1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkCaps.h"
9
10 #include <memory>
11
12 #include "include/gpu/GrBackendSurface.h"
13 #include "include/gpu/vk/GrVkBackendContext.h"
14 #include "include/gpu/vk/GrVkExtensions.h"
15 #include "src/core/SkCompressedDataUtils.h"
16 #include "src/gpu/GrBackendUtils.h"
17 #include "src/gpu/GrProgramDesc.h"
18 #include "src/gpu/GrRenderTarget.h"
19 #include "src/gpu/GrRenderTargetProxy.h"
20 #include "src/gpu/GrShaderCaps.h"
21 #include "src/gpu/GrStencilSettings.h"
22 #include "src/gpu/GrUtil.h"
23 #include "src/gpu/SkGr.h"
24 #include "src/gpu/vk/GrVkGpu.h"
25 #include "src/gpu/vk/GrVkImage.h"
26 #include "src/gpu/vk/GrVkInterface.h"
27 #include "src/gpu/vk/GrVkRenderTarget.h"
28 #include "src/gpu/vk/GrVkTexture.h"
29 #include "src/gpu/vk/GrVkUniformHandler.h"
30 #include "src/gpu/vk/GrVkUtil.h"
31
32 #ifdef SK_BUILD_FOR_ANDROID
33 #include <sys/system_properties.h>
34 #endif
35
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)36 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
37 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
38 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
39 const GrVkExtensions& extensions, GrProtected isProtected)
40 : INHERITED(contextOptions) {
41 /**************************************************************************
42 * GrCaps fields
43 **************************************************************************/
44 fMipmapSupport = true; // always available in Vulkan
45 fNPOTTextureTileSupport = true; // always available in Vulkan
46 fReuseScratchTextures = true; //TODO: figure this out
47 fGpuTracingSupport = false; //TODO: figure this out
48 fOversizedStencilSupport = false; //TODO: figure this out
49 fDrawInstancedSupport = true;
50
51 fSemaphoreSupport = true; // always available in Vulkan
52 fFenceSyncSupport = true; // always available in Vulkan
53 fCrossContextTextureSupport = true;
54 fHalfFloatVertexAttributeSupport = true;
55
56 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
57 fReadPixelsRowBytesSupport = true;
58 fWritePixelsRowBytesSupport = true;
59
60 fTransferFromBufferToTextureSupport = true;
61 fTransferFromSurfaceToBufferSupport = true;
62
63 fMaxRenderTargetSize = 4096; // minimum required by spec
64 fMaxTextureSize = 4096; // minimum required by spec
65
66 fDynamicStateArrayGeometryProcessorTextureSupport = true;
67
68 fTextureBarrierSupport = true;
69
70 fShaderCaps = std::make_unique<GrShaderCaps>();
71
72 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
73 isProtected);
74 }
75
76 namespace {
77 /**
78 * This comes from section 37.1.6 of the Vulkan spec. Format is
79 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
80 */
81 enum class FormatCompatibilityClass {
82 k8_1_1,
83 k16_2_1,
84 k24_3_1,
85 k32_4_1,
86 k64_8_1,
87 kBC1_RGB_8_16_1,
88 kBC1_RGBA_8_16,
89 kETC2_RGB_8_16,
90 kASTC_RGBA_8_16,
91 };
92 } // anonymous namespace
93
format_compatibility_class(VkFormat format)94 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
95 switch (format) {
96 case VK_FORMAT_B8G8R8A8_UNORM:
97 case VK_FORMAT_R8G8B8A8_UNORM:
98 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
99 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
100 case VK_FORMAT_R8G8B8A8_SRGB:
101 case VK_FORMAT_R16G16_UNORM:
102 case VK_FORMAT_R16G16_SFLOAT:
103 return FormatCompatibilityClass::k32_4_1;
104
105 case VK_FORMAT_R8_UNORM:
106 return FormatCompatibilityClass::k8_1_1;
107
108 case VK_FORMAT_R5G6B5_UNORM_PACK16:
109 case VK_FORMAT_R16_SFLOAT:
110 case VK_FORMAT_R8G8_UNORM:
111 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
112 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
113 case VK_FORMAT_R16_UNORM:
114 return FormatCompatibilityClass::k16_2_1;
115
116 case VK_FORMAT_R16G16B16A16_SFLOAT:
117 case VK_FORMAT_R16G16B16A16_UNORM:
118 return FormatCompatibilityClass::k64_8_1;
119
120 case VK_FORMAT_R8G8B8_UNORM:
121 return FormatCompatibilityClass::k24_3_1;
122
123 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
124 return FormatCompatibilityClass::kETC2_RGB_8_16;
125
126 case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
127 return FormatCompatibilityClass::kBC1_RGB_8_16_1;
128
129 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
130 return FormatCompatibilityClass::kBC1_RGBA_8_16;
131
132 case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
133 case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
134 case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
135 return FormatCompatibilityClass::kASTC_RGBA_8_16;
136
137 default:
138 SK_ABORT("Unsupported VkFormat");
139 }
140 }
141
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const142 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
143 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
144 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
145 return false;
146 }
147
148 if (dstHasYcbcr || srcHasYcbcr) {
149 return false;
150 }
151
152 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
153 // as image usage flags.
154 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
155 }
156
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const157 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
158 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
159 bool srcIsLinear, bool srcHasYcbcr) const {
160 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
161 // as image usage flags.
162 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
163 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
164 return false;
165 }
166
167 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
168 // resolved msaa though.
169 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
170 return false;
171 }
172
173 if (dstHasYcbcr || srcHasYcbcr) {
174 return false;
175 }
176
177 return true;
178 }
179
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const180 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
181 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
182 // The src surface must be multisampled.
183 if (srcSampleCnt <= 1) {
184 return false;
185 }
186
187 // The dst must not be multisampled.
188 if (dstSampleCnt > 1) {
189 return false;
190 }
191
192 // Surfaces must have the same format.
193 if (srcFormat != dstFormat) {
194 return false;
195 }
196
197 if (dstHasYcbcr || srcHasYcbcr) {
198 return false;
199 }
200
201 return true;
202 }
203
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const204 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
205 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
206 if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
207 return false;
208 }
209
210 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
211 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
212 // tracking of external or rectangle textures in GL? For now we don't create linear textures
213 // internally, and I don't believe anyone is wrapping them.
214 bool srcIsLinear = false;
215 bool dstIsLinear = false;
216
217 int dstSampleCnt = 0;
218 int srcSampleCnt = 0;
219 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
220 // Copying to or from render targets that wrap a secondary command buffer is not allowed
221 // since they would require us to know the VkImage, which we don't have, as well as need us
222 // to stop and start the VkRenderPass which we don't have access to.
223 if (rtProxy->wrapsVkSecondaryCB()) {
224 return false;
225 }
226 if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
227 rtProxy->supportsVkInputAttachment()) {
228 dstSampleCnt = 1;
229 } else {
230 dstSampleCnt = rtProxy->numSamples();
231 }
232 }
233 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
234 // Copying to or from render targets that wrap a secondary command buffer is not allowed
235 // since they would require us to know the VkImage, which we don't have, as well as need us
236 // to stop and start the VkRenderPass which we don't have access to.
237 if (rtProxy->wrapsVkSecondaryCB()) {
238 return false;
239 }
240 if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
241 rtProxy->supportsVkInputAttachment()) {
242 srcSampleCnt = 1;
243 } else {
244 srcSampleCnt = rtProxy->numSamples();
245 }
246 }
247 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
248 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
249
250 bool dstHasYcbcr = false;
251 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
252 if (ycbcr->isValid()) {
253 dstHasYcbcr = true;
254 }
255 }
256
257 bool srcHasYcbcr = false;
258 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
259 if (ycbcr->isValid()) {
260 srcHasYcbcr = true;
261 }
262 }
263
264 VkFormat dstFormat, srcFormat;
265 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
266 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
267
268 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
269 srcFormat, srcSampleCnt, srcHasYcbcr) ||
270 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
271 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
272 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
273 srcFormat, srcSampleCnt, srcHasYcbcr);
274 }
275
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)276 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
277 VkStructureType type) {
278 // All Vulkan structs that could be part of the features chain will start with the
279 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
280 // so we can get access to the pNext for the next struct.
281 struct CommonVulkanHeader {
282 VkStructureType sType;
283 void* pNext;
284 };
285
286 void* pNext = features.pNext;
287 while (pNext) {
288 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
289 if (header->sType == type) {
290 return static_cast<T*>(pNext);
291 }
292 pNext = header->pNext;
293 }
294 return nullptr;
295 }
296
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)297 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
298 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
299 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
300 GrProtected isProtected) {
301 VkPhysicalDeviceProperties properties;
302 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
303
304 VkPhysicalDeviceMemoryProperties memoryProperties;
305 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
306
307 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
308
309 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
310 fSupportsSwapchain = true;
311 }
312
313 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
314 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
315 fSupportsPhysicalDeviceProperties2 = true;
316 }
317
318 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
319 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
320 fSupportsMemoryRequirements2 = true;
321 }
322
323 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
324 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
325 fSupportsBindMemory2 = true;
326 }
327
328 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
329 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
330 fSupportsMaintenance1 = true;
331 }
332
333 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
334 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
335 fSupportsMaintenance2 = true;
336 }
337
338 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
339 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
340 fSupportsMaintenance3 = true;
341 }
342
343 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
344 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
345 this->supportsMemoryRequirements2())) {
346 fSupportsDedicatedAllocation = true;
347 }
348
349 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
350 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
351 this->supportsPhysicalDeviceProperties2() &&
352 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
353 this->supportsDedicatedAllocation())) {
354 fSupportsExternalMemory = true;
355 }
356
357 #ifdef SK_BUILD_FOR_ANDROID
358 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
359 // do we don't explicitly require it here even the spec says it is required.
360 if (extensions.hasExtension(
361 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
362 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
363 this->supportsExternalMemory() &&
364 this->supportsBindMemory2()) {
365 fSupportsAndroidHWBExternalMemory = true;
366 fSupportsAHardwareBufferImages = true;
367 }
368 #endif
369
370 auto ycbcrFeatures =
371 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
372 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
373 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
374 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
375 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
376 this->supportsMaintenance1() && this->supportsBindMemory2() &&
377 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
378 fSupportsYcbcrConversion = true;
379 }
380
381 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
382 // will return a key of 0.
383 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
384
385 if ((isProtected == GrProtected::kYes) &&
386 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
387 fSupportsProtectedMemory = true;
388 fAvoidUpdateBuffers = true;
389 fShouldAlwaysUseDedicatedImageMemory = true;
390 }
391
392 if (extensions.hasExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, 1)) {
393 fSupportsDRMFormatModifiers = true;
394 }
395
396 fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
397
398 // On desktop GPUs we have found that this does not provide much benefit. The perf results show
399 // a mix of regressions, some improvements, and lots of no changes. Thus it is no worth enabling
400 // this (especially with the rendering artifacts) on desktop.
401 //
402 // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
403 // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
404 // we do expect this to be a big win on tilers.
405 //
406 // On ARM devices we are seeing an average perf win of around 50%-60% across the board.
407 if (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) {
408 fPreferDiscardableMSAAAttachment = true;
409 fSupportsMemorylessAttachments = true;
410 }
411
412 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
413 this->initShaderCaps(properties, features);
414
415 if (kQualcomm_VkVendor == properties.vendorID) {
416 // A "clear" load for atlases runs faster on QC than a "discard" load followed by a
417 // scissored clear.
418 // On NVIDIA and Intel, the discard load followed by clear is faster.
419 // TODO: Evaluate on ARM, Imagination, and ATI.
420 fPreferFullscreenClears = true;
421 }
422
423 if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
424 // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
425 // mappable on the host.
426 fGpuOnlyBuffersMorePerformant = true;
427
428 // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
429 // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
430 // Some discrete GPUs do not expose this special memory, however we still disable
431 // persistently mapped buffers for all of them since most GPUs with updated drivers do
432 // expose it. If this becomes an issue we can try to be more fine grained.
433 fShouldPersistentlyMapCpuToGpuBuffers = false;
434 }
435
436 if (kQualcomm_VkVendor == properties.vendorID) {
437 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
438 // even for small sizes.
439 fAvoidUpdateBuffers = true;
440 }
441
442 if (kQualcomm_VkVendor == properties.vendorID) {
443 // Adreno devices don't support push constants well
444 fMaxPushConstantsSize = 0;
445 }
446
447 fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
448 if (properties.vendorID == kQualcomm_VkVendor) {
449 // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
450 fNativeDrawIndirectSupport = false;
451 }
452
453 if (fNativeDrawIndirectSupport) {
454 fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
455 SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
456 }
457
458 #ifdef SK_BUILD_FOR_UNIX
459 if (kNvidia_VkVendor == properties.vendorID) {
460 // On nvidia linux we see a big perf regression when not using dedicated image allocations.
461 fShouldAlwaysUseDedicatedImageMemory = true;
462 }
463 #endif
464
465 this->initFormatTable(vkInterface, physDev, properties);
466 this->initStencilFormat(vkInterface, physDev);
467
468 if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
469 fMaxPerPoolCachedSecondaryCommandBuffers =
470 contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
471 }
472
473 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
474 this->applyDriverCorrectnessWorkarounds(properties);
475 }
476
477 this->finishInitialization(contextOptions);
478 }
479
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)480 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
481 #if defined(SK_BUILD_FOR_WIN)
482 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
483 fMustSyncCommandBuffersWithQueue = true;
484 }
485 #elif defined(SK_BUILD_FOR_ANDROID)
486 if (kImagination_VkVendor == properties.vendorID) {
487 fMustSyncCommandBuffersWithQueue = true;
488 }
489 #endif
490
491 // Defaults to zero since all our workaround checks that use this consider things "fixed" once
492 // above a certain api level. So this will just default to it being less which will enable
493 // workarounds.
494 int androidAPIVersion = 0;
495 #if defined(SK_BUILD_FOR_ANDROID)
496 char androidAPIVersionStr[PROP_VALUE_MAX];
497 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
498 // Defaults to zero since most checks care if it is greater than a specific value. So this will
499 // just default to it being less.
500 androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
501 #endif
502
503 // Protected memory features have problems in Android P and earlier.
504 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
505 if (androidAPIVersion <= 28) {
506 fSupportsProtectedMemory = false;
507 }
508 }
509
510 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
511 if ((kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) && androidAPIVersion <= 28) {
512 fShouldAlwaysUseDedicatedImageMemory = true;
513 }
514
515 // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
516 // using only primary command buffers. We also see issues on the P30 running android 28.
517 if ((kARM_VkVendor == properties.vendorID) && androidAPIVersion <= 28) {
518 fPreferPrimaryOverSecondaryCommandBuffers = false;
519 // If we are using secondary command buffers our code isn't setup to insert barriers into
520 // the secondary cb so we need to disable support for them.
521 fTextureBarrierSupport = false;
522 fBlendEquationSupport = kBasic_BlendEquationSupport;
523 }
524
525 // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
526 // when trying to using discardable msaa attachments and loading from resolve. So we disable the
527 // feature for those devices.
528 if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
529 fPreferDiscardableMSAAAttachment = false;
530 fSupportsDiscardableMSAAForDMSAA = false;
531 }
532
533 // On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
534 // produces answers that are much less accurate than expected/required. This forces full floats
535 // for some intermediate values to get acceptable results.
536 if (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) {
537 fShaderCaps->fColorSpaceMathNeedsFloat = true;
538 }
539
540 // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
541 // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
542 // of bound buffers so that we will rebind them on the next draw.
543 if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
544 fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
545 }
546
547 // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
548 // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
549 // msaa image into the resolve image.
550 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID
551 || kHisi_VkVendor == properties.vendorID) {
552 fMustLoadFullImageWithDiscardableMSAA = true;
553 }
554
555 #ifdef SK_BUILD_FOR_UNIX
556 if (kIntel_VkVendor == properties.vendorID) {
557 // At least on our linux Debug Intel HD405 bot we are seeing issues doing read pixels with
558 // non-conherent memory. It seems like the device is not properly honoring the
559 // vkInvalidateMappedMemoryRanges calls correctly. Other linux intel devices seem to work
560 // okay. However, since I'm not sure how to target a specific intel devices or driver
561 // version I am going to stop all intel linux from using non-coherent memory. Currently we
562 // are not shipping anything on these platforms and the only real thing that will regress is
563 // read backs. If we find later we do care about this performance we can come back to figure
564 // out how to do a more narrow workaround.
565 fMustUseCoherentHostVisibleMemory = true;
566 }
567 #endif
568
569 ////////////////////////////////////////////////////////////////////////////
570 // GrCaps workarounds
571 ////////////////////////////////////////////////////////////////////////////
572
573 #ifdef SK_BUILD_FOR_ANDROID
574 // MSAA CCPR was slow on Android. http://skbug.com/9676
575 fDriverDisableMSAAClipAtlas = true;
576 #endif
577
578 if (kARM_VkVendor == properties.vendorID) {
579 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
580 }
581
582 if (kHisi_VkVendor == properties.vendorID) {
583 fAvoidWritePixelsFastPath = false; // bugs.skia.org/8064
584 }
585
586 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
587 if (kAMD_VkVendor == properties.vendorID) {
588 fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
589 }
590
591 // Adreno devices fail when trying to read the dest using an input attachment and texture
592 // barriers.
593 if (kQualcomm_VkVendor == properties.vendorID) {
594 fTextureBarrierSupport = false;
595 }
596
597 // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
598 // Mate 20x running android 9.
599 if ((properties.vendorID == kARM_VkVendor || kHisi_VkVendor == properties.vendorID) && androidAPIVersion <= 28) {
600 fNativeDrawIndirectSupport = false;
601 }
602
603 ////////////////////////////////////////////////////////////////////////////
604 // GrShaderCaps workarounds
605 ////////////////////////////////////////////////////////////////////////////
606
607 if (kImagination_VkVendor == properties.vendorID) {
608 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
609 }
610 }
611
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)612 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
613 VkPhysicalDevice physDev,
614 const VkPhysicalDeviceProperties& properties,
615 const VkPhysicalDeviceMemoryProperties& memoryProperties,
616 const VkPhysicalDeviceFeatures2& features,
617 const GrVkExtensions& extensions) {
618 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
619 // need for us ever to support that amount, and it makes tests which tests all the vertex
620 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
621 // we ever find that need.
622 static const uint32_t kMaxVertexAttributes = 64;
623 fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
624
625 // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
626 // program them). For now we just set this to true if the device uses standard locations, and
627 // return the standard locations back when queried.
628 if (properties.limits.standardSampleLocations) {
629 fSampleLocationsSupport = true;
630 }
631
632 if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
633 fConservativeRasterSupport = true;
634 }
635
636 fWireframeSupport = true;
637
638 // We could actually query and get a max size for each config, however maxImageDimension2D will
639 // give the minimum max size across all configs. So for simplicity we will use that for now.
640 fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
641 fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
642 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
643 fMaxTextureSize = std::min(fMaxTextureSize, 4096);
644 }
645
646 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
647 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
648
649 fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
650
651 // Assuming since we will always map in the end to upload the data we might as well just map
652 // from the get go. There is no hard data to suggest this is faster or slower.
653 fBufferMapThreshold = 0;
654
655 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
656
657 fOversizedStencilSupport = true;
658
659 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
660 this->supportsPhysicalDeviceProperties2()) {
661
662 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
663 blendProps.sType =
664 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
665 blendProps.pNext = nullptr;
666
667 VkPhysicalDeviceProperties2 props;
668 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
669 props.pNext = &blendProps;
670
671 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
672
673 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
674 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
675
676 auto blendFeatures =
677 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
678 features,
679 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
680 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
681 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
682 } else {
683 fBlendEquationSupport = kAdvanced_BlendEquationSupport;
684 }
685 }
686 }
687
688 if (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) {
689 fShouldCollapseSrcOverToSrcWhenAble = true;
690 }
691
692 // We're seeing vkCmdClearAttachments take a lot of cpu time when clearing the color attachment.
693 // We really should only be getting in there for partial clears. So instead we will do all
694 // partial clears as draws.
695 if (kQualcomm_VkVendor == properties.vendorID) {
696 fPerformPartialClearsAsDraws = true;
697 }
698
699 fSupportHpsBlur = (kHisi_VkVendor == properties.vendorID);
700 }
701
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)702 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
703 const VkPhysicalDeviceFeatures2& features) {
704 GrShaderCaps* shaderCaps = fShaderCaps.get();
705 shaderCaps->fVersionDeclString = "#version 330\n";
706
707 // Vulkan is based off ES 3.0 so the following should all be supported
708 shaderCaps->fUsesPrecisionModifiers = true;
709 shaderCaps->fFlatInterpolationSupport = true;
710 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
711 // to be true with Vulkan as well.
712 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
713
714 shaderCaps->fSampleMaskSupport = true;
715
716 shaderCaps->fShaderDerivativeSupport = true;
717
718 // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
719 // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
720 shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID);
721
722 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
723
724 shaderCaps->fIntegerSupport = true;
725 shaderCaps->fNonsquareMatrixSupport = true;
726 shaderCaps->fInverseHyperbolicSupport = true;
727 shaderCaps->fVertexIDSupport = true;
728 shaderCaps->fInfinitySupport = true;
729 shaderCaps->fNonconstantArrayIndexSupport = true;
730 shaderCaps->fBitManipulationSupport = true;
731
732 // Assume the minimum precisions mandated by the SPIR-V spec.
733 shaderCaps->fFloatIs32Bits = true;
734 shaderCaps->fHalfIs32Bits = false;
735
736 shaderCaps->fMaxFragmentSamplers = std::min(
737 std::min(properties.limits.maxPerStageDescriptorSampledImages,
738 properties.limits.maxPerStageDescriptorSamplers),
739 (uint32_t)INT_MAX);
740 }
741
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)742 bool stencil_format_supported(const GrVkInterface* interface,
743 VkPhysicalDevice physDev,
744 VkFormat format) {
745 VkFormatProperties props;
746 memset(&props, 0, sizeof(VkFormatProperties));
747 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
748 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
749 }
750
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)751 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
752 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
753 fPreferredStencilFormat = VK_FORMAT_S8_UINT;
754 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
755 fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
756 } else {
757 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
758 fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
759 }
760 }
761
format_is_srgb(VkFormat format)762 static bool format_is_srgb(VkFormat format) {
763 SkASSERT(GrVkFormatIsSupported(format));
764
765 switch (format) {
766 case VK_FORMAT_R8G8B8A8_SRGB:
767 return true;
768 default:
769 return false;
770 }
771 }
772
773 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
774 // frequently used to least to improve look up times in arrays.
775 static constexpr VkFormat kVkFormats[] = {
776 VK_FORMAT_R8G8B8A8_UNORM,
777 VK_FORMAT_R8_UNORM,
778 VK_FORMAT_B8G8R8A8_UNORM,
779 VK_FORMAT_R5G6B5_UNORM_PACK16,
780 VK_FORMAT_R16G16B16A16_SFLOAT,
781 VK_FORMAT_R16_SFLOAT,
782 VK_FORMAT_R8G8B8_UNORM,
783 VK_FORMAT_R8G8_UNORM,
784 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
785 VK_FORMAT_A2R10G10B10_UNORM_PACK32,
786 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
787 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
788 VK_FORMAT_R8G8B8A8_SRGB,
789 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
790 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
791 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
792 VK_FORMAT_R16_UNORM,
793 VK_FORMAT_R16G16_UNORM,
794 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
795 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
796 VK_FORMAT_R16G16B16A16_UNORM,
797 VK_FORMAT_R16G16_SFLOAT,
798 VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
799 VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
800 VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
801 };
802
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)803 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
804 #ifdef SK_DEBUG
805 for (size_t i = 0; i < kNumVkFormats; ++i) {
806 const auto& formatInfo = fFormatTable[i];
807 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
808 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
809 if (ctInfo.fColorType == colorType &&
810 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
811 bool found = false;
812 for (auto it = formats.begin(); it != formats.end(); ++it) {
813 if (kVkFormats[i] == *it) {
814 found = true;
815 }
816 }
817 SkASSERT(found);
818 }
819 }
820 }
821 #endif
822 int idx = static_cast<int>(colorType);
823 for (auto it = formats.begin(); it != formats.end(); ++it) {
824 const auto& info = this->getFormatInfo(*it);
825 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
826 if (info.fColorTypeInfos[i].fColorType == colorType) {
827 fColorTypeToFormatTable[idx] = *it;
828 return;
829 }
830 }
831 }
832 }
833
getFormatInfo(VkFormat format) const834 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
835 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
836 return nonConstThis->getFormatInfo(format);
837 }
838
getFormatInfo(VkFormat format)839 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
840 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
841 "Size of VkFormats array must match static value in header");
842 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
843 if (kVkFormats[i] == format) {
844 return fFormatTable[i];
845 }
846 }
847 static FormatInfo kInvalidFormat;
848 return kInvalidFormat;
849 }
850
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)851 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
852 const VkPhysicalDeviceProperties& properties) {
853 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
854 "Size of VkFormats array must match static value in header");
855
856 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
857
858 // Go through all the formats and init their support surface and data GrColorTypes.
859 // Format: VK_FORMAT_R8G8B8A8_UNORM
860 {
861 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
862 auto& info = this->getFormatInfo(format);
863 info.init(interface, physDev, properties, format);
864 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
865 info.fColorTypeInfoCount = 2;
866 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
867 int ctIdx = 0;
868 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
869 {
870 constexpr GrColorType ct = GrColorType::kRGBA_8888;
871 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
872 ctInfo.fColorType = ct;
873 ctInfo.fTransferColorType = ct;
874 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
875 }
876 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
877 {
878 constexpr GrColorType ct = GrColorType::kRGB_888x;
879 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
880 ctInfo.fColorType = ct;
881 ctInfo.fTransferColorType = ct;
882 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
883 ctInfo.fReadSwizzle = GrSwizzle::RGB1();
884 }
885 }
886 }
887
888 // Format: VK_FORMAT_R8_UNORM
889 {
890 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
891 auto& info = this->getFormatInfo(format);
892 info.init(interface, physDev, properties, format);
893 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
894 info.fColorTypeInfoCount = 2;
895 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
896 int ctIdx = 0;
897 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
898 {
899 constexpr GrColorType ct = GrColorType::kAlpha_8;
900 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
901 ctInfo.fColorType = ct;
902 ctInfo.fTransferColorType = ct;
903 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
904 ctInfo.fReadSwizzle = GrSwizzle("000r");
905 ctInfo.fWriteSwizzle = GrSwizzle("a000");
906 }
907 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
908 {
909 constexpr GrColorType ct = GrColorType::kGray_8;
910 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
911 ctInfo.fColorType = ct;
912 ctInfo.fTransferColorType = ct;
913 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
914 ctInfo.fReadSwizzle = GrSwizzle("rrr1");
915 }
916 }
917 }
918 // Format: VK_FORMAT_B8G8R8A8_UNORM
919 {
920 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
921 auto& info = this->getFormatInfo(format);
922 info.init(interface, physDev, properties, format);
923 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
924 info.fColorTypeInfoCount = 1;
925 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
926 int ctIdx = 0;
927 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
928 {
929 constexpr GrColorType ct = GrColorType::kBGRA_8888;
930 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
931 ctInfo.fColorType = ct;
932 ctInfo.fTransferColorType = ct;
933 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
934 }
935 }
936 }
937 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
938 {
939 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
940 auto& info = this->getFormatInfo(format);
941 info.init(interface, physDev, properties, format);
942 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
943 info.fColorTypeInfoCount = 1;
944 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
945 int ctIdx = 0;
946 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
947 {
948 constexpr GrColorType ct = GrColorType::kBGR_565;
949 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
950 ctInfo.fColorType = ct;
951 ctInfo.fTransferColorType = ct;
952 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
953 }
954 }
955 }
956 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
957 {
958 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
959 auto& info = this->getFormatInfo(format);
960 info.init(interface, physDev, properties, format);
961 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
962 info.fColorTypeInfoCount = 2;
963 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
964 int ctIdx = 0;
965 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
966 {
967 constexpr GrColorType ct = GrColorType::kRGBA_F16;
968 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
969 ctInfo.fColorType = ct;
970 ctInfo.fTransferColorType = ct;
971 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
972 }
973 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
974 {
975 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
976 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
977 ctInfo.fColorType = ct;
978 ctInfo.fTransferColorType = ct;
979 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
980 }
981 }
982 }
983 // Format: VK_FORMAT_R16_SFLOAT
984 {
985 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
986 auto& info = this->getFormatInfo(format);
987 info.init(interface, physDev, properties, format);
988 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
989 info.fColorTypeInfoCount = 1;
990 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
991 int ctIdx = 0;
992 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
993 {
994 constexpr GrColorType ct = GrColorType::kAlpha_F16;
995 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
996 ctInfo.fColorType = ct;
997 ctInfo.fTransferColorType = ct;
998 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
999 ctInfo.fReadSwizzle = GrSwizzle("000r");
1000 ctInfo.fWriteSwizzle = GrSwizzle("a000");
1001 }
1002 }
1003 }
1004 // Format: VK_FORMAT_R8G8B8_UNORM
1005 {
1006 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
1007 auto& info = this->getFormatInfo(format);
1008 info.init(interface, physDev, properties, format);
1009 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1010 info.fColorTypeInfoCount = 1;
1011 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1012 int ctIdx = 0;
1013 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
1014 {
1015 constexpr GrColorType ct = GrColorType::kRGB_888x;
1016 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1017 ctInfo.fColorType = ct;
1018 // The Vulkan format is 3 bpp so we must convert to/from that when transferring.
1019 ctInfo.fTransferColorType = GrColorType::kRGB_888;
1020 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1021 }
1022 }
1023 }
1024 // Format: VK_FORMAT_R8G8_UNORM
1025 {
1026 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
1027 auto& info = this->getFormatInfo(format);
1028 info.init(interface, physDev, properties, format);
1029 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1030 info.fColorTypeInfoCount = 1;
1031 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1032 int ctIdx = 0;
1033 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
1034 {
1035 constexpr GrColorType ct = GrColorType::kRG_88;
1036 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1037 ctInfo.fColorType = ct;
1038 ctInfo.fTransferColorType = ct;
1039 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1040 }
1041 }
1042 }
1043 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
1044 {
1045 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
1046 auto& info = this->getFormatInfo(format);
1047 info.init(interface, physDev, properties, format);
1048 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1049 info.fColorTypeInfoCount = 1;
1050 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1051 int ctIdx = 0;
1052 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
1053 {
1054 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1055 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1056 ctInfo.fColorType = ct;
1057 ctInfo.fTransferColorType = ct;
1058 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1059 }
1060 }
1061 }
1062 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
1063 {
1064 constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
1065 auto& info = this->getFormatInfo(format);
1066 info.init(interface, physDev, properties, format);
1067 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1068 info.fColorTypeInfoCount = 1;
1069 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1070 int ctIdx = 0;
1071 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
1072 {
1073 constexpr GrColorType ct = GrColorType::kBGRA_1010102;
1074 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1075 ctInfo.fColorType = ct;
1076 ctInfo.fTransferColorType = ct;
1077 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1078 }
1079 }
1080 }
1081 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
1082 {
1083 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
1084 auto& info = this->getFormatInfo(format);
1085 info.init(interface, physDev, properties, format);
1086 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1087 info.fColorTypeInfoCount = 1;
1088 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1089 int ctIdx = 0;
1090 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
1091 {
1092 constexpr GrColorType ct = GrColorType::kABGR_4444;
1093 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1094 ctInfo.fColorType = ct;
1095 ctInfo.fTransferColorType = ct;
1096 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1097 ctInfo.fReadSwizzle = GrSwizzle::BGRA();
1098 ctInfo.fWriteSwizzle = GrSwizzle::BGRA();
1099 }
1100 }
1101 }
1102
1103 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
1104 {
1105 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
1106 auto& info = this->getFormatInfo(format);
1107 info.init(interface, physDev, properties, format);
1108 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1109 info.fColorTypeInfoCount = 1;
1110 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1111 int ctIdx = 0;
1112 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
1113 {
1114 constexpr GrColorType ct = GrColorType::kABGR_4444;
1115 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1116 ctInfo.fColorType = ct;
1117 ctInfo.fTransferColorType = ct;
1118 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1119 }
1120 }
1121 }
1122 // Format: VK_FORMAT_R8G8B8A8_SRGB
1123 {
1124 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
1125 auto& info = this->getFormatInfo(format);
1126 info.init(interface, physDev, properties, format);
1127 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1128 info.fColorTypeInfoCount = 1;
1129 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1130 int ctIdx = 0;
1131 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
1132 {
1133 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
1134 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1135 ctInfo.fColorType = ct;
1136 ctInfo.fTransferColorType = ct;
1137 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1138 }
1139 }
1140 }
1141 // Format: VK_FORMAT_R16_UNORM
1142 {
1143 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1144 auto& info = this->getFormatInfo(format);
1145 info.init(interface, physDev, properties, format);
1146 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1147 info.fColorTypeInfoCount = 1;
1148 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1149 int ctIdx = 0;
1150 // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1151 {
1152 constexpr GrColorType ct = GrColorType::kAlpha_16;
1153 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1154 ctInfo.fColorType = ct;
1155 ctInfo.fTransferColorType = ct;
1156 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1157 ctInfo.fReadSwizzle = GrSwizzle("000r");
1158 ctInfo.fWriteSwizzle = GrSwizzle("a000");
1159 }
1160 }
1161 }
1162 // Format: VK_FORMAT_R16G16_UNORM
1163 {
1164 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1165 auto& info = this->getFormatInfo(format);
1166 info.init(interface, physDev, properties, format);
1167 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1168 info.fColorTypeInfoCount = 1;
1169 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1170 int ctIdx = 0;
1171 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1172 {
1173 constexpr GrColorType ct = GrColorType::kRG_1616;
1174 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1175 ctInfo.fColorType = ct;
1176 ctInfo.fTransferColorType = ct;
1177 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1178 }
1179 }
1180 }
1181 // Format: VK_FORMAT_R16G16B16A16_UNORM
1182 {
1183 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1184 auto& info = this->getFormatInfo(format);
1185 info.init(interface, physDev, properties, format);
1186 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1187 info.fColorTypeInfoCount = 1;
1188 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1189 int ctIdx = 0;
1190 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1191 {
1192 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1193 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1194 ctInfo.fColorType = ct;
1195 ctInfo.fTransferColorType = ct;
1196 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1197 }
1198 }
1199 }
1200 // Format: VK_FORMAT_R16G16_SFLOAT
1201 {
1202 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1203 auto& info = this->getFormatInfo(format);
1204 info.init(interface, physDev, properties, format);
1205 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1206 info.fColorTypeInfoCount = 1;
1207 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1208 int ctIdx = 0;
1209 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1210 {
1211 constexpr GrColorType ct = GrColorType::kRG_F16;
1212 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1213 ctInfo.fColorType = ct;
1214 ctInfo.fTransferColorType = ct;
1215 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1216 }
1217 }
1218 }
1219 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1220 {
1221 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1222 auto& info = this->getFormatInfo(format);
1223 if (fSupportsYcbcrConversion) {
1224 info.init(interface, physDev, properties, format);
1225 }
1226 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1227 info.fColorTypeInfoCount = 1;
1228 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1229 int ctIdx = 0;
1230 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1231 {
1232 constexpr GrColorType ct = GrColorType::kRGB_888x;
1233 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1234 ctInfo.fColorType = ct;
1235 ctInfo.fTransferColorType = ct;
1236 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1237 }
1238 }
1239 }
1240 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1241 {
1242 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1243 auto& info = this->getFormatInfo(format);
1244 if (fSupportsYcbcrConversion) {
1245 info.init(interface, physDev, properties, format);
1246 }
1247 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1248 info.fColorTypeInfoCount = 1;
1249 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1250 int ctIdx = 0;
1251 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1252 {
1253 constexpr GrColorType ct = GrColorType::kRGB_888x;
1254 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1255 ctInfo.fColorType = ct;
1256 ctInfo.fTransferColorType = ct;
1257 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1258 }
1259 }
1260 }
1261 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1262 {
1263 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1264 auto& info = this->getFormatInfo(format);
1265 info.init(interface, physDev, properties, format);
1266 // Setting this to texel block size
1267 // No supported GrColorTypes.
1268 }
1269
1270 // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1271 {
1272 constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1273 auto& info = this->getFormatInfo(format);
1274 info.init(interface, physDev, properties, format);
1275 // Setting this to texel block size
1276 // No supported GrColorTypes.
1277 }
1278
1279 // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1280 {
1281 constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1282 auto& info = this->getFormatInfo(format);
1283 info.init(interface, physDev, properties, format);
1284 // Setting this to texel block size
1285 // No supported GrColorTypes.
1286 }
1287
1288 // Format: VK_FORMAT_ASTC_4x4_UNORM_BLOCK
1289 {
1290 constexpr VkFormat format = VK_FORMAT_ASTC_4x4_UNORM_BLOCK;
1291 auto& info = this->getFormatInfo(format);
1292 info.init(interface, physDev, properties, format);
1293 // Setting this to texel block size
1294 // No supported GrColorTypes.
1295 }
1296
1297 // Format: VK_FORMAT_ASTC_6x6_UNORM_BLOCK
1298 {
1299 constexpr VkFormat format = VK_FORMAT_ASTC_6x6_UNORM_BLOCK;
1300 auto& info = this->getFormatInfo(format);
1301 info.init(interface, physDev, properties, format);
1302 // Setting this to texel block size
1303 // No supported GrColorTypes.
1304 }
1305
1306 // Format: VK_FORMAT_ASTC_8x8_UNORM_BLOCK
1307 {
1308 constexpr VkFormat format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
1309 auto& info = this->getFormatInfo(format);
1310 info.init(interface, physDev, properties, format);
1311 // Setting this to texel block size
1312 // No supported GrColorTypes.
1313 }
1314
1315 ////////////////////////////////////////////////////////////////////////////
1316 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1317 // are passed into the setColorType function indicates the priority in selecting which format
1318 // we use for a given GrcolorType.
1319
1320 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1321 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1322 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1323 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1324 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1325 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1326 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1327 VK_FORMAT_R8G8B8A8_UNORM });
1328 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1329 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1330 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1331 this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
1332 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1333 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1334 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1335 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1336 this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
1337 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1338 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1339 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1340 }
1341
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1342 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1343 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1344 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1345 *flags = *flags | kTexturable_Flag;
1346
1347 // Ganesh assumes that all renderable surfaces are also texturable
1348 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1349 *flags = *flags | kRenderable_Flag;
1350 }
1351 }
1352 // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
1353 // VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
1354 // Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
1355
1356 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1357 *flags = *flags | kBlitSrc_Flag;
1358 }
1359
1360 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1361 *flags = *flags | kBlitDst_Flag;
1362 }
1363 }
1364
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1365 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1366 VkPhysicalDevice physDev,
1367 const VkPhysicalDeviceProperties& physProps,
1368 VkFormat format) {
1369 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1370 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1371 VK_IMAGE_USAGE_SAMPLED_BIT |
1372 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1373 VkImageFormatProperties properties;
1374 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1375 format,
1376 VK_IMAGE_TYPE_2D,
1377 VK_IMAGE_TILING_OPTIMAL,
1378 usage,
1379 0, // createFlags
1380 &properties));
1381 VkSampleCountFlags flags = properties.sampleCounts;
1382 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1383 fColorSampleCounts.push_back(1);
1384 }
1385 if (kImagination_VkVendor == physProps.vendorID) {
1386 // MSAA does not work on imagination
1387 return;
1388 }
1389 if (kIntel_VkVendor == physProps.vendorID) {
1390 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1391 return;
1392 }
1393 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1394 fColorSampleCounts.push_back(2);
1395 }
1396 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1397 fColorSampleCounts.push_back(4);
1398 }
1399 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1400 fColorSampleCounts.push_back(8);
1401 }
1402 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1403 fColorSampleCounts.push_back(16);
1404 }
1405 // Standard sample locations are not defined for more than 16 samples, and we don't need more
1406 // than 16. Omit 32 and 64.
1407 }
1408
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1409 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1410 VkPhysicalDevice physDev,
1411 const VkPhysicalDeviceProperties& properties,
1412 VkFormat format) {
1413 VkFormatProperties props;
1414 memset(&props, 0, sizeof(VkFormatProperties));
1415 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1416 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1417 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1418 if (fOptimalFlags & kRenderable_Flag) {
1419 this->initSampleCounts(interface, physDev, properties, format);
1420 }
1421 }
1422
1423 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1424 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1425 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1426 static bool backend_format_is_external(const GrBackendFormat& format) {
1427 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1428 SkASSERT(ycbcrInfo);
1429
1430 // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1431 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1432 #ifdef SK_DEBUG
1433 VkFormat vkFormat;
1434 SkAssertResult(format.asVkFormat(&vkFormat));
1435 SkASSERT(vkFormat == VK_FORMAT_UNDEFINED);
1436 #endif
1437 return true;
1438 }
1439 return false;
1440 }
1441
isFormatSRGB(const GrBackendFormat & format) const1442 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1443 VkFormat vkFormat;
1444 if (!format.asVkFormat(&vkFormat)) {
1445 return false;
1446 }
1447 if (backend_format_is_external(format)) {
1448 return false;
1449 }
1450
1451 return format_is_srgb(vkFormat);
1452 }
1453
isFormatTexturable(const GrBackendFormat & format,GrTextureType) const1454 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType) const {
1455 VkFormat vkFormat;
1456 if (!format.asVkFormat(&vkFormat)) {
1457 return false;
1458 }
1459 if (backend_format_is_external(format)) {
1460 // We can always texture from an external format (assuming we have the ycbcr conversion
1461 // info which we require to be passed in).
1462 return true;
1463 }
1464 return this->isVkFormatTexturable(vkFormat);
1465 }
1466
isVkFormatTexturable(VkFormat format) const1467 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1468 const FormatInfo& info = this->getFormatInfo(format);
1469 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1470 }
1471
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1472 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1473 int sampleCount) const {
1474 if (!this->isFormatRenderable(format, sampleCount)) {
1475 return false;
1476 }
1477 VkFormat vkFormat;
1478 if (!format.asVkFormat(&vkFormat)) {
1479 return false;
1480 }
1481 const auto& info = this->getFormatInfo(vkFormat);
1482 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1483 return false;
1484 }
1485 return true;
1486 }
1487
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1488 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1489 VkFormat vkFormat;
1490 if (!format.asVkFormat(&vkFormat)) {
1491 return false;
1492 }
1493 return this->isFormatRenderable(vkFormat, sampleCount);
1494 }
1495
isFormatRenderable(VkFormat format,int sampleCount) const1496 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1497 return sampleCount <= this->maxRenderTargetSampleCount(format);
1498 }
1499
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1500 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1501 const GrBackendFormat& format) const {
1502 VkFormat vkFormat;
1503 if (!format.asVkFormat(&vkFormat)) {
1504 return 0;
1505 }
1506
1507 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1508 }
1509
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1510 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1511 requestedCount = std::max(1, requestedCount);
1512
1513 const FormatInfo& info = this->getFormatInfo(format);
1514
1515 int count = info.fColorSampleCounts.count();
1516
1517 if (!count) {
1518 return 0;
1519 }
1520
1521 if (1 == requestedCount) {
1522 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1523 return 1;
1524 }
1525
1526 for (int i = 0; i < count; ++i) {
1527 if (info.fColorSampleCounts[i] >= requestedCount) {
1528 return info.fColorSampleCounts[i];
1529 }
1530 }
1531 return 0;
1532 }
1533
maxRenderTargetSampleCount(const GrBackendFormat & format) const1534 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1535 VkFormat vkFormat;
1536 if (!format.asVkFormat(&vkFormat)) {
1537 return 0;
1538 }
1539 return this->maxRenderTargetSampleCount(vkFormat);
1540 }
1541
maxRenderTargetSampleCount(VkFormat format) const1542 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1543 const FormatInfo& info = this->getFormatInfo(format);
1544
1545 const auto& table = info.fColorSampleCounts;
1546 if (!table.count()) {
1547 return 0;
1548 }
1549 return table[table.count() - 1];
1550 }
1551
align_to_4(size_t v)1552 static inline size_t align_to_4(size_t v) {
1553 switch (v & 0b11) {
1554 // v is already a multiple of 4.
1555 case 0: return v;
1556 // v is a multiple of 2 but not 4.
1557 case 2: return 2 * v;
1558 // v is not a multiple of 2.
1559 default: return 4 * v;
1560 }
1561 }
1562
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1563 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1564 const GrBackendFormat& surfaceFormat,
1565 GrColorType srcColorType) const {
1566 VkFormat vkFormat;
1567 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1568 return {GrColorType::kUnknown, 0};
1569 }
1570
1571 // We don't support the ability to upload to external formats or formats that require a ycbcr
1572 // sampler. In general these types of formats are only used for sampling in a shader.
1573 if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1574 return {GrColorType::kUnknown, 0};
1575 }
1576
1577 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1578 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1579
1580 const auto& info = this->getFormatInfo(vkFormat);
1581 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1582 const auto& ctInfo = info.fColorTypeInfos[i];
1583 if (ctInfo.fColorType == surfaceColorType) {
1584 return {ctInfo.fTransferColorType, offsetAlignment};
1585 }
1586 }
1587 return {GrColorType::kUnknown, 0};
1588 }
1589
surfaceSupportsReadPixels(const GrSurface * surface) const1590 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1591 const GrSurface* surface) const {
1592 if (surface->isProtected()) {
1593 return SurfaceReadPixelsSupport::kUnsupported;
1594 }
1595 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1596 auto texImage = tex->textureImage();
1597 if (!texImage) {
1598 return SurfaceReadPixelsSupport::kUnsupported;
1599 }
1600 // We can't directly read from a VkImage that has a ycbcr sampler.
1601 if (texImage->ycbcrConversionInfo().isValid()) {
1602 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1603 }
1604 // We can't directly read from a compressed format
1605 if (GrVkFormatIsCompressed(texImage->imageFormat())) {
1606 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1607 }
1608 return SurfaceReadPixelsSupport::kSupported;
1609 } else if (auto rt = surface->asRenderTarget()) {
1610 if (rt->numSamples() > 1) {
1611 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1612 }
1613 return SurfaceReadPixelsSupport::kSupported;
1614 }
1615 return SurfaceReadPixelsSupport::kUnsupported;
1616 }
1617
transferColorType(VkFormat vkFormat,GrColorType surfaceColorType) const1618 GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
1619 const auto& info = this->getFormatInfo(vkFormat);
1620 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1621 if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
1622 return info.fColorTypeInfos[i].fTransferColorType;
1623 }
1624 }
1625 return GrColorType::kUnknown;
1626 }
1627
onSurfaceSupportsWritePixels(const GrSurface * surface) const1628 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1629 if (auto rt = surface->asRenderTarget()) {
1630 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1631 }
1632 // We can't write to a texture that has a ycbcr sampler.
1633 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1634 auto texImage = tex->textureImage();
1635 if (!texImage) {
1636 return false;
1637 }
1638 // We can't directly read from a VkImage that has a ycbcr sampler.
1639 if (texImage->ycbcrConversionInfo().isValid()) {
1640 return false;
1641 }
1642 }
1643 return true;
1644 }
1645
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1646 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1647 const GrBackendFormat& format) const {
1648 VkFormat vkFormat;
1649 if (!format.asVkFormat(&vkFormat)) {
1650 return false;
1651 }
1652 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1653 SkASSERT(ycbcrInfo);
1654
1655 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1656 // Format may be undefined for external images, which are required to have YCbCr conversion.
1657 if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1658 return true;
1659 }
1660 return false;
1661 }
1662
1663 const auto& info = this->getFormatInfo(vkFormat);
1664 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1665 if (info.fColorTypeInfos[i].fColorType == ct) {
1666 return true;
1667 }
1668 }
1669 return false;
1670 }
1671
onGetDefaultBackendFormat(GrColorType ct) const1672 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
1673 VkFormat format = this->getFormatFromColorType(ct);
1674 if (format == VK_FORMAT_UNDEFINED) {
1675 return {};
1676 }
1677 return GrBackendFormat::MakeVk(format);
1678 }
1679
onSupportsDynamicMSAA(const GrRenderTargetProxy * rtProxy) const1680 bool GrVkCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const {
1681 // We must be able to use the rtProxy as an input attachment to load into the discardable msaa
1682 // attachment. Also the rtProxy should have a sample count of 1 so that it can be used as a
1683 // resolve attachment.
1684 return this->supportsDiscardableMSAAForDMSAA() &&
1685 rtProxy->supportsVkInputAttachment() &&
1686 rtProxy->numSamples() == 1;
1687 }
1688
renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget * rt) const1689 bool GrVkCaps::renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget* rt) const {
1690 return rt->resolveAttachment() &&
1691 rt->resolveAttachment()->supportsInputAttachmentUsage() &&
1692 ((rt->numSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1693 (rt->numSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1694 }
1695
programInfoWillUseDiscardableMSAA(const GrProgramInfo & programInfo) const1696 bool GrVkCaps::programInfoWillUseDiscardableMSAA(const GrProgramInfo& programInfo) const {
1697 return programInfo.targetHasVkResolveAttachmentWithInput() &&
1698 programInfo.numSamples() > 1 &&
1699 ((programInfo.targetsNumSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1700 (programInfo.targetsNumSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1701 }
1702
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1703 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1704 SkImage::CompressionType compressionType) const {
1705 switch (compressionType) {
1706 case SkImage::CompressionType::kNone:
1707 return {};
1708 case SkImage::CompressionType::kETC2_RGB8_UNORM:
1709 if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1710 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1711 }
1712 return {};
1713 case SkImage::CompressionType::kBC1_RGB8_UNORM:
1714 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1715 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1716 }
1717 return {};
1718 case SkImage::CompressionType::kBC1_RGBA8_UNORM:
1719 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1720 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1721 }
1722 return {};
1723 case SkImage::CompressionType::kASTC_RGBA8_4x4:
1724 if (this->isVkFormatTexturable(VK_FORMAT_ASTC_4x4_UNORM_BLOCK)) {
1725 return GrBackendFormat::MakeVk(VK_FORMAT_ASTC_4x4_UNORM_BLOCK);
1726 }
1727 return {};
1728 case SkImage::CompressionType::kASTC_RGBA8_6x6:
1729 if (this->isVkFormatTexturable(VK_FORMAT_ASTC_6x6_UNORM_BLOCK)) {
1730 return GrBackendFormat::MakeVk(VK_FORMAT_ASTC_6x6_UNORM_BLOCK);
1731 }
1732 return {};
1733 case SkImage::CompressionType::kASTC_RGBA8_8x8:
1734 if (this->isVkFormatTexturable(VK_FORMAT_ASTC_8x8_UNORM_BLOCK)) {
1735 return GrBackendFormat::MakeVk(VK_FORMAT_ASTC_8x8_UNORM_BLOCK);
1736 }
1737 return {};
1738 }
1739
1740 SkUNREACHABLE;
1741 }
1742
onGetReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1743 GrSwizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1744 VkFormat vkFormat;
1745 SkAssertResult(format.asVkFormat(&vkFormat));
1746 const auto* ycbcrInfo = format.getVkYcbcrConversionInfo();
1747 SkASSERT(ycbcrInfo);
1748 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1749 // We allow these to work with any color type and never swizzle. See
1750 // onAreColorTypeAndFormatCompatible.
1751 return GrSwizzle{"rgba"};
1752 }
1753
1754 const auto& info = this->getFormatInfo(vkFormat);
1755 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1756 const auto& ctInfo = info.fColorTypeInfos[i];
1757 if (ctInfo.fColorType == colorType) {
1758 return ctInfo.fReadSwizzle;
1759 }
1760 }
1761 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1762 (int)colorType, (int)vkFormat);
1763 return {};
1764 }
1765
getWriteSwizzle(const GrBackendFormat & format,GrColorType colorType) const1766 GrSwizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1767 VkFormat vkFormat;
1768 SkAssertResult(format.asVkFormat(&vkFormat));
1769 const auto& info = this->getFormatInfo(vkFormat);
1770 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1771 const auto& ctInfo = info.fColorTypeInfos[i];
1772 if (ctInfo.fColorType == colorType) {
1773 return ctInfo.fWriteSwizzle;
1774 }
1775 }
1776 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1777 (int)colorType, (int)vkFormat);
1778 return {};
1779 }
1780
onGetDstSampleFlagsForProxy(const GrRenderTargetProxy * rt) const1781 GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
1782 bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
1783 // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
1784 // references whether the resolve is supported as an input attachment. We need to add a check to
1785 // allow checking the color attachment (msaa or not) supports input attachment specifically.
1786 if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
1787 return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment;
1788 }
1789 return GrDstSampleFlags::kNone;
1790 }
1791
computeFormatKey(const GrBackendFormat & format) const1792 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1793 VkFormat vkFormat;
1794 SkAssertResult(format.asVkFormat(&vkFormat));
1795
1796 #ifdef SK_DEBUG
1797 // We should never be trying to compute a key for an external format
1798 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1799 SkASSERT(ycbcrInfo);
1800 SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1801 #endif
1802
1803 // A VkFormat has a size of 64 bits.
1804 return (uint64_t)vkFormat;
1805 }
1806
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1807 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1808 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1809 GrColorType dstColorType) const {
1810 VkFormat vkFormat;
1811 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1812 return {GrColorType::kUnknown, 0};
1813 }
1814
1815 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1816 return {GrColorType::kUnknown, 0};
1817 }
1818
1819 SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
1820 if (compression != SkImage::CompressionType::kNone) {
1821 return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1822 : GrColorType::kRGBA_8888, 0 };
1823 }
1824
1825 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1826 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1827
1828 const auto& info = this->getFormatInfo(vkFormat);
1829 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1830 const auto& ctInfo = info.fColorTypeInfos[i];
1831 if (ctInfo.fColorType == srcColorType) {
1832 return {ctInfo.fTransferColorType, offsetAlignment};
1833 }
1834 }
1835 return {GrColorType::kUnknown, 0};
1836 }
1837
getFragmentUniformBinding() const1838 int GrVkCaps::getFragmentUniformBinding() const {
1839 return GrVkUniformHandler::kUniformBinding;
1840 }
1841
getFragmentUniformSet() const1842 int GrVkCaps::getFragmentUniformSet() const {
1843 return GrVkUniformHandler::kUniformBufferDescSet;
1844 }
1845
addExtraSamplerKey(GrProcessorKeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const1846 void GrVkCaps::addExtraSamplerKey(GrProcessorKeyBuilder* b,
1847 GrSamplerState samplerState,
1848 const GrBackendFormat& format) const {
1849 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1850 if (!ycbcrInfo) {
1851 return;
1852 }
1853
1854 GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
1855
1856 constexpr size_t numInts = (sizeof(key) + 3) / 4;
1857 uint32_t tmp[numInts];
1858 memcpy(tmp, &key, sizeof(key));
1859
1860 for (size_t i = 0; i < numInts; ++i) {
1861 b->add32(tmp[i]);
1862 }
1863 }
1864
1865 /**
1866 * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
1867 * the information needed to differentiate one pipeline from another.
1868 *
1869 * The GrProgramDesc contains all the information need to create the actual shaders for the
1870 * pipeline.
1871 *
1872 * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
1873 * pipline. This includes stencil settings, blending information, render pass format, draw face
1874 * information, and primitive type. Note that some state is set dynamically on the pipeline for
1875 * each draw and thus is not included in this descriptor. This includes the viewport, scissor,
1876 * and blend constant.
1877 */
makeDesc(GrRenderTarget * rt,const GrProgramInfo & programInfo,ProgramDescOverrideFlags overrideFlags) const1878 GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
1879 const GrProgramInfo& programInfo,
1880 ProgramDescOverrideFlags overrideFlags) const {
1881 GrProgramDesc desc;
1882 GrProgramDesc::Build(&desc, programInfo, *this);
1883
1884 GrProcessorKeyBuilder b(desc.key());
1885
1886 // This will become part of the sheared off key used to persistently cache
1887 // the SPIRV code. It needs to be added right after the base key so that,
1888 // when the base-key is sheared off, the shearing code can include it in the
1889 // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
1890 // GrVkPipelineStateBuilder.cpp).
1891 b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
1892
1893 GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
1894 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
1895 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
1896 }
1897 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
1898 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
1899 }
1900
1901 bool needsResolve = this->programInfoWillUseDiscardableMSAA(programInfo);
1902
1903 bool forceLoadFromResolve =
1904 overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
1905 SkASSERT(!forceLoadFromResolve || needsResolve);
1906
1907 GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
1908 if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
1909 loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
1910 }
1911
1912 if (rt) {
1913 GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
1914
1915 SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
1916 vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
1917
1918 bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
1919 // TODO: support failure in getSimpleRenderPass
1920 auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
1921 loadFromResolve);
1922 SkASSERT(rp);
1923 rp->genKey(&b);
1924
1925 #ifdef SK_DEBUG
1926 if (!rp->isExternal()) {
1927 // This is to ensure ReconstructAttachmentsDescriptor keeps matching
1928 // getSimpleRenderPass' result
1929 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1930 GrVkRenderPass::AttachmentFlags attachmentFlags;
1931 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1932 &attachmentsDescriptor,
1933 &attachmentFlags);
1934 SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
1935 loadFromResolve));
1936 }
1937 #endif
1938 } else {
1939 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1940 GrVkRenderPass::AttachmentFlags attachmentFlags;
1941 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1942 &attachmentsDescriptor,
1943 &attachmentFlags);
1944
1945 // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
1946 // will always go through the above 'rt' path (i.e., we can always pass 0 as the final
1947 // parameter to GenKey).
1948 GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
1949 loadFromResolve, 0);
1950 }
1951
1952 GrStencilSettings stencil = programInfo.nonGLStencilSettings();
1953 stencil.genKey(&b, true);
1954
1955 programInfo.pipeline().genKey(&b, *this);
1956 b.add32(programInfo.numSamples());
1957
1958 // Vulkan requires the full primitive type as part of its key
1959 b.add32(programInfo.primitiveTypeKey());
1960
1961 b.flush();
1962 return desc;
1963 }
1964
getExtraSurfaceFlagsForDeferredRT() const1965 GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
1966 // We always create vulkan RT with the input attachment flag;
1967 return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
1968 }
1969
getPushConstantStageFlags() const1970 VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
1971 VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
1972 return stageFlags;
1973 }
1974
supportsHpsBlur(const GrSurfaceProxyView * proxyViewPtr) const1975 bool GrVkCaps::supportsHpsBlur(const GrSurfaceProxyView* proxyViewPtr) const {
1976 if (proxyViewPtr == nullptr) {
1977 return false;
1978 }
1979 if (proxyViewPtr->asTextureProxy() == nullptr) {
1980 return false;
1981 }
1982 const GrBackendFormat& grBackendFormat = proxyViewPtr->asTextureProxy()->backendFormat();
1983 VkFormat format;
1984 if (!grBackendFormat.asVkFormat(&format)) {
1985 return false;
1986 }
1987 if (((format == VkFormat::VK_FORMAT_R8G8B8A8_UNORM) || (format == VkFormat::VK_FORMAT_R8G8B8_UNORM)) && fSupportHpsBlur) {
1988 return true;
1989 }
1990 return false;
1991 }
1992
1993 #if GR_TEST_UTILS
getTestingCombinations() const1994 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1995 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1996 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1997 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1998 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1999 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
2000 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
2001 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
2002 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
2003 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
2004 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
2005 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
2006 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
2007 { GrColorType::kBGRA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
2008 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
2009 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
2010 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
2011 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
2012 { GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
2013 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
2014 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
2015 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
2016 // These two compressed formats both have an effective colorType of kRGB_888x
2017 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
2018 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
2019 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
2020 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_ASTC_4x4_UNORM_BLOCK) },
2021 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_ASTC_6x6_UNORM_BLOCK) },
2022 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_ASTC_8x8_UNORM_BLOCK) },
2023 };
2024
2025 return combos;
2026 }
2027 #endif
2028