1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31
32 #define DM_MSG_PREFIX "core"
33
34 /*
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
37 */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40
41 static const char *_name = DM_NAME;
42
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45
46 static DEFINE_IDR(_minor_idr);
47
48 static DEFINE_SPINLOCK(_minor_lock);
49
50 static void do_deferred_remove(struct work_struct *w);
51
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53
54 static struct workqueue_struct *deferred_remove_workqueue;
55
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58
dm_issue_global_event(void)59 void dm_issue_global_event(void)
60 {
61 atomic_inc(&dm_global_event_nr);
62 wake_up(&dm_global_eventq);
63 }
64
65 /*
66 * One of these is allocated (on-stack) per original bio.
67 */
68 struct clone_info {
69 struct dm_table *map;
70 struct bio *bio;
71 struct dm_io *io;
72 sector_t sector;
73 unsigned sector_count;
74 };
75
76 /*
77 * One of these is allocated per clone bio.
78 */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 unsigned magic;
82 struct dm_io *io;
83 struct dm_target *ti;
84 unsigned target_bio_nr;
85 unsigned *len_ptr;
86 bool inside_dm_io;
87 struct bio clone;
88 };
89
90 /*
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
93 */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 unsigned magic;
97 struct mapped_device *md;
98 blk_status_t status;
99 atomic_t io_count;
100 struct bio *orig_bio;
101 unsigned long start_time;
102 spinlock_t endio_lock;
103 struct dm_stats_aux stats_aux;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio;
106 };
107
dm_per_bio_data(struct bio * bio,size_t data_size)108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 if (!tio->inside_dm_io)
112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116
dm_bio_from_per_bio_data(void * data,size_t data_size)117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 if (io->magic == DM_IO_MAGIC)
121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 BUG_ON(io->magic != DM_TIO_MAGIC);
123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126
dm_bio_get_target_bio_nr(const struct bio * bio)127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132
133 #define MINOR_ALLOCED ((void *)-1)
134
135 /*
136 * Bits for the md->flags field.
137 */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150
151 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
152 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)153 static int get_swap_bios(void)
154 {
155 int latch = READ_ONCE(swap_bios);
156 if (unlikely(latch <= 0))
157 latch = DEFAULT_SWAP_BIOS;
158 return latch;
159 }
160
161 /*
162 * For mempools pre-allocation at the table loading time.
163 */
164 struct dm_md_mempools {
165 struct bio_set bs;
166 struct bio_set io_bs;
167 };
168
169 struct table_device {
170 struct list_head list;
171 refcount_t count;
172 struct dm_dev dm_dev;
173 };
174
175 /*
176 * Bio-based DM's mempools' reserved IOs set by the user.
177 */
178 #define RESERVED_BIO_BASED_IOS 16
179 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
180
__dm_get_module_param_int(int * module_param,int min,int max)181 static int __dm_get_module_param_int(int *module_param, int min, int max)
182 {
183 int param = READ_ONCE(*module_param);
184 int modified_param = 0;
185 bool modified = true;
186
187 if (param < min)
188 modified_param = min;
189 else if (param > max)
190 modified_param = max;
191 else
192 modified = false;
193
194 if (modified) {
195 (void)cmpxchg(module_param, param, modified_param);
196 param = modified_param;
197 }
198
199 return param;
200 }
201
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)202 unsigned __dm_get_module_param(unsigned *module_param,
203 unsigned def, unsigned max)
204 {
205 unsigned param = READ_ONCE(*module_param);
206 unsigned modified_param = 0;
207
208 if (!param)
209 modified_param = def;
210 else if (param > max)
211 modified_param = max;
212
213 if (modified_param) {
214 (void)cmpxchg(module_param, param, modified_param);
215 param = modified_param;
216 }
217
218 return param;
219 }
220
dm_get_reserved_bio_based_ios(void)221 unsigned dm_get_reserved_bio_based_ios(void)
222 {
223 return __dm_get_module_param(&reserved_bio_based_ios,
224 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
225 }
226 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
227
dm_get_numa_node(void)228 static unsigned dm_get_numa_node(void)
229 {
230 return __dm_get_module_param_int(&dm_numa_node,
231 DM_NUMA_NODE, num_online_nodes() - 1);
232 }
233
local_init(void)234 static int __init local_init(void)
235 {
236 int r;
237
238 r = dm_uevent_init();
239 if (r)
240 return r;
241
242 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
243 if (!deferred_remove_workqueue) {
244 r = -ENOMEM;
245 goto out_uevent_exit;
246 }
247
248 _major = major;
249 r = register_blkdev(_major, _name);
250 if (r < 0)
251 goto out_free_workqueue;
252
253 if (!_major)
254 _major = r;
255
256 return 0;
257
258 out_free_workqueue:
259 destroy_workqueue(deferred_remove_workqueue);
260 out_uevent_exit:
261 dm_uevent_exit();
262
263 return r;
264 }
265
local_exit(void)266 static void local_exit(void)
267 {
268 destroy_workqueue(deferred_remove_workqueue);
269
270 unregister_blkdev(_major, _name);
271 dm_uevent_exit();
272
273 _major = 0;
274
275 DMINFO("cleaned up");
276 }
277
278 static int (*_inits[])(void) __initdata = {
279 local_init,
280 dm_target_init,
281 dm_linear_init,
282 dm_stripe_init,
283 dm_io_init,
284 dm_kcopyd_init,
285 dm_interface_init,
286 dm_statistics_init,
287 };
288
289 static void (*_exits[])(void) = {
290 local_exit,
291 dm_target_exit,
292 dm_linear_exit,
293 dm_stripe_exit,
294 dm_io_exit,
295 dm_kcopyd_exit,
296 dm_interface_exit,
297 dm_statistics_exit,
298 };
299
dm_init(void)300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
dm_exit(void)321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_destroy(&_minor_idr);
332 }
333
334 /*
335 * Block device functions
336 */
dm_deleting_md(struct mapped_device * md)337 int dm_deleting_md(struct mapped_device *md)
338 {
339 return test_bit(DMF_DELETING, &md->flags);
340 }
341
dm_blk_open(struct block_device * bdev,fmode_t mode)342 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
343 {
344 struct mapped_device *md;
345
346 spin_lock(&_minor_lock);
347
348 md = bdev->bd_disk->private_data;
349 if (!md)
350 goto out;
351
352 if (test_bit(DMF_FREEING, &md->flags) ||
353 dm_deleting_md(md)) {
354 md = NULL;
355 goto out;
356 }
357
358 dm_get(md);
359 atomic_inc(&md->open_count);
360 out:
361 spin_unlock(&_minor_lock);
362
363 return md ? 0 : -ENXIO;
364 }
365
dm_blk_close(struct gendisk * disk,fmode_t mode)366 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
367 {
368 struct mapped_device *md;
369
370 spin_lock(&_minor_lock);
371
372 md = disk->private_data;
373 if (WARN_ON(!md))
374 goto out;
375
376 if (atomic_dec_and_test(&md->open_count) &&
377 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
378 queue_work(deferred_remove_workqueue, &deferred_remove_work);
379
380 dm_put(md);
381 out:
382 spin_unlock(&_minor_lock);
383 }
384
dm_open_count(struct mapped_device * md)385 int dm_open_count(struct mapped_device *md)
386 {
387 return atomic_read(&md->open_count);
388 }
389
390 /*
391 * Guarantees nothing is using the device before it's deleted.
392 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)393 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
394 {
395 int r = 0;
396
397 spin_lock(&_minor_lock);
398
399 if (dm_open_count(md)) {
400 r = -EBUSY;
401 if (mark_deferred)
402 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
403 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
404 r = -EEXIST;
405 else
406 set_bit(DMF_DELETING, &md->flags);
407
408 spin_unlock(&_minor_lock);
409
410 return r;
411 }
412
dm_cancel_deferred_remove(struct mapped_device * md)413 int dm_cancel_deferred_remove(struct mapped_device *md)
414 {
415 int r = 0;
416
417 spin_lock(&_minor_lock);
418
419 if (test_bit(DMF_DELETING, &md->flags))
420 r = -EBUSY;
421 else
422 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
423
424 spin_unlock(&_minor_lock);
425
426 return r;
427 }
428
do_deferred_remove(struct work_struct * w)429 static void do_deferred_remove(struct work_struct *w)
430 {
431 dm_deferred_remove();
432 }
433
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)434 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
435 {
436 struct mapped_device *md = bdev->bd_disk->private_data;
437
438 return dm_get_geometry(md, geo);
439 }
440
441 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)442 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
443 {
444 struct dm_report_zones_args *args = data;
445 sector_t sector_diff = args->tgt->begin - args->start;
446
447 /*
448 * Ignore zones beyond the target range.
449 */
450 if (zone->start >= args->start + args->tgt->len)
451 return 0;
452
453 /*
454 * Remap the start sector and write pointer position of the zone
455 * to match its position in the target range.
456 */
457 zone->start += sector_diff;
458 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
459 if (zone->cond == BLK_ZONE_COND_FULL)
460 zone->wp = zone->start + zone->len;
461 else if (zone->cond == BLK_ZONE_COND_EMPTY)
462 zone->wp = zone->start;
463 else
464 zone->wp += sector_diff;
465 }
466
467 args->next_sector = zone->start + zone->len;
468 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
469 }
470 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
471
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)472 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
473 unsigned int nr_zones, report_zones_cb cb, void *data)
474 {
475 struct mapped_device *md = disk->private_data;
476 struct dm_table *map;
477 int srcu_idx, ret;
478 struct dm_report_zones_args args = {
479 .next_sector = sector,
480 .orig_data = data,
481 .orig_cb = cb,
482 };
483
484 if (dm_suspended_md(md))
485 return -EAGAIN;
486
487 map = dm_get_live_table(md, &srcu_idx);
488 if (!map) {
489 ret = -EIO;
490 goto out;
491 }
492
493 do {
494 struct dm_target *tgt;
495
496 tgt = dm_table_find_target(map, args.next_sector);
497 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
498 ret = -EIO;
499 goto out;
500 }
501
502 args.tgt = tgt;
503 ret = tgt->type->report_zones(tgt, &args,
504 nr_zones - args.zone_idx);
505 if (ret < 0)
506 goto out;
507 } while (args.zone_idx < nr_zones &&
508 args.next_sector < get_capacity(disk));
509
510 ret = args.zone_idx;
511 out:
512 dm_put_live_table(md, srcu_idx);
513 return ret;
514 }
515 #else
516 #define dm_blk_report_zones NULL
517 #endif /* CONFIG_BLK_DEV_ZONED */
518
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)519 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
520 struct block_device **bdev)
521 {
522 struct dm_target *tgt;
523 struct dm_table *map;
524 int r;
525
526 retry:
527 r = -ENOTTY;
528 map = dm_get_live_table(md, srcu_idx);
529 if (!map || !dm_table_get_size(map))
530 return r;
531
532 /* We only support devices that have a single target */
533 if (dm_table_get_num_targets(map) != 1)
534 return r;
535
536 tgt = dm_table_get_target(map, 0);
537 if (!tgt->type->prepare_ioctl)
538 return r;
539
540 if (dm_suspended_md(md))
541 return -EAGAIN;
542
543 r = tgt->type->prepare_ioctl(tgt, bdev);
544 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
545 dm_put_live_table(md, *srcu_idx);
546 msleep(10);
547 goto retry;
548 }
549
550 return r;
551 }
552
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)553 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
554 {
555 dm_put_live_table(md, srcu_idx);
556 }
557
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
559 unsigned int cmd, unsigned long arg)
560 {
561 struct mapped_device *md = bdev->bd_disk->private_data;
562 int r, srcu_idx;
563
564 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
565 if (r < 0)
566 goto out;
567
568 if (r > 0) {
569 /*
570 * Target determined this ioctl is being issued against a
571 * subset of the parent bdev; require extra privileges.
572 */
573 if (!capable(CAP_SYS_RAWIO)) {
574 DMDEBUG_LIMIT(
575 "%s: sending ioctl %x to DM device without required privilege.",
576 current->comm, cmd);
577 r = -ENOIOCTLCMD;
578 goto out;
579 }
580 }
581
582 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
583 out:
584 dm_unprepare_ioctl(md, srcu_idx);
585 return r;
586 }
587
dm_start_time_ns_from_clone(struct bio * bio)588 u64 dm_start_time_ns_from_clone(struct bio *bio)
589 {
590 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
591 struct dm_io *io = tio->io;
592
593 return jiffies_to_nsecs(io->start_time);
594 }
595 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
596
start_io_acct(struct dm_io * io)597 static void start_io_acct(struct dm_io *io)
598 {
599 struct mapped_device *md = io->md;
600 struct bio *bio = io->orig_bio;
601
602 io->start_time = bio_start_io_acct(bio);
603 if (unlikely(dm_stats_used(&md->stats)))
604 dm_stats_account_io(&md->stats, bio_data_dir(bio),
605 bio->bi_iter.bi_sector, bio_sectors(bio),
606 false, 0, &io->stats_aux);
607 }
608
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)609 static void end_io_acct(struct mapped_device *md, struct bio *bio,
610 unsigned long start_time, struct dm_stats_aux *stats_aux)
611 {
612 unsigned long duration = jiffies - start_time;
613
614 if (unlikely(dm_stats_used(&md->stats)))
615 dm_stats_account_io(&md->stats, bio_data_dir(bio),
616 bio->bi_iter.bi_sector, bio_sectors(bio),
617 true, duration, stats_aux);
618
619 smp_wmb();
620
621 bio_end_io_acct(bio, start_time);
622
623 /* nudge anyone waiting on suspend queue */
624 if (unlikely(wq_has_sleeper(&md->wait)))
625 wake_up(&md->wait);
626 }
627
alloc_io(struct mapped_device * md,struct bio * bio)628 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
629 {
630 struct dm_io *io;
631 struct dm_target_io *tio;
632 struct bio *clone;
633
634 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
635 if (!clone)
636 return NULL;
637
638 tio = container_of(clone, struct dm_target_io, clone);
639 tio->inside_dm_io = true;
640 tio->io = NULL;
641
642 io = container_of(tio, struct dm_io, tio);
643 io->magic = DM_IO_MAGIC;
644 io->status = 0;
645 atomic_set(&io->io_count, 1);
646 io->orig_bio = bio;
647 io->md = md;
648 spin_lock_init(&io->endio_lock);
649
650 start_io_acct(io);
651
652 return io;
653 }
654
free_io(struct mapped_device * md,struct dm_io * io)655 static void free_io(struct mapped_device *md, struct dm_io *io)
656 {
657 bio_put(&io->tio.clone);
658 }
659
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)660 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
661 unsigned target_bio_nr, gfp_t gfp_mask)
662 {
663 struct dm_target_io *tio;
664
665 if (!ci->io->tio.io) {
666 /* the dm_target_io embedded in ci->io is available */
667 tio = &ci->io->tio;
668 } else {
669 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
670 if (!clone)
671 return NULL;
672
673 tio = container_of(clone, struct dm_target_io, clone);
674 tio->inside_dm_io = false;
675 }
676
677 tio->magic = DM_TIO_MAGIC;
678 tio->io = ci->io;
679 tio->ti = ti;
680 tio->target_bio_nr = target_bio_nr;
681
682 return tio;
683 }
684
free_tio(struct dm_target_io * tio)685 static void free_tio(struct dm_target_io *tio)
686 {
687 if (tio->inside_dm_io)
688 return;
689 bio_put(&tio->clone);
690 }
691
692 /*
693 * Add the bio to the list of deferred io.
694 */
queue_io(struct mapped_device * md,struct bio * bio)695 static void queue_io(struct mapped_device *md, struct bio *bio)
696 {
697 unsigned long flags;
698
699 spin_lock_irqsave(&md->deferred_lock, flags);
700 bio_list_add(&md->deferred, bio);
701 spin_unlock_irqrestore(&md->deferred_lock, flags);
702 queue_work(md->wq, &md->work);
703 }
704
705 /*
706 * Everyone (including functions in this file), should use this
707 * function to access the md->map field, and make sure they call
708 * dm_put_live_table() when finished.
709 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)710 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
711 {
712 *srcu_idx = srcu_read_lock(&md->io_barrier);
713
714 return srcu_dereference(md->map, &md->io_barrier);
715 }
716
dm_put_live_table(struct mapped_device * md,int srcu_idx)717 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
718 {
719 srcu_read_unlock(&md->io_barrier, srcu_idx);
720 }
721
dm_sync_table(struct mapped_device * md)722 void dm_sync_table(struct mapped_device *md)
723 {
724 synchronize_srcu(&md->io_barrier);
725 synchronize_rcu_expedited();
726 }
727
728 /*
729 * A fast alternative to dm_get_live_table/dm_put_live_table.
730 * The caller must not block between these two functions.
731 */
dm_get_live_table_fast(struct mapped_device * md)732 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
733 {
734 rcu_read_lock();
735 return rcu_dereference(md->map);
736 }
737
dm_put_live_table_fast(struct mapped_device * md)738 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
739 {
740 rcu_read_unlock();
741 }
742
743 static char *_dm_claim_ptr = "I belong to device-mapper";
744
745 /*
746 * Open a table device so we can use it as a map destination.
747 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)748 static int open_table_device(struct table_device *td, dev_t dev,
749 struct mapped_device *md)
750 {
751 struct block_device *bdev;
752
753 int r;
754
755 BUG_ON(td->dm_dev.bdev);
756
757 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
758 if (IS_ERR(bdev))
759 return PTR_ERR(bdev);
760
761 r = bd_link_disk_holder(bdev, dm_disk(md));
762 if (r) {
763 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
764 return r;
765 }
766
767 td->dm_dev.bdev = bdev;
768 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
769 return 0;
770 }
771
772 /*
773 * Close a table device that we've been using.
774 */
close_table_device(struct table_device * td,struct mapped_device * md)775 static void close_table_device(struct table_device *td, struct mapped_device *md)
776 {
777 if (!td->dm_dev.bdev)
778 return;
779
780 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
781 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
782 put_dax(td->dm_dev.dax_dev);
783 td->dm_dev.bdev = NULL;
784 td->dm_dev.dax_dev = NULL;
785 }
786
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)787 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788 fmode_t mode)
789 {
790 struct table_device *td;
791
792 list_for_each_entry(td, l, list)
793 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794 return td;
795
796 return NULL;
797 }
798
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)799 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
800 struct dm_dev **result)
801 {
802 int r;
803 struct table_device *td;
804
805 mutex_lock(&md->table_devices_lock);
806 td = find_table_device(&md->table_devices, dev, mode);
807 if (!td) {
808 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
809 if (!td) {
810 mutex_unlock(&md->table_devices_lock);
811 return -ENOMEM;
812 }
813
814 td->dm_dev.mode = mode;
815 td->dm_dev.bdev = NULL;
816
817 if ((r = open_table_device(td, dev, md))) {
818 mutex_unlock(&md->table_devices_lock);
819 kfree(td);
820 return r;
821 }
822
823 format_dev_t(td->dm_dev.name, dev);
824
825 refcount_set(&td->count, 1);
826 list_add(&td->list, &md->table_devices);
827 } else {
828 refcount_inc(&td->count);
829 }
830 mutex_unlock(&md->table_devices_lock);
831
832 *result = &td->dm_dev;
833 return 0;
834 }
835 EXPORT_SYMBOL_GPL(dm_get_table_device);
836
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)837 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
838 {
839 struct table_device *td = container_of(d, struct table_device, dm_dev);
840
841 mutex_lock(&md->table_devices_lock);
842 if (refcount_dec_and_test(&td->count)) {
843 close_table_device(td, md);
844 list_del(&td->list);
845 kfree(td);
846 }
847 mutex_unlock(&md->table_devices_lock);
848 }
849 EXPORT_SYMBOL(dm_put_table_device);
850
free_table_devices(struct list_head * devices)851 static void free_table_devices(struct list_head *devices)
852 {
853 struct list_head *tmp, *next;
854
855 list_for_each_safe(tmp, next, devices) {
856 struct table_device *td = list_entry(tmp, struct table_device, list);
857
858 DMWARN("dm_destroy: %s still exists with %d references",
859 td->dm_dev.name, refcount_read(&td->count));
860 kfree(td);
861 }
862 }
863
864 /*
865 * Get the geometry associated with a dm device
866 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 *geo = md->geometry;
870
871 return 0;
872 }
873
874 /*
875 * Set the geometry of a device.
876 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)877 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
878 {
879 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
880
881 if (geo->start > sz) {
882 DMWARN("Start sector is beyond the geometry limits.");
883 return -EINVAL;
884 }
885
886 md->geometry = *geo;
887
888 return 0;
889 }
890
__noflush_suspending(struct mapped_device * md)891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895
896 /*
897 * Decrements the number of outstanding ios that a bio has been
898 * cloned into, completing the original io if necc.
899 */
dec_pending(struct dm_io * io,blk_status_t error)900 static void dec_pending(struct dm_io *io, blk_status_t error)
901 {
902 unsigned long flags;
903 blk_status_t io_error;
904 struct bio *bio;
905 struct mapped_device *md = io->md;
906 unsigned long start_time = 0;
907 struct dm_stats_aux stats_aux;
908
909 /* Push-back supersedes any I/O errors */
910 if (unlikely(error)) {
911 spin_lock_irqsave(&io->endio_lock, flags);
912 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
913 io->status = error;
914 spin_unlock_irqrestore(&io->endio_lock, flags);
915 }
916
917 if (atomic_dec_and_test(&io->io_count)) {
918 if (io->status == BLK_STS_DM_REQUEUE) {
919 /*
920 * Target requested pushing back the I/O.
921 */
922 spin_lock_irqsave(&md->deferred_lock, flags);
923 if (__noflush_suspending(md))
924 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
925 bio_list_add_head(&md->deferred, io->orig_bio);
926 else
927 /* noflush suspend was interrupted. */
928 io->status = BLK_STS_IOERR;
929 spin_unlock_irqrestore(&md->deferred_lock, flags);
930 }
931
932 io_error = io->status;
933 bio = io->orig_bio;
934 start_time = io->start_time;
935 stats_aux = io->stats_aux;
936 free_io(md, io);
937 end_io_acct(md, bio, start_time, &stats_aux);
938
939 if (io_error == BLK_STS_DM_REQUEUE)
940 return;
941
942 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
943 /*
944 * Preflush done for flush with data, reissue
945 * without REQ_PREFLUSH.
946 */
947 bio->bi_opf &= ~REQ_PREFLUSH;
948 queue_io(md, bio);
949 } else {
950 /* done with normal IO or empty flush */
951 if (io_error)
952 bio->bi_status = io_error;
953 bio_endio(bio);
954 }
955 }
956 }
957
disable_discard(struct mapped_device * md)958 void disable_discard(struct mapped_device *md)
959 {
960 struct queue_limits *limits = dm_get_queue_limits(md);
961
962 /* device doesn't really support DISCARD, disable it */
963 limits->max_discard_sectors = 0;
964 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
965 }
966
disable_write_same(struct mapped_device * md)967 void disable_write_same(struct mapped_device *md)
968 {
969 struct queue_limits *limits = dm_get_queue_limits(md);
970
971 /* device doesn't really support WRITE SAME, disable it */
972 limits->max_write_same_sectors = 0;
973 }
974
disable_write_zeroes(struct mapped_device * md)975 void disable_write_zeroes(struct mapped_device *md)
976 {
977 struct queue_limits *limits = dm_get_queue_limits(md);
978
979 /* device doesn't really support WRITE ZEROES, disable it */
980 limits->max_write_zeroes_sectors = 0;
981 }
982
swap_bios_limit(struct dm_target * ti,struct bio * bio)983 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
984 {
985 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
986 }
987
clone_endio(struct bio * bio)988 static void clone_endio(struct bio *bio)
989 {
990 blk_status_t error = bio->bi_status;
991 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
992 struct dm_io *io = tio->io;
993 struct mapped_device *md = tio->io->md;
994 dm_endio_fn endio = tio->ti->type->end_io;
995 struct bio *orig_bio = io->orig_bio;
996
997 if (unlikely(error == BLK_STS_TARGET)) {
998 if (bio_op(bio) == REQ_OP_DISCARD &&
999 !bio->bi_disk->queue->limits.max_discard_sectors)
1000 disable_discard(md);
1001 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1002 !bio->bi_disk->queue->limits.max_write_same_sectors)
1003 disable_write_same(md);
1004 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1005 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1006 disable_write_zeroes(md);
1007 }
1008
1009 /*
1010 * For zone-append bios get offset in zone of the written
1011 * sector and add that to the original bio sector pos.
1012 */
1013 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1014 sector_t written_sector = bio->bi_iter.bi_sector;
1015 struct request_queue *q = orig_bio->bi_disk->queue;
1016 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1017
1018 orig_bio->bi_iter.bi_sector += written_sector & mask;
1019 }
1020
1021 if (endio) {
1022 int r = endio(tio->ti, bio, &error);
1023 switch (r) {
1024 case DM_ENDIO_REQUEUE:
1025 error = BLK_STS_DM_REQUEUE;
1026 fallthrough;
1027 case DM_ENDIO_DONE:
1028 break;
1029 case DM_ENDIO_INCOMPLETE:
1030 /* The target will handle the io */
1031 return;
1032 default:
1033 DMWARN("unimplemented target endio return value: %d", r);
1034 BUG();
1035 }
1036 }
1037
1038 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1039 struct mapped_device *md = io->md;
1040 up(&md->swap_bios_semaphore);
1041 }
1042
1043 free_tio(tio);
1044 dec_pending(io, error);
1045 }
1046
1047 /*
1048 * Return maximum size of I/O possible at the supplied sector up to the current
1049 * target boundary.
1050 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1051 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1052 sector_t target_offset)
1053 {
1054 return ti->len - target_offset;
1055 }
1056
max_io_len(struct dm_target * ti,sector_t sector)1057 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1058 {
1059 sector_t target_offset = dm_target_offset(ti, sector);
1060 sector_t len = max_io_len_target_boundary(ti, target_offset);
1061 sector_t max_len;
1062
1063 /*
1064 * Does the target need to split IO even further?
1065 * - varied (per target) IO splitting is a tenet of DM; this
1066 * explains why stacked chunk_sectors based splitting via
1067 * blk_max_size_offset() isn't possible here. So pass in
1068 * ti->max_io_len to override stacked chunk_sectors.
1069 */
1070 if (ti->max_io_len) {
1071 max_len = blk_max_size_offset(ti->table->md->queue,
1072 target_offset, ti->max_io_len);
1073 if (len > max_len)
1074 len = max_len;
1075 }
1076
1077 return len;
1078 }
1079
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1081 {
1082 if (len > UINT_MAX) {
1083 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1084 (unsigned long long)len, UINT_MAX);
1085 ti->error = "Maximum size of target IO is too large";
1086 return -EINVAL;
1087 }
1088
1089 ti->max_io_len = (uint32_t) len;
1090
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1094
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1096 sector_t sector, int *srcu_idx)
1097 __acquires(md->io_barrier)
1098 {
1099 struct dm_table *map;
1100 struct dm_target *ti;
1101
1102 map = dm_get_live_table(md, srcu_idx);
1103 if (!map)
1104 return NULL;
1105
1106 ti = dm_table_find_target(map, sector);
1107 if (!ti)
1108 return NULL;
1109
1110 return ti;
1111 }
1112
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1114 long nr_pages, void **kaddr, pfn_t *pfn)
1115 {
1116 struct mapped_device *md = dax_get_private(dax_dev);
1117 sector_t sector = pgoff * PAGE_SECTORS;
1118 struct dm_target *ti;
1119 long len, ret = -EIO;
1120 int srcu_idx;
1121
1122 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1123
1124 if (!ti)
1125 goto out;
1126 if (!ti->type->direct_access)
1127 goto out;
1128 len = max_io_len(ti, sector) / PAGE_SECTORS;
1129 if (len < 1)
1130 goto out;
1131 nr_pages = min(len, nr_pages);
1132 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1133
1134 out:
1135 dm_put_live_table(md, srcu_idx);
1136
1137 return ret;
1138 }
1139
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1141 int blocksize, sector_t start, sector_t len)
1142 {
1143 struct mapped_device *md = dax_get_private(dax_dev);
1144 struct dm_table *map;
1145 bool ret = false;
1146 int srcu_idx;
1147
1148 map = dm_get_live_table(md, &srcu_idx);
1149 if (!map)
1150 goto out;
1151
1152 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1153
1154 out:
1155 dm_put_live_table(md, srcu_idx);
1156
1157 return ret;
1158 }
1159
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1160 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1161 void *addr, size_t bytes, struct iov_iter *i)
1162 {
1163 struct mapped_device *md = dax_get_private(dax_dev);
1164 sector_t sector = pgoff * PAGE_SECTORS;
1165 struct dm_target *ti;
1166 long ret = 0;
1167 int srcu_idx;
1168
1169 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170
1171 if (!ti)
1172 goto out;
1173 if (!ti->type->dax_copy_from_iter) {
1174 ret = copy_from_iter(addr, bytes, i);
1175 goto out;
1176 }
1177 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1178 out:
1179 dm_put_live_table(md, srcu_idx);
1180
1181 return ret;
1182 }
1183
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1184 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1185 void *addr, size_t bytes, struct iov_iter *i)
1186 {
1187 struct mapped_device *md = dax_get_private(dax_dev);
1188 sector_t sector = pgoff * PAGE_SECTORS;
1189 struct dm_target *ti;
1190 long ret = 0;
1191 int srcu_idx;
1192
1193 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194
1195 if (!ti)
1196 goto out;
1197 if (!ti->type->dax_copy_to_iter) {
1198 ret = copy_to_iter(addr, bytes, i);
1199 goto out;
1200 }
1201 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1202 out:
1203 dm_put_live_table(md, srcu_idx);
1204
1205 return ret;
1206 }
1207
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1208 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1209 size_t nr_pages)
1210 {
1211 struct mapped_device *md = dax_get_private(dax_dev);
1212 sector_t sector = pgoff * PAGE_SECTORS;
1213 struct dm_target *ti;
1214 int ret = -EIO;
1215 int srcu_idx;
1216
1217 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1218
1219 if (!ti)
1220 goto out;
1221 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1222 /*
1223 * ->zero_page_range() is mandatory dax operation. If we are
1224 * here, something is wrong.
1225 */
1226 goto out;
1227 }
1228 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1229 out:
1230 dm_put_live_table(md, srcu_idx);
1231
1232 return ret;
1233 }
1234
1235 /*
1236 * A target may call dm_accept_partial_bio only from the map routine. It is
1237 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1238 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1239 *
1240 * dm_accept_partial_bio informs the dm that the target only wants to process
1241 * additional n_sectors sectors of the bio and the rest of the data should be
1242 * sent in a next bio.
1243 *
1244 * A diagram that explains the arithmetics:
1245 * +--------------------+---------------+-------+
1246 * | 1 | 2 | 3 |
1247 * +--------------------+---------------+-------+
1248 *
1249 * <-------------- *tio->len_ptr --------------->
1250 * <------- bi_size ------->
1251 * <-- n_sectors -->
1252 *
1253 * Region 1 was already iterated over with bio_advance or similar function.
1254 * (it may be empty if the target doesn't use bio_advance)
1255 * Region 2 is the remaining bio size that the target wants to process.
1256 * (it may be empty if region 1 is non-empty, although there is no reason
1257 * to make it empty)
1258 * The target requires that region 3 is to be sent in the next bio.
1259 *
1260 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1261 * the partially processed part (the sum of regions 1+2) must be the same for all
1262 * copies of the bio.
1263 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1264 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1265 {
1266 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1267 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1268
1269 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1270 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1271 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1272 BUG_ON(bi_size > *tio->len_ptr);
1273 BUG_ON(n_sectors > bi_size);
1274
1275 *tio->len_ptr -= bi_size - n_sectors;
1276 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1277 }
1278 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1279
__set_swap_bios_limit(struct mapped_device * md,int latch)1280 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1281 {
1282 mutex_lock(&md->swap_bios_lock);
1283 while (latch < md->swap_bios) {
1284 cond_resched();
1285 down(&md->swap_bios_semaphore);
1286 md->swap_bios--;
1287 }
1288 while (latch > md->swap_bios) {
1289 cond_resched();
1290 up(&md->swap_bios_semaphore);
1291 md->swap_bios++;
1292 }
1293 mutex_unlock(&md->swap_bios_lock);
1294 }
1295
__map_bio(struct dm_target_io * tio)1296 static blk_qc_t __map_bio(struct dm_target_io *tio)
1297 {
1298 int r;
1299 sector_t sector;
1300 struct bio *clone = &tio->clone;
1301 struct dm_io *io = tio->io;
1302 struct dm_target *ti = tio->ti;
1303 blk_qc_t ret = BLK_QC_T_NONE;
1304
1305 clone->bi_end_io = clone_endio;
1306
1307 /*
1308 * Map the clone. If r == 0 we don't need to do
1309 * anything, the target has assumed ownership of
1310 * this io.
1311 */
1312 atomic_inc(&io->io_count);
1313 sector = clone->bi_iter.bi_sector;
1314
1315 if (unlikely(swap_bios_limit(ti, clone))) {
1316 struct mapped_device *md = io->md;
1317 int latch = get_swap_bios();
1318 if (unlikely(latch != md->swap_bios))
1319 __set_swap_bios_limit(md, latch);
1320 down(&md->swap_bios_semaphore);
1321 }
1322
1323 r = ti->type->map(ti, clone);
1324 switch (r) {
1325 case DM_MAPIO_SUBMITTED:
1326 break;
1327 case DM_MAPIO_REMAPPED:
1328 /* the bio has been remapped so dispatch it */
1329 trace_block_bio_remap(clone->bi_disk->queue, clone,
1330 bio_dev(io->orig_bio), sector);
1331 ret = submit_bio_noacct(clone);
1332 break;
1333 case DM_MAPIO_KILL:
1334 if (unlikely(swap_bios_limit(ti, clone))) {
1335 struct mapped_device *md = io->md;
1336 up(&md->swap_bios_semaphore);
1337 }
1338 free_tio(tio);
1339 dec_pending(io, BLK_STS_IOERR);
1340 break;
1341 case DM_MAPIO_REQUEUE:
1342 if (unlikely(swap_bios_limit(ti, clone))) {
1343 struct mapped_device *md = io->md;
1344 up(&md->swap_bios_semaphore);
1345 }
1346 free_tio(tio);
1347 dec_pending(io, BLK_STS_DM_REQUEUE);
1348 break;
1349 default:
1350 DMWARN("unimplemented target map return value: %d", r);
1351 BUG();
1352 }
1353
1354 return ret;
1355 }
1356
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1357 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1358 {
1359 bio->bi_iter.bi_sector = sector;
1360 bio->bi_iter.bi_size = to_bytes(len);
1361 }
1362
1363 /*
1364 * Creates a bio that consists of range of complete bvecs.
1365 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1366 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1367 sector_t sector, unsigned len)
1368 {
1369 struct bio *clone = &tio->clone;
1370 int r;
1371
1372 __bio_clone_fast(clone, bio);
1373
1374 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1375 if (r < 0)
1376 return r;
1377
1378 if (bio_integrity(bio)) {
1379 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1380 !dm_target_passes_integrity(tio->ti->type))) {
1381 DMWARN("%s: the target %s doesn't support integrity data.",
1382 dm_device_name(tio->io->md),
1383 tio->ti->type->name);
1384 return -EIO;
1385 }
1386
1387 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1388 if (r < 0)
1389 return r;
1390 }
1391
1392 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1393 clone->bi_iter.bi_size = to_bytes(len);
1394
1395 if (bio_integrity(bio))
1396 bio_integrity_trim(clone);
1397
1398 return 0;
1399 }
1400
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 struct dm_target *ti, unsigned num_bios)
1403 {
1404 struct dm_target_io *tio;
1405 int try;
1406
1407 if (!num_bios)
1408 return;
1409
1410 if (num_bios == 1) {
1411 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1412 bio_list_add(blist, &tio->clone);
1413 return;
1414 }
1415
1416 for (try = 0; try < 2; try++) {
1417 int bio_nr;
1418 struct bio *bio;
1419
1420 if (try)
1421 mutex_lock(&ci->io->md->table_devices_lock);
1422 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1423 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1424 if (!tio)
1425 break;
1426
1427 bio_list_add(blist, &tio->clone);
1428 }
1429 if (try)
1430 mutex_unlock(&ci->io->md->table_devices_lock);
1431 if (bio_nr == num_bios)
1432 return;
1433
1434 while ((bio = bio_list_pop(blist))) {
1435 tio = container_of(bio, struct dm_target_io, clone);
1436 free_tio(tio);
1437 }
1438 }
1439 }
1440
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1441 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1442 struct dm_target_io *tio, unsigned *len)
1443 {
1444 struct bio *clone = &tio->clone;
1445
1446 tio->len_ptr = len;
1447
1448 __bio_clone_fast(clone, ci->bio);
1449 if (len)
1450 bio_setup_sector(clone, ci->sector, *len);
1451
1452 return __map_bio(tio);
1453 }
1454
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1455 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1456 unsigned num_bios, unsigned *len)
1457 {
1458 struct bio_list blist = BIO_EMPTY_LIST;
1459 struct bio *bio;
1460 struct dm_target_io *tio;
1461
1462 alloc_multiple_bios(&blist, ci, ti, num_bios);
1463
1464 while ((bio = bio_list_pop(&blist))) {
1465 tio = container_of(bio, struct dm_target_io, clone);
1466 (void) __clone_and_map_simple_bio(ci, tio, len);
1467 }
1468 }
1469
__send_empty_flush(struct clone_info * ci)1470 static int __send_empty_flush(struct clone_info *ci)
1471 {
1472 unsigned target_nr = 0;
1473 struct dm_target *ti;
1474 struct bio flush_bio;
1475
1476 /*
1477 * Use an on-stack bio for this, it's safe since we don't
1478 * need to reference it after submit. It's just used as
1479 * the basis for the clone(s).
1480 */
1481 bio_init(&flush_bio, NULL, 0);
1482 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1483 ci->bio = &flush_bio;
1484 ci->sector_count = 0;
1485
1486 /*
1487 * Empty flush uses a statically initialized bio, as the base for
1488 * cloning. However, blkg association requires that a bdev is
1489 * associated with a gendisk, which doesn't happen until the bdev is
1490 * opened. So, blkg association is done at issue time of the flush
1491 * rather than when the device is created in alloc_dev().
1492 */
1493 bio_set_dev(ci->bio, ci->io->md->bdev);
1494
1495 BUG_ON(bio_has_data(ci->bio));
1496 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1497 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1498
1499 bio_uninit(ci->bio);
1500 return 0;
1501 }
1502
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1503 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1504 sector_t sector, unsigned *len)
1505 {
1506 struct bio *bio = ci->bio;
1507 struct dm_target_io *tio;
1508 int r;
1509
1510 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1511 tio->len_ptr = len;
1512 r = clone_bio(tio, bio, sector, *len);
1513 if (r < 0) {
1514 free_tio(tio);
1515 return r;
1516 }
1517 (void) __map_bio(tio);
1518
1519 return 0;
1520 }
1521
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1522 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1523 unsigned num_bios)
1524 {
1525 unsigned len;
1526
1527 /*
1528 * Even though the device advertised support for this type of
1529 * request, that does not mean every target supports it, and
1530 * reconfiguration might also have changed that since the
1531 * check was performed.
1532 */
1533 if (!num_bios)
1534 return -EOPNOTSUPP;
1535
1536 len = min_t(sector_t, ci->sector_count,
1537 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1538
1539 __send_duplicate_bios(ci, ti, num_bios, &len);
1540
1541 ci->sector += len;
1542 ci->sector_count -= len;
1543
1544 return 0;
1545 }
1546
is_abnormal_io(struct bio * bio)1547 static bool is_abnormal_io(struct bio *bio)
1548 {
1549 bool r = false;
1550
1551 switch (bio_op(bio)) {
1552 case REQ_OP_DISCARD:
1553 case REQ_OP_SECURE_ERASE:
1554 case REQ_OP_WRITE_SAME:
1555 case REQ_OP_WRITE_ZEROES:
1556 r = true;
1557 break;
1558 }
1559
1560 return r;
1561 }
1562
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1563 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1564 int *result)
1565 {
1566 struct bio *bio = ci->bio;
1567 unsigned num_bios = 0;
1568
1569 switch (bio_op(bio)) {
1570 case REQ_OP_DISCARD:
1571 num_bios = ti->num_discard_bios;
1572 break;
1573 case REQ_OP_SECURE_ERASE:
1574 num_bios = ti->num_secure_erase_bios;
1575 break;
1576 case REQ_OP_WRITE_SAME:
1577 num_bios = ti->num_write_same_bios;
1578 break;
1579 case REQ_OP_WRITE_ZEROES:
1580 num_bios = ti->num_write_zeroes_bios;
1581 break;
1582 default:
1583 return false;
1584 }
1585
1586 *result = __send_changing_extent_only(ci, ti, num_bios);
1587 return true;
1588 }
1589
1590 /*
1591 * Select the correct strategy for processing a non-flush bio.
1592 */
__split_and_process_non_flush(struct clone_info * ci)1593 static int __split_and_process_non_flush(struct clone_info *ci)
1594 {
1595 struct dm_target *ti;
1596 unsigned len;
1597 int r;
1598
1599 ti = dm_table_find_target(ci->map, ci->sector);
1600 if (!ti)
1601 return -EIO;
1602
1603 if (__process_abnormal_io(ci, ti, &r))
1604 return r;
1605
1606 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1607
1608 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1609 if (r < 0)
1610 return r;
1611
1612 ci->sector += len;
1613 ci->sector_count -= len;
1614
1615 return 0;
1616 }
1617
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1618 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1619 struct dm_table *map, struct bio *bio)
1620 {
1621 ci->map = map;
1622 ci->io = alloc_io(md, bio);
1623 ci->sector = bio->bi_iter.bi_sector;
1624 }
1625
1626 #define __dm_part_stat_sub(part, field, subnd) \
1627 (part_stat_get(part, field) -= (subnd))
1628
1629 /*
1630 * Entry point to split a bio into clones and submit them to the targets.
1631 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1632 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1633 struct dm_table *map, struct bio *bio)
1634 {
1635 struct clone_info ci;
1636 blk_qc_t ret = BLK_QC_T_NONE;
1637 int error = 0;
1638
1639 init_clone_info(&ci, md, map, bio);
1640
1641 if (bio->bi_opf & REQ_PREFLUSH) {
1642 error = __send_empty_flush(&ci);
1643 /* dec_pending submits any data associated with flush */
1644 } else if (op_is_zone_mgmt(bio_op(bio))) {
1645 ci.bio = bio;
1646 ci.sector_count = 0;
1647 error = __split_and_process_non_flush(&ci);
1648 } else {
1649 ci.bio = bio;
1650 ci.sector_count = bio_sectors(bio);
1651 while (ci.sector_count && !error) {
1652 error = __split_and_process_non_flush(&ci);
1653 if (current->bio_list && ci.sector_count && !error) {
1654 /*
1655 * Remainder must be passed to submit_bio_noacct()
1656 * so that it gets handled *after* bios already submitted
1657 * have been completely processed.
1658 * We take a clone of the original to store in
1659 * ci.io->orig_bio to be used by end_io_acct() and
1660 * for dec_pending to use for completion handling.
1661 */
1662 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1663 GFP_NOIO, &md->queue->bio_split);
1664 ci.io->orig_bio = b;
1665
1666 /*
1667 * Adjust IO stats for each split, otherwise upon queue
1668 * reentry there will be redundant IO accounting.
1669 * NOTE: this is a stop-gap fix, a proper fix involves
1670 * significant refactoring of DM core's bio splitting
1671 * (by eliminating DM's splitting and just using bio_split)
1672 */
1673 part_stat_lock();
1674 __dm_part_stat_sub(&dm_disk(md)->part0,
1675 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1676 part_stat_unlock();
1677
1678 bio_chain(b, bio);
1679 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1680 ret = submit_bio_noacct(bio);
1681 break;
1682 }
1683 }
1684 }
1685
1686 /* drop the extra reference count */
1687 dec_pending(ci.io, errno_to_blk_status(error));
1688 return ret;
1689 }
1690
dm_submit_bio(struct bio * bio)1691 static blk_qc_t dm_submit_bio(struct bio *bio)
1692 {
1693 struct mapped_device *md = bio->bi_disk->private_data;
1694 blk_qc_t ret = BLK_QC_T_NONE;
1695 int srcu_idx;
1696 struct dm_table *map;
1697
1698 map = dm_get_live_table(md, &srcu_idx);
1699
1700 /* If suspended, or map not yet available, queue this IO for later */
1701 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1702 unlikely(!map)) {
1703 if (bio->bi_opf & REQ_NOWAIT)
1704 bio_wouldblock_error(bio);
1705 else if (bio->bi_opf & REQ_RAHEAD)
1706 bio_io_error(bio);
1707 else
1708 queue_io(md, bio);
1709 goto out;
1710 }
1711
1712 /*
1713 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1714 * otherwise associated queue_limits won't be imposed.
1715 */
1716 if (is_abnormal_io(bio))
1717 blk_queue_split(&bio);
1718
1719 ret = __split_and_process_bio(md, map, bio);
1720 out:
1721 dm_put_live_table(md, srcu_idx);
1722 return ret;
1723 }
1724
1725 /*-----------------------------------------------------------------
1726 * An IDR is used to keep track of allocated minor numbers.
1727 *---------------------------------------------------------------*/
free_minor(int minor)1728 static void free_minor(int minor)
1729 {
1730 spin_lock(&_minor_lock);
1731 idr_remove(&_minor_idr, minor);
1732 spin_unlock(&_minor_lock);
1733 }
1734
1735 /*
1736 * See if the device with a specific minor # is free.
1737 */
specific_minor(int minor)1738 static int specific_minor(int minor)
1739 {
1740 int r;
1741
1742 if (minor >= (1 << MINORBITS))
1743 return -EINVAL;
1744
1745 idr_preload(GFP_KERNEL);
1746 spin_lock(&_minor_lock);
1747
1748 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1749
1750 spin_unlock(&_minor_lock);
1751 idr_preload_end();
1752 if (r < 0)
1753 return r == -ENOSPC ? -EBUSY : r;
1754 return 0;
1755 }
1756
next_free_minor(int * minor)1757 static int next_free_minor(int *minor)
1758 {
1759 int r;
1760
1761 idr_preload(GFP_KERNEL);
1762 spin_lock(&_minor_lock);
1763
1764 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1765
1766 spin_unlock(&_minor_lock);
1767 idr_preload_end();
1768 if (r < 0)
1769 return r;
1770 *minor = r;
1771 return 0;
1772 }
1773
1774 static const struct block_device_operations dm_blk_dops;
1775 static const struct block_device_operations dm_rq_blk_dops;
1776 static const struct dax_operations dm_dax_ops;
1777
1778 static void dm_wq_work(struct work_struct *work);
1779
cleanup_mapped_device(struct mapped_device * md)1780 static void cleanup_mapped_device(struct mapped_device *md)
1781 {
1782 if (md->wq)
1783 destroy_workqueue(md->wq);
1784 bioset_exit(&md->bs);
1785 bioset_exit(&md->io_bs);
1786
1787 if (md->dax_dev) {
1788 kill_dax(md->dax_dev);
1789 put_dax(md->dax_dev);
1790 md->dax_dev = NULL;
1791 }
1792
1793 if (md->disk) {
1794 spin_lock(&_minor_lock);
1795 md->disk->private_data = NULL;
1796 spin_unlock(&_minor_lock);
1797 del_gendisk(md->disk);
1798 put_disk(md->disk);
1799 }
1800
1801 if (md->queue)
1802 blk_cleanup_queue(md->queue);
1803
1804 cleanup_srcu_struct(&md->io_barrier);
1805
1806 if (md->bdev) {
1807 bdput(md->bdev);
1808 md->bdev = NULL;
1809 }
1810
1811 mutex_destroy(&md->suspend_lock);
1812 mutex_destroy(&md->type_lock);
1813 mutex_destroy(&md->table_devices_lock);
1814 mutex_destroy(&md->swap_bios_lock);
1815
1816 dm_mq_cleanup_mapped_device(md);
1817 }
1818
1819 /*
1820 * Allocate and initialise a blank device with a given minor.
1821 */
alloc_dev(int minor)1822 static struct mapped_device *alloc_dev(int minor)
1823 {
1824 int r, numa_node_id = dm_get_numa_node();
1825 struct mapped_device *md;
1826 void *old_md;
1827
1828 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1829 if (!md) {
1830 DMWARN("unable to allocate device, out of memory.");
1831 return NULL;
1832 }
1833
1834 if (!try_module_get(THIS_MODULE))
1835 goto bad_module_get;
1836
1837 /* get a minor number for the dev */
1838 if (minor == DM_ANY_MINOR)
1839 r = next_free_minor(&minor);
1840 else
1841 r = specific_minor(minor);
1842 if (r < 0)
1843 goto bad_minor;
1844
1845 r = init_srcu_struct(&md->io_barrier);
1846 if (r < 0)
1847 goto bad_io_barrier;
1848
1849 md->numa_node_id = numa_node_id;
1850 md->init_tio_pdu = false;
1851 md->type = DM_TYPE_NONE;
1852 mutex_init(&md->suspend_lock);
1853 mutex_init(&md->type_lock);
1854 mutex_init(&md->table_devices_lock);
1855 spin_lock_init(&md->deferred_lock);
1856 atomic_set(&md->holders, 1);
1857 atomic_set(&md->open_count, 0);
1858 atomic_set(&md->event_nr, 0);
1859 atomic_set(&md->uevent_seq, 0);
1860 INIT_LIST_HEAD(&md->uevent_list);
1861 INIT_LIST_HEAD(&md->table_devices);
1862 spin_lock_init(&md->uevent_lock);
1863
1864 /*
1865 * default to bio-based until DM table is loaded and md->type
1866 * established. If request-based table is loaded: blk-mq will
1867 * override accordingly.
1868 */
1869 md->queue = blk_alloc_queue(numa_node_id);
1870 if (!md->queue)
1871 goto bad;
1872
1873 md->disk = alloc_disk_node(1, md->numa_node_id);
1874 if (!md->disk)
1875 goto bad;
1876
1877 init_waitqueue_head(&md->wait);
1878 INIT_WORK(&md->work, dm_wq_work);
1879 init_waitqueue_head(&md->eventq);
1880 init_completion(&md->kobj_holder.completion);
1881
1882 md->swap_bios = get_swap_bios();
1883 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1884 mutex_init(&md->swap_bios_lock);
1885
1886 md->disk->major = _major;
1887 md->disk->first_minor = minor;
1888 md->disk->fops = &dm_blk_dops;
1889 md->disk->queue = md->queue;
1890 md->disk->private_data = md;
1891 sprintf(md->disk->disk_name, "dm-%d", minor);
1892
1893 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1894 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1895 &dm_dax_ops, 0);
1896 if (IS_ERR(md->dax_dev)) {
1897 md->dax_dev = NULL;
1898 goto bad;
1899 }
1900 }
1901
1902 add_disk_no_queue_reg(md->disk);
1903 format_dev_t(md->name, MKDEV(_major, minor));
1904
1905 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1906 if (!md->wq)
1907 goto bad;
1908
1909 md->bdev = bdget_disk(md->disk, 0);
1910 if (!md->bdev)
1911 goto bad;
1912
1913 r = dm_stats_init(&md->stats);
1914 if (r < 0)
1915 goto bad;
1916
1917 /* Populate the mapping, nobody knows we exist yet */
1918 spin_lock(&_minor_lock);
1919 old_md = idr_replace(&_minor_idr, md, minor);
1920 spin_unlock(&_minor_lock);
1921
1922 BUG_ON(old_md != MINOR_ALLOCED);
1923
1924 return md;
1925
1926 bad:
1927 cleanup_mapped_device(md);
1928 bad_io_barrier:
1929 free_minor(minor);
1930 bad_minor:
1931 module_put(THIS_MODULE);
1932 bad_module_get:
1933 kvfree(md);
1934 return NULL;
1935 }
1936
1937 static void unlock_fs(struct mapped_device *md);
1938
free_dev(struct mapped_device * md)1939 static void free_dev(struct mapped_device *md)
1940 {
1941 int minor = MINOR(disk_devt(md->disk));
1942
1943 unlock_fs(md);
1944
1945 cleanup_mapped_device(md);
1946
1947 free_table_devices(&md->table_devices);
1948 dm_stats_cleanup(&md->stats);
1949 free_minor(minor);
1950
1951 module_put(THIS_MODULE);
1952 kvfree(md);
1953 }
1954
__bind_mempools(struct mapped_device * md,struct dm_table * t)1955 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1958 int ret = 0;
1959
1960 if (dm_table_bio_based(t)) {
1961 /*
1962 * The md may already have mempools that need changing.
1963 * If so, reload bioset because front_pad may have changed
1964 * because a different table was loaded.
1965 */
1966 bioset_exit(&md->bs);
1967 bioset_exit(&md->io_bs);
1968
1969 } else if (bioset_initialized(&md->bs)) {
1970 /*
1971 * There's no need to reload with request-based dm
1972 * because the size of front_pad doesn't change.
1973 * Note for future: If you are to reload bioset,
1974 * prep-ed requests in the queue may refer
1975 * to bio from the old bioset, so you must walk
1976 * through the queue to unprep.
1977 */
1978 goto out;
1979 }
1980
1981 BUG_ON(!p ||
1982 bioset_initialized(&md->bs) ||
1983 bioset_initialized(&md->io_bs));
1984
1985 ret = bioset_init_from_src(&md->bs, &p->bs);
1986 if (ret)
1987 goto out;
1988 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1989 if (ret)
1990 bioset_exit(&md->bs);
1991 out:
1992 /* mempool bind completed, no longer need any mempools in the table */
1993 dm_table_free_md_mempools(t);
1994 return ret;
1995 }
1996
1997 /*
1998 * Bind a table to the device.
1999 */
event_callback(void * context)2000 static void event_callback(void *context)
2001 {
2002 unsigned long flags;
2003 LIST_HEAD(uevents);
2004 struct mapped_device *md = (struct mapped_device *) context;
2005
2006 spin_lock_irqsave(&md->uevent_lock, flags);
2007 list_splice_init(&md->uevent_list, &uevents);
2008 spin_unlock_irqrestore(&md->uevent_lock, flags);
2009
2010 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2011
2012 atomic_inc(&md->event_nr);
2013 wake_up(&md->eventq);
2014 dm_issue_global_event();
2015 }
2016
2017 /*
2018 * Returns old map, which caller must destroy.
2019 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2020 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2021 struct queue_limits *limits)
2022 {
2023 struct dm_table *old_map;
2024 struct request_queue *q = md->queue;
2025 bool request_based = dm_table_request_based(t);
2026 sector_t size;
2027 int ret;
2028
2029 lockdep_assert_held(&md->suspend_lock);
2030
2031 size = dm_table_get_size(t);
2032
2033 /*
2034 * Wipe any geometry if the size of the table changed.
2035 */
2036 if (size != dm_get_size(md))
2037 memset(&md->geometry, 0, sizeof(md->geometry));
2038
2039 set_capacity(md->disk, size);
2040 bd_set_nr_sectors(md->bdev, size);
2041
2042 dm_table_event_callback(t, event_callback, md);
2043
2044 if (request_based) {
2045 /*
2046 * Leverage the fact that request-based DM targets are
2047 * immutable singletons - used to optimize dm_mq_queue_rq.
2048 */
2049 md->immutable_target = dm_table_get_immutable_target(t);
2050 }
2051
2052 ret = __bind_mempools(md, t);
2053 if (ret) {
2054 old_map = ERR_PTR(ret);
2055 goto out;
2056 }
2057
2058 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2059 rcu_assign_pointer(md->map, (void *)t);
2060 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2061
2062 dm_table_set_restrictions(t, q, limits);
2063 if (old_map)
2064 dm_sync_table(md);
2065
2066 out:
2067 return old_map;
2068 }
2069
2070 /*
2071 * Returns unbound table for the caller to free.
2072 */
__unbind(struct mapped_device * md)2073 static struct dm_table *__unbind(struct mapped_device *md)
2074 {
2075 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2076
2077 if (!map)
2078 return NULL;
2079
2080 dm_table_event_callback(map, NULL, NULL);
2081 RCU_INIT_POINTER(md->map, NULL);
2082 dm_sync_table(md);
2083
2084 return map;
2085 }
2086
2087 /*
2088 * Constructor for a new device.
2089 */
dm_create(int minor,struct mapped_device ** result)2090 int dm_create(int minor, struct mapped_device **result)
2091 {
2092 int r;
2093 struct mapped_device *md;
2094
2095 md = alloc_dev(minor);
2096 if (!md)
2097 return -ENXIO;
2098
2099 r = dm_sysfs_init(md);
2100 if (r) {
2101 free_dev(md);
2102 return r;
2103 }
2104
2105 *result = md;
2106 return 0;
2107 }
2108
2109 /*
2110 * Functions to manage md->type.
2111 * All are required to hold md->type_lock.
2112 */
dm_lock_md_type(struct mapped_device * md)2113 void dm_lock_md_type(struct mapped_device *md)
2114 {
2115 mutex_lock(&md->type_lock);
2116 }
2117
dm_unlock_md_type(struct mapped_device * md)2118 void dm_unlock_md_type(struct mapped_device *md)
2119 {
2120 mutex_unlock(&md->type_lock);
2121 }
2122
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2123 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2124 {
2125 BUG_ON(!mutex_is_locked(&md->type_lock));
2126 md->type = type;
2127 }
2128
dm_get_md_type(struct mapped_device * md)2129 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2130 {
2131 return md->type;
2132 }
2133
dm_get_immutable_target_type(struct mapped_device * md)2134 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2135 {
2136 return md->immutable_target_type;
2137 }
2138
2139 /*
2140 * The queue_limits are only valid as long as you have a reference
2141 * count on 'md'.
2142 */
dm_get_queue_limits(struct mapped_device * md)2143 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2144 {
2145 BUG_ON(!atomic_read(&md->holders));
2146 return &md->queue->limits;
2147 }
2148 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2149
2150 /*
2151 * Setup the DM device's queue based on md's type
2152 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2153 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2154 {
2155 int r;
2156 struct queue_limits limits;
2157 enum dm_queue_mode type = dm_get_md_type(md);
2158
2159 switch (type) {
2160 case DM_TYPE_REQUEST_BASED:
2161 md->disk->fops = &dm_rq_blk_dops;
2162 r = dm_mq_init_request_queue(md, t);
2163 if (r) {
2164 DMERR("Cannot initialize queue for request-based dm mapped device");
2165 return r;
2166 }
2167 break;
2168 case DM_TYPE_BIO_BASED:
2169 case DM_TYPE_DAX_BIO_BASED:
2170 break;
2171 case DM_TYPE_NONE:
2172 WARN_ON_ONCE(true);
2173 break;
2174 }
2175
2176 r = dm_calculate_queue_limits(t, &limits);
2177 if (r) {
2178 DMERR("Cannot calculate initial queue limits");
2179 return r;
2180 }
2181 dm_table_set_restrictions(t, md->queue, &limits);
2182 blk_register_queue(md->disk);
2183
2184 return 0;
2185 }
2186
dm_get_md(dev_t dev)2187 struct mapped_device *dm_get_md(dev_t dev)
2188 {
2189 struct mapped_device *md;
2190 unsigned minor = MINOR(dev);
2191
2192 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2193 return NULL;
2194
2195 spin_lock(&_minor_lock);
2196
2197 md = idr_find(&_minor_idr, minor);
2198 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2199 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2200 md = NULL;
2201 goto out;
2202 }
2203 dm_get(md);
2204 out:
2205 spin_unlock(&_minor_lock);
2206
2207 return md;
2208 }
2209 EXPORT_SYMBOL_GPL(dm_get_md);
2210
dm_get_mdptr(struct mapped_device * md)2211 void *dm_get_mdptr(struct mapped_device *md)
2212 {
2213 return md->interface_ptr;
2214 }
2215
dm_set_mdptr(struct mapped_device * md,void * ptr)2216 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2217 {
2218 md->interface_ptr = ptr;
2219 }
2220
dm_get(struct mapped_device * md)2221 void dm_get(struct mapped_device *md)
2222 {
2223 atomic_inc(&md->holders);
2224 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2225 }
2226
dm_hold(struct mapped_device * md)2227 int dm_hold(struct mapped_device *md)
2228 {
2229 spin_lock(&_minor_lock);
2230 if (test_bit(DMF_FREEING, &md->flags)) {
2231 spin_unlock(&_minor_lock);
2232 return -EBUSY;
2233 }
2234 dm_get(md);
2235 spin_unlock(&_minor_lock);
2236 return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(dm_hold);
2239
dm_device_name(struct mapped_device * md)2240 const char *dm_device_name(struct mapped_device *md)
2241 {
2242 return md->name;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_device_name);
2245
__dm_destroy(struct mapped_device * md,bool wait)2246 static void __dm_destroy(struct mapped_device *md, bool wait)
2247 {
2248 struct dm_table *map;
2249 int srcu_idx;
2250
2251 might_sleep();
2252
2253 spin_lock(&_minor_lock);
2254 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2255 set_bit(DMF_FREEING, &md->flags);
2256 spin_unlock(&_minor_lock);
2257
2258 blk_set_queue_dying(md->queue);
2259
2260 /*
2261 * Take suspend_lock so that presuspend and postsuspend methods
2262 * do not race with internal suspend.
2263 */
2264 mutex_lock(&md->suspend_lock);
2265 map = dm_get_live_table(md, &srcu_idx);
2266 if (!dm_suspended_md(md)) {
2267 dm_table_presuspend_targets(map);
2268 set_bit(DMF_SUSPENDED, &md->flags);
2269 set_bit(DMF_POST_SUSPENDING, &md->flags);
2270 dm_table_postsuspend_targets(map);
2271 }
2272 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2273 dm_put_live_table(md, srcu_idx);
2274 mutex_unlock(&md->suspend_lock);
2275
2276 /*
2277 * Rare, but there may be I/O requests still going to complete,
2278 * for example. Wait for all references to disappear.
2279 * No one should increment the reference count of the mapped_device,
2280 * after the mapped_device state becomes DMF_FREEING.
2281 */
2282 if (wait)
2283 while (atomic_read(&md->holders))
2284 msleep(1);
2285 else if (atomic_read(&md->holders))
2286 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2287 dm_device_name(md), atomic_read(&md->holders));
2288
2289 dm_sysfs_exit(md);
2290 dm_table_destroy(__unbind(md));
2291 free_dev(md);
2292 }
2293
dm_destroy(struct mapped_device * md)2294 void dm_destroy(struct mapped_device *md)
2295 {
2296 __dm_destroy(md, true);
2297 }
2298
dm_destroy_immediate(struct mapped_device * md)2299 void dm_destroy_immediate(struct mapped_device *md)
2300 {
2301 __dm_destroy(md, false);
2302 }
2303
dm_put(struct mapped_device * md)2304 void dm_put(struct mapped_device *md)
2305 {
2306 atomic_dec(&md->holders);
2307 }
2308 EXPORT_SYMBOL_GPL(dm_put);
2309
md_in_flight_bios(struct mapped_device * md)2310 static bool md_in_flight_bios(struct mapped_device *md)
2311 {
2312 int cpu;
2313 struct hd_struct *part = &dm_disk(md)->part0;
2314 long sum = 0;
2315
2316 for_each_possible_cpu(cpu) {
2317 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2318 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2319 }
2320
2321 return sum != 0;
2322 }
2323
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2324 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2325 {
2326 int r = 0;
2327 DEFINE_WAIT(wait);
2328
2329 while (true) {
2330 prepare_to_wait(&md->wait, &wait, task_state);
2331
2332 if (!md_in_flight_bios(md))
2333 break;
2334
2335 if (signal_pending_state(task_state, current)) {
2336 r = -EINTR;
2337 break;
2338 }
2339
2340 io_schedule();
2341 }
2342 finish_wait(&md->wait, &wait);
2343
2344 smp_rmb();
2345
2346 return r;
2347 }
2348
dm_wait_for_completion(struct mapped_device * md,long task_state)2349 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2350 {
2351 int r = 0;
2352
2353 if (!queue_is_mq(md->queue))
2354 return dm_wait_for_bios_completion(md, task_state);
2355
2356 while (true) {
2357 if (!blk_mq_queue_inflight(md->queue))
2358 break;
2359
2360 if (signal_pending_state(task_state, current)) {
2361 r = -EINTR;
2362 break;
2363 }
2364
2365 msleep(5);
2366 }
2367
2368 return r;
2369 }
2370
2371 /*
2372 * Process the deferred bios
2373 */
dm_wq_work(struct work_struct * work)2374 static void dm_wq_work(struct work_struct *work)
2375 {
2376 struct mapped_device *md = container_of(work, struct mapped_device, work);
2377 struct bio *bio;
2378
2379 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2380 spin_lock_irq(&md->deferred_lock);
2381 bio = bio_list_pop(&md->deferred);
2382 spin_unlock_irq(&md->deferred_lock);
2383
2384 if (!bio)
2385 break;
2386
2387 submit_bio_noacct(bio);
2388 cond_resched();
2389 }
2390 }
2391
dm_queue_flush(struct mapped_device * md)2392 static void dm_queue_flush(struct mapped_device *md)
2393 {
2394 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2395 smp_mb__after_atomic();
2396 queue_work(md->wq, &md->work);
2397 }
2398
2399 /*
2400 * Swap in a new table, returning the old one for the caller to destroy.
2401 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2402 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2403 {
2404 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2405 struct queue_limits limits;
2406 int r;
2407
2408 mutex_lock(&md->suspend_lock);
2409
2410 /* device must be suspended */
2411 if (!dm_suspended_md(md))
2412 goto out;
2413
2414 /*
2415 * If the new table has no data devices, retain the existing limits.
2416 * This helps multipath with queue_if_no_path if all paths disappear,
2417 * then new I/O is queued based on these limits, and then some paths
2418 * reappear.
2419 */
2420 if (dm_table_has_no_data_devices(table)) {
2421 live_map = dm_get_live_table_fast(md);
2422 if (live_map)
2423 limits = md->queue->limits;
2424 dm_put_live_table_fast(md);
2425 }
2426
2427 if (!live_map) {
2428 r = dm_calculate_queue_limits(table, &limits);
2429 if (r) {
2430 map = ERR_PTR(r);
2431 goto out;
2432 }
2433 }
2434
2435 map = __bind(md, table, &limits);
2436 dm_issue_global_event();
2437
2438 out:
2439 mutex_unlock(&md->suspend_lock);
2440 return map;
2441 }
2442
2443 /*
2444 * Functions to lock and unlock any filesystem running on the
2445 * device.
2446 */
lock_fs(struct mapped_device * md)2447 static int lock_fs(struct mapped_device *md)
2448 {
2449 int r;
2450
2451 WARN_ON(md->frozen_sb);
2452
2453 md->frozen_sb = freeze_bdev(md->bdev);
2454 if (IS_ERR(md->frozen_sb)) {
2455 r = PTR_ERR(md->frozen_sb);
2456 md->frozen_sb = NULL;
2457 return r;
2458 }
2459
2460 set_bit(DMF_FROZEN, &md->flags);
2461
2462 return 0;
2463 }
2464
unlock_fs(struct mapped_device * md)2465 static void unlock_fs(struct mapped_device *md)
2466 {
2467 if (!test_bit(DMF_FROZEN, &md->flags))
2468 return;
2469
2470 thaw_bdev(md->bdev, md->frozen_sb);
2471 md->frozen_sb = NULL;
2472 clear_bit(DMF_FROZEN, &md->flags);
2473 }
2474
2475 /*
2476 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2477 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2478 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2479 *
2480 * If __dm_suspend returns 0, the device is completely quiescent
2481 * now. There is no request-processing activity. All new requests
2482 * are being added to md->deferred list.
2483 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2484 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2485 unsigned suspend_flags, long task_state,
2486 int dmf_suspended_flag)
2487 {
2488 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2489 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2490 int r;
2491
2492 lockdep_assert_held(&md->suspend_lock);
2493
2494 /*
2495 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2496 * This flag is cleared before dm_suspend returns.
2497 */
2498 if (noflush)
2499 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2500 else
2501 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2502
2503 /*
2504 * This gets reverted if there's an error later and the targets
2505 * provide the .presuspend_undo hook.
2506 */
2507 dm_table_presuspend_targets(map);
2508
2509 /*
2510 * Flush I/O to the device.
2511 * Any I/O submitted after lock_fs() may not be flushed.
2512 * noflush takes precedence over do_lockfs.
2513 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 */
2515 if (!noflush && do_lockfs) {
2516 r = lock_fs(md);
2517 if (r) {
2518 dm_table_presuspend_undo_targets(map);
2519 return r;
2520 }
2521 }
2522
2523 /*
2524 * Here we must make sure that no processes are submitting requests
2525 * to target drivers i.e. no one may be executing
2526 * __split_and_process_bio from dm_submit_bio.
2527 *
2528 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2529 * we take the write lock. To prevent any process from reentering
2530 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2531 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2532 * flush_workqueue(md->wq).
2533 */
2534 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2535 if (map)
2536 synchronize_srcu(&md->io_barrier);
2537
2538 /*
2539 * Stop md->queue before flushing md->wq in case request-based
2540 * dm defers requests to md->wq from md->queue.
2541 */
2542 if (dm_request_based(md))
2543 dm_stop_queue(md->queue);
2544
2545 flush_workqueue(md->wq);
2546
2547 /*
2548 * At this point no more requests are entering target request routines.
2549 * We call dm_wait_for_completion to wait for all existing requests
2550 * to finish.
2551 */
2552 r = dm_wait_for_completion(md, task_state);
2553 if (!r)
2554 set_bit(dmf_suspended_flag, &md->flags);
2555
2556 if (noflush)
2557 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2558 if (map)
2559 synchronize_srcu(&md->io_barrier);
2560
2561 /* were we interrupted ? */
2562 if (r < 0) {
2563 dm_queue_flush(md);
2564
2565 if (dm_request_based(md))
2566 dm_start_queue(md->queue);
2567
2568 unlock_fs(md);
2569 dm_table_presuspend_undo_targets(map);
2570 /* pushback list is already flushed, so skip flush */
2571 }
2572
2573 return r;
2574 }
2575
2576 /*
2577 * We need to be able to change a mapping table under a mounted
2578 * filesystem. For example we might want to move some data in
2579 * the background. Before the table can be swapped with
2580 * dm_bind_table, dm_suspend must be called to flush any in
2581 * flight bios and ensure that any further io gets deferred.
2582 */
2583 /*
2584 * Suspend mechanism in request-based dm.
2585 *
2586 * 1. Flush all I/Os by lock_fs() if needed.
2587 * 2. Stop dispatching any I/O by stopping the request_queue.
2588 * 3. Wait for all in-flight I/Os to be completed or requeued.
2589 *
2590 * To abort suspend, start the request_queue.
2591 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2592 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2593 {
2594 struct dm_table *map = NULL;
2595 int r = 0;
2596
2597 retry:
2598 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2599
2600 if (dm_suspended_md(md)) {
2601 r = -EINVAL;
2602 goto out_unlock;
2603 }
2604
2605 if (dm_suspended_internally_md(md)) {
2606 /* already internally suspended, wait for internal resume */
2607 mutex_unlock(&md->suspend_lock);
2608 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2609 if (r)
2610 return r;
2611 goto retry;
2612 }
2613
2614 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2615
2616 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2617 if (r)
2618 goto out_unlock;
2619
2620 set_bit(DMF_POST_SUSPENDING, &md->flags);
2621 dm_table_postsuspend_targets(map);
2622 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2623
2624 out_unlock:
2625 mutex_unlock(&md->suspend_lock);
2626 return r;
2627 }
2628
__dm_resume(struct mapped_device * md,struct dm_table * map)2629 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2630 {
2631 if (map) {
2632 int r = dm_table_resume_targets(map);
2633 if (r)
2634 return r;
2635 }
2636
2637 dm_queue_flush(md);
2638
2639 /*
2640 * Flushing deferred I/Os must be done after targets are resumed
2641 * so that mapping of targets can work correctly.
2642 * Request-based dm is queueing the deferred I/Os in its request_queue.
2643 */
2644 if (dm_request_based(md))
2645 dm_start_queue(md->queue);
2646
2647 unlock_fs(md);
2648
2649 return 0;
2650 }
2651
dm_resume(struct mapped_device * md)2652 int dm_resume(struct mapped_device *md)
2653 {
2654 int r;
2655 struct dm_table *map = NULL;
2656
2657 retry:
2658 r = -EINVAL;
2659 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2660
2661 if (!dm_suspended_md(md))
2662 goto out;
2663
2664 if (dm_suspended_internally_md(md)) {
2665 /* already internally suspended, wait for internal resume */
2666 mutex_unlock(&md->suspend_lock);
2667 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2668 if (r)
2669 return r;
2670 goto retry;
2671 }
2672
2673 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2674 if (!map || !dm_table_get_size(map))
2675 goto out;
2676
2677 r = __dm_resume(md, map);
2678 if (r)
2679 goto out;
2680
2681 clear_bit(DMF_SUSPENDED, &md->flags);
2682 out:
2683 mutex_unlock(&md->suspend_lock);
2684
2685 return r;
2686 }
2687
2688 /*
2689 * Internal suspend/resume works like userspace-driven suspend. It waits
2690 * until all bios finish and prevents issuing new bios to the target drivers.
2691 * It may be used only from the kernel.
2692 */
2693
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2694 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2695 {
2696 struct dm_table *map = NULL;
2697
2698 lockdep_assert_held(&md->suspend_lock);
2699
2700 if (md->internal_suspend_count++)
2701 return; /* nested internal suspend */
2702
2703 if (dm_suspended_md(md)) {
2704 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2705 return; /* nest suspend */
2706 }
2707
2708 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2709
2710 /*
2711 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2712 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2713 * would require changing .presuspend to return an error -- avoid this
2714 * until there is a need for more elaborate variants of internal suspend.
2715 */
2716 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2717 DMF_SUSPENDED_INTERNALLY);
2718
2719 set_bit(DMF_POST_SUSPENDING, &md->flags);
2720 dm_table_postsuspend_targets(map);
2721 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2722 }
2723
__dm_internal_resume(struct mapped_device * md)2724 static void __dm_internal_resume(struct mapped_device *md)
2725 {
2726 BUG_ON(!md->internal_suspend_count);
2727
2728 if (--md->internal_suspend_count)
2729 return; /* resume from nested internal suspend */
2730
2731 if (dm_suspended_md(md))
2732 goto done; /* resume from nested suspend */
2733
2734 /*
2735 * NOTE: existing callers don't need to call dm_table_resume_targets
2736 * (which may fail -- so best to avoid it for now by passing NULL map)
2737 */
2738 (void) __dm_resume(md, NULL);
2739
2740 done:
2741 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2742 smp_mb__after_atomic();
2743 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2744 }
2745
dm_internal_suspend_noflush(struct mapped_device * md)2746 void dm_internal_suspend_noflush(struct mapped_device *md)
2747 {
2748 mutex_lock(&md->suspend_lock);
2749 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2750 mutex_unlock(&md->suspend_lock);
2751 }
2752 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2753
dm_internal_resume(struct mapped_device * md)2754 void dm_internal_resume(struct mapped_device *md)
2755 {
2756 mutex_lock(&md->suspend_lock);
2757 __dm_internal_resume(md);
2758 mutex_unlock(&md->suspend_lock);
2759 }
2760 EXPORT_SYMBOL_GPL(dm_internal_resume);
2761
2762 /*
2763 * Fast variants of internal suspend/resume hold md->suspend_lock,
2764 * which prevents interaction with userspace-driven suspend.
2765 */
2766
dm_internal_suspend_fast(struct mapped_device * md)2767 void dm_internal_suspend_fast(struct mapped_device *md)
2768 {
2769 mutex_lock(&md->suspend_lock);
2770 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2771 return;
2772
2773 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2774 synchronize_srcu(&md->io_barrier);
2775 flush_workqueue(md->wq);
2776 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2777 }
2778 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2779
dm_internal_resume_fast(struct mapped_device * md)2780 void dm_internal_resume_fast(struct mapped_device *md)
2781 {
2782 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2783 goto done;
2784
2785 dm_queue_flush(md);
2786
2787 done:
2788 mutex_unlock(&md->suspend_lock);
2789 }
2790 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2791
2792 /*-----------------------------------------------------------------
2793 * Event notification.
2794 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2795 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2796 unsigned cookie)
2797 {
2798 int r;
2799 unsigned noio_flag;
2800 char udev_cookie[DM_COOKIE_LENGTH];
2801 char *envp[] = { udev_cookie, NULL };
2802
2803 noio_flag = memalloc_noio_save();
2804
2805 if (!cookie)
2806 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2807 else {
2808 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2809 DM_COOKIE_ENV_VAR_NAME, cookie);
2810 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2811 action, envp);
2812 }
2813
2814 memalloc_noio_restore(noio_flag);
2815
2816 return r;
2817 }
2818
dm_next_uevent_seq(struct mapped_device * md)2819 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2820 {
2821 return atomic_add_return(1, &md->uevent_seq);
2822 }
2823
dm_get_event_nr(struct mapped_device * md)2824 uint32_t dm_get_event_nr(struct mapped_device *md)
2825 {
2826 return atomic_read(&md->event_nr);
2827 }
2828
dm_wait_event(struct mapped_device * md,int event_nr)2829 int dm_wait_event(struct mapped_device *md, int event_nr)
2830 {
2831 return wait_event_interruptible(md->eventq,
2832 (event_nr != atomic_read(&md->event_nr)));
2833 }
2834
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2835 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2836 {
2837 unsigned long flags;
2838
2839 spin_lock_irqsave(&md->uevent_lock, flags);
2840 list_add(elist, &md->uevent_list);
2841 spin_unlock_irqrestore(&md->uevent_lock, flags);
2842 }
2843
2844 /*
2845 * The gendisk is only valid as long as you have a reference
2846 * count on 'md'.
2847 */
dm_disk(struct mapped_device * md)2848 struct gendisk *dm_disk(struct mapped_device *md)
2849 {
2850 return md->disk;
2851 }
2852 EXPORT_SYMBOL_GPL(dm_disk);
2853
dm_kobject(struct mapped_device * md)2854 struct kobject *dm_kobject(struct mapped_device *md)
2855 {
2856 return &md->kobj_holder.kobj;
2857 }
2858
dm_get_from_kobject(struct kobject * kobj)2859 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2860 {
2861 struct mapped_device *md;
2862
2863 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2864
2865 spin_lock(&_minor_lock);
2866 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2867 md = NULL;
2868 goto out;
2869 }
2870 dm_get(md);
2871 out:
2872 spin_unlock(&_minor_lock);
2873
2874 return md;
2875 }
2876
dm_suspended_md(struct mapped_device * md)2877 int dm_suspended_md(struct mapped_device *md)
2878 {
2879 return test_bit(DMF_SUSPENDED, &md->flags);
2880 }
2881
dm_post_suspending_md(struct mapped_device * md)2882 static int dm_post_suspending_md(struct mapped_device *md)
2883 {
2884 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2885 }
2886
dm_suspended_internally_md(struct mapped_device * md)2887 int dm_suspended_internally_md(struct mapped_device *md)
2888 {
2889 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2890 }
2891
dm_test_deferred_remove_flag(struct mapped_device * md)2892 int dm_test_deferred_remove_flag(struct mapped_device *md)
2893 {
2894 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2895 }
2896
dm_suspended(struct dm_target * ti)2897 int dm_suspended(struct dm_target *ti)
2898 {
2899 return dm_suspended_md(ti->table->md);
2900 }
2901 EXPORT_SYMBOL_GPL(dm_suspended);
2902
dm_post_suspending(struct dm_target * ti)2903 int dm_post_suspending(struct dm_target *ti)
2904 {
2905 return dm_post_suspending_md(ti->table->md);
2906 }
2907 EXPORT_SYMBOL_GPL(dm_post_suspending);
2908
dm_noflush_suspending(struct dm_target * ti)2909 int dm_noflush_suspending(struct dm_target *ti)
2910 {
2911 return __noflush_suspending(ti->table->md);
2912 }
2913 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2914
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2915 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2916 unsigned integrity, unsigned per_io_data_size,
2917 unsigned min_pool_size)
2918 {
2919 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2920 unsigned int pool_size = 0;
2921 unsigned int front_pad, io_front_pad;
2922 int ret;
2923
2924 if (!pools)
2925 return NULL;
2926
2927 switch (type) {
2928 case DM_TYPE_BIO_BASED:
2929 case DM_TYPE_DAX_BIO_BASED:
2930 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2931 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2932 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2933 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2934 if (ret)
2935 goto out;
2936 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2937 goto out;
2938 break;
2939 case DM_TYPE_REQUEST_BASED:
2940 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2941 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2942 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2943 break;
2944 default:
2945 BUG();
2946 }
2947
2948 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2949 if (ret)
2950 goto out;
2951
2952 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2953 goto out;
2954
2955 return pools;
2956
2957 out:
2958 dm_free_md_mempools(pools);
2959
2960 return NULL;
2961 }
2962
dm_free_md_mempools(struct dm_md_mempools * pools)2963 void dm_free_md_mempools(struct dm_md_mempools *pools)
2964 {
2965 if (!pools)
2966 return;
2967
2968 bioset_exit(&pools->bs);
2969 bioset_exit(&pools->io_bs);
2970
2971 kfree(pools);
2972 }
2973
2974 struct dm_pr {
2975 u64 old_key;
2976 u64 new_key;
2977 u32 flags;
2978 bool fail_early;
2979 };
2980
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2981 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2982 void *data)
2983 {
2984 struct mapped_device *md = bdev->bd_disk->private_data;
2985 struct dm_table *table;
2986 struct dm_target *ti;
2987 int ret = -ENOTTY, srcu_idx;
2988
2989 table = dm_get_live_table(md, &srcu_idx);
2990 if (!table || !dm_table_get_size(table))
2991 goto out;
2992
2993 /* We only support devices that have a single target */
2994 if (dm_table_get_num_targets(table) != 1)
2995 goto out;
2996 ti = dm_table_get_target(table, 0);
2997
2998 if (dm_suspended_md(md)) {
2999 ret = -EAGAIN;
3000 goto out;
3001 }
3002
3003 ret = -EINVAL;
3004 if (!ti->type->iterate_devices)
3005 goto out;
3006
3007 ret = ti->type->iterate_devices(ti, fn, data);
3008 out:
3009 dm_put_live_table(md, srcu_idx);
3010 return ret;
3011 }
3012
3013 /*
3014 * For register / unregister we need to manually call out to every path.
3015 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3016 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3017 sector_t start, sector_t len, void *data)
3018 {
3019 struct dm_pr *pr = data;
3020 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3021
3022 if (!ops || !ops->pr_register)
3023 return -EOPNOTSUPP;
3024 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3025 }
3026
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3027 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3028 u32 flags)
3029 {
3030 struct dm_pr pr = {
3031 .old_key = old_key,
3032 .new_key = new_key,
3033 .flags = flags,
3034 .fail_early = true,
3035 };
3036 int ret;
3037
3038 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3039 if (ret && new_key) {
3040 /* unregister all paths if we failed to register any path */
3041 pr.old_key = new_key;
3042 pr.new_key = 0;
3043 pr.flags = 0;
3044 pr.fail_early = false;
3045 dm_call_pr(bdev, __dm_pr_register, &pr);
3046 }
3047
3048 return ret;
3049 }
3050
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3051 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3052 u32 flags)
3053 {
3054 struct mapped_device *md = bdev->bd_disk->private_data;
3055 const struct pr_ops *ops;
3056 int r, srcu_idx;
3057
3058 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3059 if (r < 0)
3060 goto out;
3061
3062 ops = bdev->bd_disk->fops->pr_ops;
3063 if (ops && ops->pr_reserve)
3064 r = ops->pr_reserve(bdev, key, type, flags);
3065 else
3066 r = -EOPNOTSUPP;
3067 out:
3068 dm_unprepare_ioctl(md, srcu_idx);
3069 return r;
3070 }
3071
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3072 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3073 {
3074 struct mapped_device *md = bdev->bd_disk->private_data;
3075 const struct pr_ops *ops;
3076 int r, srcu_idx;
3077
3078 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3079 if (r < 0)
3080 goto out;
3081
3082 ops = bdev->bd_disk->fops->pr_ops;
3083 if (ops && ops->pr_release)
3084 r = ops->pr_release(bdev, key, type);
3085 else
3086 r = -EOPNOTSUPP;
3087 out:
3088 dm_unprepare_ioctl(md, srcu_idx);
3089 return r;
3090 }
3091
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3092 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3093 enum pr_type type, bool abort)
3094 {
3095 struct mapped_device *md = bdev->bd_disk->private_data;
3096 const struct pr_ops *ops;
3097 int r, srcu_idx;
3098
3099 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3100 if (r < 0)
3101 goto out;
3102
3103 ops = bdev->bd_disk->fops->pr_ops;
3104 if (ops && ops->pr_preempt)
3105 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3106 else
3107 r = -EOPNOTSUPP;
3108 out:
3109 dm_unprepare_ioctl(md, srcu_idx);
3110 return r;
3111 }
3112
dm_pr_clear(struct block_device * bdev,u64 key)3113 static int dm_pr_clear(struct block_device *bdev, u64 key)
3114 {
3115 struct mapped_device *md = bdev->bd_disk->private_data;
3116 const struct pr_ops *ops;
3117 int r, srcu_idx;
3118
3119 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3120 if (r < 0)
3121 goto out;
3122
3123 ops = bdev->bd_disk->fops->pr_ops;
3124 if (ops && ops->pr_clear)
3125 r = ops->pr_clear(bdev, key);
3126 else
3127 r = -EOPNOTSUPP;
3128 out:
3129 dm_unprepare_ioctl(md, srcu_idx);
3130 return r;
3131 }
3132
3133 static const struct pr_ops dm_pr_ops = {
3134 .pr_register = dm_pr_register,
3135 .pr_reserve = dm_pr_reserve,
3136 .pr_release = dm_pr_release,
3137 .pr_preempt = dm_pr_preempt,
3138 .pr_clear = dm_pr_clear,
3139 };
3140
3141 static const struct block_device_operations dm_blk_dops = {
3142 .submit_bio = dm_submit_bio,
3143 .open = dm_blk_open,
3144 .release = dm_blk_close,
3145 .ioctl = dm_blk_ioctl,
3146 .getgeo = dm_blk_getgeo,
3147 .report_zones = dm_blk_report_zones,
3148 .pr_ops = &dm_pr_ops,
3149 .owner = THIS_MODULE
3150 };
3151
3152 static const struct block_device_operations dm_rq_blk_dops = {
3153 .open = dm_blk_open,
3154 .release = dm_blk_close,
3155 .ioctl = dm_blk_ioctl,
3156 .getgeo = dm_blk_getgeo,
3157 .pr_ops = &dm_pr_ops,
3158 .owner = THIS_MODULE
3159 };
3160
3161 static const struct dax_operations dm_dax_ops = {
3162 .direct_access = dm_dax_direct_access,
3163 .dax_supported = dm_dax_supported,
3164 .copy_from_iter = dm_dax_copy_from_iter,
3165 .copy_to_iter = dm_dax_copy_to_iter,
3166 .zero_page_range = dm_dax_zero_page_range,
3167 };
3168
3169 /*
3170 * module hooks
3171 */
3172 module_init(dm_init);
3173 module_exit(dm_exit);
3174
3175 module_param(major, uint, 0);
3176 MODULE_PARM_DESC(major, "The major number of the device mapper");
3177
3178 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3179 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3180
3181 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3182 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3183
3184 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3185 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3186
3187 MODULE_DESCRIPTION(DM_NAME " driver");
3188 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3189 MODULE_LICENSE("GPL");
3190