1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20
21 /**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76 /*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95
96 /*
97 * Threshold: 0.0312s, when doubled: 0.0625s.
98 * Also a default for cs->uncertainty_margin when registering clocks.
99 */
100 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
101
102 /*
103 * Maximum permissible delay between two readouts of the watchdog
104 * clocksource surrounding a read of the clocksource being validated.
105 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
106 * a lower bound for cs->uncertainty_margin values when registering clocks.
107 */
108 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
109
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111 static void clocksource_watchdog_work(struct work_struct *work);
112 static void clocksource_select(void);
113
114 static LIST_HEAD(watchdog_list);
115 static struct clocksource *watchdog;
116 static struct timer_list watchdog_timer;
117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118 static DEFINE_SPINLOCK(watchdog_lock);
119 static int watchdog_running;
120 static atomic_t watchdog_reset_pending;
121
clocksource_watchdog_lock(unsigned long * flags)122 static inline void clocksource_watchdog_lock(unsigned long *flags)
123 {
124 spin_lock_irqsave(&watchdog_lock, *flags);
125 }
126
clocksource_watchdog_unlock(unsigned long * flags)127 static inline void clocksource_watchdog_unlock(unsigned long *flags)
128 {
129 spin_unlock_irqrestore(&watchdog_lock, *flags);
130 }
131
132 static int clocksource_watchdog_kthread(void *data);
133 static void __clocksource_change_rating(struct clocksource *cs, int rating);
134
135 /*
136 * Interval: 0.5sec.
137 */
138 #define WATCHDOG_INTERVAL (HZ >> 1)
139
clocksource_watchdog_work(struct work_struct * work)140 static void clocksource_watchdog_work(struct work_struct *work)
141 {
142 /*
143 * We cannot directly run clocksource_watchdog_kthread() here, because
144 * clocksource_select() calls timekeeping_notify() which uses
145 * stop_machine(). One cannot use stop_machine() from a workqueue() due
146 * lock inversions wrt CPU hotplug.
147 *
148 * Also, we only ever run this work once or twice during the lifetime
149 * of the kernel, so there is no point in creating a more permanent
150 * kthread for this.
151 *
152 * If kthread_run fails the next watchdog scan over the
153 * watchdog_list will find the unstable clock again.
154 */
155 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
156 }
157
__clocksource_unstable(struct clocksource * cs)158 static void __clocksource_unstable(struct clocksource *cs)
159 {
160 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
161 cs->flags |= CLOCK_SOURCE_UNSTABLE;
162
163 /*
164 * If the clocksource is registered clocksource_watchdog_kthread() will
165 * re-rate and re-select.
166 */
167 if (list_empty(&cs->list)) {
168 cs->rating = 0;
169 return;
170 }
171
172 if (cs->mark_unstable)
173 cs->mark_unstable(cs);
174
175 /* kick clocksource_watchdog_kthread() */
176 if (finished_booting)
177 schedule_work(&watchdog_work);
178 }
179
180 /**
181 * clocksource_mark_unstable - mark clocksource unstable via watchdog
182 * @cs: clocksource to be marked unstable
183 *
184 * This function is called by the x86 TSC code to mark clocksources as unstable;
185 * it defers demotion and re-selection to a kthread.
186 */
clocksource_mark_unstable(struct clocksource * cs)187 void clocksource_mark_unstable(struct clocksource *cs)
188 {
189 unsigned long flags;
190
191 spin_lock_irqsave(&watchdog_lock, flags);
192 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
193 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
194 list_add(&cs->wd_list, &watchdog_list);
195 __clocksource_unstable(cs);
196 }
197 spin_unlock_irqrestore(&watchdog_lock, flags);
198 }
199
200 static ulong max_cswd_read_retries = 3;
201 module_param(max_cswd_read_retries, ulong, 0644);
202
203 enum wd_read_status {
204 WD_READ_SUCCESS,
205 WD_READ_UNSTABLE,
206 WD_READ_SKIP
207 };
208
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)209 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
210 {
211 unsigned int nretries;
212 u64 wd_end, wd_end2, wd_delta;
213 int64_t wd_delay, wd_seq_delay;
214
215 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
216 local_irq_disable();
217 *wdnow = watchdog->read(watchdog);
218 *csnow = cs->read(cs);
219 wd_end = watchdog->read(watchdog);
220 wd_end2 = watchdog->read(watchdog);
221 local_irq_enable();
222
223 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
224 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
225 watchdog->shift);
226 if (wd_delay <= WATCHDOG_MAX_SKEW) {
227 if (nretries > 1 || nretries >= max_cswd_read_retries) {
228 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
229 smp_processor_id(), watchdog->name, nretries);
230 }
231 return WD_READ_SUCCESS;
232 }
233
234 /*
235 * Now compute delay in consecutive watchdog read to see if
236 * there is too much external interferences that cause
237 * significant delay in reading both clocksource and watchdog.
238 *
239 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
240 * report system busy, reinit the watchdog and skip the current
241 * watchdog test.
242 */
243 wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
244 wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
245 if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
246 goto skip_test;
247 }
248
249 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
250 smp_processor_id(), watchdog->name, wd_delay, nretries);
251 return WD_READ_UNSTABLE;
252
253 skip_test:
254 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
255 smp_processor_id(), watchdog->name, wd_seq_delay);
256 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
257 cs->name, wd_delay);
258 return WD_READ_SKIP;
259 }
260
261 static u64 csnow_mid;
262 static cpumask_t cpus_ahead;
263 static cpumask_t cpus_behind;
264
clocksource_verify_one_cpu(void * csin)265 static void clocksource_verify_one_cpu(void *csin)
266 {
267 struct clocksource *cs = (struct clocksource *)csin;
268
269 csnow_mid = cs->read(cs);
270 }
271
clocksource_verify_percpu(struct clocksource * cs)272 static void clocksource_verify_percpu(struct clocksource *cs)
273 {
274 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
275 u64 csnow_begin, csnow_end;
276 int cpu, testcpu;
277 s64 delta;
278
279 cpumask_clear(&cpus_ahead);
280 cpumask_clear(&cpus_behind);
281 preempt_disable();
282 testcpu = smp_processor_id();
283 pr_warn("Checking clocksource %s synchronization from CPU %d.\n", cs->name, testcpu);
284 for_each_online_cpu(cpu) {
285 if (cpu == testcpu)
286 continue;
287 csnow_begin = cs->read(cs);
288 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
289 csnow_end = cs->read(cs);
290 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
291 if (delta < 0)
292 cpumask_set_cpu(cpu, &cpus_behind);
293 delta = (csnow_end - csnow_mid) & cs->mask;
294 if (delta < 0)
295 cpumask_set_cpu(cpu, &cpus_ahead);
296 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
297 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
298 if (cs_nsec > cs_nsec_max)
299 cs_nsec_max = cs_nsec;
300 if (cs_nsec < cs_nsec_min)
301 cs_nsec_min = cs_nsec;
302 }
303 preempt_enable();
304 if (!cpumask_empty(&cpus_ahead))
305 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
306 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
307 if (!cpumask_empty(&cpus_behind))
308 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
309 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
310 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
311 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
312 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
313 }
314
clocksource_reset_watchdog(void)315 static inline void clocksource_reset_watchdog(void)
316 {
317 struct clocksource *cs;
318
319 list_for_each_entry(cs, &watchdog_list, wd_list)
320 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
321 }
322
323
clocksource_watchdog(struct timer_list * unused)324 static void clocksource_watchdog(struct timer_list *unused)
325 {
326 u64 csnow, wdnow, cslast, wdlast, delta;
327 int next_cpu, reset_pending;
328 int64_t wd_nsec, cs_nsec;
329 struct clocksource *cs;
330 enum wd_read_status read_ret;
331 unsigned long extra_wait = 0;
332 u32 md;
333
334 spin_lock(&watchdog_lock);
335 if (!watchdog_running)
336 goto out;
337
338 reset_pending = atomic_read(&watchdog_reset_pending);
339
340 list_for_each_entry(cs, &watchdog_list, wd_list) {
341
342 /* Clocksource already marked unstable? */
343 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
344 if (finished_booting)
345 schedule_work(&watchdog_work);
346 continue;
347 }
348
349 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
350
351 if (read_ret == WD_READ_UNSTABLE) {
352 /* Clock readout unreliable, so give it up. */
353 __clocksource_unstable(cs);
354 continue;
355 }
356
357 /*
358 * When WD_READ_SKIP is returned, it means the system is likely
359 * under very heavy load, where the latency of reading
360 * watchdog/clocksource is very big, and affect the accuracy of
361 * watchdog check. So give system some space and suspend the
362 * watchdog check for 5 minutes.
363 */
364 if (read_ret == WD_READ_SKIP) {
365 /*
366 * As the watchdog timer will be suspended, and
367 * cs->last could keep unchanged for 5 minutes, reset
368 * the counters.
369 */
370 clocksource_reset_watchdog();
371 extra_wait = HZ * 300;
372 break;
373 }
374
375 /* Clocksource initialized ? */
376 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
377 atomic_read(&watchdog_reset_pending)) {
378 cs->flags |= CLOCK_SOURCE_WATCHDOG;
379 cs->wd_last = wdnow;
380 cs->cs_last = csnow;
381 continue;
382 }
383
384 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
385 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
386 watchdog->shift);
387
388 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
389 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
390 wdlast = cs->wd_last; /* save these in case we print them */
391 cslast = cs->cs_last;
392 cs->cs_last = csnow;
393 cs->wd_last = wdnow;
394
395 if (atomic_read(&watchdog_reset_pending))
396 continue;
397
398 /* Check the deviation from the watchdog clocksource. */
399 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
400 if (abs(cs_nsec - wd_nsec) > md) {
401 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
402 smp_processor_id(), cs->name);
403 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
404 watchdog->name, wdnow, wdlast, watchdog->mask);
405 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
406 cs->name, csnow, cslast, cs->mask);
407 __clocksource_unstable(cs);
408 continue;
409 }
410
411 if (cs == curr_clocksource && cs->tick_stable)
412 cs->tick_stable(cs);
413
414 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
415 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
416 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
417 /* Mark it valid for high-res. */
418 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
419
420 /*
421 * clocksource_done_booting() will sort it if
422 * finished_booting is not set yet.
423 */
424 if (!finished_booting)
425 continue;
426
427 /*
428 * If this is not the current clocksource let
429 * the watchdog thread reselect it. Due to the
430 * change to high res this clocksource might
431 * be preferred now. If it is the current
432 * clocksource let the tick code know about
433 * that change.
434 */
435 if (cs != curr_clocksource) {
436 cs->flags |= CLOCK_SOURCE_RESELECT;
437 schedule_work(&watchdog_work);
438 } else {
439 tick_clock_notify();
440 }
441 }
442 }
443
444 /*
445 * We only clear the watchdog_reset_pending, when we did a
446 * full cycle through all clocksources.
447 */
448 if (reset_pending)
449 atomic_dec(&watchdog_reset_pending);
450
451 /*
452 * Cycle through CPUs to check if the CPUs stay synchronized
453 * to each other.
454 */
455 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
456 if (next_cpu >= nr_cpu_ids)
457 next_cpu = cpumask_first(cpu_online_mask);
458
459 /*
460 * Arm timer if not already pending: could race with concurrent
461 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
462 */
463 if (!timer_pending(&watchdog_timer)) {
464 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
465 add_timer_on(&watchdog_timer, next_cpu);
466 }
467 out:
468 spin_unlock(&watchdog_lock);
469 }
470
clocksource_start_watchdog(void)471 static inline void clocksource_start_watchdog(void)
472 {
473 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
474 return;
475 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
476 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
477 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
478 watchdog_running = 1;
479 }
480
clocksource_stop_watchdog(void)481 static inline void clocksource_stop_watchdog(void)
482 {
483 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
484 return;
485 del_timer(&watchdog_timer);
486 watchdog_running = 0;
487 }
488
clocksource_resume_watchdog(void)489 static void clocksource_resume_watchdog(void)
490 {
491 atomic_inc(&watchdog_reset_pending);
492 }
493
clocksource_enqueue_watchdog(struct clocksource * cs)494 static void clocksource_enqueue_watchdog(struct clocksource *cs)
495 {
496 INIT_LIST_HEAD(&cs->wd_list);
497
498 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
499 /* cs is a clocksource to be watched. */
500 list_add(&cs->wd_list, &watchdog_list);
501 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
502 } else {
503 /* cs is a watchdog. */
504 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
505 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
506 }
507 }
508
clocksource_select_watchdog(bool fallback)509 static void clocksource_select_watchdog(bool fallback)
510 {
511 struct clocksource *cs, *old_wd;
512 unsigned long flags;
513
514 spin_lock_irqsave(&watchdog_lock, flags);
515 /* save current watchdog */
516 old_wd = watchdog;
517 if (fallback)
518 watchdog = NULL;
519
520 list_for_each_entry(cs, &clocksource_list, list) {
521 /* cs is a clocksource to be watched. */
522 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
523 continue;
524
525 /* Skip current if we were requested for a fallback. */
526 if (fallback && cs == old_wd)
527 continue;
528
529 /* Pick the best watchdog. */
530 if (!watchdog || cs->rating > watchdog->rating)
531 watchdog = cs;
532 }
533 /* If we failed to find a fallback restore the old one. */
534 if (!watchdog)
535 watchdog = old_wd;
536
537 /* If we changed the watchdog we need to reset cycles. */
538 if (watchdog != old_wd)
539 clocksource_reset_watchdog();
540
541 /* Check if the watchdog timer needs to be started. */
542 clocksource_start_watchdog();
543 spin_unlock_irqrestore(&watchdog_lock, flags);
544 }
545
clocksource_dequeue_watchdog(struct clocksource * cs)546 static void clocksource_dequeue_watchdog(struct clocksource *cs)
547 {
548 if (cs != watchdog) {
549 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
550 /* cs is a watched clocksource. */
551 list_del_init(&cs->wd_list);
552 /* Check if the watchdog timer needs to be stopped. */
553 clocksource_stop_watchdog();
554 }
555 }
556 }
557
__clocksource_watchdog_kthread(void)558 static int __clocksource_watchdog_kthread(void)
559 {
560 struct clocksource *cs, *tmp;
561 unsigned long flags;
562 int select = 0;
563
564 /* Do any required per-CPU skew verification. */
565 if (curr_clocksource &&
566 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
567 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
568 clocksource_verify_percpu(curr_clocksource);
569
570 spin_lock_irqsave(&watchdog_lock, flags);
571 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
572 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
573 list_del_init(&cs->wd_list);
574 __clocksource_change_rating(cs, 0);
575 select = 1;
576 }
577 if (cs->flags & CLOCK_SOURCE_RESELECT) {
578 cs->flags &= ~CLOCK_SOURCE_RESELECT;
579 select = 1;
580 }
581 }
582 /* Check if the watchdog timer needs to be stopped. */
583 clocksource_stop_watchdog();
584 spin_unlock_irqrestore(&watchdog_lock, flags);
585
586 return select;
587 }
588
clocksource_watchdog_kthread(void * data)589 static int clocksource_watchdog_kthread(void *data)
590 {
591 mutex_lock(&clocksource_mutex);
592 if (__clocksource_watchdog_kthread())
593 clocksource_select();
594 mutex_unlock(&clocksource_mutex);
595 return 0;
596 }
597
clocksource_is_watchdog(struct clocksource * cs)598 static bool clocksource_is_watchdog(struct clocksource *cs)
599 {
600 return cs == watchdog;
601 }
602
603 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
604
clocksource_enqueue_watchdog(struct clocksource * cs)605 static void clocksource_enqueue_watchdog(struct clocksource *cs)
606 {
607 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
608 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
609 }
610
clocksource_select_watchdog(bool fallback)611 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)612 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)613 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)614 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)615 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)616 void clocksource_mark_unstable(struct clocksource *cs) { }
617
clocksource_watchdog_lock(unsigned long * flags)618 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)619 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
620
621 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
622
clocksource_is_suspend(struct clocksource * cs)623 static bool clocksource_is_suspend(struct clocksource *cs)
624 {
625 return cs == suspend_clocksource;
626 }
627
__clocksource_suspend_select(struct clocksource * cs)628 static void __clocksource_suspend_select(struct clocksource *cs)
629 {
630 /*
631 * Skip the clocksource which will be stopped in suspend state.
632 */
633 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
634 return;
635
636 /*
637 * The nonstop clocksource can be selected as the suspend clocksource to
638 * calculate the suspend time, so it should not supply suspend/resume
639 * interfaces to suspend the nonstop clocksource when system suspends.
640 */
641 if (cs->suspend || cs->resume) {
642 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
643 cs->name);
644 }
645
646 /* Pick the best rating. */
647 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
648 suspend_clocksource = cs;
649 }
650
651 /**
652 * clocksource_suspend_select - Select the best clocksource for suspend timing
653 * @fallback: if select a fallback clocksource
654 */
clocksource_suspend_select(bool fallback)655 static void clocksource_suspend_select(bool fallback)
656 {
657 struct clocksource *cs, *old_suspend;
658
659 old_suspend = suspend_clocksource;
660 if (fallback)
661 suspend_clocksource = NULL;
662
663 list_for_each_entry(cs, &clocksource_list, list) {
664 /* Skip current if we were requested for a fallback. */
665 if (fallback && cs == old_suspend)
666 continue;
667
668 __clocksource_suspend_select(cs);
669 }
670 }
671
672 /**
673 * clocksource_start_suspend_timing - Start measuring the suspend timing
674 * @cs: current clocksource from timekeeping
675 * @start_cycles: current cycles from timekeeping
676 *
677 * This function will save the start cycle values of suspend timer to calculate
678 * the suspend time when resuming system.
679 *
680 * This function is called late in the suspend process from timekeeping_suspend(),
681 * that means processes are freezed, non-boot cpus and interrupts are disabled
682 * now. It is therefore possible to start the suspend timer without taking the
683 * clocksource mutex.
684 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)685 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
686 {
687 if (!suspend_clocksource)
688 return;
689
690 /*
691 * If current clocksource is the suspend timer, we should use the
692 * tkr_mono.cycle_last value as suspend_start to avoid same reading
693 * from suspend timer.
694 */
695 if (clocksource_is_suspend(cs)) {
696 suspend_start = start_cycles;
697 return;
698 }
699
700 if (suspend_clocksource->enable &&
701 suspend_clocksource->enable(suspend_clocksource)) {
702 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
703 return;
704 }
705
706 suspend_start = suspend_clocksource->read(suspend_clocksource);
707 }
708
709 /**
710 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
711 * @cs: current clocksource from timekeeping
712 * @cycle_now: current cycles from timekeeping
713 *
714 * This function will calculate the suspend time from suspend timer.
715 *
716 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
717 *
718 * This function is called early in the resume process from timekeeping_resume(),
719 * that means there is only one cpu, no processes are running and the interrupts
720 * are disabled. It is therefore possible to stop the suspend timer without
721 * taking the clocksource mutex.
722 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)723 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
724 {
725 u64 now, delta, nsec = 0;
726
727 if (!suspend_clocksource)
728 return 0;
729
730 /*
731 * If current clocksource is the suspend timer, we should use the
732 * tkr_mono.cycle_last value from timekeeping as current cycle to
733 * avoid same reading from suspend timer.
734 */
735 if (clocksource_is_suspend(cs))
736 now = cycle_now;
737 else
738 now = suspend_clocksource->read(suspend_clocksource);
739
740 if (now > suspend_start) {
741 delta = clocksource_delta(now, suspend_start,
742 suspend_clocksource->mask);
743 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
744 suspend_clocksource->shift);
745 }
746
747 /*
748 * Disable the suspend timer to save power if current clocksource is
749 * not the suspend timer.
750 */
751 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
752 suspend_clocksource->disable(suspend_clocksource);
753
754 return nsec;
755 }
756
757 /**
758 * clocksource_suspend - suspend the clocksource(s)
759 */
clocksource_suspend(void)760 void clocksource_suspend(void)
761 {
762 struct clocksource *cs;
763
764 list_for_each_entry_reverse(cs, &clocksource_list, list)
765 if (cs->suspend)
766 cs->suspend(cs);
767 }
768
769 /**
770 * clocksource_resume - resume the clocksource(s)
771 */
clocksource_resume(void)772 void clocksource_resume(void)
773 {
774 struct clocksource *cs;
775
776 list_for_each_entry(cs, &clocksource_list, list)
777 if (cs->resume)
778 cs->resume(cs);
779
780 clocksource_resume_watchdog();
781 }
782
783 /**
784 * clocksource_touch_watchdog - Update watchdog
785 *
786 * Update the watchdog after exception contexts such as kgdb so as not
787 * to incorrectly trip the watchdog. This might fail when the kernel
788 * was stopped in code which holds watchdog_lock.
789 */
clocksource_touch_watchdog(void)790 void clocksource_touch_watchdog(void)
791 {
792 clocksource_resume_watchdog();
793 }
794
795 /**
796 * clocksource_max_adjustment- Returns max adjustment amount
797 * @cs: Pointer to clocksource
798 *
799 */
clocksource_max_adjustment(struct clocksource * cs)800 static u32 clocksource_max_adjustment(struct clocksource *cs)
801 {
802 u64 ret;
803 /*
804 * We won't try to correct for more than 11% adjustments (110,000 ppm),
805 */
806 ret = (u64)cs->mult * 11;
807 do_div(ret,100);
808 return (u32)ret;
809 }
810
811 /**
812 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
813 * @mult: cycle to nanosecond multiplier
814 * @shift: cycle to nanosecond divisor (power of two)
815 * @maxadj: maximum adjustment value to mult (~11%)
816 * @mask: bitmask for two's complement subtraction of non 64 bit counters
817 * @max_cyc: maximum cycle value before potential overflow (does not include
818 * any safety margin)
819 *
820 * NOTE: This function includes a safety margin of 50%, in other words, we
821 * return half the number of nanoseconds the hardware counter can technically
822 * cover. This is done so that we can potentially detect problems caused by
823 * delayed timers or bad hardware, which might result in time intervals that
824 * are larger than what the math used can handle without overflows.
825 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)826 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
827 {
828 u64 max_nsecs, max_cycles;
829
830 /*
831 * Calculate the maximum number of cycles that we can pass to the
832 * cyc2ns() function without overflowing a 64-bit result.
833 */
834 max_cycles = ULLONG_MAX;
835 do_div(max_cycles, mult+maxadj);
836
837 /*
838 * The actual maximum number of cycles we can defer the clocksource is
839 * determined by the minimum of max_cycles and mask.
840 * Note: Here we subtract the maxadj to make sure we don't sleep for
841 * too long if there's a large negative adjustment.
842 */
843 max_cycles = min(max_cycles, mask);
844 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
845
846 /* return the max_cycles value as well if requested */
847 if (max_cyc)
848 *max_cyc = max_cycles;
849
850 /* Return 50% of the actual maximum, so we can detect bad values */
851 max_nsecs >>= 1;
852
853 return max_nsecs;
854 }
855
856 /**
857 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
858 * @cs: Pointer to clocksource to be updated
859 *
860 */
clocksource_update_max_deferment(struct clocksource * cs)861 static inline void clocksource_update_max_deferment(struct clocksource *cs)
862 {
863 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
864 cs->maxadj, cs->mask,
865 &cs->max_cycles);
866 }
867
868 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
869
clocksource_find_best(bool oneshot,bool skipcur)870 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
871 {
872 struct clocksource *cs;
873
874 if (!finished_booting || list_empty(&clocksource_list))
875 return NULL;
876
877 /*
878 * We pick the clocksource with the highest rating. If oneshot
879 * mode is active, we pick the highres valid clocksource with
880 * the best rating.
881 */
882 list_for_each_entry(cs, &clocksource_list, list) {
883 if (skipcur && cs == curr_clocksource)
884 continue;
885 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
886 continue;
887 return cs;
888 }
889 return NULL;
890 }
891
__clocksource_select(bool skipcur)892 static void __clocksource_select(bool skipcur)
893 {
894 bool oneshot = tick_oneshot_mode_active();
895 struct clocksource *best, *cs;
896
897 /* Find the best suitable clocksource */
898 best = clocksource_find_best(oneshot, skipcur);
899 if (!best)
900 return;
901
902 if (!strlen(override_name))
903 goto found;
904
905 /* Check for the override clocksource. */
906 list_for_each_entry(cs, &clocksource_list, list) {
907 if (skipcur && cs == curr_clocksource)
908 continue;
909 if (strcmp(cs->name, override_name) != 0)
910 continue;
911 /*
912 * Check to make sure we don't switch to a non-highres
913 * capable clocksource if the tick code is in oneshot
914 * mode (highres or nohz)
915 */
916 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
917 /* Override clocksource cannot be used. */
918 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
919 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
920 cs->name);
921 override_name[0] = 0;
922 } else {
923 /*
924 * The override cannot be currently verified.
925 * Deferring to let the watchdog check.
926 */
927 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
928 cs->name);
929 }
930 } else
931 /* Override clocksource can be used. */
932 best = cs;
933 break;
934 }
935
936 found:
937 if (curr_clocksource != best && !timekeeping_notify(best)) {
938 pr_info("Switched to clocksource %s\n", best->name);
939 curr_clocksource = best;
940 }
941 }
942
943 /**
944 * clocksource_select - Select the best clocksource available
945 *
946 * Private function. Must hold clocksource_mutex when called.
947 *
948 * Select the clocksource with the best rating, or the clocksource,
949 * which is selected by userspace override.
950 */
clocksource_select(void)951 static void clocksource_select(void)
952 {
953 __clocksource_select(false);
954 }
955
clocksource_select_fallback(void)956 static void clocksource_select_fallback(void)
957 {
958 __clocksource_select(true);
959 }
960
961 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)962 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)963 static inline void clocksource_select_fallback(void) { }
964
965 #endif
966
967 /*
968 * clocksource_done_booting - Called near the end of core bootup
969 *
970 * Hack to avoid lots of clocksource churn at boot time.
971 * We use fs_initcall because we want this to start before
972 * device_initcall but after subsys_initcall.
973 */
clocksource_done_booting(void)974 static int __init clocksource_done_booting(void)
975 {
976 mutex_lock(&clocksource_mutex);
977 curr_clocksource = clocksource_default_clock();
978 finished_booting = 1;
979 /*
980 * Run the watchdog first to eliminate unstable clock sources
981 */
982 __clocksource_watchdog_kthread();
983 clocksource_select();
984 mutex_unlock(&clocksource_mutex);
985 return 0;
986 }
987 fs_initcall(clocksource_done_booting);
988
989 /*
990 * Enqueue the clocksource sorted by rating
991 */
clocksource_enqueue(struct clocksource * cs)992 static void clocksource_enqueue(struct clocksource *cs)
993 {
994 struct list_head *entry = &clocksource_list;
995 struct clocksource *tmp;
996
997 list_for_each_entry(tmp, &clocksource_list, list) {
998 /* Keep track of the place, where to insert */
999 if (tmp->rating < cs->rating)
1000 break;
1001 entry = &tmp->list;
1002 }
1003 list_add(&cs->list, entry);
1004 }
1005
1006 /**
1007 * __clocksource_update_freq_scale - Used update clocksource with new freq
1008 * @cs: clocksource to be registered
1009 * @scale: Scale factor multiplied against freq to get clocksource hz
1010 * @freq: clocksource frequency (cycles per second) divided by scale
1011 *
1012 * This should only be called from the clocksource->enable() method.
1013 *
1014 * This *SHOULD NOT* be called directly! Please use the
1015 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1016 * functions.
1017 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1018 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1019 {
1020 u64 sec;
1021
1022 /*
1023 * Default clocksources are *special* and self-define their mult/shift.
1024 * But, you're not special, so you should specify a freq value.
1025 */
1026 if (freq) {
1027 /*
1028 * Calc the maximum number of seconds which we can run before
1029 * wrapping around. For clocksources which have a mask > 32-bit
1030 * we need to limit the max sleep time to have a good
1031 * conversion precision. 10 minutes is still a reasonable
1032 * amount. That results in a shift value of 24 for a
1033 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1034 * ~ 0.06ppm granularity for NTP.
1035 */
1036 sec = cs->mask;
1037 do_div(sec, freq);
1038 do_div(sec, scale);
1039 if (!sec)
1040 sec = 1;
1041 else if (sec > 600 && cs->mask > UINT_MAX)
1042 sec = 600;
1043
1044 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1045 NSEC_PER_SEC / scale, sec * scale);
1046 }
1047
1048 /*
1049 * If the uncertainty margin is not specified, calculate it.
1050 * If both scale and freq are non-zero, calculate the clock
1051 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1052 * if either of scale or freq is zero, be very conservative and
1053 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1054 * uncertainty margin. Allow stupidly small uncertainty margins
1055 * to be specified by the caller for testing purposes, but warn
1056 * to discourage production use of this capability.
1057 */
1058 if (scale && freq && !cs->uncertainty_margin) {
1059 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1060 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1061 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1062 } else if (!cs->uncertainty_margin) {
1063 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1064 }
1065 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1066
1067 /*
1068 * Ensure clocksources that have large 'mult' values don't overflow
1069 * when adjusted.
1070 */
1071 cs->maxadj = clocksource_max_adjustment(cs);
1072 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1073 || (cs->mult - cs->maxadj > cs->mult))) {
1074 cs->mult >>= 1;
1075 cs->shift--;
1076 cs->maxadj = clocksource_max_adjustment(cs);
1077 }
1078
1079 /*
1080 * Only warn for *special* clocksources that self-define
1081 * their mult/shift values and don't specify a freq.
1082 */
1083 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1084 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1085 cs->name);
1086
1087 clocksource_update_max_deferment(cs);
1088
1089 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1090 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1091 }
1092 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1093
1094 /**
1095 * __clocksource_register_scale - Used to install new clocksources
1096 * @cs: clocksource to be registered
1097 * @scale: Scale factor multiplied against freq to get clocksource hz
1098 * @freq: clocksource frequency (cycles per second) divided by scale
1099 *
1100 * Returns -EBUSY if registration fails, zero otherwise.
1101 *
1102 * This *SHOULD NOT* be called directly! Please use the
1103 * clocksource_register_hz() or clocksource_register_khz helper functions.
1104 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1105 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1106 {
1107 unsigned long flags;
1108
1109 clocksource_arch_init(cs);
1110
1111 if (cs->vdso_clock_mode < 0 ||
1112 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1113 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1114 cs->name, cs->vdso_clock_mode);
1115 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1116 }
1117
1118 /* Initialize mult/shift and max_idle_ns */
1119 __clocksource_update_freq_scale(cs, scale, freq);
1120
1121 /* Add clocksource to the clocksource list */
1122 mutex_lock(&clocksource_mutex);
1123
1124 clocksource_watchdog_lock(&flags);
1125 clocksource_enqueue(cs);
1126 clocksource_enqueue_watchdog(cs);
1127 clocksource_watchdog_unlock(&flags);
1128
1129 clocksource_select();
1130 clocksource_select_watchdog(false);
1131 __clocksource_suspend_select(cs);
1132 mutex_unlock(&clocksource_mutex);
1133 return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1136
__clocksource_change_rating(struct clocksource * cs,int rating)1137 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1138 {
1139 list_del(&cs->list);
1140 cs->rating = rating;
1141 clocksource_enqueue(cs);
1142 }
1143
1144 /**
1145 * clocksource_change_rating - Change the rating of a registered clocksource
1146 * @cs: clocksource to be changed
1147 * @rating: new rating
1148 */
clocksource_change_rating(struct clocksource * cs,int rating)1149 void clocksource_change_rating(struct clocksource *cs, int rating)
1150 {
1151 unsigned long flags;
1152
1153 mutex_lock(&clocksource_mutex);
1154 clocksource_watchdog_lock(&flags);
1155 __clocksource_change_rating(cs, rating);
1156 clocksource_watchdog_unlock(&flags);
1157
1158 clocksource_select();
1159 clocksource_select_watchdog(false);
1160 clocksource_suspend_select(false);
1161 mutex_unlock(&clocksource_mutex);
1162 }
1163 EXPORT_SYMBOL(clocksource_change_rating);
1164
1165 /*
1166 * Unbind clocksource @cs. Called with clocksource_mutex held
1167 */
clocksource_unbind(struct clocksource * cs)1168 static int clocksource_unbind(struct clocksource *cs)
1169 {
1170 unsigned long flags;
1171
1172 if (clocksource_is_watchdog(cs)) {
1173 /* Select and try to install a replacement watchdog. */
1174 clocksource_select_watchdog(true);
1175 if (clocksource_is_watchdog(cs))
1176 return -EBUSY;
1177 }
1178
1179 if (cs == curr_clocksource) {
1180 /* Select and try to install a replacement clock source */
1181 clocksource_select_fallback();
1182 if (curr_clocksource == cs)
1183 return -EBUSY;
1184 }
1185
1186 if (clocksource_is_suspend(cs)) {
1187 /*
1188 * Select and try to install a replacement suspend clocksource.
1189 * If no replacement suspend clocksource, we will just let the
1190 * clocksource go and have no suspend clocksource.
1191 */
1192 clocksource_suspend_select(true);
1193 }
1194
1195 clocksource_watchdog_lock(&flags);
1196 clocksource_dequeue_watchdog(cs);
1197 list_del_init(&cs->list);
1198 clocksource_watchdog_unlock(&flags);
1199
1200 return 0;
1201 }
1202
1203 /**
1204 * clocksource_unregister - remove a registered clocksource
1205 * @cs: clocksource to be unregistered
1206 */
clocksource_unregister(struct clocksource * cs)1207 int clocksource_unregister(struct clocksource *cs)
1208 {
1209 int ret = 0;
1210
1211 mutex_lock(&clocksource_mutex);
1212 if (!list_empty(&cs->list))
1213 ret = clocksource_unbind(cs);
1214 mutex_unlock(&clocksource_mutex);
1215 return ret;
1216 }
1217 EXPORT_SYMBOL(clocksource_unregister);
1218
1219 #ifdef CONFIG_SYSFS
1220 /**
1221 * current_clocksource_show - sysfs interface for current clocksource
1222 * @dev: unused
1223 * @attr: unused
1224 * @buf: char buffer to be filled with clocksource list
1225 *
1226 * Provides sysfs interface for listing current clocksource.
1227 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1228 static ssize_t current_clocksource_show(struct device *dev,
1229 struct device_attribute *attr,
1230 char *buf)
1231 {
1232 ssize_t count = 0;
1233
1234 mutex_lock(&clocksource_mutex);
1235 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1236 mutex_unlock(&clocksource_mutex);
1237
1238 return count;
1239 }
1240
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1241 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1242 {
1243 size_t ret = cnt;
1244
1245 /* strings from sysfs write are not 0 terminated! */
1246 if (!cnt || cnt >= CS_NAME_LEN)
1247 return -EINVAL;
1248
1249 /* strip of \n: */
1250 if (buf[cnt-1] == '\n')
1251 cnt--;
1252 if (cnt > 0)
1253 memcpy(dst, buf, cnt);
1254 dst[cnt] = 0;
1255 return ret;
1256 }
1257
1258 /**
1259 * current_clocksource_store - interface for manually overriding clocksource
1260 * @dev: unused
1261 * @attr: unused
1262 * @buf: name of override clocksource
1263 * @count: length of buffer
1264 *
1265 * Takes input from sysfs interface for manually overriding the default
1266 * clocksource selection.
1267 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1268 static ssize_t current_clocksource_store(struct device *dev,
1269 struct device_attribute *attr,
1270 const char *buf, size_t count)
1271 {
1272 ssize_t ret;
1273
1274 mutex_lock(&clocksource_mutex);
1275
1276 ret = sysfs_get_uname(buf, override_name, count);
1277 if (ret >= 0)
1278 clocksource_select();
1279
1280 mutex_unlock(&clocksource_mutex);
1281
1282 return ret;
1283 }
1284 static DEVICE_ATTR_RW(current_clocksource);
1285
1286 /**
1287 * unbind_clocksource_store - interface for manually unbinding clocksource
1288 * @dev: unused
1289 * @attr: unused
1290 * @buf: unused
1291 * @count: length of buffer
1292 *
1293 * Takes input from sysfs interface for manually unbinding a clocksource.
1294 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1295 static ssize_t unbind_clocksource_store(struct device *dev,
1296 struct device_attribute *attr,
1297 const char *buf, size_t count)
1298 {
1299 struct clocksource *cs;
1300 char name[CS_NAME_LEN];
1301 ssize_t ret;
1302
1303 ret = sysfs_get_uname(buf, name, count);
1304 if (ret < 0)
1305 return ret;
1306
1307 ret = -ENODEV;
1308 mutex_lock(&clocksource_mutex);
1309 list_for_each_entry(cs, &clocksource_list, list) {
1310 if (strcmp(cs->name, name))
1311 continue;
1312 ret = clocksource_unbind(cs);
1313 break;
1314 }
1315 mutex_unlock(&clocksource_mutex);
1316
1317 return ret ? ret : count;
1318 }
1319 static DEVICE_ATTR_WO(unbind_clocksource);
1320
1321 /**
1322 * available_clocksource_show - sysfs interface for listing clocksource
1323 * @dev: unused
1324 * @attr: unused
1325 * @buf: char buffer to be filled with clocksource list
1326 *
1327 * Provides sysfs interface for listing registered clocksources
1328 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1329 static ssize_t available_clocksource_show(struct device *dev,
1330 struct device_attribute *attr,
1331 char *buf)
1332 {
1333 struct clocksource *src;
1334 ssize_t count = 0;
1335
1336 mutex_lock(&clocksource_mutex);
1337 list_for_each_entry(src, &clocksource_list, list) {
1338 /*
1339 * Don't show non-HRES clocksource if the tick code is
1340 * in one shot mode (highres=on or nohz=on)
1341 */
1342 if (!tick_oneshot_mode_active() ||
1343 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1344 count += snprintf(buf + count,
1345 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1346 "%s ", src->name);
1347 }
1348 mutex_unlock(&clocksource_mutex);
1349
1350 count += snprintf(buf + count,
1351 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1352
1353 return count;
1354 }
1355 static DEVICE_ATTR_RO(available_clocksource);
1356
1357 static struct attribute *clocksource_attrs[] = {
1358 &dev_attr_current_clocksource.attr,
1359 &dev_attr_unbind_clocksource.attr,
1360 &dev_attr_available_clocksource.attr,
1361 NULL
1362 };
1363 ATTRIBUTE_GROUPS(clocksource);
1364
1365 static struct bus_type clocksource_subsys = {
1366 .name = "clocksource",
1367 .dev_name = "clocksource",
1368 };
1369
1370 static struct device device_clocksource = {
1371 .id = 0,
1372 .bus = &clocksource_subsys,
1373 .groups = clocksource_groups,
1374 };
1375
init_clocksource_sysfs(void)1376 static int __init init_clocksource_sysfs(void)
1377 {
1378 int error = subsys_system_register(&clocksource_subsys, NULL);
1379
1380 if (!error)
1381 error = device_register(&device_clocksource);
1382
1383 return error;
1384 }
1385
1386 device_initcall(init_clocksource_sysfs);
1387 #endif /* CONFIG_SYSFS */
1388
1389 /**
1390 * boot_override_clocksource - boot clock override
1391 * @str: override name
1392 *
1393 * Takes a clocksource= boot argument and uses it
1394 * as the clocksource override name.
1395 */
boot_override_clocksource(char * str)1396 static int __init boot_override_clocksource(char* str)
1397 {
1398 mutex_lock(&clocksource_mutex);
1399 if (str)
1400 strlcpy(override_name, str, sizeof(override_name));
1401 mutex_unlock(&clocksource_mutex);
1402 return 1;
1403 }
1404
1405 __setup("clocksource=", boot_override_clocksource);
1406
1407 /**
1408 * boot_override_clock - Compatibility layer for deprecated boot option
1409 * @str: override name
1410 *
1411 * DEPRECATED! Takes a clock= boot argument and uses it
1412 * as the clocksource override name
1413 */
boot_override_clock(char * str)1414 static int __init boot_override_clock(char* str)
1415 {
1416 if (!strcmp(str, "pmtmr")) {
1417 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1418 return boot_override_clocksource("acpi_pm");
1419 }
1420 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1421 return boot_override_clocksource(str);
1422 }
1423
1424 __setup("clock=", boot_override_clock);
1425