• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/set.h"
25 #include "util/dag.h"
26 
27 static void
append_edge(struct dag_node * parent,struct dag_node * child,uintptr_t data)28 append_edge(struct dag_node *parent, struct dag_node *child, uintptr_t data)
29 {
30    /* Remove the child as a DAG head. */
31    list_delinit(&child->link);
32 
33    struct dag_edge edge = {
34       .child = child,
35       .data = data,
36    };
37 
38    util_dynarray_append(&parent->edges, struct dag_edge, edge);
39    child->parent_count++;
40 }
41 
42 /**
43  * Adds a directed edge from the parent node to the child.
44  *
45  * Both nodes should have been initialized with dag_init_node().  The edge
46  * list may contain multiple edges to the same child with different data.
47  */
48 void
dag_add_edge(struct dag_node * parent,struct dag_node * child,uintptr_t data)49 dag_add_edge(struct dag_node *parent, struct dag_node *child, uintptr_t data)
50 {
51    util_dynarray_foreach(&parent->edges, struct dag_edge, edge) {
52       if (edge->child == child && edge->data == data)
53          return;
54    }
55 
56    append_edge(parent, child, data);
57 }
58 
59 /**
60  * Adds a directed edge from the parent node to the child.
61  *
62  * Both nodes should have been initialized with dag_init_node(). If there is
63  * already an existing edge, the data is updated to the maximum of the
64  * previous data and the new data. This is useful if the data represents a
65  * delay.
66  */
67 void
dag_add_edge_max_data(struct dag_node * parent,struct dag_node * child,uintptr_t data)68 dag_add_edge_max_data(struct dag_node *parent, struct dag_node *child,
69                       uintptr_t data)
70 {
71    util_dynarray_foreach(&parent->edges, struct dag_edge, edge) {
72       if (edge->child == child) {
73          edge->data = MAX2(edge->data, data);
74          return;
75       }
76    }
77 
78    append_edge(parent, child, data);
79 }
80 
81 /* Removes a single edge from the graph, promoting the child to a DAG head.
82  *
83  * Note that calling this other than through dag_prune_head() means that you
84  * need to be careful when iterating the edges of remaining nodes for NULL
85  * children.
86  */
87 void
dag_remove_edge(struct dag * dag,struct dag_edge * edge)88 dag_remove_edge(struct dag *dag, struct dag_edge *edge)
89 {
90    if (!edge->child)
91       return;
92 
93    struct dag_node *child = edge->child;
94    child->parent_count--;
95    if (child->parent_count == 0)
96       list_addtail(&child->link, &dag->heads);
97 
98    edge->child = NULL;
99    edge->data = 0;
100 }
101 
102 /**
103  * Removes a DAG head from the graph, and moves any new dag heads into the
104  * heads list.
105  */
106 void
dag_prune_head(struct dag * dag,struct dag_node * node)107 dag_prune_head(struct dag *dag, struct dag_node *node)
108 {
109    assert(!node->parent_count);
110 
111    list_delinit(&node->link);
112 
113    util_dynarray_foreach(&node->edges, struct dag_edge, edge) {
114       dag_remove_edge(dag, edge);
115    }
116 }
117 
118 /**
119  * Initializes DAG node (probably embedded in some other datastructure in the
120  * user).
121  */
122 void
dag_init_node(struct dag * dag,struct dag_node * node)123 dag_init_node(struct dag *dag, struct dag_node *node)
124 {
125    util_dynarray_init(&node->edges, dag);
126    list_addtail(&node->link, &dag->heads);
127 }
128 
129 struct dag_traverse_bottom_up_state {
130    struct set *seen;
131    void *data;
132 };
133 
134 static void
dag_traverse_bottom_up_node(struct dag_node * node,void (* cb)(struct dag_node * node,void * data),struct dag_traverse_bottom_up_state * state)135 dag_traverse_bottom_up_node(struct dag_node *node,
136                             void (*cb)(struct dag_node *node,
137                                        void *data),
138                             struct dag_traverse_bottom_up_state *state)
139 {
140    if (_mesa_set_search(state->seen, node))
141       return;
142 
143    struct util_dynarray stack;
144    util_dynarray_init(&stack, NULL);
145 
146    do {
147       assert(node);
148 
149       while (node->edges.size != 0) {
150          util_dynarray_append(&stack, struct dag_node *, node);
151 
152          /* Push unprocessed children onto stack in reverse order. Note that
153           * it's possible for any of the children nodes to already be on the
154           * stack.
155           */
156          util_dynarray_foreach_reverse(&node->edges, struct dag_edge, edge) {
157             if (!_mesa_set_search(state->seen, edge->child)) {
158                util_dynarray_append(&stack, struct dag_node *, edge->child);
159             }
160          }
161 
162          /* Get last element pushed: either left-most child or current node.
163           * If it's the current node, that means that we've processed all its
164           * children already.
165           */
166          struct dag_node *top = util_dynarray_pop(&stack, struct dag_node *);
167          if (top == node)
168             break;
169          node = top;
170       }
171 
172       /* Process the node */
173       cb(node, state->data);
174       _mesa_set_add(state->seen, node);
175 
176       /* Find the next unprocessed node in the stack */
177       do {
178          node = NULL;
179          if (stack.size == 0)
180             break;
181 
182          node = util_dynarray_pop(&stack, struct dag_node *);
183       } while (_mesa_set_search(state->seen, node));
184    } while (node);
185 
186    util_dynarray_fini(&stack);
187 }
188 
189 /**
190  * Walks the DAG from leaves to the root, ensuring that each node is only seen
191  * once its children have been, and each node is only traversed once.
192  */
193 void
dag_traverse_bottom_up(struct dag * dag,void (* cb)(struct dag_node * node,void * data),void * data)194 dag_traverse_bottom_up(struct dag *dag, void (*cb)(struct dag_node *node,
195                                                    void *data), void *data)
196 {
197    struct dag_traverse_bottom_up_state state = {
198       .seen = _mesa_pointer_set_create(NULL),
199       .data = data,
200    };
201 
202    list_for_each_entry(struct dag_node, node, &dag->heads, link) {
203       dag_traverse_bottom_up_node(node, cb, &state);
204    }
205 
206    ralloc_free(state.seen);
207 }
208 
209 /**
210  * Creates an empty DAG datastructure.
211  */
212 struct dag *
dag_create(void * mem_ctx)213 dag_create(void *mem_ctx)
214 {
215    struct dag *dag = rzalloc(mem_ctx, struct dag);
216 
217    list_inithead(&dag->heads);
218 
219    return dag;
220 }
221 
222