• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019 The FFmpeg Project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/avassert.h"
22 #include "libavutil/channel_layout.h"
23 #include "libavutil/opt.h"
24 #include "avfilter.h"
25 #include "audio.h"
26 #include "formats.h"
27 
28 #define MAX_OVERSAMPLE 64
29 
30 enum ASoftClipTypes {
31     ASC_HARD = -1,
32     ASC_TANH,
33     ASC_ATAN,
34     ASC_CUBIC,
35     ASC_EXP,
36     ASC_ALG,
37     ASC_QUINTIC,
38     ASC_SIN,
39     ASC_ERF,
40     NB_TYPES,
41 };
42 
43 typedef struct Lowpass {
44     float  fb0, fb1, fb2;
45     float  fa0, fa1, fa2;
46 
47     double db0, db1, db2;
48     double da0, da1, da2;
49 } Lowpass;
50 
51 typedef struct ASoftClipContext {
52     const AVClass *class;
53 
54     int type;
55     int oversample;
56     int64_t delay;
57     double threshold;
58     double output;
59     double param;
60 
61     Lowpass lowpass[MAX_OVERSAMPLE];
62     AVFrame *frame[2];
63 
64     void (*filter)(struct ASoftClipContext *s, void **dst, const void **src,
65                    int nb_samples, int channels, int start, int end);
66 } ASoftClipContext;
67 
68 #define OFFSET(x) offsetof(ASoftClipContext, x)
69 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
70 
71 static const AVOption asoftclip_options[] = {
72     { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT,    {.i64=0},         -1, NB_TYPES-1, A, "types" },
73     { "hard",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_HARD},   0,          0, A, "types" },
74     { "tanh",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_TANH},   0,          0, A, "types" },
75     { "atan",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ATAN},   0,          0, A, "types" },
76     { "cubic",               NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_CUBIC},  0,          0, A, "types" },
77     { "exp",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_EXP},    0,          0, A, "types" },
78     { "alg",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ALG},    0,          0, A, "types" },
79     { "quintic",             NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_QUINTIC},0,          0, A, "types" },
80     { "sin",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_SIN},    0,          0, A, "types" },
81     { "erf",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ERF},    0,          0, A, "types" },
82     { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A },
83     { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A },
84     { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01,        3, A },
85     { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A },
86     { NULL }
87 };
88 
89 AVFILTER_DEFINE_CLASS(asoftclip);
90 
get_lowpass(Lowpass * s,double frequency,double sample_rate)91 static void get_lowpass(Lowpass *s,
92                         double frequency,
93                         double sample_rate)
94 {
95     double w0 = 2 * M_PI * frequency / sample_rate;
96     double alpha = sin(w0) / (2 * 0.8);
97     double factor;
98 
99     s->da0 =  1 + alpha;
100     s->da1 = -2 * cos(w0);
101     s->da2 =  1 - alpha;
102     s->db0 = (1 - cos(w0)) / 2;
103     s->db1 =  1 - cos(w0);
104     s->db2 = (1 - cos(w0)) / 2;
105 
106     s->da1 /= s->da0;
107     s->da2 /= s->da0;
108     s->db0 /= s->da0;
109     s->db1 /= s->da0;
110     s->db2 /= s->da0;
111     s->da0 /= s->da0;
112 
113     factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2);
114     s->db0 *= factor;
115     s->db1 *= factor;
116     s->db2 *= factor;
117 
118     s->fa0 = s->da0;
119     s->fa1 = s->da1;
120     s->fa2 = s->da2;
121     s->fb0 = s->db0;
122     s->fb1 = s->db1;
123     s->fb2 = s->db2;
124 }
125 
run_lowpassf(const Lowpass * const s,float src,float * w)126 static inline float run_lowpassf(const Lowpass *const s,
127                                  float src, float *w)
128 {
129     float dst;
130 
131     dst = src * s->fb0 + w[0];
132     w[0] = s->fb1 * src + w[1] - s->fa1 * dst;
133     w[1] = s->fb2 * src - s->fa2 * dst;
134 
135     return dst;
136 }
137 
filter_flt(ASoftClipContext * s,void ** dptr,const void ** sptr,int nb_samples,int channels,int start,int end)138 static void filter_flt(ASoftClipContext *s,
139                        void **dptr, const void **sptr,
140                        int nb_samples, int channels,
141                        int start, int end)
142 {
143     const int oversample = s->oversample;
144     const int nb_osamples = nb_samples * oversample;
145     const float scale = oversample > 1 ? oversample * 0.5f : 1.f;
146     float threshold = s->threshold;
147     float gain = s->output * threshold;
148     float factor = 1.f / threshold;
149     float param = s->param;
150 
151     for (int c = start; c < end; c++) {
152         float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
153         const float *src = sptr[c];
154         float *dst = dptr[c];
155 
156         for (int n = 0; n < nb_samples; n++) {
157             dst[oversample * n] = src[n];
158 
159             for (int m = 1; m < oversample; m++)
160                 dst[oversample * n + m] = 0.f;
161         }
162 
163         for (int n = 0; n < nb_osamples && oversample > 1; n++)
164             dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
165 
166         switch (s->type) {
167         case ASC_HARD:
168             for (int n = 0; n < nb_osamples; n++) {
169                 dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f);
170                 dst[n] *= gain;
171             }
172             break;
173         case ASC_TANH:
174             for (int n = 0; n < nb_osamples; n++) {
175                 dst[n] = tanhf(dst[n] * factor * param);
176                 dst[n] *= gain;
177             }
178             break;
179         case ASC_ATAN:
180             for (int n = 0; n < nb_osamples; n++) {
181                 dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param);
182                 dst[n] *= gain;
183             }
184             break;
185         case ASC_CUBIC:
186             for (int n = 0; n < nb_osamples; n++) {
187                 float sample = dst[n] * factor;
188 
189                 if (FFABS(sample) >= 1.5f)
190                     dst[n] = FFSIGN(sample);
191                 else
192                     dst[n] = sample - 0.1481f * powf(sample, 3.f);
193                 dst[n] *= gain;
194             }
195             break;
196         case ASC_EXP:
197             for (int n = 0; n < nb_osamples; n++) {
198                 dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.;
199                 dst[n] *= gain;
200             }
201             break;
202         case ASC_ALG:
203             for (int n = 0; n < nb_osamples; n++) {
204                 float sample = dst[n] * factor;
205 
206                 dst[n] = sample / (sqrtf(param + sample * sample));
207                 dst[n] *= gain;
208             }
209             break;
210         case ASC_QUINTIC:
211             for (int n = 0; n < nb_osamples; n++) {
212                 float sample = dst[n] * factor;
213 
214                 if (FFABS(sample) >= 1.25)
215                     dst[n] = FFSIGN(sample);
216                 else
217                     dst[n] = sample - 0.08192f * powf(sample, 5.f);
218                 dst[n] *= gain;
219             }
220             break;
221         case ASC_SIN:
222             for (int n = 0; n < nb_osamples; n++) {
223                 float sample = dst[n] * factor;
224 
225                 if (FFABS(sample) >= M_PI_2)
226                     dst[n] = FFSIGN(sample);
227                 else
228                     dst[n] = sinf(sample);
229                 dst[n] *= gain;
230             }
231             break;
232         case ASC_ERF:
233             for (int n = 0; n < nb_osamples; n++) {
234                 dst[n] = erff(dst[n] * factor);
235                 dst[n] *= gain;
236             }
237             break;
238         default:
239             av_assert0(0);
240         }
241 
242         w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
243         for (int n = 0; n < nb_osamples && oversample > 1; n++)
244             dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
245 
246         for (int n = 0; n < nb_samples; n++)
247             dst[n] = dst[n * oversample] * scale;
248     }
249 }
250 
run_lowpassd(const Lowpass * const s,double src,double * w)251 static inline double run_lowpassd(const Lowpass *const s,
252                                   double src, double *w)
253 {
254     double dst;
255 
256     dst = src * s->db0 + w[0];
257     w[0] = s->db1 * src + w[1] - s->da1 * dst;
258     w[1] = s->db2 * src - s->da2 * dst;
259 
260     return dst;
261 }
262 
filter_dbl(ASoftClipContext * s,void ** dptr,const void ** sptr,int nb_samples,int channels,int start,int end)263 static void filter_dbl(ASoftClipContext *s,
264                        void **dptr, const void **sptr,
265                        int nb_samples, int channels,
266                        int start, int end)
267 {
268     const int oversample = s->oversample;
269     const int nb_osamples = nb_samples * oversample;
270     const double scale = oversample > 1 ? oversample * 0.5 : 1.;
271     double threshold = s->threshold;
272     double gain = s->output * threshold;
273     double factor = 1. / threshold;
274     double param = s->param;
275 
276     for (int c = start; c < end; c++) {
277         double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
278         const double *src = sptr[c];
279         double *dst = dptr[c];
280 
281         for (int n = 0; n < nb_samples; n++) {
282             dst[oversample * n] = src[n];
283 
284             for (int m = 1; m < oversample; m++)
285                 dst[oversample * n + m] = 0.f;
286         }
287 
288         for (int n = 0; n < nb_osamples && oversample > 1; n++)
289             dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
290 
291         switch (s->type) {
292         case ASC_HARD:
293             for (int n = 0; n < nb_osamples; n++) {
294                 dst[n] = av_clipd(dst[n] * factor, -1., 1.);
295                 dst[n] *= gain;
296             }
297             break;
298         case ASC_TANH:
299             for (int n = 0; n < nb_osamples; n++) {
300                 dst[n] = tanh(dst[n] * factor * param);
301                 dst[n] *= gain;
302             }
303             break;
304         case ASC_ATAN:
305             for (int n = 0; n < nb_osamples; n++) {
306                 dst[n] = 2. / M_PI * atan(dst[n] * factor * param);
307                 dst[n] *= gain;
308             }
309             break;
310         case ASC_CUBIC:
311             for (int n = 0; n < nb_osamples; n++) {
312                 double sample = dst[n] * factor;
313 
314                 if (FFABS(sample) >= 1.5)
315                     dst[n] = FFSIGN(sample);
316                 else
317                     dst[n] = sample - 0.1481 * pow(sample, 3.);
318                 dst[n] *= gain;
319             }
320             break;
321         case ASC_EXP:
322             for (int n = 0; n < nb_osamples; n++) {
323                 dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.;
324                 dst[n] *= gain;
325             }
326             break;
327         case ASC_ALG:
328             for (int n = 0; n < nb_osamples; n++) {
329                 double sample = dst[n] * factor;
330 
331                 dst[n] = sample / (sqrt(param + sample * sample));
332                 dst[n] *= gain;
333             }
334             break;
335         case ASC_QUINTIC:
336             for (int n = 0; n < nb_osamples; n++) {
337                 double sample = dst[n] * factor;
338 
339                 if (FFABS(sample) >= 1.25)
340                     dst[n] = FFSIGN(sample);
341                 else
342                     dst[n] = sample - 0.08192 * pow(sample, 5.);
343                 dst[n] *= gain;
344             }
345             break;
346         case ASC_SIN:
347             for (int n = 0; n < nb_osamples; n++) {
348                 double sample = dst[n] * factor;
349 
350                 if (FFABS(sample) >= M_PI_2)
351                     dst[n] = FFSIGN(sample);
352                 else
353                     dst[n] = sin(sample);
354                 dst[n] *= gain;
355             }
356             break;
357         case ASC_ERF:
358             for (int n = 0; n < nb_osamples; n++) {
359                 dst[n] = erf(dst[n] * factor);
360                 dst[n] *= gain;
361             }
362             break;
363         default:
364             av_assert0(0);
365         }
366 
367         w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
368         for (int n = 0; n < nb_osamples && oversample > 1; n++)
369             dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
370 
371         for (int n = 0; n < nb_samples; n++)
372             dst[n] = dst[n * oversample] * scale;
373     }
374 }
375 
config_input(AVFilterLink * inlink)376 static int config_input(AVFilterLink *inlink)
377 {
378     AVFilterContext *ctx = inlink->dst;
379     ASoftClipContext *s = ctx->priv;
380 
381     switch (inlink->format) {
382     case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break;
383     case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break;
384     default: av_assert0(0);
385     }
386 
387     s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
388     s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
389     if (!s->frame[0] || !s->frame[1])
390         return AVERROR(ENOMEM);
391 
392     for (int i = 0; i < MAX_OVERSAMPLE; i++) {
393         get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1));
394     }
395 
396     return 0;
397 }
398 
399 typedef struct ThreadData {
400     AVFrame *in, *out;
401     int nb_samples;
402     int channels;
403 } ThreadData;
404 
filter_channels(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)405 static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
406 {
407     ASoftClipContext *s = ctx->priv;
408     ThreadData *td = arg;
409     AVFrame *out = td->out;
410     AVFrame *in = td->in;
411     const int channels = td->channels;
412     const int nb_samples = td->nb_samples;
413     const int start = (channels * jobnr) / nb_jobs;
414     const int end = (channels * (jobnr+1)) / nb_jobs;
415 
416     s->filter(s, (void **)out->extended_data, (const void **)in->extended_data,
417               nb_samples, channels, start, end);
418 
419     return 0;
420 }
421 
filter_frame(AVFilterLink * inlink,AVFrame * in)422 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
423 {
424     AVFilterContext *ctx = inlink->dst;
425     ASoftClipContext *s = ctx->priv;
426     AVFilterLink *outlink = ctx->outputs[0];
427     int nb_samples, channels;
428     ThreadData td;
429     AVFrame *out;
430 
431     if (av_frame_is_writable(in) && s->oversample == 1) {
432         out = in;
433     } else {
434         out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample);
435         if (!out) {
436             av_frame_free(&in);
437             return AVERROR(ENOMEM);
438         }
439         av_frame_copy_props(out, in);
440     }
441 
442     nb_samples = in->nb_samples;
443     channels = in->ch_layout.nb_channels;
444 
445     td.in = in;
446     td.out = out;
447     td.nb_samples = nb_samples;
448     td.channels = channels;
449     ff_filter_execute(ctx, filter_channels, &td, NULL,
450                       FFMIN(channels, ff_filter_get_nb_threads(ctx)));
451 
452     if (out != in)
453         av_frame_free(&in);
454 
455     out->nb_samples /= s->oversample;
456     return ff_filter_frame(outlink, out);
457 }
458 
uninit(AVFilterContext * ctx)459 static av_cold void uninit(AVFilterContext *ctx)
460 {
461     ASoftClipContext *s = ctx->priv;
462 
463     av_frame_free(&s->frame[0]);
464     av_frame_free(&s->frame[1]);
465 }
466 
467 static const AVFilterPad inputs[] = {
468     {
469         .name         = "default",
470         .type         = AVMEDIA_TYPE_AUDIO,
471         .filter_frame = filter_frame,
472         .config_props = config_input,
473     },
474 };
475 
476 static const AVFilterPad outputs[] = {
477     {
478         .name = "default",
479         .type = AVMEDIA_TYPE_AUDIO,
480     },
481 };
482 
483 const AVFilter ff_af_asoftclip = {
484     .name           = "asoftclip",
485     .description    = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."),
486     .priv_size      = sizeof(ASoftClipContext),
487     .priv_class     = &asoftclip_class,
488     FILTER_INPUTS(inputs),
489     FILTER_OUTPUTS(outputs),
490     FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP),
491     .uninit         = uninit,
492     .process_command = ff_filter_process_command,
493     .flags          = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
494                       AVFILTER_FLAG_SLICE_THREADS,
495 };
496