• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *	current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233 	/* array of alternate settings for this interface,
234 	 * stored in no particular order */
235 	struct usb_host_interface *altsetting;
236 
237 	struct usb_host_interface *cur_altsetting;	/* the currently
238 					 * active alternate setting */
239 	unsigned num_altsetting;	/* number of alternate settings */
240 
241 	/* If there is an interface association descriptor then it will list
242 	 * the associated interfaces */
243 	struct usb_interface_assoc_descriptor *intf_assoc;
244 
245 	int minor;			/* minor number this interface is
246 					 * bound to */
247 	enum usb_interface_condition condition;		/* state of binding */
248 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
249 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
250 	unsigned unregistering:1;	/* unregistration is in progress */
251 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
252 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
253 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
254 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
255 	unsigned authorized:1;		/* used for interface authorization */
256 
257 	struct device dev;		/* interface specific device info */
258 	struct device *usb_dev;
259 	struct work_struct reset_ws;	/* for resets in atomic context */
260 };
261 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
262 
usb_get_intfdata(struct usb_interface * intf)263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265 	return dev_get_drvdata(&intf->dev);
266 }
267 
usb_set_intfdata(struct usb_interface * intf,void * data)268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270 	dev_set_drvdata(&intf->dev, data);
271 }
272 
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275 
276 /* Hard limit */
277 #define USB_MAXENDPOINTS	30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES	32
280 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
281 
282 bool usb_check_bulk_endpoints(
283 		const struct usb_interface *intf, const u8 *ep_addrs);
284 bool usb_check_int_endpoints(
285 		const struct usb_interface *intf, const u8 *ep_addrs);
286 
287 /*
288  * USB Resume Timer: Every Host controller driver should drive the resume
289  * signalling on the bus for the amount of time defined by this macro.
290  *
291  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
292  *
293  * Note that the USB Specification states we should drive resume for *at least*
294  * 20 ms, but it doesn't give an upper bound. This creates two possible
295  * situations which we want to avoid:
296  *
297  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
298  * us to fail USB Electrical Tests, thus failing Certification
299  *
300  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
301  * and while we can argue that's against the USB Specification, we don't have
302  * control over which devices a certification laboratory will be using for
303  * certification. If CertLab uses a device which was tested against Windows and
304  * that happens to have relaxed resume signalling rules, we might fall into
305  * situations where we fail interoperability and electrical tests.
306  *
307  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
308  * should cope with both LPJ calibration errors and devices not following every
309  * detail of the USB Specification.
310  */
311 #define USB_RESUME_TIMEOUT	40 /* ms */
312 
313 /**
314  * struct usb_interface_cache - long-term representation of a device interface
315  * @num_altsetting: number of altsettings defined.
316  * @ref: reference counter.
317  * @altsetting: variable-length array of interface structures, one for
318  *	each alternate setting that may be selected.  Each one includes a
319  *	set of endpoint configurations.  They will be in no particular order.
320  *
321  * These structures persist for the lifetime of a usb_device, unlike
322  * struct usb_interface (which persists only as long as its configuration
323  * is installed).  The altsetting arrays can be accessed through these
324  * structures at any time, permitting comparison of configurations and
325  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
326  */
327 struct usb_interface_cache {
328 	unsigned num_altsetting;	/* number of alternate settings */
329 	struct kref ref;		/* reference counter */
330 
331 	/* variable-length array of alternate settings for this interface,
332 	 * stored in no particular order */
333 	struct usb_host_interface altsetting[];
334 };
335 #define	ref_to_usb_interface_cache(r) \
336 		container_of(r, struct usb_interface_cache, ref)
337 #define	altsetting_to_usb_interface_cache(a) \
338 		container_of(a, struct usb_interface_cache, altsetting[0])
339 
340 /**
341  * struct usb_host_config - representation of a device's configuration
342  * @desc: the device's configuration descriptor.
343  * @string: pointer to the cached version of the iConfiguration string, if
344  *	present for this configuration.
345  * @intf_assoc: list of any interface association descriptors in this config
346  * @interface: array of pointers to usb_interface structures, one for each
347  *	interface in the configuration.  The number of interfaces is stored
348  *	in desc.bNumInterfaces.  These pointers are valid only while the
349  *	configuration is active.
350  * @intf_cache: array of pointers to usb_interface_cache structures, one
351  *	for each interface in the configuration.  These structures exist
352  *	for the entire life of the device.
353  * @extra: pointer to buffer containing all extra descriptors associated
354  *	with this configuration (those preceding the first interface
355  *	descriptor).
356  * @extralen: length of the extra descriptors buffer.
357  *
358  * USB devices may have multiple configurations, but only one can be active
359  * at any time.  Each encapsulates a different operational environment;
360  * for example, a dual-speed device would have separate configurations for
361  * full-speed and high-speed operation.  The number of configurations
362  * available is stored in the device descriptor as bNumConfigurations.
363  *
364  * A configuration can contain multiple interfaces.  Each corresponds to
365  * a different function of the USB device, and all are available whenever
366  * the configuration is active.  The USB standard says that interfaces
367  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
368  * of devices get this wrong.  In addition, the interface array is not
369  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
370  * look up an interface entry based on its number.
371  *
372  * Device drivers should not attempt to activate configurations.  The choice
373  * of which configuration to install is a policy decision based on such
374  * considerations as available power, functionality provided, and the user's
375  * desires (expressed through userspace tools).  However, drivers can call
376  * usb_reset_configuration() to reinitialize the current configuration and
377  * all its interfaces.
378  */
379 struct usb_host_config {
380 	struct usb_config_descriptor	desc;
381 
382 	char *string;		/* iConfiguration string, if present */
383 
384 	/* List of any Interface Association Descriptors in this
385 	 * configuration. */
386 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
387 
388 	/* the interfaces associated with this configuration,
389 	 * stored in no particular order */
390 	struct usb_interface *interface[USB_MAXINTERFACES];
391 
392 	/* Interface information available even when this is not the
393 	 * active configuration */
394 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
395 
396 	unsigned char *extra;   /* Extra descriptors */
397 	int extralen;
398 };
399 
400 /* USB2.0 and USB3.0 device BOS descriptor set */
401 struct usb_host_bos {
402 	struct usb_bos_descriptor	*desc;
403 
404 	/* wireless cap descriptor is handled by wusb */
405 	struct usb_ext_cap_descriptor	*ext_cap;
406 	struct usb_ss_cap_descriptor	*ss_cap;
407 	struct usb_ssp_cap_descriptor	*ssp_cap;
408 	struct usb_ss_container_id_descriptor	*ss_id;
409 	struct usb_ptm_cap_descriptor	*ptm_cap;
410 };
411 
412 int __usb_get_extra_descriptor(char *buffer, unsigned size,
413 	unsigned char type, void **ptr, size_t min);
414 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
415 				__usb_get_extra_descriptor((ifpoint)->extra, \
416 				(ifpoint)->extralen, \
417 				type, (void **)ptr, sizeof(**(ptr)))
418 
419 /* ----------------------------------------------------------------------- */
420 
421 /* USB device number allocation bitmap */
422 struct usb_devmap {
423 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
424 };
425 
426 /*
427  * Allocated per bus (tree of devices) we have:
428  */
429 struct usb_bus {
430 	struct device *controller;	/* host side hardware */
431 	struct device *sysdev;		/* as seen from firmware or bus */
432 	int busnum;			/* Bus number (in order of reg) */
433 	const char *bus_name;		/* stable id (PCI slot_name etc) */
434 	u8 uses_pio_for_control;	/*
435 					 * Does the host controller use PIO
436 					 * for control transfers?
437 					 */
438 	u8 otg_port;			/* 0, or number of OTG/HNP port */
439 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
440 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
441 	unsigned no_stop_on_short:1;    /*
442 					 * Quirk: some controllers don't stop
443 					 * the ep queue on a short transfer
444 					 * with the URB_SHORT_NOT_OK flag set.
445 					 */
446 	unsigned no_sg_constraint:1;	/* no sg constraint */
447 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
448 
449 	int devnum_next;		/* Next open device number in
450 					 * round-robin allocation */
451 	struct mutex devnum_next_mutex; /* devnum_next mutex */
452 
453 	struct usb_devmap devmap;	/* device address allocation map */
454 	struct usb_device *root_hub;	/* Root hub */
455 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
456 
457 	int bandwidth_allocated;	/* on this bus: how much of the time
458 					 * reserved for periodic (intr/iso)
459 					 * requests is used, on average?
460 					 * Units: microseconds/frame.
461 					 * Limits: Full/low speed reserve 90%,
462 					 * while high speed reserves 80%.
463 					 */
464 	int bandwidth_int_reqs;		/* number of Interrupt requests */
465 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
466 
467 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
468 
469 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
470 	struct mon_bus *mon_bus;	/* non-null when associated */
471 	int monitored;			/* non-zero when monitored */
472 #endif
473 };
474 
475 struct usb_dev_state;
476 
477 /* ----------------------------------------------------------------------- */
478 
479 struct usb_tt;
480 
481 enum usb_device_removable {
482 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
483 	USB_DEVICE_REMOVABLE,
484 	USB_DEVICE_FIXED,
485 };
486 
487 enum usb_port_connect_type {
488 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
489 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
490 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
491 	USB_PORT_NOT_USED,
492 };
493 
494 /*
495  * USB port quirks.
496  */
497 
498 /* For the given port, prefer the old (faster) enumeration scheme. */
499 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
500 
501 /* Decrease TRSTRCY to 10ms during device enumeration. */
502 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
503 
504 /*
505  * USB 2.0 Link Power Management (LPM) parameters.
506  */
507 struct usb2_lpm_parameters {
508 	/* Best effort service latency indicate how long the host will drive
509 	 * resume on an exit from L1.
510 	 */
511 	unsigned int besl;
512 
513 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
514 	 * When the timer counts to zero, the parent hub will initiate a LPM
515 	 * transition to L1.
516 	 */
517 	int timeout;
518 };
519 
520 /*
521  * USB 3.0 Link Power Management (LPM) parameters.
522  *
523  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
524  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
525  * All three are stored in nanoseconds.
526  */
527 struct usb3_lpm_parameters {
528 	/*
529 	 * Maximum exit latency (MEL) for the host to send a packet to the
530 	 * device (either a Ping for isoc endpoints, or a data packet for
531 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
532 	 * in the path to transition the links to U0.
533 	 */
534 	unsigned int mel;
535 	/*
536 	 * Maximum exit latency for a device-initiated LPM transition to bring
537 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
538 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
539 	 */
540 	unsigned int pel;
541 
542 	/*
543 	 * The System Exit Latency (SEL) includes PEL, and three other
544 	 * latencies.  After a device initiates a U0 transition, it will take
545 	 * some time from when the device sends the ERDY to when it will finally
546 	 * receive the data packet.  Basically, SEL should be the worse-case
547 	 * latency from when a device starts initiating a U0 transition to when
548 	 * it will get data.
549 	 */
550 	unsigned int sel;
551 	/*
552 	 * The idle timeout value that is currently programmed into the parent
553 	 * hub for this device.  When the timer counts to zero, the parent hub
554 	 * will initiate an LPM transition to either U1 or U2.
555 	 */
556 	int timeout;
557 };
558 
559 /**
560  * struct usb_device - kernel's representation of a USB device
561  * @devnum: device number; address on a USB bus
562  * @devpath: device ID string for use in messages (e.g., /port/...)
563  * @route: tree topology hex string for use with xHCI
564  * @state: device state: configured, not attached, etc.
565  * @speed: device speed: high/full/low (or error)
566  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
567  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
568  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
569  * @ttport: device port on that tt hub
570  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
571  * @parent: our hub, unless we're the root
572  * @bus: bus we're part of
573  * @ep0: endpoint 0 data (default control pipe)
574  * @dev: generic device interface
575  * @descriptor: USB device descriptor
576  * @bos: USB device BOS descriptor set
577  * @config: all of the device's configs
578  * @actconfig: the active configuration
579  * @ep_in: array of IN endpoints
580  * @ep_out: array of OUT endpoints
581  * @rawdescriptors: raw descriptors for each config
582  * @bus_mA: Current available from the bus
583  * @portnum: parent port number (origin 1)
584  * @level: number of USB hub ancestors
585  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
586  * @can_submit: URBs may be submitted
587  * @persist_enabled:  USB_PERSIST enabled for this device
588  * @reset_in_progress: the device is being reset
589  * @have_langid: whether string_langid is valid
590  * @authorized: policy has said we can use it;
591  *	(user space) policy determines if we authorize this device to be
592  *	used or not. By default, wired USB devices are authorized.
593  *	WUSB devices are not, until we authorize them from user space.
594  *	FIXME -- complete doc
595  * @authenticated: Crypto authentication passed
596  * @wusb: device is Wireless USB
597  * @lpm_capable: device supports LPM
598  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
599  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
600  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
601  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
602  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
603  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
604  * @string_langid: language ID for strings
605  * @product: iProduct string, if present (static)
606  * @manufacturer: iManufacturer string, if present (static)
607  * @serial: iSerialNumber string, if present (static)
608  * @filelist: usbfs files that are open to this device
609  * @maxchild: number of ports if hub
610  * @quirks: quirks of the whole device
611  * @urbnum: number of URBs submitted for the whole device
612  * @active_duration: total time device is not suspended
613  * @connect_time: time device was first connected
614  * @do_remote_wakeup:  remote wakeup should be enabled
615  * @reset_resume: needs reset instead of resume
616  * @port_is_suspended: the upstream port is suspended (L2 or U3)
617  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
618  *	specific data for the device.
619  * @slot_id: Slot ID assigned by xHCI
620  * @removable: Device can be physically removed from this port
621  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
622  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
623  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
624  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
625  *	to keep track of the number of functions that require USB 3.0 Link Power
626  *	Management to be disabled for this usb_device.  This count should only
627  *	be manipulated by those functions, with the bandwidth_mutex is held.
628  * @hub_delay: cached value consisting of:
629  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
630  *	Will be used as wValue for SetIsochDelay requests.
631  * @use_generic_driver: ask driver core to reprobe using the generic driver.
632  *
633  * Notes:
634  * Usbcore drivers should not set usbdev->state directly.  Instead use
635  * usb_set_device_state().
636  */
637 struct usb_device {
638 	int		devnum;
639 	char		devpath[16];
640 	u32		route;
641 	enum usb_device_state	state;
642 	enum usb_device_speed	speed;
643 	unsigned int		rx_lanes;
644 	unsigned int		tx_lanes;
645 
646 	struct usb_tt	*tt;
647 	int		ttport;
648 
649 	unsigned int toggle[2];
650 
651 	struct usb_device *parent;
652 	struct usb_bus *bus;
653 	struct usb_host_endpoint ep0;
654 
655 	struct device dev;
656 
657 	struct usb_device_descriptor descriptor;
658 	struct usb_host_bos *bos;
659 	struct usb_host_config *config;
660 
661 	struct usb_host_config *actconfig;
662 	struct usb_host_endpoint *ep_in[16];
663 	struct usb_host_endpoint *ep_out[16];
664 
665 	char **rawdescriptors;
666 
667 	unsigned short bus_mA;
668 	u8 portnum;
669 	u8 level;
670 	u8 devaddr;
671 
672 	unsigned can_submit:1;
673 	unsigned persist_enabled:1;
674 	unsigned reset_in_progress:1;
675 	unsigned have_langid:1;
676 	unsigned authorized:1;
677 	unsigned authenticated:1;
678 	unsigned wusb:1;
679 	unsigned lpm_capable:1;
680 	unsigned usb2_hw_lpm_capable:1;
681 	unsigned usb2_hw_lpm_besl_capable:1;
682 	unsigned usb2_hw_lpm_enabled:1;
683 	unsigned usb2_hw_lpm_allowed:1;
684 	unsigned usb3_lpm_u1_enabled:1;
685 	unsigned usb3_lpm_u2_enabled:1;
686 	int string_langid;
687 
688 	/* static strings from the device */
689 	char *product;
690 	char *manufacturer;
691 	char *serial;
692 
693 	struct list_head filelist;
694 
695 	int maxchild;
696 
697 	u32 quirks;
698 	atomic_t urbnum;
699 
700 	unsigned long active_duration;
701 
702 #ifdef CONFIG_PM
703 	unsigned long connect_time;
704 
705 	unsigned do_remote_wakeup:1;
706 	unsigned reset_resume:1;
707 	unsigned port_is_suspended:1;
708 #endif
709 	struct wusb_dev *wusb_dev;
710 	int slot_id;
711 	enum usb_device_removable removable;
712 	struct usb2_lpm_parameters l1_params;
713 	struct usb3_lpm_parameters u1_params;
714 	struct usb3_lpm_parameters u2_params;
715 	unsigned lpm_disable_count;
716 
717 	u16 hub_delay;
718 	unsigned use_generic_driver:1;
719 };
720 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
721 
interface_to_usbdev(struct usb_interface * intf)722 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
723 {
724 	return to_usb_device(intf->dev.parent);
725 }
726 
727 extern struct usb_device *usb_get_dev(struct usb_device *dev);
728 extern void usb_put_dev(struct usb_device *dev);
729 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
730 	int port1);
731 
732 /**
733  * usb_hub_for_each_child - iterate over all child devices on the hub
734  * @hdev:  USB device belonging to the usb hub
735  * @port1: portnum associated with child device
736  * @child: child device pointer
737  */
738 #define usb_hub_for_each_child(hdev, port1, child) \
739 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
740 			port1 <= hdev->maxchild; \
741 			child = usb_hub_find_child(hdev, ++port1)) \
742 		if (!child) continue; else
743 
744 /* USB device locking */
745 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
746 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
747 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
748 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
749 extern int usb_lock_device_for_reset(struct usb_device *udev,
750 				     const struct usb_interface *iface);
751 
752 /* USB port reset for device reinitialization */
753 extern int usb_reset_device(struct usb_device *dev);
754 extern void usb_queue_reset_device(struct usb_interface *dev);
755 
756 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
757 
758 #ifdef CONFIG_ACPI
759 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
760 	bool enable);
761 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
762 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
763 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)764 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
765 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)766 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
767 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)768 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
769 	{ return 0; }
770 #endif
771 
772 /* USB autosuspend and autoresume */
773 #ifdef CONFIG_PM
774 extern void usb_enable_autosuspend(struct usb_device *udev);
775 extern void usb_disable_autosuspend(struct usb_device *udev);
776 
777 extern int usb_autopm_get_interface(struct usb_interface *intf);
778 extern void usb_autopm_put_interface(struct usb_interface *intf);
779 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
780 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
781 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
782 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
783 
usb_mark_last_busy(struct usb_device * udev)784 static inline void usb_mark_last_busy(struct usb_device *udev)
785 {
786 	pm_runtime_mark_last_busy(&udev->dev);
787 }
788 
789 #else
790 
usb_enable_autosuspend(struct usb_device * udev)791 static inline int usb_enable_autosuspend(struct usb_device *udev)
792 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)793 static inline int usb_disable_autosuspend(struct usb_device *udev)
794 { return 0; }
795 
usb_autopm_get_interface(struct usb_interface * intf)796 static inline int usb_autopm_get_interface(struct usb_interface *intf)
797 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)798 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
799 { return 0; }
800 
usb_autopm_put_interface(struct usb_interface * intf)801 static inline void usb_autopm_put_interface(struct usb_interface *intf)
802 { }
usb_autopm_put_interface_async(struct usb_interface * intf)803 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
804 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)805 static inline void usb_autopm_get_interface_no_resume(
806 		struct usb_interface *intf)
807 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)808 static inline void usb_autopm_put_interface_no_suspend(
809 		struct usb_interface *intf)
810 { }
usb_mark_last_busy(struct usb_device * udev)811 static inline void usb_mark_last_busy(struct usb_device *udev)
812 { }
813 #endif
814 
815 extern int usb_disable_lpm(struct usb_device *udev);
816 extern void usb_enable_lpm(struct usb_device *udev);
817 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
818 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
819 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
820 
821 extern int usb_disable_ltm(struct usb_device *udev);
822 extern void usb_enable_ltm(struct usb_device *udev);
823 
usb_device_supports_ltm(struct usb_device * udev)824 static inline bool usb_device_supports_ltm(struct usb_device *udev)
825 {
826 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
827 		return false;
828 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
829 }
830 
usb_device_no_sg_constraint(struct usb_device * udev)831 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
832 {
833 	return udev && udev->bus && udev->bus->no_sg_constraint;
834 }
835 
836 
837 /*-------------------------------------------------------------------------*/
838 
839 /* for drivers using iso endpoints */
840 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
841 
842 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
843 extern int usb_alloc_streams(struct usb_interface *interface,
844 		struct usb_host_endpoint **eps, unsigned int num_eps,
845 		unsigned int num_streams, gfp_t mem_flags);
846 
847 /* Reverts a group of bulk endpoints back to not using stream IDs. */
848 extern int usb_free_streams(struct usb_interface *interface,
849 		struct usb_host_endpoint **eps, unsigned int num_eps,
850 		gfp_t mem_flags);
851 
852 /* used these for multi-interface device registration */
853 extern int usb_driver_claim_interface(struct usb_driver *driver,
854 			struct usb_interface *iface, void *priv);
855 
856 /**
857  * usb_interface_claimed - returns true iff an interface is claimed
858  * @iface: the interface being checked
859  *
860  * Return: %true (nonzero) iff the interface is claimed, else %false
861  * (zero).
862  *
863  * Note:
864  * Callers must own the driver model's usb bus readlock.  So driver
865  * probe() entries don't need extra locking, but other call contexts
866  * may need to explicitly claim that lock.
867  *
868  */
usb_interface_claimed(struct usb_interface * iface)869 static inline int usb_interface_claimed(struct usb_interface *iface)
870 {
871 	return (iface->dev.driver != NULL);
872 }
873 
874 extern void usb_driver_release_interface(struct usb_driver *driver,
875 			struct usb_interface *iface);
876 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
877 					 const struct usb_device_id *id);
878 extern int usb_match_one_id(struct usb_interface *interface,
879 			    const struct usb_device_id *id);
880 
881 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
882 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
883 		int minor);
884 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
885 		unsigned ifnum);
886 extern struct usb_host_interface *usb_altnum_to_altsetting(
887 		const struct usb_interface *intf, unsigned int altnum);
888 extern struct usb_host_interface *usb_find_alt_setting(
889 		struct usb_host_config *config,
890 		unsigned int iface_num,
891 		unsigned int alt_num);
892 
893 /* port claiming functions */
894 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
895 		struct usb_dev_state *owner);
896 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
897 		struct usb_dev_state *owner);
898 
899 /**
900  * usb_make_path - returns stable device path in the usb tree
901  * @dev: the device whose path is being constructed
902  * @buf: where to put the string
903  * @size: how big is "buf"?
904  *
905  * Return: Length of the string (> 0) or negative if size was too small.
906  *
907  * Note:
908  * This identifier is intended to be "stable", reflecting physical paths in
909  * hardware such as physical bus addresses for host controllers or ports on
910  * USB hubs.  That makes it stay the same until systems are physically
911  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
912  * controllers.  Adding and removing devices, including virtual root hubs
913  * in host controller driver modules, does not change these path identifiers;
914  * neither does rebooting or re-enumerating.  These are more useful identifiers
915  * than changeable ("unstable") ones like bus numbers or device addresses.
916  *
917  * With a partial exception for devices connected to USB 2.0 root hubs, these
918  * identifiers are also predictable.  So long as the device tree isn't changed,
919  * plugging any USB device into a given hub port always gives it the same path.
920  * Because of the use of "companion" controllers, devices connected to ports on
921  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
922  * high speed, and a different one if they are full or low speed.
923  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)924 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
925 {
926 	int actual;
927 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
928 			  dev->devpath);
929 	return (actual >= (int)size) ? -1 : actual;
930 }
931 
932 /*-------------------------------------------------------------------------*/
933 
934 #define USB_DEVICE_ID_MATCH_DEVICE \
935 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
936 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
937 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
938 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
939 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
940 #define USB_DEVICE_ID_MATCH_DEV_INFO \
941 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
942 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
943 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
944 #define USB_DEVICE_ID_MATCH_INT_INFO \
945 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
946 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
947 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
948 
949 /**
950  * USB_DEVICE - macro used to describe a specific usb device
951  * @vend: the 16 bit USB Vendor ID
952  * @prod: the 16 bit USB Product ID
953  *
954  * This macro is used to create a struct usb_device_id that matches a
955  * specific device.
956  */
957 #define USB_DEVICE(vend, prod) \
958 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
959 	.idVendor = (vend), \
960 	.idProduct = (prod)
961 /**
962  * USB_DEVICE_VER - describe a specific usb device with a version range
963  * @vend: the 16 bit USB Vendor ID
964  * @prod: the 16 bit USB Product ID
965  * @lo: the bcdDevice_lo value
966  * @hi: the bcdDevice_hi value
967  *
968  * This macro is used to create a struct usb_device_id that matches a
969  * specific device, with a version range.
970  */
971 #define USB_DEVICE_VER(vend, prod, lo, hi) \
972 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
973 	.idVendor = (vend), \
974 	.idProduct = (prod), \
975 	.bcdDevice_lo = (lo), \
976 	.bcdDevice_hi = (hi)
977 
978 /**
979  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
980  * @vend: the 16 bit USB Vendor ID
981  * @prod: the 16 bit USB Product ID
982  * @cl: bInterfaceClass value
983  *
984  * This macro is used to create a struct usb_device_id that matches a
985  * specific interface class of devices.
986  */
987 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
988 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
989 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
990 	.idVendor = (vend), \
991 	.idProduct = (prod), \
992 	.bInterfaceClass = (cl)
993 
994 /**
995  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
996  * @vend: the 16 bit USB Vendor ID
997  * @prod: the 16 bit USB Product ID
998  * @pr: bInterfaceProtocol value
999  *
1000  * This macro is used to create a struct usb_device_id that matches a
1001  * specific interface protocol of devices.
1002  */
1003 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1004 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1005 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1006 	.idVendor = (vend), \
1007 	.idProduct = (prod), \
1008 	.bInterfaceProtocol = (pr)
1009 
1010 /**
1011  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1012  * @vend: the 16 bit USB Vendor ID
1013  * @prod: the 16 bit USB Product ID
1014  * @num: bInterfaceNumber value
1015  *
1016  * This macro is used to create a struct usb_device_id that matches a
1017  * specific interface number of devices.
1018  */
1019 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1020 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1021 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1022 	.idVendor = (vend), \
1023 	.idProduct = (prod), \
1024 	.bInterfaceNumber = (num)
1025 
1026 /**
1027  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1028  * @cl: bDeviceClass value
1029  * @sc: bDeviceSubClass value
1030  * @pr: bDeviceProtocol value
1031  *
1032  * This macro is used to create a struct usb_device_id that matches a
1033  * specific class of devices.
1034  */
1035 #define USB_DEVICE_INFO(cl, sc, pr) \
1036 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1037 	.bDeviceClass = (cl), \
1038 	.bDeviceSubClass = (sc), \
1039 	.bDeviceProtocol = (pr)
1040 
1041 /**
1042  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1043  * @cl: bInterfaceClass value
1044  * @sc: bInterfaceSubClass value
1045  * @pr: bInterfaceProtocol value
1046  *
1047  * This macro is used to create a struct usb_device_id that matches a
1048  * specific class of interfaces.
1049  */
1050 #define USB_INTERFACE_INFO(cl, sc, pr) \
1051 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1052 	.bInterfaceClass = (cl), \
1053 	.bInterfaceSubClass = (sc), \
1054 	.bInterfaceProtocol = (pr)
1055 
1056 /**
1057  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1058  * @vend: the 16 bit USB Vendor ID
1059  * @prod: the 16 bit USB Product ID
1060  * @cl: bInterfaceClass value
1061  * @sc: bInterfaceSubClass value
1062  * @pr: bInterfaceProtocol value
1063  *
1064  * This macro is used to create a struct usb_device_id that matches a
1065  * specific device with a specific class of interfaces.
1066  *
1067  * This is especially useful when explicitly matching devices that have
1068  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1069  */
1070 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1071 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1072 		| USB_DEVICE_ID_MATCH_DEVICE, \
1073 	.idVendor = (vend), \
1074 	.idProduct = (prod), \
1075 	.bInterfaceClass = (cl), \
1076 	.bInterfaceSubClass = (sc), \
1077 	.bInterfaceProtocol = (pr)
1078 
1079 /**
1080  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1081  * @vend: the 16 bit USB Vendor ID
1082  * @cl: bInterfaceClass value
1083  * @sc: bInterfaceSubClass value
1084  * @pr: bInterfaceProtocol value
1085  *
1086  * This macro is used to create a struct usb_device_id that matches a
1087  * specific vendor with a specific class of interfaces.
1088  *
1089  * This is especially useful when explicitly matching devices that have
1090  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1091  */
1092 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1093 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1094 		| USB_DEVICE_ID_MATCH_VENDOR, \
1095 	.idVendor = (vend), \
1096 	.bInterfaceClass = (cl), \
1097 	.bInterfaceSubClass = (sc), \
1098 	.bInterfaceProtocol = (pr)
1099 
1100 /* ----------------------------------------------------------------------- */
1101 
1102 /* Stuff for dynamic usb ids */
1103 struct usb_dynids {
1104 	spinlock_t lock;
1105 	struct list_head list;
1106 };
1107 
1108 struct usb_dynid {
1109 	struct list_head node;
1110 	struct usb_device_id id;
1111 };
1112 
1113 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1114 				const struct usb_device_id *id_table,
1115 				struct device_driver *driver,
1116 				const char *buf, size_t count);
1117 
1118 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1119 
1120 /**
1121  * struct usbdrv_wrap - wrapper for driver-model structure
1122  * @driver: The driver-model core driver structure.
1123  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1124  */
1125 struct usbdrv_wrap {
1126 	struct device_driver driver;
1127 	int for_devices;
1128 };
1129 
1130 /**
1131  * struct usb_driver - identifies USB interface driver to usbcore
1132  * @name: The driver name should be unique among USB drivers,
1133  *	and should normally be the same as the module name.
1134  * @probe: Called to see if the driver is willing to manage a particular
1135  *	interface on a device.  If it is, probe returns zero and uses
1136  *	usb_set_intfdata() to associate driver-specific data with the
1137  *	interface.  It may also use usb_set_interface() to specify the
1138  *	appropriate altsetting.  If unwilling to manage the interface,
1139  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1140  *	negative errno value.
1141  * @disconnect: Called when the interface is no longer accessible, usually
1142  *	because its device has been (or is being) disconnected or the
1143  *	driver module is being unloaded.
1144  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1145  *	the "usbfs" filesystem.  This lets devices provide ways to
1146  *	expose information to user space regardless of where they
1147  *	do (or don't) show up otherwise in the filesystem.
1148  * @suspend: Called when the device is going to be suspended by the
1149  *	system either from system sleep or runtime suspend context. The
1150  *	return value will be ignored in system sleep context, so do NOT
1151  *	try to continue using the device if suspend fails in this case.
1152  *	Instead, let the resume or reset-resume routine recover from
1153  *	the failure.
1154  * @resume: Called when the device is being resumed by the system.
1155  * @reset_resume: Called when the suspended device has been reset instead
1156  *	of being resumed.
1157  * @pre_reset: Called by usb_reset_device() when the device is about to be
1158  *	reset.  This routine must not return until the driver has no active
1159  *	URBs for the device, and no more URBs may be submitted until the
1160  *	post_reset method is called.
1161  * @post_reset: Called by usb_reset_device() after the device
1162  *	has been reset
1163  * @id_table: USB drivers use ID table to support hotplugging.
1164  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1165  *	or your driver's probe function will never get called.
1166  * @dev_groups: Attributes attached to the device that will be created once it
1167  *	is bound to the driver.
1168  * @dynids: used internally to hold the list of dynamically added device
1169  *	ids for this driver.
1170  * @drvwrap: Driver-model core structure wrapper.
1171  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1172  *	added to this driver by preventing the sysfs file from being created.
1173  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1174  *	for interfaces bound to this driver.
1175  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1176  *	endpoints before calling the driver's disconnect method.
1177  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1178  *	to initiate lower power link state transitions when an idle timeout
1179  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1180  *
1181  * USB interface drivers must provide a name, probe() and disconnect()
1182  * methods, and an id_table.  Other driver fields are optional.
1183  *
1184  * The id_table is used in hotplugging.  It holds a set of descriptors,
1185  * and specialized data may be associated with each entry.  That table
1186  * is used by both user and kernel mode hotplugging support.
1187  *
1188  * The probe() and disconnect() methods are called in a context where
1189  * they can sleep, but they should avoid abusing the privilege.  Most
1190  * work to connect to a device should be done when the device is opened,
1191  * and undone at the last close.  The disconnect code needs to address
1192  * concurrency issues with respect to open() and close() methods, as
1193  * well as forcing all pending I/O requests to complete (by unlinking
1194  * them as necessary, and blocking until the unlinks complete).
1195  */
1196 struct usb_driver {
1197 	const char *name;
1198 
1199 	int (*probe) (struct usb_interface *intf,
1200 		      const struct usb_device_id *id);
1201 
1202 	void (*disconnect) (struct usb_interface *intf);
1203 
1204 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1205 			void *buf);
1206 
1207 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1208 	int (*resume) (struct usb_interface *intf);
1209 	int (*reset_resume)(struct usb_interface *intf);
1210 
1211 	int (*pre_reset)(struct usb_interface *intf);
1212 	int (*post_reset)(struct usb_interface *intf);
1213 
1214 	const struct usb_device_id *id_table;
1215 	const struct attribute_group **dev_groups;
1216 
1217 	struct usb_dynids dynids;
1218 	struct usbdrv_wrap drvwrap;
1219 	unsigned int no_dynamic_id:1;
1220 	unsigned int supports_autosuspend:1;
1221 	unsigned int disable_hub_initiated_lpm:1;
1222 	unsigned int soft_unbind:1;
1223 };
1224 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1225 
1226 /**
1227  * struct usb_device_driver - identifies USB device driver to usbcore
1228  * @name: The driver name should be unique among USB drivers,
1229  *	and should normally be the same as the module name.
1230  * @match: If set, used for better device/driver matching.
1231  * @probe: Called to see if the driver is willing to manage a particular
1232  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1233  *	to associate driver-specific data with the device.  If unwilling
1234  *	to manage the device, return a negative errno value.
1235  * @disconnect: Called when the device is no longer accessible, usually
1236  *	because it has been (or is being) disconnected or the driver's
1237  *	module is being unloaded.
1238  * @suspend: Called when the device is going to be suspended by the system.
1239  * @resume: Called when the device is being resumed by the system.
1240  * @dev_groups: Attributes attached to the device that will be created once it
1241  *	is bound to the driver.
1242  * @drvwrap: Driver-model core structure wrapper.
1243  * @id_table: used with @match() to select better matching driver at
1244  * 	probe() time.
1245  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1246  *	for devices bound to this driver.
1247  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1248  *	resume and suspend functions will be called in addition to the driver's
1249  *	own, so this part of the setup does not need to be replicated.
1250  *
1251  * USB drivers must provide all the fields listed above except drvwrap,
1252  * match, and id_table.
1253  */
1254 struct usb_device_driver {
1255 	const char *name;
1256 
1257 	bool (*match) (struct usb_device *udev);
1258 	int (*probe) (struct usb_device *udev);
1259 	void (*disconnect) (struct usb_device *udev);
1260 
1261 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1262 	int (*resume) (struct usb_device *udev, pm_message_t message);
1263 	const struct attribute_group **dev_groups;
1264 	struct usbdrv_wrap drvwrap;
1265 	const struct usb_device_id *id_table;
1266 	unsigned int supports_autosuspend:1;
1267 	unsigned int generic_subclass:1;
1268 };
1269 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1270 		drvwrap.driver)
1271 
1272 extern struct bus_type usb_bus_type;
1273 
1274 /**
1275  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1276  * @name: the usb class device name for this driver.  Will show up in sysfs.
1277  * @devnode: Callback to provide a naming hint for a possible
1278  *	device node to create.
1279  * @fops: pointer to the struct file_operations of this driver.
1280  * @minor_base: the start of the minor range for this driver.
1281  *
1282  * This structure is used for the usb_register_dev() and
1283  * usb_deregister_dev() functions, to consolidate a number of the
1284  * parameters used for them.
1285  */
1286 struct usb_class_driver {
1287 	char *name;
1288 	char *(*devnode)(struct device *dev, umode_t *mode);
1289 	const struct file_operations *fops;
1290 	int minor_base;
1291 };
1292 
1293 /*
1294  * use these in module_init()/module_exit()
1295  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1296  */
1297 extern int usb_register_driver(struct usb_driver *, struct module *,
1298 			       const char *);
1299 
1300 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1301 #define usb_register(driver) \
1302 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1303 
1304 extern void usb_deregister(struct usb_driver *);
1305 
1306 /**
1307  * module_usb_driver() - Helper macro for registering a USB driver
1308  * @__usb_driver: usb_driver struct
1309  *
1310  * Helper macro for USB drivers which do not do anything special in module
1311  * init/exit. This eliminates a lot of boilerplate. Each module may only
1312  * use this macro once, and calling it replaces module_init() and module_exit()
1313  */
1314 #define module_usb_driver(__usb_driver) \
1315 	module_driver(__usb_driver, usb_register, \
1316 		       usb_deregister)
1317 
1318 extern int usb_register_device_driver(struct usb_device_driver *,
1319 			struct module *);
1320 extern void usb_deregister_device_driver(struct usb_device_driver *);
1321 
1322 extern int usb_register_dev(struct usb_interface *intf,
1323 			    struct usb_class_driver *class_driver);
1324 extern void usb_deregister_dev(struct usb_interface *intf,
1325 			       struct usb_class_driver *class_driver);
1326 
1327 extern int usb_disabled(void);
1328 
1329 /* ----------------------------------------------------------------------- */
1330 
1331 /*
1332  * URB support, for asynchronous request completions
1333  */
1334 
1335 /*
1336  * urb->transfer_flags:
1337  *
1338  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1339  */
1340 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1341 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1342 					 * slot in the schedule */
1343 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1344 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1345 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1346 					 * needed */
1347 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1348 
1349 /* The following flags are used internally by usbcore and HCDs */
1350 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1351 #define URB_DIR_OUT		0
1352 #define URB_DIR_MASK		URB_DIR_IN
1353 
1354 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1355 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1356 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1357 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1358 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1359 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1360 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1361 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1362 
1363 struct usb_iso_packet_descriptor {
1364 	unsigned int offset;
1365 	unsigned int length;		/* expected length */
1366 	unsigned int actual_length;
1367 	int status;
1368 };
1369 
1370 struct urb;
1371 
1372 struct usb_anchor {
1373 	struct list_head urb_list;
1374 	wait_queue_head_t wait;
1375 	spinlock_t lock;
1376 	atomic_t suspend_wakeups;
1377 	unsigned int poisoned:1;
1378 };
1379 
init_usb_anchor(struct usb_anchor * anchor)1380 static inline void init_usb_anchor(struct usb_anchor *anchor)
1381 {
1382 	memset(anchor, 0, sizeof(*anchor));
1383 	INIT_LIST_HEAD(&anchor->urb_list);
1384 	init_waitqueue_head(&anchor->wait);
1385 	spin_lock_init(&anchor->lock);
1386 }
1387 
1388 typedef void (*usb_complete_t)(struct urb *);
1389 
1390 /**
1391  * struct urb - USB Request Block
1392  * @urb_list: For use by current owner of the URB.
1393  * @anchor_list: membership in the list of an anchor
1394  * @anchor: to anchor URBs to a common mooring
1395  * @ep: Points to the endpoint's data structure.  Will eventually
1396  *	replace @pipe.
1397  * @pipe: Holds endpoint number, direction, type, and more.
1398  *	Create these values with the eight macros available;
1399  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1400  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1401  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1402  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1403  *	is a different endpoint (and pipe) from "out" endpoint two.
1404  *	The current configuration controls the existence, type, and
1405  *	maximum packet size of any given endpoint.
1406  * @stream_id: the endpoint's stream ID for bulk streams
1407  * @dev: Identifies the USB device to perform the request.
1408  * @status: This is read in non-iso completion functions to get the
1409  *	status of the particular request.  ISO requests only use it
1410  *	to tell whether the URB was unlinked; detailed status for
1411  *	each frame is in the fields of the iso_frame-desc.
1412  * @transfer_flags: A variety of flags may be used to affect how URB
1413  *	submission, unlinking, or operation are handled.  Different
1414  *	kinds of URB can use different flags.
1415  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1416  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1417  *	(however, do not leave garbage in transfer_buffer even then).
1418  *	This buffer must be suitable for DMA; allocate it with
1419  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1420  *	of this buffer will be modified.  This buffer is used for the data
1421  *	stage of control transfers.
1422  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1423  *	the device driver is saying that it provided this DMA address,
1424  *	which the host controller driver should use in preference to the
1425  *	transfer_buffer.
1426  * @sg: scatter gather buffer list, the buffer size of each element in
1427  * 	the list (except the last) must be divisible by the endpoint's
1428  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1429  * @num_mapped_sgs: (internal) number of mapped sg entries
1430  * @num_sgs: number of entries in the sg list
1431  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1432  *	be broken up into chunks according to the current maximum packet
1433  *	size for the endpoint, which is a function of the configuration
1434  *	and is encoded in the pipe.  When the length is zero, neither
1435  *	transfer_buffer nor transfer_dma is used.
1436  * @actual_length: This is read in non-iso completion functions, and
1437  *	it tells how many bytes (out of transfer_buffer_length) were
1438  *	transferred.  It will normally be the same as requested, unless
1439  *	either an error was reported or a short read was performed.
1440  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1441  *	short reads be reported as errors.
1442  * @setup_packet: Only used for control transfers, this points to eight bytes
1443  *	of setup data.  Control transfers always start by sending this data
1444  *	to the device.  Then transfer_buffer is read or written, if needed.
1445  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1446  *	this field; setup_packet must point to a valid buffer.
1447  * @start_frame: Returns the initial frame for isochronous transfers.
1448  * @number_of_packets: Lists the number of ISO transfer buffers.
1449  * @interval: Specifies the polling interval for interrupt or isochronous
1450  *	transfers.  The units are frames (milliseconds) for full and low
1451  *	speed devices, and microframes (1/8 millisecond) for highspeed
1452  *	and SuperSpeed devices.
1453  * @error_count: Returns the number of ISO transfers that reported errors.
1454  * @context: For use in completion functions.  This normally points to
1455  *	request-specific driver context.
1456  * @complete: Completion handler. This URB is passed as the parameter to the
1457  *	completion function.  The completion function may then do what
1458  *	it likes with the URB, including resubmitting or freeing it.
1459  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1460  *	collect the transfer status for each buffer.
1461  *
1462  * This structure identifies USB transfer requests.  URBs must be allocated by
1463  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1464  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1465  * are submitted using usb_submit_urb(), and pending requests may be canceled
1466  * using usb_unlink_urb() or usb_kill_urb().
1467  *
1468  * Data Transfer Buffers:
1469  *
1470  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1471  * taken from the general page pool.  That is provided by transfer_buffer
1472  * (control requests also use setup_packet), and host controller drivers
1473  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1474  * mapping operations can be expensive on some platforms (perhaps using a dma
1475  * bounce buffer or talking to an IOMMU),
1476  * although they're cheap on commodity x86 and ppc hardware.
1477  *
1478  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1479  * which tells the host controller driver that no such mapping is needed for
1480  * the transfer_buffer since
1481  * the device driver is DMA-aware.  For example, a device driver might
1482  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1483  * When this transfer flag is provided, host controller drivers will
1484  * attempt to use the dma address found in the transfer_dma
1485  * field rather than determining a dma address themselves.
1486  *
1487  * Note that transfer_buffer must still be set if the controller
1488  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1489  * to root hub. If you have to trasfer between highmem zone and the device
1490  * on such controller, create a bounce buffer or bail out with an error.
1491  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1492  * capable, assign NULL to it, so that usbmon knows not to use the value.
1493  * The setup_packet must always be set, so it cannot be located in highmem.
1494  *
1495  * Initialization:
1496  *
1497  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1498  * zero), and complete fields.  All URBs must also initialize
1499  * transfer_buffer and transfer_buffer_length.  They may provide the
1500  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1501  * to be treated as errors; that flag is invalid for write requests.
1502  *
1503  * Bulk URBs may
1504  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1505  * should always terminate with a short packet, even if it means adding an
1506  * extra zero length packet.
1507  *
1508  * Control URBs must provide a valid pointer in the setup_packet field.
1509  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1510  * beforehand.
1511  *
1512  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1513  * or, for highspeed devices, 125 microsecond units)
1514  * to poll for transfers.  After the URB has been submitted, the interval
1515  * field reflects how the transfer was actually scheduled.
1516  * The polling interval may be more frequent than requested.
1517  * For example, some controllers have a maximum interval of 32 milliseconds,
1518  * while others support intervals of up to 1024 milliseconds.
1519  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1520  * endpoints, as well as high speed interrupt endpoints, the encoding of
1521  * the transfer interval in the endpoint descriptor is logarithmic.
1522  * Device drivers must convert that value to linear units themselves.)
1523  *
1524  * If an isochronous endpoint queue isn't already running, the host
1525  * controller will schedule a new URB to start as soon as bandwidth
1526  * utilization allows.  If the queue is running then a new URB will be
1527  * scheduled to start in the first transfer slot following the end of the
1528  * preceding URB, if that slot has not already expired.  If the slot has
1529  * expired (which can happen when IRQ delivery is delayed for a long time),
1530  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1531  * is clear then the URB will be scheduled to start in the expired slot,
1532  * implying that some of its packets will not be transferred; if the flag
1533  * is set then the URB will be scheduled in the first unexpired slot,
1534  * breaking the queue's synchronization.  Upon URB completion, the
1535  * start_frame field will be set to the (micro)frame number in which the
1536  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1537  * and can go from as low as 256 to as high as 65536 frames.
1538  *
1539  * Isochronous URBs have a different data transfer model, in part because
1540  * the quality of service is only "best effort".  Callers provide specially
1541  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1542  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1543  * URBs are normally queued, submitted by drivers to arrange that
1544  * transfers are at least double buffered, and then explicitly resubmitted
1545  * in completion handlers, so
1546  * that data (such as audio or video) streams at as constant a rate as the
1547  * host controller scheduler can support.
1548  *
1549  * Completion Callbacks:
1550  *
1551  * The completion callback is made in_interrupt(), and one of the first
1552  * things that a completion handler should do is check the status field.
1553  * The status field is provided for all URBs.  It is used to report
1554  * unlinked URBs, and status for all non-ISO transfers.  It should not
1555  * be examined before the URB is returned to the completion handler.
1556  *
1557  * The context field is normally used to link URBs back to the relevant
1558  * driver or request state.
1559  *
1560  * When the completion callback is invoked for non-isochronous URBs, the
1561  * actual_length field tells how many bytes were transferred.  This field
1562  * is updated even when the URB terminated with an error or was unlinked.
1563  *
1564  * ISO transfer status is reported in the status and actual_length fields
1565  * of the iso_frame_desc array, and the number of errors is reported in
1566  * error_count.  Completion callbacks for ISO transfers will normally
1567  * (re)submit URBs to ensure a constant transfer rate.
1568  *
1569  * Note that even fields marked "public" should not be touched by the driver
1570  * when the urb is owned by the hcd, that is, since the call to
1571  * usb_submit_urb() till the entry into the completion routine.
1572  */
1573 struct urb {
1574 	/* private: usb core and host controller only fields in the urb */
1575 	struct kref kref;		/* reference count of the URB */
1576 	int unlinked;			/* unlink error code */
1577 	void *hcpriv;			/* private data for host controller */
1578 	atomic_t use_count;		/* concurrent submissions counter */
1579 	atomic_t reject;		/* submissions will fail */
1580 
1581 	/* public: documented fields in the urb that can be used by drivers */
1582 	struct list_head urb_list;	/* list head for use by the urb's
1583 					 * current owner */
1584 	struct list_head anchor_list;	/* the URB may be anchored */
1585 	struct usb_anchor *anchor;
1586 	struct usb_device *dev;		/* (in) pointer to associated device */
1587 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1588 	unsigned int pipe;		/* (in) pipe information */
1589 	unsigned int stream_id;		/* (in) stream ID */
1590 	int status;			/* (return) non-ISO status */
1591 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1592 	void *transfer_buffer;		/* (in) associated data buffer */
1593 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1594 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1595 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1596 	int num_sgs;			/* (in) number of entries in the sg list */
1597 	u32 transfer_buffer_length;	/* (in) data buffer length */
1598 	u32 actual_length;		/* (return) actual transfer length */
1599 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1600 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1601 	int start_frame;		/* (modify) start frame (ISO) */
1602 	int number_of_packets;		/* (in) number of ISO packets */
1603 	int interval;			/* (modify) transfer interval
1604 					 * (INT/ISO) */
1605 	int error_count;		/* (return) number of ISO errors */
1606 	void *context;			/* (in) context for completion */
1607 	usb_complete_t complete;	/* (in) completion routine */
1608 	struct usb_iso_packet_descriptor iso_frame_desc[];
1609 					/* (in) ISO ONLY */
1610 };
1611 
1612 /* ----------------------------------------------------------------------- */
1613 
1614 /**
1615  * usb_fill_control_urb - initializes a control urb
1616  * @urb: pointer to the urb to initialize.
1617  * @dev: pointer to the struct usb_device for this urb.
1618  * @pipe: the endpoint pipe
1619  * @setup_packet: pointer to the setup_packet buffer
1620  * @transfer_buffer: pointer to the transfer buffer
1621  * @buffer_length: length of the transfer buffer
1622  * @complete_fn: pointer to the usb_complete_t function
1623  * @context: what to set the urb context to.
1624  *
1625  * Initializes a control urb with the proper information needed to submit
1626  * it to a device.
1627  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1628 static inline void usb_fill_control_urb(struct urb *urb,
1629 					struct usb_device *dev,
1630 					unsigned int pipe,
1631 					unsigned char *setup_packet,
1632 					void *transfer_buffer,
1633 					int buffer_length,
1634 					usb_complete_t complete_fn,
1635 					void *context)
1636 {
1637 	urb->dev = dev;
1638 	urb->pipe = pipe;
1639 	urb->setup_packet = setup_packet;
1640 	urb->transfer_buffer = transfer_buffer;
1641 	urb->transfer_buffer_length = buffer_length;
1642 	urb->complete = complete_fn;
1643 	urb->context = context;
1644 }
1645 
1646 /**
1647  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1648  * @urb: pointer to the urb to initialize.
1649  * @dev: pointer to the struct usb_device for this urb.
1650  * @pipe: the endpoint pipe
1651  * @transfer_buffer: pointer to the transfer buffer
1652  * @buffer_length: length of the transfer buffer
1653  * @complete_fn: pointer to the usb_complete_t function
1654  * @context: what to set the urb context to.
1655  *
1656  * Initializes a bulk urb with the proper information needed to submit it
1657  * to a device.
1658  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1659 static inline void usb_fill_bulk_urb(struct urb *urb,
1660 				     struct usb_device *dev,
1661 				     unsigned int pipe,
1662 				     void *transfer_buffer,
1663 				     int buffer_length,
1664 				     usb_complete_t complete_fn,
1665 				     void *context)
1666 {
1667 	urb->dev = dev;
1668 	urb->pipe = pipe;
1669 	urb->transfer_buffer = transfer_buffer;
1670 	urb->transfer_buffer_length = buffer_length;
1671 	urb->complete = complete_fn;
1672 	urb->context = context;
1673 }
1674 
1675 /**
1676  * usb_fill_int_urb - macro to help initialize a interrupt urb
1677  * @urb: pointer to the urb to initialize.
1678  * @dev: pointer to the struct usb_device for this urb.
1679  * @pipe: the endpoint pipe
1680  * @transfer_buffer: pointer to the transfer buffer
1681  * @buffer_length: length of the transfer buffer
1682  * @complete_fn: pointer to the usb_complete_t function
1683  * @context: what to set the urb context to.
1684  * @interval: what to set the urb interval to, encoded like
1685  *	the endpoint descriptor's bInterval value.
1686  *
1687  * Initializes a interrupt urb with the proper information needed to submit
1688  * it to a device.
1689  *
1690  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1691  * encoding of the endpoint interval, and express polling intervals in
1692  * microframes (eight per millisecond) rather than in frames (one per
1693  * millisecond).
1694  *
1695  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1696  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1697  * through to the host controller, rather than being translated into microframe
1698  * units.
1699  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1700 static inline void usb_fill_int_urb(struct urb *urb,
1701 				    struct usb_device *dev,
1702 				    unsigned int pipe,
1703 				    void *transfer_buffer,
1704 				    int buffer_length,
1705 				    usb_complete_t complete_fn,
1706 				    void *context,
1707 				    int interval)
1708 {
1709 	urb->dev = dev;
1710 	urb->pipe = pipe;
1711 	urb->transfer_buffer = transfer_buffer;
1712 	urb->transfer_buffer_length = buffer_length;
1713 	urb->complete = complete_fn;
1714 	urb->context = context;
1715 
1716 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1717 		/* make sure interval is within allowed range */
1718 		interval = clamp(interval, 1, 16);
1719 
1720 		urb->interval = 1 << (interval - 1);
1721 	} else {
1722 		urb->interval = interval;
1723 	}
1724 
1725 	urb->start_frame = -1;
1726 }
1727 
1728 extern void usb_init_urb(struct urb *urb);
1729 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1730 extern void usb_free_urb(struct urb *urb);
1731 #define usb_put_urb usb_free_urb
1732 extern struct urb *usb_get_urb(struct urb *urb);
1733 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1734 extern int usb_unlink_urb(struct urb *urb);
1735 extern void usb_kill_urb(struct urb *urb);
1736 extern void usb_poison_urb(struct urb *urb);
1737 extern void usb_unpoison_urb(struct urb *urb);
1738 extern void usb_block_urb(struct urb *urb);
1739 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1740 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1741 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1742 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1743 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1744 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1745 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1746 extern void usb_unanchor_urb(struct urb *urb);
1747 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1748 					 unsigned int timeout);
1749 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1750 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1751 extern int usb_anchor_empty(struct usb_anchor *anchor);
1752 
1753 #define usb_unblock_urb	usb_unpoison_urb
1754 
1755 /**
1756  * usb_urb_dir_in - check if an URB describes an IN transfer
1757  * @urb: URB to be checked
1758  *
1759  * Return: 1 if @urb describes an IN transfer (device-to-host),
1760  * otherwise 0.
1761  */
usb_urb_dir_in(struct urb * urb)1762 static inline int usb_urb_dir_in(struct urb *urb)
1763 {
1764 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1765 }
1766 
1767 /**
1768  * usb_urb_dir_out - check if an URB describes an OUT transfer
1769  * @urb: URB to be checked
1770  *
1771  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1772  * otherwise 0.
1773  */
usb_urb_dir_out(struct urb * urb)1774 static inline int usb_urb_dir_out(struct urb *urb)
1775 {
1776 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1777 }
1778 
1779 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1780 int usb_urb_ep_type_check(const struct urb *urb);
1781 
1782 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1783 	gfp_t mem_flags, dma_addr_t *dma);
1784 void usb_free_coherent(struct usb_device *dev, size_t size,
1785 	void *addr, dma_addr_t dma);
1786 
1787 #if 0
1788 struct urb *usb_buffer_map(struct urb *urb);
1789 void usb_buffer_dmasync(struct urb *urb);
1790 void usb_buffer_unmap(struct urb *urb);
1791 #endif
1792 
1793 struct scatterlist;
1794 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1795 		      struct scatterlist *sg, int nents);
1796 #if 0
1797 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1798 			   struct scatterlist *sg, int n_hw_ents);
1799 #endif
1800 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1801 			 struct scatterlist *sg, int n_hw_ents);
1802 
1803 /*-------------------------------------------------------------------*
1804  *                         SYNCHRONOUS CALL SUPPORT                  *
1805  *-------------------------------------------------------------------*/
1806 
1807 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1808 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1809 	void *data, __u16 size, int timeout);
1810 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1811 	void *data, int len, int *actual_length, int timeout);
1812 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1813 	void *data, int len, int *actual_length,
1814 	int timeout);
1815 
1816 /* wrappers around usb_control_msg() for the most common standard requests */
1817 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1818 			 __u8 requesttype, __u16 value, __u16 index,
1819 			 const void *data, __u16 size, int timeout,
1820 			 gfp_t memflags);
1821 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1822 			 __u8 requesttype, __u16 value, __u16 index,
1823 			 void *data, __u16 size, int timeout,
1824 			 gfp_t memflags);
1825 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1826 	unsigned char descindex, void *buf, int size);
1827 extern int usb_get_status(struct usb_device *dev,
1828 	int recip, int type, int target, void *data);
1829 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1830 static inline int usb_get_std_status(struct usb_device *dev,
1831 	int recip, int target, void *data)
1832 {
1833 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1834 		data);
1835 }
1836 
usb_get_ptm_status(struct usb_device * dev,void * data)1837 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1838 {
1839 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1840 		0, data);
1841 }
1842 
1843 extern int usb_string(struct usb_device *dev, int index,
1844 	char *buf, size_t size);
1845 
1846 /* wrappers that also update important state inside usbcore */
1847 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1848 extern int usb_reset_configuration(struct usb_device *dev);
1849 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1850 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1851 
1852 /* this request isn't really synchronous, but it belongs with the others */
1853 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1854 
1855 /* choose and set configuration for device */
1856 extern int usb_choose_configuration(struct usb_device *udev);
1857 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1858 
1859 /*
1860  * timeouts, in milliseconds, used for sending/receiving control messages
1861  * they typically complete within a few frames (msec) after they're issued
1862  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1863  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1864  */
1865 #define USB_CTRL_GET_TIMEOUT	5000
1866 #define USB_CTRL_SET_TIMEOUT	5000
1867 
1868 
1869 /**
1870  * struct usb_sg_request - support for scatter/gather I/O
1871  * @status: zero indicates success, else negative errno
1872  * @bytes: counts bytes transferred.
1873  *
1874  * These requests are initialized using usb_sg_init(), and then are used
1875  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1876  * members of the request object aren't for driver access.
1877  *
1878  * The status and bytecount values are valid only after usb_sg_wait()
1879  * returns.  If the status is zero, then the bytecount matches the total
1880  * from the request.
1881  *
1882  * After an error completion, drivers may need to clear a halt condition
1883  * on the endpoint.
1884  */
1885 struct usb_sg_request {
1886 	int			status;
1887 	size_t			bytes;
1888 
1889 	/* private:
1890 	 * members below are private to usbcore,
1891 	 * and are not provided for driver access!
1892 	 */
1893 	spinlock_t		lock;
1894 
1895 	struct usb_device	*dev;
1896 	int			pipe;
1897 
1898 	int			entries;
1899 	struct urb		**urbs;
1900 
1901 	int			count;
1902 	struct completion	complete;
1903 };
1904 
1905 int usb_sg_init(
1906 	struct usb_sg_request	*io,
1907 	struct usb_device	*dev,
1908 	unsigned		pipe,
1909 	unsigned		period,
1910 	struct scatterlist	*sg,
1911 	int			nents,
1912 	size_t			length,
1913 	gfp_t			mem_flags
1914 );
1915 void usb_sg_cancel(struct usb_sg_request *io);
1916 void usb_sg_wait(struct usb_sg_request *io);
1917 
1918 
1919 /* ----------------------------------------------------------------------- */
1920 
1921 /*
1922  * For various legacy reasons, Linux has a small cookie that's paired with
1923  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1924  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1925  * an unsigned int encoded as:
1926  *
1927  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1928  *					 1 = Device-to-Host [In] ...
1929  *					like endpoint bEndpointAddress)
1930  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1931  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1932  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1933  *					 10 = control, 11 = bulk)
1934  *
1935  * Given the device address and endpoint descriptor, pipes are redundant.
1936  */
1937 
1938 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1939 /* (yet ... they're the values used by usbfs) */
1940 #define PIPE_ISOCHRONOUS		0
1941 #define PIPE_INTERRUPT			1
1942 #define PIPE_CONTROL			2
1943 #define PIPE_BULK			3
1944 
1945 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1946 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1947 
1948 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1949 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1950 
1951 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1952 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1953 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1954 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1955 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1956 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1957 static inline unsigned int __create_pipe(struct usb_device *dev,
1958 		unsigned int endpoint)
1959 {
1960 	return (dev->devnum << 8) | (endpoint << 15);
1961 }
1962 
1963 /* Create various pipes... */
1964 #define usb_sndctrlpipe(dev, endpoint)	\
1965 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1966 #define usb_rcvctrlpipe(dev, endpoint)	\
1967 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1968 #define usb_sndisocpipe(dev, endpoint)	\
1969 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1970 #define usb_rcvisocpipe(dev, endpoint)	\
1971 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1972 #define usb_sndbulkpipe(dev, endpoint)	\
1973 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1974 #define usb_rcvbulkpipe(dev, endpoint)	\
1975 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1976 #define usb_sndintpipe(dev, endpoint)	\
1977 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1978 #define usb_rcvintpipe(dev, endpoint)	\
1979 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1980 
1981 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1982 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1983 {
1984 	struct usb_host_endpoint **eps;
1985 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1986 	return eps[usb_pipeendpoint(pipe)];
1987 }
1988 
1989 /*-------------------------------------------------------------------------*/
1990 
1991 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1992 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1993 {
1994 	struct usb_host_endpoint	*ep;
1995 	unsigned			epnum = usb_pipeendpoint(pipe);
1996 
1997 	if (is_out) {
1998 		WARN_ON(usb_pipein(pipe));
1999 		ep = udev->ep_out[epnum];
2000 	} else {
2001 		WARN_ON(usb_pipeout(pipe));
2002 		ep = udev->ep_in[epnum];
2003 	}
2004 	if (!ep)
2005 		return 0;
2006 
2007 	/* NOTE:  only 0x07ff bits are for packet size... */
2008 	return usb_endpoint_maxp(&ep->desc);
2009 }
2010 
2011 /* ----------------------------------------------------------------------- */
2012 
2013 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2014 static inline int usb_translate_errors(int error_code)
2015 {
2016 	switch (error_code) {
2017 	case 0:
2018 	case -ENOMEM:
2019 	case -ENODEV:
2020 	case -EOPNOTSUPP:
2021 		return error_code;
2022 	default:
2023 		return -EIO;
2024 	}
2025 }
2026 
2027 /* Events from the usb core */
2028 #define USB_DEVICE_ADD		0x0001
2029 #define USB_DEVICE_REMOVE	0x0002
2030 #define USB_BUS_ADD		0x0003
2031 #define USB_BUS_REMOVE		0x0004
2032 extern void usb_register_notify(struct notifier_block *nb);
2033 extern void usb_unregister_notify(struct notifier_block *nb);
2034 
2035 /* debugfs stuff */
2036 extern struct dentry *usb_debug_root;
2037 
2038 /* LED triggers */
2039 enum usb_led_event {
2040 	USB_LED_EVENT_HOST = 0,
2041 	USB_LED_EVENT_GADGET = 1,
2042 };
2043 
2044 #ifdef CONFIG_USB_LED_TRIG
2045 extern void usb_led_activity(enum usb_led_event ev);
2046 #else
usb_led_activity(enum usb_led_event ev)2047 static inline void usb_led_activity(enum usb_led_event ev) {}
2048 #endif
2049 
2050 #endif  /* __KERNEL__ */
2051 
2052 #endif
2053