• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
152 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)153 static int get_swap_bios(void)
154 {
155 	int latch = READ_ONCE(swap_bios);
156 	if (unlikely(latch <= 0))
157 		latch = DEFAULT_SWAP_BIOS;
158 	return latch;
159 }
160 
161 /*
162  * For mempools pre-allocation at the table loading time.
163  */
164 struct dm_md_mempools {
165 	struct bio_set bs;
166 	struct bio_set io_bs;
167 };
168 
169 struct table_device {
170 	struct list_head list;
171 	refcount_t count;
172 	struct dm_dev dm_dev;
173 };
174 
175 /*
176  * Bio-based DM's mempools' reserved IOs set by the user.
177  */
178 #define RESERVED_BIO_BASED_IOS		16
179 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
180 
__dm_get_module_param_int(int * module_param,int min,int max)181 static int __dm_get_module_param_int(int *module_param, int min, int max)
182 {
183 	int param = READ_ONCE(*module_param);
184 	int modified_param = 0;
185 	bool modified = true;
186 
187 	if (param < min)
188 		modified_param = min;
189 	else if (param > max)
190 		modified_param = max;
191 	else
192 		modified = false;
193 
194 	if (modified) {
195 		(void)cmpxchg(module_param, param, modified_param);
196 		param = modified_param;
197 	}
198 
199 	return param;
200 }
201 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)202 unsigned __dm_get_module_param(unsigned *module_param,
203 			       unsigned def, unsigned max)
204 {
205 	unsigned param = READ_ONCE(*module_param);
206 	unsigned modified_param = 0;
207 
208 	if (!param)
209 		modified_param = def;
210 	else if (param > max)
211 		modified_param = max;
212 
213 	if (modified_param) {
214 		(void)cmpxchg(module_param, param, modified_param);
215 		param = modified_param;
216 	}
217 
218 	return param;
219 }
220 
dm_get_reserved_bio_based_ios(void)221 unsigned dm_get_reserved_bio_based_ios(void)
222 {
223 	return __dm_get_module_param(&reserved_bio_based_ios,
224 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
225 }
226 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
227 
dm_get_numa_node(void)228 static unsigned dm_get_numa_node(void)
229 {
230 	return __dm_get_module_param_int(&dm_numa_node,
231 					 DM_NUMA_NODE, num_online_nodes() - 1);
232 }
233 
local_init(void)234 static int __init local_init(void)
235 {
236 	int r;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		return r;
241 
242 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
243 	if (!deferred_remove_workqueue) {
244 		r = -ENOMEM;
245 		goto out_uevent_exit;
246 	}
247 
248 	_major = major;
249 	r = register_blkdev(_major, _name);
250 	if (r < 0)
251 		goto out_free_workqueue;
252 
253 	if (!_major)
254 		_major = r;
255 
256 	return 0;
257 
258 out_free_workqueue:
259 	destroy_workqueue(deferred_remove_workqueue);
260 out_uevent_exit:
261 	dm_uevent_exit();
262 
263 	return r;
264 }
265 
local_exit(void)266 static void local_exit(void)
267 {
268 	destroy_workqueue(deferred_remove_workqueue);
269 
270 	unregister_blkdev(_major, _name);
271 	dm_uevent_exit();
272 
273 	_major = 0;
274 
275 	DMINFO("cleaned up");
276 }
277 
278 static int (*_inits[])(void) __initdata = {
279 	local_init,
280 	dm_target_init,
281 	dm_linear_init,
282 	dm_stripe_init,
283 	dm_io_init,
284 	dm_kcopyd_init,
285 	dm_interface_init,
286 	dm_statistics_init,
287 };
288 
289 static void (*_exits[])(void) = {
290 	local_exit,
291 	dm_target_exit,
292 	dm_linear_exit,
293 	dm_stripe_exit,
294 	dm_io_exit,
295 	dm_kcopyd_exit,
296 	dm_interface_exit,
297 	dm_statistics_exit,
298 };
299 
dm_init(void)300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
dm_exit(void)321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_destroy(&_minor_idr);
332 }
333 
334 /*
335  * Block device functions
336  */
dm_deleting_md(struct mapped_device * md)337 int dm_deleting_md(struct mapped_device *md)
338 {
339 	return test_bit(DMF_DELETING, &md->flags);
340 }
341 
dm_blk_open(struct block_device * bdev,fmode_t mode)342 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
343 {
344 	struct mapped_device *md;
345 
346 	spin_lock(&_minor_lock);
347 
348 	md = bdev->bd_disk->private_data;
349 	if (!md)
350 		goto out;
351 
352 	if (test_bit(DMF_FREEING, &md->flags) ||
353 	    dm_deleting_md(md)) {
354 		md = NULL;
355 		goto out;
356 	}
357 
358 	dm_get(md);
359 	atomic_inc(&md->open_count);
360 out:
361 	spin_unlock(&_minor_lock);
362 
363 	return md ? 0 : -ENXIO;
364 }
365 
dm_blk_close(struct gendisk * disk,fmode_t mode)366 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
367 {
368 	struct mapped_device *md;
369 
370 	spin_lock(&_minor_lock);
371 
372 	md = disk->private_data;
373 	if (WARN_ON(!md))
374 		goto out;
375 
376 	if (atomic_dec_and_test(&md->open_count) &&
377 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
378 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
379 
380 	dm_put(md);
381 out:
382 	spin_unlock(&_minor_lock);
383 }
384 
dm_open_count(struct mapped_device * md)385 int dm_open_count(struct mapped_device *md)
386 {
387 	return atomic_read(&md->open_count);
388 }
389 
390 /*
391  * Guarantees nothing is using the device before it's deleted.
392  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)393 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
394 {
395 	int r = 0;
396 
397 	spin_lock(&_minor_lock);
398 
399 	if (dm_open_count(md)) {
400 		r = -EBUSY;
401 		if (mark_deferred)
402 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
403 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
404 		r = -EEXIST;
405 	else
406 		set_bit(DMF_DELETING, &md->flags);
407 
408 	spin_unlock(&_minor_lock);
409 
410 	return r;
411 }
412 
dm_cancel_deferred_remove(struct mapped_device * md)413 int dm_cancel_deferred_remove(struct mapped_device *md)
414 {
415 	int r = 0;
416 
417 	spin_lock(&_minor_lock);
418 
419 	if (test_bit(DMF_DELETING, &md->flags))
420 		r = -EBUSY;
421 	else
422 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
423 
424 	spin_unlock(&_minor_lock);
425 
426 	return r;
427 }
428 
do_deferred_remove(struct work_struct * w)429 static void do_deferred_remove(struct work_struct *w)
430 {
431 	dm_deferred_remove();
432 }
433 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)434 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
435 {
436 	struct mapped_device *md = bdev->bd_disk->private_data;
437 
438 	return dm_get_geometry(md, geo);
439 }
440 
441 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)442 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
443 {
444 	struct dm_report_zones_args *args = data;
445 	sector_t sector_diff = args->tgt->begin - args->start;
446 
447 	/*
448 	 * Ignore zones beyond the target range.
449 	 */
450 	if (zone->start >= args->start + args->tgt->len)
451 		return 0;
452 
453 	/*
454 	 * Remap the start sector and write pointer position of the zone
455 	 * to match its position in the target range.
456 	 */
457 	zone->start += sector_diff;
458 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
459 		if (zone->cond == BLK_ZONE_COND_FULL)
460 			zone->wp = zone->start + zone->len;
461 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
462 			zone->wp = zone->start;
463 		else
464 			zone->wp += sector_diff;
465 	}
466 
467 	args->next_sector = zone->start + zone->len;
468 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
469 }
470 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
471 
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)472 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
473 		unsigned int nr_zones, report_zones_cb cb, void *data)
474 {
475 	struct mapped_device *md = disk->private_data;
476 	struct dm_table *map;
477 	int srcu_idx, ret;
478 	struct dm_report_zones_args args = {
479 		.next_sector = sector,
480 		.orig_data = data,
481 		.orig_cb = cb,
482 	};
483 
484 	if (dm_suspended_md(md))
485 		return -EAGAIN;
486 
487 	map = dm_get_live_table(md, &srcu_idx);
488 	if (!map) {
489 		ret = -EIO;
490 		goto out;
491 	}
492 
493 	do {
494 		struct dm_target *tgt;
495 
496 		tgt = dm_table_find_target(map, args.next_sector);
497 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
498 			ret = -EIO;
499 			goto out;
500 		}
501 
502 		args.tgt = tgt;
503 		ret = tgt->type->report_zones(tgt, &args,
504 					      nr_zones - args.zone_idx);
505 		if (ret < 0)
506 			goto out;
507 	} while (args.zone_idx < nr_zones &&
508 		 args.next_sector < get_capacity(disk));
509 
510 	ret = args.zone_idx;
511 out:
512 	dm_put_live_table(md, srcu_idx);
513 	return ret;
514 }
515 #else
516 #define dm_blk_report_zones		NULL
517 #endif /* CONFIG_BLK_DEV_ZONED */
518 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
520 			    struct block_device **bdev)
521 {
522 	struct dm_target *tgt;
523 	struct dm_table *map;
524 	int r;
525 
526 retry:
527 	r = -ENOTTY;
528 	map = dm_get_live_table(md, srcu_idx);
529 	if (!map || !dm_table_get_size(map))
530 		return r;
531 
532 	/* We only support devices that have a single target */
533 	if (dm_table_get_num_targets(map) != 1)
534 		return r;
535 
536 	tgt = dm_table_get_target(map, 0);
537 	if (!tgt->type->prepare_ioctl)
538 		return r;
539 
540 	if (dm_suspended_md(md))
541 		return -EAGAIN;
542 
543 	r = tgt->type->prepare_ioctl(tgt, bdev);
544 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
545 		dm_put_live_table(md, *srcu_idx);
546 		msleep(10);
547 		goto retry;
548 	}
549 
550 	return r;
551 }
552 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)553 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
554 {
555 	dm_put_live_table(md, srcu_idx);
556 }
557 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
559 			unsigned int cmd, unsigned long arg)
560 {
561 	struct mapped_device *md = bdev->bd_disk->private_data;
562 	int r, srcu_idx;
563 
564 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
565 	if (r < 0)
566 		goto out;
567 
568 	if (r > 0) {
569 		/*
570 		 * Target determined this ioctl is being issued against a
571 		 * subset of the parent bdev; require extra privileges.
572 		 */
573 		if (!capable(CAP_SYS_RAWIO)) {
574 			DMDEBUG_LIMIT(
575 	"%s: sending ioctl %x to DM device without required privilege.",
576 				current->comm, cmd);
577 			r = -ENOIOCTLCMD;
578 			goto out;
579 		}
580 	}
581 
582 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
583 out:
584 	dm_unprepare_ioctl(md, srcu_idx);
585 	return r;
586 }
587 
dm_start_time_ns_from_clone(struct bio * bio)588 u64 dm_start_time_ns_from_clone(struct bio *bio)
589 {
590 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
591 	struct dm_io *io = tio->io;
592 
593 	return jiffies_to_nsecs(io->start_time);
594 }
595 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
596 
start_io_acct(struct dm_io * io)597 static void start_io_acct(struct dm_io *io)
598 {
599 	struct mapped_device *md = io->md;
600 	struct bio *bio = io->orig_bio;
601 
602 	io->start_time = bio_start_io_acct(bio);
603 	if (unlikely(dm_stats_used(&md->stats)))
604 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
605 				    bio->bi_iter.bi_sector, bio_sectors(bio),
606 				    false, 0, &io->stats_aux);
607 }
608 
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)609 static void end_io_acct(struct mapped_device *md, struct bio *bio,
610 			unsigned long start_time, struct dm_stats_aux *stats_aux)
611 {
612 	unsigned long duration = jiffies - start_time;
613 
614 	if (unlikely(dm_stats_used(&md->stats)))
615 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
616 				    bio->bi_iter.bi_sector, bio_sectors(bio),
617 				    true, duration, stats_aux);
618 
619 	smp_wmb();
620 
621 	bio_end_io_acct(bio, start_time);
622 
623 	/* nudge anyone waiting on suspend queue */
624 	if (unlikely(wq_has_sleeper(&md->wait)))
625 		wake_up(&md->wait);
626 }
627 
alloc_io(struct mapped_device * md,struct bio * bio)628 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
629 {
630 	struct dm_io *io;
631 	struct dm_target_io *tio;
632 	struct bio *clone;
633 
634 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
635 	if (!clone)
636 		return NULL;
637 
638 	tio = container_of(clone, struct dm_target_io, clone);
639 	tio->inside_dm_io = true;
640 	tio->io = NULL;
641 
642 	io = container_of(tio, struct dm_io, tio);
643 	io->magic = DM_IO_MAGIC;
644 	io->status = 0;
645 	atomic_set(&io->io_count, 1);
646 	io->orig_bio = bio;
647 	io->md = md;
648 	spin_lock_init(&io->endio_lock);
649 
650 	start_io_acct(io);
651 
652 	return io;
653 }
654 
free_io(struct mapped_device * md,struct dm_io * io)655 static void free_io(struct mapped_device *md, struct dm_io *io)
656 {
657 	bio_put(&io->tio.clone);
658 }
659 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)660 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
661 				      unsigned target_bio_nr, gfp_t gfp_mask)
662 {
663 	struct dm_target_io *tio;
664 
665 	if (!ci->io->tio.io) {
666 		/* the dm_target_io embedded in ci->io is available */
667 		tio = &ci->io->tio;
668 	} else {
669 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
670 		if (!clone)
671 			return NULL;
672 
673 		tio = container_of(clone, struct dm_target_io, clone);
674 		tio->inside_dm_io = false;
675 	}
676 
677 	tio->magic = DM_TIO_MAGIC;
678 	tio->io = ci->io;
679 	tio->ti = ti;
680 	tio->target_bio_nr = target_bio_nr;
681 
682 	return tio;
683 }
684 
free_tio(struct dm_target_io * tio)685 static void free_tio(struct dm_target_io *tio)
686 {
687 	if (tio->inside_dm_io)
688 		return;
689 	bio_put(&tio->clone);
690 }
691 
692 /*
693  * Add the bio to the list of deferred io.
694  */
queue_io(struct mapped_device * md,struct bio * bio)695 static void queue_io(struct mapped_device *md, struct bio *bio)
696 {
697 	unsigned long flags;
698 
699 	spin_lock_irqsave(&md->deferred_lock, flags);
700 	bio_list_add(&md->deferred, bio);
701 	spin_unlock_irqrestore(&md->deferred_lock, flags);
702 	queue_work(md->wq, &md->work);
703 }
704 
705 /*
706  * Everyone (including functions in this file), should use this
707  * function to access the md->map field, and make sure they call
708  * dm_put_live_table() when finished.
709  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)710 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
711 {
712 	*srcu_idx = srcu_read_lock(&md->io_barrier);
713 
714 	return srcu_dereference(md->map, &md->io_barrier);
715 }
716 
dm_put_live_table(struct mapped_device * md,int srcu_idx)717 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
718 {
719 	srcu_read_unlock(&md->io_barrier, srcu_idx);
720 }
721 
dm_sync_table(struct mapped_device * md)722 void dm_sync_table(struct mapped_device *md)
723 {
724 	synchronize_srcu(&md->io_barrier);
725 	synchronize_rcu_expedited();
726 }
727 
728 /*
729  * A fast alternative to dm_get_live_table/dm_put_live_table.
730  * The caller must not block between these two functions.
731  */
dm_get_live_table_fast(struct mapped_device * md)732 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
733 {
734 	rcu_read_lock();
735 	return rcu_dereference(md->map);
736 }
737 
dm_put_live_table_fast(struct mapped_device * md)738 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
739 {
740 	rcu_read_unlock();
741 }
742 
743 static char *_dm_claim_ptr = "I belong to device-mapper";
744 
745 /*
746  * Open a table device so we can use it as a map destination.
747  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)748 static int open_table_device(struct table_device *td, dev_t dev,
749 			     struct mapped_device *md)
750 {
751 	struct block_device *bdev;
752 
753 	int r;
754 
755 	BUG_ON(td->dm_dev.bdev);
756 
757 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
758 	if (IS_ERR(bdev))
759 		return PTR_ERR(bdev);
760 
761 	r = bd_link_disk_holder(bdev, dm_disk(md));
762 	if (r) {
763 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
764 		return r;
765 	}
766 
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
769 	return 0;
770 }
771 
772 /*
773  * Close a table device that we've been using.
774  */
close_table_device(struct table_device * td,struct mapped_device * md)775 static void close_table_device(struct table_device *td, struct mapped_device *md)
776 {
777 	if (!td->dm_dev.bdev)
778 		return;
779 
780 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
781 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
782 	put_dax(td->dm_dev.dax_dev);
783 	td->dm_dev.bdev = NULL;
784 	td->dm_dev.dax_dev = NULL;
785 }
786 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)787 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788 					      fmode_t mode)
789 {
790 	struct table_device *td;
791 
792 	list_for_each_entry(td, l, list)
793 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794 			return td;
795 
796 	return NULL;
797 }
798 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)799 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
800 			struct dm_dev **result)
801 {
802 	int r;
803 	struct table_device *td;
804 
805 	mutex_lock(&md->table_devices_lock);
806 	td = find_table_device(&md->table_devices, dev, mode);
807 	if (!td) {
808 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
809 		if (!td) {
810 			mutex_unlock(&md->table_devices_lock);
811 			return -ENOMEM;
812 		}
813 
814 		td->dm_dev.mode = mode;
815 		td->dm_dev.bdev = NULL;
816 
817 		if ((r = open_table_device(td, dev, md))) {
818 			mutex_unlock(&md->table_devices_lock);
819 			kfree(td);
820 			return r;
821 		}
822 
823 		format_dev_t(td->dm_dev.name, dev);
824 
825 		refcount_set(&td->count, 1);
826 		list_add(&td->list, &md->table_devices);
827 	} else {
828 		refcount_inc(&td->count);
829 	}
830 	mutex_unlock(&md->table_devices_lock);
831 
832 	*result = &td->dm_dev;
833 	return 0;
834 }
835 EXPORT_SYMBOL_GPL(dm_get_table_device);
836 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)837 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
838 {
839 	struct table_device *td = container_of(d, struct table_device, dm_dev);
840 
841 	mutex_lock(&md->table_devices_lock);
842 	if (refcount_dec_and_test(&td->count)) {
843 		close_table_device(td, md);
844 		list_del(&td->list);
845 		kfree(td);
846 	}
847 	mutex_unlock(&md->table_devices_lock);
848 }
849 EXPORT_SYMBOL(dm_put_table_device);
850 
free_table_devices(struct list_head * devices)851 static void free_table_devices(struct list_head *devices)
852 {
853 	struct list_head *tmp, *next;
854 
855 	list_for_each_safe(tmp, next, devices) {
856 		struct table_device *td = list_entry(tmp, struct table_device, list);
857 
858 		DMWARN("dm_destroy: %s still exists with %d references",
859 		       td->dm_dev.name, refcount_read(&td->count));
860 		kfree(td);
861 	}
862 }
863 
864 /*
865  * Get the geometry associated with a dm device
866  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	*geo = md->geometry;
870 
871 	return 0;
872 }
873 
874 /*
875  * Set the geometry of a device.
876  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)877 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
880 
881 	if (geo->start > sz) {
882 		DMWARN("Start sector is beyond the geometry limits.");
883 		return -EINVAL;
884 	}
885 
886 	md->geometry = *geo;
887 
888 	return 0;
889 }
890 
__noflush_suspending(struct mapped_device * md)891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895 
896 /*
897  * Decrements the number of outstanding ios that a bio has been
898  * cloned into, completing the original io if necc.
899  */
dec_pending(struct dm_io * io,blk_status_t error)900 static void dec_pending(struct dm_io *io, blk_status_t error)
901 {
902 	unsigned long flags;
903 	blk_status_t io_error;
904 	struct bio *bio;
905 	struct mapped_device *md = io->md;
906 	unsigned long start_time = 0;
907 	struct dm_stats_aux stats_aux;
908 
909 	/* Push-back supersedes any I/O errors */
910 	if (unlikely(error)) {
911 		spin_lock_irqsave(&io->endio_lock, flags);
912 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
913 			io->status = error;
914 		spin_unlock_irqrestore(&io->endio_lock, flags);
915 	}
916 
917 	if (atomic_dec_and_test(&io->io_count)) {
918 		if (io->status == BLK_STS_DM_REQUEUE) {
919 			/*
920 			 * Target requested pushing back the I/O.
921 			 */
922 			spin_lock_irqsave(&md->deferred_lock, flags);
923 			if (__noflush_suspending(md))
924 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
925 				bio_list_add_head(&md->deferred, io->orig_bio);
926 			else
927 				/* noflush suspend was interrupted. */
928 				io->status = BLK_STS_IOERR;
929 			spin_unlock_irqrestore(&md->deferred_lock, flags);
930 		}
931 
932 		io_error = io->status;
933 		bio = io->orig_bio;
934 		start_time = io->start_time;
935 		stats_aux = io->stats_aux;
936 		free_io(md, io);
937 		end_io_acct(md, bio, start_time, &stats_aux);
938 
939 		if (io_error == BLK_STS_DM_REQUEUE)
940 			return;
941 
942 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
943 			/*
944 			 * Preflush done for flush with data, reissue
945 			 * without REQ_PREFLUSH.
946 			 */
947 			bio->bi_opf &= ~REQ_PREFLUSH;
948 			queue_io(md, bio);
949 		} else {
950 			/* done with normal IO or empty flush */
951 			if (io_error)
952 				bio->bi_status = io_error;
953 			bio_endio(bio);
954 		}
955 	}
956 }
957 
disable_discard(struct mapped_device * md)958 void disable_discard(struct mapped_device *md)
959 {
960 	struct queue_limits *limits = dm_get_queue_limits(md);
961 
962 	/* device doesn't really support DISCARD, disable it */
963 	limits->max_discard_sectors = 0;
964 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
965 }
966 
disable_write_same(struct mapped_device * md)967 void disable_write_same(struct mapped_device *md)
968 {
969 	struct queue_limits *limits = dm_get_queue_limits(md);
970 
971 	/* device doesn't really support WRITE SAME, disable it */
972 	limits->max_write_same_sectors = 0;
973 }
974 
disable_write_zeroes(struct mapped_device * md)975 void disable_write_zeroes(struct mapped_device *md)
976 {
977 	struct queue_limits *limits = dm_get_queue_limits(md);
978 
979 	/* device doesn't really support WRITE ZEROES, disable it */
980 	limits->max_write_zeroes_sectors = 0;
981 }
982 
swap_bios_limit(struct dm_target * ti,struct bio * bio)983 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
984 {
985 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
986 }
987 
clone_endio(struct bio * bio)988 static void clone_endio(struct bio *bio)
989 {
990 	blk_status_t error = bio->bi_status;
991 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
992 	struct dm_io *io = tio->io;
993 	struct mapped_device *md = tio->io->md;
994 	dm_endio_fn endio = tio->ti->type->end_io;
995 	struct bio *orig_bio = io->orig_bio;
996 
997 	if (unlikely(error == BLK_STS_TARGET)) {
998 		if (bio_op(bio) == REQ_OP_DISCARD &&
999 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1000 			disable_discard(md);
1001 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1002 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1003 			disable_write_same(md);
1004 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1005 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1006 			disable_write_zeroes(md);
1007 	}
1008 
1009 	/*
1010 	 * For zone-append bios get offset in zone of the written
1011 	 * sector and add that to the original bio sector pos.
1012 	 */
1013 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1014 		sector_t written_sector = bio->bi_iter.bi_sector;
1015 		struct request_queue *q = orig_bio->bi_disk->queue;
1016 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1017 
1018 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1019 	}
1020 
1021 	if (endio) {
1022 		int r = endio(tio->ti, bio, &error);
1023 		switch (r) {
1024 		case DM_ENDIO_REQUEUE:
1025 			error = BLK_STS_DM_REQUEUE;
1026 			fallthrough;
1027 		case DM_ENDIO_DONE:
1028 			break;
1029 		case DM_ENDIO_INCOMPLETE:
1030 			/* The target will handle the io */
1031 			return;
1032 		default:
1033 			DMWARN("unimplemented target endio return value: %d", r);
1034 			BUG();
1035 		}
1036 	}
1037 
1038 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1039 		struct mapped_device *md = io->md;
1040 		up(&md->swap_bios_semaphore);
1041 	}
1042 
1043 	free_tio(tio);
1044 	dec_pending(io, error);
1045 }
1046 
1047 /*
1048  * Return maximum size of I/O possible at the supplied sector up to the current
1049  * target boundary.
1050  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1051 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1052 						  sector_t target_offset)
1053 {
1054 	return ti->len - target_offset;
1055 }
1056 
max_io_len(struct dm_target * ti,sector_t sector)1057 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1058 {
1059 	sector_t target_offset = dm_target_offset(ti, sector);
1060 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1061 	sector_t max_len;
1062 
1063 	/*
1064 	 * Does the target need to split IO even further?
1065 	 * - varied (per target) IO splitting is a tenet of DM; this
1066 	 *   explains why stacked chunk_sectors based splitting via
1067 	 *   blk_max_size_offset() isn't possible here. So pass in
1068 	 *   ti->max_io_len to override stacked chunk_sectors.
1069 	 */
1070 	if (ti->max_io_len) {
1071 		max_len = blk_max_size_offset(ti->table->md->queue,
1072 					      target_offset, ti->max_io_len);
1073 		if (len > max_len)
1074 			len = max_len;
1075 	}
1076 
1077 	return len;
1078 }
1079 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1081 {
1082 	if (len > UINT_MAX) {
1083 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1084 		      (unsigned long long)len, UINT_MAX);
1085 		ti->error = "Maximum size of target IO is too large";
1086 		return -EINVAL;
1087 	}
1088 
1089 	ti->max_io_len = (uint32_t) len;
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1094 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1096 						sector_t sector, int *srcu_idx)
1097 	__acquires(md->io_barrier)
1098 {
1099 	struct dm_table *map;
1100 	struct dm_target *ti;
1101 
1102 	map = dm_get_live_table(md, srcu_idx);
1103 	if (!map)
1104 		return NULL;
1105 
1106 	ti = dm_table_find_target(map, sector);
1107 	if (!ti)
1108 		return NULL;
1109 
1110 	return ti;
1111 }
1112 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1114 				 long nr_pages, void **kaddr, pfn_t *pfn)
1115 {
1116 	struct mapped_device *md = dax_get_private(dax_dev);
1117 	sector_t sector = pgoff * PAGE_SECTORS;
1118 	struct dm_target *ti;
1119 	long len, ret = -EIO;
1120 	int srcu_idx;
1121 
1122 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1123 
1124 	if (!ti)
1125 		goto out;
1126 	if (!ti->type->direct_access)
1127 		goto out;
1128 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1129 	if (len < 1)
1130 		goto out;
1131 	nr_pages = min(len, nr_pages);
1132 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1133 
1134  out:
1135 	dm_put_live_table(md, srcu_idx);
1136 
1137 	return ret;
1138 }
1139 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1141 		int blocksize, sector_t start, sector_t len)
1142 {
1143 	struct mapped_device *md = dax_get_private(dax_dev);
1144 	struct dm_table *map;
1145 	bool ret = false;
1146 	int srcu_idx;
1147 
1148 	map = dm_get_live_table(md, &srcu_idx);
1149 	if (!map)
1150 		goto out;
1151 
1152 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1153 
1154 out:
1155 	dm_put_live_table(md, srcu_idx);
1156 
1157 	return ret;
1158 }
1159 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1160 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1161 				    void *addr, size_t bytes, struct iov_iter *i)
1162 {
1163 	struct mapped_device *md = dax_get_private(dax_dev);
1164 	sector_t sector = pgoff * PAGE_SECTORS;
1165 	struct dm_target *ti;
1166 	long ret = 0;
1167 	int srcu_idx;
1168 
1169 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170 
1171 	if (!ti)
1172 		goto out;
1173 	if (!ti->type->dax_copy_from_iter) {
1174 		ret = copy_from_iter(addr, bytes, i);
1175 		goto out;
1176 	}
1177 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1178  out:
1179 	dm_put_live_table(md, srcu_idx);
1180 
1181 	return ret;
1182 }
1183 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1184 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1185 		void *addr, size_t bytes, struct iov_iter *i)
1186 {
1187 	struct mapped_device *md = dax_get_private(dax_dev);
1188 	sector_t sector = pgoff * PAGE_SECTORS;
1189 	struct dm_target *ti;
1190 	long ret = 0;
1191 	int srcu_idx;
1192 
1193 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194 
1195 	if (!ti)
1196 		goto out;
1197 	if (!ti->type->dax_copy_to_iter) {
1198 		ret = copy_to_iter(addr, bytes, i);
1199 		goto out;
1200 	}
1201 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1202  out:
1203 	dm_put_live_table(md, srcu_idx);
1204 
1205 	return ret;
1206 }
1207 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1208 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1209 				  size_t nr_pages)
1210 {
1211 	struct mapped_device *md = dax_get_private(dax_dev);
1212 	sector_t sector = pgoff * PAGE_SECTORS;
1213 	struct dm_target *ti;
1214 	int ret = -EIO;
1215 	int srcu_idx;
1216 
1217 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1218 
1219 	if (!ti)
1220 		goto out;
1221 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1222 		/*
1223 		 * ->zero_page_range() is mandatory dax operation. If we are
1224 		 *  here, something is wrong.
1225 		 */
1226 		goto out;
1227 	}
1228 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1229  out:
1230 	dm_put_live_table(md, srcu_idx);
1231 
1232 	return ret;
1233 }
1234 
1235 /*
1236  * A target may call dm_accept_partial_bio only from the map routine.  It is
1237  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1238  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1239  *
1240  * dm_accept_partial_bio informs the dm that the target only wants to process
1241  * additional n_sectors sectors of the bio and the rest of the data should be
1242  * sent in a next bio.
1243  *
1244  * A diagram that explains the arithmetics:
1245  * +--------------------+---------------+-------+
1246  * |         1          |       2       |   3   |
1247  * +--------------------+---------------+-------+
1248  *
1249  * <-------------- *tio->len_ptr --------------->
1250  *                      <------- bi_size ------->
1251  *                      <-- n_sectors -->
1252  *
1253  * Region 1 was already iterated over with bio_advance or similar function.
1254  *	(it may be empty if the target doesn't use bio_advance)
1255  * Region 2 is the remaining bio size that the target wants to process.
1256  *	(it may be empty if region 1 is non-empty, although there is no reason
1257  *	 to make it empty)
1258  * The target requires that region 3 is to be sent in the next bio.
1259  *
1260  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1261  * the partially processed part (the sum of regions 1+2) must be the same for all
1262  * copies of the bio.
1263  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1264 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1265 {
1266 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1267 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1268 
1269 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1270 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1271 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1272 	BUG_ON(bi_size > *tio->len_ptr);
1273 	BUG_ON(n_sectors > bi_size);
1274 
1275 	*tio->len_ptr -= bi_size - n_sectors;
1276 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1277 }
1278 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1279 
__set_swap_bios_limit(struct mapped_device * md,int latch)1280 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1281 {
1282 	mutex_lock(&md->swap_bios_lock);
1283 	while (latch < md->swap_bios) {
1284 		cond_resched();
1285 		down(&md->swap_bios_semaphore);
1286 		md->swap_bios--;
1287 	}
1288 	while (latch > md->swap_bios) {
1289 		cond_resched();
1290 		up(&md->swap_bios_semaphore);
1291 		md->swap_bios++;
1292 	}
1293 	mutex_unlock(&md->swap_bios_lock);
1294 }
1295 
__map_bio(struct dm_target_io * tio)1296 static blk_qc_t __map_bio(struct dm_target_io *tio)
1297 {
1298 	int r;
1299 	sector_t sector;
1300 	struct bio *clone = &tio->clone;
1301 	struct dm_io *io = tio->io;
1302 	struct dm_target *ti = tio->ti;
1303 	blk_qc_t ret = BLK_QC_T_NONE;
1304 
1305 	clone->bi_end_io = clone_endio;
1306 
1307 	/*
1308 	 * Map the clone.  If r == 0 we don't need to do
1309 	 * anything, the target has assumed ownership of
1310 	 * this io.
1311 	 */
1312 	atomic_inc(&io->io_count);
1313 	sector = clone->bi_iter.bi_sector;
1314 
1315 	if (unlikely(swap_bios_limit(ti, clone))) {
1316 		struct mapped_device *md = io->md;
1317 		int latch = get_swap_bios();
1318 		if (unlikely(latch != md->swap_bios))
1319 			__set_swap_bios_limit(md, latch);
1320 		down(&md->swap_bios_semaphore);
1321 	}
1322 
1323 	r = ti->type->map(ti, clone);
1324 	switch (r) {
1325 	case DM_MAPIO_SUBMITTED:
1326 		break;
1327 	case DM_MAPIO_REMAPPED:
1328 		/* the bio has been remapped so dispatch it */
1329 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1330 				      bio_dev(io->orig_bio), sector);
1331 		ret = submit_bio_noacct(clone);
1332 		break;
1333 	case DM_MAPIO_KILL:
1334 		if (unlikely(swap_bios_limit(ti, clone))) {
1335 			struct mapped_device *md = io->md;
1336 			up(&md->swap_bios_semaphore);
1337 		}
1338 		free_tio(tio);
1339 		dec_pending(io, BLK_STS_IOERR);
1340 		break;
1341 	case DM_MAPIO_REQUEUE:
1342 		if (unlikely(swap_bios_limit(ti, clone))) {
1343 			struct mapped_device *md = io->md;
1344 			up(&md->swap_bios_semaphore);
1345 		}
1346 		free_tio(tio);
1347 		dec_pending(io, BLK_STS_DM_REQUEUE);
1348 		break;
1349 	default:
1350 		DMWARN("unimplemented target map return value: %d", r);
1351 		BUG();
1352 	}
1353 
1354 	return ret;
1355 }
1356 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1357 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1358 {
1359 	bio->bi_iter.bi_sector = sector;
1360 	bio->bi_iter.bi_size = to_bytes(len);
1361 }
1362 
1363 /*
1364  * Creates a bio that consists of range of complete bvecs.
1365  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1366 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1367 		     sector_t sector, unsigned len)
1368 {
1369 	struct bio *clone = &tio->clone;
1370 	int r;
1371 
1372 	__bio_clone_fast(clone, bio);
1373 
1374 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1375 	if (r < 0)
1376 		return r;
1377 
1378 	if (bio_integrity(bio)) {
1379 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1380 			     !dm_target_passes_integrity(tio->ti->type))) {
1381 			DMWARN("%s: the target %s doesn't support integrity data.",
1382 				dm_device_name(tio->io->md),
1383 				tio->ti->type->name);
1384 			return -EIO;
1385 		}
1386 
1387 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1388 		if (r < 0)
1389 			return r;
1390 	}
1391 
1392 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1393 	clone->bi_iter.bi_size = to_bytes(len);
1394 
1395 	if (bio_integrity(bio))
1396 		bio_integrity_trim(clone);
1397 
1398 	return 0;
1399 }
1400 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 				struct dm_target *ti, unsigned num_bios)
1403 {
1404 	struct dm_target_io *tio;
1405 	int try;
1406 
1407 	if (!num_bios)
1408 		return;
1409 
1410 	if (num_bios == 1) {
1411 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1412 		bio_list_add(blist, &tio->clone);
1413 		return;
1414 	}
1415 
1416 	for (try = 0; try < 2; try++) {
1417 		int bio_nr;
1418 		struct bio *bio;
1419 
1420 		if (try)
1421 			mutex_lock(&ci->io->md->table_devices_lock);
1422 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1423 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1424 			if (!tio)
1425 				break;
1426 
1427 			bio_list_add(blist, &tio->clone);
1428 		}
1429 		if (try)
1430 			mutex_unlock(&ci->io->md->table_devices_lock);
1431 		if (bio_nr == num_bios)
1432 			return;
1433 
1434 		while ((bio = bio_list_pop(blist))) {
1435 			tio = container_of(bio, struct dm_target_io, clone);
1436 			free_tio(tio);
1437 		}
1438 	}
1439 }
1440 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1441 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1442 					   struct dm_target_io *tio, unsigned *len)
1443 {
1444 	struct bio *clone = &tio->clone;
1445 
1446 	tio->len_ptr = len;
1447 
1448 	__bio_clone_fast(clone, ci->bio);
1449 	if (len)
1450 		bio_setup_sector(clone, ci->sector, *len);
1451 
1452 	return __map_bio(tio);
1453 }
1454 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1455 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1456 				  unsigned num_bios, unsigned *len)
1457 {
1458 	struct bio_list blist = BIO_EMPTY_LIST;
1459 	struct bio *bio;
1460 	struct dm_target_io *tio;
1461 
1462 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1463 
1464 	while ((bio = bio_list_pop(&blist))) {
1465 		tio = container_of(bio, struct dm_target_io, clone);
1466 		(void) __clone_and_map_simple_bio(ci, tio, len);
1467 	}
1468 }
1469 
__send_empty_flush(struct clone_info * ci)1470 static int __send_empty_flush(struct clone_info *ci)
1471 {
1472 	unsigned target_nr = 0;
1473 	struct dm_target *ti;
1474 	struct bio flush_bio;
1475 
1476 	/*
1477 	 * Use an on-stack bio for this, it's safe since we don't
1478 	 * need to reference it after submit. It's just used as
1479 	 * the basis for the clone(s).
1480 	 */
1481 	bio_init(&flush_bio, NULL, 0);
1482 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1483 	ci->bio = &flush_bio;
1484 	ci->sector_count = 0;
1485 
1486 	/*
1487 	 * Empty flush uses a statically initialized bio, as the base for
1488 	 * cloning.  However, blkg association requires that a bdev is
1489 	 * associated with a gendisk, which doesn't happen until the bdev is
1490 	 * opened.  So, blkg association is done at issue time of the flush
1491 	 * rather than when the device is created in alloc_dev().
1492 	 */
1493 	bio_set_dev(ci->bio, ci->io->md->bdev);
1494 
1495 	BUG_ON(bio_has_data(ci->bio));
1496 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1497 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1498 
1499 	bio_uninit(ci->bio);
1500 	return 0;
1501 }
1502 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1503 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1504 				    sector_t sector, unsigned *len)
1505 {
1506 	struct bio *bio = ci->bio;
1507 	struct dm_target_io *tio;
1508 	int r;
1509 
1510 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1511 	tio->len_ptr = len;
1512 	r = clone_bio(tio, bio, sector, *len);
1513 	if (r < 0) {
1514 		free_tio(tio);
1515 		return r;
1516 	}
1517 	(void) __map_bio(tio);
1518 
1519 	return 0;
1520 }
1521 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1522 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1523 				       unsigned num_bios)
1524 {
1525 	unsigned len;
1526 
1527 	/*
1528 	 * Even though the device advertised support for this type of
1529 	 * request, that does not mean every target supports it, and
1530 	 * reconfiguration might also have changed that since the
1531 	 * check was performed.
1532 	 */
1533 	if (!num_bios)
1534 		return -EOPNOTSUPP;
1535 
1536 	len = min_t(sector_t, ci->sector_count,
1537 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1538 
1539 	__send_duplicate_bios(ci, ti, num_bios, &len);
1540 
1541 	ci->sector += len;
1542 	ci->sector_count -= len;
1543 
1544 	return 0;
1545 }
1546 
is_abnormal_io(struct bio * bio)1547 static bool is_abnormal_io(struct bio *bio)
1548 {
1549 	bool r = false;
1550 
1551 	switch (bio_op(bio)) {
1552 	case REQ_OP_DISCARD:
1553 	case REQ_OP_SECURE_ERASE:
1554 	case REQ_OP_WRITE_SAME:
1555 	case REQ_OP_WRITE_ZEROES:
1556 		r = true;
1557 		break;
1558 	}
1559 
1560 	return r;
1561 }
1562 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1563 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1564 				  int *result)
1565 {
1566 	struct bio *bio = ci->bio;
1567 	unsigned num_bios = 0;
1568 
1569 	switch (bio_op(bio)) {
1570 	case REQ_OP_DISCARD:
1571 		num_bios = ti->num_discard_bios;
1572 		break;
1573 	case REQ_OP_SECURE_ERASE:
1574 		num_bios = ti->num_secure_erase_bios;
1575 		break;
1576 	case REQ_OP_WRITE_SAME:
1577 		num_bios = ti->num_write_same_bios;
1578 		break;
1579 	case REQ_OP_WRITE_ZEROES:
1580 		num_bios = ti->num_write_zeroes_bios;
1581 		break;
1582 	default:
1583 		return false;
1584 	}
1585 
1586 	*result = __send_changing_extent_only(ci, ti, num_bios);
1587 	return true;
1588 }
1589 
1590 /*
1591  * Select the correct strategy for processing a non-flush bio.
1592  */
__split_and_process_non_flush(struct clone_info * ci)1593 static int __split_and_process_non_flush(struct clone_info *ci)
1594 {
1595 	struct dm_target *ti;
1596 	unsigned len;
1597 	int r;
1598 
1599 	ti = dm_table_find_target(ci->map, ci->sector);
1600 	if (!ti)
1601 		return -EIO;
1602 
1603 	if (__process_abnormal_io(ci, ti, &r))
1604 		return r;
1605 
1606 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1607 
1608 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1609 	if (r < 0)
1610 		return r;
1611 
1612 	ci->sector += len;
1613 	ci->sector_count -= len;
1614 
1615 	return 0;
1616 }
1617 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1618 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1619 			    struct dm_table *map, struct bio *bio)
1620 {
1621 	ci->map = map;
1622 	ci->io = alloc_io(md, bio);
1623 	ci->sector = bio->bi_iter.bi_sector;
1624 }
1625 
1626 #define __dm_part_stat_sub(part, field, subnd)	\
1627 	(part_stat_get(part, field) -= (subnd))
1628 
1629 /*
1630  * Entry point to split a bio into clones and submit them to the targets.
1631  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1632 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1633 					struct dm_table *map, struct bio *bio)
1634 {
1635 	struct clone_info ci;
1636 	blk_qc_t ret = BLK_QC_T_NONE;
1637 	int error = 0;
1638 
1639 	init_clone_info(&ci, md, map, bio);
1640 
1641 	if (bio->bi_opf & REQ_PREFLUSH) {
1642 		error = __send_empty_flush(&ci);
1643 		/* dec_pending submits any data associated with flush */
1644 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1645 		ci.bio = bio;
1646 		ci.sector_count = 0;
1647 		error = __split_and_process_non_flush(&ci);
1648 	} else {
1649 		ci.bio = bio;
1650 		ci.sector_count = bio_sectors(bio);
1651 		while (ci.sector_count && !error) {
1652 			error = __split_and_process_non_flush(&ci);
1653 			if (current->bio_list && ci.sector_count && !error) {
1654 				/*
1655 				 * Remainder must be passed to submit_bio_noacct()
1656 				 * so that it gets handled *after* bios already submitted
1657 				 * have been completely processed.
1658 				 * We take a clone of the original to store in
1659 				 * ci.io->orig_bio to be used by end_io_acct() and
1660 				 * for dec_pending to use for completion handling.
1661 				 */
1662 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1663 							  GFP_NOIO, &md->queue->bio_split);
1664 				ci.io->orig_bio = b;
1665 
1666 				/*
1667 				 * Adjust IO stats for each split, otherwise upon queue
1668 				 * reentry there will be redundant IO accounting.
1669 				 * NOTE: this is a stop-gap fix, a proper fix involves
1670 				 * significant refactoring of DM core's bio splitting
1671 				 * (by eliminating DM's splitting and just using bio_split)
1672 				 */
1673 				part_stat_lock();
1674 				__dm_part_stat_sub(&dm_disk(md)->part0,
1675 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1676 				part_stat_unlock();
1677 
1678 				bio_chain(b, bio);
1679 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1680 				ret = submit_bio_noacct(bio);
1681 				break;
1682 			}
1683 		}
1684 	}
1685 
1686 	/* drop the extra reference count */
1687 	dec_pending(ci.io, errno_to_blk_status(error));
1688 	return ret;
1689 }
1690 
dm_submit_bio(struct bio * bio)1691 static blk_qc_t dm_submit_bio(struct bio *bio)
1692 {
1693 	struct mapped_device *md = bio->bi_disk->private_data;
1694 	blk_qc_t ret = BLK_QC_T_NONE;
1695 	int srcu_idx;
1696 	struct dm_table *map;
1697 
1698 	map = dm_get_live_table(md, &srcu_idx);
1699 
1700 	/* If suspended, or map not yet available, queue this IO for later */
1701 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1702 	    unlikely(!map)) {
1703 		if (bio->bi_opf & REQ_NOWAIT)
1704 			bio_wouldblock_error(bio);
1705 		else if (bio->bi_opf & REQ_RAHEAD)
1706 			bio_io_error(bio);
1707 		else
1708 			queue_io(md, bio);
1709 		goto out;
1710 	}
1711 
1712 	/*
1713 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1714 	 * otherwise associated queue_limits won't be imposed.
1715 	 */
1716 	if (is_abnormal_io(bio))
1717 		blk_queue_split(&bio);
1718 
1719 	ret = __split_and_process_bio(md, map, bio);
1720 out:
1721 	dm_put_live_table(md, srcu_idx);
1722 	return ret;
1723 }
1724 
1725 /*-----------------------------------------------------------------
1726  * An IDR is used to keep track of allocated minor numbers.
1727  *---------------------------------------------------------------*/
free_minor(int minor)1728 static void free_minor(int minor)
1729 {
1730 	spin_lock(&_minor_lock);
1731 	idr_remove(&_minor_idr, minor);
1732 	spin_unlock(&_minor_lock);
1733 }
1734 
1735 /*
1736  * See if the device with a specific minor # is free.
1737  */
specific_minor(int minor)1738 static int specific_minor(int minor)
1739 {
1740 	int r;
1741 
1742 	if (minor >= (1 << MINORBITS))
1743 		return -EINVAL;
1744 
1745 	idr_preload(GFP_KERNEL);
1746 	spin_lock(&_minor_lock);
1747 
1748 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1749 
1750 	spin_unlock(&_minor_lock);
1751 	idr_preload_end();
1752 	if (r < 0)
1753 		return r == -ENOSPC ? -EBUSY : r;
1754 	return 0;
1755 }
1756 
next_free_minor(int * minor)1757 static int next_free_minor(int *minor)
1758 {
1759 	int r;
1760 
1761 	idr_preload(GFP_KERNEL);
1762 	spin_lock(&_minor_lock);
1763 
1764 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1765 
1766 	spin_unlock(&_minor_lock);
1767 	idr_preload_end();
1768 	if (r < 0)
1769 		return r;
1770 	*minor = r;
1771 	return 0;
1772 }
1773 
1774 static const struct block_device_operations dm_blk_dops;
1775 static const struct block_device_operations dm_rq_blk_dops;
1776 static const struct dax_operations dm_dax_ops;
1777 
1778 static void dm_wq_work(struct work_struct *work);
1779 
cleanup_mapped_device(struct mapped_device * md)1780 static void cleanup_mapped_device(struct mapped_device *md)
1781 {
1782 	if (md->wq)
1783 		destroy_workqueue(md->wq);
1784 	bioset_exit(&md->bs);
1785 	bioset_exit(&md->io_bs);
1786 
1787 	if (md->dax_dev) {
1788 		kill_dax(md->dax_dev);
1789 		put_dax(md->dax_dev);
1790 		md->dax_dev = NULL;
1791 	}
1792 
1793 	if (md->disk) {
1794 		spin_lock(&_minor_lock);
1795 		md->disk->private_data = NULL;
1796 		spin_unlock(&_minor_lock);
1797 		del_gendisk(md->disk);
1798 		put_disk(md->disk);
1799 	}
1800 
1801 	if (md->queue)
1802 		blk_cleanup_queue(md->queue);
1803 
1804 	cleanup_srcu_struct(&md->io_barrier);
1805 
1806 	if (md->bdev) {
1807 		bdput(md->bdev);
1808 		md->bdev = NULL;
1809 	}
1810 
1811 	mutex_destroy(&md->suspend_lock);
1812 	mutex_destroy(&md->type_lock);
1813 	mutex_destroy(&md->table_devices_lock);
1814 	mutex_destroy(&md->swap_bios_lock);
1815 
1816 	dm_mq_cleanup_mapped_device(md);
1817 }
1818 
1819 /*
1820  * Allocate and initialise a blank device with a given minor.
1821  */
alloc_dev(int minor)1822 static struct mapped_device *alloc_dev(int minor)
1823 {
1824 	int r, numa_node_id = dm_get_numa_node();
1825 	struct mapped_device *md;
1826 	void *old_md;
1827 
1828 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1829 	if (!md) {
1830 		DMWARN("unable to allocate device, out of memory.");
1831 		return NULL;
1832 	}
1833 
1834 	if (!try_module_get(THIS_MODULE))
1835 		goto bad_module_get;
1836 
1837 	/* get a minor number for the dev */
1838 	if (minor == DM_ANY_MINOR)
1839 		r = next_free_minor(&minor);
1840 	else
1841 		r = specific_minor(minor);
1842 	if (r < 0)
1843 		goto bad_minor;
1844 
1845 	r = init_srcu_struct(&md->io_barrier);
1846 	if (r < 0)
1847 		goto bad_io_barrier;
1848 
1849 	md->numa_node_id = numa_node_id;
1850 	md->init_tio_pdu = false;
1851 	md->type = DM_TYPE_NONE;
1852 	mutex_init(&md->suspend_lock);
1853 	mutex_init(&md->type_lock);
1854 	mutex_init(&md->table_devices_lock);
1855 	spin_lock_init(&md->deferred_lock);
1856 	atomic_set(&md->holders, 1);
1857 	atomic_set(&md->open_count, 0);
1858 	atomic_set(&md->event_nr, 0);
1859 	atomic_set(&md->uevent_seq, 0);
1860 	INIT_LIST_HEAD(&md->uevent_list);
1861 	INIT_LIST_HEAD(&md->table_devices);
1862 	spin_lock_init(&md->uevent_lock);
1863 
1864 	/*
1865 	 * default to bio-based until DM table is loaded and md->type
1866 	 * established. If request-based table is loaded: blk-mq will
1867 	 * override accordingly.
1868 	 */
1869 	md->queue = blk_alloc_queue(numa_node_id);
1870 	if (!md->queue)
1871 		goto bad;
1872 
1873 	md->disk = alloc_disk_node(1, md->numa_node_id);
1874 	if (!md->disk)
1875 		goto bad;
1876 
1877 	init_waitqueue_head(&md->wait);
1878 	INIT_WORK(&md->work, dm_wq_work);
1879 	init_waitqueue_head(&md->eventq);
1880 	init_completion(&md->kobj_holder.completion);
1881 
1882 	md->swap_bios = get_swap_bios();
1883 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1884 	mutex_init(&md->swap_bios_lock);
1885 
1886 	md->disk->major = _major;
1887 	md->disk->first_minor = minor;
1888 	md->disk->fops = &dm_blk_dops;
1889 	md->disk->queue = md->queue;
1890 	md->disk->private_data = md;
1891 	sprintf(md->disk->disk_name, "dm-%d", minor);
1892 
1893 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1894 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1895 					&dm_dax_ops, 0);
1896 		if (IS_ERR(md->dax_dev)) {
1897 			md->dax_dev = NULL;
1898 			goto bad;
1899 		}
1900 	}
1901 
1902 	add_disk_no_queue_reg(md->disk);
1903 	format_dev_t(md->name, MKDEV(_major, minor));
1904 
1905 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1906 	if (!md->wq)
1907 		goto bad;
1908 
1909 	md->bdev = bdget_disk(md->disk, 0);
1910 	if (!md->bdev)
1911 		goto bad;
1912 
1913 	r = dm_stats_init(&md->stats);
1914 	if (r < 0)
1915 		goto bad;
1916 
1917 	/* Populate the mapping, nobody knows we exist yet */
1918 	spin_lock(&_minor_lock);
1919 	old_md = idr_replace(&_minor_idr, md, minor);
1920 	spin_unlock(&_minor_lock);
1921 
1922 	BUG_ON(old_md != MINOR_ALLOCED);
1923 
1924 	return md;
1925 
1926 bad:
1927 	cleanup_mapped_device(md);
1928 bad_io_barrier:
1929 	free_minor(minor);
1930 bad_minor:
1931 	module_put(THIS_MODULE);
1932 bad_module_get:
1933 	kvfree(md);
1934 	return NULL;
1935 }
1936 
1937 static void unlock_fs(struct mapped_device *md);
1938 
free_dev(struct mapped_device * md)1939 static void free_dev(struct mapped_device *md)
1940 {
1941 	int minor = MINOR(disk_devt(md->disk));
1942 
1943 	unlock_fs(md);
1944 
1945 	cleanup_mapped_device(md);
1946 
1947 	free_table_devices(&md->table_devices);
1948 	dm_stats_cleanup(&md->stats);
1949 	free_minor(minor);
1950 
1951 	module_put(THIS_MODULE);
1952 	kvfree(md);
1953 }
1954 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1955 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1958 	int ret = 0;
1959 
1960 	if (dm_table_bio_based(t)) {
1961 		/*
1962 		 * The md may already have mempools that need changing.
1963 		 * If so, reload bioset because front_pad may have changed
1964 		 * because a different table was loaded.
1965 		 */
1966 		bioset_exit(&md->bs);
1967 		bioset_exit(&md->io_bs);
1968 
1969 	} else if (bioset_initialized(&md->bs)) {
1970 		/*
1971 		 * There's no need to reload with request-based dm
1972 		 * because the size of front_pad doesn't change.
1973 		 * Note for future: If you are to reload bioset,
1974 		 * prep-ed requests in the queue may refer
1975 		 * to bio from the old bioset, so you must walk
1976 		 * through the queue to unprep.
1977 		 */
1978 		goto out;
1979 	}
1980 
1981 	BUG_ON(!p ||
1982 	       bioset_initialized(&md->bs) ||
1983 	       bioset_initialized(&md->io_bs));
1984 
1985 	ret = bioset_init_from_src(&md->bs, &p->bs);
1986 	if (ret)
1987 		goto out;
1988 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1989 	if (ret)
1990 		bioset_exit(&md->bs);
1991 out:
1992 	/* mempool bind completed, no longer need any mempools in the table */
1993 	dm_table_free_md_mempools(t);
1994 	return ret;
1995 }
1996 
1997 /*
1998  * Bind a table to the device.
1999  */
event_callback(void * context)2000 static void event_callback(void *context)
2001 {
2002 	unsigned long flags;
2003 	LIST_HEAD(uevents);
2004 	struct mapped_device *md = (struct mapped_device *) context;
2005 
2006 	spin_lock_irqsave(&md->uevent_lock, flags);
2007 	list_splice_init(&md->uevent_list, &uevents);
2008 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2009 
2010 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2011 
2012 	atomic_inc(&md->event_nr);
2013 	wake_up(&md->eventq);
2014 	dm_issue_global_event();
2015 }
2016 
2017 /*
2018  * Returns old map, which caller must destroy.
2019  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2020 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2021 			       struct queue_limits *limits)
2022 {
2023 	struct dm_table *old_map;
2024 	struct request_queue *q = md->queue;
2025 	bool request_based = dm_table_request_based(t);
2026 	sector_t size;
2027 	int ret;
2028 
2029 	lockdep_assert_held(&md->suspend_lock);
2030 
2031 	size = dm_table_get_size(t);
2032 
2033 	/*
2034 	 * Wipe any geometry if the size of the table changed.
2035 	 */
2036 	if (size != dm_get_size(md))
2037 		memset(&md->geometry, 0, sizeof(md->geometry));
2038 
2039 	set_capacity(md->disk, size);
2040 	bd_set_nr_sectors(md->bdev, size);
2041 
2042 	dm_table_event_callback(t, event_callback, md);
2043 
2044 	if (request_based) {
2045 		/*
2046 		 * Leverage the fact that request-based DM targets are
2047 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2048 		 */
2049 		md->immutable_target = dm_table_get_immutable_target(t);
2050 	}
2051 
2052 	ret = __bind_mempools(md, t);
2053 	if (ret) {
2054 		old_map = ERR_PTR(ret);
2055 		goto out;
2056 	}
2057 
2058 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2059 	rcu_assign_pointer(md->map, (void *)t);
2060 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2061 
2062 	dm_table_set_restrictions(t, q, limits);
2063 	if (old_map)
2064 		dm_sync_table(md);
2065 
2066 out:
2067 	return old_map;
2068 }
2069 
2070 /*
2071  * Returns unbound table for the caller to free.
2072  */
__unbind(struct mapped_device * md)2073 static struct dm_table *__unbind(struct mapped_device *md)
2074 {
2075 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2076 
2077 	if (!map)
2078 		return NULL;
2079 
2080 	dm_table_event_callback(map, NULL, NULL);
2081 	RCU_INIT_POINTER(md->map, NULL);
2082 	dm_sync_table(md);
2083 
2084 	return map;
2085 }
2086 
2087 /*
2088  * Constructor for a new device.
2089  */
dm_create(int minor,struct mapped_device ** result)2090 int dm_create(int minor, struct mapped_device **result)
2091 {
2092 	int r;
2093 	struct mapped_device *md;
2094 
2095 	md = alloc_dev(minor);
2096 	if (!md)
2097 		return -ENXIO;
2098 
2099 	r = dm_sysfs_init(md);
2100 	if (r) {
2101 		free_dev(md);
2102 		return r;
2103 	}
2104 
2105 	*result = md;
2106 	return 0;
2107 }
2108 
2109 /*
2110  * Functions to manage md->type.
2111  * All are required to hold md->type_lock.
2112  */
dm_lock_md_type(struct mapped_device * md)2113 void dm_lock_md_type(struct mapped_device *md)
2114 {
2115 	mutex_lock(&md->type_lock);
2116 }
2117 
dm_unlock_md_type(struct mapped_device * md)2118 void dm_unlock_md_type(struct mapped_device *md)
2119 {
2120 	mutex_unlock(&md->type_lock);
2121 }
2122 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2123 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2124 {
2125 	BUG_ON(!mutex_is_locked(&md->type_lock));
2126 	md->type = type;
2127 }
2128 
dm_get_md_type(struct mapped_device * md)2129 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2130 {
2131 	return md->type;
2132 }
2133 
dm_get_immutable_target_type(struct mapped_device * md)2134 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2135 {
2136 	return md->immutable_target_type;
2137 }
2138 
2139 /*
2140  * The queue_limits are only valid as long as you have a reference
2141  * count on 'md'.
2142  */
dm_get_queue_limits(struct mapped_device * md)2143 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2144 {
2145 	BUG_ON(!atomic_read(&md->holders));
2146 	return &md->queue->limits;
2147 }
2148 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2149 
2150 /*
2151  * Setup the DM device's queue based on md's type
2152  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2153 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2154 {
2155 	int r;
2156 	struct queue_limits limits;
2157 	enum dm_queue_mode type = dm_get_md_type(md);
2158 
2159 	switch (type) {
2160 	case DM_TYPE_REQUEST_BASED:
2161 		md->disk->fops = &dm_rq_blk_dops;
2162 		r = dm_mq_init_request_queue(md, t);
2163 		if (r) {
2164 			DMERR("Cannot initialize queue for request-based dm mapped device");
2165 			return r;
2166 		}
2167 		break;
2168 	case DM_TYPE_BIO_BASED:
2169 	case DM_TYPE_DAX_BIO_BASED:
2170 		break;
2171 	case DM_TYPE_NONE:
2172 		WARN_ON_ONCE(true);
2173 		break;
2174 	}
2175 
2176 	r = dm_calculate_queue_limits(t, &limits);
2177 	if (r) {
2178 		DMERR("Cannot calculate initial queue limits");
2179 		return r;
2180 	}
2181 	dm_table_set_restrictions(t, md->queue, &limits);
2182 	blk_register_queue(md->disk);
2183 
2184 	return 0;
2185 }
2186 
dm_get_md(dev_t dev)2187 struct mapped_device *dm_get_md(dev_t dev)
2188 {
2189 	struct mapped_device *md;
2190 	unsigned minor = MINOR(dev);
2191 
2192 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2193 		return NULL;
2194 
2195 	spin_lock(&_minor_lock);
2196 
2197 	md = idr_find(&_minor_idr, minor);
2198 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2199 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2200 		md = NULL;
2201 		goto out;
2202 	}
2203 	dm_get(md);
2204 out:
2205 	spin_unlock(&_minor_lock);
2206 
2207 	return md;
2208 }
2209 EXPORT_SYMBOL_GPL(dm_get_md);
2210 
dm_get_mdptr(struct mapped_device * md)2211 void *dm_get_mdptr(struct mapped_device *md)
2212 {
2213 	return md->interface_ptr;
2214 }
2215 
dm_set_mdptr(struct mapped_device * md,void * ptr)2216 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2217 {
2218 	md->interface_ptr = ptr;
2219 }
2220 
dm_get(struct mapped_device * md)2221 void dm_get(struct mapped_device *md)
2222 {
2223 	atomic_inc(&md->holders);
2224 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2225 }
2226 
dm_hold(struct mapped_device * md)2227 int dm_hold(struct mapped_device *md)
2228 {
2229 	spin_lock(&_minor_lock);
2230 	if (test_bit(DMF_FREEING, &md->flags)) {
2231 		spin_unlock(&_minor_lock);
2232 		return -EBUSY;
2233 	}
2234 	dm_get(md);
2235 	spin_unlock(&_minor_lock);
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(dm_hold);
2239 
dm_device_name(struct mapped_device * md)2240 const char *dm_device_name(struct mapped_device *md)
2241 {
2242 	return md->name;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_device_name);
2245 
__dm_destroy(struct mapped_device * md,bool wait)2246 static void __dm_destroy(struct mapped_device *md, bool wait)
2247 {
2248 	struct dm_table *map;
2249 	int srcu_idx;
2250 
2251 	might_sleep();
2252 
2253 	spin_lock(&_minor_lock);
2254 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2255 	set_bit(DMF_FREEING, &md->flags);
2256 	spin_unlock(&_minor_lock);
2257 
2258 	blk_set_queue_dying(md->queue);
2259 
2260 	/*
2261 	 * Take suspend_lock so that presuspend and postsuspend methods
2262 	 * do not race with internal suspend.
2263 	 */
2264 	mutex_lock(&md->suspend_lock);
2265 	map = dm_get_live_table(md, &srcu_idx);
2266 	if (!dm_suspended_md(md)) {
2267 		dm_table_presuspend_targets(map);
2268 		set_bit(DMF_SUSPENDED, &md->flags);
2269 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2270 		dm_table_postsuspend_targets(map);
2271 	}
2272 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2273 	dm_put_live_table(md, srcu_idx);
2274 	mutex_unlock(&md->suspend_lock);
2275 
2276 	/*
2277 	 * Rare, but there may be I/O requests still going to complete,
2278 	 * for example.  Wait for all references to disappear.
2279 	 * No one should increment the reference count of the mapped_device,
2280 	 * after the mapped_device state becomes DMF_FREEING.
2281 	 */
2282 	if (wait)
2283 		while (atomic_read(&md->holders))
2284 			msleep(1);
2285 	else if (atomic_read(&md->holders))
2286 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2287 		       dm_device_name(md), atomic_read(&md->holders));
2288 
2289 	dm_sysfs_exit(md);
2290 	dm_table_destroy(__unbind(md));
2291 	free_dev(md);
2292 }
2293 
dm_destroy(struct mapped_device * md)2294 void dm_destroy(struct mapped_device *md)
2295 {
2296 	__dm_destroy(md, true);
2297 }
2298 
dm_destroy_immediate(struct mapped_device * md)2299 void dm_destroy_immediate(struct mapped_device *md)
2300 {
2301 	__dm_destroy(md, false);
2302 }
2303 
dm_put(struct mapped_device * md)2304 void dm_put(struct mapped_device *md)
2305 {
2306 	atomic_dec(&md->holders);
2307 }
2308 EXPORT_SYMBOL_GPL(dm_put);
2309 
md_in_flight_bios(struct mapped_device * md)2310 static bool md_in_flight_bios(struct mapped_device *md)
2311 {
2312 	int cpu;
2313 	struct hd_struct *part = &dm_disk(md)->part0;
2314 	long sum = 0;
2315 
2316 	for_each_possible_cpu(cpu) {
2317 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2318 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2319 	}
2320 
2321 	return sum != 0;
2322 }
2323 
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2324 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2325 {
2326 	int r = 0;
2327 	DEFINE_WAIT(wait);
2328 
2329 	while (true) {
2330 		prepare_to_wait(&md->wait, &wait, task_state);
2331 
2332 		if (!md_in_flight_bios(md))
2333 			break;
2334 
2335 		if (signal_pending_state(task_state, current)) {
2336 			r = -EINTR;
2337 			break;
2338 		}
2339 
2340 		io_schedule();
2341 	}
2342 	finish_wait(&md->wait, &wait);
2343 
2344 	smp_rmb();
2345 
2346 	return r;
2347 }
2348 
dm_wait_for_completion(struct mapped_device * md,long task_state)2349 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2350 {
2351 	int r = 0;
2352 
2353 	if (!queue_is_mq(md->queue))
2354 		return dm_wait_for_bios_completion(md, task_state);
2355 
2356 	while (true) {
2357 		if (!blk_mq_queue_inflight(md->queue))
2358 			break;
2359 
2360 		if (signal_pending_state(task_state, current)) {
2361 			r = -EINTR;
2362 			break;
2363 		}
2364 
2365 		msleep(5);
2366 	}
2367 
2368 	return r;
2369 }
2370 
2371 /*
2372  * Process the deferred bios
2373  */
dm_wq_work(struct work_struct * work)2374 static void dm_wq_work(struct work_struct *work)
2375 {
2376 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2377 	struct bio *bio;
2378 
2379 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2380 		spin_lock_irq(&md->deferred_lock);
2381 		bio = bio_list_pop(&md->deferred);
2382 		spin_unlock_irq(&md->deferred_lock);
2383 
2384 		if (!bio)
2385 			break;
2386 
2387 		submit_bio_noacct(bio);
2388 		cond_resched();
2389 	}
2390 }
2391 
dm_queue_flush(struct mapped_device * md)2392 static void dm_queue_flush(struct mapped_device *md)
2393 {
2394 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2395 	smp_mb__after_atomic();
2396 	queue_work(md->wq, &md->work);
2397 }
2398 
2399 /*
2400  * Swap in a new table, returning the old one for the caller to destroy.
2401  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2402 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2403 {
2404 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2405 	struct queue_limits limits;
2406 	int r;
2407 
2408 	mutex_lock(&md->suspend_lock);
2409 
2410 	/* device must be suspended */
2411 	if (!dm_suspended_md(md))
2412 		goto out;
2413 
2414 	/*
2415 	 * If the new table has no data devices, retain the existing limits.
2416 	 * This helps multipath with queue_if_no_path if all paths disappear,
2417 	 * then new I/O is queued based on these limits, and then some paths
2418 	 * reappear.
2419 	 */
2420 	if (dm_table_has_no_data_devices(table)) {
2421 		live_map = dm_get_live_table_fast(md);
2422 		if (live_map)
2423 			limits = md->queue->limits;
2424 		dm_put_live_table_fast(md);
2425 	}
2426 
2427 	if (!live_map) {
2428 		r = dm_calculate_queue_limits(table, &limits);
2429 		if (r) {
2430 			map = ERR_PTR(r);
2431 			goto out;
2432 		}
2433 	}
2434 
2435 	map = __bind(md, table, &limits);
2436 	dm_issue_global_event();
2437 
2438 out:
2439 	mutex_unlock(&md->suspend_lock);
2440 	return map;
2441 }
2442 
2443 /*
2444  * Functions to lock and unlock any filesystem running on the
2445  * device.
2446  */
lock_fs(struct mapped_device * md)2447 static int lock_fs(struct mapped_device *md)
2448 {
2449 	int r;
2450 
2451 	WARN_ON(md->frozen_sb);
2452 
2453 	md->frozen_sb = freeze_bdev(md->bdev);
2454 	if (IS_ERR(md->frozen_sb)) {
2455 		r = PTR_ERR(md->frozen_sb);
2456 		md->frozen_sb = NULL;
2457 		return r;
2458 	}
2459 
2460 	set_bit(DMF_FROZEN, &md->flags);
2461 
2462 	return 0;
2463 }
2464 
unlock_fs(struct mapped_device * md)2465 static void unlock_fs(struct mapped_device *md)
2466 {
2467 	if (!test_bit(DMF_FROZEN, &md->flags))
2468 		return;
2469 
2470 	thaw_bdev(md->bdev, md->frozen_sb);
2471 	md->frozen_sb = NULL;
2472 	clear_bit(DMF_FROZEN, &md->flags);
2473 }
2474 
2475 /*
2476  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2477  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2478  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2479  *
2480  * If __dm_suspend returns 0, the device is completely quiescent
2481  * now. There is no request-processing activity. All new requests
2482  * are being added to md->deferred list.
2483  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2484 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2485 			unsigned suspend_flags, long task_state,
2486 			int dmf_suspended_flag)
2487 {
2488 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2489 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2490 	int r;
2491 
2492 	lockdep_assert_held(&md->suspend_lock);
2493 
2494 	/*
2495 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2496 	 * This flag is cleared before dm_suspend returns.
2497 	 */
2498 	if (noflush)
2499 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2500 	else
2501 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2502 
2503 	/*
2504 	 * This gets reverted if there's an error later and the targets
2505 	 * provide the .presuspend_undo hook.
2506 	 */
2507 	dm_table_presuspend_targets(map);
2508 
2509 	/*
2510 	 * Flush I/O to the device.
2511 	 * Any I/O submitted after lock_fs() may not be flushed.
2512 	 * noflush takes precedence over do_lockfs.
2513 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 	 */
2515 	if (!noflush && do_lockfs) {
2516 		r = lock_fs(md);
2517 		if (r) {
2518 			dm_table_presuspend_undo_targets(map);
2519 			return r;
2520 		}
2521 	}
2522 
2523 	/*
2524 	 * Here we must make sure that no processes are submitting requests
2525 	 * to target drivers i.e. no one may be executing
2526 	 * __split_and_process_bio from dm_submit_bio.
2527 	 *
2528 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2529 	 * we take the write lock. To prevent any process from reentering
2530 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2531 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2532 	 * flush_workqueue(md->wq).
2533 	 */
2534 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2535 	if (map)
2536 		synchronize_srcu(&md->io_barrier);
2537 
2538 	/*
2539 	 * Stop md->queue before flushing md->wq in case request-based
2540 	 * dm defers requests to md->wq from md->queue.
2541 	 */
2542 	if (dm_request_based(md))
2543 		dm_stop_queue(md->queue);
2544 
2545 	flush_workqueue(md->wq);
2546 
2547 	/*
2548 	 * At this point no more requests are entering target request routines.
2549 	 * We call dm_wait_for_completion to wait for all existing requests
2550 	 * to finish.
2551 	 */
2552 	r = dm_wait_for_completion(md, task_state);
2553 	if (!r)
2554 		set_bit(dmf_suspended_flag, &md->flags);
2555 
2556 	if (noflush)
2557 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2558 	if (map)
2559 		synchronize_srcu(&md->io_barrier);
2560 
2561 	/* were we interrupted ? */
2562 	if (r < 0) {
2563 		dm_queue_flush(md);
2564 
2565 		if (dm_request_based(md))
2566 			dm_start_queue(md->queue);
2567 
2568 		unlock_fs(md);
2569 		dm_table_presuspend_undo_targets(map);
2570 		/* pushback list is already flushed, so skip flush */
2571 	}
2572 
2573 	return r;
2574 }
2575 
2576 /*
2577  * We need to be able to change a mapping table under a mounted
2578  * filesystem.  For example we might want to move some data in
2579  * the background.  Before the table can be swapped with
2580  * dm_bind_table, dm_suspend must be called to flush any in
2581  * flight bios and ensure that any further io gets deferred.
2582  */
2583 /*
2584  * Suspend mechanism in request-based dm.
2585  *
2586  * 1. Flush all I/Os by lock_fs() if needed.
2587  * 2. Stop dispatching any I/O by stopping the request_queue.
2588  * 3. Wait for all in-flight I/Os to be completed or requeued.
2589  *
2590  * To abort suspend, start the request_queue.
2591  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2592 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2593 {
2594 	struct dm_table *map = NULL;
2595 	int r = 0;
2596 
2597 retry:
2598 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2599 
2600 	if (dm_suspended_md(md)) {
2601 		r = -EINVAL;
2602 		goto out_unlock;
2603 	}
2604 
2605 	if (dm_suspended_internally_md(md)) {
2606 		/* already internally suspended, wait for internal resume */
2607 		mutex_unlock(&md->suspend_lock);
2608 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2609 		if (r)
2610 			return r;
2611 		goto retry;
2612 	}
2613 
2614 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2615 
2616 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2617 	if (r)
2618 		goto out_unlock;
2619 
2620 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2621 	dm_table_postsuspend_targets(map);
2622 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2623 
2624 out_unlock:
2625 	mutex_unlock(&md->suspend_lock);
2626 	return r;
2627 }
2628 
__dm_resume(struct mapped_device * md,struct dm_table * map)2629 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2630 {
2631 	if (map) {
2632 		int r = dm_table_resume_targets(map);
2633 		if (r)
2634 			return r;
2635 	}
2636 
2637 	dm_queue_flush(md);
2638 
2639 	/*
2640 	 * Flushing deferred I/Os must be done after targets are resumed
2641 	 * so that mapping of targets can work correctly.
2642 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2643 	 */
2644 	if (dm_request_based(md))
2645 		dm_start_queue(md->queue);
2646 
2647 	unlock_fs(md);
2648 
2649 	return 0;
2650 }
2651 
dm_resume(struct mapped_device * md)2652 int dm_resume(struct mapped_device *md)
2653 {
2654 	int r;
2655 	struct dm_table *map = NULL;
2656 
2657 retry:
2658 	r = -EINVAL;
2659 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2660 
2661 	if (!dm_suspended_md(md))
2662 		goto out;
2663 
2664 	if (dm_suspended_internally_md(md)) {
2665 		/* already internally suspended, wait for internal resume */
2666 		mutex_unlock(&md->suspend_lock);
2667 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2668 		if (r)
2669 			return r;
2670 		goto retry;
2671 	}
2672 
2673 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2674 	if (!map || !dm_table_get_size(map))
2675 		goto out;
2676 
2677 	r = __dm_resume(md, map);
2678 	if (r)
2679 		goto out;
2680 
2681 	clear_bit(DMF_SUSPENDED, &md->flags);
2682 out:
2683 	mutex_unlock(&md->suspend_lock);
2684 
2685 	return r;
2686 }
2687 
2688 /*
2689  * Internal suspend/resume works like userspace-driven suspend. It waits
2690  * until all bios finish and prevents issuing new bios to the target drivers.
2691  * It may be used only from the kernel.
2692  */
2693 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2694 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2695 {
2696 	struct dm_table *map = NULL;
2697 
2698 	lockdep_assert_held(&md->suspend_lock);
2699 
2700 	if (md->internal_suspend_count++)
2701 		return; /* nested internal suspend */
2702 
2703 	if (dm_suspended_md(md)) {
2704 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2705 		return; /* nest suspend */
2706 	}
2707 
2708 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2709 
2710 	/*
2711 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2712 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2713 	 * would require changing .presuspend to return an error -- avoid this
2714 	 * until there is a need for more elaborate variants of internal suspend.
2715 	 */
2716 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2717 			    DMF_SUSPENDED_INTERNALLY);
2718 
2719 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2720 	dm_table_postsuspend_targets(map);
2721 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2722 }
2723 
__dm_internal_resume(struct mapped_device * md)2724 static void __dm_internal_resume(struct mapped_device *md)
2725 {
2726 	BUG_ON(!md->internal_suspend_count);
2727 
2728 	if (--md->internal_suspend_count)
2729 		return; /* resume from nested internal suspend */
2730 
2731 	if (dm_suspended_md(md))
2732 		goto done; /* resume from nested suspend */
2733 
2734 	/*
2735 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2736 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2737 	 */
2738 	(void) __dm_resume(md, NULL);
2739 
2740 done:
2741 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2742 	smp_mb__after_atomic();
2743 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2744 }
2745 
dm_internal_suspend_noflush(struct mapped_device * md)2746 void dm_internal_suspend_noflush(struct mapped_device *md)
2747 {
2748 	mutex_lock(&md->suspend_lock);
2749 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2750 	mutex_unlock(&md->suspend_lock);
2751 }
2752 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2753 
dm_internal_resume(struct mapped_device * md)2754 void dm_internal_resume(struct mapped_device *md)
2755 {
2756 	mutex_lock(&md->suspend_lock);
2757 	__dm_internal_resume(md);
2758 	mutex_unlock(&md->suspend_lock);
2759 }
2760 EXPORT_SYMBOL_GPL(dm_internal_resume);
2761 
2762 /*
2763  * Fast variants of internal suspend/resume hold md->suspend_lock,
2764  * which prevents interaction with userspace-driven suspend.
2765  */
2766 
dm_internal_suspend_fast(struct mapped_device * md)2767 void dm_internal_suspend_fast(struct mapped_device *md)
2768 {
2769 	mutex_lock(&md->suspend_lock);
2770 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2771 		return;
2772 
2773 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2774 	synchronize_srcu(&md->io_barrier);
2775 	flush_workqueue(md->wq);
2776 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2777 }
2778 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2779 
dm_internal_resume_fast(struct mapped_device * md)2780 void dm_internal_resume_fast(struct mapped_device *md)
2781 {
2782 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2783 		goto done;
2784 
2785 	dm_queue_flush(md);
2786 
2787 done:
2788 	mutex_unlock(&md->suspend_lock);
2789 }
2790 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2791 
2792 /*-----------------------------------------------------------------
2793  * Event notification.
2794  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2795 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2796 		       unsigned cookie)
2797 {
2798 	int r;
2799 	unsigned noio_flag;
2800 	char udev_cookie[DM_COOKIE_LENGTH];
2801 	char *envp[] = { udev_cookie, NULL };
2802 
2803 	noio_flag = memalloc_noio_save();
2804 
2805 	if (!cookie)
2806 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2807 	else {
2808 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2809 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2810 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2811 				       action, envp);
2812 	}
2813 
2814 	memalloc_noio_restore(noio_flag);
2815 
2816 	return r;
2817 }
2818 
dm_next_uevent_seq(struct mapped_device * md)2819 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2820 {
2821 	return atomic_add_return(1, &md->uevent_seq);
2822 }
2823 
dm_get_event_nr(struct mapped_device * md)2824 uint32_t dm_get_event_nr(struct mapped_device *md)
2825 {
2826 	return atomic_read(&md->event_nr);
2827 }
2828 
dm_wait_event(struct mapped_device * md,int event_nr)2829 int dm_wait_event(struct mapped_device *md, int event_nr)
2830 {
2831 	return wait_event_interruptible(md->eventq,
2832 			(event_nr != atomic_read(&md->event_nr)));
2833 }
2834 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2835 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2836 {
2837 	unsigned long flags;
2838 
2839 	spin_lock_irqsave(&md->uevent_lock, flags);
2840 	list_add(elist, &md->uevent_list);
2841 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2842 }
2843 
2844 /*
2845  * The gendisk is only valid as long as you have a reference
2846  * count on 'md'.
2847  */
dm_disk(struct mapped_device * md)2848 struct gendisk *dm_disk(struct mapped_device *md)
2849 {
2850 	return md->disk;
2851 }
2852 EXPORT_SYMBOL_GPL(dm_disk);
2853 
dm_kobject(struct mapped_device * md)2854 struct kobject *dm_kobject(struct mapped_device *md)
2855 {
2856 	return &md->kobj_holder.kobj;
2857 }
2858 
dm_get_from_kobject(struct kobject * kobj)2859 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2860 {
2861 	struct mapped_device *md;
2862 
2863 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2864 
2865 	spin_lock(&_minor_lock);
2866 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2867 		md = NULL;
2868 		goto out;
2869 	}
2870 	dm_get(md);
2871 out:
2872 	spin_unlock(&_minor_lock);
2873 
2874 	return md;
2875 }
2876 
dm_suspended_md(struct mapped_device * md)2877 int dm_suspended_md(struct mapped_device *md)
2878 {
2879 	return test_bit(DMF_SUSPENDED, &md->flags);
2880 }
2881 
dm_post_suspending_md(struct mapped_device * md)2882 static int dm_post_suspending_md(struct mapped_device *md)
2883 {
2884 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2885 }
2886 
dm_suspended_internally_md(struct mapped_device * md)2887 int dm_suspended_internally_md(struct mapped_device *md)
2888 {
2889 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2890 }
2891 
dm_test_deferred_remove_flag(struct mapped_device * md)2892 int dm_test_deferred_remove_flag(struct mapped_device *md)
2893 {
2894 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2895 }
2896 
dm_suspended(struct dm_target * ti)2897 int dm_suspended(struct dm_target *ti)
2898 {
2899 	return dm_suspended_md(ti->table->md);
2900 }
2901 EXPORT_SYMBOL_GPL(dm_suspended);
2902 
dm_post_suspending(struct dm_target * ti)2903 int dm_post_suspending(struct dm_target *ti)
2904 {
2905 	return dm_post_suspending_md(ti->table->md);
2906 }
2907 EXPORT_SYMBOL_GPL(dm_post_suspending);
2908 
dm_noflush_suspending(struct dm_target * ti)2909 int dm_noflush_suspending(struct dm_target *ti)
2910 {
2911 	return __noflush_suspending(ti->table->md);
2912 }
2913 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2914 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2915 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2916 					    unsigned integrity, unsigned per_io_data_size,
2917 					    unsigned min_pool_size)
2918 {
2919 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2920 	unsigned int pool_size = 0;
2921 	unsigned int front_pad, io_front_pad;
2922 	int ret;
2923 
2924 	if (!pools)
2925 		return NULL;
2926 
2927 	switch (type) {
2928 	case DM_TYPE_BIO_BASED:
2929 	case DM_TYPE_DAX_BIO_BASED:
2930 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2931 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2932 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2933 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2934 		if (ret)
2935 			goto out;
2936 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2937 			goto out;
2938 		break;
2939 	case DM_TYPE_REQUEST_BASED:
2940 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2941 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2942 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2943 		break;
2944 	default:
2945 		BUG();
2946 	}
2947 
2948 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2949 	if (ret)
2950 		goto out;
2951 
2952 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2953 		goto out;
2954 
2955 	return pools;
2956 
2957 out:
2958 	dm_free_md_mempools(pools);
2959 
2960 	return NULL;
2961 }
2962 
dm_free_md_mempools(struct dm_md_mempools * pools)2963 void dm_free_md_mempools(struct dm_md_mempools *pools)
2964 {
2965 	if (!pools)
2966 		return;
2967 
2968 	bioset_exit(&pools->bs);
2969 	bioset_exit(&pools->io_bs);
2970 
2971 	kfree(pools);
2972 }
2973 
2974 struct dm_pr {
2975 	u64	old_key;
2976 	u64	new_key;
2977 	u32	flags;
2978 	bool	fail_early;
2979 };
2980 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2981 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2982 		      void *data)
2983 {
2984 	struct mapped_device *md = bdev->bd_disk->private_data;
2985 	struct dm_table *table;
2986 	struct dm_target *ti;
2987 	int ret = -ENOTTY, srcu_idx;
2988 
2989 	table = dm_get_live_table(md, &srcu_idx);
2990 	if (!table || !dm_table_get_size(table))
2991 		goto out;
2992 
2993 	/* We only support devices that have a single target */
2994 	if (dm_table_get_num_targets(table) != 1)
2995 		goto out;
2996 	ti = dm_table_get_target(table, 0);
2997 
2998 	if (dm_suspended_md(md)) {
2999 		ret = -EAGAIN;
3000 		goto out;
3001 	}
3002 
3003 	ret = -EINVAL;
3004 	if (!ti->type->iterate_devices)
3005 		goto out;
3006 
3007 	ret = ti->type->iterate_devices(ti, fn, data);
3008 out:
3009 	dm_put_live_table(md, srcu_idx);
3010 	return ret;
3011 }
3012 
3013 /*
3014  * For register / unregister we need to manually call out to every path.
3015  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3016 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3017 			    sector_t start, sector_t len, void *data)
3018 {
3019 	struct dm_pr *pr = data;
3020 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3021 
3022 	if (!ops || !ops->pr_register)
3023 		return -EOPNOTSUPP;
3024 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3025 }
3026 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3027 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3028 			  u32 flags)
3029 {
3030 	struct dm_pr pr = {
3031 		.old_key	= old_key,
3032 		.new_key	= new_key,
3033 		.flags		= flags,
3034 		.fail_early	= true,
3035 	};
3036 	int ret;
3037 
3038 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3039 	if (ret && new_key) {
3040 		/* unregister all paths if we failed to register any path */
3041 		pr.old_key = new_key;
3042 		pr.new_key = 0;
3043 		pr.flags = 0;
3044 		pr.fail_early = false;
3045 		dm_call_pr(bdev, __dm_pr_register, &pr);
3046 	}
3047 
3048 	return ret;
3049 }
3050 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3051 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3052 			 u32 flags)
3053 {
3054 	struct mapped_device *md = bdev->bd_disk->private_data;
3055 	const struct pr_ops *ops;
3056 	int r, srcu_idx;
3057 
3058 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3059 	if (r < 0)
3060 		goto out;
3061 
3062 	ops = bdev->bd_disk->fops->pr_ops;
3063 	if (ops && ops->pr_reserve)
3064 		r = ops->pr_reserve(bdev, key, type, flags);
3065 	else
3066 		r = -EOPNOTSUPP;
3067 out:
3068 	dm_unprepare_ioctl(md, srcu_idx);
3069 	return r;
3070 }
3071 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3072 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3073 {
3074 	struct mapped_device *md = bdev->bd_disk->private_data;
3075 	const struct pr_ops *ops;
3076 	int r, srcu_idx;
3077 
3078 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3079 	if (r < 0)
3080 		goto out;
3081 
3082 	ops = bdev->bd_disk->fops->pr_ops;
3083 	if (ops && ops->pr_release)
3084 		r = ops->pr_release(bdev, key, type);
3085 	else
3086 		r = -EOPNOTSUPP;
3087 out:
3088 	dm_unprepare_ioctl(md, srcu_idx);
3089 	return r;
3090 }
3091 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3092 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3093 			 enum pr_type type, bool abort)
3094 {
3095 	struct mapped_device *md = bdev->bd_disk->private_data;
3096 	const struct pr_ops *ops;
3097 	int r, srcu_idx;
3098 
3099 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3100 	if (r < 0)
3101 		goto out;
3102 
3103 	ops = bdev->bd_disk->fops->pr_ops;
3104 	if (ops && ops->pr_preempt)
3105 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3106 	else
3107 		r = -EOPNOTSUPP;
3108 out:
3109 	dm_unprepare_ioctl(md, srcu_idx);
3110 	return r;
3111 }
3112 
dm_pr_clear(struct block_device * bdev,u64 key)3113 static int dm_pr_clear(struct block_device *bdev, u64 key)
3114 {
3115 	struct mapped_device *md = bdev->bd_disk->private_data;
3116 	const struct pr_ops *ops;
3117 	int r, srcu_idx;
3118 
3119 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3120 	if (r < 0)
3121 		goto out;
3122 
3123 	ops = bdev->bd_disk->fops->pr_ops;
3124 	if (ops && ops->pr_clear)
3125 		r = ops->pr_clear(bdev, key);
3126 	else
3127 		r = -EOPNOTSUPP;
3128 out:
3129 	dm_unprepare_ioctl(md, srcu_idx);
3130 	return r;
3131 }
3132 
3133 static const struct pr_ops dm_pr_ops = {
3134 	.pr_register	= dm_pr_register,
3135 	.pr_reserve	= dm_pr_reserve,
3136 	.pr_release	= dm_pr_release,
3137 	.pr_preempt	= dm_pr_preempt,
3138 	.pr_clear	= dm_pr_clear,
3139 };
3140 
3141 static const struct block_device_operations dm_blk_dops = {
3142 	.submit_bio = dm_submit_bio,
3143 	.open = dm_blk_open,
3144 	.release = dm_blk_close,
3145 	.ioctl = dm_blk_ioctl,
3146 	.getgeo = dm_blk_getgeo,
3147 	.report_zones = dm_blk_report_zones,
3148 	.pr_ops = &dm_pr_ops,
3149 	.owner = THIS_MODULE
3150 };
3151 
3152 static const struct block_device_operations dm_rq_blk_dops = {
3153 	.open = dm_blk_open,
3154 	.release = dm_blk_close,
3155 	.ioctl = dm_blk_ioctl,
3156 	.getgeo = dm_blk_getgeo,
3157 	.pr_ops = &dm_pr_ops,
3158 	.owner = THIS_MODULE
3159 };
3160 
3161 static const struct dax_operations dm_dax_ops = {
3162 	.direct_access = dm_dax_direct_access,
3163 	.dax_supported = dm_dax_supported,
3164 	.copy_from_iter = dm_dax_copy_from_iter,
3165 	.copy_to_iter = dm_dax_copy_to_iter,
3166 	.zero_page_range = dm_dax_zero_page_range,
3167 };
3168 
3169 /*
3170  * module hooks
3171  */
3172 module_init(dm_init);
3173 module_exit(dm_exit);
3174 
3175 module_param(major, uint, 0);
3176 MODULE_PARM_DESC(major, "The major number of the device mapper");
3177 
3178 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3179 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3180 
3181 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3182 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3183 
3184 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3185 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3186 
3187 MODULE_DESCRIPTION(DM_NAME " driver");
3188 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3189 MODULE_LICENSE("GPL");
3190