582
7583 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7584 }
7585
7586 static void fixup_log_missing_map_load(struct bpf_program *prog,
7587 char *buf, size_t buf_sz, size_t log_sz,
7588 char *line1, char *line2, char *line3)
7589 {
7590 /* Expected log for failed and not properly guarded map reference:
7591 * line1 -> 123: (85) call unknown#2001000345
7592 * line2 -> invalid func unknown#2001000345
7593 * line3 -> <anything else or end of buffer>
7594 *
7595 * "123" is the index of the instruction that was poisoned.
7596 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7597 */
7598 struct bpf_object *obj = prog->obj;
7599 const struct bpf_map *map;
7600 int insn_idx, map_idx;
7601 char patch[128];
7602
7603 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7604 return;
7605
7606 map_idx -= POISON_LDIMM64_MAP_BASE;
7607 if (map_idx < 0 || map_idx >= obj->nr_maps)
7608 return;
7609 map = &obj->maps[map_idx];
7610
7611 snprintf(patch, sizeof(patch),
7612 "%d: <invalid BPF map reference>\n"
7613 "BPF map '%s' is referenced but wasn't created\n",
7614 insn_idx, map->name);
7615
7616 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7617 }
7618
7619 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7620 char *buf, size_t buf_sz, size_t log_sz,
7621 char *line1, char *line2, char *line3)
7622 {
7623 /* Expected log for failed and not properly guarded kfunc call:
7624 * line1 -> 123: (85) call unknown#2002000345
7625 * line2 -> invalid func unknown#2002000345
7626 * line3 -> <anything else or end of buffer>
7627 *
7628 * "123" is the index of the instruction that was poisoned.
7629 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7630 */
7631 struct bpf_object *obj = prog->obj;
7632 const struct extern_desc *ext;
7633 int insn_idx, ext_idx;
7634 char patch[128];
7635
7636 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7637 return;
7638
7639 ext_idx -= POISON_CALL_KFUNC_BASE;
7640 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7641 return;
7642 ext = &obj->externs[ext_idx];
7643
7644 snprintf(patch, sizeof(patch),
7645 "%d: <invalid kfunc call>\n"
7646 "kfunc '%s' is referenced but wasn't resolved\n",
7647 insn_idx, ext->name);
7648
7649 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7650 }
7651
7652 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7653 {
7654 /* look for familiar error patterns in last N lines of the log */
7655 const size_t max_last_line_cnt = 10;
7656 char *prev_line, *cur_line, *next_line;
7657 size_t log_sz;
7658 int i;
7659
7660 if (!buf)
7661 return;
7662
7663 log_sz = strlen(buf) + 1;
7664 next_line = buf + log_sz - 1;
7665
7666 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7667 cur_line = find_prev_line(buf, next_line);
7668 if (!cur_line)
7669 return;
7670
7671 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7672 prev_line = find_prev_line(buf, cur_line);
7673 if (!prev_line)
7674 continue;
7675
7676 /* failed CO-RE relocation case */
7677 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7678 prev_line, cur_line, next_line);
7679 return;
7680 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7681 prev_line = find_prev_line(buf, cur_line);
7682 if (!prev_line)
7683 continue;
7684
7685 /* reference to uncreated BPF map */
7686 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7687 prev_line, cur_line, next_line);
7688 return;
7689 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7690 prev_line = find_prev_line(buf, cur_line);
7691 if (!prev_line)
7692 continue;
7693
7694 /* reference to unresolved kfunc */
7695 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7696 prev_line, cur_line, next_line);
7697 return;
7698 }
7699 }
7700 }
7701
7702 static int bpf_program_record_relos(struct bpf_program *prog)
7703 {
7704 struct bpf_object *obj = prog->obj;
7705 int i;
7706
7707 for (i = 0; i < prog->nr_reloc; i++) {
7708 struct reloc_desc *relo = &prog->reloc_desc[i];
7709 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7710 int kind;
7711
7712 switch (relo->type) {
7713 case RELO_EXTERN_LD64:
7714 if (ext->type != EXT_KSYM)
7715 continue;
7716 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7717 BTF_KIND_VAR : BTF_KIND_FUNC;
7718 bpf_gen__record_extern(obj->gen_loader, ext->name,
7719 ext->is_weak, !ext->ksym.type_id,
7720 true, kind, relo->insn_idx);
7721 break;
7722 case RELO_EXTERN_CALL:
7723 bpf_gen__record_extern(obj->gen_loader, ext->name,
7724 ext->is_weak, false, false, BTF_KIND_FUNC,
7725 relo->insn_idx);
7726 break;
7727 case RELO_CORE: {
7728 struct bpf_core_relo cr = {
7729 .insn_off = relo->insn_idx * 8,
7730 .type_id = relo->core_relo->type_id,
7731 .access_str_off = relo->core_relo->access_str_off,
7732 .kind = relo->core_relo->kind,
7733 };
7734
7735 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7736 break;
7737 }
7738 default:
7739 continue;
7740 }
7741 }
7742 return 0;
7743 }
7744
7745 static int
7746 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7747 {
7748 struct bpf_program *prog;
7749 size_t i;
7750 int err;
7751
7752 for (i = 0; i < obj->nr_programs; i++) {
7753 prog = &obj->programs[i];
7754 err = bpf_object__sanitize_prog(obj, prog);
7755 if (err)
7756 return err;
7757 }
7758
7759 for (i = 0; i < obj->nr_programs; i++) {
7760 prog = &obj->programs[i];
7761 if (prog_is_subprog(obj, prog))
7762 continue;
7763 if (!prog->autoload) {
7764 pr_debug("prog '%s': skipped loading\n", prog->name);
7765 continue;
7766 }
7767 prog->log_level |= log_level;
7768
7769 if (obj->gen_loader)
7770 bpf_program_record_relos(prog);
7771
7772 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7773 obj->license, obj->kern_version, &prog->fd);
7774 if (err) {
7775 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7776 return err;
7777 }
7778 }
7779
7780 bpf_object__free_relocs(obj);
7781 return 0;
7782 }
7783
7784 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7785
7786 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7787 {
7788 struct bpf_program *prog;
7789 int err;
7790
7791 bpf_object__for_each_program(prog, obj) {
7792 prog->sec_def = find_sec_def(prog->sec_name);
7793 if (!prog->sec_def) {
7794 /* couldn't guess, but user might manually specify */
7795 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7796 prog->name, prog->sec_name);
7797 continue;
7798 }
7799
7800 prog->type = prog->sec_def->prog_type;
7801 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7802
7803 /* sec_def can have custom callback which should be called
7804 * after bpf_program is initialized to adjust its properties
7805 */
7806 if (prog->sec_def->prog_setup_fn) {
7807 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7808 if (err < 0) {
7809 pr_warn("prog '%s': failed to initialize: %d\n",
7810 prog->name, err);
7811 return err;
7812 }
7813 }
7814 }
7815
7816 return 0;
7817 }
7818
7819 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7820 const struct bpf_object_open_opts *opts)
7821 {
7822 const char *obj_name, *kconfig, *btf_tmp_path;
7823 struct bpf_object *obj;
7824 char tmp_name[64];
7825 int err;
7826 char *log_buf;
7827 size_t log_size;
7828 __u32 log_level;
7829
7830 #ifdef HAVE_LIBELF
7831 if (elf_version(EV_CURRENT) == EV_NONE) {
7832 pr_warn("failed to init libelf for %s\n",
7833 path ? : "(mem buf)");
7834 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7835 }
7836 #endif
7837
7838 if (!OPTS_VALID(opts, bpf_object_open_opts))
7839 return ERR_PTR(-EINVAL);
7840
7841 obj_name = OPTS_GET(opts, object_name, NULL);
7842 if (obj_buf) {
7843 if (!obj_name) {
7844 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7845 (unsigned long)obj_buf,
7846 (unsigned long)obj_buf_sz);
7847 obj_name = tmp_name;
7848 }
7849 path = obj_name;
7850 pr_debug("loading object '%s' from buffer\n", obj_name);
7851 }
7852
7853 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7854 log_size = OPTS_GET(opts, kernel_log_size, 0);
7855 log_level = OPTS_GET(opts, kernel_log_level, 0);
7856 if (log_size > UINT_MAX)
7857 return ERR_PTR(-EINVAL);
7858 if (log_size && !log_buf)
7859 return ERR_PTR(-EINVAL);
7860
7861 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7862 if (IS_ERR(obj))
7863 return obj;
7864
7865 obj->log_buf = log_buf;
7866 obj->log_size = log_size;
7867 obj->log_level = log_level;
7868
7869 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7870 if (btf_tmp_path) {
7871 if (strlen(btf_tmp_path) >= PATH_MAX) {
7872 err = -ENAMETOOLONG;
7873 goto out;
7874 }
7875 obj->btf_custom_path = strdup(btf_tmp_path);
7876 if (!obj->btf_custom_path) {
7877 err = -ENOMEM;
7878 goto out;
7879 }
7880 }
7881
7882 kconfig = OPTS_GET(opts, kconfig, NULL);
7883 if (kconfig) {
7884 obj->kconfig = strdup(kconfig);
7885 if (!obj->kconfig) {
7886 err = -ENOMEM;
7887 goto out;
7888 }
7889 }
7890
7891 err = bpf_object__elf_init(obj);
7892 err = err ? : bpf_object__check_endianness(obj);
7893 err = err ? : bpf_object__elf_collect(obj);
7894 err = err ? : bpf_object__collect_externs(obj);
7895 err = err ? : bpf_object_fixup_btf(obj);
7896 err = err ? : bpf_object__init_maps(obj, opts);
7897 err = err ? : bpf_object_init_progs(obj, opts);
7898 err = err ? : bpf_object__collect_relos(obj);
7899 if (err)
7900 goto out;
7901
7902 bpf_object__elf_finish(obj);
7903
7904 return obj;
7905 out:
7906 bpf_object__close(obj);
7907 return ERR_PTR(err);
7908 }
7909
7910 struct bpf_object *
7911 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7912 {
7913 if (!path)
7914 return libbpf_err_ptr(-EINVAL);
7915
7916 pr_debug("loading %s\n", path);
7917
7918 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7919 }
7920
7921 struct bpf_object *bpf_object__open(const char *path)
7922 {
7923 return bpf_object__open_file(path, NULL);
7924 }
7925
7926 struct bpf_object *
7927 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7928 const struct bpf_object_open_opts *opts)
7929 {
7930 if (!obj_buf || obj_buf_sz == 0)
7931 return libbpf_err_ptr(-EINVAL);
7932
7933 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7934 }
7935
7936 static int bpf_object_unload(struct bpf_object *obj)
7937 {
7938 size_t i;
7939
7940 if (!obj)
7941 return libbpf_err(-EINVAL);
7942
7943 for (i = 0; i < obj->nr_maps; i++) {
7944 zclose(obj->maps[i].fd);
7945 if (obj->maps[i].st_ops)
7946 zfree(&obj->maps[i].st_ops->kern_vdata);
7947 }
7948
7949 for (i = 0; i < obj->nr_programs; i++)
7950 bpf_program__unload(&obj->programs[i]);
7951
7952 return 0;
7953 }
7954
7955 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7956 {
7957 struct bpf_map *m;
7958
7959 bpf_object__for_each_map(m, obj) {
7960 if (!bpf_map__is_internal(m))
7961 continue;
7962 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7963 m->def.map_flags &= ~BPF_F_MMAPABLE;
7964 }
7965
7966 return 0;
7967 }
7968
7969 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7970 {
7971 char sym_type, sym_name[500];
7972 unsigned long long sym_addr;
7973 int ret, err = 0;
7974 FILE *f;
7975
7976 f = fopen("/proc/kallsyms", "re");
7977 if (!f) {
7978 err = -errno;
7979 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7980 return err;
7981 }
7982
7983 while (true) {
7984 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7985 &sym_addr, &sym_type, sym_name);
7986 if (ret == EOF && feof(f))
7987 break;
7988 if (ret != 3) {
7989 pr_warn("failed to read kallsyms entry: %d\n", ret);
7990 err = -EINVAL;
7991 break;
7992 }
7993
7994 err = cb(sym_addr, sym_type, sym_name, ctx);
7995 if (err)
7996 break;
7997 }
7998
7999 fclose(f);
8000 return err;
8001 }
8002
8003 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8004 const char *sym_name, void *ctx)
8005 {
8006 struct bpf_object *obj = ctx;
8007 const struct btf_type *t;
8008 struct extern_desc *ext;
8009
8010 ext = find_extern_by_name(obj, sym_name);
8011 if (!ext || ext->type != EXT_KSYM)
8012 return 0;
8013
8014 t = btf__type_by_id(obj->btf, ext->btf_id);
8015 if (!btf_is_var(t))
8016 return 0;
8017
8018 if (ext->is_set && ext->ksym.addr != sym_addr) {
8019 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8020 sym_name, ext->ksym.addr, sym_addr);
8021 return -EINVAL;
8022 }
8023 if (!ext->is_set) {
8024 ext->is_set = true;
8025 ext->ksym.addr = sym_addr;
8026 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8027 }
8028 return 0;
8029 }
8030
8031 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8032 {
8033 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8034 }
8035
8036 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8037 __u16 kind, struct btf **res_btf,
8038 struct module_btf **res_mod_btf)
8039 {
8040 struct module_btf *mod_btf;
8041 struct btf *btf;
8042 int i, id, err;
8043
8044 btf = obj->btf_vmlinux;
8045 mod_btf = NULL;
8046 id = btf__find_by_name_kind(btf, ksym_name, kind);
8047
8048 if (id == -ENOENT) {
8049 err = load_module_btfs(obj);
8050 if (err)
8051 return err;
8052
8053 for (i = 0; i < obj->btf_module_cnt; i++) {
8054 /* we assume module_btf's BTF FD is always >0 */
8055 mod_btf = &obj->btf_modules[i];
8056 btf = mod_btf->btf;
8057 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8058 if (id != -ENOENT)
8059 break;
8060 }
8061 }
8062 if (id <= 0)
8063 return -ESRCH;
8064
8065 *res_btf = btf;
8066 *res_mod_btf = mod_btf;
8067 return id;
8068 }
8069
8070 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8071 struct extern_desc *ext)
8072 {
8073 const struct btf_type *targ_var, *targ_type;
8074 __u32 targ_type_id, local_type_id;
8075 struct module_btf *mod_btf = NULL;
8076 const char *targ_var_name;
8077 struct btf *btf = NULL;
8078 int id, err;
8079
8080 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8081 if (id < 0) {
8082 if (id == -ESRCH && ext->is_weak)
8083 return 0;
8084 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8085 ext->name);
8086 return id;
8087 }
8088
8089 /* find local type_id */
8090 local_type_id = ext->ksym.type_id;
8091
8092 /* find target type_id */
8093 targ_var = btf__type_by_id(btf, id);
8094 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8095 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8096
8097 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8098 btf, targ_type_id);
8099 if (err <= 0) {
8100 const struct btf_type *local_type;
8101 const char *targ_name, *local_name;
8102
8103 local_type = btf__type_by_id(obj->btf, local_type_id);
8104 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8105 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8106
8107 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8108 ext->name, local_type_id,
8109 btf_kind_str(local_type), local_name, targ_type_id,
8110 btf_kind_str(targ_type), targ_name);
8111 return -EINVAL;
8112 }
8113
8114 ext->is_set = true;
8115 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8116 ext->ksym.kernel_btf_id = id;
8117 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8118 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8119
8120 return 0;
8121 }
8122
8123 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8124 struct extern_desc *ext)
8125 {
8126 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8127 struct module_btf *mod_btf = NULL;
8128 const struct btf_type *kern_func;
8129 struct btf *kern_btf = NULL;
8130 int ret;
8131
8132 local_func_proto_id = ext->ksym.type_id;
8133
8134 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8135 &mod_btf);
8136 if (kfunc_id < 0) {
8137 if (kfunc_id == -ESRCH && ext->is_weak)
8138 return 0;
8139 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8140 ext->name);
8141 return kfunc_id;
8142 }
8143
8144 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8145 kfunc_proto_id = kern_func->type;
8146
8147 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8148 kern_btf, kfunc_proto_id);
8149 if (ret <= 0) {
8150 if (ext->is_weak)
8151 return 0;
8152
8153 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8154 ext->name, local_func_proto_id,
8155 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8156 return -EINVAL;
8157 }
8158
8159 /* set index for module BTF fd in fd_array, if unset */
8160 if (mod_btf && !mod_btf->fd_array_idx) {
8161 /* insn->off is s16 */
8162 if (obj->fd_array_cnt == INT16_MAX) {
8163 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8164 ext->name, mod_btf->fd_array_idx);
8165 return -E2BIG;
8166 }
8167 /* Cannot use index 0 for module BTF fd */
8168 if (!obj->fd_array_cnt)
8169 obj->fd_array_cnt = 1;
8170
8171 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8172 obj->fd_array_cnt + 1);
8173 if (ret)
8174 return ret;
8175 mod_btf->fd_array_idx = obj->fd_array_cnt;
8176 /* we assume module BTF FD is always >0 */
8177 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8178 }
8179
8180 ext->is_set = true;
8181 ext->ksym.kernel_btf_id = kfunc_id;
8182 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8183 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8184 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8185 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8186 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8187 */
8188 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8189 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8190 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8191
8192 return 0;
8193 }
8194
8195 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8196 {
8197 const struct btf_type *t;
8198 struct extern_desc *ext;
8199 int i, err;
8200
8201 for (i = 0; i < obj->nr_extern; i++) {
8202 ext = &obj->externs[i];
8203 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8204 continue;
8205
8206 if (obj->gen_loader) {
8207 ext->is_set = true;
8208 ext->ksym.kernel_btf_obj_fd = 0;
8209 ext->ksym.kernel_btf_id = 0;
8210 continue;
8211 }
8212 t = btf__type_by_id(obj->btf, ext->btf_id);
8213 if (btf_is_var(t))
8214 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8215 else
8216 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8217 if (err)
8218 return err;
8219 }
8220 return 0;
8221 }
8222
8223 static int bpf_object__resolve_externs(struct bpf_object *obj,
8224 const char *extra_kconfig)
8225 {
8226 bool need_config = false, need_kallsyms = false;
8227 bool need_vmlinux_btf = false;
8228 struct extern_desc *ext;
8229 void *kcfg_data = NULL;
8230 int err, i;
8231
8232 if (obj->nr_extern == 0)
8233 return 0;
8234
8235 if (obj->kconfig_map_idx >= 0)
8236 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8237
8238 for (i = 0; i < obj->nr_extern; i++) {
8239 ext = &obj->externs[i];
8240
8241 if (ext->type == EXT_KSYM) {
8242 if (ext->ksym.type_id)
8243 need_vmlinux_btf = true;
8244 else
8245 need_kallsyms = true;
8246 continue;
8247 } else if (ext->type == EXT_KCFG) {
8248 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8249 __u64 value = 0;
8250
8251 /* Kconfig externs need actual /proc/config.gz */
8252 if (str_has_pfx(ext->name, "CONFIG_")) {
8253 need_config = true;
8254 continue;
8255 }
8256
8257 /* Virtual kcfg externs are customly handled by libbpf */
8258 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8259 value = get_kernel_version();
8260 if (!value) {
8261 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8262 return -EINVAL;
8263 }
8264 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8265 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8266 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8267 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8268 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8269 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8270 * __kconfig externs, where LINUX_ ones are virtual and filled out
8271 * customly by libbpf (their values don't come from Kconfig).
8272 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8273 * __weak, it defaults to zero value, just like for CONFIG_xxx
8274 * externs.
8275 */
8276 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8277 return -EINVAL;
8278 }
8279
8280 err = set_kcfg_value_num(ext, ext_ptr, value);
8281 if (err)
8282 return err;
8283 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8284 ext->name, (long long)value);
8285 } else {
8286 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8287 return -EINVAL;
8288 }
8289 }
8290 if (need_config && extra_kconfig) {
8291 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8292 if (err)
8293 return -EINVAL;
8294 need_config = false;
8295 for (i = 0; i < obj->nr_extern; i++) {
8296 ext = &obj->externs[i];
8297 if (ext->type == EXT_KCFG && !ext->is_set) {
8298 need_config = true;
8299 break;
8300 }
8301 }
8302 }
8303 if (need_config) {
8304 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8305 if (err)
8306 return -EINVAL;
8307 }
8308 if (need_kallsyms) {
8309 err = bpf_object__read_kallsyms_file(obj);
8310 if (err)
8311 return -EINVAL;
8312 }
8313 if (need_vmlinux_btf) {
8314 err = bpf_object__resolve_ksyms_btf_id(obj);
8315 if (err)
8316 return -EINVAL;
8317 }
8318 for (i = 0; i < obj->nr_extern; i++) {
8319 ext = &obj->externs[i];
8320
8321 if (!ext->is_set && !ext->is_weak) {
8322 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8323 return -ESRCH;
8324 } else if (!ext->is_set) {
8325 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8326 ext->name);
8327 }
8328 }
8329
8330 return 0;
8331 }
8332
8333 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8334 {
8335 struct bpf_struct_ops *st_ops;
8336 __u32 i;
8337
8338 st_ops = map->st_ops;
8339 for (i = 0; i < btf_vlen(st_ops->type); i++) {
8340 struct bpf_program *prog = st_ops->progs[i];
8341 void *kern_data;
8342 int prog_fd;
8343
8344 if (!prog)
8345 continue;
8346
8347 prog_fd = bpf_program__fd(prog);
8348 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8349 *(unsigned long *)kern_data = prog_fd;
8350 }
8351 }
8352
8353 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8354 {
8355 int i;
8356
8357 for (i = 0; i < obj->nr_maps; i++)
8358 if (bpf_map__is_struct_ops(&obj->maps[i]))
8359 bpf_map_prepare_vdata(&obj->maps[i]);
8360
8361 return 0;
8362 }
8363
8364 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8365 {
8366 int err, i;
8367
8368 if (!obj)
8369 return libbpf_err(-EINVAL);
8370
8371 if (obj->loaded) {
8372 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8373 return libbpf_err(-EINVAL);
8374 }
8375
8376 if (obj->gen_loader)
8377 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8378
8379 err = bpf_object__probe_loading(obj);
8380 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8381 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8382 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8383 err = err ? : bpf_object__sanitize_maps(obj);
8384 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8385 err = err ? : bpf_object__create_maps(obj);
8386 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8387 err = err ? : bpf_object__load_progs(obj, extra_log_level);
8388 err = err ? : bpf_object_init_prog_arrays(obj);
8389 err = err ? : bpf_object_prepare_struct_ops(obj);
8390
8391 if (obj->gen_loader) {
8392 /* reset FDs */
8393 if (obj->btf)
8394 btf__set_fd(obj->btf, -1);
8395 for (i = 0; i < obj->nr_maps; i++)
8396 obj->maps[i].fd = -1;
8397 if (!err)
8398 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8399 }
8400
8401 /* clean up fd_array */
8402 zfree(&obj->fd_array);
8403
8404 /* clean up module BTFs */
8405 for (i = 0; i < obj->btf_module_cnt; i++) {
8406 close(obj->btf_modules[i].fd);
8407 btf__free(obj->btf_modules[i].btf);
8408 free(obj->btf_modules[i].name);
8409 }
8410 free(obj->btf_modules);
8411
8412 /* clean up vmlinux BTF */
8413 btf__free(obj->btf_vmlinux);
8414 obj->btf_vmlinux = NULL;
8415
8416 obj->loaded = true; /* doesn't matter if successfully or not */
8417
8418 if (err)
8419 goto out;
8420
8421 return 0;
8422 out:
8423 /* unpin any maps that were auto-pinned during load */
8424 for (i = 0; i < obj->nr_maps; i++)
8425 if (obj->maps[i].pinned && !obj->maps[i].reused)
8426 bpf_map__unpin(&obj->maps[i], NULL);
8427
8428 bpf_object_unload(obj);
8429 pr_warn("failed to load object '%s'\n", obj->path);
8430 return libbpf_err(err);
8431 }
8432
8433 int bpf_object__load(struct bpf_object *obj)
8434 {
8435 return bpf_object_load(obj, 0, NULL);
8436 }
8437
8438 static int make_parent_dir(const char *path)
8439 {
8440 char *cp, errmsg[STRERR_BUFSIZE];
8441 char *dname, *dir;
8442 int err = 0;
8443
8444 dname = strdup(path);
8445 if (dname == NULL)
8446 return -ENOMEM;
8447
8448 dir = dirname(dname);
8449 if (mkdir(dir, 0700) && errno != EEXIST)
8450 err = -errno;
8451
8452 free(dname);
8453 if (err) {
8454 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8455 pr_warn("failed to mkdir %s: %s\n", path, cp);
8456 }
8457 return err;
8458 }
8459
8460 static int check_path(const char *path)
8461 {
8462 char *cp, errmsg[STRERR_BUFSIZE];
8463 struct statfs st_fs;
8464 char *dname, *dir;
8465 int err = 0;
8466
8467 if (path == NULL)
8468 return -EINVAL;
8469
8470 dname = strdup(path);
8471 if (dname == NULL)
8472 return -ENOMEM;
8473
8474 dir = dirname(dname);
8475 if (statfs(dir, &st_fs)) {
8476 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8477 pr_warn("failed to statfs %s: %s\n", dir, cp);
8478 err = -errno;
8479 }
8480 free(dname);
8481
8482 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8483 pr_warn("specified path %s is not on BPF FS\n", path);
8484 err = -EINVAL;
8485 }
8486
8487 return err;
8488 }
8489
8490 int bpf_program__pin(struct bpf_program *prog, const char *path)
8491 {
8492 char *cp, errmsg[STRERR_BUFSIZE];
8493 int err;
8494
8495 if (prog->fd < 0) {
8496 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8497 return libbpf_err(-EINVAL);
8498 }
8499
8500 err = make_parent_dir(path);
8501 if (err)
8502 return libbpf_err(err);
8503
8504 err = check_path(path);
8505 if (err)
8506 return libbpf_err(err);
8507
8508 if (bpf_obj_pin(prog->fd, path)) {
8509 err = -errno;
8510 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8511 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8512 return libbpf_err(err);
8513 }
8514
8515 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8516 return 0;
8517 }
8518
8519 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8520 {
8521 int err;
8522
8523 if (prog->fd < 0) {
8524 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8525 return libbpf_err(-EINVAL);
8526 }
8527
8528 err = check_path(path);
8529 if (err)
8530 return libbpf_err(err);
8531
8532 err = unlink(path);
8533 if (err)
8534 return libbpf_err(-errno);
8535
8536 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8537 return 0;
8538 }
8539
8540 int bpf_map__pin(struct bpf_map *map, const char *path)
8541 {
8542 char *cp, errmsg[STRERR_BUFSIZE];
8543 int err;
8544
8545 if (map == NULL) {
8546 pr_warn("invalid map pointer\n");
8547 return libbpf_err(-EINVAL);
8548 }
8549
8550 if (map->pin_path) {
8551 if (path && strcmp(path, map->pin_path)) {
8552 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8553 bpf_map__name(map), map->pin_path, path);
8554 return libbpf_err(-EINVAL);
8555 } else if (map->pinned) {
8556 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8557 bpf_map__name(map), map->pin_path);
8558 return 0;
8559 }
8560 } else {
8561 if (!path) {
8562 pr_warn("missing a path to pin map '%s' at\n",
8563 bpf_map__name(map));
8564 return libbpf_err(-EINVAL);
8565 } else if (map->pinned) {
8566 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8567 return libbpf_err(-EEXIST);
8568 }
8569
8570 map->pin_path = strdup(path);
8571 if (!map->pin_path) {
8572 err = -errno;
8573 goto out_err;
8574 }
8575 }
8576
8577 err = make_parent_dir(map->pin_path);
8578 if (err)
8579 return libbpf_err(err);
8580
8581 err = check_path(map->pin_path);
8582 if (err)
8583 return libbpf_err(err);
8584
8585 if (bpf_obj_pin(map->fd, map->pin_path)) {
8586 err = -errno;
8587 goto out_err;
8588 }
8589
8590 map->pinned = true;
8591 pr_debug("pinned map '%s'\n", map->pin_path);
8592
8593 return 0;
8594
8595 out_err:
8596 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8597 pr_warn("failed to pin map: %s\n", cp);
8598 return libbpf_err(err);
8599 }
8600
8601 int bpf_map__unpin(struct bpf_map *map, const char *path)
8602 {
8603 int err;
8604
8605 if (map == NULL) {
8606 pr_warn("invalid map pointer\n");
8607 return libbpf_err(-EINVAL);
8608 }
8609
8610 if (map->pin_path) {
8611 if (path && strcmp(path, map->pin_path)) {
8612 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8613 bpf_map__name(map), map->pin_path, path);
8614 return libbpf_err(-EINVAL);
8615 }
8616 path = map->pin_path;
8617 } else if (!path) {
8618 pr_warn("no path to unpin map '%s' from\n",
8619 bpf_map__name(map));
8620 return libbpf_err(-EINVAL);
8621 }
8622
8623 err = check_path(path);
8624 if (err)
8625 return libbpf_err(err);
8626
8627 err = unlink(path);
8628 if (err != 0)
8629 return libbpf_err(-errno);
8630
8631 map->pinned = false;
8632 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8633
8634 return 0;
8635 }
8636
8637 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8638 {
8639 char *new = NULL;
8640
8641 if (path) {
8642 new = strdup(path);
8643 if (!new)
8644 return libbpf_err(-errno);
8645 }
8646
8647 free(map->pin_path);
8648 map->pin_path = new;
8649 return 0;
8650 }
8651
8652 __alias(bpf_map__pin_path)
8653 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8654
8655 const char *bpf_map__pin_path(const struct bpf_map *map)
8656 {
8657 return map->pin_path;
8658 }
8659
8660 bool bpf_map__is_pinned(const struct bpf_map *map)
8661 {
8662 return map->pinned;
8663 }
8664
8665 static void sanitize_pin_path(char *s)
8666 {
8667 /* bpffs disallows periods in path names */
8668 while (*s) {
8669 if (*s == '.')
8670 *s = '_';
8671 s++;
8672 }
8673 }
8674
8675 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8676 {
8677 struct bpf_map *map;
8678 int err;
8679
8680 if (!obj)
8681 return libbpf_err(-ENOENT);
8682
8683 if (!obj->loaded) {
8684 pr_warn("object not yet loaded; load it first\n");
8685 return libbpf_err(-ENOENT);
8686 }
8687
8688 bpf_object__for_each_map(map, obj) {
8689 char *pin_path = NULL;
8690 char buf[PATH_MAX];
8691
8692 if (!map->autocreate)
8693 continue;
8694
8695 if (path) {
8696 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8697 if (err)
8698 goto err_unpin_maps;
8699 sanitize_pin_path(buf);
8700 pin_path = buf;
8701 } else if (!map->pin_path) {
8702 continue;
8703 }
8704
8705 err = bpf_map__pin(map, pin_path);
8706 if (err)
8707 goto err_unpin_maps;
8708 }
8709
8710 return 0;
8711
8712 err_unpin_maps:
8713 while ((map = bpf_object__prev_map(obj, map))) {
8714 if (!map->pin_path)
8715 continue;
8716
8717 bpf_map__unpin(map, NULL);
8718 }
8719
8720 return libbpf_err(err);
8721 }
8722
8723 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8724 {
8725 struct bpf_map *map;
8726 int err;
8727
8728 if (!obj)
8729 return libbpf_err(-ENOENT);
8730
8731 bpf_object__for_each_map(map, obj) {
8732 char *pin_path = NULL;
8733 char buf[PATH_MAX];
8734
8735 if (path) {
8736 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8737 if (err)
8738 return libbpf_err(err);
8739 sanitize_pin_path(buf);
8740 pin_path = buf;
8741 } else if (!map->pin_path) {
8742 continue;
8743 }
8744
8745 err = bpf_map__unpin(map, pin_path);
8746 if (err)
8747 return libbpf_err(err);
8748 }
8749
8750 return 0;
8751 }
8752
8753 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8754 {
8755 struct bpf_program *prog;
8756 char buf[PATH_MAX];
8757 int err;
8758
8759 if (!obj)
8760 return libbpf_err(-ENOENT);
8761
8762 if (!obj->loaded) {
8763 pr_warn("object not yet loaded; load it first\n");
8764 return libbpf_err(-ENOENT);
8765 }
8766
8767 bpf_object__for_each_program(prog, obj) {
8768 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8769 if (err)
8770 goto err_unpin_programs;
8771
8772 err = bpf_program__pin(prog, buf);
8773 if (err)
8774 goto err_unpin_programs;
8775 }
8776
8777 return 0;
8778
8779 err_unpin_programs:
8780 while ((prog = bpf_object__prev_program(obj, prog))) {
8781 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8782 continue;
8783
8784 bpf_program__unpin(prog, buf);
8785 }
8786
8787 return libbpf_err(err);
8788 }
8789
8790 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8791 {
8792 struct bpf_program *prog;
8793 int err;
8794
8795 if (!obj)
8796 return libbpf_err(-ENOENT);
8797
8798 bpf_object__for_each_program(prog, obj) {
8799 char buf[PATH_MAX];
8800
8801 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8802 if (err)
8803 return libbpf_err(err);
8804
8805 err = bpf_program__unpin(prog, buf);
8806 if (err)
8807 return libbpf_err(err);
8808 }
8809
8810 return 0;
8811 }
8812
8813 int bpf_object__pin(struct bpf_object *obj, const char *path)
8814 {
8815 int err;
8816
8817 err = bpf_object__pin_maps(obj, path);
8818 if (err)
8819 return libbpf_err(err);
8820
8821 err = bpf_object__pin_programs(obj, path);
8822 if (err) {
8823 bpf_object__unpin_maps(obj, path);
8824 return libbpf_err(err);
8825 }
8826
8827 return 0;
8828 }
8829
8830 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8831 {
8832 int err;
8833
8834 err = bpf_object__unpin_programs(obj, path);
8835 if (err)
8836 return libbpf_err(err);
8837
8838 err = bpf_object__unpin_maps(obj, path);
8839 if (err)
8840 return libbpf_err(err);
8841
8842 return 0;
8843 }
8844
8845 static void bpf_map__destroy(struct bpf_map *map)
8846 {
8847 if (map->inner_map) {
8848 bpf_map__destroy(map->inner_map);
8849 zfree(&map->inner_map);
8850 }
8851
8852 zfree(&map->init_slots);
8853 map->init_slots_sz = 0;
8854
8855 if (map->mmaped) {
8856 size_t mmap_sz;
8857
8858 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8859 munmap(map->mmaped, mmap_sz);
8860 map->mmaped = NULL;
8861 }
8862
8863 if (map->st_ops) {
8864 zfree(&map->st_ops->data);
8865 zfree(&map->st_ops->progs);
8866 zfree(&map->st_ops->kern_func_off);
8867 zfree(&map->st_ops);
8868 }
8869
8870 zfree(&map->name);
8871 zfree(&map->real_name);
8872 zfree(&map->pin_path);
8873
8874 if (map->fd >= 0)
8875 zclose(map->fd);
8876 }
8877
8878 void bpf_object__close(struct bpf_object *obj)
8879 {
8880 size_t i;
8881
8882 if (IS_ERR_OR_NULL(obj))
8883 return;
8884 #ifdef HAVE_LIBELF
8885 usdt_manager_free(obj->usdt_man);
8886 obj->usdt_man = NULL;
8887 #endif //HAVE_LIBELF
8888 bpf_gen__free(obj->gen_loader);
8889 bpf_object__elf_finish(obj);
8890 bpf_object_unload(obj);
8891 btf__free(obj->btf);
8892 btf__free(obj->btf_vmlinux);
8893 btf_ext__free(obj->btf_ext);
8894
8895 for (i = 0; i < obj->nr_maps; i++)
8896 bpf_map__destroy(&obj->maps[i]);
8897
8898 zfree(&obj->btf_custom_path);
8899 zfree(&obj->kconfig);
8900
8901 for (i = 0; i < obj->nr_extern; i++)
8902 zfree(&obj->externs[i].essent_name);
8903
8904 zfree(&obj->externs);
8905 obj->nr_extern = 0;
8906
8907 zfree(&obj->maps);
8908 obj->nr_maps = 0;
8909
8910 if (obj->programs && obj->nr_programs) {
8911 for (i = 0; i < obj->nr_programs; i++)
8912 bpf_program__exit(&obj->programs[i]);
8913 }
8914 zfree(&obj->programs);
8915
8916 free(obj);
8917 }
8918
8919 const char *bpf_object__name(const struct bpf_object *obj)
8920 {
8921 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8922 }
8923
8924 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8925 {
8926 return obj ? obj->kern_version : 0;
8927 }
8928
8929 struct btf *bpf_object__btf(const struct bpf_object *obj)
8930 {
8931 return obj ? obj->btf : NULL;
8932 }
8933
8934 int bpf_object__btf_fd(const struct bpf_object *obj)
8935 {
8936 return obj->btf ? btf__fd(obj->btf) : -1;
8937 }
8938
8939 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8940 {
8941 if (obj->loaded)
8942 return libbpf_err(-EINVAL);
8943
8944 obj->kern_version = kern_version;
8945
8946 return 0;
8947 }
8948
8949 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8950 {
8951 struct bpf_gen *gen;
8952
8953 if (!opts)
8954 return -EFAULT;
8955 if (!OPTS_VALID(opts, gen_loader_opts))
8956 return -EINVAL;
8957 gen = calloc(sizeof(*gen), 1);
8958 if (!gen)
8959 return -ENOMEM;
8960 gen->opts = opts;
8961 obj->gen_loader = gen;
8962 return 0;
8963 }
8964
8965 static struct bpf_program *
8966 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8967 bool forward)
8968 {
8969 size_t nr_programs = obj->nr_programs;
8970 ssize_t idx;
8971
8972 if (!nr_programs)
8973 return NULL;
8974
8975 if (!p)
8976 /* Iter from the beginning */
8977 return forward ? &obj->programs[0] :
8978 &obj->programs[nr_programs - 1];
8979
8980 if (p->obj != obj) {
8981 pr_warn("error: program handler doesn't match object\n");
8982 return errno = EINVAL, NULL;
8983 }
8984
8985 idx = (p - obj->programs) + (forward ? 1 : -1);
8986 if (idx >= obj->nr_programs || idx < 0)
8987 return NULL;
8988 return &obj->programs[idx];
8989 }
8990
8991 struct bpf_program *
8992 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8993 {
8994 struct bpf_program *prog = prev;
8995
8996 do {
8997 prog = __bpf_program__iter(prog, obj, true);
8998 } while (prog && prog_is_subprog(obj, prog));
8999
9000 return prog;
9001 }
9002
9003 struct bpf_program *
9004 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9005 {
9006 struct bpf_program *prog = next;
9007
9008 do {
9009 prog = __bpf_program__iter(prog, obj, false);
9010 } while (prog && prog_is_subprog(obj, prog));
9011
9012 return prog;
9013 }
9014
9015 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9016 {
9017 prog->prog_ifindex = ifindex;
9018 }
9019
9020 const char *bpf_program__name(const struct bpf_program *prog)
9021 {
9022 return prog->name;
9023 }
9024
9025 const char *bpf_program__section_name(const struct bpf_program *prog)
9026 {
9027 return prog->sec_name;
9028 }
9029
9030 bool bpf_program__autoload(const struct bpf_program *prog)
9031 {
9032 return prog->autoload;
9033 }
9034
9035 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9036 {
9037 if (prog->obj->loaded)
9038 return libbpf_err(-EINVAL);
9039
9040 prog->autoload = autoload;
9041 return 0;
9042 }
9043
9044 bool bpf_program__autoattach(const struct bpf_program *prog)
9045 {
9046 return prog->autoattach;
9047 }
9048
9049 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9050 {
9051 prog->autoattach = autoattach;
9052 }
9053
9054 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9055 {
9056 return prog->insns;
9057 }
9058
9059 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9060 {
9061 return prog->insns_cnt;
9062 }
9063
9064 int bpf_program__set_insns(struct bpf_program *prog,
9065 struct bpf_insn *new_insns, size_t new_insn_cnt)
9066 {
9067 struct bpf_insn *insns;
9068
9069 if (prog->obj->loaded)
9070 return -EBUSY;
9071
9072 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9073 /* NULL is a valid return from reallocarray if the new count is zero */
9074 if (!insns && new_insn_cnt) {
9075 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9076 return -ENOMEM;
9077 }
9078 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9079
9080 prog->insns = insns;
9081 prog->insns_cnt = new_insn_cnt;
9082 return 0;
9083 }
9084
9085 int bpf_program__fd(const struct bpf_program *prog)
9086 {
9087 if (!prog)
9088 return libbpf_err(-EINVAL);
9089
9090 if (prog->fd < 0)
9091 return libbpf_err(-ENOENT);
9092
9093 return prog->fd;
9094 }
9095
9096 __alias(bpf_program__type)
9097 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9098
9099 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9100 {
9101 return prog->type;
9102 }
9103
9104 static size_t custom_sec_def_cnt;
9105 static struct bpf_sec_def *custom_sec_defs;
9106 static struct bpf_sec_def custom_fallback_def;
9107 static bool has_custom_fallback_def;
9108 static int last_custom_sec_def_handler_id;
9109
9110 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9111 {
9112 if (prog->obj->loaded)
9113 return libbpf_err(-EBUSY);
9114
9115 /* if type is not changed, do nothing */
9116 if (prog->type == type)
9117 return 0;
9118
9119 prog->type = type;
9120
9121 /* If a program type was changed, we need to reset associated SEC()
9122 * handler, as it will be invalid now. The only exception is a generic
9123 * fallback handler, which by definition is program type-agnostic and
9124 * is a catch-all custom handler, optionally set by the application,
9125 * so should be able to handle any type of BPF program.
9126 */
9127 if (prog->sec_def != &custom_fallback_def)
9128 prog->sec_def = NULL;
9129 return 0;
9130 }
9131
9132 __alias(bpf_program__expected_attach_type)
9133 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9134
9135 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9136 {
9137 return prog->expected_attach_type;
9138 }
9139
9140 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9141 enum bpf_attach_type type)
9142 {
9143 if (prog->obj->loaded)
9144 return libbpf_err(-EBUSY);
9145
9146 prog->expected_attach_type = type;
9147 return 0;
9148 }
9149
9150 __u32 bpf_program__flags(const struct bpf_program *prog)
9151 {
9152 return prog->prog_flags;
9153 }
9154
9155 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9156 {
9157 if (prog->obj->loaded)
9158 return libbpf_err(-EBUSY);
9159
9160 prog->prog_flags = flags;
9161 return 0;
9162 }
9163
9164 __u32 bpf_program__log_level(const struct bpf_program *prog)
9165 {
9166 return prog->log_level;
9167 }
9168
9169 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9170 {
9171 if (prog->obj->loaded)
9172 return libbpf_err(-EBUSY);
9173
9174 prog->log_level = log_level;
9175 return 0;
9176 }
9177
9178 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9179 {
9180 *log_size = prog->log_size;
9181 return prog->log_buf;
9182 }
9183
9184 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9185 {
9186 if (log_size && !log_buf)
9187 return -EINVAL;
9188 if (prog->log_size > UINT_MAX)
9189 return -EINVAL;
9190 if (prog->obj->loaded)
9191 return -EBUSY;
9192
9193 prog->log_buf = log_buf;
9194 prog->log_size = log_size;
9195 return 0;
9196 }
9197
9198 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9199 .sec = (char *)sec_pfx, \
9200 .prog_type = BPF_PROG_TYPE_##ptype, \
9201 .expected_attach_type = atype, \
9202 .cookie = (long)(flags), \
9203 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9204 __VA_ARGS__ \
9205 }
9206
9207 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9208 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9209 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9210 #ifdef HAVE_LIBELF
9211 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9212 #endif //HAVE_LIBELF
9213 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9214 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9215 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9216 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9217 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9218 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9219 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9220
9221 static const struct bpf_sec_def section_defs[] = {
9222 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9223 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9224 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9225 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9226 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9227 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9228 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9229 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9230 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9231 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9232 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9233 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9234 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9235 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9236 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9237 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9238 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9239 #ifdef HAVE_LIBELF
9240 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
9241 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9242 #endif //HAVE_LIBELF
9243 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9244 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9245 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9246 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9247 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9248 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9249 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9250 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9251 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9252 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9253 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9254 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9255 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9256 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9257 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9258 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9259 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9260 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9261 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9262 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9263 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9264 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9265 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9266 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9267 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9268 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9269 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9270 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9271 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9272 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9273 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9274 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9275 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9276 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9277 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9278 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9279 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9280 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9281 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9282 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9283 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9284 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9285 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9286 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9287 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9288 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9289 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9290 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9291 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9292 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9293 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9294 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9295 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9296 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9297 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9298 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9299 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9300 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9301 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9302 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9303 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9304 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9305 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9306 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9307 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9308 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9309 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9310 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9311 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9312 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9313 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9314 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9315 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9316 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9317 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9318 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9319 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9320 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9321 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9322 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9323 };
9324
9325 int libbpf_register_prog_handler(const char *sec,
9326 enum bpf_prog_type prog_type,
9327 enum bpf_attach_type exp_attach_type,
9328 const struct libbpf_prog_handler_opts *opts)
9329 {
9330 struct bpf_sec_def *sec_def;
9331
9332 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9333 return libbpf_err(-EINVAL);
9334
9335 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9336 return libbpf_err(-E2BIG);
9337
9338 if (sec) {
9339 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9340 sizeof(*sec_def));
9341 if (!sec_def)
9342 return libbpf_err(-ENOMEM);
9343
9344 custom_sec_defs = sec_def;
9345 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9346 } else {
9347 if (has_custom_fallback_def)
9348 return libbpf_err(-EBUSY);
9349
9350 sec_def = &custom_fallback_def;
9351 }
9352
9353 sec_def->sec = sec ? strdup(sec) : NULL;
9354 if (sec && !sec_def->sec)
9355 return libbpf_err(-ENOMEM);
9356
9357 sec_def->prog_type = prog_type;
9358 sec_def->expected_attach_type = exp_attach_type;
9359 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9360
9361 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9362 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9363 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9364
9365 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9366
9367 if (sec)
9368 custom_sec_def_cnt++;
9369 else
9370 has_custom_fallback_def = true;
9371
9372 return sec_def->handler_id;
9373 }
9374
9375 int libbpf_unregister_prog_handler(int handler_id)
9376 {
9377 struct bpf_sec_def *sec_defs;
9378 int i;
9379
9380 if (handler_id <= 0)
9381 return libbpf_err(-EINVAL);
9382
9383 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9384 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9385 has_custom_fallback_def = false;
9386 return 0;
9387 }
9388
9389 for (i = 0; i < custom_sec_def_cnt; i++) {
9390 if (custom_sec_defs[i].handler_id == handler_id)
9391 break;
9392 }
9393
9394 if (i == custom_sec_def_cnt)
9395 return libbpf_err(-ENOENT);
9396
9397 free(custom_sec_defs[i].sec);
9398 for (i = i + 1; i < custom_sec_def_cnt; i++)
9399 custom_sec_defs[i - 1] = custom_sec_defs[i];
9400 custom_sec_def_cnt--;
9401
9402 /* try to shrink the array, but it's ok if we couldn't */
9403 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9404 /* if new count is zero, reallocarray can return a valid NULL result;
9405 * in this case the previous pointer will be freed, so we *have to*
9406 * reassign old pointer to the new value (even if it's NULL)
9407 */
9408 if (sec_defs || custom_sec_def_cnt == 0)
9409 custom_sec_defs = sec_defs;
9410
9411 return 0;
9412 }
9413
9414 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9415 {
9416 size_t len = strlen(sec_def->sec);
9417
9418 /* "type/" always has to have proper SEC("type/extras") form */
9419 if (sec_def->sec[len - 1] == '/') {
9420 if (str_has_pfx(sec_name, sec_def->sec))
9421 return true;
9422 return false;
9423 }
9424
9425 /* "type+" means it can be either exact SEC("type") or
9426 * well-formed SEC("type/extras") with proper '/' separator
9427 */
9428 if (sec_def->sec[len - 1] == '+') {
9429 len--;
9430 /* not even a prefix */
9431 if (strncmp(sec_name, sec_def->sec, len) != 0)
9432 return false;
9433 /* exact match or has '/' separator */
9434 if (sec_name[len] == '\0' || sec_name[len] == '/')
9435 return true;
9436 return false;
9437 }
9438
9439 return strcmp(sec_name, sec_def->sec) == 0;
9440 }
9441
9442 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9443 {
9444 const struct bpf_sec_def *sec_def;
9445 int i, n;
9446
9447 n = custom_sec_def_cnt;
9448 for (i = 0; i < n; i++) {
9449 sec_def = &custom_sec_defs[i];
9450 if (sec_def_matches(sec_def, sec_name))
9451 return sec_def;
9452 }
9453
9454 n = ARRAY_SIZE(section_defs);
9455 for (i = 0; i < n; i++) {
9456 sec_def = §ion_defs[i];
9457 if (sec_def_matches(sec_def, sec_name))
9458 return sec_def;
9459 }
9460
9461 if (has_custom_fallback_def)
9462 return &custom_fallback_def;
9463
9464 return NULL;
9465 }
9466
9467 #define MAX_TYPE_NAME_SIZE 32
9468
9469 static char *libbpf_get_type_names(bool attach_type)
9470 {
9471 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9472 char *buf;
9473
9474 buf = malloc(len);
9475 if (!buf)
9476 return NULL;
9477
9478 buf[0] = '\0';
9479 /* Forge string buf with all available names */
9480 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9481 const struct bpf_sec_def *sec_def = §ion_defs[i];
9482
9483 if (attach_type) {
9484 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9485 continue;
9486
9487 if (!(sec_def->cookie & SEC_ATTACHABLE))
9488 continue;
9489 }
9490
9491 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9492 free(buf);
9493 return NULL;
9494 }
9495 strcat(buf, " ");
9496 strcat(buf, section_defs[i].sec);
9497 }
9498
9499 return buf;
9500 }
9501
9502 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9503 enum bpf_attach_type *expected_attach_type)
9504 {
9505 const struct bpf_sec_def *sec_def;
9506 char *type_names;
9507
9508 if (!name)
9509 return libbpf_err(-EINVAL);
9510
9511 sec_def = find_sec_def(name);
9512 if (sec_def) {
9513 *prog_type = sec_def->prog_type;
9514 *expected_attach_type = sec_def->expected_attach_type;
9515 return 0;
9516 }
9517
9518 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9519 type_names = libbpf_get_type_names(false);
9520 if (type_names != NULL) {
9521 pr_debug("supported section(type) names are:%s\n", type_names);
9522 free(type_names);
9523 }
9524
9525 return libbpf_err(-ESRCH);
9526 }
9527
9528 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9529 {
9530 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9531 return NULL;
9532
9533 return attach_type_name[t];
9534 }
9535
9536 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9537 {
9538 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9539 return NULL;
9540
9541 return link_type_name[t];
9542 }
9543
9544 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9545 {
9546 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9547 return NULL;
9548
9549 return map_type_name[t];
9550 }
9551
9552 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9553 {
9554 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9555 return NULL;
9556
9557 return prog_type_name[t];
9558 }
9559
9560 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9561 int sec_idx,
9562 size_t offset)
9563 {
9564 struct bpf_map *map;
9565 size_t i;
9566
9567 for (i = 0; i < obj->nr_maps; i++) {
9568 map = &obj->maps[i];
9569 if (!bpf_map__is_struct_ops(map))
9570 continue;
9571 if (map->sec_idx == sec_idx &&
9572 map->sec_offset <= offset &&
9573 offset - map->sec_offset < map->def.value_size)
9574 return map;
9575 }
9576
9577 return NULL;
9578 }
9579
9580 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9581 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9582 Elf64_Shdr *shdr, Elf_Data *data)
9583 {
9584 const struct btf_member *member;
9585 struct bpf_struct_ops *st_ops;
9586 struct bpf_program *prog;
9587 unsigned int shdr_idx;
9588 const struct btf *btf;
9589 struct bpf_map *map;
9590 unsigned int moff, insn_idx;
9591 const char *name;
9592 __u32 member_idx;
9593 Elf64_Sym *sym;
9594 Elf64_Rel *rel;
9595 int i, nrels;
9596
9597 btf = obj->btf;
9598 nrels = shdr->sh_size / shdr->sh_entsize;
9599 for (i = 0; i < nrels; i++) {
9600 rel = elf_rel_by_idx(data, i);
9601 if (!rel) {
9602 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9603 return -LIBBPF_ERRNO__FORMAT;
9604 }
9605
9606 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9607 if (!sym) {
9608 pr_warn("struct_ops reloc: symbol %zx not found\n",
9609 (size_t)ELF64_R_SYM(rel->r_info));
9610 return -LIBBPF_ERRNO__FORMAT;
9611 }
9612
9613 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9614 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9615 if (!map) {
9616 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9617 (size_t)rel->r_offset);
9618 return -EINVAL;
9619 }
9620
9621 moff = rel->r_offset - map->sec_offset;
9622 shdr_idx = sym->st_shndx;
9623 st_ops = map->st_ops;
9624 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9625 map->name,
9626 (long long)(rel->r_info >> 32),
9627 (long long)sym->st_value,
9628 shdr_idx, (size_t)rel->r_offset,
9629 map->sec_offset, sym->st_name, name);
9630
9631 if (shdr_idx >= SHN_LORESERVE) {
9632 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9633 map->name, (size_t)rel->r_offset, shdr_idx);
9634 return -LIBBPF_ERRNO__RELOC;
9635 }
9636 if (sym->st_value % BPF_INSN_SZ) {
9637 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9638 map->name, (unsigned long long)sym->st_value);
9639 return -LIBBPF_ERRNO__FORMAT;
9640 }
9641 insn_idx = sym->st_value / BPF_INSN_SZ;
9642
9643 member = find_member_by_offset(st_ops->type, moff * 8);
9644 if (!member) {
9645 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9646 map->name, moff);
9647 return -EINVAL;
9648 }
9649 member_idx = member - btf_members(st_ops->type);
9650 name = btf__name_by_offset(btf, member->name_off);
9651
9652 if (!resolve_func_ptr(btf, member->type, NULL)) {
9653 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9654 map->name, name);
9655 return -EINVAL;
9656 }
9657
9658 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9659 if (!prog) {
9660 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9661 map->name, shdr_idx, name);
9662 return -EINVAL;
9663 }
9664
9665 /* prevent the use of BPF prog with invalid type */
9666 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9667 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9668 map->name, prog->name);
9669 return -EINVAL;
9670 }
9671
9672 /* if we haven't yet processed this BPF program, record proper
9673 * attach_btf_id and member_idx
9674 */
9675 if (!prog->attach_btf_id) {
9676 prog->attach_btf_id = st_ops->type_id;
9677 prog->expected_attach_type = member_idx;
9678 }
9679
9680 /* struct_ops BPF prog can be re-used between multiple
9681 * .struct_ops & .struct_ops.link as long as it's the
9682 * same struct_ops struct definition and the same
9683 * function pointer field
9684 */
9685 if (prog->attach_btf_id != st_ops->type_id ||
9686 prog->expected_attach_type != member_idx) {
9687 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9688 map->name, prog->name, prog->sec_name, prog->type,
9689 prog->attach_btf_id, prog->expected_attach_type, name);
9690 return -EINVAL;
9691 }
9692
9693 st_ops->progs[member_idx] = prog;
9694 }
9695
9696 return 0;
9697 }
9698
9699 #define BTF_TRACE_PREFIX "btf_trace_"
9700 #define BTF_LSM_PREFIX "bpf_lsm_"
9701 #define BTF_ITER_PREFIX "bpf_iter_"
9702 #define BTF_MAX_NAME_SIZE 128
9703
9704 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9705 const char **prefix, int *kind)
9706 {
9707 switch (attach_type) {
9708 case BPF_TRACE_RAW_TP:
9709 *prefix = BTF_TRACE_PREFIX;
9710 *kind = BTF_KIND_TYPEDEF;
9711 break;
9712 case BPF_LSM_MAC:
9713 case BPF_LSM_CGROUP:
9714 *prefix = BTF_LSM_PREFIX;
9715 *kind = BTF_KIND_FUNC;
9716 break;
9717 case BPF_TRACE_ITER:
9718 *prefix = BTF_ITER_PREFIX;
9719 *kind = BTF_KIND_FUNC;
9720 break;
9721 default:
9722 *prefix = "";
9723 *kind = BTF_KIND_FUNC;
9724 }
9725 }
9726
9727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9728 const char *name, __u32 kind)
9729 {
9730 char btf_type_name[BTF_MAX_NAME_SIZE];
9731 int ret;
9732
9733 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9734 "%s%s", prefix, name);
9735 /* snprintf returns the number of characters written excluding the
9736 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9737 * indicates truncation.
9738 */
9739 if (ret < 0 || ret >= sizeof(btf_type_name))
9740 return -ENAMETOOLONG;
9741 return btf__find_by_name_kind(btf, btf_type_name, kind);
9742 }
9743
9744 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9745 enum bpf_attach_type attach_type)
9746 {
9747 const char *prefix;
9748 int kind;
9749
9750 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9751 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9752 }
9753
9754 int libbpf_find_vmlinux_btf_id(const char *name,
9755 enum bpf_attach_type attach_type)
9756 {
9757 struct btf *btf;
9758 int err;
9759
9760 btf = btf__load_vmlinux_btf();
9761 err = libbpf_get_error(btf);
9762 if (err) {
9763 pr_warn("vmlinux BTF is not found\n");
9764 return libbpf_err(err);
9765 }
9766
9767 err = find_attach_btf_id(btf, name, attach_type);
9768 if (err <= 0)
9769 pr_warn("%s is not found in vmlinux BTF\n", name);
9770
9771 btf__free(btf);
9772 return libbpf_err(err);
9773 }
9774
9775 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9776 {
9777 struct bpf_prog_info info;
9778 __u32 info_len = sizeof(info);
9779 struct btf *btf;
9780 int err;
9781
9782 memset(&info, 0, info_len);
9783 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9784 if (err) {
9785 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9786 attach_prog_fd, err);
9787 return err;
9788 }
9789
9790 err = -EINVAL;
9791 if (!info.btf_id) {
9792 pr_warn("The target program doesn't have BTF\n");
9793 goto out;
9794 }
9795 btf = btf__load_from_kernel_by_id(info.btf_id);
9796 err = libbpf_get_error(btf);
9797 if (err) {
9798 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9799 goto out;
9800 }
9801 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9802 btf__free(btf);
9803 if (err <= 0) {
9804 pr_warn("%s is not found in prog's BTF\n", name);
9805 goto out;
9806 }
9807 out:
9808 return err;
9809 }
9810
9811 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9812 enum bpf_attach_type attach_type,
9813 int *btf_obj_fd, int *btf_type_id)
9814 {
9815 int ret, i;
9816
9817 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9818 if (ret > 0) {
9819 *btf_obj_fd = 0; /* vmlinux BTF */
9820 *btf_type_id = ret;
9821 return 0;
9822 }
9823 if (ret != -ENOENT)
9824 return ret;
9825
9826 ret = load_module_btfs(obj);
9827 if (ret)
9828 return ret;
9829
9830 for (i = 0; i < obj->btf_module_cnt; i++) {
9831 const struct module_btf *mod = &obj->btf_modules[i];
9832
9833 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9834 if (ret > 0) {
9835 *btf_obj_fd = mod->fd;
9836 *btf_type_id = ret;
9837 return 0;
9838 }
9839 if (ret == -ENOENT)
9840 continue;
9841
9842 return ret;
9843 }
9844
9845 return -ESRCH;
9846 }
9847
9848 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9849 int *btf_obj_fd, int *btf_type_id)
9850 {
9851 enum bpf_attach_type attach_type = prog->expected_attach_type;
9852 __u32 attach_prog_fd = prog->attach_prog_fd;
9853 int err = 0;
9854
9855 /* BPF program's BTF ID */
9856 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9857 if (!attach_prog_fd) {
9858 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9859 return -EINVAL;
9860 }
9861 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9862 if (err < 0) {
9863 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9864 prog->name, attach_prog_fd, attach_name, err);
9865 return err;
9866 }
9867 *btf_obj_fd = 0;
9868 *btf_type_id = err;
9869 return 0;
9870 }
9871
9872 /* kernel/module BTF ID */
9873 if (prog->obj->gen_loader) {
9874 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9875 *btf_obj_fd = 0;
9876 *btf_type_id = 1;
9877 } else {
9878 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9879 }
9880 if (err) {
9881 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9882 prog->name, attach_name, err);
9883 return err;
9884 }
9885 return 0;
9886 }
9887
9888 int libbpf_attach_type_by_name(const char *name,
9889 enum bpf_attach_type *attach_type)
9890 {
9891 char *type_names;
9892 const struct bpf_sec_def *sec_def;
9893
9894 if (!name)
9895 return libbpf_err(-EINVAL);
9896
9897 sec_def = find_sec_def(name);
9898 if (!sec_def) {
9899 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9900 type_names = libbpf_get_type_names(true);
9901 if (type_names != NULL) {
9902 pr_debug("attachable section(type) names are:%s\n", type_names);
9903 free(type_names);
9904 }
9905
9906 return libbpf_err(-EINVAL);
9907 }
9908
9909 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9910 return libbpf_err(-EINVAL);
9911 if (!(sec_def->cookie & SEC_ATTACHABLE))
9912 return libbpf_err(-EINVAL);
9913
9914 *attach_type = sec_def->expected_attach_type;
9915 return 0;
9916 }
9917
9918 int bpf_map__fd(const struct bpf_map *map)
9919 {
9920 return map ? map->fd : libbpf_err(-EINVAL);
9921 }
9922
9923 static bool map_uses_real_name(const struct bpf_map *map)
9924 {
9925 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9926 * their user-visible name differs from kernel-visible name. Users see
9927 * such map's corresponding ELF section name as a map name.
9928 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9929 * maps to know which name has to be returned to the user.
9930 */
9931 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9932 return true;
9933 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9934 return true;
9935 return false;
9936 }
9937
9938 const char *bpf_map__name(const struct bpf_map *map)
9939 {
9940 if (!map)
9941 return NULL;
9942
9943 if (map_uses_real_name(map))
9944 return map->real_name;
9945
9946 return map->name;
9947 }
9948
9949 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9950 {
9951 return map->def.type;
9952 }
9953
9954 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9955 {
9956 if (map->fd >= 0)
9957 return libbpf_err(-EBUSY);
9958 map->def.type = type;
9959 return 0;
9960 }
9961
9962 __u32 bpf_map__map_flags(const struct bpf_map *map)
9963 {
9964 return map->def.map_flags;
9965 }
9966
9967 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9968 {
9969 if (map->fd >= 0)
9970 return libbpf_err(-EBUSY);
9971 map->def.map_flags = flags;
9972 return 0;
9973 }
9974
9975 __u64 bpf_map__map_extra(const struct bpf_map *map)
9976 {
9977 return map->map_extra;
9978 }
9979
9980 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9981 {
9982 if (map->fd >= 0)
9983 return libbpf_err(-EBUSY);
9984 map->map_extra = map_extra;
9985 return 0;
9986 }
9987
9988 __u32 bpf_map__numa_node(const struct bpf_map *map)
9989 {
9990 return map->numa_node;
9991 }
9992
9993 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9994 {
9995 if (map->fd >= 0)
9996 return libbpf_err(-EBUSY);
9997 map->numa_node = numa_node;
9998 return 0;
9999 }
10000
10001 __u32 bpf_map__key_size(const struct bpf_map *map)
10002 {
10003 return map->def.key_size;
10004 }
10005
10006 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10007 {
10008 if (map->fd >= 0)
10009 return libbpf_err(-EBUSY);
10010 map->def.key_size = size;
10011 return 0;
10012 }
10013
10014 __u32 bpf_map__value_size(const struct bpf_map *map)
10015 {
10016 return map->def.value_size;
10017 }
10018
10019 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10020 {
10021 struct btf *btf;
10022 struct btf_type *datasec_type, *var_type;
10023 struct btf_var_secinfo *var;
10024 const struct btf_type *array_type;
10025 const struct btf_array *array;
10026 int vlen, element_sz, new_array_id;
10027 __u32 nr_elements;
10028
10029 /* check btf existence */
10030 btf = bpf_object__btf(map->obj);
10031 if (!btf)
10032 return -ENOENT;
10033
10034 /* verify map is datasec */
10035 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10036 if (!btf_is_datasec(datasec_type)) {
10037 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10038 bpf_map__name(map));
10039 return -EINVAL;
10040 }
10041
10042 /* verify datasec has at least one var */
10043 vlen = btf_vlen(datasec_type);
10044 if (vlen == 0) {
10045 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10046 bpf_map__name(map));
10047 return -EINVAL;
10048 }
10049
10050 /* verify last var in the datasec is an array */
10051 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10052 var_type = btf_type_by_id(btf, var->type);
10053 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10054 if (!btf_is_array(array_type)) {
10055 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10056 bpf_map__name(map));
10057 return -EINVAL;
10058 }
10059
10060 /* verify request size aligns with array */
10061 array = btf_array(array_type);
10062 element_sz = btf__resolve_size(btf, array->type);
10063 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10064 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10065 bpf_map__name(map), element_sz, size);
10066 return -EINVAL;
10067 }
10068
10069 /* create a new array based on the existing array, but with new length */
10070 nr_elements = (size - var->offset) / element_sz;
10071 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10072 if (new_array_id < 0)
10073 return new_array_id;
10074
10075 /* adding a new btf type invalidates existing pointers to btf objects,
10076 * so refresh pointers before proceeding
10077 */
10078 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10079 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10080 var_type = btf_type_by_id(btf, var->type);
10081
10082 /* finally update btf info */
10083 datasec_type->size = size;
10084 var->size = size - var->offset;
10085 var_type->type = new_array_id;
10086
10087 return 0;
10088 }
10089
10090 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10091 {
10092 if (map->fd >= 0)
10093 return libbpf_err(-EBUSY);
10094
10095 if (map->mmaped) {
10096 int err;
10097 size_t mmap_old_sz, mmap_new_sz;
10098
10099 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
10100 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
10101 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10102 if (err) {
10103 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10104 bpf_map__name(map), err);
10105 return err;
10106 }
10107 err = map_btf_datasec_resize(map, size);
10108 if (err && err != -ENOENT) {
10109 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10110 bpf_map__name(map), err);
10111 map->btf_value_type_id = 0;
10112 map->btf_key_type_id = 0;
10113 }
10114 }
10115
10116 map->def.value_size = size;
10117 return 0;
10118 }
10119
10120 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10121 {
10122 return map ? map->btf_key_type_id : 0;
10123 }
10124
10125 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10126 {
10127 return map ? map->btf_value_type_id : 0;
10128 }
10129
10130 int bpf_map__set_initial_value(struct bpf_map *map,
10131 const void *data, size_t size)
10132 {
10133 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
10134 size != map->def.value_size || map->fd >= 0)
10135 return libbpf_err(-EINVAL);
10136
10137 memcpy(map->mmaped, data, size);
10138 return 0;
10139 }
10140
10141 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
10142 {
10143 if (!map->mmaped)
10144 return NULL;
10145 *psize = map->def.value_size;
10146 return map->mmaped;
10147 }
10148
10149 bool bpf_map__is_internal(const struct bpf_map *map)
10150 {
10151 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10152 }
10153
10154 __u32 bpf_map__ifindex(const struct bpf_map *map)
10155 {
10156 return map->map_ifindex;
10157 }
10158
10159 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10160 {
10161 if (map->fd >= 0)
10162 return libbpf_err(-EBUSY);
10163 map->map_ifindex = ifindex;
10164 return 0;
10165 }
10166
10167 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10168 {
10169 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10170 pr_warn("error: unsupported map type\n");
10171 return libbpf_err(-EINVAL);
10172 }
10173 if (map->inner_map_fd != -1) {
10174 pr_warn("error: inner_map_fd already specified\n");
10175 return libbpf_err(-EINVAL);
10176 }
10177 if (map->inner_map) {
10178 bpf_map__destroy(map->inner_map);
10179 zfree(&map->inner_map);
10180 }
10181 map->inner_map_fd = fd;
10182 return 0;
10183 }
10184
10185 static struct bpf_map *
10186 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10187 {
10188 ssize_t idx;
10189 struct bpf_map *s, *e;
10190
10191 if (!obj || !obj->maps)
10192 return errno = EINVAL, NULL;
10193
10194 s = obj->maps;
10195 e = obj->maps + obj->nr_maps;
10196
10197 if ((m < s) || (m >= e)) {
10198 pr_warn("error in %s: map handler doesn't belong to object\n",
10199 __func__);
10200 return errno = EINVAL, NULL;
10201 }
10202
10203 idx = (m - obj->maps) + i;
10204 if (idx >= obj->nr_maps || idx < 0)
10205 return NULL;
10206 return &obj->maps[idx];
10207 }
10208
10209 struct bpf_map *
10210 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10211 {
10212 if (prev == NULL)
10213 return obj->maps;
10214
10215 return __bpf_map__iter(prev, obj, 1);
10216 }
10217
10218 struct bpf_map *
10219 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10220 {
10221 if (next == NULL) {
10222 if (!obj->nr_maps)
10223 return NULL;
10224 return obj->maps + obj->nr_maps - 1;
10225 }
10226
10227 return __bpf_map__iter(next, obj, -1);
10228 }
10229
10230 struct bpf_map *
10231 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10232 {
10233 struct bpf_map *pos;
10234
10235 bpf_object__for_each_map(pos, obj) {
10236 /* if it's a special internal map name (which always starts
10237 * with dot) then check if that special name matches the
10238 * real map name (ELF section name)
10239 */
10240 if (name[0] == '.') {
10241 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10242 return pos;
10243 continue;
10244 }
10245 /* otherwise map name has to be an exact match */
10246 if (map_uses_real_name(pos)) {
10247 if (strcmp(pos->real_name, name) == 0)
10248 return pos;
10249 continue;
10250 }
10251 if (strcmp(pos->name, name) == 0)
10252 return pos;
10253 }
10254 return errno = ENOENT, NULL;
10255 }
10256
10257 int
10258 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10259 {
10260 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10261 }
10262
10263 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10264 size_t value_sz, bool check_value_sz)
10265 {
10266 if (map->fd <= 0)
10267 return -ENOENT;
10268
10269 if (map->def.key_size != key_sz) {
10270 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10271 map->name, key_sz, map->def.key_size);
10272 return -EINVAL;
10273 }
10274
10275 if (!check_value_sz)
10276 return 0;
10277
10278 switch (map->def.type) {
10279 case BPF_MAP_TYPE_PERCPU_ARRAY:
10280 case BPF_MAP_TYPE_PERCPU_HASH:
10281 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10282 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10283 int num_cpu = libbpf_num_possible_cpus();
10284 size_t elem_sz = roundup(map->def.value_size, 8);
10285
10286 if (value_sz != num_cpu * elem_sz) {
10287 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10288 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10289 return -EINVAL;
10290 }
10291 break;
10292 }
10293 default:
10294 if (map->def.value_size != value_sz) {
10295 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10296 map->name, value_sz, map->def.value_size);
10297 return -EINVAL;
10298 }
10299 break;
10300 }
10301 return 0;
10302 }
10303
10304 int bpf_map__lookup_elem(const struct bpf_map *map,
10305 const void *key, size_t key_sz,
10306 void *value, size_t value_sz, __u64 flags)
10307 {
10308 int err;
10309
10310 err = validate_map_op(map, key_sz, value_sz, true);
10311 if (err)
10312 return libbpf_err(err);
10313
10314 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10315 }
10316
10317 int bpf_map__update_elem(const struct bpf_map *map,
10318 const void *key, size_t key_sz,
10319 const void *value, size_t value_sz, __u64 flags)
10320 {
10321 int err;
10322
10323 err = validate_map_op(map, key_sz, value_sz, true);
10324 if (err)
10325 return libbpf_err(err);
10326
10327 return bpf_map_update_elem(map->fd, key, value, flags);
10328 }
10329
10330 int bpf_map__delete_elem(const struct bpf_map *map,
10331 const void *key, size_t key_sz, __u64 flags)
10332 {
10333 int err;
10334
10335 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10336 if (err)
10337 return libbpf_err(err);
10338
10339 return bpf_map_delete_elem_flags(map->fd, key, flags);
10340 }
10341
10342 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10343 const void *key, size_t key_sz,
10344 void *value, size_t value_sz, __u64 flags)
10345 {
10346 int err;
10347
10348 err = validate_map_op(map, key_sz, value_sz, true);
10349 if (err)
10350 return libbpf_err(err);
10351
10352 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10353 }
10354
10355 int bpf_map__get_next_key(const struct bpf_map *map,
10356 const void *cur_key, void *next_key, size_t key_sz)
10357 {
10358 int err;
10359
10360 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10361 if (err)
10362 return libbpf_err(err);
10363
10364 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10365 }
10366
10367 long libbpf_get_error(const void *ptr)
10368 {
10369 if (!IS_ERR_OR_NULL(ptr))
10370 return 0;
10371
10372 if (IS_ERR(ptr))
10373 errno = -PTR_ERR(ptr);
10374
10375 /* If ptr == NULL, then errno should be already set by the failing
10376 * API, because libbpf never returns NULL on success and it now always
10377 * sets errno on error. So no extra errno handling for ptr == NULL
10378 * case.
10379 */
10380 return -errno;
10381 }
10382
10383 /* Replace link's underlying BPF program with the new one */
10384 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10385 {
10386 int ret;
10387
10388 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10389 return libbpf_err_errno(ret);
10390 }
10391
10392 /* Release "ownership" of underlying BPF resource (typically, BPF program
10393 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10394 * link, when destructed through bpf_link__destroy() call won't attempt to
10395 * detach/unregisted that BPF resource. This is useful in situations where,
10396 * say, attached BPF program has to outlive userspace program that attached it
10397 * in the system. Depending on type of BPF program, though, there might be
10398 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10399 * exit of userspace program doesn't trigger automatic detachment and clean up
10400 * inside the kernel.
10401 */
10402 void bpf_link__disconnect(struct bpf_link *link)
10403 {
10404 link->disconnected = true;
10405 }
10406
10407 int bpf_link__destroy(struct bpf_link *link)
10408 {
10409 int err = 0;
10410
10411 if (IS_ERR_OR_NULL(link))
10412 return 0;
10413
10414 if (!link->disconnected && link->detach)
10415 err = link->detach(link);
10416 if (link->pin_path)
10417 free(link->pin_path);
10418 if (link->dealloc)
10419 link->dealloc(link);
10420 else
10421 free(link);
10422
10423 return libbpf_err(err);
10424 }
10425
10426 int bpf_link__fd(const struct bpf_link *link)
10427 {
10428 return link->fd;
10429 }
10430
10431 const char *bpf_link__pin_path(const struct bpf_link *link)
10432 {
10433 return link->pin_path;
10434 }
10435
10436 static int bpf_link__detach_fd(struct bpf_link *link)
10437 {
10438 return libbpf_err_errno(close(link->fd));
10439 }
10440
10441 struct bpf_link *bpf_link__open(const char *path)
10442 {
10443 struct bpf_link *link;
10444 int fd;
10445
10446 fd = bpf_obj_get(path);
10447 if (fd < 0) {
10448 fd = -errno;
10449 pr_warn("failed to open link at %s: %d\n", path, fd);
10450 return libbpf_err_ptr(fd);
10451 }
10452
10453 link = calloc(1, sizeof(*link));
10454 if (!link) {
10455 close(fd);
10456 return libbpf_err_ptr(-ENOMEM);
10457 }
10458 link->detach = &bpf_link__detach_fd;
10459 link->fd = fd;
10460
10461 link->pin_path = strdup(path);
10462 if (!link->pin_path) {
10463 bpf_link__destroy(link);
10464 return libbpf_err_ptr(-ENOMEM);
10465 }
10466
10467 return link;
10468 }
10469
10470 int bpf_link__detach(struct bpf_link *link)
10471 {
10472 return bpf_link_detach(link->fd) ? -errno : 0;
10473 }
10474
10475 int bpf_link__pin(struct bpf_link *link, const char *path)
10476 {
10477 int err;
10478
10479 if (link->pin_path)
10480 return libbpf_err(-EBUSY);
10481 err = make_parent_dir(path);
10482 if (err)
10483 return libbpf_err(err);
10484 err = check_path(path);
10485 if (err)
10486 return libbpf_err(err);
10487
10488 link->pin_path = strdup(path);
10489 if (!link->pin_path)
10490 return libbpf_err(-ENOMEM);
10491
10492 if (bpf_obj_pin(link->fd, link->pin_path)) {
10493 err = -errno;
10494 zfree(&link->pin_path);
10495 return libbpf_err(err);
10496 }
10497
10498 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10499 return 0;
10500 }
10501
10502 int bpf_link__unpin(struct bpf_link *link)
10503 {
10504 int err;
10505
10506 if (!link->pin_path)
10507 return libbpf_err(-EINVAL);
10508
10509 err = unlink(link->pin_path);
10510 if (err != 0)
10511 return -errno;
10512
10513 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10514 zfree(&link->pin_path);
10515 return 0;
10516 }
10517
10518 struct bpf_link_perf {
10519 struct bpf_link link;
10520 int perf_event_fd;
10521 /* legacy kprobe support: keep track of probe identifier and type */
10522 char *legacy_probe_name;
10523 bool legacy_is_kprobe;
10524 bool legacy_is_retprobe;
10525 };
10526
10527 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10528 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10529
10530 static int bpf_link_perf_detach(struct bpf_link *link)
10531 {
10532 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10533 int err = 0;
10534
10535 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10536 err = -errno;
10537
10538 if (perf_link->perf_event_fd != link->fd)
10539 close(perf_link->perf_event_fd);
10540 close(link->fd);
10541
10542 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10543 if (perf_link->legacy_probe_name) {
10544 if (perf_link->legacy_is_kprobe) {
10545 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10546 perf_link->legacy_is_retprobe);
10547 } else {
10548 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10549 perf_link->legacy_is_retprobe);
10550 }
10551 }
10552
10553 return err;
10554 }
10555
10556 static void bpf_link_perf_dealloc(struct bpf_link *link)
10557 {
10558 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10559
10560 free(perf_link->legacy_probe_name);
10561 free(perf_link);
10562 }
10563
10564 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10565 const struct bpf_perf_event_opts *opts)
10566 {
10567 char errmsg[STRERR_BUFSIZE];
10568 struct bpf_link_perf *link;
10569 int prog_fd, link_fd = -1, err;
10570 bool force_ioctl_attach;
10571
10572 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10573 return libbpf_err_ptr(-EINVAL);
10574
10575 if (pfd < 0) {
10576 pr_warn("prog '%s': invalid perf event FD %d\n",
10577 prog->name, pfd);
10578 return libbpf_err_ptr(-EINVAL);
10579 }
10580 prog_fd = bpf_program__fd(prog);
10581 if (prog_fd < 0) {
10582 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10583 prog->name);
10584 return libbpf_err_ptr(-EINVAL);
10585 }
10586
10587 link = calloc(1, sizeof(*link));
10588 if (!link)
10589 return libbpf_err_ptr(-ENOMEM);
10590 link->link.detach = &bpf_link_perf_detach;
10591 link->link.dealloc = &bpf_link_perf_dealloc;
10592 link->perf_event_fd = pfd;
10593
10594 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10595 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10596 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10597 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10598
10599 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10600 if (link_fd < 0) {
10601 err = -errno;
10602 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10603 prog->name, pfd,
10604 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10605 goto err_out;
10606 }
10607 link->link.fd = link_fd;
10608 } else {
10609 if (OPTS_GET(opts, bpf_cookie, 0)) {
10610 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10611 err = -EOPNOTSUPP;
10612 goto err_out;
10613 }
10614
10615 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10616 err = -errno;
10617 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10618 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10619 if (err == -EPROTO)
10620 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10621 prog->name, pfd);
10622 goto err_out;
10623 }
10624 link->link.fd = pfd;
10625 }
10626 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10627 err = -errno;
10628 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10629 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10630 goto err_out;
10631 }
10632
10633 return &link->link;
10634 err_out:
10635 if (link_fd >= 0)
10636 close(link_fd);
10637 free(link);
10638 return libbpf_err_ptr(err);
10639 }
10640
10641 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10642 {
10643 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10644 }
10645
10646 /*
10647 * this function is expected to parse integer in the range of [0, 2^31-1] from
10648 * given file using scanf format string fmt. If actual parsed value is
10649 * negative, the result might be indistinguishable from error
10650 */
10651 static int parse_uint_from_file(const char *file, const char *fmt)
10652 {
10653 char buf[STRERR_BUFSIZE];
10654 int err, ret;
10655 FILE *f;
10656
10657 f = fopen(file, "re");
10658 if (!f) {
10659 err = -errno;
10660 pr_debug("failed to open '%s': %s\n", file,
10661 libbpf_strerror_r(err, buf, sizeof(buf)));
10662 return err;
10663 }
10664 err = fscanf(f, fmt, &ret);
10665 if (err != 1) {
10666 err = err == EOF ? -EIO : -errno;
10667 pr_debug("failed to parse '%s': %s\n", file,
10668 libbpf_strerror_r(err, buf, sizeof(buf)));
10669 fclose(f);
10670 return err;
10671 }
10672 fclose(f);
10673 return ret;
10674 }
10675
10676 static int determine_kprobe_perf_type(void)
10677 {
10678 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10679
10680 return parse_uint_from_file(file, "%d\n");
10681 }
10682
10683 static int determine_uprobe_perf_type(void)
10684 {
10685 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10686
10687 return parse_uint_from_file(file, "%d\n");
10688 }
10689
10690 static int determine_kprobe_retprobe_bit(void)
10691 {
10692 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10693
10694 return parse_uint_from_file(file, "config:%d\n");
10695 }
10696
10697 static int determine_uprobe_retprobe_bit(void)
10698 {
10699 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10700
10701 return parse_uint_from_file(file, "config:%d\n");
10702 }
10703
10704 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10705 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10706
10707 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10708 uint64_t offset, int pid, size_t ref_ctr_off)
10709 {
10710 const size_t attr_sz = sizeof(struct perf_event_attr);
10711 struct perf_event_attr attr;
10712 char errmsg[STRERR_BUFSIZE];
10713 int type, pfd;
10714
10715 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10716 return -EINVAL;
10717
10718 memset(&attr, 0, attr_sz);
10719
10720 type = uprobe ? determine_uprobe_perf_type()
10721 : determine_kprobe_perf_type();
10722 if (type < 0) {
10723 pr_warn("failed to determine %s perf type: %s\n",
10724 uprobe ? "uprobe" : "kprobe",
10725 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10726 return type;
10727 }
10728 if (retprobe) {
10729 int bit = uprobe ? determine_uprobe_retprobe_bit()
10730 : determine_kprobe_retprobe_bit();
10731
10732 if (bit < 0) {
10733 pr_warn("failed to determine %s retprobe bit: %s\n",
10734 uprobe ? "uprobe" : "kprobe",
10735 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10736 return bit;
10737 }
10738 attr.config |= 1 << bit;
10739 }
10740 attr.size = attr_sz;
10741 attr.type = type;
10742 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10743 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10744 attr.config2 = offset; /* kprobe_addr or probe_offset */
10745
10746 /* pid filter is meaningful only for uprobes */
10747 pfd = syscall(__NR_perf_event_open, &attr,
10748 pid < 0 ? -1 : pid /* pid */,
10749 pid == -1 ? 0 : -1 /* cpu */,
10750 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10751 return pfd >= 0 ? pfd : -errno;
10752 }
10753
10754 static int append_to_file(const char *file, const char *fmt, ...)
10755 {
10756 int fd, n, err = 0;
10757 va_list ap;
10758 char buf[1024];
10759
10760 va_start(ap, fmt);
10761 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10762 va_end(ap);
10763
10764 if (n < 0 || n >= sizeof(buf))
10765 return -EINVAL;
10766
10767 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10768 if (fd < 0)
10769 return -errno;
10770
10771 if (write(fd, buf, n) < 0)
10772 err = -errno;
10773
10774 close(fd);
10775 return err;
10776 }
10777
10778 #define DEBUGFS "/sys/kernel/debug/tracing"
10779 #define TRACEFS "/sys/kernel/tracing"
10780
10781 static bool use_debugfs(void)
10782 {
10783 static int has_debugfs = -1;
10784
10785 if (has_debugfs < 0)
10786 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10787
10788 return has_debugfs == 1;
10789 }
10790
10791 static const char *tracefs_path(void)
10792 {
10793 return use_debugfs() ? DEBUGFS : TRACEFS;
10794 }
10795
10796 static const char *tracefs_kprobe_events(void)
10797 {
10798 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10799 }
10800
10801 static const char *tracefs_uprobe_events(void)
10802 {
10803 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10804 }
10805
10806 static const char *tracefs_available_filter_functions(void)
10807 {
10808 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10809 : TRACEFS"/available_filter_functions";
10810 }
10811
10812 static const char *tracefs_available_filter_functions_addrs(void)
10813 {
10814 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10815 : TRACEFS"/available_filter_functions_addrs";
10816 }
10817
10818 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10819 const char *kfunc_name, size_t offset)
10820 {
10821 static int index = 0;
10822 int i;
10823
10824 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10825 __sync_fetch_and_add(&index, 1));
10826
10827 /* sanitize binary_path in the probe name */
10828 for (i = 0; buf[i]; i++) {
10829 if (!isalnum(buf[i]))
10830 buf[i] = '_';
10831 }
10832 }
10833
10834 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10835 const char *kfunc_name, size_t offset)
10836 {
10837 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10838 retprobe ? 'r' : 'p',
10839 retprobe ? "kretprobes" : "kprobes",
10840 probe_name, kfunc_name, offset);
10841 }
10842
10843 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10844 {
10845 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10846 retprobe ? "kretprobes" : "kprobes", probe_name);
10847 }
10848
10849 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10850 {
10851 char file[256];
10852
10853 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10854 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10855
10856 return parse_uint_from_file(file, "%d\n");
10857 }
10858
10859 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10860 const char *kfunc_name, size_t offset, int pid)
10861 {
10862 const size_t attr_sz = sizeof(struct perf_event_attr);
10863 struct perf_event_attr attr;
10864 char errmsg[STRERR_BUFSIZE];
10865 int type, pfd, err;
10866
10867 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10868 if (err < 0) {
10869 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10870 kfunc_name, offset,
10871 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10872 return err;
10873 }
10874 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10875 if (type < 0) {
10876 err = type;
10877 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10878 kfunc_name, offset,
10879 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10880 goto err_clean_legacy;
10881 }
10882
10883 memset(&attr, 0, attr_sz);
10884 attr.size = attr_sz;
10885 attr.config = type;
10886 attr.type = PERF_TYPE_TRACEPOINT;
10887
10888 pfd = syscall(__NR_perf_event_open, &attr,
10889 pid < 0 ? -1 : pid, /* pid */
10890 pid == -1 ? 0 : -1, /* cpu */
10891 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10892 if (pfd < 0) {
10893 err = -errno;
10894 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10895 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10896 goto err_clean_legacy;
10897 }
10898 return pfd;
10899
10900 err_clean_legacy:
10901 /* Clear the newly added legacy kprobe_event */
10902 remove_kprobe_event_legacy(probe_name, retprobe);
10903 return err;
10904 }
10905
10906 static const char *arch_specific_syscall_pfx(void)
10907 {
10908 #if defined(__x86_64__)
10909 return "x64";
10910 #elif defined(__i386__)
10911 return "ia32";
10912 #elif defined(__s390x__)
10913 return "s390x";
10914 #elif defined(__s390__)
10915 return "s390";
10916 #elif defined(__arm__)
10917 return "arm";
10918 #elif defined(__aarch64__)
10919 return "arm64";
10920 #elif defined(__mips__)
10921 return "mips";
10922 #elif defined(__riscv)
10923 return "riscv";
10924 #elif defined(__powerpc__)
10925 return "powerpc";
10926 #elif defined(__powerpc64__)
10927 return "powerpc64";
10928 #else
10929 return NULL;
10930 #endif
10931 }
10932
10933 static int probe_kern_syscall_wrapper(void)
10934 {
10935 char syscall_name[64];
10936 const char *ksys_pfx;
10937
10938 ksys_pfx = arch_specific_syscall_pfx();
10939 if (!ksys_pfx)
10940 return 0;
10941
10942 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10943
10944 if (determine_kprobe_perf_type() >= 0) {
10945 int pfd;
10946
10947 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10948 if (pfd >= 0)
10949 close(pfd);
10950
10951 return pfd >= 0 ? 1 : 0;
10952 } else { /* legacy mode */
10953 char probe_name[128];
10954
10955 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10956 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10957 return 0;
10958
10959 (void)remove_kprobe_event_legacy(probe_name, false);
10960 return 1;
10961 }
10962 }
10963
10964 struct bpf_link *
10965 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10966 const char *func_name,
10967 const struct bpf_kprobe_opts *opts)
10968 {
10969 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10970 enum probe_attach_mode attach_mode;
10971 char errmsg[STRERR_BUFSIZE];
10972 char *legacy_probe = NULL;
10973 struct bpf_link *link;
10974 size_t offset;
10975 bool retprobe, legacy;
10976 int pfd, err;
10977
10978 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10979 return libbpf_err_ptr(-EINVAL);
10980
10981 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10982 retprobe = OPTS_GET(opts, retprobe, false);
10983 offset = OPTS_GET(opts, offset, 0);
10984 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10985
10986 legacy = determine_kprobe_perf_type() < 0;
10987 switch (attach_mode) {
10988 case PROBE_ATTACH_MODE_LEGACY:
10989 legacy = true;
10990 pe_opts.force_ioctl_attach = true;
10991 break;
10992 case PROBE_ATTACH_MODE_PERF:
10993 if (legacy)
10994 return libbpf_err_ptr(-ENOTSUP);
10995 pe_opts.force_ioctl_attach = true;
10996 break;
10997 case PROBE_ATTACH_MODE_LINK:
10998 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10999 return libbpf_err_ptr(-ENOTSUP);
11000 break;
11001 case PROBE_ATTACH_MODE_DEFAULT:
11002 break;
11003 default:
11004 return libbpf_err_ptr(-EINVAL);
11005 }
11006
11007 if (!legacy) {
11008 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11009 func_name, offset,
11010 -1 /* pid */, 0 /* ref_ctr_off */);
11011 } else {
11012 char probe_name[256];
11013
11014 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11015 func_name, offset);
11016
11017 legacy_probe = strdup(probe_name);
11018 if (!legacy_probe)
11019 return libbpf_err_ptr(-ENOMEM);
11020
11021 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11022 offset, -1 /* pid */);
11023 }
11024 if (pfd < 0) {
11025 err = -errno;
11026 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11027 prog->name, retprobe ? "kretprobe" : "kprobe",
11028 func_name, offset,
11029 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11030 goto err_out;
11031 }
11032 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11033 err = libbpf_get_error(link);
11034 if (err) {
11035 close(pfd);
11036 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11037 prog->name, retprobe ? "kretprobe" : "kprobe",
11038 func_name, offset,
11039 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11040 goto err_clean_legacy;
11041 }
11042 if (legacy) {
11043 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11044
11045 perf_link->legacy_probe_name = legacy_probe;
11046 perf_link->legacy_is_kprobe = true;
11047 perf_link->legacy_is_retprobe = retprobe;
11048 }
11049
11050 return link;
11051
11052 err_clean_legacy:
11053 if (legacy)
11054 remove_kprobe_event_legacy(legacy_probe, retprobe);
11055 err_out:
11056 free(legacy_probe);
11057 return libbpf_err_ptr(err);
11058 }
11059
11060 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11061 bool retprobe,
11062 const char *func_name)
11063 {
11064 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11065 .retprobe = retprobe,
11066 );
11067
11068 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11069 }
11070
11071 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11072 const char *syscall_name,
11073 const struct bpf_ksyscall_opts *opts)
11074 {
11075 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11076 char func_name[128];
11077
11078 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11079 return libbpf_err_ptr(-EINVAL);
11080
11081 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11082 /* arch_specific_syscall_pfx() should never return NULL here
11083 * because it is guarded by kernel_supports(). However, since
11084 * compiler does not know that we have an explicit conditional
11085 * as well.
11086 */
11087 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11088 arch_specific_syscall_pfx() ? : "", syscall_name);
11089 } else {
11090 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11091 }
11092
11093 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11094 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11095
11096 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11097 }
11098
11099 /* Adapted from perf/util/string.c */
11100 bool glob_match(const char *str, const char *pat)
11101 {
11102 while (*str && *pat && *pat != '*') {
11103 if (*pat == '?') { /* Matches any single character */
11104 str++;
11105 pat++;
11106 continue;
11107 }
11108 if (*str != *pat)
11109 return false;
11110 str++;
11111 pat++;
11112 }
11113 /* Check wild card */
11114 if (*pat == '*') {
11115 while (*pat == '*')
11116 pat++;
11117 if (!*pat) /* Tail wild card matches all */
11118 return true;
11119 while (*str)
11120 if (glob_match(str++, pat))
11121 return true;
11122 }
11123 return !*str && !*pat;
11124 }
11125
11126 struct kprobe_multi_resolve {
11127 const char *pattern;
11128 unsigned long *addrs;
11129 size_t cap;
11130 size_t cnt;
11131 };
11132
11133 struct avail_kallsyms_data {
11134 char **syms;
11135 size_t cnt;
11136 struct kprobe_multi_resolve *res;
11137 };
11138
11139 static int avail_func_cmp(const void *a, const void *b)
11140 {
11141 return strcmp(*(const char **)a, *(const char **)b);
11142 }
11143
11144 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11145 const char *sym_name, void *ctx)
11146 {
11147 struct avail_kallsyms_data *data = ctx;
11148 struct kprobe_multi_resolve *res = data->res;
11149 int err;
11150
11151 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11152 return 0;
11153
11154 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11155 if (err)
11156 return err;
11157
11158 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11159 return 0;
11160 }
11161
11162 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11163 {
11164 const char *available_functions_file = tracefs_available_filter_functions();
11165 struct avail_kallsyms_data data;
11166 char sym_name[500];
11167 FILE *f;
11168 int err = 0, ret, i;
11169 char **syms = NULL;
11170 size_t cap = 0, cnt = 0;
11171
11172 f = fopen(available_functions_file, "re");
11173 if (!f) {
11174 err = -errno;
11175 pr_warn("failed to open %s: %d\n", available_functions_file, err);
11176 return err;
11177 }
11178
11179 while (true) {
11180 char *name;
11181
11182 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11183 if (ret == EOF && feof(f))
11184 break;
11185
11186 if (ret != 1) {
11187 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11188 err = -EINVAL;
11189 goto cleanup;
11190 }
11191
11192 if (!glob_match(sym_name, res->pattern))
11193 continue;
11194
11195 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11196 if (err)
11197 goto cleanup;
11198
11199 name = strdup(sym_name);
11200 if (!name) {
11201 err = -errno;
11202 goto cleanup;
11203 }
11204
11205 syms[cnt++] = name;
11206 }
11207
11208 /* no entries found, bail out */
11209 if (cnt == 0) {
11210 err = -ENOENT;
11211 goto cleanup;
11212 }
11213
11214 /* sort available functions */
11215 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11216
11217 data.syms = syms;
11218 data.res = res;
11219 data.cnt = cnt;
11220 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11221
11222 if (res->cnt == 0)
11223 err = -ENOENT;
11224
11225 cleanup:
11226 for (i = 0; i < cnt; i++)
11227 free((char *)syms[i]);
11228 free(syms);
11229
11230 fclose(f);
11231 return err;
11232 }
11233
11234 static bool has_available_filter_functions_addrs(void)
11235 {
11236 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11237 }
11238
11239 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11240 {
11241 const char *available_path = tracefs_available_filter_functions_addrs();
11242 char sym_name[500];
11243 FILE *f;
11244 int ret, err = 0;
11245 unsigned long long sym_addr;
11246
11247 f = fopen(available_path, "re");
11248 if (!f) {
11249 err = -errno;
11250 pr_warn("failed to open %s: %d\n", available_path, err);
11251 return err;
11252 }
11253
11254 while (true) {
11255 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11256 if (ret == EOF && feof(f))
11257 break;
11258
11259 if (ret != 2) {
11260 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11261 ret);
11262 err = -EINVAL;
11263 goto cleanup;
11264 }
11265
11266 if (!glob_match(sym_name, res->pattern))
11267 continue;
11268
11269 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11270 sizeof(*res->addrs), res->cnt + 1);
11271 if (err)
11272 goto cleanup;
11273
11274 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11275 }
11276
11277 if (res->cnt == 0)
11278 err = -ENOENT;
11279
11280 cleanup:
11281 fclose(f);
11282 return err;
11283 }
11284
11285 struct bpf_link *
11286 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11287 const char *pattern,
11288 const struct bpf_kprobe_multi_opts *opts)
11289 {
11290 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11291 struct kprobe_multi_resolve res = {
11292 .pattern = pattern,
11293 };
11294 struct bpf_link *link = NULL;
11295 char errmsg[STRERR_BUFSIZE];
11296 const unsigned long *addrs;
11297 int err, link_fd, prog_fd;
11298 const __u64 *cookies;
11299 const char **syms;
11300 bool retprobe;
11301 size_t cnt;
11302
11303 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11304 return libbpf_err_ptr(-EINVAL);
11305
11306 syms = OPTS_GET(opts, syms, false);
11307 addrs = OPTS_GET(opts, addrs, false);
11308 cnt = OPTS_GET(opts, cnt, false);
11309 cookies = OPTS_GET(opts, cookies, false);
11310
11311 if (!pattern && !addrs && !syms)
11312 return libbpf_err_ptr(-EINVAL);
11313 if (pattern && (addrs || syms || cookies || cnt))
11314 return libbpf_err_ptr(-EINVAL);
11315 if (!pattern && !cnt)
11316 return libbpf_err_ptr(-EINVAL);
11317 if (addrs && syms)
11318 return libbpf_err_ptr(-EINVAL);
11319
11320 if (pattern) {
11321 if (has_available_filter_functions_addrs())
11322 err = libbpf_available_kprobes_parse(&res);
11323 else
11324 err = libbpf_available_kallsyms_parse(&res);
11325 if (err)
11326 goto error;
11327 addrs = res.addrs;
11328 cnt = res.cnt;
11329 }
11330
11331 retprobe = OPTS_GET(opts, retprobe, false);
11332
11333 lopts.kprobe_multi.syms = syms;
11334 lopts.kprobe_multi.addrs = addrs;
11335 lopts.kprobe_multi.cookies = cookies;
11336 lopts.kprobe_multi.cnt = cnt;
11337 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11338
11339 link = calloc(1, sizeof(*link));
11340 if (!link) {
11341 err = -ENOMEM;
11342 goto error;
11343 }
11344 link->detach = &bpf_link__detach_fd;
11345
11346 prog_fd = bpf_program__fd(prog);
11347 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11348 if (link_fd < 0) {
11349 err = -errno;
11350 pr_warn("prog '%s': failed to attach: %s\n",
11351 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11352 goto error;
11353 }
11354 link->fd = link_fd;
11355 free(res.addrs);
11356 return link;
11357
11358 error:
11359 free(link);
11360 free(res.addrs);
11361 return libbpf_err_ptr(err);
11362 }
11363
11364 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11365 {
11366 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11367 unsigned long offset = 0;
11368 const char *func_name;
11369 char *func;
11370 int n;
11371
11372 *link = NULL;
11373
11374 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11375 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11376 return 0;
11377
11378 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11379 if (opts.retprobe)
11380 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11381 else
11382 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11383
11384 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11385 if (n < 1) {
11386 pr_warn("kprobe name is invalid: %s\n", func_name);
11387 return -EINVAL;
11388 }
11389 if (opts.retprobe && offset != 0) {
11390 free(func);
11391 pr_warn("kretprobes do not support offset specification\n");
11392 return -EINVAL;
11393 }
11394
11395 opts.offset = offset;
11396 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11397 free(func);
11398 return libbpf_get_error(*link);
11399 }
11400
11401 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11402 {
11403 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11404 const char *syscall_name;
11405
11406 *link = NULL;
11407
11408 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11409 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11410 return 0;
11411
11412 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11413 if (opts.retprobe)
11414 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11415 else
11416 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11417
11418 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11419 return *link ? 0 : -errno;
11420 }
11421
11422 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11423 {
11424 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11425 const char *spec;
11426 char *pattern;
11427 int n;
11428
11429 *link = NULL;
11430
11431 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11432 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11433 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11434 return 0;
11435
11436 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11437 if (opts.retprobe)
11438 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11439 else
11440 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11441
11442 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11443 if (n < 1) {
11444 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11445 return -EINVAL;
11446 }
11447
11448 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11449 free(pattern);
11450 return libbpf_get_error(*link);
11451 }
11452
11453 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11454 {
11455 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11456 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11457 int n, ret = -EINVAL;
11458
11459 *link = NULL;
11460
11461 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11462 &probe_type, &binary_path, &func_name);
11463 switch (n) {
11464 case 1:
11465 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11466 ret = 0;
11467 break;
11468 case 3:
11469 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11470 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11471 ret = libbpf_get_error(*link);
11472 break;
11473 default:
11474 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11475 prog->sec_name);
11476 break;
11477 }
11478 free(probe_type);
11479 free(binary_path);
11480 free(func_name);
11481 return ret;
11482 }
11483
11484 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11485 const char *binary_path, uint64_t offset)
11486 {
11487 int i;
11488
11489 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11490
11491 /* sanitize binary_path in the probe name */
11492 for (i = 0; buf[i]; i++) {
11493 if (!isalnum(buf[i]))
11494 buf[i] = '_';
11495 }
11496 }
11497
11498 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11499 const char *binary_path, size_t offset)
11500 {
11501 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11502 retprobe ? 'r' : 'p',
11503 retprobe ? "uretprobes" : "uprobes",
11504 probe_name, binary_path, offset);
11505 }
11506
11507 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11508 {
11509 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11510 retprobe ? "uretprobes" : "uprobes", probe_name);
11511 }
11512
11513 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11514 {
11515 char file[512];
11516
11517 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11518 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11519
11520 return parse_uint_from_file(file, "%d\n");
11521 }
11522
11523 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11524 const char *binary_path, size_t offset, int pid)
11525 {
11526 const size_t attr_sz = sizeof(struct perf_event_attr);
11527 struct perf_event_attr attr;
11528 int type, pfd, err;
11529
11530 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11531 if (err < 0) {
11532 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11533 binary_path, (size_t)offset, err);
11534 return err;
11535 }
11536 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11537 if (type < 0) {
11538 err = type;
11539 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11540 binary_path, offset, err);
11541 goto err_clean_legacy;
11542 }
11543
11544 memset(&attr, 0, attr_sz);
11545 attr.size = attr_sz;
11546 attr.config = type;
11547 attr.type = PERF_TYPE_TRACEPOINT;
11548
11549 pfd = syscall(__NR_perf_event_open, &attr,
11550 pid < 0 ? -1 : pid, /* pid */
11551 pid == -1 ? 0 : -1, /* cpu */
11552 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11553 if (pfd < 0) {
11554 err = -errno;
11555 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11556 goto err_clean_legacy;
11557 }
11558 return pfd;
11559
11560 err_clean_legacy:
11561 /* Clear the newly added legacy uprobe_event */
11562 remove_uprobe_event_legacy(probe_name, retprobe);
11563 return err;
11564 }
11565
11566 /* Find offset of function name in object specified by path. "name" matches
11567 * symbol name or name@@LIB for library functions.
11568 */
11569 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11570 const char *func_name)
11571 {
11572 struct zip_archive *archive;
11573 struct zip_entry entry;
11574 long ret;
11575 #ifdef HAVE_LIBELF
11576 Elf *elf;
11577 #elif defined HAVE_ELFIO
11578 pelfio_t elf;
11579 #endif
11580
11581 archive = zip_archive_open(archive_path);
11582 if (IS_ERR(archive)) {
11583 ret = PTR_ERR(archive);
11584 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11585 return ret;
11586 }
11587
11588 ret = zip_archive_find_entry(archive, file_name, &entry);
11589 if (ret) {
11590 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11591 archive_path, ret);
11592 goto out;
11593 }
11594 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11595 (unsigned long)entry.data_offset);
11596
11597 if (entry.compression) {
11598 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11599 archive_path);
11600 ret = -LIBBPF_ERRNO__FORMAT;
11601 goto out;
11602 }
11603 #ifdef HAVE_LIBELF
11604 elf = elf_memory((void *)entry.data, entry.data_length);
11605 #elif defined HAVE_ELFIO
11606 char memfd_path[PATH_MAX] = {0};
11607 elf = elfio_new();
11608 int fdm = syscall(__NR_memfd_create, "bpfelf", MFD_CLOEXEC);
11609 ftruncate(fdm, entry.data_length);
11610 write(fdm, (char *)entry.data, entry.data_length);
11611 snprintf(memfd_path, PATH_MAX, "/proc/self/fd/%d", fdm);
11612 elfio_load(elf, memfd_path);
11613 #endif
11614 if (!elf) {
11615 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11616 elf_errmsg(-1));
11617 ret = -LIBBPF_ERRNO__LIBELF;
11618 goto out;
11619 }
11620
11621 ret = elf_find_func_offset(elf, file_name, func_name);
11622 if (ret > 0) {
11623 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11624 func_name, file_name, archive_path, entry.data_offset, ret,
11625 ret + entry.data_offset);
11626 ret += entry.data_offset;
11627 }
11628 #ifdef HAVA_LIBELF
11629 elf_end(elf);
11630 #elif HAVA_ELFIO
11631 elfio_delete(elf);
11632 #endif
11633 out:
11634 zip_archive_close(archive);
11635 return ret;
11636 }
11637
11638 static const char *arch_specific_lib_paths(void)
11639 {
11640 /*
11641 * Based on https://packages.debian.org/sid/libc6.
11642 *
11643 * Assume that the traced program is built for the same architecture
11644 * as libbpf, which should cover the vast majority of cases.
11645 */
11646 #if defined(__x86_64__)
11647 return "/lib/x86_64-linux-gnu";
11648 #elif defined(__i386__)
11649 return "/lib/i386-linux-gnu";
11650 #elif defined(__s390x__)
11651 return "/lib/s390x-linux-gnu";
11652 #elif defined(__s390__)
11653 return "/lib/s390-linux-gnu";
11654 #elif defined(__arm__) && defined(__SOFTFP__)
11655 return "/lib/arm-linux-gnueabi";
11656 #elif defined(__arm__) && !defined(__SOFTFP__)
11657 return "/lib/arm-linux-gnueabihf";
11658 #elif defined(__aarch64__)
11659 return "/lib/aarch64-linux-gnu";
11660 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11661 return "/lib/mips64el-linux-gnuabi64";
11662 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11663 return "/lib/mipsel-linux-gnu";
11664 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11665 return "/lib/powerpc64le-linux-gnu";
11666 #elif defined(__sparc__) && defined(__arch64__)
11667 return "/lib/sparc64-linux-gnu";
11668 #elif defined(__riscv) && __riscv_xlen == 64
11669 return "/lib/riscv64-linux-gnu";
11670 #else
11671 return NULL;
11672 #endif
11673 }
11674
11675 /* Get full path to program/shared library. */
11676 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11677 {
11678 const char *search_paths[3] = {};
11679 int i, perm;
11680
11681 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11682 search_paths[0] = getenv("LD_LIBRARY_PATH");
11683 search_paths[1] = "/usr/lib64:/usr/lib";
11684 search_paths[2] = arch_specific_lib_paths();
11685 perm = R_OK;
11686 } else {
11687 search_paths[0] = getenv("PATH");
11688 search_paths[1] = "/usr/bin:/usr/sbin";
11689 perm = R_OK | X_OK;
11690 }
11691
11692 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11693 const char *s;
11694
11695 if (!search_paths[i])
11696 continue;
11697 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11698 char *next_path;
11699 int seg_len;
11700
11701 if (s[0] == ':')
11702 s++;
11703 next_path = strchr(s, ':');
11704 seg_len = next_path ? next_path - s : strlen(s);
11705 if (!seg_len)
11706 continue;
11707 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11708 /* ensure it has required permissions */
11709 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11710 continue;
11711 pr_debug("resolved '%s' to '%s'\n", file, result);
11712 return 0;
11713 }
11714 }
11715 return -ENOENT;
11716 }
11717
11718 struct bpf_link *
11719 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11720 pid_t pid,
11721 const char *path,
11722 const char *func_pattern,
11723 const struct bpf_uprobe_multi_opts *opts)
11724 {
11725 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11726 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11727 unsigned long *resolved_offsets = NULL;
11728 int err = 0, link_fd, prog_fd;
11729 struct bpf_link *link = NULL;
11730 char errmsg[STRERR_BUFSIZE];
11731 char full_path[PATH_MAX];
11732 const __u64 *cookies;
11733 const char **syms;
11734 size_t cnt;
11735
11736 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11737 return libbpf_err_ptr(-EINVAL);
11738
11739 syms = OPTS_GET(opts, syms, NULL);
11740 offsets = OPTS_GET(opts, offsets, NULL);
11741 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11742 cookies = OPTS_GET(opts, cookies, NULL);
11743 cnt = OPTS_GET(opts, cnt, 0);
11744
11745 /*
11746 * User can specify 2 mutually exclusive set of inputs:
11747 *
11748 * 1) use only path/func_pattern/pid arguments
11749 *
11750 * 2) use path/pid with allowed combinations of:
11751 * syms/offsets/ref_ctr_offsets/cookies/cnt
11752 *
11753 * - syms and offsets are mutually exclusive
11754 * - ref_ctr_offsets and cookies are optional
11755 *
11756 * Any other usage results in error.
11757 */
11758
11759 if (!path)
11760 return libbpf_err_ptr(-EINVAL);
11761 if (!func_pattern && cnt == 0)
11762 return libbpf_err_ptr(-EINVAL);
11763
11764 if (func_pattern) {
11765 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11766 return libbpf_err_ptr(-EINVAL);
11767 } else {
11768 if (!!syms == !!offsets)
11769 return libbpf_err_ptr(-EINVAL);
11770 }
11771
11772 if (func_pattern) {
11773 if (!strchr(path, '/')) {
11774 err = resolve_full_path(path, full_path, sizeof(full_path));
11775 if (err) {
11776 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11777 prog->name, path, err);
11778 return libbpf_err_ptr(err);
11779 }
11780 path = full_path;
11781 }
11782
11783 err = elf_resolve_pattern_offsets(path, func_pattern,
11784 &resolved_offsets, &cnt);
11785 if (err < 0)
11786 return libbpf_err_ptr(err);
11787 offsets = resolved_offsets;
11788 } else if (syms) {
11789 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11790 if (err < 0)
11791 return libbpf_err_ptr(err);
11792 offsets = resolved_offsets;
11793 }
11794
11795 lopts.uprobe_multi.path = path;
11796 lopts.uprobe_multi.offsets = offsets;
11797 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11798 lopts.uprobe_multi.cookies = cookies;
11799 lopts.uprobe_multi.cnt = cnt;
11800 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11801
11802 if (pid == 0)
11803 pid = getpid();
11804 if (pid > 0)
11805 lopts.uprobe_multi.pid = pid;
11806
11807 link = calloc(1, sizeof(*link));
11808 if (!link) {
11809 err = -ENOMEM;
11810 goto error;
11811 }
11812 link->detach = &bpf_link__detach_fd;
11813
11814 prog_fd = bpf_program__fd(prog);
11815 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11816 if (link_fd < 0) {
11817 err = -errno;
11818 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11819 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11820 goto error;
11821 }
11822 link->fd = link_fd;
11823 free(resolved_offsets);
11824 return link;
11825
11826 error:
11827 free(resolved_offsets);
11828 free(link);
11829 return libbpf_err_ptr(err);
11830 }
11831
11832 LIBBPF_API struct bpf_link *
11833 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11834 const char *binary_path, size_t func_offset,
11835 const struct bpf_uprobe_opts *opts)
11836 {
11837 const char *archive_path = NULL, *archive_sep = NULL;
11838 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11839 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11840 enum probe_attach_mode attach_mode;
11841 char full_path[PATH_MAX];
11842 struct bpf_link *link;
11843 size_t ref_ctr_off;
11844 int pfd, err;
11845 bool retprobe, legacy;
11846 const char *func_name;
11847
11848 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11849 return libbpf_err_ptr(-EINVAL);
11850
11851 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11852 retprobe = OPTS_GET(opts, retprobe, false);
11853 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11854 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11855
11856 if (!binary_path)
11857 return libbpf_err_ptr(-EINVAL);
11858
11859 /* Check if "binary_path" refers to an archive. */
11860 archive_sep = strstr(binary_path, "!/");
11861 if (archive_sep) {
11862 full_path[0] = '\0';
11863 libbpf_strlcpy(full_path, binary_path,
11864 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11865 archive_path = full_path;
11866 binary_path = archive_sep + 2;
11867 } else if (!strchr(binary_path, '/')) {
11868 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11869 if (err) {
11870 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11871 prog->name, binary_path, err);
11872 return libbpf_err_ptr(err);
11873 }
11874 binary_path = full_path;
11875 }
11876 func_name = OPTS_GET(opts, func_name, NULL);
11877 if (func_name) {
11878 long sym_off;
11879
11880 if (archive_path) {
11881 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11882 func_name);
11883 binary_path = archive_path;
11884 } else {
11885 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11886 }
11887 if (sym_off < 0)
11888 return libbpf_err_ptr(sym_off);
11889 func_offset += sym_off;
11890 }
11891
11892 legacy = determine_uprobe_perf_type() < 0;
11893 switch (attach_mode) {
11894 case PROBE_ATTACH_MODE_LEGACY:
11895 legacy = true;
11896 pe_opts.force_ioctl_attach = true;
11897 break;
11898 case PROBE_ATTACH_MODE_PERF:
11899 if (legacy)
11900 return libbpf_err_ptr(-ENOTSUP);
11901 pe_opts.force_ioctl_attach = true;
11902 break;
11903 case PROBE_ATTACH_MODE_LINK:
11904 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11905 return libbpf_err_ptr(-ENOTSUP);
11906 break;
11907 case PROBE_ATTACH_MODE_DEFAULT:
11908 break;
11909 default:
11910 return libbpf_err_ptr(-EINVAL);
11911 }
11912
11913 if (!legacy) {
11914 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11915 func_offset, pid, ref_ctr_off);
11916 } else {
11917 char probe_name[PATH_MAX + 64];
11918
11919 if (ref_ctr_off)
11920 return libbpf_err_ptr(-EINVAL);
11921
11922 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11923 binary_path, func_offset);
11924
11925 legacy_probe = strdup(probe_name);
11926 if (!legacy_probe)
11927 return libbpf_err_ptr(-ENOMEM);
11928
11929 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11930 binary_path, func_offset, pid);
11931 }
11932 if (pfd < 0) {
11933 err = -errno;
11934 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11935 prog->name, retprobe ? "uretprobe" : "uprobe",
11936 binary_path, func_offset,
11937 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11938 goto err_out;
11939 }
11940
11941 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11942 err = libbpf_get_error(link);
11943 if (err) {
11944 close(pfd);
11945 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11946 prog->name, retprobe ? "uretprobe" : "uprobe",
11947 binary_path, func_offset,
11948 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11949 goto err_clean_legacy;
11950 }
11951 if (legacy) {
11952 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11953
11954 perf_link->legacy_probe_name = legacy_probe;
11955 perf_link->legacy_is_kprobe = false;
11956 perf_link->legacy_is_retprobe = retprobe;
11957 }
11958 return link;
11959
11960 err_clean_legacy:
11961 if (legacy)
11962 remove_uprobe_event_legacy(legacy_probe, retprobe);
11963 err_out:
11964 free(legacy_probe);
11965 return libbpf_err_ptr(err);
11966 }
11967
11968 /* Format of u[ret]probe section definition supporting auto-attach:
11969 * u[ret]probe/binary:function[+offset]
11970 *
11971 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11972 * full binary path via bpf_program__attach_uprobe_opts.
11973 *
11974 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11975 * specified (and auto-attach is not possible) or the above format is specified for
11976 * auto-attach.
11977 */
11978 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11979 {
11980 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11981 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
11982 int n, c, ret = -EINVAL;
11983 long offset = 0;
11984
11985 *link = NULL;
11986
11987 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11988 &probe_type, &binary_path, &func_name);
11989 switch (n) {
11990 case 1:
11991 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11992 ret = 0;
11993 break;
11994 case 2:
11995 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11996 prog->name, prog->sec_name);
11997 break;
11998 case 3:
11999 /* check if user specifies `+offset`, if yes, this should be
12000 * the last part of the string, make sure sscanf read to EOL
12001 */
12002 func_off = strrchr(func_name, '+');
12003 if (func_off) {
12004 n = sscanf(func_off, "+%li%n", &offset, &c);
12005 if (n == 1 && *(func_off + c) == '\0')
12006 func_off[0] = '\0';
12007 else
12008 offset = 0;
12009 }
12010 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12011 strcmp(probe_type, "uretprobe.s") == 0;
12012 if (opts.retprobe && offset != 0) {
12013 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12014 prog->name);
12015 break;
12016 }
12017 opts.func_name = func_name;
12018 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12019 ret = libbpf_get_error(*link);
12020 break;
12021 default:
12022 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12023 prog->sec_name);
12024 break;
12025 }
12026 free(probe_type);
12027 free(binary_path);
12028 free(func_name);
12029
12030 return ret;
12031 }
12032
12033 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12034 bool retprobe, pid_t pid,
12035 const char *binary_path,
12036 size_t func_offset)
12037 {
12038 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12039
12040 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12041 }
12042
12043 #ifdef HAVE_LIBELF
12044 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12045 pid_t pid, const char *binary_path,
12046 const char *usdt_provider, const char *usdt_name,
12047 const struct bpf_usdt_opts *opts)
12048 {
12049 char resolved_path[512];
12050 struct bpf_object *obj = prog->obj;
12051 struct bpf_link *link;
12052 __u64 usdt_cookie;
12053 int err;
12054
12055 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12056 return libbpf_err_ptr(-EINVAL);
12057
12058 if (bpf_program__fd(prog) < 0) {
12059 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12060 prog->name);
12061 return libbpf_err_ptr(-EINVAL);
12062 }
12063
12064 if (!binary_path)
12065 return libbpf_err_ptr(-EINVAL);
12066
12067 if (!strchr(binary_path, '/')) {
12068 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12069 if (err) {
12070 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12071 prog->name, binary_path, err);
12072 return libbpf_err_ptr(err);
12073 }
12074 binary_path = resolved_path;
12075 }
12076
12077 /* USDT manager is instantiated lazily on first USDT attach. It will
12078 * be destroyed together with BPF object in bpf_object__close().
12079 */
12080 if (IS_ERR(obj->usdt_man))
12081 return libbpf_ptr(obj->usdt_man);
12082 if (!obj->usdt_man) {
12083 obj->usdt_man = usdt_manager_new(obj);
12084 if (IS_ERR(obj->usdt_man))
12085 return libbpf_ptr(obj->usdt_man);
12086 }
12087
12088 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12089 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12090 usdt_provider, usdt_name, usdt_cookie);
12091 err = libbpf_get_error(link);
12092 if (err)
12093 return libbpf_err_ptr(err);
12094 return link;
12095 }
12096 #endif //HAVE_LIBELF
12097
12098 #ifdef HAVE_LIBELF
12099 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12100 {
12101 char *path = NULL, *provider = NULL, *name = NULL;
12102 const char *sec_name;
12103 int n, err;
12104
12105 sec_name = bpf_program__section_name(prog);
12106 if (strcmp(sec_name, "usdt") == 0) {
12107 /* no auto-attach for just SEC("usdt") */
12108 *link = NULL;
12109 return 0;
12110 }
12111
12112 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12113 if (n != 3) {
12114 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12115 sec_name);
12116 err = -EINVAL;
12117 } else {
12118 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12119 provider, name, NULL);
12120 err = libbpf_get_error(*link);
12121 }
12122 free(path);
12123 free(provider);
12124 free(name);
12125 return err;
12126 }
12127 #endif //HAVE_LIBELF
12128
12129 static int determine_tracepoint_id(const char *tp_category,
12130 const char *tp_name)
12131 {
12132 char file[PATH_MAX];
12133 int ret;
12134
12135 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12136 tracefs_path(), tp_category, tp_name);
12137 if (ret < 0)
12138 return -errno;
12139 if (ret >= sizeof(file)) {
12140 pr_debug("tracepoint %s/%s path is too long\n",
12141 tp_category, tp_name);
12142 return -E2BIG;
12143 }
12144 return parse_uint_from_file(file, "%d\n");
12145 }
12146
12147 static int perf_event_open_tracepoint(const char *tp_category,
12148 const char *tp_name)
12149 {
12150 const size_t attr_sz = sizeof(struct perf_event_attr);
12151 struct perf_event_attr attr;
12152 char errmsg[STRERR_BUFSIZE];
12153 int tp_id, pfd, err;
12154
12155 tp_id = determine_tracepoint_id(tp_category, tp_name);
12156 if (tp_id < 0) {
12157 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12158 tp_category, tp_name,
12159 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12160 return tp_id;
12161 }
12162
12163 memset(&attr, 0, attr_sz);
12164 attr.type = PERF_TYPE_TRACEPOINT;
12165 attr.size = attr_sz;
12166 attr.config = tp_id;
12167
12168 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12169 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12170 if (pfd < 0) {
12171 err = -errno;
12172 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12173 tp_category, tp_name,
12174 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12175 return err;
12176 }
12177 return pfd;
12178 }
12179
12180 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12181 const char *tp_category,
12182 const char *tp_name,
12183 const struct bpf_tracepoint_opts *opts)
12184 {
12185 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12186 char errmsg[STRERR_BUFSIZE];
12187 struct bpf_link *link;
12188 int pfd, err;
12189
12190 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12191 return libbpf_err_ptr(-EINVAL);
12192
12193 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12194
12195 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12196 if (pfd < 0) {
12197 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12198 prog->name, tp_category, tp_name,
12199 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12200 return libbpf_err_ptr(pfd);
12201 }
12202 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12203 err = libbpf_get_error(link);
12204 if (err) {
12205 close(pfd);
12206 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12207 prog->name, tp_category, tp_name,
12208 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12209 return libbpf_err_ptr(err);
12210 }
12211 return link;
12212 }
12213
12214 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12215 const char *tp_category,
12216 const char *tp_name)
12217 {
12218 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12219 }
12220
12221 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12222 {
12223 char *sec_name, *tp_cat, *tp_name;
12224
12225 *link = NULL;
12226
12227 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12228 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12229 return 0;
12230
12231 sec_name = strdup(prog->sec_name);
12232 if (!sec_name)
12233 return -ENOMEM;
12234
12235 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12236 if (str_has_pfx(prog->sec_name, "tp/"))
12237 tp_cat = sec_name + sizeof("tp/") - 1;
12238 else
12239 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12240 tp_name = strchr(tp_cat, '/');
12241 if (!tp_name) {
12242 free(sec_name);
12243 return -EINVAL;
12244 }
12245 *tp_name = '\0';
12246 tp_name++;
12247
12248 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12249 free(sec_name);
12250 return libbpf_get_error(*link);
12251 }
12252
12253 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12254 const char *tp_name)
12255 {
12256 char errmsg[STRERR_BUFSIZE];
12257 struct bpf_link *link;
12258 int prog_fd, pfd;
12259
12260 prog_fd = bpf_program__fd(prog);
12261 if (prog_fd < 0) {
12262 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12263 return libbpf_err_ptr(-EINVAL);
12264 }
12265
12266 link = calloc(1, sizeof(*link));
12267 if (!link)
12268 return libbpf_err_ptr(-ENOMEM);
12269 link->detach = &bpf_link__detach_fd;
12270
12271 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12272 if (pfd < 0) {
12273 pfd = -errno;
12274 free(link);
12275 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12276 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12277 return libbpf_err_ptr(pfd);
12278 }
12279 link->fd = pfd;
12280 return link;
12281 }
12282
12283 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12284 {
12285 static const char *const prefixes[] = {
12286 "raw_tp",
12287 "raw_tracepoint",
12288 "raw_tp.w",
12289 "raw_tracepoint.w",
12290 };
12291 size_t i;
12292 const char *tp_name = NULL;
12293
12294 *link = NULL;
12295
12296 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12297 size_t pfx_len;
12298
12299 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12300 continue;
12301
12302 pfx_len = strlen(prefixes[i]);
12303 /* no auto-attach case of, e.g., SEC("raw_tp") */
12304 if (prog->sec_name[pfx_len] == '\0')
12305 return 0;
12306
12307 if (prog->sec_name[pfx_len] != '/')
12308 continue;
12309
12310 tp_name = prog->sec_name + pfx_len + 1;
12311 break;
12312 }
12313
12314 if (!tp_name) {
12315 pr_warn("prog '%s': invalid section name '%s'\n",
12316 prog->name, prog->sec_name);
12317 return -EINVAL;
12318 }
12319
12320 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12321 return libbpf_get_error(*link);
12322 }
12323
12324 /* Common logic for all BPF program types that attach to a btf_id */
12325 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12326 const struct bpf_trace_opts *opts)
12327 {
12328 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12329 char errmsg[STRERR_BUFSIZE];
12330 struct bpf_link *link;
12331 int prog_fd, pfd;
12332
12333 if (!OPTS_VALID(opts, bpf_trace_opts))
12334 return libbpf_err_ptr(-EINVAL);
12335
12336 prog_fd = bpf_program__fd(prog);
12337 if (prog_fd < 0) {
12338 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12339 return libbpf_err_ptr(-EINVAL);
12340 }
12341
12342 link = calloc(1, sizeof(*link));
12343 if (!link)
12344 return libbpf_err_ptr(-ENOMEM);
12345 link->detach = &bpf_link__detach_fd;
12346
12347 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12348 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12349 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12350 if (pfd < 0) {
12351 pfd = -errno;
12352 free(link);
12353 pr_warn("prog '%s': failed to attach: %s\n",
12354 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12355 return libbpf_err_ptr(pfd);
12356 }
12357 link->fd = pfd;
12358 return link;
12359 }
12360
12361 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12362 {
12363 return bpf_program__attach_btf_id(prog, NULL);
12364 }
12365
12366 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12367 const struct bpf_trace_opts *opts)
12368 {
12369 return bpf_program__attach_btf_id(prog, opts);
12370 }
12371
12372 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12373 {
12374 return bpf_program__attach_btf_id(prog, NULL);
12375 }
12376
12377 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12378 {
12379 *link = bpf_program__attach_trace(prog);
12380 return libbpf_get_error(*link);
12381 }
12382
12383 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12384 {
12385 *link = bpf_program__attach_lsm(prog);
12386 return libbpf_get_error(*link);
12387 }
12388
12389 static struct bpf_link *
12390 bpf_program_attach_fd(const struct bpf_program *prog,
12391 int target_fd, const char *target_name,
12392 const struct bpf_link_create_opts *opts)
12393 {
12394 enum bpf_attach_type attach_type;
12395 char errmsg[STRERR_BUFSIZE];
12396 struct bpf_link *link;
12397 int prog_fd, link_fd;
12398
12399 prog_fd = bpf_program__fd(prog);
12400 if (prog_fd < 0) {
12401 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12402 return libbpf_err_ptr(-EINVAL);
12403 }
12404
12405 link = calloc(1, sizeof(*link));
12406 if (!link)
12407 return libbpf_err_ptr(-ENOMEM);
12408 link->detach = &bpf_link__detach_fd;
12409
12410 attach_type = bpf_program__expected_attach_type(prog);
12411 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12412 if (link_fd < 0) {
12413 link_fd = -errno;
12414 free(link);
12415 pr_warn("prog '%s': failed to attach to %s: %s\n",
12416 prog->name, target_name,
12417 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12418 return libbpf_err_ptr(link_fd);
12419 }
12420 link->fd = link_fd;
12421 return link;
12422 }
12423
12424 struct bpf_link *
12425 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12426 {
12427 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12428 }
12429
12430 struct bpf_link *
12431 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12432 {
12433 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12434 }
12435
12436 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12437 {
12438 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12439 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12440 }
12441
12442 struct bpf_link *
12443 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12444 const struct bpf_tcx_opts *opts)
12445 {
12446 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12447 __u32 relative_id;
12448 int relative_fd;
12449
12450 if (!OPTS_VALID(opts, bpf_tcx_opts))
12451 return libbpf_err_ptr(-EINVAL);
12452
12453 relative_id = OPTS_GET(opts, relative_id, 0);
12454 relative_fd = OPTS_GET(opts, relative_fd, 0);
12455
12456 /* validate we don't have unexpected combinations of non-zero fields */
12457 if (!ifindex) {
12458 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12459 prog->name);
12460 return libbpf_err_ptr(-EINVAL);
12461 }
12462 if (relative_fd && relative_id) {
12463 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12464 prog->name);
12465 return libbpf_err_ptr(-EINVAL);
12466 }
12467
12468 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12469 link_create_opts.tcx.relative_fd = relative_fd;
12470 link_create_opts.tcx.relative_id = relative_id;
12471 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12472
12473 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12474 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12475 }
12476
12477 struct bpf_link *
12478 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12479 const struct bpf_netkit_opts *opts)
12480 {
12481 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12482 __u32 relative_id;
12483 int relative_fd;
12484
12485 if (!OPTS_VALID(opts, bpf_netkit_opts))
12486 return libbpf_err_ptr(-EINVAL);
12487
12488 relative_id = OPTS_GET(opts, relative_id, 0);
12489 relative_fd = OPTS_GET(opts, relative_fd, 0);
12490
12491 /* validate we don't have unexpected combinations of non-zero fields */
12492 if (!ifindex) {
12493 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12494 prog->name);
12495 return libbpf_err_ptr(-EINVAL);
12496 }
12497 if (relative_fd && relative_id) {
12498 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12499 prog->name);
12500 return libbpf_err_ptr(-EINVAL);
12501 }
12502
12503 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12504 link_create_opts.netkit.relative_fd = relative_fd;
12505 link_create_opts.netkit.relative_id = relative_id;
12506 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12507
12508 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12509 }
12510
12511 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12512 int target_fd,
12513 const char *attach_func_name)
12514 {
12515 int btf_id;
12516
12517 if (!!target_fd != !!attach_func_name) {
12518 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12519 prog->name);
12520 return libbpf_err_ptr(-EINVAL);
12521 }
12522
12523 if (prog->type != BPF_PROG_TYPE_EXT) {
12524 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12525 prog->name);
12526 return libbpf_err_ptr(-EINVAL);
12527 }
12528
12529 if (target_fd) {
12530 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12531
12532 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12533 if (btf_id < 0)
12534 return libbpf_err_ptr(btf_id);
12535
12536 target_opts.target_btf_id = btf_id;
12537
12538 return bpf_program_attach_fd(prog, target_fd, "freplace",
12539 &target_opts);
12540 } else {
12541 /* no target, so use raw_tracepoint_open for compatibility
12542 * with old kernels
12543 */
12544 return bpf_program__attach_trace(prog);
12545 }
12546 }
12547
12548 struct bpf_link *
12549 bpf_program__attach_iter(const struct bpf_program *prog,
12550 const struct bpf_iter_attach_opts *opts)
12551 {
12552 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12553 char errmsg[STRERR_BUFSIZE];
12554 struct bpf_link *link;
12555 int prog_fd, link_fd;
12556 __u32 target_fd = 0;
12557
12558 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12559 return libbpf_err_ptr(-EINVAL);
12560
12561 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12562 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12563
12564 prog_fd = bpf_program__fd(prog);
12565 if (prog_fd < 0) {
12566 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12567 return libbpf_err_ptr(-EINVAL);
12568 }
12569
12570 link = calloc(1, sizeof(*link));
12571 if (!link)
12572 return libbpf_err_ptr(-ENOMEM);
12573 link->detach = &bpf_link__detach_fd;
12574
12575 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12576 &link_create_opts);
12577 if (link_fd < 0) {
12578 link_fd = -errno;
12579 free(link);
12580 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12581 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12582 return libbpf_err_ptr(link_fd);
12583 }
12584 link->fd = link_fd;
12585 return link;
12586 }
12587
12588 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12589 {
12590 *link = bpf_program__attach_iter(prog, NULL);
12591 return libbpf_get_error(*link);
12592 }
12593
12594 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12595 const struct bpf_netfilter_opts *opts)
12596 {
12597 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12598 struct bpf_link *link;
12599 int prog_fd, link_fd;
12600
12601 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12602 return libbpf_err_ptr(-EINVAL);
12603
12604 prog_fd = bpf_program__fd(prog);
12605 if (prog_fd < 0) {
12606 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12607 return libbpf_err_ptr(-EINVAL);
12608 }
12609
12610 link = calloc(1, sizeof(*link));
12611 if (!link)
12612 return libbpf_err_ptr(-ENOMEM);
12613
12614 link->detach = &bpf_link__detach_fd;
12615
12616 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12617 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12618 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12619 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12620
12621 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12622 if (link_fd < 0) {
12623 char errmsg[STRERR_BUFSIZE];
12624
12625 link_fd = -errno;
12626 free(link);
12627 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12628 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12629 return libbpf_err_ptr(link_fd);
12630 }
12631 link->fd = link_fd;
12632
12633 return link;
12634 }
12635
12636 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12637 {
12638 struct bpf_link *link = NULL;
12639 int err;
12640
12641 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12642 return libbpf_err_ptr(-EOPNOTSUPP);
12643
12644 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12645 if (err)
12646 return libbpf_err_ptr(err);
12647
12648 /* When calling bpf_program__attach() explicitly, auto-attach support
12649 * is expected to work, so NULL returned link is considered an error.
12650 * This is different for skeleton's attach, see comment in
12651 * bpf_object__attach_skeleton().
12652 */
12653 if (!link)
12654 return libbpf_err_ptr(-EOPNOTSUPP);
12655
12656 return link;
12657 }
12658
12659 struct bpf_link_struct_ops {
12660 struct bpf_link link;
12661 int map_fd;
12662 };
12663
12664 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12665 {
12666 struct bpf_link_struct_ops *st_link;
12667 __u32 zero = 0;
12668
12669 st_link = container_of(link, struct bpf_link_struct_ops, link);
12670
12671 if (st_link->map_fd < 0)
12672 /* w/o a real link */
12673 return bpf_map_delete_elem(link->fd, &zero);
12674
12675 return close(link->fd);
12676 }
12677
12678 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12679 {
12680 struct bpf_link_struct_ops *link;
12681 __u32 zero = 0;
12682 int err, fd;
12683
12684 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12685 return libbpf_err_ptr(-EINVAL);
12686
12687 link = calloc(1, sizeof(*link));
12688 if (!link)
12689 return libbpf_err_ptr(-EINVAL);
12690
12691 /* kern_vdata should be prepared during the loading phase. */
12692 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12693 /* It can be EBUSY if the map has been used to create or
12694 * update a link before. We don't allow updating the value of
12695 * a struct_ops once it is set. That ensures that the value
12696 * never changed. So, it is safe to skip EBUSY.
12697 */
12698 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12699 free(link);
12700 return libbpf_err_ptr(err);
12701 }
12702
12703 link->link.detach = bpf_link__detach_struct_ops;
12704
12705 if (!(map->def.map_flags & BPF_F_LINK)) {
12706 /* w/o a real link */
12707 link->link.fd = map->fd;
12708 link->map_fd = -1;
12709 return &link->link;
12710 }
12711
12712 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12713 if (fd < 0) {
12714 free(link);
12715 return libbpf_err_ptr(fd);
12716 }
12717
12718 link->link.fd = fd;
12719 link->map_fd = map->fd;
12720
12721 return &link->link;
12722 }
12723
12724 /*
12725 * Swap the back struct_ops of a link with a new struct_ops map.
12726 */
12727 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12728 {
12729 struct bpf_link_struct_ops *st_ops_link;
12730 __u32 zero = 0;
12731 int err;
12732
12733 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12734 return -EINVAL;
12735
12736 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12737 /* Ensure the type of a link is correct */
12738 if (st_ops_link->map_fd < 0)
12739 return -EINVAL;
12740
12741 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12742 /* It can be EBUSY if the map has been used to create or
12743 * update a link before. We don't allow updating the value of
12744 * a struct_ops once it is set. That ensures that the value
12745 * never changed. So, it is safe to skip EBUSY.
12746 */
12747 if (err && err != -EBUSY)
12748 return err;
12749
12750 err = bpf_link_update(link->fd, map->fd, NULL);
12751 if (err < 0)
12752 return err;
12753
12754 st_ops_link->map_fd = map->fd;
12755
12756 return 0;
12757 }
12758
12759 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12760 void *private_data);
12761
12762 static enum bpf_perf_event_ret
12763 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12764 void **copy_mem, size_t *copy_size,
12765 bpf_perf_event_print_t fn, void *private_data)
12766 {
12767 struct perf_event_mmap_page *header = mmap_mem;
12768 __u64 data_head = ring_buffer_read_head(header);
12769 __u64 data_tail = header->data_tail;
12770 void *base = ((__u8 *)header) + page_size;
12771 int ret = LIBBPF_PERF_EVENT_CONT;
12772 struct perf_event_header *ehdr;
12773 size_t ehdr_size;
12774
12775 while (data_head != data_tail) {
12776 ehdr = base + (data_tail & (mmap_size - 1));
12777 ehdr_size = ehdr->size;
12778
12779 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12780 void *copy_start = ehdr;
12781 size_t len_first = base + mmap_size - copy_start;
12782 size_t len_secnd = ehdr_size - len_first;
12783
12784 if (*copy_size < ehdr_size) {
12785 free(*copy_mem);
12786 *copy_mem = malloc(ehdr_size);
12787 if (!*copy_mem) {
12788 *copy_size = 0;
12789 ret = LIBBPF_PERF_EVENT_ERROR;
12790 break;
12791 }
12792 *copy_size = ehdr_size;
12793 }
12794
12795 memcpy(*copy_mem, copy_start, len_first);
12796 memcpy(*copy_mem + len_first, base, len_secnd);
12797 ehdr = *copy_mem;
12798 }
12799
12800 ret = fn(ehdr, private_data);
12801 data_tail += ehdr_size;
12802 if (ret != LIBBPF_PERF_EVENT_CONT)
12803 break;
12804 }
12805
12806 ring_buffer_write_tail(header, data_tail);
12807 return libbpf_err(ret);
12808 }
12809
12810 struct perf_buffer;
12811
12812 struct perf_buffer_params {
12813 struct perf_event_attr *attr;
12814 /* if event_cb is specified, it takes precendence */
12815 perf_buffer_event_fn event_cb;
12816 /* sample_cb and lost_cb are higher-level common-case callbacks */
12817 perf_buffer_sample_fn sample_cb;
12818 perf_buffer_lost_fn lost_cb;
12819 void *ctx;
12820 int cpu_cnt;
12821 int *cpus;
12822 int *map_keys;
12823 };
12824
12825 struct perf_cpu_buf {
12826 struct perf_buffer *pb;
12827 void *base; /* mmap()'ed memory */
12828 void *buf; /* for reconstructing segmented data */
12829 size_t buf_size;
12830 int fd;
12831 int cpu;
12832 int map_key;
12833 };
12834
12835 struct perf_buffer {
12836 perf_buffer_event_fn event_cb;
12837 perf_buffer_sample_fn sample_cb;
12838 perf_buffer_lost_fn lost_cb;
12839 void *ctx; /* passed into callbacks */
12840
12841 size_t page_size;
12842 size_t mmap_size;
12843 struct perf_cpu_buf **cpu_bufs;
12844 struct epoll_event *events;
12845 int cpu_cnt; /* number of allocated CPU buffers */
12846 int epoll_fd; /* perf event FD */
12847 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12848 };
12849
12850 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12851 struct perf_cpu_buf *cpu_buf)
12852 {
12853 if (!cpu_buf)
12854 return;
12855 if (cpu_buf->base &&
12856 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12857 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12858 if (cpu_buf->fd >= 0) {
12859 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12860 close(cpu_buf->fd);
12861 }
12862 free(cpu_buf->buf);
12863 free(cpu_buf);
12864 }
12865
12866 void perf_buffer__free(struct perf_buffer *pb)
12867 {
12868 int i;
12869
12870 if (IS_ERR_OR_NULL(pb))
12871 return;
12872 if (pb->cpu_bufs) {
12873 for (i = 0; i < pb->cpu_cnt; i++) {
12874 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12875
12876 if (!cpu_buf)
12877 continue;
12878
12879 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12880 perf_buffer__free_cpu_buf(pb, cpu_buf);
12881 }
12882 free(pb->cpu_bufs);
12883 }
12884 if (pb->epoll_fd >= 0)
12885 close(pb->epoll_fd);
12886 free(pb->events);
12887 free(pb);
12888 }
12889
12890 static struct perf_cpu_buf *
12891 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12892 int cpu, int map_key)
12893 {
12894 struct perf_cpu_buf *cpu_buf;
12895 char msg[STRERR_BUFSIZE];
12896 int err;
12897
12898 cpu_buf = calloc(1, sizeof(*cpu_buf));
12899 if (!cpu_buf)
12900 return ERR_PTR(-ENOMEM);
12901
12902 cpu_buf->pb = pb;
12903 cpu_buf->cpu = cpu;
12904 cpu_buf->map_key = map_key;
12905
12906 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12907 -1, PERF_FLAG_FD_CLOEXEC);
12908 if (cpu_buf->fd < 0) {
12909 err = -errno;
12910 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12911 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12912 goto error;
12913 }
12914
12915 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12916 PROT_READ | PROT_WRITE, MAP_SHARED,
12917 cpu_buf->fd, 0);
12918 if (cpu_buf->base == MAP_FAILED) {
12919 cpu_buf->base = NULL;
12920 err = -errno;
12921 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12922 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12923 goto error;
12924 }
12925
12926 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12927 err = -errno;
12928 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12929 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12930 goto error;
12931 }
12932
12933 return cpu_buf;
12934
12935 error:
12936 perf_buffer__free_cpu_buf(pb, cpu_buf);
12937 return (struct perf_cpu_buf *)ERR_PTR(err);
12938 }
12939
12940 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12941 struct perf_buffer_params *p);
12942
12943 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12944 perf_buffer_sample_fn sample_cb,
12945 perf_buffer_lost_fn lost_cb,
12946 void *ctx,
12947 const struct perf_buffer_opts *opts)
12948 {
12949 const size_t attr_sz = sizeof(struct perf_event_attr);
12950 struct perf_buffer_params p = {};
12951 struct perf_event_attr attr;
12952 __u32 sample_period;
12953
12954 if (!OPTS_VALID(opts, perf_buffer_opts))
12955 return libbpf_err_ptr(-EINVAL);
12956
12957 sample_period = OPTS_GET(opts, sample_period, 1);
12958 if (!sample_period)
12959 sample_period = 1;
12960
12961 memset(&attr, 0, attr_sz);
12962 attr.size = attr_sz;
12963 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12964 attr.type = PERF_TYPE_SOFTWARE;
12965 attr.sample_type = PERF_SAMPLE_RAW;
12966 attr.sample_period = sample_period;
12967 attr.wakeup_events = sample_period;
12968
12969 p.attr = &attr;
12970 p.sample_cb = sample_cb;
12971 p.lost_cb = lost_cb;
12972 p.ctx = ctx;
12973
12974 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12975 }
12976
12977 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12978 struct perf_event_attr *attr,
12979 perf_buffer_event_fn event_cb, void *ctx,
12980 const struct perf_buffer_raw_opts *opts)
12981 {
12982 struct perf_buffer_params p = {};
12983
12984 if (!attr)
12985 return libbpf_err_ptr(-EINVAL);
12986
12987 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12988 return libbpf_err_ptr(-EINVAL);
12989
12990 p.attr = attr;
12991 p.event_cb = event_cb;
12992 p.ctx = ctx;
12993 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12994 p.cpus = OPTS_GET(opts, cpus, NULL);
12995 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12996
12997 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12998 }
12999
13000 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13001 struct perf_buffer_params *p)
13002 {
13003 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13004 struct bpf_map_info map;
13005 char msg[STRERR_BUFSIZE];
13006 struct perf_buffer *pb;
13007 bool *online = NULL;
13008 __u32 map_info_len;
13009 int err, i, j, n;
13010
13011 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13012 pr_warn("page count should be power of two, but is %zu\n",
13013 page_cnt);
13014 return ERR_PTR(-EINVAL);
13015 }
13016
13017 /* best-effort sanity checks */
13018 memset(&map, 0, sizeof(map));
13019 map_info_len = sizeof(map);
13020 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13021 if (err) {
13022 err = -errno;
13023 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13024 * -EBADFD, -EFAULT, or -E2BIG on real error
13025 */
13026 if (err != -EINVAL) {
13027 pr_warn("failed to get map info for map FD %d: %s\n",
13028 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13029 return ERR_PTR(err);
13030 }
13031 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13032 map_fd);
13033 } else {
13034 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13035 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13036 map.name);
13037 return ERR_PTR(-EINVAL);
13038 }
13039 }
13040
13041 pb = calloc(1, sizeof(*pb));
13042 if (!pb)
13043 return ERR_PTR(-ENOMEM);
13044
13045 pb->event_cb = p->event_cb;
13046 pb->sample_cb = p->sample_cb;
13047 pb->lost_cb = p->lost_cb;
13048 pb->ctx = p->ctx;
13049
13050 pb->page_size = getpagesize();
13051 pb->mmap_size = pb->page_size * page_cnt;
13052 pb->map_fd = map_fd;
13053
13054 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13055 if (pb->epoll_fd < 0) {
13056 err = -errno;
13057 pr_warn("failed to create epoll instance: %s\n",
13058 libbpf_strerror_r(err, msg, sizeof(msg)));
13059 goto error;
13060 }
13061
13062 if (p->cpu_cnt > 0) {
13063 pb->cpu_cnt = p->cpu_cnt;
13064 } else {
13065 pb->cpu_cnt = libbpf_num_possible_cpus();
13066 if (pb->cpu_cnt < 0) {
13067 err = pb->cpu_cnt;
13068 goto error;
13069 }
13070 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13071 pb->cpu_cnt = map.max_entries;
13072 }
13073
13074 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13075 if (!pb->events) {
13076 err = -ENOMEM;
13077 pr_warn("failed to allocate events: out of memory\n");
13078 goto error;
13079 }
13080 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13081 if (!pb->cpu_bufs) {
13082 err = -ENOMEM;
13083 pr_warn("failed to allocate buffers: out of memory\n");
13084 goto error;
13085 }
13086
13087 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13088 if (err) {
13089 pr_warn("failed to get online CPU mask: %d\n", err);
13090 goto error;
13091 }
13092
13093 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13094 struct perf_cpu_buf *cpu_buf;
13095 int cpu, map_key;
13096
13097 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13098 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13099
13100 /* in case user didn't explicitly requested particular CPUs to
13101 * be attached to, skip offline/not present CPUs
13102 */
13103 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13104 continue;
13105
13106 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13107 if (IS_ERR(cpu_buf)) {
13108 err = PTR_ERR(cpu_buf);
13109 goto error;
13110 }
13111
13112 pb->cpu_bufs[j] = cpu_buf;
13113
13114 err = bpf_map_update_elem(pb->map_fd, &map_key,
13115 &cpu_buf->fd, 0);
13116 if (err) {
13117 err = -errno;
13118 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13119 cpu, map_key, cpu_buf->fd,
13120 libbpf_strerror_r(err, msg, sizeof(msg)));
13121 goto error;
13122 }
13123
13124 pb->events[j].events = EPOLLIN;
13125 pb->events[j].data.ptr = cpu_buf;
13126 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13127 &pb->events[j]) < 0) {
13128 err = -errno;
13129 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13130 cpu, cpu_buf->fd,
13131 libbpf_strerror_r(err, msg, sizeof(msg)));
13132 goto error;
13133 }
13134 j++;
13135 }
13136 pb->cpu_cnt = j;
13137 free(online);
13138
13139 return pb;
13140
13141 error:
13142 free(online);
13143 if (pb)
13144 perf_buffer__free(pb);
13145 return ERR_PTR(err);
13146 }
13147
13148 struct perf_sample_raw {
13149 struct perf_event_header header;
13150 uint32_t size;
13151 char data[];
13152 };
13153
13154 struct perf_sample_lost {
13155 struct perf_event_header header;
13156 uint64_t id;
13157 uint64_t lost;
13158 uint64_t sample_id;
13159 };
13160
13161 static enum bpf_perf_event_ret
13162 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13163 {
13164 struct perf_cpu_buf *cpu_buf = ctx;
13165 struct perf_buffer *pb = cpu_buf->pb;
13166 void *data = e;
13167
13168 /* user wants full control over parsing perf event */
13169 if (pb->event_cb)
13170 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13171
13172 switch (e->type) {
13173 case PERF_RECORD_SAMPLE: {
13174 struct perf_sample_raw *s = data;
13175
13176 if (pb->sample_cb)
13177 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13178 break;
13179 }
13180 case PERF_RECORD_LOST: {
13181 struct perf_sample_lost *s = data;
13182
13183 if (pb->lost_cb)
13184 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13185 break;
13186 }
13187 default:
13188 pr_warn("unknown perf sample type %d\n", e->type);
13189 return LIBBPF_PERF_EVENT_ERROR;
13190 }
13191 return LIBBPF_PERF_EVENT_CONT;
13192 }
13193
13194 static int perf_buffer__process_records(struct perf_buffer *pb,
13195 struct perf_cpu_buf *cpu_buf)
13196 {
13197 enum bpf_perf_event_ret ret;
13198
13199 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13200 pb->page_size, &cpu_buf->buf,
13201 &cpu_buf->buf_size,
13202 perf_buffer__process_record, cpu_buf);
13203 if (ret != LIBBPF_PERF_EVENT_CONT)
13204 return ret;
13205 return 0;
13206 }
13207
13208 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13209 {
13210 return pb->epoll_fd;
13211 }
13212
13213 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13214 {
13215 int i, cnt, err;
13216
13217 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13218 if (cnt < 0)
13219 return -errno;
13220
13221 for (i = 0; i < cnt; i++) {
13222 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13223
13224 err = perf_buffer__process_records(pb, cpu_buf);
13225 if (err) {
13226 pr_warn("error while processing records: %d\n", err);
13227 return libbpf_err(err);
13228 }
13229 }
13230 return cnt;
13231 }
13232
13233 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13234 * manager.
13235 */
13236 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13237 {
13238 return pb->cpu_cnt;
13239 }
13240
13241 /*
13242 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13243 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13244 * select()/poll()/epoll() Linux syscalls.
13245 */
13246 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13247 {
13248 struct perf_cpu_buf *cpu_buf;
13249
13250 if (buf_idx >= pb->cpu_cnt)
13251 return libbpf_err(-EINVAL);
13252
13253 cpu_buf = pb->cpu_bufs[buf_idx];
13254 if (!cpu_buf)
13255 return libbpf_err(-ENOENT);
13256
13257 return cpu_buf->fd;
13258 }
13259
13260 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13261 {
13262 struct perf_cpu_buf *cpu_buf;
13263
13264 if (buf_idx >= pb->cpu_cnt)
13265 return libbpf_err(-EINVAL);
13266
13267 cpu_buf = pb->cpu_bufs[buf_idx];
13268 if (!cpu_buf)
13269 return libbpf_err(-ENOENT);
13270
13271 *buf = cpu_buf->base;
13272 *buf_size = pb->mmap_size;
13273 return 0;
13274 }
13275
13276 /*
13277 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13278 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13279 * consume, do nothing and return success.
13280 * Returns:
13281 * - 0 on success;
13282 * - <0 on failure.
13283 */
13284 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13285 {
13286 struct perf_cpu_buf *cpu_buf;
13287
13288 if (buf_idx >= pb->cpu_cnt)
13289 return libbpf_err(-EINVAL);
13290
13291 cpu_buf = pb->cpu_bufs[buf_idx];
13292 if (!cpu_buf)
13293 return libbpf_err(-ENOENT);
13294
13295 return perf_buffer__process_records(pb, cpu_buf);
13296 }
13297
13298 int perf_buffer__consume(struct perf_buffer *pb)
13299 {
13300 int i, err;
13301
13302 for (i = 0; i < pb->cpu_cnt; i++) {
13303 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13304
13305 if (!cpu_buf)
13306 continue;
13307
13308 err = perf_buffer__process_records(pb, cpu_buf);
13309 if (err) {
13310 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13311 return libbpf_err(err);
13312 }
13313 }
13314 return 0;
13315 }
13316
13317 int bpf_program__set_attach_target(struct bpf_program *prog,
13318 int attach_prog_fd,
13319 const char *attach_func_name)
13320 {
13321 int btf_obj_fd = 0, btf_id = 0, err;
13322
13323 if (!prog || attach_prog_fd < 0)
13324 return libbpf_err(-EINVAL);
13325
13326 if (prog->obj->loaded)
13327 return libbpf_err(-EINVAL);
13328
13329 if (attach_prog_fd && !attach_func_name) {
13330 /* remember attach_prog_fd and let bpf_program__load() find
13331 * BTF ID during the program load
13332 */
13333 prog->attach_prog_fd = attach_prog_fd;
13334 return 0;
13335 }
13336
13337 if (attach_prog_fd) {
13338 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13339 attach_prog_fd);
13340 if (btf_id < 0)
13341 return libbpf_err(btf_id);
13342 } else {
13343 if (!attach_func_name)
13344 return libbpf_err(-EINVAL);
13345
13346 /* load btf_vmlinux, if not yet */
13347 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13348 if (err)
13349 return libbpf_err(err);
13350 err = find_kernel_btf_id(prog->obj, attach_func_name,
13351 prog->expected_attach_type,
13352 &btf_obj_fd, &btf_id);
13353 if (err)
13354 return libbpf_err(err);
13355 }
13356
13357 prog->attach_btf_id = btf_id;
13358 prog->attach_btf_obj_fd = btf_obj_fd;
13359 prog->attach_prog_fd = attach_prog_fd;
13360 return 0;
13361 }
13362
13363 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13364 {
13365 int err = 0, n, len, start, end = -1;
13366 bool *tmp;
13367
13368 *mask = NULL;
13369 *mask_sz = 0;
13370
13371 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13372 while (*s) {
13373 if (*s == ',' || *s == '\n') {
13374 s++;
13375 continue;
13376 }
13377 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13378 if (n <= 0 || n > 2) {
13379 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13380 err = -EINVAL;
13381 goto cleanup;
13382 } else if (n == 1) {
13383 end = start;
13384 }
13385 if (start < 0 || start > end) {
13386 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13387 start, end, s);
13388 err = -EINVAL;
13389 goto cleanup;
13390 }
13391 tmp = realloc(*mask, end + 1);
13392 if (!tmp) {
13393 err = -ENOMEM;
13394 goto cleanup;
13395 }
13396 *mask = tmp;
13397 memset(tmp + *mask_sz, 0, start - *mask_sz);
13398 memset(tmp + start, 1, end - start + 1);
13399 *mask_sz = end + 1;
13400 s += len;
13401 }
13402 if (!*mask_sz) {
13403 pr_warn("Empty CPU range\n");
13404 return -EINVAL;
13405 }
13406 return 0;
13407 cleanup:
13408 free(*mask);
13409 *mask = NULL;
13410 return err;
13411 }
13412
13413 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13414 {
13415 int fd, err = 0, len;
13416 char buf[128];
13417
13418 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13419 if (fd < 0) {
13420 err = -errno;
13421 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13422 return err;
13423 }
13424 len = read(fd, buf, sizeof(buf));
13425 close(fd);
13426 if (len <= 0) {
13427 err = len ? -errno : -EINVAL;
13428 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13429 return err;
13430 }
13431 if (len >= sizeof(buf)) {
13432 pr_warn("CPU mask is too big in file %s\n", fcpu);
13433 return -E2BIG;
13434 }
13435 buf[len] = '\0';
13436
13437 return parse_cpu_mask_str(buf, mask, mask_sz);
13438 }
13439
13440 int libbpf_num_possible_cpus(void)
13441 {
13442 static const char *fcpu = "/sys/devices/system/cpu/possible";
13443 static int cpus;
13444 int err, n, i, tmp_cpus;
13445 bool *mask;
13446
13447 tmp_cpus = READ_ONCE(cpus);
13448 if (tmp_cpus > 0)
13449 return tmp_cpus;
13450
13451 err = parse_cpu_mask_file(fcpu, &mask, &n);
13452 if (err)
13453 return libbpf_err(err);
13454
13455 tmp_cpus = 0;
13456 for (i = 0; i < n; i++) {
13457 if (mask[i])
13458 tmp_cpus++;
13459 }
13460 free(mask);
13461
13462 WRITE_ONCE(cpus, tmp_cpus);
13463 return tmp_cpus;
13464 }
13465
13466 static int populate_skeleton_maps(const struct bpf_object *obj,
13467 struct bpf_map_skeleton *maps,
13468 size_t map_cnt)
13469 {
13470 int i;
13471
13472 for (i = 0; i < map_cnt; i++) {
13473 struct bpf_map **map = maps[i].map;
13474 const char *name = maps[i].name;
13475 void **mmaped = maps[i].mmaped;
13476
13477 *map = bpf_object__find_map_by_name(obj, name);
13478 if (!*map) {
13479 pr_warn("failed to find skeleton map '%s'\n", name);
13480 return -ESRCH;
13481 }
13482
13483 /* externs shouldn't be pre-setup from user code */
13484 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13485 *mmaped = (*map)->mmaped;
13486 }
13487 return 0;
13488 }
13489
13490 static int populate_skeleton_progs(const struct bpf_object *obj,
13491 struct bpf_prog_skeleton *progs,
13492 size_t prog_cnt)
13493 {
13494 int i;
13495
13496 for (i = 0; i < prog_cnt; i++) {
13497 struct bpf_program **prog = progs[i].prog;
13498 const char *name = progs[i].name;
13499
13500 *prog = bpf_object__find_program_by_name(obj, name);
13501 if (!*prog) {
13502 pr_warn("failed to find skeleton program '%s'\n", name);
13503 return -ESRCH;
13504 }
13505 }
13506 return 0;
13507 }
13508
13509 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13510 const struct bpf_object_open_opts *opts)
13511 {
13512 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13513 .object_name = s->name,
13514 );
13515 struct bpf_object *obj;
13516 int err;
13517
13518 /* Attempt to preserve opts->object_name, unless overriden by user
13519 * explicitly. Overwriting object name for skeletons is discouraged,
13520 * as it breaks global data maps, because they contain object name
13521 * prefix as their own map name prefix. When skeleton is generated,
13522 * bpftool is making an assumption that this name will stay the same.
13523 */
13524 if (opts) {
13525 memcpy(&skel_opts, opts, sizeof(*opts));
13526 if (!opts->object_name)
13527 skel_opts.object_name = s->name;
13528 }
13529
13530 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13531 err = libbpf_get_error(obj);
13532 if (err) {
13533 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13534 s->name, err);
13535 return libbpf_err(err);
13536 }
13537
13538 *s->obj = obj;
13539 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13540 if (err) {
13541 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13542 return libbpf_err(err);
13543 }
13544
13545 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13546 if (err) {
13547 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13548 return libbpf_err(err);
13549 }
13550
13551 return 0;
13552 }
13553
13554 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13555 {
13556 int err, len, var_idx, i;
13557 const char *var_name;
13558 const struct bpf_map *map;
13559 struct btf *btf;
13560 __u32 map_type_id;
13561 const struct btf_type *map_type, *var_type;
13562 const struct bpf_var_skeleton *var_skel;
13563 struct btf_var_secinfo *var;
13564
13565 if (!s->obj)
13566 return libbpf_err(-EINVAL);
13567
13568 btf = bpf_object__btf(s->obj);
13569 if (!btf) {
13570 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13571 bpf_object__name(s->obj));
13572 return libbpf_err(-errno);
13573 }
13574
13575 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13576 if (err) {
13577 pr_warn("failed to populate subskeleton maps: %d\n", err);
13578 return libbpf_err(err);
13579 }
13580
13581 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13582 if (err) {
13583 pr_warn("failed to populate subskeleton maps: %d\n", err);
13584 return libbpf_err(err);
13585 }
13586
13587 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13588 var_skel = &s->vars[var_idx];
13589 map = *var_skel->map;
13590 map_type_id = bpf_map__btf_value_type_id(map);
13591 map_type = btf__type_by_id(btf, map_type_id);
13592
13593 if (!btf_is_datasec(map_type)) {
13594 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13595 bpf_map__name(map),
13596 __btf_kind_str(btf_kind(map_type)));
13597 return libbpf_err(-EINVAL);
13598 }
13599
13600 len = btf_vlen(map_type);
13601 var = btf_var_secinfos(map_type);
13602 for (i = 0; i < len; i++, var++) {
13603 var_type = btf__type_by_id(btf, var->type);
13604 var_name = btf__name_by_offset(btf, var_type->name_off);
13605 if (strcmp(var_name, var_skel->name) == 0) {
13606 *var_skel->addr = map->mmaped + var->offset;
13607 break;
13608 }
13609 }
13610 }
13611 return 0;
13612 }
13613
13614 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13615 {
13616 if (!s)
13617 return;
13618 free(s->maps);
13619 free(s->progs);
13620 free(s->vars);
13621 free(s);
13622 }
13623
13624 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13625 {
13626 int i, err;
13627
13628 err = bpf_object__load(*s->obj);
13629 if (err) {
13630 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13631 return libbpf_err(err);
13632 }
13633
13634 for (i = 0; i < s->map_cnt; i++) {
13635 struct bpf_map *map = *s->maps[i].map;
13636 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13637 int prot, map_fd = bpf_map__fd(map);
13638 void **mmaped = s->maps[i].mmaped;
13639
13640 if (!mmaped)
13641 continue;
13642
13643 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13644 *mmaped = NULL;
13645 continue;
13646 }
13647
13648 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13649 prot = PROT_READ;
13650 else
13651 prot = PROT_READ | PROT_WRITE;
13652
13653 /* Remap anonymous mmap()-ed "map initialization image" as
13654 * a BPF map-backed mmap()-ed memory, but preserving the same
13655 * memory address. This will cause kernel to change process'
13656 * page table to point to a different piece of kernel memory,
13657 * but from userspace point of view memory address (and its
13658 * contents, being identical at this point) will stay the
13659 * same. This mapping will be released by bpf_object__close()
13660 * as per normal clean up procedure, so we don't need to worry
13661 * about it from skeleton's clean up perspective.
13662 */
13663 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13664 if (*mmaped == MAP_FAILED) {
13665 err = -errno;
13666 *mmaped = NULL;
13667 pr_warn("failed to re-mmap() map '%s': %d\n",
13668 bpf_map__name(map), err);
13669 return libbpf_err(err);
13670 }
13671 }
13672
13673 return 0;
13674 }
13675
13676 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13677 {
13678 int i, err;
13679
13680 for (i = 0; i < s->prog_cnt; i++) {
13681 struct bpf_program *prog = *s->progs[i].prog;
13682 struct bpf_link **link = s->progs[i].link;
13683
13684 if (!prog->autoload || !prog->autoattach)
13685 continue;
13686
13687 /* auto-attaching not supported for this program */
13688 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13689 continue;
13690
13691 /* if user already set the link manually, don't attempt auto-attach */
13692 if (*link)
13693 continue;
13694
13695 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13696 if (err) {
13697 pr_warn("prog '%s': failed to auto-attach: %d\n",
13698 bpf_program__name(prog), err);
13699 return libbpf_err(err);
13700 }
13701
13702 /* It's possible that for some SEC() definitions auto-attach
13703 * is supported in some cases (e.g., if definition completely
13704 * specifies target information), but is not in other cases.
13705 * SEC("uprobe") is one such case. If user specified target
13706 * binary and function name, such BPF program can be
13707 * auto-attached. But if not, it shouldn't trigger skeleton's
13708 * attach to fail. It should just be skipped.
13709 * attach_fn signals such case with returning 0 (no error) and
13710 * setting link to NULL.
13711 */
13712 }
13713
13714 return 0;
13715 }
13716
13717 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13718 {
13719 int i;
13720
13721 for (i = 0; i < s->prog_cnt; i++) {
13722 struct bpf_link **link = s->progs[i].link;
13723
13724 bpf_link__destroy(*link);
13725 *link = NULL;
13726 }
13727 }
13728
13729 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13730 {
13731 if (!s)
13732 return;
13733
13734 if (s->progs)
13735 bpf_object__detach_skeleton(s);
13736 if (s->obj)
13737 bpf_object__close(*s->obj);
13738 free(s->maps);
13739 free(s->progs);
13740 free(s);
13741 }
13742