1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements bottom-up and top-down register pressure reduction list
10 // schedulers, using standard algorithms. The basic approach uses a priority
11 // queue of available nodes to schedule. One at a time, nodes are taken from
12 // the priority queue (thus in priority order), checked for legality to
13 // schedule, and emitted if legal.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstdlib>
54 #include <iterator>
55 #include <limits>
56 #include <memory>
57 #include <utility>
58 #include <vector>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "pre-RA-sched"
63
64 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
65 STATISTIC(NumUnfolds, "Number of nodes unfolded");
66 STATISTIC(NumDups, "Number of duplicated nodes");
67 STATISTIC(NumPRCopies, "Number of physical register copies");
68
69 static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler);
73
74 static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler);
79
80 static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler);
85
86 static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler);
91
92 static cl::opt<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
95
96 // Temporary sched=list-ilp flags until the heuristics are robust.
97 // Some options are also available under sched=list-hybrid.
98 static cl::opt<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101 static cl::opt<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104 static cl::opt<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107 static cl::opt<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110 static cl::opt<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113 static cl::opt<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116 static cl::opt<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119 static cl::opt<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
122
123 static cl::opt<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
127
128 static cl::opt<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
131
132 namespace {
133
134 //===----------------------------------------------------------------------===//
135 /// ScheduleDAGRRList - The actual register reduction list scheduler
136 /// implementation. This supports both top-down and bottom-up scheduling.
137 ///
138 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139 private:
140 /// NeedLatency - True if the scheduler will make use of latency information.
141 bool NeedLatency;
142
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue *AvailableQueue;
145
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector<SUnit *> PendingQueue;
151
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer *HazardRec;
154
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle = 0;
157
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle;
160
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
163 unsigned IssueCount;
164
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs;
169 std::unique_ptr<SUnit*[]> LiveRegDefs;
170 std::unique_ptr<SUnit*[]> LiveRegGens;
171
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector<SUnit*, 4> Interferences;
175
176 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
177
178 LRegsMapT LRegsMap;
179
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo;
183
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185 // DAG crawling.
186 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
187
188 public:
ScheduleDAGRRList(MachineFunction & mf,bool needlatency,SchedulingPriorityQueue * availqueue,CodeGenOpt::Level OptLevel)189 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190 SchedulingPriorityQueue *availqueue,
191 CodeGenOpt::Level OptLevel)
192 : ScheduleDAGSDNodes(mf),
193 NeedLatency(needlatency), AvailableQueue(availqueue),
194 Topo(SUnits, nullptr) {
195 const TargetSubtargetInfo &STI = mf.getSubtarget();
196 if (DisableSchedCycles || !NeedLatency)
197 HazardRec = new ScheduleHazardRecognizer();
198 else
199 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
200 }
201
~ScheduleDAGRRList()202 ~ScheduleDAGRRList() override {
203 delete HazardRec;
204 delete AvailableQueue;
205 }
206
207 void Schedule() override;
208
getHazardRec()209 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
210
211 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)212 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
213 return Topo.IsReachable(SU, TargetSU);
214 }
215
216 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
217 /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)218 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
219 return Topo.WillCreateCycle(SU, TargetSU);
220 }
221
222 /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
223 /// This returns true if this is a new predecessor.
224 /// Does *NOT* update the topological ordering! It just queues an update.
AddPredQueued(SUnit * SU,const SDep & D)225 void AddPredQueued(SUnit *SU, const SDep &D) {
226 Topo.AddPredQueued(SU, D.getSUnit());
227 SU->addPred(D);
228 }
229
230 /// AddPred - adds a predecessor edge to SUnit SU.
231 /// This returns true if this is a new predecessor.
232 /// Updates the topological ordering if required.
AddPred(SUnit * SU,const SDep & D)233 void AddPred(SUnit *SU, const SDep &D) {
234 Topo.AddPred(SU, D.getSUnit());
235 SU->addPred(D);
236 }
237
238 /// RemovePred - removes a predecessor edge from SUnit SU.
239 /// This returns true if an edge was removed.
240 /// Updates the topological ordering if required.
RemovePred(SUnit * SU,const SDep & D)241 void RemovePred(SUnit *SU, const SDep &D) {
242 Topo.RemovePred(SU, D.getSUnit());
243 SU->removePred(D);
244 }
245
246 private:
isReady(SUnit * SU)247 bool isReady(SUnit *SU) {
248 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
249 AvailableQueue->isReady(SU);
250 }
251
252 void ReleasePred(SUnit *SU, const SDep *PredEdge);
253 void ReleasePredecessors(SUnit *SU);
254 void ReleasePending();
255 void AdvanceToCycle(unsigned NextCycle);
256 void AdvancePastStalls(SUnit *SU);
257 void EmitNode(SUnit *SU);
258 void ScheduleNodeBottomUp(SUnit*);
259 void CapturePred(SDep *PredEdge);
260 void UnscheduleNodeBottomUp(SUnit*);
261 void RestoreHazardCheckerBottomUp();
262 void BacktrackBottomUp(SUnit*, SUnit*);
263 SUnit *TryUnfoldSU(SUnit *);
264 SUnit *CopyAndMoveSuccessors(SUnit*);
265 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
266 const TargetRegisterClass*,
267 const TargetRegisterClass*,
268 SmallVectorImpl<SUnit*>&);
269 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
270
271 void releaseInterferences(unsigned Reg = 0);
272
273 SUnit *PickNodeToScheduleBottomUp();
274 void ListScheduleBottomUp();
275
276 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
CreateNewSUnit(SDNode * N)277 SUnit *CreateNewSUnit(SDNode *N) {
278 unsigned NumSUnits = SUnits.size();
279 SUnit *NewNode = newSUnit(N);
280 // Update the topological ordering.
281 if (NewNode->NodeNum >= NumSUnits)
282 Topo.MarkDirty();
283 return NewNode;
284 }
285
286 /// CreateClone - Creates a new SUnit from an existing one.
CreateClone(SUnit * N)287 SUnit *CreateClone(SUnit *N) {
288 unsigned NumSUnits = SUnits.size();
289 SUnit *NewNode = Clone(N);
290 // Update the topological ordering.
291 if (NewNode->NodeNum >= NumSUnits)
292 Topo.MarkDirty();
293 return NewNode;
294 }
295
296 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
297 /// need actual latency information but the hybrid scheduler does.
forceUnitLatencies() const298 bool forceUnitLatencies() const override {
299 return !NeedLatency;
300 }
301 };
302
303 } // end anonymous namespace
304
305 /// GetCostForDef - Looks up the register class and cost for a given definition.
306 /// Typically this just means looking up the representative register class,
307 /// but for untyped values (MVT::Untyped) it means inspecting the node's
308 /// opcode to determine what register class is being generated.
GetCostForDef(const ScheduleDAGSDNodes::RegDefIter & RegDefPos,const TargetLowering * TLI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,unsigned & RegClass,unsigned & Cost,const MachineFunction & MF)309 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
310 const TargetLowering *TLI,
311 const TargetInstrInfo *TII,
312 const TargetRegisterInfo *TRI,
313 unsigned &RegClass, unsigned &Cost,
314 const MachineFunction &MF) {
315 MVT VT = RegDefPos.GetValue();
316
317 // Special handling for untyped values. These values can only come from
318 // the expansion of custom DAG-to-DAG patterns.
319 if (VT == MVT::Untyped) {
320 const SDNode *Node = RegDefPos.GetNode();
321
322 // Special handling for CopyFromReg of untyped values.
323 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
324 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
325 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
326 RegClass = RC->getID();
327 Cost = 1;
328 return;
329 }
330
331 unsigned Opcode = Node->getMachineOpcode();
332 if (Opcode == TargetOpcode::REG_SEQUENCE) {
333 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
334 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
335 RegClass = RC->getID();
336 Cost = 1;
337 return;
338 }
339
340 unsigned Idx = RegDefPos.GetIdx();
341 const MCInstrDesc Desc = TII->get(Opcode);
342 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
343 RegClass = RC->getID();
344 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
345 // better way to determine it.
346 Cost = 1;
347 } else {
348 RegClass = TLI->getRepRegClassFor(VT)->getID();
349 Cost = TLI->getRepRegClassCostFor(VT);
350 }
351 }
352
353 /// Schedule - Schedule the DAG using list scheduling.
Schedule()354 void ScheduleDAGRRList::Schedule() {
355 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
356 << " '" << BB->getName() << "' **********\n");
357
358 CurCycle = 0;
359 IssueCount = 0;
360 MinAvailableCycle =
361 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
362 NumLiveRegs = 0;
363 // Allocate slots for each physical register, plus one for a special register
364 // to track the virtual resource of a calling sequence.
365 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
366 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
367 CallSeqEndForStart.clear();
368 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
369
370 // Build the scheduling graph.
371 BuildSchedGraph(nullptr);
372
373 LLVM_DEBUG(dump());
374 Topo.MarkDirty();
375
376 AvailableQueue->initNodes(SUnits);
377
378 HazardRec->Reset();
379
380 // Execute the actual scheduling loop.
381 ListScheduleBottomUp();
382
383 AvailableQueue->releaseState();
384
385 LLVM_DEBUG({
386 dbgs() << "*** Final schedule ***\n";
387 dumpSchedule();
388 dbgs() << '\n';
389 });
390 }
391
392 //===----------------------------------------------------------------------===//
393 // Bottom-Up Scheduling
394 //===----------------------------------------------------------------------===//
395
396 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
397 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,const SDep * PredEdge)398 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
399 SUnit *PredSU = PredEdge->getSUnit();
400
401 #ifndef NDEBUG
402 if (PredSU->NumSuccsLeft == 0) {
403 dbgs() << "*** Scheduling failed! ***\n";
404 dumpNode(*PredSU);
405 dbgs() << " has been released too many times!\n";
406 llvm_unreachable(nullptr);
407 }
408 #endif
409 --PredSU->NumSuccsLeft;
410
411 if (!forceUnitLatencies()) {
412 // Updating predecessor's height. This is now the cycle when the
413 // predecessor can be scheduled without causing a pipeline stall.
414 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
415 }
416
417 // If all the node's successors are scheduled, this node is ready
418 // to be scheduled. Ignore the special EntrySU node.
419 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
420 PredSU->isAvailable = true;
421
422 unsigned Height = PredSU->getHeight();
423 if (Height < MinAvailableCycle)
424 MinAvailableCycle = Height;
425
426 if (isReady(PredSU)) {
427 AvailableQueue->push(PredSU);
428 }
429 // CapturePred and others may have left the node in the pending queue, avoid
430 // adding it twice.
431 else if (!PredSU->isPending) {
432 PredSU->isPending = true;
433 PendingQueue.push_back(PredSU);
434 }
435 }
436 }
437
438 /// IsChainDependent - Test if Outer is reachable from Inner through
439 /// chain dependencies.
IsChainDependent(SDNode * Outer,SDNode * Inner,unsigned NestLevel,const TargetInstrInfo * TII)440 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
441 unsigned NestLevel,
442 const TargetInstrInfo *TII) {
443 SDNode *N = Outer;
444 while (true) {
445 if (N == Inner)
446 return true;
447 // For a TokenFactor, examine each operand. There may be multiple ways
448 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
449 // most nesting in order to ensure that we find the corresponding match.
450 if (N->getOpcode() == ISD::TokenFactor) {
451 for (const SDValue &Op : N->op_values())
452 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
453 return true;
454 return false;
455 }
456 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
457 if (N->isMachineOpcode()) {
458 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
459 ++NestLevel;
460 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
461 if (NestLevel == 0)
462 return false;
463 --NestLevel;
464 }
465 }
466 // Otherwise, find the chain and continue climbing.
467 for (const SDValue &Op : N->op_values())
468 if (Op.getValueType() == MVT::Other) {
469 N = Op.getNode();
470 goto found_chain_operand;
471 }
472 return false;
473 found_chain_operand:;
474 if (N->getOpcode() == ISD::EntryToken)
475 return false;
476 }
477 }
478
479 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
480 /// the corresponding (lowered) CALLSEQ_BEGIN node.
481 ///
482 /// NestLevel and MaxNested are used in recursion to indcate the current level
483 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
484 /// level seen so far.
485 ///
486 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
487 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
488 static SDNode *
FindCallSeqStart(SDNode * N,unsigned & NestLevel,unsigned & MaxNest,const TargetInstrInfo * TII)489 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
490 const TargetInstrInfo *TII) {
491 while (true) {
492 // For a TokenFactor, examine each operand. There may be multiple ways
493 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
494 // most nesting in order to ensure that we find the corresponding match.
495 if (N->getOpcode() == ISD::TokenFactor) {
496 SDNode *Best = nullptr;
497 unsigned BestMaxNest = MaxNest;
498 for (const SDValue &Op : N->op_values()) {
499 unsigned MyNestLevel = NestLevel;
500 unsigned MyMaxNest = MaxNest;
501 if (SDNode *New = FindCallSeqStart(Op.getNode(),
502 MyNestLevel, MyMaxNest, TII))
503 if (!Best || (MyMaxNest > BestMaxNest)) {
504 Best = New;
505 BestMaxNest = MyMaxNest;
506 }
507 }
508 assert(Best);
509 MaxNest = BestMaxNest;
510 return Best;
511 }
512 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
513 if (N->isMachineOpcode()) {
514 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
515 ++NestLevel;
516 MaxNest = std::max(MaxNest, NestLevel);
517 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
518 assert(NestLevel != 0);
519 --NestLevel;
520 if (NestLevel == 0)
521 return N;
522 }
523 }
524 // Otherwise, find the chain and continue climbing.
525 for (const SDValue &Op : N->op_values())
526 if (Op.getValueType() == MVT::Other) {
527 N = Op.getNode();
528 goto found_chain_operand;
529 }
530 return nullptr;
531 found_chain_operand:;
532 if (N->getOpcode() == ISD::EntryToken)
533 return nullptr;
534 }
535 }
536
537 /// Call ReleasePred for each predecessor, then update register live def/gen.
538 /// Always update LiveRegDefs for a register dependence even if the current SU
539 /// also defines the register. This effectively create one large live range
540 /// across a sequence of two-address node. This is important because the
541 /// entire chain must be scheduled together. Example:
542 ///
543 /// flags = (3) add
544 /// flags = (2) addc flags
545 /// flags = (1) addc flags
546 ///
547 /// results in
548 ///
549 /// LiveRegDefs[flags] = 3
550 /// LiveRegGens[flags] = 1
551 ///
552 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
553 /// interference on flags.
ReleasePredecessors(SUnit * SU)554 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
555 // Bottom up: release predecessors
556 for (SDep &Pred : SU->Preds) {
557 ReleasePred(SU, &Pred);
558 if (Pred.isAssignedRegDep()) {
559 // This is a physical register dependency and it's impossible or
560 // expensive to copy the register. Make sure nothing that can
561 // clobber the register is scheduled between the predecessor and
562 // this node.
563 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
564 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
565 "interference on register dependence");
566 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
567 if (!LiveRegGens[Pred.getReg()]) {
568 ++NumLiveRegs;
569 LiveRegGens[Pred.getReg()] = SU;
570 }
571 }
572 }
573
574 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
575 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
576 // these nodes, to prevent other calls from being interscheduled with them.
577 unsigned CallResource = TRI->getNumRegs();
578 if (!LiveRegDefs[CallResource])
579 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
580 if (Node->isMachineOpcode() &&
581 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
582 unsigned NestLevel = 0;
583 unsigned MaxNest = 0;
584 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
585 assert(N && "Must find call sequence start");
586
587 SUnit *Def = &SUnits[N->getNodeId()];
588 CallSeqEndForStart[Def] = SU;
589
590 ++NumLiveRegs;
591 LiveRegDefs[CallResource] = Def;
592 LiveRegGens[CallResource] = SU;
593 break;
594 }
595 }
596
597 /// Check to see if any of the pending instructions are ready to issue. If
598 /// so, add them to the available queue.
ReleasePending()599 void ScheduleDAGRRList::ReleasePending() {
600 if (DisableSchedCycles) {
601 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
602 return;
603 }
604
605 // If the available queue is empty, it is safe to reset MinAvailableCycle.
606 if (AvailableQueue->empty())
607 MinAvailableCycle = std::numeric_limits<unsigned>::max();
608
609 // Check to see if any of the pending instructions are ready to issue. If
610 // so, add them to the available queue.
611 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
612 unsigned ReadyCycle = PendingQueue[i]->getHeight();
613 if (ReadyCycle < MinAvailableCycle)
614 MinAvailableCycle = ReadyCycle;
615
616 if (PendingQueue[i]->isAvailable) {
617 if (!isReady(PendingQueue[i]))
618 continue;
619 AvailableQueue->push(PendingQueue[i]);
620 }
621 PendingQueue[i]->isPending = false;
622 PendingQueue[i] = PendingQueue.back();
623 PendingQueue.pop_back();
624 --i; --e;
625 }
626 }
627
628 /// Move the scheduler state forward by the specified number of Cycles.
AdvanceToCycle(unsigned NextCycle)629 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
630 if (NextCycle <= CurCycle)
631 return;
632
633 IssueCount = 0;
634 AvailableQueue->setCurCycle(NextCycle);
635 if (!HazardRec->isEnabled()) {
636 // Bypass lots of virtual calls in case of long latency.
637 CurCycle = NextCycle;
638 }
639 else {
640 for (; CurCycle != NextCycle; ++CurCycle) {
641 HazardRec->RecedeCycle();
642 }
643 }
644 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
645 // available Q to release pending nodes at least once before popping.
646 ReleasePending();
647 }
648
649 /// Move the scheduler state forward until the specified node's dependents are
650 /// ready and can be scheduled with no resource conflicts.
AdvancePastStalls(SUnit * SU)651 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
652 if (DisableSchedCycles)
653 return;
654
655 // FIXME: Nodes such as CopyFromReg probably should not advance the current
656 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
657 // has predecessors the cycle will be advanced when they are scheduled.
658 // But given the crude nature of modeling latency though such nodes, we
659 // currently need to treat these nodes like real instructions.
660 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
661
662 unsigned ReadyCycle = SU->getHeight();
663
664 // Bump CurCycle to account for latency. We assume the latency of other
665 // available instructions may be hidden by the stall (not a full pipe stall).
666 // This updates the hazard recognizer's cycle before reserving resources for
667 // this instruction.
668 AdvanceToCycle(ReadyCycle);
669
670 // Calls are scheduled in their preceding cycle, so don't conflict with
671 // hazards from instructions after the call. EmitNode will reset the
672 // scoreboard state before emitting the call.
673 if (SU->isCall)
674 return;
675
676 // FIXME: For resource conflicts in very long non-pipelined stages, we
677 // should probably skip ahead here to avoid useless scoreboard checks.
678 int Stalls = 0;
679 while (true) {
680 ScheduleHazardRecognizer::HazardType HT =
681 HazardRec->getHazardType(SU, -Stalls);
682
683 if (HT == ScheduleHazardRecognizer::NoHazard)
684 break;
685
686 ++Stalls;
687 }
688 AdvanceToCycle(CurCycle + Stalls);
689 }
690
691 /// Record this SUnit in the HazardRecognizer.
692 /// Does not update CurCycle.
EmitNode(SUnit * SU)693 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
694 if (!HazardRec->isEnabled())
695 return;
696
697 // Check for phys reg copy.
698 if (!SU->getNode())
699 return;
700
701 switch (SU->getNode()->getOpcode()) {
702 default:
703 assert(SU->getNode()->isMachineOpcode() &&
704 "This target-independent node should not be scheduled.");
705 break;
706 case ISD::MERGE_VALUES:
707 case ISD::TokenFactor:
708 case ISD::LIFETIME_START:
709 case ISD::LIFETIME_END:
710 case ISD::CopyToReg:
711 case ISD::CopyFromReg:
712 case ISD::EH_LABEL:
713 // Noops don't affect the scoreboard state. Copies are likely to be
714 // removed.
715 return;
716 case ISD::INLINEASM:
717 case ISD::INLINEASM_BR:
718 // For inline asm, clear the pipeline state.
719 HazardRec->Reset();
720 return;
721 }
722 if (SU->isCall) {
723 // Calls are scheduled with their preceding instructions. For bottom-up
724 // scheduling, clear the pipeline state before emitting.
725 HazardRec->Reset();
726 }
727
728 HazardRec->EmitInstruction(SU);
729 }
730
731 static void resetVRegCycle(SUnit *SU);
732
733 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
734 /// count of its predecessors. If a predecessor pending count is zero, add it to
735 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU)736 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
737 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
738 LLVM_DEBUG(dumpNode(*SU));
739
740 #ifndef NDEBUG
741 if (CurCycle < SU->getHeight())
742 LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight()
743 << "] pipeline stall!\n");
744 #endif
745
746 // FIXME: Do not modify node height. It may interfere with
747 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
748 // node its ready cycle can aid heuristics, and after scheduling it can
749 // indicate the scheduled cycle.
750 SU->setHeightToAtLeast(CurCycle);
751
752 // Reserve resources for the scheduled instruction.
753 EmitNode(SU);
754
755 Sequence.push_back(SU);
756
757 AvailableQueue->scheduledNode(SU);
758
759 // If HazardRec is disabled, and each inst counts as one cycle, then
760 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
761 // PendingQueue for schedulers that implement HasReadyFilter.
762 if (!HazardRec->isEnabled() && AvgIPC < 2)
763 AdvanceToCycle(CurCycle + 1);
764
765 // Update liveness of predecessors before successors to avoid treating a
766 // two-address node as a live range def.
767 ReleasePredecessors(SU);
768
769 // Release all the implicit physical register defs that are live.
770 for (SDep &Succ : SU->Succs) {
771 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
772 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
773 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
774 --NumLiveRegs;
775 LiveRegDefs[Succ.getReg()] = nullptr;
776 LiveRegGens[Succ.getReg()] = nullptr;
777 releaseInterferences(Succ.getReg());
778 }
779 }
780 // Release the special call resource dependence, if this is the beginning
781 // of a call.
782 unsigned CallResource = TRI->getNumRegs();
783 if (LiveRegDefs[CallResource] == SU)
784 for (const SDNode *SUNode = SU->getNode(); SUNode;
785 SUNode = SUNode->getGluedNode()) {
786 if (SUNode->isMachineOpcode() &&
787 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
788 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
789 --NumLiveRegs;
790 LiveRegDefs[CallResource] = nullptr;
791 LiveRegGens[CallResource] = nullptr;
792 releaseInterferences(CallResource);
793 }
794 }
795
796 resetVRegCycle(SU);
797
798 SU->isScheduled = true;
799
800 // Conditions under which the scheduler should eagerly advance the cycle:
801 // (1) No available instructions
802 // (2) All pipelines full, so available instructions must have hazards.
803 //
804 // If HazardRec is disabled, the cycle was pre-advanced before calling
805 // ReleasePredecessors. In that case, IssueCount should remain 0.
806 //
807 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
808 if (HazardRec->isEnabled() || AvgIPC > 1) {
809 if (SU->getNode() && SU->getNode()->isMachineOpcode())
810 ++IssueCount;
811 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
812 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
813 AdvanceToCycle(CurCycle + 1);
814 }
815 }
816
817 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
818 /// unscheduled, increase the succ left count of its predecessors. Remove
819 /// them from AvailableQueue if necessary.
CapturePred(SDep * PredEdge)820 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
821 SUnit *PredSU = PredEdge->getSUnit();
822 if (PredSU->isAvailable) {
823 PredSU->isAvailable = false;
824 if (!PredSU->isPending)
825 AvailableQueue->remove(PredSU);
826 }
827
828 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
829 "NumSuccsLeft will overflow!");
830 ++PredSU->NumSuccsLeft;
831 }
832
833 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
834 /// its predecessor states to reflect the change.
UnscheduleNodeBottomUp(SUnit * SU)835 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
836 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
837 LLVM_DEBUG(dumpNode(*SU));
838
839 for (SDep &Pred : SU->Preds) {
840 CapturePred(&Pred);
841 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
842 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
843 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
844 "Physical register dependency violated?");
845 --NumLiveRegs;
846 LiveRegDefs[Pred.getReg()] = nullptr;
847 LiveRegGens[Pred.getReg()] = nullptr;
848 releaseInterferences(Pred.getReg());
849 }
850 }
851
852 // Reclaim the special call resource dependence, if this is the beginning
853 // of a call.
854 unsigned CallResource = TRI->getNumRegs();
855 for (const SDNode *SUNode = SU->getNode(); SUNode;
856 SUNode = SUNode->getGluedNode()) {
857 if (SUNode->isMachineOpcode() &&
858 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
859 SUnit *SeqEnd = CallSeqEndForStart[SU];
860 assert(SeqEnd && "Call sequence start/end must be known");
861 assert(!LiveRegDefs[CallResource]);
862 assert(!LiveRegGens[CallResource]);
863 ++NumLiveRegs;
864 LiveRegDefs[CallResource] = SU;
865 LiveRegGens[CallResource] = SeqEnd;
866 }
867 }
868
869 // Release the special call resource dependence, if this is the end
870 // of a call.
871 if (LiveRegGens[CallResource] == SU)
872 for (const SDNode *SUNode = SU->getNode(); SUNode;
873 SUNode = SUNode->getGluedNode()) {
874 if (SUNode->isMachineOpcode() &&
875 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
876 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
877 assert(LiveRegDefs[CallResource]);
878 assert(LiveRegGens[CallResource]);
879 --NumLiveRegs;
880 LiveRegDefs[CallResource] = nullptr;
881 LiveRegGens[CallResource] = nullptr;
882 releaseInterferences(CallResource);
883 }
884 }
885
886 for (auto &Succ : SU->Succs) {
887 if (Succ.isAssignedRegDep()) {
888 auto Reg = Succ.getReg();
889 if (!LiveRegDefs[Reg])
890 ++NumLiveRegs;
891 // This becomes the nearest def. Note that an earlier def may still be
892 // pending if this is a two-address node.
893 LiveRegDefs[Reg] = SU;
894
895 // Update LiveRegGen only if was empty before this unscheduling.
896 // This is to avoid incorrect updating LiveRegGen set in previous run.
897 if (!LiveRegGens[Reg]) {
898 // Find the successor with the lowest height.
899 LiveRegGens[Reg] = Succ.getSUnit();
900 for (auto &Succ2 : SU->Succs) {
901 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
902 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
903 LiveRegGens[Reg] = Succ2.getSUnit();
904 }
905 }
906 }
907 }
908 if (SU->getHeight() < MinAvailableCycle)
909 MinAvailableCycle = SU->getHeight();
910
911 SU->setHeightDirty();
912 SU->isScheduled = false;
913 SU->isAvailable = true;
914 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
915 // Don't make available until backtracking is complete.
916 SU->isPending = true;
917 PendingQueue.push_back(SU);
918 }
919 else {
920 AvailableQueue->push(SU);
921 }
922 AvailableQueue->unscheduledNode(SU);
923 }
924
925 /// After backtracking, the hazard checker needs to be restored to a state
926 /// corresponding the current cycle.
RestoreHazardCheckerBottomUp()927 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
928 HazardRec->Reset();
929
930 unsigned LookAhead = std::min((unsigned)Sequence.size(),
931 HazardRec->getMaxLookAhead());
932 if (LookAhead == 0)
933 return;
934
935 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
936 unsigned HazardCycle = (*I)->getHeight();
937 for (auto E = Sequence.end(); I != E; ++I) {
938 SUnit *SU = *I;
939 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
940 HazardRec->RecedeCycle();
941 }
942 EmitNode(SU);
943 }
944 }
945
946 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
947 /// BTCycle in order to schedule a specific node.
BacktrackBottomUp(SUnit * SU,SUnit * BtSU)948 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
949 SUnit *OldSU = Sequence.back();
950 while (true) {
951 Sequence.pop_back();
952 // FIXME: use ready cycle instead of height
953 CurCycle = OldSU->getHeight();
954 UnscheduleNodeBottomUp(OldSU);
955 AvailableQueue->setCurCycle(CurCycle);
956 if (OldSU == BtSU)
957 break;
958 OldSU = Sequence.back();
959 }
960
961 assert(!SU->isSucc(OldSU) && "Something is wrong!");
962
963 RestoreHazardCheckerBottomUp();
964
965 ReleasePending();
966
967 ++NumBacktracks;
968 }
969
isOperandOf(const SUnit * SU,SDNode * N)970 static bool isOperandOf(const SUnit *SU, SDNode *N) {
971 for (const SDNode *SUNode = SU->getNode(); SUNode;
972 SUNode = SUNode->getGluedNode()) {
973 if (SUNode->isOperandOf(N))
974 return true;
975 }
976 return false;
977 }
978
979 /// TryUnfold - Attempt to unfold
TryUnfoldSU(SUnit * SU)980 SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
981 SDNode *N = SU->getNode();
982 // Use while over if to ease fall through.
983 SmallVector<SDNode *, 2> NewNodes;
984 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
985 return nullptr;
986
987 // unfolding an x86 DEC64m operation results in store, dec, load which
988 // can't be handled here so quit
989 if (NewNodes.size() == 3)
990 return nullptr;
991
992 assert(NewNodes.size() == 2 && "Expected a load folding node!");
993
994 N = NewNodes[1];
995 SDNode *LoadNode = NewNodes[0];
996 unsigned NumVals = N->getNumValues();
997 unsigned OldNumVals = SU->getNode()->getNumValues();
998
999 // LoadNode may already exist. This can happen when there is another
1000 // load from the same location and producing the same type of value
1001 // but it has different alignment or volatileness.
1002 bool isNewLoad = true;
1003 SUnit *LoadSU;
1004 if (LoadNode->getNodeId() != -1) {
1005 LoadSU = &SUnits[LoadNode->getNodeId()];
1006 // If LoadSU has already been scheduled, we should clone it but
1007 // this would negate the benefit to unfolding so just return SU.
1008 if (LoadSU->isScheduled)
1009 return SU;
1010 isNewLoad = false;
1011 } else {
1012 LoadSU = CreateNewSUnit(LoadNode);
1013 LoadNode->setNodeId(LoadSU->NodeNum);
1014
1015 InitNumRegDefsLeft(LoadSU);
1016 computeLatency(LoadSU);
1017 }
1018
1019 bool isNewN = true;
1020 SUnit *NewSU;
1021 // This can only happen when isNewLoad is false.
1022 if (N->getNodeId() != -1) {
1023 NewSU = &SUnits[N->getNodeId()];
1024 // If NewSU has already been scheduled, we need to clone it, but this
1025 // negates the benefit to unfolding so just return SU.
1026 if (NewSU->isScheduled) {
1027 return SU;
1028 }
1029 isNewN = false;
1030 } else {
1031 NewSU = CreateNewSUnit(N);
1032 N->setNodeId(NewSU->NodeNum);
1033
1034 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1035 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1036 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1037 NewSU->isTwoAddress = true;
1038 break;
1039 }
1040 }
1041 if (MCID.isCommutable())
1042 NewSU->isCommutable = true;
1043
1044 InitNumRegDefsLeft(NewSU);
1045 computeLatency(NewSU);
1046 }
1047
1048 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
1049
1050 // Now that we are committed to unfolding replace DAG Uses.
1051 for (unsigned i = 0; i != NumVals; ++i)
1052 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1053 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1054 SDValue(LoadNode, 1));
1055
1056 // Record all the edges to and from the old SU, by category.
1057 SmallVector<SDep, 4> ChainPreds;
1058 SmallVector<SDep, 4> ChainSuccs;
1059 SmallVector<SDep, 4> LoadPreds;
1060 SmallVector<SDep, 4> NodePreds;
1061 SmallVector<SDep, 4> NodeSuccs;
1062 for (SDep &Pred : SU->Preds) {
1063 if (Pred.isCtrl())
1064 ChainPreds.push_back(Pred);
1065 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1066 LoadPreds.push_back(Pred);
1067 else
1068 NodePreds.push_back(Pred);
1069 }
1070 for (SDep &Succ : SU->Succs) {
1071 if (Succ.isCtrl())
1072 ChainSuccs.push_back(Succ);
1073 else
1074 NodeSuccs.push_back(Succ);
1075 }
1076
1077 // Now assign edges to the newly-created nodes.
1078 for (const SDep &Pred : ChainPreds) {
1079 RemovePred(SU, Pred);
1080 if (isNewLoad)
1081 AddPredQueued(LoadSU, Pred);
1082 }
1083 for (const SDep &Pred : LoadPreds) {
1084 RemovePred(SU, Pred);
1085 if (isNewLoad)
1086 AddPredQueued(LoadSU, Pred);
1087 }
1088 for (const SDep &Pred : NodePreds) {
1089 RemovePred(SU, Pred);
1090 AddPredQueued(NewSU, Pred);
1091 }
1092 for (SDep D : NodeSuccs) {
1093 SUnit *SuccDep = D.getSUnit();
1094 D.setSUnit(SU);
1095 RemovePred(SuccDep, D);
1096 D.setSUnit(NewSU);
1097 AddPredQueued(SuccDep, D);
1098 // Balance register pressure.
1099 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1100 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1101 --NewSU->NumRegDefsLeft;
1102 }
1103 for (SDep D : ChainSuccs) {
1104 SUnit *SuccDep = D.getSUnit();
1105 D.setSUnit(SU);
1106 RemovePred(SuccDep, D);
1107 if (isNewLoad) {
1108 D.setSUnit(LoadSU);
1109 AddPredQueued(SuccDep, D);
1110 }
1111 }
1112
1113 // Add a data dependency to reflect that NewSU reads the value defined
1114 // by LoadSU.
1115 SDep D(LoadSU, SDep::Data, 0);
1116 D.setLatency(LoadSU->Latency);
1117 AddPredQueued(NewSU, D);
1118
1119 if (isNewLoad)
1120 AvailableQueue->addNode(LoadSU);
1121 if (isNewN)
1122 AvailableQueue->addNode(NewSU);
1123
1124 ++NumUnfolds;
1125
1126 if (NewSU->NumSuccsLeft == 0)
1127 NewSU->isAvailable = true;
1128
1129 return NewSU;
1130 }
1131
1132 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1133 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)1134 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1135 SDNode *N = SU->getNode();
1136 if (!N)
1137 return nullptr;
1138
1139 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1140 LLVM_DEBUG(dumpNode(*SU));
1141
1142 if (N->getGluedNode() &&
1143 !TII->canCopyGluedNodeDuringSchedule(N)) {
1144 LLVM_DEBUG(
1145 dbgs()
1146 << "Giving up because it has incoming glue and the target does not "
1147 "want to copy it\n");
1148 return nullptr;
1149 }
1150
1151 SUnit *NewSU;
1152 bool TryUnfold = false;
1153 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1154 MVT VT = N->getSimpleValueType(i);
1155 if (VT == MVT::Glue) {
1156 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1157 return nullptr;
1158 } else if (VT == MVT::Other)
1159 TryUnfold = true;
1160 }
1161 for (const SDValue &Op : N->op_values()) {
1162 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1163 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1164 LLVM_DEBUG(
1165 dbgs() << "Giving up because it one of the operands is glue and "
1166 "the target does not want to copy it\n");
1167 return nullptr;
1168 }
1169 }
1170
1171 // If possible unfold instruction.
1172 if (TryUnfold) {
1173 SUnit *UnfoldSU = TryUnfoldSU(SU);
1174 if (!UnfoldSU)
1175 return nullptr;
1176 SU = UnfoldSU;
1177 N = SU->getNode();
1178 // If this can be scheduled don't bother duplicating and just return
1179 if (SU->NumSuccsLeft == 0)
1180 return SU;
1181 }
1182
1183 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1184 NewSU = CreateClone(SU);
1185
1186 // New SUnit has the exact same predecessors.
1187 for (SDep &Pred : SU->Preds)
1188 if (!Pred.isArtificial())
1189 AddPredQueued(NewSU, Pred);
1190
1191 // Make sure the clone comes after the original. (InstrEmitter assumes
1192 // this ordering.)
1193 AddPredQueued(NewSU, SDep(SU, SDep::Artificial));
1194
1195 // Only copy scheduled successors. Cut them from old node's successor
1196 // list and move them over.
1197 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1198 for (SDep &Succ : SU->Succs) {
1199 if (Succ.isArtificial())
1200 continue;
1201 SUnit *SuccSU = Succ.getSUnit();
1202 if (SuccSU->isScheduled) {
1203 SDep D = Succ;
1204 D.setSUnit(NewSU);
1205 AddPredQueued(SuccSU, D);
1206 D.setSUnit(SU);
1207 DelDeps.push_back(std::make_pair(SuccSU, D));
1208 }
1209 }
1210 for (auto &DelDep : DelDeps)
1211 RemovePred(DelDep.first, DelDep.second);
1212
1213 AvailableQueue->updateNode(SU);
1214 AvailableQueue->addNode(NewSU);
1215
1216 ++NumDups;
1217 return NewSU;
1218 }
1219
1220 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1221 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)1222 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1223 const TargetRegisterClass *DestRC,
1224 const TargetRegisterClass *SrcRC,
1225 SmallVectorImpl<SUnit*> &Copies) {
1226 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1227 CopyFromSU->CopySrcRC = SrcRC;
1228 CopyFromSU->CopyDstRC = DestRC;
1229
1230 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1231 CopyToSU->CopySrcRC = DestRC;
1232 CopyToSU->CopyDstRC = SrcRC;
1233
1234 // Only copy scheduled successors. Cut them from old node's successor
1235 // list and move them over.
1236 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1237 for (SDep &Succ : SU->Succs) {
1238 if (Succ.isArtificial())
1239 continue;
1240 SUnit *SuccSU = Succ.getSUnit();
1241 if (SuccSU->isScheduled) {
1242 SDep D = Succ;
1243 D.setSUnit(CopyToSU);
1244 AddPredQueued(SuccSU, D);
1245 DelDeps.push_back(std::make_pair(SuccSU, Succ));
1246 }
1247 else {
1248 // Avoid scheduling the def-side copy before other successors. Otherwise
1249 // we could introduce another physreg interference on the copy and
1250 // continue inserting copies indefinitely.
1251 AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1252 }
1253 }
1254 for (auto &DelDep : DelDeps)
1255 RemovePred(DelDep.first, DelDep.second);
1256
1257 SDep FromDep(SU, SDep::Data, Reg);
1258 FromDep.setLatency(SU->Latency);
1259 AddPredQueued(CopyFromSU, FromDep);
1260 SDep ToDep(CopyFromSU, SDep::Data, 0);
1261 ToDep.setLatency(CopyFromSU->Latency);
1262 AddPredQueued(CopyToSU, ToDep);
1263
1264 AvailableQueue->updateNode(SU);
1265 AvailableQueue->addNode(CopyFromSU);
1266 AvailableQueue->addNode(CopyToSU);
1267 Copies.push_back(CopyFromSU);
1268 Copies.push_back(CopyToSU);
1269
1270 ++NumPRCopies;
1271 }
1272
1273 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1274 /// definition of the specified node.
1275 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)1276 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1277 const TargetInstrInfo *TII) {
1278 unsigned NumRes;
1279 if (N->getOpcode() == ISD::CopyFromReg) {
1280 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1281 NumRes = 1;
1282 } else {
1283 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1284 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1285 NumRes = MCID.getNumDefs();
1286 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1287 if (Reg == *ImpDef)
1288 break;
1289 ++NumRes;
1290 }
1291 }
1292 return N->getSimpleValueType(NumRes);
1293 }
1294
1295 /// CheckForLiveRegDef - Return true and update live register vector if the
1296 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,SUnit ** LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI)1297 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1298 SUnit **LiveRegDefs,
1299 SmallSet<unsigned, 4> &RegAdded,
1300 SmallVectorImpl<unsigned> &LRegs,
1301 const TargetRegisterInfo *TRI) {
1302 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1303
1304 // Check if Ref is live.
1305 if (!LiveRegDefs[*AliasI]) continue;
1306
1307 // Allow multiple uses of the same def.
1308 if (LiveRegDefs[*AliasI] == SU) continue;
1309
1310 // Add Reg to the set of interfering live regs.
1311 if (RegAdded.insert(*AliasI).second) {
1312 LRegs.push_back(*AliasI);
1313 }
1314 }
1315 }
1316
1317 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1318 /// by RegMask, and add them to LRegs.
CheckForLiveRegDefMasked(SUnit * SU,const uint32_t * RegMask,ArrayRef<SUnit * > LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs)1319 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1320 ArrayRef<SUnit*> LiveRegDefs,
1321 SmallSet<unsigned, 4> &RegAdded,
1322 SmallVectorImpl<unsigned> &LRegs) {
1323 // Look at all live registers. Skip Reg0 and the special CallResource.
1324 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1325 if (!LiveRegDefs[i]) continue;
1326 if (LiveRegDefs[i] == SU) continue;
1327 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1328 if (RegAdded.insert(i).second)
1329 LRegs.push_back(i);
1330 }
1331 }
1332
1333 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
getNodeRegMask(const SDNode * N)1334 static const uint32_t *getNodeRegMask(const SDNode *N) {
1335 for (const SDValue &Op : N->op_values())
1336 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1337 return RegOp->getRegMask();
1338 return nullptr;
1339 }
1340
1341 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1342 /// scheduling of the given node to satisfy live physical register dependencies.
1343 /// If the specific node is the last one that's available to schedule, do
1344 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1345 bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)1346 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1347 if (NumLiveRegs == 0)
1348 return false;
1349
1350 SmallSet<unsigned, 4> RegAdded;
1351 // If this node would clobber any "live" register, then it's not ready.
1352 //
1353 // If SU is the currently live definition of the same register that it uses,
1354 // then we are free to schedule it.
1355 for (SDep &Pred : SU->Preds) {
1356 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1357 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1358 RegAdded, LRegs, TRI);
1359 }
1360
1361 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1362 if (Node->getOpcode() == ISD::INLINEASM ||
1363 Node->getOpcode() == ISD::INLINEASM_BR) {
1364 // Inline asm can clobber physical defs.
1365 unsigned NumOps = Node->getNumOperands();
1366 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1367 --NumOps; // Ignore the glue operand.
1368
1369 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1370 unsigned Flags =
1371 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1372 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1373
1374 ++i; // Skip the ID value.
1375 if (InlineAsm::isRegDefKind(Flags) ||
1376 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1377 InlineAsm::isClobberKind(Flags)) {
1378 // Check for def of register or earlyclobber register.
1379 for (; NumVals; --NumVals, ++i) {
1380 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1381 if (Register::isPhysicalRegister(Reg))
1382 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1383 }
1384 } else
1385 i += NumVals;
1386 }
1387 continue;
1388 }
1389
1390 if (!Node->isMachineOpcode())
1391 continue;
1392 // If we're in the middle of scheduling a call, don't begin scheduling
1393 // another call. Also, don't allow any physical registers to be live across
1394 // the call.
1395 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1396 // Check the special calling-sequence resource.
1397 unsigned CallResource = TRI->getNumRegs();
1398 if (LiveRegDefs[CallResource]) {
1399 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1400 while (SDNode *Glued = Gen->getGluedNode())
1401 Gen = Glued;
1402 if (!IsChainDependent(Gen, Node, 0, TII) &&
1403 RegAdded.insert(CallResource).second)
1404 LRegs.push_back(CallResource);
1405 }
1406 }
1407 if (const uint32_t *RegMask = getNodeRegMask(Node))
1408 CheckForLiveRegDefMasked(SU, RegMask,
1409 makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1410 RegAdded, LRegs);
1411
1412 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1413 if (MCID.hasOptionalDef()) {
1414 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1415 // This operand can be either a def of CPSR, if the S bit is set; or a use
1416 // of %noreg. When the OptionalDef is set to a valid register, we need to
1417 // handle it in the same way as an ImplicitDef.
1418 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1419 if (MCID.OpInfo[i].isOptionalDef()) {
1420 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1421 unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1422 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1423 }
1424 }
1425 if (!MCID.ImplicitDefs)
1426 continue;
1427 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1428 CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1429 }
1430
1431 return !LRegs.empty();
1432 }
1433
releaseInterferences(unsigned Reg)1434 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1435 // Add the nodes that aren't ready back onto the available list.
1436 for (unsigned i = Interferences.size(); i > 0; --i) {
1437 SUnit *SU = Interferences[i-1];
1438 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1439 if (Reg) {
1440 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1441 if (!is_contained(LRegs, Reg))
1442 continue;
1443 }
1444 SU->isPending = false;
1445 // The interfering node may no longer be available due to backtracking.
1446 // Furthermore, it may have been made available again, in which case it is
1447 // now already in the AvailableQueue.
1448 if (SU->isAvailable && !SU->NodeQueueId) {
1449 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1450 AvailableQueue->push(SU);
1451 }
1452 if (i < Interferences.size())
1453 Interferences[i-1] = Interferences.back();
1454 Interferences.pop_back();
1455 LRegsMap.erase(LRegsPos);
1456 }
1457 }
1458
1459 /// Return a node that can be scheduled in this cycle. Requirements:
1460 /// (1) Ready: latency has been satisfied
1461 /// (2) No Hazards: resources are available
1462 /// (3) No Interferences: may unschedule to break register interferences.
PickNodeToScheduleBottomUp()1463 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1464 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1465 auto FindAvailableNode = [&]() {
1466 while (CurSU) {
1467 SmallVector<unsigned, 4> LRegs;
1468 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1469 break;
1470 LLVM_DEBUG(dbgs() << " Interfering reg ";
1471 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
1472 else dbgs() << printReg(LRegs[0], TRI);
1473 dbgs() << " SU #" << CurSU->NodeNum << '\n');
1474 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1475 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1476 if (LRegsPair.second) {
1477 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1478 Interferences.push_back(CurSU);
1479 }
1480 else {
1481 assert(CurSU->isPending && "Interferences are pending");
1482 // Update the interference with current live regs.
1483 LRegsPair.first->second = LRegs;
1484 }
1485 CurSU = AvailableQueue->pop();
1486 }
1487 };
1488 FindAvailableNode();
1489 if (CurSU)
1490 return CurSU;
1491
1492 // We query the topological order in the loop body, so make sure outstanding
1493 // updates are applied before entering it (we only enter the loop if there
1494 // are some interferences). If we make changes to the ordering, we exit
1495 // the loop.
1496
1497 // All candidates are delayed due to live physical reg dependencies.
1498 // Try backtracking, code duplication, or inserting cross class copies
1499 // to resolve it.
1500 for (SUnit *TrySU : Interferences) {
1501 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1502
1503 // Try unscheduling up to the point where it's safe to schedule
1504 // this node.
1505 SUnit *BtSU = nullptr;
1506 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1507 for (unsigned Reg : LRegs) {
1508 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1509 BtSU = LiveRegGens[Reg];
1510 LiveCycle = BtSU->getHeight();
1511 }
1512 }
1513 if (!WillCreateCycle(TrySU, BtSU)) {
1514 // BacktrackBottomUp mutates Interferences!
1515 BacktrackBottomUp(TrySU, BtSU);
1516
1517 // Force the current node to be scheduled before the node that
1518 // requires the physical reg dep.
1519 if (BtSU->isAvailable) {
1520 BtSU->isAvailable = false;
1521 if (!BtSU->isPending)
1522 AvailableQueue->remove(BtSU);
1523 }
1524 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
1525 << ") to SU(" << TrySU->NodeNum << ")\n");
1526 AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));
1527
1528 // If one or more successors has been unscheduled, then the current
1529 // node is no longer available.
1530 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1531 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1532 CurSU = AvailableQueue->pop();
1533 } else {
1534 LLVM_DEBUG(dbgs() << "TrySU available\n");
1535 // Available and in AvailableQueue
1536 AvailableQueue->remove(TrySU);
1537 CurSU = TrySU;
1538 }
1539 FindAvailableNode();
1540 // Interferences has been mutated. We must break.
1541 break;
1542 }
1543 }
1544
1545 if (!CurSU) {
1546 // Can't backtrack. If it's too expensive to copy the value, then try
1547 // duplicate the nodes that produces these "too expensive to copy"
1548 // values to break the dependency. In case even that doesn't work,
1549 // insert cross class copies.
1550 // If it's not too expensive, i.e. cost != -1, issue copies.
1551 SUnit *TrySU = Interferences[0];
1552 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1553 assert(LRegs.size() == 1 && "Can't handle this yet!");
1554 unsigned Reg = LRegs[0];
1555 SUnit *LRDef = LiveRegDefs[Reg];
1556 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1557 const TargetRegisterClass *RC =
1558 TRI->getMinimalPhysRegClass(Reg, VT);
1559 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1560
1561 // If cross copy register class is the same as RC, then it must be possible
1562 // copy the value directly. Do not try duplicate the def.
1563 // If cross copy register class is not the same as RC, then it's possible to
1564 // copy the value but it require cross register class copies and it is
1565 // expensive.
1566 // If cross copy register class is null, then it's not possible to copy
1567 // the value at all.
1568 SUnit *NewDef = nullptr;
1569 if (DestRC != RC) {
1570 NewDef = CopyAndMoveSuccessors(LRDef);
1571 if (!DestRC && !NewDef)
1572 report_fatal_error("Can't handle live physical register dependency!");
1573 }
1574 if (!NewDef) {
1575 // Issue copies, these can be expensive cross register class copies.
1576 SmallVector<SUnit*, 2> Copies;
1577 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1578 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1579 << " to SU #" << Copies.front()->NodeNum << "\n");
1580 AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
1581 NewDef = Copies.back();
1582 }
1583
1584 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1585 << " to SU #" << TrySU->NodeNum << "\n");
1586 LiveRegDefs[Reg] = NewDef;
1587 AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
1588 TrySU->isAvailable = false;
1589 CurSU = NewDef;
1590 }
1591 assert(CurSU && "Unable to resolve live physical register dependencies!");
1592 return CurSU;
1593 }
1594
1595 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1596 /// schedulers.
ListScheduleBottomUp()1597 void ScheduleDAGRRList::ListScheduleBottomUp() {
1598 // Release any predecessors of the special Exit node.
1599 ReleasePredecessors(&ExitSU);
1600
1601 // Add root to Available queue.
1602 if (!SUnits.empty()) {
1603 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1604 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1605 RootSU->isAvailable = true;
1606 AvailableQueue->push(RootSU);
1607 }
1608
1609 // While Available queue is not empty, grab the node with the highest
1610 // priority. If it is not ready put it back. Schedule the node.
1611 Sequence.reserve(SUnits.size());
1612 while (!AvailableQueue->empty() || !Interferences.empty()) {
1613 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1614 AvailableQueue->dump(this));
1615
1616 // Pick the best node to schedule taking all constraints into
1617 // consideration.
1618 SUnit *SU = PickNodeToScheduleBottomUp();
1619
1620 AdvancePastStalls(SU);
1621
1622 ScheduleNodeBottomUp(SU);
1623
1624 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1625 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1626 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
1627 "MinAvailableCycle uninitialized");
1628 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1629 }
1630 }
1631
1632 // Reverse the order if it is bottom up.
1633 std::reverse(Sequence.begin(), Sequence.end());
1634
1635 #ifndef NDEBUG
1636 VerifyScheduledSequence(/*isBottomUp=*/true);
1637 #endif
1638 }
1639
1640 namespace {
1641
1642 class RegReductionPQBase;
1643
1644 struct queue_sort {
isReady__anon1da133450311::queue_sort1645 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1646 };
1647
1648 #ifndef NDEBUG
1649 template<class SF>
1650 struct reverse_sort : public queue_sort {
1651 SF &SortFunc;
1652
reverse_sort__anon1da133450311::reverse_sort1653 reverse_sort(SF &sf) : SortFunc(sf) {}
1654
operator ()__anon1da133450311::reverse_sort1655 bool operator()(SUnit* left, SUnit* right) const {
1656 // reverse left/right rather than simply !SortFunc(left, right)
1657 // to expose different paths in the comparison logic.
1658 return SortFunc(right, left);
1659 }
1660 };
1661 #endif // NDEBUG
1662
1663 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1664 // reduction scheduler.
1665 struct bu_ls_rr_sort : public queue_sort {
1666 enum {
1667 IsBottomUp = true,
1668 HasReadyFilter = false
1669 };
1670
1671 RegReductionPQBase *SPQ;
1672
bu_ls_rr_sort__anon1da133450311::bu_ls_rr_sort1673 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1674
1675 bool operator()(SUnit* left, SUnit* right) const;
1676 };
1677
1678 // src_ls_rr_sort - Priority function for source order scheduler.
1679 struct src_ls_rr_sort : public queue_sort {
1680 enum {
1681 IsBottomUp = true,
1682 HasReadyFilter = false
1683 };
1684
1685 RegReductionPQBase *SPQ;
1686
src_ls_rr_sort__anon1da133450311::src_ls_rr_sort1687 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1688
1689 bool operator()(SUnit* left, SUnit* right) const;
1690 };
1691
1692 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1693 struct hybrid_ls_rr_sort : public queue_sort {
1694 enum {
1695 IsBottomUp = true,
1696 HasReadyFilter = false
1697 };
1698
1699 RegReductionPQBase *SPQ;
1700
hybrid_ls_rr_sort__anon1da133450311::hybrid_ls_rr_sort1701 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1702
1703 bool isReady(SUnit *SU, unsigned CurCycle) const;
1704
1705 bool operator()(SUnit* left, SUnit* right) const;
1706 };
1707
1708 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1709 // scheduler.
1710 struct ilp_ls_rr_sort : public queue_sort {
1711 enum {
1712 IsBottomUp = true,
1713 HasReadyFilter = false
1714 };
1715
1716 RegReductionPQBase *SPQ;
1717
ilp_ls_rr_sort__anon1da133450311::ilp_ls_rr_sort1718 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1719
1720 bool isReady(SUnit *SU, unsigned CurCycle) const;
1721
1722 bool operator()(SUnit* left, SUnit* right) const;
1723 };
1724
1725 class RegReductionPQBase : public SchedulingPriorityQueue {
1726 protected:
1727 std::vector<SUnit *> Queue;
1728 unsigned CurQueueId = 0;
1729 bool TracksRegPressure;
1730 bool SrcOrder;
1731
1732 // SUnits - The SUnits for the current graph.
1733 std::vector<SUnit> *SUnits;
1734
1735 MachineFunction &MF;
1736 const TargetInstrInfo *TII;
1737 const TargetRegisterInfo *TRI;
1738 const TargetLowering *TLI;
1739 ScheduleDAGRRList *scheduleDAG = nullptr;
1740
1741 // SethiUllmanNumbers - The SethiUllman number for each node.
1742 std::vector<unsigned> SethiUllmanNumbers;
1743
1744 /// RegPressure - Tracking current reg pressure per register class.
1745 std::vector<unsigned> RegPressure;
1746
1747 /// RegLimit - Tracking the number of allocatable registers per register
1748 /// class.
1749 std::vector<unsigned> RegLimit;
1750
1751 public:
RegReductionPQBase(MachineFunction & mf,bool hasReadyFilter,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1752 RegReductionPQBase(MachineFunction &mf,
1753 bool hasReadyFilter,
1754 bool tracksrp,
1755 bool srcorder,
1756 const TargetInstrInfo *tii,
1757 const TargetRegisterInfo *tri,
1758 const TargetLowering *tli)
1759 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1760 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1761 if (TracksRegPressure) {
1762 unsigned NumRC = TRI->getNumRegClasses();
1763 RegLimit.resize(NumRC);
1764 RegPressure.resize(NumRC);
1765 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1766 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1767 for (const TargetRegisterClass *RC : TRI->regclasses())
1768 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1769 }
1770 }
1771
setScheduleDAG(ScheduleDAGRRList * scheduleDag)1772 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1773 scheduleDAG = scheduleDag;
1774 }
1775
getHazardRec()1776 ScheduleHazardRecognizer* getHazardRec() {
1777 return scheduleDAG->getHazardRec();
1778 }
1779
1780 void initNodes(std::vector<SUnit> &sunits) override;
1781
1782 void addNode(const SUnit *SU) override;
1783
1784 void updateNode(const SUnit *SU) override;
1785
releaseState()1786 void releaseState() override {
1787 SUnits = nullptr;
1788 SethiUllmanNumbers.clear();
1789 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1790 }
1791
1792 unsigned getNodePriority(const SUnit *SU) const;
1793
getNodeOrdering(const SUnit * SU) const1794 unsigned getNodeOrdering(const SUnit *SU) const {
1795 if (!SU->getNode()) return 0;
1796
1797 return SU->getNode()->getIROrder();
1798 }
1799
empty() const1800 bool empty() const override { return Queue.empty(); }
1801
push(SUnit * U)1802 void push(SUnit *U) override {
1803 assert(!U->NodeQueueId && "Node in the queue already");
1804 U->NodeQueueId = ++CurQueueId;
1805 Queue.push_back(U);
1806 }
1807
remove(SUnit * SU)1808 void remove(SUnit *SU) override {
1809 assert(!Queue.empty() && "Queue is empty!");
1810 assert(SU->NodeQueueId != 0 && "Not in queue!");
1811 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1812 if (I != std::prev(Queue.end()))
1813 std::swap(*I, Queue.back());
1814 Queue.pop_back();
1815 SU->NodeQueueId = 0;
1816 }
1817
tracksRegPressure() const1818 bool tracksRegPressure() const override { return TracksRegPressure; }
1819
1820 void dumpRegPressure() const;
1821
1822 bool HighRegPressure(const SUnit *SU) const;
1823
1824 bool MayReduceRegPressure(SUnit *SU) const;
1825
1826 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1827
1828 void scheduledNode(SUnit *SU) override;
1829
1830 void unscheduledNode(SUnit *SU) override;
1831
1832 protected:
1833 bool canClobber(const SUnit *SU, const SUnit *Op);
1834 void AddPseudoTwoAddrDeps();
1835 void PrescheduleNodesWithMultipleUses();
1836 void CalculateSethiUllmanNumbers();
1837 };
1838
1839 template<class SF>
popFromQueueImpl(std::vector<SUnit * > & Q,SF & Picker)1840 static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1841 std::vector<SUnit *>::iterator Best = Q.begin();
1842 for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
1843 if (Picker(*Best, *I))
1844 Best = I;
1845 SUnit *V = *Best;
1846 if (Best != std::prev(Q.end()))
1847 std::swap(*Best, Q.back());
1848 Q.pop_back();
1849 return V;
1850 }
1851
1852 template<class SF>
popFromQueue(std::vector<SUnit * > & Q,SF & Picker,ScheduleDAG * DAG)1853 SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1854 #ifndef NDEBUG
1855 if (DAG->StressSched) {
1856 reverse_sort<SF> RPicker(Picker);
1857 return popFromQueueImpl(Q, RPicker);
1858 }
1859 #endif
1860 (void)DAG;
1861 return popFromQueueImpl(Q, Picker);
1862 }
1863
1864 //===----------------------------------------------------------------------===//
1865 // RegReductionPriorityQueue Definition
1866 //===----------------------------------------------------------------------===//
1867 //
1868 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1869 // to reduce register pressure.
1870 //
1871 template<class SF>
1872 class RegReductionPriorityQueue : public RegReductionPQBase {
1873 SF Picker;
1874
1875 public:
RegReductionPriorityQueue(MachineFunction & mf,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1876 RegReductionPriorityQueue(MachineFunction &mf,
1877 bool tracksrp,
1878 bool srcorder,
1879 const TargetInstrInfo *tii,
1880 const TargetRegisterInfo *tri,
1881 const TargetLowering *tli)
1882 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1883 tii, tri, tli),
1884 Picker(this) {}
1885
isBottomUp() const1886 bool isBottomUp() const override { return SF::IsBottomUp; }
1887
isReady(SUnit * U) const1888 bool isReady(SUnit *U) const override {
1889 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1890 }
1891
pop()1892 SUnit *pop() override {
1893 if (Queue.empty()) return nullptr;
1894
1895 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1896 V->NodeQueueId = 0;
1897 return V;
1898 }
1899
1900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(ScheduleDAG * DAG) const1901 LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
1902 // Emulate pop() without clobbering NodeQueueIds.
1903 std::vector<SUnit *> DumpQueue = Queue;
1904 SF DumpPicker = Picker;
1905 while (!DumpQueue.empty()) {
1906 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1907 dbgs() << "Height " << SU->getHeight() << ": ";
1908 DAG->dumpNode(*SU);
1909 }
1910 }
1911 #endif
1912 };
1913
1914 using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1915 using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1916 using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1917 using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1918
1919 } // end anonymous namespace
1920
1921 //===----------------------------------------------------------------------===//
1922 // Static Node Priority for Register Pressure Reduction
1923 //===----------------------------------------------------------------------===//
1924
1925 // Check for special nodes that bypass scheduling heuristics.
1926 // Currently this pushes TokenFactor nodes down, but may be used for other
1927 // pseudo-ops as well.
1928 //
1929 // Return -1 to schedule right above left, 1 for left above right.
1930 // Return 0 if no bias exists.
checkSpecialNodes(const SUnit * left,const SUnit * right)1931 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1932 bool LSchedLow = left->isScheduleLow;
1933 bool RSchedLow = right->isScheduleLow;
1934 if (LSchedLow != RSchedLow)
1935 return LSchedLow < RSchedLow ? 1 : -1;
1936 return 0;
1937 }
1938
1939 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1940 /// Smaller number is the higher priority.
1941 static unsigned
CalcNodeSethiUllmanNumber(const SUnit * SU,std::vector<unsigned> & SUNumbers)1942 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1943 if (SUNumbers[SU->NodeNum] != 0)
1944 return SUNumbers[SU->NodeNum];
1945
1946 // Use WorkList to avoid stack overflow on excessively large IRs.
1947 struct WorkState {
1948 WorkState(const SUnit *SU) : SU(SU) {}
1949 const SUnit *SU;
1950 unsigned PredsProcessed = 0;
1951 };
1952
1953 SmallVector<WorkState, 16> WorkList;
1954 WorkList.push_back(SU);
1955 while (!WorkList.empty()) {
1956 auto &Temp = WorkList.back();
1957 auto *TempSU = Temp.SU;
1958 bool AllPredsKnown = true;
1959 // Try to find a non-evaluated pred and push it into the processing stack.
1960 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1961 auto &Pred = TempSU->Preds[P];
1962 if (Pred.isCtrl()) continue; // ignore chain preds
1963 SUnit *PredSU = Pred.getSUnit();
1964 if (SUNumbers[PredSU->NodeNum] == 0) {
1965 #ifndef NDEBUG
1966 // In debug mode, check that we don't have such element in the stack.
1967 for (auto It : WorkList)
1968 assert(It.SU != PredSU && "Trying to push an element twice?");
1969 #endif
1970 // Next time start processing this one starting from the next pred.
1971 Temp.PredsProcessed = P + 1;
1972 WorkList.push_back(PredSU);
1973 AllPredsKnown = false;
1974 break;
1975 }
1976 }
1977
1978 if (!AllPredsKnown)
1979 continue;
1980
1981 // Once all preds are known, we can calculate the answer for this one.
1982 unsigned SethiUllmanNumber = 0;
1983 unsigned Extra = 0;
1984 for (const SDep &Pred : TempSU->Preds) {
1985 if (Pred.isCtrl()) continue; // ignore chain preds
1986 SUnit *PredSU = Pred.getSUnit();
1987 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
1988 assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
1989 if (PredSethiUllman > SethiUllmanNumber) {
1990 SethiUllmanNumber = PredSethiUllman;
1991 Extra = 0;
1992 } else if (PredSethiUllman == SethiUllmanNumber)
1993 ++Extra;
1994 }
1995
1996 SethiUllmanNumber += Extra;
1997 if (SethiUllmanNumber == 0)
1998 SethiUllmanNumber = 1;
1999 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
2000 WorkList.pop_back();
2001 }
2002
2003 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
2004 return SUNumbers[SU->NodeNum];
2005 }
2006
2007 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
2008 /// scheduling units.
CalculateSethiUllmanNumbers()2009 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
2010 SethiUllmanNumbers.assign(SUnits->size(), 0);
2011
2012 for (const SUnit &SU : *SUnits)
2013 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
2014 }
2015
addNode(const SUnit * SU)2016 void RegReductionPQBase::addNode(const SUnit *SU) {
2017 unsigned SUSize = SethiUllmanNumbers.size();
2018 if (SUnits->size() > SUSize)
2019 SethiUllmanNumbers.resize(SUSize*2, 0);
2020 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2021 }
2022
updateNode(const SUnit * SU)2023 void RegReductionPQBase::updateNode(const SUnit *SU) {
2024 SethiUllmanNumbers[SU->NodeNum] = 0;
2025 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2026 }
2027
2028 // Lower priority means schedule further down. For bottom-up scheduling, lower
2029 // priority SUs are scheduled before higher priority SUs.
getNodePriority(const SUnit * SU) const2030 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2031 assert(SU->NodeNum < SethiUllmanNumbers.size());
2032 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2033 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2034 // CopyToReg should be close to its uses to facilitate coalescing and
2035 // avoid spilling.
2036 return 0;
2037 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2038 Opc == TargetOpcode::SUBREG_TO_REG ||
2039 Opc == TargetOpcode::INSERT_SUBREG)
2040 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2041 // close to their uses to facilitate coalescing.
2042 return 0;
2043 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2044 // If SU does not have a register use, i.e. it doesn't produce a value
2045 // that would be consumed (e.g. store), then it terminates a chain of
2046 // computation. Give it a large SethiUllman number so it will be
2047 // scheduled right before its predecessors that it doesn't lengthen
2048 // their live ranges.
2049 return 0xffff;
2050 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2051 // If SU does not have a register def, schedule it close to its uses
2052 // because it does not lengthen any live ranges.
2053 return 0;
2054 #if 1
2055 return SethiUllmanNumbers[SU->NodeNum];
2056 #else
2057 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2058 if (SU->isCallOp) {
2059 // FIXME: This assumes all of the defs are used as call operands.
2060 int NP = (int)Priority - SU->getNode()->getNumValues();
2061 return (NP > 0) ? NP : 0;
2062 }
2063 return Priority;
2064 #endif
2065 }
2066
2067 //===----------------------------------------------------------------------===//
2068 // Register Pressure Tracking
2069 //===----------------------------------------------------------------------===//
2070
2071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpRegPressure() const2072 LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
2073 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2074 unsigned Id = RC->getID();
2075 unsigned RP = RegPressure[Id];
2076 if (!RP) continue;
2077 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
2078 << RegLimit[Id] << '\n');
2079 }
2080 }
2081 #endif
2082
HighRegPressure(const SUnit * SU) const2083 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2084 if (!TLI)
2085 return false;
2086
2087 for (const SDep &Pred : SU->Preds) {
2088 if (Pred.isCtrl())
2089 continue;
2090 SUnit *PredSU = Pred.getSUnit();
2091 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2092 // to cover the number of registers defined (they are all live).
2093 if (PredSU->NumRegDefsLeft == 0) {
2094 continue;
2095 }
2096 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2097 RegDefPos.IsValid(); RegDefPos.Advance()) {
2098 unsigned RCId, Cost;
2099 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2100
2101 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2102 return true;
2103 }
2104 }
2105 return false;
2106 }
2107
MayReduceRegPressure(SUnit * SU) const2108 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2109 const SDNode *N = SU->getNode();
2110
2111 if (!N->isMachineOpcode() || !SU->NumSuccs)
2112 return false;
2113
2114 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2115 for (unsigned i = 0; i != NumDefs; ++i) {
2116 MVT VT = N->getSimpleValueType(i);
2117 if (!N->hasAnyUseOfValue(i))
2118 continue;
2119 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2120 if (RegPressure[RCId] >= RegLimit[RCId])
2121 return true;
2122 }
2123 return false;
2124 }
2125
2126 // Compute the register pressure contribution by this instruction by count up
2127 // for uses that are not live and down for defs. Only count register classes
2128 // that are already under high pressure. As a side effect, compute the number of
2129 // uses of registers that are already live.
2130 //
2131 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2132 // so could probably be factored.
RegPressureDiff(SUnit * SU,unsigned & LiveUses) const2133 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2134 LiveUses = 0;
2135 int PDiff = 0;
2136 for (const SDep &Pred : SU->Preds) {
2137 if (Pred.isCtrl())
2138 continue;
2139 SUnit *PredSU = Pred.getSUnit();
2140 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2141 // to cover the number of registers defined (they are all live).
2142 if (PredSU->NumRegDefsLeft == 0) {
2143 if (PredSU->getNode()->isMachineOpcode())
2144 ++LiveUses;
2145 continue;
2146 }
2147 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2148 RegDefPos.IsValid(); RegDefPos.Advance()) {
2149 MVT VT = RegDefPos.GetValue();
2150 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2151 if (RegPressure[RCId] >= RegLimit[RCId])
2152 ++PDiff;
2153 }
2154 }
2155 const SDNode *N = SU->getNode();
2156
2157 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2158 return PDiff;
2159
2160 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2161 for (unsigned i = 0; i != NumDefs; ++i) {
2162 MVT VT = N->getSimpleValueType(i);
2163 if (!N->hasAnyUseOfValue(i))
2164 continue;
2165 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2166 if (RegPressure[RCId] >= RegLimit[RCId])
2167 --PDiff;
2168 }
2169 return PDiff;
2170 }
2171
scheduledNode(SUnit * SU)2172 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2173 if (!TracksRegPressure)
2174 return;
2175
2176 if (!SU->getNode())
2177 return;
2178
2179 for (const SDep &Pred : SU->Preds) {
2180 if (Pred.isCtrl())
2181 continue;
2182 SUnit *PredSU = Pred.getSUnit();
2183 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2184 // to cover the number of registers defined (they are all live).
2185 if (PredSU->NumRegDefsLeft == 0) {
2186 continue;
2187 }
2188 // FIXME: The ScheduleDAG currently loses information about which of a
2189 // node's values is consumed by each dependence. Consequently, if the node
2190 // defines multiple register classes, we don't know which to pressurize
2191 // here. Instead the following loop consumes the register defs in an
2192 // arbitrary order. At least it handles the common case of clustered loads
2193 // to the same class. For precise liveness, each SDep needs to indicate the
2194 // result number. But that tightly couples the ScheduleDAG with the
2195 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2196 // value type or register class to SDep.
2197 //
2198 // The most important aspect of register tracking is balancing the increase
2199 // here with the reduction further below. Note that this SU may use multiple
2200 // defs in PredSU. The can't be determined here, but we've already
2201 // compensated by reducing NumRegDefsLeft in PredSU during
2202 // ScheduleDAGSDNodes::AddSchedEdges.
2203 --PredSU->NumRegDefsLeft;
2204 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2205 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2206 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2207 if (SkipRegDefs)
2208 continue;
2209
2210 unsigned RCId, Cost;
2211 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2212 RegPressure[RCId] += Cost;
2213 break;
2214 }
2215 }
2216
2217 // We should have this assert, but there may be dead SDNodes that never
2218 // materialize as SUnits, so they don't appear to generate liveness.
2219 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2220 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2221 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2222 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2223 if (SkipRegDefs > 0)
2224 continue;
2225 unsigned RCId, Cost;
2226 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2227 if (RegPressure[RCId] < Cost) {
2228 // Register pressure tracking is imprecise. This can happen. But we try
2229 // hard not to let it happen because it likely results in poor scheduling.
2230 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum
2231 << ") has too many regdefs\n");
2232 RegPressure[RCId] = 0;
2233 }
2234 else {
2235 RegPressure[RCId] -= Cost;
2236 }
2237 }
2238 LLVM_DEBUG(dumpRegPressure());
2239 }
2240
unscheduledNode(SUnit * SU)2241 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2242 if (!TracksRegPressure)
2243 return;
2244
2245 const SDNode *N = SU->getNode();
2246 if (!N) return;
2247
2248 if (!N->isMachineOpcode()) {
2249 if (N->getOpcode() != ISD::CopyToReg)
2250 return;
2251 } else {
2252 unsigned Opc = N->getMachineOpcode();
2253 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2254 Opc == TargetOpcode::INSERT_SUBREG ||
2255 Opc == TargetOpcode::SUBREG_TO_REG ||
2256 Opc == TargetOpcode::REG_SEQUENCE ||
2257 Opc == TargetOpcode::IMPLICIT_DEF)
2258 return;
2259 }
2260
2261 for (const SDep &Pred : SU->Preds) {
2262 if (Pred.isCtrl())
2263 continue;
2264 SUnit *PredSU = Pred.getSUnit();
2265 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2266 // counts data deps.
2267 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2268 continue;
2269 const SDNode *PN = PredSU->getNode();
2270 if (!PN->isMachineOpcode()) {
2271 if (PN->getOpcode() == ISD::CopyFromReg) {
2272 MVT VT = PN->getSimpleValueType(0);
2273 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2274 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2275 }
2276 continue;
2277 }
2278 unsigned POpc = PN->getMachineOpcode();
2279 if (POpc == TargetOpcode::IMPLICIT_DEF)
2280 continue;
2281 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2282 POpc == TargetOpcode::INSERT_SUBREG ||
2283 POpc == TargetOpcode::SUBREG_TO_REG) {
2284 MVT VT = PN->getSimpleValueType(0);
2285 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2286 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2287 continue;
2288 }
2289 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2290 for (unsigned i = 0; i != NumDefs; ++i) {
2291 MVT VT = PN->getSimpleValueType(i);
2292 if (!PN->hasAnyUseOfValue(i))
2293 continue;
2294 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2295 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2296 // Register pressure tracking is imprecise. This can happen.
2297 RegPressure[RCId] = 0;
2298 else
2299 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2300 }
2301 }
2302
2303 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2304 // may transfer data dependencies to CopyToReg.
2305 if (SU->NumSuccs && N->isMachineOpcode()) {
2306 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2307 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2308 MVT VT = N->getSimpleValueType(i);
2309 if (VT == MVT::Glue || VT == MVT::Other)
2310 continue;
2311 if (!N->hasAnyUseOfValue(i))
2312 continue;
2313 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2314 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2315 }
2316 }
2317
2318 LLVM_DEBUG(dumpRegPressure());
2319 }
2320
2321 //===----------------------------------------------------------------------===//
2322 // Dynamic Node Priority for Register Pressure Reduction
2323 //===----------------------------------------------------------------------===//
2324
2325 /// closestSucc - Returns the scheduled cycle of the successor which is
2326 /// closest to the current cycle.
closestSucc(const SUnit * SU)2327 static unsigned closestSucc(const SUnit *SU) {
2328 unsigned MaxHeight = 0;
2329 for (const SDep &Succ : SU->Succs) {
2330 if (Succ.isCtrl()) continue; // ignore chain succs
2331 unsigned Height = Succ.getSUnit()->getHeight();
2332 // If there are bunch of CopyToRegs stacked up, they should be considered
2333 // to be at the same position.
2334 if (Succ.getSUnit()->getNode() &&
2335 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2336 Height = closestSucc(Succ.getSUnit())+1;
2337 if (Height > MaxHeight)
2338 MaxHeight = Height;
2339 }
2340 return MaxHeight;
2341 }
2342
2343 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2344 /// for scratch registers, i.e. number of data dependencies.
calcMaxScratches(const SUnit * SU)2345 static unsigned calcMaxScratches(const SUnit *SU) {
2346 unsigned Scratches = 0;
2347 for (const SDep &Pred : SU->Preds) {
2348 if (Pred.isCtrl()) continue; // ignore chain preds
2349 Scratches++;
2350 }
2351 return Scratches;
2352 }
2353
2354 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2355 /// CopyFromReg from a virtual register.
hasOnlyLiveInOpers(const SUnit * SU)2356 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2357 bool RetVal = false;
2358 for (const SDep &Pred : SU->Preds) {
2359 if (Pred.isCtrl()) continue;
2360 const SUnit *PredSU = Pred.getSUnit();
2361 if (PredSU->getNode() &&
2362 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2363 unsigned Reg =
2364 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2365 if (Register::isVirtualRegister(Reg)) {
2366 RetVal = true;
2367 continue;
2368 }
2369 }
2370 return false;
2371 }
2372 return RetVal;
2373 }
2374
2375 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2376 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2377 /// it has no other use. It should be scheduled closer to the terminator.
hasOnlyLiveOutUses(const SUnit * SU)2378 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2379 bool RetVal = false;
2380 for (const SDep &Succ : SU->Succs) {
2381 if (Succ.isCtrl()) continue;
2382 const SUnit *SuccSU = Succ.getSUnit();
2383 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2384 unsigned Reg =
2385 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2386 if (Register::isVirtualRegister(Reg)) {
2387 RetVal = true;
2388 continue;
2389 }
2390 }
2391 return false;
2392 }
2393 return RetVal;
2394 }
2395
2396 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2397 // set isVRegCycle for its CopyFromReg operands.
2398 //
2399 // This is only relevant for single-block loops, in which case the VRegCycle
2400 // node is likely an induction variable in which the operand and target virtual
2401 // registers should be coalesced (e.g. pre/post increment values). Setting the
2402 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2403 // CopyFromReg so that this node becomes the virtual register "kill". This
2404 // avoids interference between the values live in and out of the block and
2405 // eliminates a copy inside the loop.
initVRegCycle(SUnit * SU)2406 static void initVRegCycle(SUnit *SU) {
2407 if (DisableSchedVRegCycle)
2408 return;
2409
2410 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2411 return;
2412
2413 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2414
2415 SU->isVRegCycle = true;
2416
2417 for (const SDep &Pred : SU->Preds) {
2418 if (Pred.isCtrl()) continue;
2419 Pred.getSUnit()->isVRegCycle = true;
2420 }
2421 }
2422
2423 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2424 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
resetVRegCycle(SUnit * SU)2425 static void resetVRegCycle(SUnit *SU) {
2426 if (!SU->isVRegCycle)
2427 return;
2428
2429 for (const SDep &Pred : SU->Preds) {
2430 if (Pred.isCtrl()) continue; // ignore chain preds
2431 SUnit *PredSU = Pred.getSUnit();
2432 if (PredSU->isVRegCycle) {
2433 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2434 "VRegCycle def must be CopyFromReg");
2435 Pred.getSUnit()->isVRegCycle = false;
2436 }
2437 }
2438 }
2439
2440 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2441 // means a node that defines the VRegCycle has not been scheduled yet.
hasVRegCycleUse(const SUnit * SU)2442 static bool hasVRegCycleUse(const SUnit *SU) {
2443 // If this SU also defines the VReg, don't hoist it as a "use".
2444 if (SU->isVRegCycle)
2445 return false;
2446
2447 for (const SDep &Pred : SU->Preds) {
2448 if (Pred.isCtrl()) continue; // ignore chain preds
2449 if (Pred.getSUnit()->isVRegCycle &&
2450 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2451 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2452 return true;
2453 }
2454 }
2455 return false;
2456 }
2457
2458 // Check for either a dependence (latency) or resource (hazard) stall.
2459 //
2460 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
BUHasStall(SUnit * SU,int Height,RegReductionPQBase * SPQ)2461 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2462 if ((int)SPQ->getCurCycle() < Height) return true;
2463 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2464 != ScheduleHazardRecognizer::NoHazard)
2465 return true;
2466 return false;
2467 }
2468
2469 // Return -1 if left has higher priority, 1 if right has higher priority.
2470 // Return 0 if latency-based priority is equivalent.
BUCompareLatency(SUnit * left,SUnit * right,bool checkPref,RegReductionPQBase * SPQ)2471 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2472 RegReductionPQBase *SPQ) {
2473 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2474 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2475 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2476 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2477 int LHeight = (int)left->getHeight() + LPenalty;
2478 int RHeight = (int)right->getHeight() + RPenalty;
2479
2480 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2481 BUHasStall(left, LHeight, SPQ);
2482 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2483 BUHasStall(right, RHeight, SPQ);
2484
2485 // If scheduling one of the node will cause a pipeline stall, delay it.
2486 // If scheduling either one of the node will cause a pipeline stall, sort
2487 // them according to their height.
2488 if (LStall) {
2489 if (!RStall)
2490 return 1;
2491 if (LHeight != RHeight)
2492 return LHeight > RHeight ? 1 : -1;
2493 } else if (RStall)
2494 return -1;
2495
2496 // If either node is scheduling for latency, sort them by height/depth
2497 // and latency.
2498 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2499 right->SchedulingPref == Sched::ILP)) {
2500 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2501 // is enabled, grouping instructions by cycle, then its height is already
2502 // covered so only its depth matters. We also reach this point if both stall
2503 // but have the same height.
2504 if (!SPQ->getHazardRec()->isEnabled()) {
2505 if (LHeight != RHeight)
2506 return LHeight > RHeight ? 1 : -1;
2507 }
2508 int LDepth = left->getDepth() - LPenalty;
2509 int RDepth = right->getDepth() - RPenalty;
2510 if (LDepth != RDepth) {
2511 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2512 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2513 << ") depth " << RDepth << "\n");
2514 return LDepth < RDepth ? 1 : -1;
2515 }
2516 if (left->Latency != right->Latency)
2517 return left->Latency > right->Latency ? 1 : -1;
2518 }
2519 return 0;
2520 }
2521
BURRSort(SUnit * left,SUnit * right,RegReductionPQBase * SPQ)2522 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2523 // Schedule physical register definitions close to their use. This is
2524 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2525 // long as shortening physreg live ranges is generally good, we can defer
2526 // creating a subtarget hook.
2527 if (!DisableSchedPhysRegJoin) {
2528 bool LHasPhysReg = left->hasPhysRegDefs;
2529 bool RHasPhysReg = right->hasPhysRegDefs;
2530 if (LHasPhysReg != RHasPhysReg) {
2531 #ifndef NDEBUG
2532 static const char *const PhysRegMsg[] = { " has no physreg",
2533 " defines a physreg" };
2534 #endif
2535 LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2536 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
2537 << ") " << PhysRegMsg[RHasPhysReg] << "\n");
2538 return LHasPhysReg < RHasPhysReg;
2539 }
2540 }
2541
2542 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2543 unsigned LPriority = SPQ->getNodePriority(left);
2544 unsigned RPriority = SPQ->getNodePriority(right);
2545
2546 // Be really careful about hoisting call operands above previous calls.
2547 // Only allows it if it would reduce register pressure.
2548 if (left->isCall && right->isCallOp) {
2549 unsigned RNumVals = right->getNode()->getNumValues();
2550 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2551 }
2552 if (right->isCall && left->isCallOp) {
2553 unsigned LNumVals = left->getNode()->getNumValues();
2554 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2555 }
2556
2557 if (LPriority != RPriority)
2558 return LPriority > RPriority;
2559
2560 // One or both of the nodes are calls and their sethi-ullman numbers are the
2561 // same, then keep source order.
2562 if (left->isCall || right->isCall) {
2563 unsigned LOrder = SPQ->getNodeOrdering(left);
2564 unsigned ROrder = SPQ->getNodeOrdering(right);
2565
2566 // Prefer an ordering where the lower the non-zero order number, the higher
2567 // the preference.
2568 if ((LOrder || ROrder) && LOrder != ROrder)
2569 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2570 }
2571
2572 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2573 // e.g.
2574 // t1 = op t2, c1
2575 // t3 = op t4, c2
2576 //
2577 // and the following instructions are both ready.
2578 // t2 = op c3
2579 // t4 = op c4
2580 //
2581 // Then schedule t2 = op first.
2582 // i.e.
2583 // t4 = op c4
2584 // t2 = op c3
2585 // t1 = op t2, c1
2586 // t3 = op t4, c2
2587 //
2588 // This creates more short live intervals.
2589 unsigned LDist = closestSucc(left);
2590 unsigned RDist = closestSucc(right);
2591 if (LDist != RDist)
2592 return LDist < RDist;
2593
2594 // How many registers becomes live when the node is scheduled.
2595 unsigned LScratch = calcMaxScratches(left);
2596 unsigned RScratch = calcMaxScratches(right);
2597 if (LScratch != RScratch)
2598 return LScratch > RScratch;
2599
2600 // Comparing latency against a call makes little sense unless the node
2601 // is register pressure-neutral.
2602 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2603 return (left->NodeQueueId > right->NodeQueueId);
2604
2605 // Do not compare latencies when one or both of the nodes are calls.
2606 if (!DisableSchedCycles &&
2607 !(left->isCall || right->isCall)) {
2608 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2609 if (result != 0)
2610 return result > 0;
2611 }
2612 else {
2613 if (left->getHeight() != right->getHeight())
2614 return left->getHeight() > right->getHeight();
2615
2616 if (left->getDepth() != right->getDepth())
2617 return left->getDepth() < right->getDepth();
2618 }
2619
2620 assert(left->NodeQueueId && right->NodeQueueId &&
2621 "NodeQueueId cannot be zero");
2622 return (left->NodeQueueId > right->NodeQueueId);
2623 }
2624
2625 // Bottom up
operator ()(SUnit * left,SUnit * right) const2626 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2627 if (int res = checkSpecialNodes(left, right))
2628 return res > 0;
2629
2630 return BURRSort(left, right, SPQ);
2631 }
2632
2633 // Source order, otherwise bottom up.
operator ()(SUnit * left,SUnit * right) const2634 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2635 if (int res = checkSpecialNodes(left, right))
2636 return res > 0;
2637
2638 unsigned LOrder = SPQ->getNodeOrdering(left);
2639 unsigned ROrder = SPQ->getNodeOrdering(right);
2640
2641 // Prefer an ordering where the lower the non-zero order number, the higher
2642 // the preference.
2643 if ((LOrder || ROrder) && LOrder != ROrder)
2644 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2645
2646 return BURRSort(left, right, SPQ);
2647 }
2648
2649 // If the time between now and when the instruction will be ready can cover
2650 // the spill code, then avoid adding it to the ready queue. This gives long
2651 // stalls highest priority and allows hoisting across calls. It should also
2652 // speed up processing the available queue.
isReady(SUnit * SU,unsigned CurCycle) const2653 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2654 static const unsigned ReadyDelay = 3;
2655
2656 if (SPQ->MayReduceRegPressure(SU)) return true;
2657
2658 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2659
2660 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2661 != ScheduleHazardRecognizer::NoHazard)
2662 return false;
2663
2664 return true;
2665 }
2666
2667 // Return true if right should be scheduled with higher priority than left.
operator ()(SUnit * left,SUnit * right) const2668 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2669 if (int res = checkSpecialNodes(left, right))
2670 return res > 0;
2671
2672 if (left->isCall || right->isCall)
2673 // No way to compute latency of calls.
2674 return BURRSort(left, right, SPQ);
2675
2676 bool LHigh = SPQ->HighRegPressure(left);
2677 bool RHigh = SPQ->HighRegPressure(right);
2678 // Avoid causing spills. If register pressure is high, schedule for
2679 // register pressure reduction.
2680 if (LHigh && !RHigh) {
2681 LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2682 << right->NodeNum << ")\n");
2683 return true;
2684 }
2685 else if (!LHigh && RHigh) {
2686 LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2687 << left->NodeNum << ")\n");
2688 return false;
2689 }
2690 if (!LHigh && !RHigh) {
2691 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2692 if (result != 0)
2693 return result > 0;
2694 }
2695 return BURRSort(left, right, SPQ);
2696 }
2697
2698 // Schedule as many instructions in each cycle as possible. So don't make an
2699 // instruction available unless it is ready in the current cycle.
isReady(SUnit * SU,unsigned CurCycle) const2700 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2701 if (SU->getHeight() > CurCycle) return false;
2702
2703 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2704 != ScheduleHazardRecognizer::NoHazard)
2705 return false;
2706
2707 return true;
2708 }
2709
canEnableCoalescing(SUnit * SU)2710 static bool canEnableCoalescing(SUnit *SU) {
2711 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2712 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2713 // CopyToReg should be close to its uses to facilitate coalescing and
2714 // avoid spilling.
2715 return true;
2716
2717 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2718 Opc == TargetOpcode::SUBREG_TO_REG ||
2719 Opc == TargetOpcode::INSERT_SUBREG)
2720 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2721 // close to their uses to facilitate coalescing.
2722 return true;
2723
2724 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2725 // If SU does not have a register def, schedule it close to its uses
2726 // because it does not lengthen any live ranges.
2727 return true;
2728
2729 return false;
2730 }
2731
2732 // list-ilp is currently an experimental scheduler that allows various
2733 // heuristics to be enabled prior to the normal register reduction logic.
operator ()(SUnit * left,SUnit * right) const2734 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2735 if (int res = checkSpecialNodes(left, right))
2736 return res > 0;
2737
2738 if (left->isCall || right->isCall)
2739 // No way to compute latency of calls.
2740 return BURRSort(left, right, SPQ);
2741
2742 unsigned LLiveUses = 0, RLiveUses = 0;
2743 int LPDiff = 0, RPDiff = 0;
2744 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2745 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2746 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2747 }
2748 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2749 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
2750 << "): " << LPDiff << " != SU(" << right->NodeNum
2751 << "): " << RPDiff << "\n");
2752 return LPDiff > RPDiff;
2753 }
2754
2755 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2756 bool LReduce = canEnableCoalescing(left);
2757 bool RReduce = canEnableCoalescing(right);
2758 if (LReduce && !RReduce) return false;
2759 if (RReduce && !LReduce) return true;
2760 }
2761
2762 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2763 LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2764 << " != SU(" << right->NodeNum << "): " << RLiveUses
2765 << "\n");
2766 return LLiveUses < RLiveUses;
2767 }
2768
2769 if (!DisableSchedStalls) {
2770 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2771 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2772 if (LStall != RStall)
2773 return left->getHeight() > right->getHeight();
2774 }
2775
2776 if (!DisableSchedCriticalPath) {
2777 int spread = (int)left->getDepth() - (int)right->getDepth();
2778 if (std::abs(spread) > MaxReorderWindow) {
2779 LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2780 << left->getDepth() << " != SU(" << right->NodeNum
2781 << "): " << right->getDepth() << "\n");
2782 return left->getDepth() < right->getDepth();
2783 }
2784 }
2785
2786 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2787 int spread = (int)left->getHeight() - (int)right->getHeight();
2788 if (std::abs(spread) > MaxReorderWindow)
2789 return left->getHeight() > right->getHeight();
2790 }
2791
2792 return BURRSort(left, right, SPQ);
2793 }
2794
initNodes(std::vector<SUnit> & sunits)2795 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2796 SUnits = &sunits;
2797 // Add pseudo dependency edges for two-address nodes.
2798 if (!Disable2AddrHack)
2799 AddPseudoTwoAddrDeps();
2800 // Reroute edges to nodes with multiple uses.
2801 if (!TracksRegPressure && !SrcOrder)
2802 PrescheduleNodesWithMultipleUses();
2803 // Calculate node priorities.
2804 CalculateSethiUllmanNumbers();
2805
2806 // For single block loops, mark nodes that look like canonical IV increments.
2807 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2808 for (SUnit &SU : sunits)
2809 initVRegCycle(&SU);
2810 }
2811
2812 //===----------------------------------------------------------------------===//
2813 // Preschedule for Register Pressure
2814 //===----------------------------------------------------------------------===//
2815
canClobber(const SUnit * SU,const SUnit * Op)2816 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2817 if (SU->isTwoAddress) {
2818 unsigned Opc = SU->getNode()->getMachineOpcode();
2819 const MCInstrDesc &MCID = TII->get(Opc);
2820 unsigned NumRes = MCID.getNumDefs();
2821 unsigned NumOps = MCID.getNumOperands() - NumRes;
2822 for (unsigned i = 0; i != NumOps; ++i) {
2823 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2824 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2825 if (DU->getNodeId() != -1 &&
2826 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2827 return true;
2828 }
2829 }
2830 }
2831 return false;
2832 }
2833
2834 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2835 /// successor's explicit physregs whose definition can reach DepSU.
2836 /// i.e. DepSU should not be scheduled above SU.
canClobberReachingPhysRegUse(const SUnit * DepSU,const SUnit * SU,ScheduleDAGRRList * scheduleDAG,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2837 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2838 ScheduleDAGRRList *scheduleDAG,
2839 const TargetInstrInfo *TII,
2840 const TargetRegisterInfo *TRI) {
2841 const MCPhysReg *ImpDefs
2842 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2843 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2844 if(!ImpDefs && !RegMask)
2845 return false;
2846
2847 for (const SDep &Succ : SU->Succs) {
2848 SUnit *SuccSU = Succ.getSUnit();
2849 for (const SDep &SuccPred : SuccSU->Preds) {
2850 if (!SuccPred.isAssignedRegDep())
2851 continue;
2852
2853 if (RegMask &&
2854 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2855 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2856 return true;
2857
2858 if (ImpDefs)
2859 for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2860 // Return true if SU clobbers this physical register use and the
2861 // definition of the register reaches from DepSU. IsReachable queries
2862 // a topological forward sort of the DAG (following the successors).
2863 if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2864 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2865 return true;
2866 }
2867 }
2868 return false;
2869 }
2870
2871 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2872 /// physical register defs.
canClobberPhysRegDefs(const SUnit * SuccSU,const SUnit * SU,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2873 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2874 const TargetInstrInfo *TII,
2875 const TargetRegisterInfo *TRI) {
2876 SDNode *N = SuccSU->getNode();
2877 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2878 const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2879 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2880 for (const SDNode *SUNode = SU->getNode(); SUNode;
2881 SUNode = SUNode->getGluedNode()) {
2882 if (!SUNode->isMachineOpcode())
2883 continue;
2884 const MCPhysReg *SUImpDefs =
2885 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2886 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2887 if (!SUImpDefs && !SURegMask)
2888 continue;
2889 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2890 MVT VT = N->getSimpleValueType(i);
2891 if (VT == MVT::Glue || VT == MVT::Other)
2892 continue;
2893 if (!N->hasAnyUseOfValue(i))
2894 continue;
2895 unsigned Reg = ImpDefs[i - NumDefs];
2896 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2897 return true;
2898 if (!SUImpDefs)
2899 continue;
2900 for (;*SUImpDefs; ++SUImpDefs) {
2901 unsigned SUReg = *SUImpDefs;
2902 if (TRI->regsOverlap(Reg, SUReg))
2903 return true;
2904 }
2905 }
2906 }
2907 return false;
2908 }
2909
2910 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2911 /// are not handled well by the general register pressure reduction
2912 /// heuristics. When presented with code like this:
2913 ///
2914 /// N
2915 /// / |
2916 /// / |
2917 /// U store
2918 /// |
2919 /// ...
2920 ///
2921 /// the heuristics tend to push the store up, but since the
2922 /// operand of the store has another use (U), this would increase
2923 /// the length of that other use (the U->N edge).
2924 ///
2925 /// This function transforms code like the above to route U's
2926 /// dependence through the store when possible, like this:
2927 ///
2928 /// N
2929 /// ||
2930 /// ||
2931 /// store
2932 /// |
2933 /// U
2934 /// |
2935 /// ...
2936 ///
2937 /// This results in the store being scheduled immediately
2938 /// after N, which shortens the U->N live range, reducing
2939 /// register pressure.
PrescheduleNodesWithMultipleUses()2940 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2941 // Visit all the nodes in topological order, working top-down.
2942 for (SUnit &SU : *SUnits) {
2943 // For now, only look at nodes with no data successors, such as stores.
2944 // These are especially important, due to the heuristics in
2945 // getNodePriority for nodes with no data successors.
2946 if (SU.NumSuccs != 0)
2947 continue;
2948 // For now, only look at nodes with exactly one data predecessor.
2949 if (SU.NumPreds != 1)
2950 continue;
2951 // Avoid prescheduling copies to virtual registers, which don't behave
2952 // like other nodes from the perspective of scheduling heuristics.
2953 if (SDNode *N = SU.getNode())
2954 if (N->getOpcode() == ISD::CopyToReg &&
2955 Register::isVirtualRegister(
2956 cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2957 continue;
2958
2959 SDNode *PredFrameSetup = nullptr;
2960 for (const SDep &Pred : SU.Preds)
2961 if (Pred.isCtrl() && Pred.getSUnit()) {
2962 // Find the predecessor which is not data dependence.
2963 SDNode *PredND = Pred.getSUnit()->getNode();
2964
2965 // If PredND is FrameSetup, we should not pre-scheduled the node,
2966 // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2967 // ADJCALLSTACKUP may hold CallResource too long and make other
2968 // calls can't be scheduled. If there's no other available node
2969 // to schedule, the schedular will try to rename the register by
2970 // creating copy to avoid the conflict which will fail because
2971 // CallResource is not a real physical register.
2972 if (PredND && PredND->isMachineOpcode() &&
2973 (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
2974 PredFrameSetup = PredND;
2975 break;
2976 }
2977 }
2978 // Skip the node has FrameSetup parent.
2979 if (PredFrameSetup != nullptr)
2980 continue;
2981
2982 // Locate the single data predecessor.
2983 SUnit *PredSU = nullptr;
2984 for (const SDep &Pred : SU.Preds)
2985 if (!Pred.isCtrl()) {
2986 PredSU = Pred.getSUnit();
2987 break;
2988 }
2989 assert(PredSU);
2990
2991 // Don't rewrite edges that carry physregs, because that requires additional
2992 // support infrastructure.
2993 if (PredSU->hasPhysRegDefs)
2994 continue;
2995 // Short-circuit the case where SU is PredSU's only data successor.
2996 if (PredSU->NumSuccs == 1)
2997 continue;
2998 // Avoid prescheduling to copies from virtual registers, which don't behave
2999 // like other nodes from the perspective of scheduling heuristics.
3000 if (SDNode *N = SU.getNode())
3001 if (N->getOpcode() == ISD::CopyFromReg &&
3002 Register::isVirtualRegister(
3003 cast<RegisterSDNode>(N->getOperand(1))->getReg()))
3004 continue;
3005
3006 // Perform checks on the successors of PredSU.
3007 for (const SDep &PredSucc : PredSU->Succs) {
3008 SUnit *PredSuccSU = PredSucc.getSUnit();
3009 if (PredSuccSU == &SU) continue;
3010 // If PredSU has another successor with no data successors, for
3011 // now don't attempt to choose either over the other.
3012 if (PredSuccSU->NumSuccs == 0)
3013 goto outer_loop_continue;
3014 // Don't break physical register dependencies.
3015 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
3016 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
3017 goto outer_loop_continue;
3018 // Don't introduce graph cycles.
3019 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
3020 goto outer_loop_continue;
3021 }
3022
3023 // Ok, the transformation is safe and the heuristics suggest it is
3024 // profitable. Update the graph.
3025 LLVM_DEBUG(
3026 dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
3027 << PredSU->NodeNum
3028 << " to guide scheduling in the presence of multiple uses\n");
3029 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
3030 SDep Edge = PredSU->Succs[i];
3031 assert(!Edge.isAssignedRegDep());
3032 SUnit *SuccSU = Edge.getSUnit();
3033 if (SuccSU != &SU) {
3034 Edge.setSUnit(PredSU);
3035 scheduleDAG->RemovePred(SuccSU, Edge);
3036 scheduleDAG->AddPredQueued(&SU, Edge);
3037 Edge.setSUnit(&SU);
3038 scheduleDAG->AddPredQueued(SuccSU, Edge);
3039 --i;
3040 }
3041 }
3042 outer_loop_continue:;
3043 }
3044 }
3045
3046 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3047 /// it as a def&use operand. Add a pseudo control edge from it to the other
3048 /// node (if it won't create a cycle) so the two-address one will be scheduled
3049 /// first (lower in the schedule). If both nodes are two-address, favor the
3050 /// one that has a CopyToReg use (more likely to be a loop induction update).
3051 /// If both are two-address, but one is commutable while the other is not
3052 /// commutable, favor the one that's not commutable.
AddPseudoTwoAddrDeps()3053 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3054 for (SUnit &SU : *SUnits) {
3055 if (!SU.isTwoAddress)
3056 continue;
3057
3058 SDNode *Node = SU.getNode();
3059 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3060 continue;
3061
3062 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3063 unsigned Opc = Node->getMachineOpcode();
3064 const MCInstrDesc &MCID = TII->get(Opc);
3065 unsigned NumRes = MCID.getNumDefs();
3066 unsigned NumOps = MCID.getNumOperands() - NumRes;
3067 for (unsigned j = 0; j != NumOps; ++j) {
3068 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3069 continue;
3070 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3071 if (DU->getNodeId() == -1)
3072 continue;
3073 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3074 if (!DUSU)
3075 continue;
3076 for (const SDep &Succ : DUSU->Succs) {
3077 if (Succ.isCtrl())
3078 continue;
3079 SUnit *SuccSU = Succ.getSUnit();
3080 if (SuccSU == &SU)
3081 continue;
3082 // Be conservative. Ignore if nodes aren't at roughly the same
3083 // depth and height.
3084 if (SuccSU->getHeight() < SU.getHeight() &&
3085 (SU.getHeight() - SuccSU->getHeight()) > 1)
3086 continue;
3087 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3088 // constrains whatever is using the copy, instead of the copy
3089 // itself. In the case that the copy is coalesced, this
3090 // preserves the intent of the pseudo two-address heurietics.
3091 while (SuccSU->Succs.size() == 1 &&
3092 SuccSU->getNode()->isMachineOpcode() &&
3093 SuccSU->getNode()->getMachineOpcode() ==
3094 TargetOpcode::COPY_TO_REGCLASS)
3095 SuccSU = SuccSU->Succs.front().getSUnit();
3096 // Don't constrain non-instruction nodes.
3097 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3098 continue;
3099 // Don't constrain nodes with physical register defs if the
3100 // predecessor can clobber them.
3101 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3102 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3103 continue;
3104 }
3105 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3106 // these may be coalesced away. We want them close to their uses.
3107 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3108 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3109 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3110 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3111 continue;
3112 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3113 (!canClobber(SuccSU, DUSU) ||
3114 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3115 (!SU.isCommutable && SuccSU->isCommutable)) &&
3116 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3117 LLVM_DEBUG(dbgs()
3118 << " Adding a pseudo-two-addr edge from SU #"
3119 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
3120 scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
3121 }
3122 }
3123 }
3124 }
3125 }
3126
3127 //===----------------------------------------------------------------------===//
3128 // Public Constructor Functions
3129 //===----------------------------------------------------------------------===//
3130
3131 ScheduleDAGSDNodes *
createBURRListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3132 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3133 CodeGenOpt::Level OptLevel) {
3134 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3135 const TargetInstrInfo *TII = STI.getInstrInfo();
3136 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3137
3138 BURegReductionPriorityQueue *PQ =
3139 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3140 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3141 PQ->setScheduleDAG(SD);
3142 return SD;
3143 }
3144
3145 ScheduleDAGSDNodes *
createSourceListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3146 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3147 CodeGenOpt::Level OptLevel) {
3148 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3149 const TargetInstrInfo *TII = STI.getInstrInfo();
3150 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3151
3152 SrcRegReductionPriorityQueue *PQ =
3153 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3154 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3155 PQ->setScheduleDAG(SD);
3156 return SD;
3157 }
3158
3159 ScheduleDAGSDNodes *
createHybridListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3160 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3161 CodeGenOpt::Level OptLevel) {
3162 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3163 const TargetInstrInfo *TII = STI.getInstrInfo();
3164 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3165 const TargetLowering *TLI = IS->TLI;
3166
3167 HybridBURRPriorityQueue *PQ =
3168 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3169
3170 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3171 PQ->setScheduleDAG(SD);
3172 return SD;
3173 }
3174
3175 ScheduleDAGSDNodes *
createILPListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3176 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3177 CodeGenOpt::Level OptLevel) {
3178 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3179 const TargetInstrInfo *TII = STI.getInstrInfo();
3180 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3181 const TargetLowering *TLI = IS->TLI;
3182
3183 ILPBURRPriorityQueue *PQ =
3184 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3185 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3186 PQ->setScheduleDAG(SD);
3187 return SD;
3188 }
3189