1 /*
2 * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include <math.h>
22 #include <string.h>
23 #include "checkasm.h"
24 #include "libavcodec/vp9data.h"
25 #include "libavcodec/vp9.h"
26 #include "libavutil/common.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/mathematics.h"
30 #include "libavutil/mem_internal.h"
31
32 static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };
33 #define SIZEOF_PIXEL ((bit_depth + 7) / 8)
34
35 #define randomize_buffers() \
36 do { \
37 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
38 int k; \
39 for (k = -4; k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \
40 uint32_t r = rnd() & mask; \
41 AV_WN32A(a + k, r); \
42 } \
43 for (k = 0; k < size * SIZEOF_PIXEL; k += 4) { \
44 uint32_t r = rnd() & mask; \
45 AV_WN32A(l + k, r); \
46 } \
47 } while (0)
48
check_ipred(void)49 static void check_ipred(void)
50 {
51 LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]);
52 uint8_t *a = &a_buf[32 * 2];
53 LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]);
54 LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
55 LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
56 VP9DSPContext dsp;
57 int tx, mode, bit_depth;
58 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride,
59 const uint8_t *left, const uint8_t *top);
60 static const char *const mode_names[N_INTRA_PRED_MODES] = {
61 [VERT_PRED] = "vert",
62 [HOR_PRED] = "hor",
63 [DC_PRED] = "dc",
64 [DIAG_DOWN_LEFT_PRED] = "diag_downleft",
65 [DIAG_DOWN_RIGHT_PRED] = "diag_downright",
66 [VERT_RIGHT_PRED] = "vert_right",
67 [HOR_DOWN_PRED] = "hor_down",
68 [VERT_LEFT_PRED] = "vert_left",
69 [HOR_UP_PRED] = "hor_up",
70 [TM_VP8_PRED] = "tm",
71 [LEFT_DC_PRED] = "dc_left",
72 [TOP_DC_PRED] = "dc_top",
73 [DC_128_PRED] = "dc_128",
74 [DC_127_PRED] = "dc_127",
75 [DC_129_PRED] = "dc_129",
76 };
77
78 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
79 ff_vp9dsp_init(&dsp, bit_depth, 0);
80 for (tx = 0; tx < 4; tx++) {
81 int size = 4 << tx;
82
83 for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) {
84 if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp",
85 mode_names[mode], size, size, bit_depth)) {
86 randomize_buffers();
87 call_ref(dst0, size * SIZEOF_PIXEL, l, a);
88 call_new(dst1, size * SIZEOF_PIXEL, l, a);
89 if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL))
90 fail();
91 bench_new(dst1, size * SIZEOF_PIXEL,l, a);
92 }
93 }
94 }
95 }
96 report("ipred");
97 }
98
99 #undef randomize_buffers
100
101 #define randomize_buffers() \
102 do { \
103 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
104 for (y = 0; y < sz; y++) { \
105 for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \
106 uint32_t r = rnd() & mask; \
107 AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \
108 AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \
109 } \
110 for (x = 0; x < sz; x++) { \
111 if (bit_depth == 8) { \
112 coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \
113 } else { \
114 ((int32_t *) coef)[y * sz + x] = \
115 ((uint16_t *) src)[y * sz + x] - \
116 ((uint16_t *) dst)[y * sz + x]; \
117 } \
118 } \
119 } \
120 } while(0)
121
122 // wht function copied from libvpx
fwht_1d(double * out,const double * in,int sz)123 static void fwht_1d(double *out, const double *in, int sz)
124 {
125 double t0 = in[0] + in[1];
126 double t3 = in[3] - in[2];
127 double t4 = trunc((t0 - t3) * 0.5);
128 double t1 = t4 - in[1];
129 double t2 = t4 - in[2];
130
131 out[0] = t0 - t2;
132 out[1] = t2;
133 out[2] = t3 + t1;
134 out[3] = t1;
135 }
136
137 // standard DCT-II
fdct_1d(double * out,const double * in,int sz)138 static void fdct_1d(double *out, const double *in, int sz)
139 {
140 int k, n;
141
142 for (k = 0; k < sz; k++) {
143 out[k] = 0.0;
144 for (n = 0; n < sz; n++)
145 out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0));
146 }
147 out[0] *= M_SQRT1_2;
148 }
149
150 // see "Towards jointly optimal spatial prediction and adaptive transform in
151 // video/image coding", by J. Han, A. Saxena, and K. Rose
152 // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
fadst4_1d(double * out,const double * in,int sz)153 static void fadst4_1d(double *out, const double *in, int sz)
154 {
155 int k, n;
156
157 for (k = 0; k < sz; k++) {
158 out[k] = 0.0;
159 for (n = 0; n < sz; n++)
160 out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0));
161 }
162 }
163
164 // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
165 // by Jingning Han, Yaowu Xu, and Debargha Mukherjee
166 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf
fadst_1d(double * out,const double * in,int sz)167 static void fadst_1d(double *out, const double *in, int sz)
168 {
169 int k, n;
170
171 for (k = 0; k < sz; k++) {
172 out[k] = 0.0;
173 for (n = 0; n < sz; n++)
174 out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0));
175 }
176 }
177
178 typedef void (*ftx1d_fn)(double *out, const double *in, int sz);
ftx_2d(double * out,const double * in,enum TxfmMode tx,enum TxfmType txtp,int sz)179 static void ftx_2d(double *out, const double *in, enum TxfmMode tx,
180 enum TxfmType txtp, int sz)
181 {
182 static const double scaling_factors[5][4] = {
183 { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 },
184 { 2.0, 2.0, 2.0, 2.0 },
185 { 1.0, 1.0, 1.0, 1.0 },
186 { 0.25 },
187 { 4.0 }
188 };
189 static const ftx1d_fn ftx1d_tbl[5][4][2] = {
190 {
191 { fdct_1d, fdct_1d },
192 { fadst4_1d, fdct_1d },
193 { fdct_1d, fadst4_1d },
194 { fadst4_1d, fadst4_1d },
195 }, {
196 { fdct_1d, fdct_1d },
197 { fadst_1d, fdct_1d },
198 { fdct_1d, fadst_1d },
199 { fadst_1d, fadst_1d },
200 }, {
201 { fdct_1d, fdct_1d },
202 { fadst_1d, fdct_1d },
203 { fdct_1d, fadst_1d },
204 { fadst_1d, fadst_1d },
205 }, {
206 { fdct_1d, fdct_1d },
207 }, {
208 { fwht_1d, fwht_1d },
209 },
210 };
211 double temp[1024];
212 double scaling_factor = scaling_factors[tx][txtp];
213 int i, j;
214
215 // cols
216 for (i = 0; i < sz; ++i) {
217 double temp_out[32];
218
219 ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz);
220 // scale and transpose
221 for (j = 0; j < sz; ++j)
222 temp[j * sz + i] = temp_out[j] * scaling_factor;
223 }
224
225 // rows
226 for (i = 0; i < sz; i++)
227 ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz);
228 }
229
ftx(int16_t * buf,enum TxfmMode tx,enum TxfmType txtp,int sz,int bit_depth)230 static void ftx(int16_t *buf, enum TxfmMode tx,
231 enum TxfmType txtp, int sz, int bit_depth)
232 {
233 double ind[1024], outd[1024];
234 int n;
235
236 emms_c();
237 for (n = 0; n < sz * sz; n++) {
238 if (bit_depth == 8)
239 ind[n] = buf[n];
240 else
241 ind[n] = ((int32_t *) buf)[n];
242 }
243 ftx_2d(outd, ind, tx, txtp, sz);
244 for (n = 0; n < sz * sz; n++) {
245 if (bit_depth == 8)
246 buf[n] = lrint(outd[n]);
247 else
248 ((int32_t *) buf)[n] = lrint(outd[n]);
249 }
250 }
251
copy_subcoefs(int16_t * out,const int16_t * in,enum TxfmMode tx,enum TxfmType txtp,int sz,int sub,int bit_depth)252 static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx,
253 enum TxfmType txtp, int sz, int sub, int bit_depth)
254 {
255 // copy the topleft coefficients such that the return value (being the
256 // coefficient scantable index for the eob token) guarantees that only
257 // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
258 // dimensions are non-zero. This leads to braching to specific optimized
259 // simd versions (e.g. dc-only) so that we get full asm coverage in this
260 // test
261
262 int n;
263 const int16_t *scan = ff_vp9_scans[tx][txtp];
264 int eob;
265
266 for (n = 0; n < sz * sz; n++) {
267 int rc = scan[n], rcx = rc % sz, rcy = rc / sz;
268
269 // find eob for this sub-idct
270 if (rcx >= sub || rcy >= sub)
271 break;
272
273 // copy coef
274 if (bit_depth == 8) {
275 out[rc] = in[rc];
276 } else {
277 AV_COPY32(&out[rc * 2], &in[rc * 2]);
278 }
279 }
280
281 eob = n;
282
283 for (; n < sz * sz; n++) {
284 int rc = scan[n];
285
286 // zero
287 if (bit_depth == 8) {
288 out[rc] = 0;
289 } else {
290 AV_ZERO32(&out[rc * 2]);
291 }
292 }
293
294 return eob;
295 }
296
is_zero(const int16_t * c,int sz)297 static int is_zero(const int16_t *c, int sz)
298 {
299 int n;
300
301 for (n = 0; n < sz / sizeof(int16_t); n += 2)
302 if (AV_RN32A(&c[n]))
303 return 0;
304
305 return 1;
306 }
307
308 #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8))
309
check_itxfm(void)310 static void check_itxfm(void)
311 {
312 LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]);
313 LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]);
314 LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
315 LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
316 LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]);
317 LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]);
318 LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]);
319 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob);
320 VP9DSPContext dsp;
321 int y, x, tx, txtp, bit_depth, sub;
322 static const char *const txtp_types[N_TXFM_TYPES] = {
323 [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct",
324 [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst"
325 };
326
327 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
328 ff_vp9dsp_init(&dsp, bit_depth, 0);
329
330 for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) {
331 int sz = 4 << (tx & 3);
332 int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1;
333
334 for (txtp = 0; txtp < n_txtps; txtp++) {
335 // skip testing sub-IDCTs for WHT or ADST since they don't
336 // implement it in any of the SIMD functions. If they do,
337 // consider changing this to ensure we have complete test
338 // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc,
339 // since the arm version can distinguish them at that level.
340 for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz;
341 sub < 4 ? (sub <<= 1) : (sub += 4)) {
342 if (check_func(dsp.itxfm_add[tx][txtp],
343 "vp9_inv_%s_%dx%d_sub%d_add_%d",
344 tx == 4 ? "wht_wht" : txtp_types[txtp],
345 sz, sz, sub, bit_depth)) {
346 int eob;
347
348 randomize_buffers();
349 ftx(coef, tx, txtp, sz, bit_depth);
350
351 if (sub < sz) {
352 eob = copy_subcoefs(subcoef0, coef, tx, txtp,
353 sz, sub, bit_depth);
354 } else {
355 eob = sz * sz;
356 memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
357 }
358
359 memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL);
360 memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL);
361 memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
362 call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob);
363 call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob);
364 if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) ||
365 !is_zero(subcoef0, sz * sz * SIZEOF_COEF) ||
366 !is_zero(subcoef1, sz * sz * SIZEOF_COEF))
367 fail();
368
369 bench_new(dst, sz * SIZEOF_PIXEL, coef, eob);
370 }
371 }
372 }
373 }
374 }
375 report("itxfm");
376 }
377
378 #undef randomize_buffers
379
380 #define setpx(a,b,c) \
381 do { \
382 if (SIZEOF_PIXEL == 1) { \
383 buf0[(a) + (b) * jstride] = av_clip_uint8(c); \
384 } else { \
385 ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \
386 } \
387 } while (0)
388
389 // c can be an assignment and must not be put under ()
390 #define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1)))
391 #define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8))
randomize_loopfilter_buffers(int bidx,int lineoff,int str,int bit_depth,int dir,const int * E,const int * F,const int * H,const int * I,uint8_t * buf0,uint8_t * buf1)392 static void randomize_loopfilter_buffers(int bidx, int lineoff, int str,
393 int bit_depth, int dir, const int *E,
394 const int *F, const int *H, const int *I,
395 uint8_t *buf0, uint8_t *buf1)
396 {
397 uint32_t mask = (1 << bit_depth) - 1;
398 int off = dir ? lineoff : lineoff * 16;
399 int istride = dir ? 1 : 16;
400 int jstride = dir ? str : 1;
401 int i, j;
402 for (i = 0; i < 2; i++) /* flat16 */ {
403 int idx = off + i * istride, p0, q0;
404 setpx(idx, 0, q0 = rnd() & mask);
405 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
406 for (j = 1; j < 8; j++) {
407 setsx(idx, -1 - j, p0, F[bidx]);
408 setsx(idx, j, q0, F[bidx]);
409 }
410 }
411 for (i = 2; i < 4; i++) /* flat8 */ {
412 int idx = off + i * istride, p0, q0;
413 setpx(idx, 0, q0 = rnd() & mask);
414 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
415 for (j = 1; j < 4; j++) {
416 setsx(idx, -1 - j, p0, F[bidx]);
417 setsx(idx, j, q0, F[bidx]);
418 }
419 for (j = 4; j < 8; j++) {
420 setpx(idx, -1 - j, rnd() & mask);
421 setpx(idx, j, rnd() & mask);
422 }
423 }
424 for (i = 4; i < 6; i++) /* regular */ {
425 int idx = off + i * istride, p2, p1, p0, q0, q1, q2;
426 setpx(idx, 0, q0 = rnd() & mask);
427 setsx(idx, 1, q1 = q0, I[bidx]);
428 setsx(idx, 2, q2 = q1, I[bidx]);
429 setsx(idx, 3, q2, I[bidx]);
430 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
431 setsx(idx, -2, p1 = p0, I[bidx]);
432 setsx(idx, -3, p2 = p1, I[bidx]);
433 setsx(idx, -4, p2, I[bidx]);
434 for (j = 4; j < 8; j++) {
435 setpx(idx, -1 - j, rnd() & mask);
436 setpx(idx, j, rnd() & mask);
437 }
438 }
439 for (i = 6; i < 8; i++) /* off */ {
440 int idx = off + i * istride;
441 for (j = 0; j < 8; j++) {
442 setpx(idx, -1 - j, rnd() & mask);
443 setpx(idx, j, rnd() & mask);
444 }
445 }
446 }
447 #define randomize_buffers(bidx, lineoff, str) \
448 randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \
449 E, F, H, I, buf0, buf1)
450
check_loopfilter(void)451 static void check_loopfilter(void)
452 {
453 LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]);
454 LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]);
455 VP9DSPContext dsp;
456 int dir, wd, wd2, bit_depth;
457 static const char *const dir_name[2] = { "h", "v" };
458 static const int E[2] = { 20, 28 }, I[2] = { 10, 16 };
459 static const int H[2] = { 7, 11 }, F[2] = { 1, 1 };
460 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H);
461
462 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
463 ff_vp9dsp_init(&dsp, bit_depth, 0);
464
465 for (dir = 0; dir < 2; dir++) {
466 int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL;
467 int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL;
468 uint8_t *buf0 = base0 + midoff_aligned;
469 uint8_t *buf1 = base1 + midoff_aligned;
470
471 for (wd = 0; wd < 3; wd++) {
472 // 4/8/16wd_8px
473 if (check_func(dsp.loop_filter_8[wd][dir],
474 "vp9_loop_filter_%s_%d_8_%dbpp",
475 dir_name[dir], 4 << wd, bit_depth)) {
476 randomize_buffers(0, 0, 8);
477 memcpy(buf1 - midoff, buf0 - midoff,
478 16 * 8 * SIZEOF_PIXEL);
479 call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
480 call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
481 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL))
482 fail();
483 bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
484 }
485 }
486
487 midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL;
488 midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL;
489
490 buf0 = base0 + midoff_aligned;
491 buf1 = base1 + midoff_aligned;
492
493 // 16wd_16px loopfilter
494 if (check_func(dsp.loop_filter_16[dir],
495 "vp9_loop_filter_%s_16_16_%dbpp",
496 dir_name[dir], bit_depth)) {
497 randomize_buffers(0, 0, 16);
498 randomize_buffers(0, 8, 16);
499 memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
500 call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
501 call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
502 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
503 fail();
504 bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
505 }
506
507 for (wd = 0; wd < 2; wd++) {
508 for (wd2 = 0; wd2 < 2; wd2++) {
509 // mix2 loopfilter
510 if (check_func(dsp.loop_filter_mix2[wd][wd2][dir],
511 "vp9_loop_filter_mix2_%s_%d%d_16_%dbpp",
512 dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) {
513 randomize_buffers(0, 0, 16);
514 randomize_buffers(1, 8, 16);
515 memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
516 #define M(a) (((a)[1] << 8) | (a)[0])
517 call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
518 call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
519 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
520 fail();
521 bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
522 #undef M
523 }
524 }
525 }
526 }
527 }
528 report("loopfilter");
529 }
530
531 #undef setsx
532 #undef setpx
533 #undef setdx
534 #undef randomize_buffers
535
536 #define DST_BUF_SIZE (size * size * SIZEOF_PIXEL)
537 #define SRC_BUF_STRIDE 72
538 #define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL)
539 #define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1))
540
541 #define randomize_buffers() \
542 do { \
543 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
544 int k; \
545 for (k = 0; k < SRC_BUF_SIZE; k += 4) { \
546 uint32_t r = rnd() & mask; \
547 AV_WN32A(buf + k, r); \
548 } \
549 if (op == 1) { \
550 for (k = 0; k < DST_BUF_SIZE; k += 4) { \
551 uint32_t r = rnd() & mask; \
552 AV_WN32A(dst0 + k, r); \
553 AV_WN32A(dst1 + k, r); \
554 } \
555 } \
556 } while (0)
557
check_mc(void)558 static void check_mc(void)
559 {
560 LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]);
561 LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]);
562 LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]);
563 VP9DSPContext dsp;
564 int op, hsize, bit_depth, filter, dx, dy;
565 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride,
566 const uint8_t *ref, ptrdiff_t ref_stride,
567 int h, int mx, int my);
568 static const char *const filter_names[4] = {
569 "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin"
570 };
571 static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } };
572 static const char *const op_names[2] = { "put", "avg" };
573 char str[256];
574
575 for (op = 0; op < 2; op++) {
576 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
577 ff_vp9dsp_init(&dsp, bit_depth, 0);
578 for (hsize = 0; hsize < 5; hsize++) {
579 int size = 64 >> hsize;
580
581 for (filter = 0; filter < 4; filter++) {
582 for (dx = 0; dx < 2; dx++) {
583 for (dy = 0; dy < 2; dy++) {
584 if (dx || dy) {
585 snprintf(str, sizeof(str),
586 "%s_%s_%d%s", op_names[op],
587 filter_names[filter], size,
588 subpel_names[dy][dx]);
589 } else {
590 snprintf(str, sizeof(str),
591 "%s%d", op_names[op], size);
592 }
593 if (check_func(dsp.mc[hsize][filter][op][dx][dy],
594 "vp9_%s_%dbpp", str, bit_depth)) {
595 int mx = dx ? 1 + (rnd() % 14) : 0;
596 int my = dy ? 1 + (rnd() % 14) : 0;
597 randomize_buffers();
598 call_ref(dst0, size * SIZEOF_PIXEL,
599 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
600 size, mx, my);
601 call_new(dst1, size * SIZEOF_PIXEL,
602 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
603 size, mx, my);
604 if (memcmp(dst0, dst1, DST_BUF_SIZE))
605 fail();
606
607 // simd implementations for each filter of subpel
608 // functions are identical
609 if (filter >= 1 && filter <= 2) continue;
610 // 10/12 bpp for bilin are identical
611 if (bit_depth == 12 && filter == 3) continue;
612
613 bench_new(dst1, size * SIZEOF_PIXEL,
614 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
615 size, mx, my);
616 }
617 }
618 }
619 }
620 }
621 }
622 }
623 report("mc");
624 }
625
checkasm_check_vp9dsp(void)626 void checkasm_check_vp9dsp(void)
627 {
628 check_ipred();
629 check_itxfm();
630 check_loopfilter();
631 check_mc();
632 }
633