1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7 #ifndef _CRYPTO_ALGAPI_H
8 #define _CRYPTO_ALGAPI_H
9
10 #include <linux/crypto.h>
11 #include <linux/list.h>
12 #include <linux/kernel.h>
13 #include <linux/workqueue.h>
14
15 /*
16 * Maximum values for blocksize and alignmask, used to allocate
17 * static buffers that are big enough for any combination of
18 * algs and architectures. Ciphers have a lower maximum size.
19 */
20 #define MAX_ALGAPI_BLOCKSIZE 160
21 #define MAX_ALGAPI_ALIGNMASK 63
22 #define MAX_CIPHER_BLOCKSIZE 16
23 #define MAX_CIPHER_ALIGNMASK 15
24
25 struct crypto_aead;
26 struct crypto_instance;
27 struct module;
28 struct rtattr;
29 struct seq_file;
30 struct sk_buff;
31
32 struct crypto_type {
33 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
34 unsigned int (*extsize)(struct crypto_alg *alg);
35 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
36 int (*init_tfm)(struct crypto_tfm *tfm);
37 void (*show)(struct seq_file *m, struct crypto_alg *alg);
38 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
39 void (*free)(struct crypto_instance *inst);
40
41 unsigned int type;
42 unsigned int maskclear;
43 unsigned int maskset;
44 unsigned int tfmsize;
45 };
46
47 struct crypto_instance {
48 struct crypto_alg alg;
49
50 struct crypto_template *tmpl;
51
52 union {
53 /* Node in list of instances after registration. */
54 struct hlist_node list;
55 /* List of attached spawns before registration. */
56 struct crypto_spawn *spawns;
57 };
58
59 struct work_struct free_work;
60
61 void *__ctx[] CRYPTO_MINALIGN_ATTR;
62 };
63
64 struct crypto_template {
65 struct list_head list;
66 struct hlist_head instances;
67 struct module *module;
68
69 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
70
71 char name[CRYPTO_MAX_ALG_NAME];
72 };
73
74 struct crypto_spawn {
75 struct list_head list;
76 struct crypto_alg *alg;
77 union {
78 /* Back pointer to instance after registration.*/
79 struct crypto_instance *inst;
80 /* Spawn list pointer prior to registration. */
81 struct crypto_spawn *next;
82 };
83 const struct crypto_type *frontend;
84 u32 mask;
85 bool dead;
86 bool registered;
87 };
88
89 struct crypto_queue {
90 struct list_head list;
91 struct list_head *backlog;
92
93 unsigned int qlen;
94 unsigned int max_qlen;
95 };
96
97 struct scatter_walk {
98 struct scatterlist *sg;
99 unsigned int offset;
100 };
101
102 void crypto_mod_put(struct crypto_alg *alg);
103
104 int crypto_register_template(struct crypto_template *tmpl);
105 int crypto_register_templates(struct crypto_template *tmpls, int count);
106 void crypto_unregister_template(struct crypto_template *tmpl);
107 void crypto_unregister_templates(struct crypto_template *tmpls, int count);
108 struct crypto_template *crypto_lookup_template(const char *name);
109
110 int crypto_register_instance(struct crypto_template *tmpl,
111 struct crypto_instance *inst);
112 void crypto_unregister_instance(struct crypto_instance *inst);
113
114 int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
115 const char *name, u32 type, u32 mask);
116 void crypto_drop_spawn(struct crypto_spawn *spawn);
117 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
118 u32 mask);
119 void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
120
121 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
122 int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
123 const char *crypto_attr_alg_name(struct rtattr *rta);
124 int crypto_attr_u32(struct rtattr *rta, u32 *num);
125 int crypto_inst_setname(struct crypto_instance *inst, const char *name,
126 struct crypto_alg *alg);
127
128 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
129 int crypto_enqueue_request(struct crypto_queue *queue,
130 struct crypto_async_request *request);
131 void crypto_enqueue_request_head(struct crypto_queue *queue,
132 struct crypto_async_request *request);
133 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
crypto_queue_len(struct crypto_queue * queue)134 static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
135 {
136 return queue->qlen;
137 }
138
139 void crypto_inc(u8 *a, unsigned int size);
140 void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
141
crypto_xor(u8 * dst,const u8 * src,unsigned int size)142 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
143 {
144 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
145 __builtin_constant_p(size) &&
146 (size % sizeof(unsigned long)) == 0) {
147 unsigned long *d = (unsigned long *)dst;
148 unsigned long *s = (unsigned long *)src;
149
150 while (size > 0) {
151 *d++ ^= *s++;
152 size -= sizeof(unsigned long);
153 }
154 } else {
155 __crypto_xor(dst, dst, src, size);
156 }
157 }
158
crypto_xor_cpy(u8 * dst,const u8 * src1,const u8 * src2,unsigned int size)159 static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
160 unsigned int size)
161 {
162 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
163 __builtin_constant_p(size) &&
164 (size % sizeof(unsigned long)) == 0) {
165 unsigned long *d = (unsigned long *)dst;
166 unsigned long *s1 = (unsigned long *)src1;
167 unsigned long *s2 = (unsigned long *)src2;
168
169 while (size > 0) {
170 *d++ = *s1++ ^ *s2++;
171 size -= sizeof(unsigned long);
172 }
173 } else {
174 __crypto_xor(dst, src1, src2, size);
175 }
176 }
177
crypto_tfm_ctx_aligned(struct crypto_tfm * tfm)178 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
179 {
180 return PTR_ALIGN(crypto_tfm_ctx(tfm),
181 crypto_tfm_alg_alignmask(tfm) + 1);
182 }
183
crypto_tfm_alg_instance(struct crypto_tfm * tfm)184 static inline struct crypto_instance *crypto_tfm_alg_instance(
185 struct crypto_tfm *tfm)
186 {
187 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
188 }
189
crypto_instance_ctx(struct crypto_instance * inst)190 static inline void *crypto_instance_ctx(struct crypto_instance *inst)
191 {
192 return inst->__ctx;
193 }
194
195 struct crypto_cipher_spawn {
196 struct crypto_spawn base;
197 };
198
crypto_grab_cipher(struct crypto_cipher_spawn * spawn,struct crypto_instance * inst,const char * name,u32 type,u32 mask)199 static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn,
200 struct crypto_instance *inst,
201 const char *name, u32 type, u32 mask)
202 {
203 type &= ~CRYPTO_ALG_TYPE_MASK;
204 type |= CRYPTO_ALG_TYPE_CIPHER;
205 mask |= CRYPTO_ALG_TYPE_MASK;
206 return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
207 }
208
crypto_drop_cipher(struct crypto_cipher_spawn * spawn)209 static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn)
210 {
211 crypto_drop_spawn(&spawn->base);
212 }
213
crypto_spawn_cipher_alg(struct crypto_cipher_spawn * spawn)214 static inline struct crypto_alg *crypto_spawn_cipher_alg(
215 struct crypto_cipher_spawn *spawn)
216 {
217 return spawn->base.alg;
218 }
219
crypto_spawn_cipher(struct crypto_cipher_spawn * spawn)220 static inline struct crypto_cipher *crypto_spawn_cipher(
221 struct crypto_cipher_spawn *spawn)
222 {
223 u32 type = CRYPTO_ALG_TYPE_CIPHER;
224 u32 mask = CRYPTO_ALG_TYPE_MASK;
225
226 return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask));
227 }
228
crypto_cipher_alg(struct crypto_cipher * tfm)229 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
230 {
231 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
232 }
233
crypto_get_backlog(struct crypto_queue * queue)234 static inline struct crypto_async_request *crypto_get_backlog(
235 struct crypto_queue *queue)
236 {
237 return queue->backlog == &queue->list ? NULL :
238 container_of(queue->backlog, struct crypto_async_request, list);
239 }
240
crypto_requires_off(struct crypto_attr_type * algt,u32 off)241 static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
242 {
243 return (algt->type ^ off) & algt->mask & off;
244 }
245
246 /*
247 * When an algorithm uses another algorithm (e.g., if it's an instance of a
248 * template), these are the flags that should always be set on the "outer"
249 * algorithm if any "inner" algorithm has them set.
250 */
251 #define CRYPTO_ALG_INHERITED_FLAGS \
252 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
253 CRYPTO_ALG_ALLOCATES_MEMORY)
254
255 /*
256 * Given the type and mask that specify the flags restrictions on a template
257 * instance being created, return the mask that should be passed to
258 * crypto_grab_*() (along with type=0) to honor any request the user made to
259 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
260 */
crypto_algt_inherited_mask(struct crypto_attr_type * algt)261 static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
262 {
263 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
264 }
265
266 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
267
268 /**
269 * crypto_memneq - Compare two areas of memory without leaking
270 * timing information.
271 *
272 * @a: One area of memory
273 * @b: Another area of memory
274 * @size: The size of the area.
275 *
276 * Returns 0 when data is equal, 1 otherwise.
277 */
crypto_memneq(const void * a,const void * b,size_t size)278 static inline int crypto_memneq(const void *a, const void *b, size_t size)
279 {
280 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
281 }
282
283 int crypto_register_notifier(struct notifier_block *nb);
284 int crypto_unregister_notifier(struct notifier_block *nb);
285
286 /* Crypto notification events. */
287 enum {
288 CRYPTO_MSG_ALG_REQUEST,
289 CRYPTO_MSG_ALG_REGISTER,
290 CRYPTO_MSG_ALG_LOADED,
291 };
292
293 #endif /* _CRYPTO_ALGAPI_H */
294