1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 return dev_get_drvdata(&intf->dev);
266 }
267
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 dev_set_drvdata(&intf->dev, data);
271 }
272
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275
276 /* Hard limit */
277 #define USB_MAXENDPOINTS 30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES 32
280 #define USB_MAXIADS (USB_MAXINTERFACES/2)
281
282 bool usb_check_bulk_endpoints(
283 const struct usb_interface *intf, const u8 *ep_addrs);
284 bool usb_check_int_endpoints(
285 const struct usb_interface *intf, const u8 *ep_addrs);
286
287 /*
288 * USB Resume Timer: Every Host controller driver should drive the resume
289 * signalling on the bus for the amount of time defined by this macro.
290 *
291 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
292 *
293 * Note that the USB Specification states we should drive resume for *at least*
294 * 20 ms, but it doesn't give an upper bound. This creates two possible
295 * situations which we want to avoid:
296 *
297 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
298 * us to fail USB Electrical Tests, thus failing Certification
299 *
300 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
301 * and while we can argue that's against the USB Specification, we don't have
302 * control over which devices a certification laboratory will be using for
303 * certification. If CertLab uses a device which was tested against Windows and
304 * that happens to have relaxed resume signalling rules, we might fall into
305 * situations where we fail interoperability and electrical tests.
306 *
307 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
308 * should cope with both LPJ calibration errors and devices not following every
309 * detail of the USB Specification.
310 */
311 #define USB_RESUME_TIMEOUT 40 /* ms */
312
313 /**
314 * struct usb_interface_cache - long-term representation of a device interface
315 * @num_altsetting: number of altsettings defined.
316 * @ref: reference counter.
317 * @altsetting: variable-length array of interface structures, one for
318 * each alternate setting that may be selected. Each one includes a
319 * set of endpoint configurations. They will be in no particular order.
320 *
321 * These structures persist for the lifetime of a usb_device, unlike
322 * struct usb_interface (which persists only as long as its configuration
323 * is installed). The altsetting arrays can be accessed through these
324 * structures at any time, permitting comparison of configurations and
325 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
326 */
327 struct usb_interface_cache {
328 unsigned num_altsetting; /* number of alternate settings */
329 struct kref ref; /* reference counter */
330
331 /* variable-length array of alternate settings for this interface,
332 * stored in no particular order */
333 struct usb_host_interface altsetting[];
334 };
335 #define ref_to_usb_interface_cache(r) \
336 container_of(r, struct usb_interface_cache, ref)
337 #define altsetting_to_usb_interface_cache(a) \
338 container_of(a, struct usb_interface_cache, altsetting[0])
339
340 /**
341 * struct usb_host_config - representation of a device's configuration
342 * @desc: the device's configuration descriptor.
343 * @string: pointer to the cached version of the iConfiguration string, if
344 * present for this configuration.
345 * @intf_assoc: list of any interface association descriptors in this config
346 * @interface: array of pointers to usb_interface structures, one for each
347 * interface in the configuration. The number of interfaces is stored
348 * in desc.bNumInterfaces. These pointers are valid only while the
349 * configuration is active.
350 * @intf_cache: array of pointers to usb_interface_cache structures, one
351 * for each interface in the configuration. These structures exist
352 * for the entire life of the device.
353 * @extra: pointer to buffer containing all extra descriptors associated
354 * with this configuration (those preceding the first interface
355 * descriptor).
356 * @extralen: length of the extra descriptors buffer.
357 *
358 * USB devices may have multiple configurations, but only one can be active
359 * at any time. Each encapsulates a different operational environment;
360 * for example, a dual-speed device would have separate configurations for
361 * full-speed and high-speed operation. The number of configurations
362 * available is stored in the device descriptor as bNumConfigurations.
363 *
364 * A configuration can contain multiple interfaces. Each corresponds to
365 * a different function of the USB device, and all are available whenever
366 * the configuration is active. The USB standard says that interfaces
367 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
368 * of devices get this wrong. In addition, the interface array is not
369 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
370 * look up an interface entry based on its number.
371 *
372 * Device drivers should not attempt to activate configurations. The choice
373 * of which configuration to install is a policy decision based on such
374 * considerations as available power, functionality provided, and the user's
375 * desires (expressed through userspace tools). However, drivers can call
376 * usb_reset_configuration() to reinitialize the current configuration and
377 * all its interfaces.
378 */
379 struct usb_host_config {
380 struct usb_config_descriptor desc;
381
382 char *string; /* iConfiguration string, if present */
383
384 /* List of any Interface Association Descriptors in this
385 * configuration. */
386 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
387
388 /* the interfaces associated with this configuration,
389 * stored in no particular order */
390 struct usb_interface *interface[USB_MAXINTERFACES];
391
392 /* Interface information available even when this is not the
393 * active configuration */
394 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
395
396 unsigned char *extra; /* Extra descriptors */
397 int extralen;
398 };
399
400 /* USB2.0 and USB3.0 device BOS descriptor set */
401 struct usb_host_bos {
402 struct usb_bos_descriptor *desc;
403
404 /* wireless cap descriptor is handled by wusb */
405 struct usb_ext_cap_descriptor *ext_cap;
406 struct usb_ss_cap_descriptor *ss_cap;
407 struct usb_ssp_cap_descriptor *ssp_cap;
408 struct usb_ss_container_id_descriptor *ss_id;
409 struct usb_ptm_cap_descriptor *ptm_cap;
410 };
411
412 int __usb_get_extra_descriptor(char *buffer, unsigned size,
413 unsigned char type, void **ptr, size_t min);
414 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
415 __usb_get_extra_descriptor((ifpoint)->extra, \
416 (ifpoint)->extralen, \
417 type, (void **)ptr, sizeof(**(ptr)))
418
419 /* ----------------------------------------------------------------------- */
420
421 /* USB device number allocation bitmap */
422 struct usb_devmap {
423 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
424 };
425
426 /*
427 * Allocated per bus (tree of devices) we have:
428 */
429 struct usb_bus {
430 struct device *controller; /* host side hardware */
431 struct device *sysdev; /* as seen from firmware or bus */
432 int busnum; /* Bus number (in order of reg) */
433 const char *bus_name; /* stable id (PCI slot_name etc) */
434 u8 uses_pio_for_control; /*
435 * Does the host controller use PIO
436 * for control transfers?
437 */
438 u8 otg_port; /* 0, or number of OTG/HNP port */
439 unsigned is_b_host:1; /* true during some HNP roleswitches */
440 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
441 unsigned no_stop_on_short:1; /*
442 * Quirk: some controllers don't stop
443 * the ep queue on a short transfer
444 * with the URB_SHORT_NOT_OK flag set.
445 */
446 unsigned no_sg_constraint:1; /* no sg constraint */
447 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
448
449 int devnum_next; /* Next open device number in
450 * round-robin allocation */
451 struct mutex devnum_next_mutex; /* devnum_next mutex */
452
453 struct usb_devmap devmap; /* device address allocation map */
454 struct usb_device *root_hub; /* Root hub */
455 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
456
457 int bandwidth_allocated; /* on this bus: how much of the time
458 * reserved for periodic (intr/iso)
459 * requests is used, on average?
460 * Units: microseconds/frame.
461 * Limits: Full/low speed reserve 90%,
462 * while high speed reserves 80%.
463 */
464 int bandwidth_int_reqs; /* number of Interrupt requests */
465 int bandwidth_isoc_reqs; /* number of Isoc. requests */
466
467 unsigned resuming_ports; /* bit array: resuming root-hub ports */
468
469 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
470 struct mon_bus *mon_bus; /* non-null when associated */
471 int monitored; /* non-zero when monitored */
472 #endif
473 };
474
475 struct usb_dev_state;
476
477 /* ----------------------------------------------------------------------- */
478
479 struct usb_tt;
480
481 enum usb_device_removable {
482 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
483 USB_DEVICE_REMOVABLE,
484 USB_DEVICE_FIXED,
485 };
486
487 enum usb_port_connect_type {
488 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
489 USB_PORT_CONNECT_TYPE_HOT_PLUG,
490 USB_PORT_CONNECT_TYPE_HARD_WIRED,
491 USB_PORT_NOT_USED,
492 };
493
494 /*
495 * USB port quirks.
496 */
497
498 /* For the given port, prefer the old (faster) enumeration scheme. */
499 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
500
501 /* Decrease TRSTRCY to 10ms during device enumeration. */
502 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
503
504 /*
505 * USB 2.0 Link Power Management (LPM) parameters.
506 */
507 struct usb2_lpm_parameters {
508 /* Best effort service latency indicate how long the host will drive
509 * resume on an exit from L1.
510 */
511 unsigned int besl;
512
513 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
514 * When the timer counts to zero, the parent hub will initiate a LPM
515 * transition to L1.
516 */
517 int timeout;
518 };
519
520 /*
521 * USB 3.0 Link Power Management (LPM) parameters.
522 *
523 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
524 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
525 * All three are stored in nanoseconds.
526 */
527 struct usb3_lpm_parameters {
528 /*
529 * Maximum exit latency (MEL) for the host to send a packet to the
530 * device (either a Ping for isoc endpoints, or a data packet for
531 * interrupt endpoints), the hubs to decode the packet, and for all hubs
532 * in the path to transition the links to U0.
533 */
534 unsigned int mel;
535 /*
536 * Maximum exit latency for a device-initiated LPM transition to bring
537 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
538 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
539 */
540 unsigned int pel;
541
542 /*
543 * The System Exit Latency (SEL) includes PEL, and three other
544 * latencies. After a device initiates a U0 transition, it will take
545 * some time from when the device sends the ERDY to when it will finally
546 * receive the data packet. Basically, SEL should be the worse-case
547 * latency from when a device starts initiating a U0 transition to when
548 * it will get data.
549 */
550 unsigned int sel;
551 /*
552 * The idle timeout value that is currently programmed into the parent
553 * hub for this device. When the timer counts to zero, the parent hub
554 * will initiate an LPM transition to either U1 or U2.
555 */
556 int timeout;
557 };
558
559 /**
560 * struct usb_device - kernel's representation of a USB device
561 * @devnum: device number; address on a USB bus
562 * @devpath: device ID string for use in messages (e.g., /port/...)
563 * @route: tree topology hex string for use with xHCI
564 * @state: device state: configured, not attached, etc.
565 * @speed: device speed: high/full/low (or error)
566 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
567 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
568 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
569 * @ttport: device port on that tt hub
570 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
571 * @parent: our hub, unless we're the root
572 * @bus: bus we're part of
573 * @ep0: endpoint 0 data (default control pipe)
574 * @dev: generic device interface
575 * @descriptor: USB device descriptor
576 * @bos: USB device BOS descriptor set
577 * @config: all of the device's configs
578 * @actconfig: the active configuration
579 * @ep_in: array of IN endpoints
580 * @ep_out: array of OUT endpoints
581 * @rawdescriptors: raw descriptors for each config
582 * @bus_mA: Current available from the bus
583 * @portnum: parent port number (origin 1)
584 * @level: number of USB hub ancestors
585 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
586 * @can_submit: URBs may be submitted
587 * @persist_enabled: USB_PERSIST enabled for this device
588 * @reset_in_progress: the device is being reset
589 * @have_langid: whether string_langid is valid
590 * @authorized: policy has said we can use it;
591 * (user space) policy determines if we authorize this device to be
592 * used or not. By default, wired USB devices are authorized.
593 * WUSB devices are not, until we authorize them from user space.
594 * FIXME -- complete doc
595 * @authenticated: Crypto authentication passed
596 * @wusb: device is Wireless USB
597 * @lpm_capable: device supports LPM
598 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
599 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
600 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
601 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
602 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
603 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
604 * @string_langid: language ID for strings
605 * @product: iProduct string, if present (static)
606 * @manufacturer: iManufacturer string, if present (static)
607 * @serial: iSerialNumber string, if present (static)
608 * @filelist: usbfs files that are open to this device
609 * @maxchild: number of ports if hub
610 * @quirks: quirks of the whole device
611 * @urbnum: number of URBs submitted for the whole device
612 * @active_duration: total time device is not suspended
613 * @connect_time: time device was first connected
614 * @do_remote_wakeup: remote wakeup should be enabled
615 * @reset_resume: needs reset instead of resume
616 * @port_is_suspended: the upstream port is suspended (L2 or U3)
617 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
618 * specific data for the device.
619 * @slot_id: Slot ID assigned by xHCI
620 * @removable: Device can be physically removed from this port
621 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
622 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
623 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
624 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
625 * to keep track of the number of functions that require USB 3.0 Link Power
626 * Management to be disabled for this usb_device. This count should only
627 * be manipulated by those functions, with the bandwidth_mutex is held.
628 * @hub_delay: cached value consisting of:
629 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
630 * Will be used as wValue for SetIsochDelay requests.
631 * @use_generic_driver: ask driver core to reprobe using the generic driver.
632 *
633 * Notes:
634 * Usbcore drivers should not set usbdev->state directly. Instead use
635 * usb_set_device_state().
636 */
637 struct usb_device {
638 int devnum;
639 char devpath[16];
640 u32 route;
641 enum usb_device_state state;
642 enum usb_device_speed speed;
643 unsigned int rx_lanes;
644 unsigned int tx_lanes;
645
646 struct usb_tt *tt;
647 int ttport;
648
649 unsigned int toggle[2];
650
651 struct usb_device *parent;
652 struct usb_bus *bus;
653 struct usb_host_endpoint ep0;
654
655 struct device dev;
656
657 struct usb_device_descriptor descriptor;
658 struct usb_host_bos *bos;
659 struct usb_host_config *config;
660
661 struct usb_host_config *actconfig;
662 struct usb_host_endpoint *ep_in[16];
663 struct usb_host_endpoint *ep_out[16];
664
665 char **rawdescriptors;
666
667 unsigned short bus_mA;
668 u8 portnum;
669 u8 level;
670 u8 devaddr;
671
672 unsigned can_submit:1;
673 unsigned persist_enabled:1;
674 unsigned reset_in_progress:1;
675 unsigned have_langid:1;
676 unsigned authorized:1;
677 unsigned authenticated:1;
678 unsigned wusb:1;
679 unsigned lpm_capable:1;
680 unsigned usb2_hw_lpm_capable:1;
681 unsigned usb2_hw_lpm_besl_capable:1;
682 unsigned usb2_hw_lpm_enabled:1;
683 unsigned usb2_hw_lpm_allowed:1;
684 unsigned usb3_lpm_u1_enabled:1;
685 unsigned usb3_lpm_u2_enabled:1;
686 int string_langid;
687
688 /* static strings from the device */
689 char *product;
690 char *manufacturer;
691 char *serial;
692
693 struct list_head filelist;
694
695 int maxchild;
696
697 u32 quirks;
698 atomic_t urbnum;
699
700 unsigned long active_duration;
701
702 #ifdef CONFIG_PM
703 unsigned long connect_time;
704
705 unsigned do_remote_wakeup:1;
706 unsigned reset_resume:1;
707 unsigned port_is_suspended:1;
708 #endif
709 struct wusb_dev *wusb_dev;
710 int slot_id;
711 enum usb_device_removable removable;
712 struct usb2_lpm_parameters l1_params;
713 struct usb3_lpm_parameters u1_params;
714 struct usb3_lpm_parameters u2_params;
715 unsigned lpm_disable_count;
716
717 u16 hub_delay;
718 unsigned use_generic_driver:1;
719 };
720 #define to_usb_device(d) container_of(d, struct usb_device, dev)
721
interface_to_usbdev(struct usb_interface * intf)722 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
723 {
724 return to_usb_device(intf->dev.parent);
725 }
726
727 extern struct usb_device *usb_get_dev(struct usb_device *dev);
728 extern void usb_put_dev(struct usb_device *dev);
729 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
730 int port1);
731
732 /**
733 * usb_hub_for_each_child - iterate over all child devices on the hub
734 * @hdev: USB device belonging to the usb hub
735 * @port1: portnum associated with child device
736 * @child: child device pointer
737 */
738 #define usb_hub_for_each_child(hdev, port1, child) \
739 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
740 port1 <= hdev->maxchild; \
741 child = usb_hub_find_child(hdev, ++port1)) \
742 if (!child) continue; else
743
744 /* USB device locking */
745 #define usb_lock_device(udev) device_lock(&(udev)->dev)
746 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
747 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
748 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
749 extern int usb_lock_device_for_reset(struct usb_device *udev,
750 const struct usb_interface *iface);
751
752 /* USB port reset for device reinitialization */
753 extern int usb_reset_device(struct usb_device *dev);
754 extern void usb_queue_reset_device(struct usb_interface *dev);
755
756 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
757
758 #ifdef CONFIG_ACPI
759 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
760 bool enable);
761 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
762 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
763 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)764 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
765 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)766 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
767 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)768 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
769 { return 0; }
770 #endif
771
772 /* USB autosuspend and autoresume */
773 #ifdef CONFIG_PM
774 extern void usb_enable_autosuspend(struct usb_device *udev);
775 extern void usb_disable_autosuspend(struct usb_device *udev);
776
777 extern int usb_autopm_get_interface(struct usb_interface *intf);
778 extern void usb_autopm_put_interface(struct usb_interface *intf);
779 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
780 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
781 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
782 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
783
usb_mark_last_busy(struct usb_device * udev)784 static inline void usb_mark_last_busy(struct usb_device *udev)
785 {
786 pm_runtime_mark_last_busy(&udev->dev);
787 }
788
789 #else
790
usb_enable_autosuspend(struct usb_device * udev)791 static inline int usb_enable_autosuspend(struct usb_device *udev)
792 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)793 static inline int usb_disable_autosuspend(struct usb_device *udev)
794 { return 0; }
795
usb_autopm_get_interface(struct usb_interface * intf)796 static inline int usb_autopm_get_interface(struct usb_interface *intf)
797 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)798 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
799 { return 0; }
800
usb_autopm_put_interface(struct usb_interface * intf)801 static inline void usb_autopm_put_interface(struct usb_interface *intf)
802 { }
usb_autopm_put_interface_async(struct usb_interface * intf)803 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
804 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)805 static inline void usb_autopm_get_interface_no_resume(
806 struct usb_interface *intf)
807 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)808 static inline void usb_autopm_put_interface_no_suspend(
809 struct usb_interface *intf)
810 { }
usb_mark_last_busy(struct usb_device * udev)811 static inline void usb_mark_last_busy(struct usb_device *udev)
812 { }
813 #endif
814
815 extern int usb_disable_lpm(struct usb_device *udev);
816 extern void usb_enable_lpm(struct usb_device *udev);
817 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
818 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
819 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
820
821 extern int usb_disable_ltm(struct usb_device *udev);
822 extern void usb_enable_ltm(struct usb_device *udev);
823
usb_device_supports_ltm(struct usb_device * udev)824 static inline bool usb_device_supports_ltm(struct usb_device *udev)
825 {
826 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
827 return false;
828 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
829 }
830
usb_device_no_sg_constraint(struct usb_device * udev)831 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
832 {
833 return udev && udev->bus && udev->bus->no_sg_constraint;
834 }
835
836
837 /*-------------------------------------------------------------------------*/
838
839 /* for drivers using iso endpoints */
840 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
841
842 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
843 extern int usb_alloc_streams(struct usb_interface *interface,
844 struct usb_host_endpoint **eps, unsigned int num_eps,
845 unsigned int num_streams, gfp_t mem_flags);
846
847 /* Reverts a group of bulk endpoints back to not using stream IDs. */
848 extern int usb_free_streams(struct usb_interface *interface,
849 struct usb_host_endpoint **eps, unsigned int num_eps,
850 gfp_t mem_flags);
851
852 /* used these for multi-interface device registration */
853 extern int usb_driver_claim_interface(struct usb_driver *driver,
854 struct usb_interface *iface, void *priv);
855
856 /**
857 * usb_interface_claimed - returns true iff an interface is claimed
858 * @iface: the interface being checked
859 *
860 * Return: %true (nonzero) iff the interface is claimed, else %false
861 * (zero).
862 *
863 * Note:
864 * Callers must own the driver model's usb bus readlock. So driver
865 * probe() entries don't need extra locking, but other call contexts
866 * may need to explicitly claim that lock.
867 *
868 */
usb_interface_claimed(struct usb_interface * iface)869 static inline int usb_interface_claimed(struct usb_interface *iface)
870 {
871 return (iface->dev.driver != NULL);
872 }
873
874 extern void usb_driver_release_interface(struct usb_driver *driver,
875 struct usb_interface *iface);
876 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
877 const struct usb_device_id *id);
878 extern int usb_match_one_id(struct usb_interface *interface,
879 const struct usb_device_id *id);
880
881 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
882 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
883 int minor);
884 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
885 unsigned ifnum);
886 extern struct usb_host_interface *usb_altnum_to_altsetting(
887 const struct usb_interface *intf, unsigned int altnum);
888 extern struct usb_host_interface *usb_find_alt_setting(
889 struct usb_host_config *config,
890 unsigned int iface_num,
891 unsigned int alt_num);
892
893 /* port claiming functions */
894 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
895 struct usb_dev_state *owner);
896 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
897 struct usb_dev_state *owner);
898
899 /**
900 * usb_make_path - returns stable device path in the usb tree
901 * @dev: the device whose path is being constructed
902 * @buf: where to put the string
903 * @size: how big is "buf"?
904 *
905 * Return: Length of the string (> 0) or negative if size was too small.
906 *
907 * Note:
908 * This identifier is intended to be "stable", reflecting physical paths in
909 * hardware such as physical bus addresses for host controllers or ports on
910 * USB hubs. That makes it stay the same until systems are physically
911 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
912 * controllers. Adding and removing devices, including virtual root hubs
913 * in host controller driver modules, does not change these path identifiers;
914 * neither does rebooting or re-enumerating. These are more useful identifiers
915 * than changeable ("unstable") ones like bus numbers or device addresses.
916 *
917 * With a partial exception for devices connected to USB 2.0 root hubs, these
918 * identifiers are also predictable. So long as the device tree isn't changed,
919 * plugging any USB device into a given hub port always gives it the same path.
920 * Because of the use of "companion" controllers, devices connected to ports on
921 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
922 * high speed, and a different one if they are full or low speed.
923 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)924 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
925 {
926 int actual;
927 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
928 dev->devpath);
929 return (actual >= (int)size) ? -1 : actual;
930 }
931
932 /*-------------------------------------------------------------------------*/
933
934 #define USB_DEVICE_ID_MATCH_DEVICE \
935 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
936 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
937 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
938 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
939 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
940 #define USB_DEVICE_ID_MATCH_DEV_INFO \
941 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
942 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
943 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
944 #define USB_DEVICE_ID_MATCH_INT_INFO \
945 (USB_DEVICE_ID_MATCH_INT_CLASS | \
946 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
947 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
948
949 /**
950 * USB_DEVICE - macro used to describe a specific usb device
951 * @vend: the 16 bit USB Vendor ID
952 * @prod: the 16 bit USB Product ID
953 *
954 * This macro is used to create a struct usb_device_id that matches a
955 * specific device.
956 */
957 #define USB_DEVICE(vend, prod) \
958 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
959 .idVendor = (vend), \
960 .idProduct = (prod)
961 /**
962 * USB_DEVICE_VER - describe a specific usb device with a version range
963 * @vend: the 16 bit USB Vendor ID
964 * @prod: the 16 bit USB Product ID
965 * @lo: the bcdDevice_lo value
966 * @hi: the bcdDevice_hi value
967 *
968 * This macro is used to create a struct usb_device_id that matches a
969 * specific device, with a version range.
970 */
971 #define USB_DEVICE_VER(vend, prod, lo, hi) \
972 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
973 .idVendor = (vend), \
974 .idProduct = (prod), \
975 .bcdDevice_lo = (lo), \
976 .bcdDevice_hi = (hi)
977
978 /**
979 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
980 * @vend: the 16 bit USB Vendor ID
981 * @prod: the 16 bit USB Product ID
982 * @cl: bInterfaceClass value
983 *
984 * This macro is used to create a struct usb_device_id that matches a
985 * specific interface class of devices.
986 */
987 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
988 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
989 USB_DEVICE_ID_MATCH_INT_CLASS, \
990 .idVendor = (vend), \
991 .idProduct = (prod), \
992 .bInterfaceClass = (cl)
993
994 /**
995 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
996 * @vend: the 16 bit USB Vendor ID
997 * @prod: the 16 bit USB Product ID
998 * @pr: bInterfaceProtocol value
999 *
1000 * This macro is used to create a struct usb_device_id that matches a
1001 * specific interface protocol of devices.
1002 */
1003 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1004 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1005 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1006 .idVendor = (vend), \
1007 .idProduct = (prod), \
1008 .bInterfaceProtocol = (pr)
1009
1010 /**
1011 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1012 * @vend: the 16 bit USB Vendor ID
1013 * @prod: the 16 bit USB Product ID
1014 * @num: bInterfaceNumber value
1015 *
1016 * This macro is used to create a struct usb_device_id that matches a
1017 * specific interface number of devices.
1018 */
1019 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1020 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1021 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1022 .idVendor = (vend), \
1023 .idProduct = (prod), \
1024 .bInterfaceNumber = (num)
1025
1026 /**
1027 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1028 * @cl: bDeviceClass value
1029 * @sc: bDeviceSubClass value
1030 * @pr: bDeviceProtocol value
1031 *
1032 * This macro is used to create a struct usb_device_id that matches a
1033 * specific class of devices.
1034 */
1035 #define USB_DEVICE_INFO(cl, sc, pr) \
1036 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1037 .bDeviceClass = (cl), \
1038 .bDeviceSubClass = (sc), \
1039 .bDeviceProtocol = (pr)
1040
1041 /**
1042 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1043 * @cl: bInterfaceClass value
1044 * @sc: bInterfaceSubClass value
1045 * @pr: bInterfaceProtocol value
1046 *
1047 * This macro is used to create a struct usb_device_id that matches a
1048 * specific class of interfaces.
1049 */
1050 #define USB_INTERFACE_INFO(cl, sc, pr) \
1051 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1052 .bInterfaceClass = (cl), \
1053 .bInterfaceSubClass = (sc), \
1054 .bInterfaceProtocol = (pr)
1055
1056 /**
1057 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1058 * @vend: the 16 bit USB Vendor ID
1059 * @prod: the 16 bit USB Product ID
1060 * @cl: bInterfaceClass value
1061 * @sc: bInterfaceSubClass value
1062 * @pr: bInterfaceProtocol value
1063 *
1064 * This macro is used to create a struct usb_device_id that matches a
1065 * specific device with a specific class of interfaces.
1066 *
1067 * This is especially useful when explicitly matching devices that have
1068 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1069 */
1070 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1071 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1072 | USB_DEVICE_ID_MATCH_DEVICE, \
1073 .idVendor = (vend), \
1074 .idProduct = (prod), \
1075 .bInterfaceClass = (cl), \
1076 .bInterfaceSubClass = (sc), \
1077 .bInterfaceProtocol = (pr)
1078
1079 /**
1080 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1081 * @vend: the 16 bit USB Vendor ID
1082 * @cl: bInterfaceClass value
1083 * @sc: bInterfaceSubClass value
1084 * @pr: bInterfaceProtocol value
1085 *
1086 * This macro is used to create a struct usb_device_id that matches a
1087 * specific vendor with a specific class of interfaces.
1088 *
1089 * This is especially useful when explicitly matching devices that have
1090 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1091 */
1092 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1093 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1094 | USB_DEVICE_ID_MATCH_VENDOR, \
1095 .idVendor = (vend), \
1096 .bInterfaceClass = (cl), \
1097 .bInterfaceSubClass = (sc), \
1098 .bInterfaceProtocol = (pr)
1099
1100 /* ----------------------------------------------------------------------- */
1101
1102 /* Stuff for dynamic usb ids */
1103 struct usb_dynids {
1104 spinlock_t lock;
1105 struct list_head list;
1106 };
1107
1108 struct usb_dynid {
1109 struct list_head node;
1110 struct usb_device_id id;
1111 };
1112
1113 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1114 const struct usb_device_id *id_table,
1115 struct device_driver *driver,
1116 const char *buf, size_t count);
1117
1118 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1119
1120 /**
1121 * struct usbdrv_wrap - wrapper for driver-model structure
1122 * @driver: The driver-model core driver structure.
1123 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1124 */
1125 struct usbdrv_wrap {
1126 struct device_driver driver;
1127 int for_devices;
1128 };
1129
1130 /**
1131 * struct usb_driver - identifies USB interface driver to usbcore
1132 * @name: The driver name should be unique among USB drivers,
1133 * and should normally be the same as the module name.
1134 * @probe: Called to see if the driver is willing to manage a particular
1135 * interface on a device. If it is, probe returns zero and uses
1136 * usb_set_intfdata() to associate driver-specific data with the
1137 * interface. It may also use usb_set_interface() to specify the
1138 * appropriate altsetting. If unwilling to manage the interface,
1139 * return -ENODEV, if genuine IO errors occurred, an appropriate
1140 * negative errno value.
1141 * @disconnect: Called when the interface is no longer accessible, usually
1142 * because its device has been (or is being) disconnected or the
1143 * driver module is being unloaded.
1144 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1145 * the "usbfs" filesystem. This lets devices provide ways to
1146 * expose information to user space regardless of where they
1147 * do (or don't) show up otherwise in the filesystem.
1148 * @suspend: Called when the device is going to be suspended by the
1149 * system either from system sleep or runtime suspend context. The
1150 * return value will be ignored in system sleep context, so do NOT
1151 * try to continue using the device if suspend fails in this case.
1152 * Instead, let the resume or reset-resume routine recover from
1153 * the failure.
1154 * @resume: Called when the device is being resumed by the system.
1155 * @reset_resume: Called when the suspended device has been reset instead
1156 * of being resumed.
1157 * @pre_reset: Called by usb_reset_device() when the device is about to be
1158 * reset. This routine must not return until the driver has no active
1159 * URBs for the device, and no more URBs may be submitted until the
1160 * post_reset method is called.
1161 * @post_reset: Called by usb_reset_device() after the device
1162 * has been reset
1163 * @id_table: USB drivers use ID table to support hotplugging.
1164 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1165 * or your driver's probe function will never get called.
1166 * @dev_groups: Attributes attached to the device that will be created once it
1167 * is bound to the driver.
1168 * @dynids: used internally to hold the list of dynamically added device
1169 * ids for this driver.
1170 * @drvwrap: Driver-model core structure wrapper.
1171 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1172 * added to this driver by preventing the sysfs file from being created.
1173 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1174 * for interfaces bound to this driver.
1175 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1176 * endpoints before calling the driver's disconnect method.
1177 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1178 * to initiate lower power link state transitions when an idle timeout
1179 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1180 *
1181 * USB interface drivers must provide a name, probe() and disconnect()
1182 * methods, and an id_table. Other driver fields are optional.
1183 *
1184 * The id_table is used in hotplugging. It holds a set of descriptors,
1185 * and specialized data may be associated with each entry. That table
1186 * is used by both user and kernel mode hotplugging support.
1187 *
1188 * The probe() and disconnect() methods are called in a context where
1189 * they can sleep, but they should avoid abusing the privilege. Most
1190 * work to connect to a device should be done when the device is opened,
1191 * and undone at the last close. The disconnect code needs to address
1192 * concurrency issues with respect to open() and close() methods, as
1193 * well as forcing all pending I/O requests to complete (by unlinking
1194 * them as necessary, and blocking until the unlinks complete).
1195 */
1196 struct usb_driver {
1197 const char *name;
1198
1199 int (*probe) (struct usb_interface *intf,
1200 const struct usb_device_id *id);
1201
1202 void (*disconnect) (struct usb_interface *intf);
1203
1204 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1205 void *buf);
1206
1207 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1208 int (*resume) (struct usb_interface *intf);
1209 int (*reset_resume)(struct usb_interface *intf);
1210
1211 int (*pre_reset)(struct usb_interface *intf);
1212 int (*post_reset)(struct usb_interface *intf);
1213
1214 const struct usb_device_id *id_table;
1215 const struct attribute_group **dev_groups;
1216
1217 struct usb_dynids dynids;
1218 struct usbdrv_wrap drvwrap;
1219 unsigned int no_dynamic_id:1;
1220 unsigned int supports_autosuspend:1;
1221 unsigned int disable_hub_initiated_lpm:1;
1222 unsigned int soft_unbind:1;
1223 };
1224 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1225
1226 /**
1227 * struct usb_device_driver - identifies USB device driver to usbcore
1228 * @name: The driver name should be unique among USB drivers,
1229 * and should normally be the same as the module name.
1230 * @match: If set, used for better device/driver matching.
1231 * @probe: Called to see if the driver is willing to manage a particular
1232 * device. If it is, probe returns zero and uses dev_set_drvdata()
1233 * to associate driver-specific data with the device. If unwilling
1234 * to manage the device, return a negative errno value.
1235 * @disconnect: Called when the device is no longer accessible, usually
1236 * because it has been (or is being) disconnected or the driver's
1237 * module is being unloaded.
1238 * @suspend: Called when the device is going to be suspended by the system.
1239 * @resume: Called when the device is being resumed by the system.
1240 * @dev_groups: Attributes attached to the device that will be created once it
1241 * is bound to the driver.
1242 * @drvwrap: Driver-model core structure wrapper.
1243 * @id_table: used with @match() to select better matching driver at
1244 * probe() time.
1245 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1246 * for devices bound to this driver.
1247 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1248 * resume and suspend functions will be called in addition to the driver's
1249 * own, so this part of the setup does not need to be replicated.
1250 *
1251 * USB drivers must provide all the fields listed above except drvwrap,
1252 * match, and id_table.
1253 */
1254 struct usb_device_driver {
1255 const char *name;
1256
1257 bool (*match) (struct usb_device *udev);
1258 int (*probe) (struct usb_device *udev);
1259 void (*disconnect) (struct usb_device *udev);
1260
1261 int (*suspend) (struct usb_device *udev, pm_message_t message);
1262 int (*resume) (struct usb_device *udev, pm_message_t message);
1263 const struct attribute_group **dev_groups;
1264 struct usbdrv_wrap drvwrap;
1265 const struct usb_device_id *id_table;
1266 unsigned int supports_autosuspend:1;
1267 unsigned int generic_subclass:1;
1268 };
1269 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1270 drvwrap.driver)
1271
1272 extern struct bus_type usb_bus_type;
1273
1274 /**
1275 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1276 * @name: the usb class device name for this driver. Will show up in sysfs.
1277 * @devnode: Callback to provide a naming hint for a possible
1278 * device node to create.
1279 * @fops: pointer to the struct file_operations of this driver.
1280 * @minor_base: the start of the minor range for this driver.
1281 *
1282 * This structure is used for the usb_register_dev() and
1283 * usb_deregister_dev() functions, to consolidate a number of the
1284 * parameters used for them.
1285 */
1286 struct usb_class_driver {
1287 char *name;
1288 char *(*devnode)(struct device *dev, umode_t *mode);
1289 const struct file_operations *fops;
1290 int minor_base;
1291 };
1292
1293 /*
1294 * use these in module_init()/module_exit()
1295 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1296 */
1297 extern int usb_register_driver(struct usb_driver *, struct module *,
1298 const char *);
1299
1300 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1301 #define usb_register(driver) \
1302 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1303
1304 extern void usb_deregister(struct usb_driver *);
1305
1306 /**
1307 * module_usb_driver() - Helper macro for registering a USB driver
1308 * @__usb_driver: usb_driver struct
1309 *
1310 * Helper macro for USB drivers which do not do anything special in module
1311 * init/exit. This eliminates a lot of boilerplate. Each module may only
1312 * use this macro once, and calling it replaces module_init() and module_exit()
1313 */
1314 #define module_usb_driver(__usb_driver) \
1315 module_driver(__usb_driver, usb_register, \
1316 usb_deregister)
1317
1318 extern int usb_register_device_driver(struct usb_device_driver *,
1319 struct module *);
1320 extern void usb_deregister_device_driver(struct usb_device_driver *);
1321
1322 extern int usb_register_dev(struct usb_interface *intf,
1323 struct usb_class_driver *class_driver);
1324 extern void usb_deregister_dev(struct usb_interface *intf,
1325 struct usb_class_driver *class_driver);
1326
1327 extern int usb_disabled(void);
1328
1329 /* ----------------------------------------------------------------------- */
1330
1331 /*
1332 * URB support, for asynchronous request completions
1333 */
1334
1335 /*
1336 * urb->transfer_flags:
1337 *
1338 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1339 */
1340 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1341 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1342 * slot in the schedule */
1343 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1344 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1345 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1346 * needed */
1347 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1348
1349 /* The following flags are used internally by usbcore and HCDs */
1350 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1351 #define URB_DIR_OUT 0
1352 #define URB_DIR_MASK URB_DIR_IN
1353
1354 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1355 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1356 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1357 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1358 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1359 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1360 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1361 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1362
1363 struct usb_iso_packet_descriptor {
1364 unsigned int offset;
1365 unsigned int length; /* expected length */
1366 unsigned int actual_length;
1367 int status;
1368 };
1369
1370 struct urb;
1371
1372 struct usb_anchor {
1373 struct list_head urb_list;
1374 wait_queue_head_t wait;
1375 spinlock_t lock;
1376 atomic_t suspend_wakeups;
1377 unsigned int poisoned:1;
1378 };
1379
init_usb_anchor(struct usb_anchor * anchor)1380 static inline void init_usb_anchor(struct usb_anchor *anchor)
1381 {
1382 memset(anchor, 0, sizeof(*anchor));
1383 INIT_LIST_HEAD(&anchor->urb_list);
1384 init_waitqueue_head(&anchor->wait);
1385 spin_lock_init(&anchor->lock);
1386 }
1387
1388 typedef void (*usb_complete_t)(struct urb *);
1389
1390 /**
1391 * struct urb - USB Request Block
1392 * @urb_list: For use by current owner of the URB.
1393 * @anchor_list: membership in the list of an anchor
1394 * @anchor: to anchor URBs to a common mooring
1395 * @ep: Points to the endpoint's data structure. Will eventually
1396 * replace @pipe.
1397 * @pipe: Holds endpoint number, direction, type, and more.
1398 * Create these values with the eight macros available;
1399 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1400 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1401 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1402 * numbers range from zero to fifteen. Note that "in" endpoint two
1403 * is a different endpoint (and pipe) from "out" endpoint two.
1404 * The current configuration controls the existence, type, and
1405 * maximum packet size of any given endpoint.
1406 * @stream_id: the endpoint's stream ID for bulk streams
1407 * @dev: Identifies the USB device to perform the request.
1408 * @status: This is read in non-iso completion functions to get the
1409 * status of the particular request. ISO requests only use it
1410 * to tell whether the URB was unlinked; detailed status for
1411 * each frame is in the fields of the iso_frame-desc.
1412 * @transfer_flags: A variety of flags may be used to affect how URB
1413 * submission, unlinking, or operation are handled. Different
1414 * kinds of URB can use different flags.
1415 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1416 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1417 * (however, do not leave garbage in transfer_buffer even then).
1418 * This buffer must be suitable for DMA; allocate it with
1419 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1420 * of this buffer will be modified. This buffer is used for the data
1421 * stage of control transfers.
1422 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1423 * the device driver is saying that it provided this DMA address,
1424 * which the host controller driver should use in preference to the
1425 * transfer_buffer.
1426 * @sg: scatter gather buffer list, the buffer size of each element in
1427 * the list (except the last) must be divisible by the endpoint's
1428 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1429 * @num_mapped_sgs: (internal) number of mapped sg entries
1430 * @num_sgs: number of entries in the sg list
1431 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1432 * be broken up into chunks according to the current maximum packet
1433 * size for the endpoint, which is a function of the configuration
1434 * and is encoded in the pipe. When the length is zero, neither
1435 * transfer_buffer nor transfer_dma is used.
1436 * @actual_length: This is read in non-iso completion functions, and
1437 * it tells how many bytes (out of transfer_buffer_length) were
1438 * transferred. It will normally be the same as requested, unless
1439 * either an error was reported or a short read was performed.
1440 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1441 * short reads be reported as errors.
1442 * @setup_packet: Only used for control transfers, this points to eight bytes
1443 * of setup data. Control transfers always start by sending this data
1444 * to the device. Then transfer_buffer is read or written, if needed.
1445 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1446 * this field; setup_packet must point to a valid buffer.
1447 * @start_frame: Returns the initial frame for isochronous transfers.
1448 * @number_of_packets: Lists the number of ISO transfer buffers.
1449 * @interval: Specifies the polling interval for interrupt or isochronous
1450 * transfers. The units are frames (milliseconds) for full and low
1451 * speed devices, and microframes (1/8 millisecond) for highspeed
1452 * and SuperSpeed devices.
1453 * @error_count: Returns the number of ISO transfers that reported errors.
1454 * @context: For use in completion functions. This normally points to
1455 * request-specific driver context.
1456 * @complete: Completion handler. This URB is passed as the parameter to the
1457 * completion function. The completion function may then do what
1458 * it likes with the URB, including resubmitting or freeing it.
1459 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1460 * collect the transfer status for each buffer.
1461 *
1462 * This structure identifies USB transfer requests. URBs must be allocated by
1463 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1464 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1465 * are submitted using usb_submit_urb(), and pending requests may be canceled
1466 * using usb_unlink_urb() or usb_kill_urb().
1467 *
1468 * Data Transfer Buffers:
1469 *
1470 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1471 * taken from the general page pool. That is provided by transfer_buffer
1472 * (control requests also use setup_packet), and host controller drivers
1473 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1474 * mapping operations can be expensive on some platforms (perhaps using a dma
1475 * bounce buffer or talking to an IOMMU),
1476 * although they're cheap on commodity x86 and ppc hardware.
1477 *
1478 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1479 * which tells the host controller driver that no such mapping is needed for
1480 * the transfer_buffer since
1481 * the device driver is DMA-aware. For example, a device driver might
1482 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1483 * When this transfer flag is provided, host controller drivers will
1484 * attempt to use the dma address found in the transfer_dma
1485 * field rather than determining a dma address themselves.
1486 *
1487 * Note that transfer_buffer must still be set if the controller
1488 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1489 * to root hub. If you have to trasfer between highmem zone and the device
1490 * on such controller, create a bounce buffer or bail out with an error.
1491 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1492 * capable, assign NULL to it, so that usbmon knows not to use the value.
1493 * The setup_packet must always be set, so it cannot be located in highmem.
1494 *
1495 * Initialization:
1496 *
1497 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1498 * zero), and complete fields. All URBs must also initialize
1499 * transfer_buffer and transfer_buffer_length. They may provide the
1500 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1501 * to be treated as errors; that flag is invalid for write requests.
1502 *
1503 * Bulk URBs may
1504 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1505 * should always terminate with a short packet, even if it means adding an
1506 * extra zero length packet.
1507 *
1508 * Control URBs must provide a valid pointer in the setup_packet field.
1509 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1510 * beforehand.
1511 *
1512 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1513 * or, for highspeed devices, 125 microsecond units)
1514 * to poll for transfers. After the URB has been submitted, the interval
1515 * field reflects how the transfer was actually scheduled.
1516 * The polling interval may be more frequent than requested.
1517 * For example, some controllers have a maximum interval of 32 milliseconds,
1518 * while others support intervals of up to 1024 milliseconds.
1519 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1520 * endpoints, as well as high speed interrupt endpoints, the encoding of
1521 * the transfer interval in the endpoint descriptor is logarithmic.
1522 * Device drivers must convert that value to linear units themselves.)
1523 *
1524 * If an isochronous endpoint queue isn't already running, the host
1525 * controller will schedule a new URB to start as soon as bandwidth
1526 * utilization allows. If the queue is running then a new URB will be
1527 * scheduled to start in the first transfer slot following the end of the
1528 * preceding URB, if that slot has not already expired. If the slot has
1529 * expired (which can happen when IRQ delivery is delayed for a long time),
1530 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1531 * is clear then the URB will be scheduled to start in the expired slot,
1532 * implying that some of its packets will not be transferred; if the flag
1533 * is set then the URB will be scheduled in the first unexpired slot,
1534 * breaking the queue's synchronization. Upon URB completion, the
1535 * start_frame field will be set to the (micro)frame number in which the
1536 * transfer was scheduled. Ranges for frame counter values are HC-specific
1537 * and can go from as low as 256 to as high as 65536 frames.
1538 *
1539 * Isochronous URBs have a different data transfer model, in part because
1540 * the quality of service is only "best effort". Callers provide specially
1541 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1542 * at the end. Each such packet is an individual ISO transfer. Isochronous
1543 * URBs are normally queued, submitted by drivers to arrange that
1544 * transfers are at least double buffered, and then explicitly resubmitted
1545 * in completion handlers, so
1546 * that data (such as audio or video) streams at as constant a rate as the
1547 * host controller scheduler can support.
1548 *
1549 * Completion Callbacks:
1550 *
1551 * The completion callback is made in_interrupt(), and one of the first
1552 * things that a completion handler should do is check the status field.
1553 * The status field is provided for all URBs. It is used to report
1554 * unlinked URBs, and status for all non-ISO transfers. It should not
1555 * be examined before the URB is returned to the completion handler.
1556 *
1557 * The context field is normally used to link URBs back to the relevant
1558 * driver or request state.
1559 *
1560 * When the completion callback is invoked for non-isochronous URBs, the
1561 * actual_length field tells how many bytes were transferred. This field
1562 * is updated even when the URB terminated with an error or was unlinked.
1563 *
1564 * ISO transfer status is reported in the status and actual_length fields
1565 * of the iso_frame_desc array, and the number of errors is reported in
1566 * error_count. Completion callbacks for ISO transfers will normally
1567 * (re)submit URBs to ensure a constant transfer rate.
1568 *
1569 * Note that even fields marked "public" should not be touched by the driver
1570 * when the urb is owned by the hcd, that is, since the call to
1571 * usb_submit_urb() till the entry into the completion routine.
1572 */
1573 struct urb {
1574 /* private: usb core and host controller only fields in the urb */
1575 struct kref kref; /* reference count of the URB */
1576 int unlinked; /* unlink error code */
1577 void *hcpriv; /* private data for host controller */
1578 atomic_t use_count; /* concurrent submissions counter */
1579 atomic_t reject; /* submissions will fail */
1580
1581 /* public: documented fields in the urb that can be used by drivers */
1582 struct list_head urb_list; /* list head for use by the urb's
1583 * current owner */
1584 struct list_head anchor_list; /* the URB may be anchored */
1585 struct usb_anchor *anchor;
1586 struct usb_device *dev; /* (in) pointer to associated device */
1587 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1588 unsigned int pipe; /* (in) pipe information */
1589 unsigned int stream_id; /* (in) stream ID */
1590 int status; /* (return) non-ISO status */
1591 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1592 void *transfer_buffer; /* (in) associated data buffer */
1593 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1594 struct scatterlist *sg; /* (in) scatter gather buffer list */
1595 int num_mapped_sgs; /* (internal) mapped sg entries */
1596 int num_sgs; /* (in) number of entries in the sg list */
1597 u32 transfer_buffer_length; /* (in) data buffer length */
1598 u32 actual_length; /* (return) actual transfer length */
1599 unsigned char *setup_packet; /* (in) setup packet (control only) */
1600 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1601 int start_frame; /* (modify) start frame (ISO) */
1602 int number_of_packets; /* (in) number of ISO packets */
1603 int interval; /* (modify) transfer interval
1604 * (INT/ISO) */
1605 int error_count; /* (return) number of ISO errors */
1606 void *context; /* (in) context for completion */
1607 usb_complete_t complete; /* (in) completion routine */
1608 struct usb_iso_packet_descriptor iso_frame_desc[];
1609 /* (in) ISO ONLY */
1610 };
1611
1612 /* ----------------------------------------------------------------------- */
1613
1614 /**
1615 * usb_fill_control_urb - initializes a control urb
1616 * @urb: pointer to the urb to initialize.
1617 * @dev: pointer to the struct usb_device for this urb.
1618 * @pipe: the endpoint pipe
1619 * @setup_packet: pointer to the setup_packet buffer
1620 * @transfer_buffer: pointer to the transfer buffer
1621 * @buffer_length: length of the transfer buffer
1622 * @complete_fn: pointer to the usb_complete_t function
1623 * @context: what to set the urb context to.
1624 *
1625 * Initializes a control urb with the proper information needed to submit
1626 * it to a device.
1627 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1628 static inline void usb_fill_control_urb(struct urb *urb,
1629 struct usb_device *dev,
1630 unsigned int pipe,
1631 unsigned char *setup_packet,
1632 void *transfer_buffer,
1633 int buffer_length,
1634 usb_complete_t complete_fn,
1635 void *context)
1636 {
1637 urb->dev = dev;
1638 urb->pipe = pipe;
1639 urb->setup_packet = setup_packet;
1640 urb->transfer_buffer = transfer_buffer;
1641 urb->transfer_buffer_length = buffer_length;
1642 urb->complete = complete_fn;
1643 urb->context = context;
1644 }
1645
1646 /**
1647 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1648 * @urb: pointer to the urb to initialize.
1649 * @dev: pointer to the struct usb_device for this urb.
1650 * @pipe: the endpoint pipe
1651 * @transfer_buffer: pointer to the transfer buffer
1652 * @buffer_length: length of the transfer buffer
1653 * @complete_fn: pointer to the usb_complete_t function
1654 * @context: what to set the urb context to.
1655 *
1656 * Initializes a bulk urb with the proper information needed to submit it
1657 * to a device.
1658 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1659 static inline void usb_fill_bulk_urb(struct urb *urb,
1660 struct usb_device *dev,
1661 unsigned int pipe,
1662 void *transfer_buffer,
1663 int buffer_length,
1664 usb_complete_t complete_fn,
1665 void *context)
1666 {
1667 urb->dev = dev;
1668 urb->pipe = pipe;
1669 urb->transfer_buffer = transfer_buffer;
1670 urb->transfer_buffer_length = buffer_length;
1671 urb->complete = complete_fn;
1672 urb->context = context;
1673 }
1674
1675 /**
1676 * usb_fill_int_urb - macro to help initialize a interrupt urb
1677 * @urb: pointer to the urb to initialize.
1678 * @dev: pointer to the struct usb_device for this urb.
1679 * @pipe: the endpoint pipe
1680 * @transfer_buffer: pointer to the transfer buffer
1681 * @buffer_length: length of the transfer buffer
1682 * @complete_fn: pointer to the usb_complete_t function
1683 * @context: what to set the urb context to.
1684 * @interval: what to set the urb interval to, encoded like
1685 * the endpoint descriptor's bInterval value.
1686 *
1687 * Initializes a interrupt urb with the proper information needed to submit
1688 * it to a device.
1689 *
1690 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1691 * encoding of the endpoint interval, and express polling intervals in
1692 * microframes (eight per millisecond) rather than in frames (one per
1693 * millisecond).
1694 *
1695 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1696 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1697 * through to the host controller, rather than being translated into microframe
1698 * units.
1699 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1700 static inline void usb_fill_int_urb(struct urb *urb,
1701 struct usb_device *dev,
1702 unsigned int pipe,
1703 void *transfer_buffer,
1704 int buffer_length,
1705 usb_complete_t complete_fn,
1706 void *context,
1707 int interval)
1708 {
1709 urb->dev = dev;
1710 urb->pipe = pipe;
1711 urb->transfer_buffer = transfer_buffer;
1712 urb->transfer_buffer_length = buffer_length;
1713 urb->complete = complete_fn;
1714 urb->context = context;
1715
1716 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1717 /* make sure interval is within allowed range */
1718 interval = clamp(interval, 1, 16);
1719
1720 urb->interval = 1 << (interval - 1);
1721 } else {
1722 urb->interval = interval;
1723 }
1724
1725 urb->start_frame = -1;
1726 }
1727
1728 extern void usb_init_urb(struct urb *urb);
1729 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1730 extern void usb_free_urb(struct urb *urb);
1731 #define usb_put_urb usb_free_urb
1732 extern struct urb *usb_get_urb(struct urb *urb);
1733 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1734 extern int usb_unlink_urb(struct urb *urb);
1735 extern void usb_kill_urb(struct urb *urb);
1736 extern void usb_poison_urb(struct urb *urb);
1737 extern void usb_unpoison_urb(struct urb *urb);
1738 extern void usb_block_urb(struct urb *urb);
1739 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1740 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1741 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1742 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1743 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1744 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1745 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1746 extern void usb_unanchor_urb(struct urb *urb);
1747 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1748 unsigned int timeout);
1749 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1750 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1751 extern int usb_anchor_empty(struct usb_anchor *anchor);
1752
1753 #define usb_unblock_urb usb_unpoison_urb
1754
1755 /**
1756 * usb_urb_dir_in - check if an URB describes an IN transfer
1757 * @urb: URB to be checked
1758 *
1759 * Return: 1 if @urb describes an IN transfer (device-to-host),
1760 * otherwise 0.
1761 */
usb_urb_dir_in(struct urb * urb)1762 static inline int usb_urb_dir_in(struct urb *urb)
1763 {
1764 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1765 }
1766
1767 /**
1768 * usb_urb_dir_out - check if an URB describes an OUT transfer
1769 * @urb: URB to be checked
1770 *
1771 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1772 * otherwise 0.
1773 */
usb_urb_dir_out(struct urb * urb)1774 static inline int usb_urb_dir_out(struct urb *urb)
1775 {
1776 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1777 }
1778
1779 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1780 int usb_urb_ep_type_check(const struct urb *urb);
1781
1782 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1783 gfp_t mem_flags, dma_addr_t *dma);
1784 void usb_free_coherent(struct usb_device *dev, size_t size,
1785 void *addr, dma_addr_t dma);
1786
1787 #if 0
1788 struct urb *usb_buffer_map(struct urb *urb);
1789 void usb_buffer_dmasync(struct urb *urb);
1790 void usb_buffer_unmap(struct urb *urb);
1791 #endif
1792
1793 struct scatterlist;
1794 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1795 struct scatterlist *sg, int nents);
1796 #if 0
1797 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1798 struct scatterlist *sg, int n_hw_ents);
1799 #endif
1800 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1801 struct scatterlist *sg, int n_hw_ents);
1802
1803 /*-------------------------------------------------------------------*
1804 * SYNCHRONOUS CALL SUPPORT *
1805 *-------------------------------------------------------------------*/
1806
1807 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1808 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1809 void *data, __u16 size, int timeout);
1810 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1811 void *data, int len, int *actual_length, int timeout);
1812 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1813 void *data, int len, int *actual_length,
1814 int timeout);
1815
1816 /* wrappers around usb_control_msg() for the most common standard requests */
1817 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1818 __u8 requesttype, __u16 value, __u16 index,
1819 const void *data, __u16 size, int timeout,
1820 gfp_t memflags);
1821 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1822 __u8 requesttype, __u16 value, __u16 index,
1823 void *data, __u16 size, int timeout,
1824 gfp_t memflags);
1825 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1826 unsigned char descindex, void *buf, int size);
1827 extern int usb_get_status(struct usb_device *dev,
1828 int recip, int type, int target, void *data);
1829
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1830 static inline int usb_get_std_status(struct usb_device *dev,
1831 int recip, int target, void *data)
1832 {
1833 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1834 data);
1835 }
1836
usb_get_ptm_status(struct usb_device * dev,void * data)1837 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1838 {
1839 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1840 0, data);
1841 }
1842
1843 extern int usb_string(struct usb_device *dev, int index,
1844 char *buf, size_t size);
1845
1846 /* wrappers that also update important state inside usbcore */
1847 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1848 extern int usb_reset_configuration(struct usb_device *dev);
1849 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1850 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1851
1852 /* this request isn't really synchronous, but it belongs with the others */
1853 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1854
1855 /* choose and set configuration for device */
1856 extern int usb_choose_configuration(struct usb_device *udev);
1857 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1858
1859 /*
1860 * timeouts, in milliseconds, used for sending/receiving control messages
1861 * they typically complete within a few frames (msec) after they're issued
1862 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1863 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1864 */
1865 #define USB_CTRL_GET_TIMEOUT 5000
1866 #define USB_CTRL_SET_TIMEOUT 5000
1867
1868
1869 /**
1870 * struct usb_sg_request - support for scatter/gather I/O
1871 * @status: zero indicates success, else negative errno
1872 * @bytes: counts bytes transferred.
1873 *
1874 * These requests are initialized using usb_sg_init(), and then are used
1875 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1876 * members of the request object aren't for driver access.
1877 *
1878 * The status and bytecount values are valid only after usb_sg_wait()
1879 * returns. If the status is zero, then the bytecount matches the total
1880 * from the request.
1881 *
1882 * After an error completion, drivers may need to clear a halt condition
1883 * on the endpoint.
1884 */
1885 struct usb_sg_request {
1886 int status;
1887 size_t bytes;
1888
1889 /* private:
1890 * members below are private to usbcore,
1891 * and are not provided for driver access!
1892 */
1893 spinlock_t lock;
1894
1895 struct usb_device *dev;
1896 int pipe;
1897
1898 int entries;
1899 struct urb **urbs;
1900
1901 int count;
1902 struct completion complete;
1903 };
1904
1905 int usb_sg_init(
1906 struct usb_sg_request *io,
1907 struct usb_device *dev,
1908 unsigned pipe,
1909 unsigned period,
1910 struct scatterlist *sg,
1911 int nents,
1912 size_t length,
1913 gfp_t mem_flags
1914 );
1915 void usb_sg_cancel(struct usb_sg_request *io);
1916 void usb_sg_wait(struct usb_sg_request *io);
1917
1918
1919 /* ----------------------------------------------------------------------- */
1920
1921 /*
1922 * For various legacy reasons, Linux has a small cookie that's paired with
1923 * a struct usb_device to identify an endpoint queue. Queue characteristics
1924 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1925 * an unsigned int encoded as:
1926 *
1927 * - direction: bit 7 (0 = Host-to-Device [Out],
1928 * 1 = Device-to-Host [In] ...
1929 * like endpoint bEndpointAddress)
1930 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1931 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1932 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1933 * 10 = control, 11 = bulk)
1934 *
1935 * Given the device address and endpoint descriptor, pipes are redundant.
1936 */
1937
1938 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1939 /* (yet ... they're the values used by usbfs) */
1940 #define PIPE_ISOCHRONOUS 0
1941 #define PIPE_INTERRUPT 1
1942 #define PIPE_CONTROL 2
1943 #define PIPE_BULK 3
1944
1945 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1946 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1947
1948 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1949 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1950
1951 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1952 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1953 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1954 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1955 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1956
__create_pipe(struct usb_device * dev,unsigned int endpoint)1957 static inline unsigned int __create_pipe(struct usb_device *dev,
1958 unsigned int endpoint)
1959 {
1960 return (dev->devnum << 8) | (endpoint << 15);
1961 }
1962
1963 /* Create various pipes... */
1964 #define usb_sndctrlpipe(dev, endpoint) \
1965 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1966 #define usb_rcvctrlpipe(dev, endpoint) \
1967 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1968 #define usb_sndisocpipe(dev, endpoint) \
1969 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1970 #define usb_rcvisocpipe(dev, endpoint) \
1971 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1972 #define usb_sndbulkpipe(dev, endpoint) \
1973 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1974 #define usb_rcvbulkpipe(dev, endpoint) \
1975 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1976 #define usb_sndintpipe(dev, endpoint) \
1977 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1978 #define usb_rcvintpipe(dev, endpoint) \
1979 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1980
1981 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1982 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1983 {
1984 struct usb_host_endpoint **eps;
1985 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1986 return eps[usb_pipeendpoint(pipe)];
1987 }
1988
1989 /*-------------------------------------------------------------------------*/
1990
1991 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1992 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1993 {
1994 struct usb_host_endpoint *ep;
1995 unsigned epnum = usb_pipeendpoint(pipe);
1996
1997 if (is_out) {
1998 WARN_ON(usb_pipein(pipe));
1999 ep = udev->ep_out[epnum];
2000 } else {
2001 WARN_ON(usb_pipeout(pipe));
2002 ep = udev->ep_in[epnum];
2003 }
2004 if (!ep)
2005 return 0;
2006
2007 /* NOTE: only 0x07ff bits are for packet size... */
2008 return usb_endpoint_maxp(&ep->desc);
2009 }
2010
2011 /* ----------------------------------------------------------------------- */
2012
2013 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2014 static inline int usb_translate_errors(int error_code)
2015 {
2016 switch (error_code) {
2017 case 0:
2018 case -ENOMEM:
2019 case -ENODEV:
2020 case -EOPNOTSUPP:
2021 return error_code;
2022 default:
2023 return -EIO;
2024 }
2025 }
2026
2027 /* Events from the usb core */
2028 #define USB_DEVICE_ADD 0x0001
2029 #define USB_DEVICE_REMOVE 0x0002
2030 #define USB_BUS_ADD 0x0003
2031 #define USB_BUS_REMOVE 0x0004
2032 extern void usb_register_notify(struct notifier_block *nb);
2033 extern void usb_unregister_notify(struct notifier_block *nb);
2034
2035 /* debugfs stuff */
2036 extern struct dentry *usb_debug_root;
2037
2038 /* LED triggers */
2039 enum usb_led_event {
2040 USB_LED_EVENT_HOST = 0,
2041 USB_LED_EVENT_GADGET = 1,
2042 };
2043
2044 #ifdef CONFIG_USB_LED_TRIG
2045 extern void usb_led_activity(enum usb_led_event ev);
2046 #else
usb_led_activity(enum usb_led_event ev)2047 static inline void usb_led_activity(enum usb_led_event ev) {}
2048 #endif
2049
2050 #endif /* __KERNEL__ */
2051
2052 #endif
2053