• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/GrFragmentProcessor.h"
9 
10 #include "src/core/SkRuntimeEffectPriv.h"
11 #include "src/gpu/GrPipeline.h"
12 #include "src/gpu/GrProcessorAnalysis.h"
13 #include "src/gpu/GrShaderCaps.h"
14 #include "src/gpu/effects/GrBlendFragmentProcessor.h"
15 #include "src/gpu/effects/GrSkSLFP.h"
16 #include "src/gpu/effects/GrTextureEffect.h"
17 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
18 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
19 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
20 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
21 
22 // Advanced Filter
checkAFRecursively() const23 bool GrFragmentProcessor::checkAFRecursively() const
24 {
25     if (isAFEnabled()) {
26         return true;
27     }
28 
29     for (int i = 0; i < numChildProcessors(); ++i) {
30         const GrFragmentProcessor* fChildFp = childProcessor(i);
31         if (fChildFp != nullptr && fChildFp->checkAFRecursively()) {
32             return true;
33         }
34     }
35     return false;
36 }
37 
isEqual(const GrFragmentProcessor & that) const38 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
39     if (this->classID() != that.classID()) {
40         return false;
41     }
42     if (this->sampleUsage() != that.sampleUsage()) {
43         return false;
44     }
45     if (!this->onIsEqual(that)) {
46         return false;
47     }
48     if (this->numChildProcessors() != that.numChildProcessors()) {
49         return false;
50     }
51     for (int i = 0; i < this->numChildProcessors(); ++i) {
52         auto thisChild = this->childProcessor(i),
53              thatChild = that .childProcessor(i);
54         if (SkToBool(thisChild) != SkToBool(thatChild)) {
55             return false;
56         }
57         if (thisChild && !thisChild->isEqual(*thatChild)) {
58             return false;
59         }
60     }
61     return true;
62 }
63 
visitProxies(const GrVisitProxyFunc & func) const64 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
65     this->visitTextureEffects([&func](const GrTextureEffect& te) {
66         func(te.view().proxy(), te.samplerState().mipmapped());
67     });
68 }
69 
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const70 void GrFragmentProcessor::visitTextureEffects(
71         const std::function<void(const GrTextureEffect&)>& func) const {
72     if (auto* te = this->asTextureEffect()) {
73         func(*te);
74     }
75     for (auto& child : fChildProcessors) {
76         if (child) {
77             child->visitTextureEffects(func);
78         }
79     }
80 }
81 
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const82 void GrFragmentProcessor::visitWithImpls(
83         const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
84         ProgramImpl& impl) const {
85     f(*this, impl);
86     SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
87     for (int i = 0; i < this->numChildProcessors(); ++i) {
88         if (const auto* child = this->childProcessor(i)) {
89             child->visitWithImpls(f, *impl.childProcessor(i));
90         }
91     }
92 }
93 
asTextureEffect()94 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
95     if (this->classID() == kGrTextureEffect_ClassID) {
96         return static_cast<GrTextureEffect*>(this);
97     }
98     return nullptr;
99 }
100 
asTextureEffect() const101 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
102     if (this->classID() == kGrTextureEffect_ClassID) {
103         return static_cast<const GrTextureEffect*>(this);
104     }
105     return nullptr;
106 }
107 
108 #if GR_TEST_UTILS
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)109 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
110                                      SkString indent,
111                                      SkString* text) {
112     for (int index = 0; index < fp.numChildProcessors(); ++index) {
113         text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
114         if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
115             text->append(childFP->dumpInfo());
116             indent.append("\t");
117             recursive_dump_tree_info(*childFP, indent, text);
118         } else {
119             text->append("null");
120         }
121     }
122 }
123 
dumpTreeInfo() const124 SkString GrFragmentProcessor::dumpTreeInfo() const {
125     SkString text = this->dumpInfo();
126     recursive_dump_tree_info(*this, SkString("\t"), &text);
127     text.append("\n");
128     return text;
129 }
130 #endif
131 
makeProgramImpl() const132 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
133     std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
134     impl->fChildProcessors.push_back_n(fChildProcessors.count());
135     for (int i = 0; i < fChildProcessors.count(); ++i) {
136         impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
137                                                         : nullptr;
138     }
139     return impl;
140 }
141 
numNonNullChildProcessors() const142 int GrFragmentProcessor::numNonNullChildProcessors() const {
143     return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
144                          [](const auto& c) { return c != nullptr; });
145 }
146 
147 #ifdef SK_DEBUG
isInstantiated() const148 bool GrFragmentProcessor::isInstantiated() const {
149     bool result = true;
150     this->visitTextureEffects([&result](const GrTextureEffect& te) {
151         if (!te.texture()) {
152             result = false;
153         }
154     });
155     return result;
156 }
157 #endif
158 
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)159 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
160                                         SkSL::SampleUsage sampleUsage) {
161     SkASSERT(sampleUsage.isSampled());
162 
163     if (!child) {
164         fChildProcessors.push_back(nullptr);
165         return;
166     }
167 
168     // The child should not have been attached to another FP already and not had any sampling
169     // strategy set on it.
170     SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
171 
172     // Configure child's sampling state first
173     child->fUsage = sampleUsage;
174 
175     // Propagate the "will read dest-color" flag up to parent FPs.
176     if (child->willReadDstColor()) {
177         this->setWillReadDstColor();
178     }
179 
180     // If this child receives passthrough or matrix transformed coords from its parent then note
181     // that the parent's coords are used indirectly to ensure that they aren't omitted.
182     if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
183         child->usesSampleCoords()) {
184         fFlags |= kUsesSampleCoordsIndirectly_Flag;
185     }
186 
187     // Record that the child is attached to us; this FP is the source of any uniform data needed
188     // to evaluate the child sample matrix.
189     child->fParent = this;
190     fChildProcessors.push_back(std::move(child));
191 
192     // Validate: our sample strategy comes from a parent we shouldn't have yet.
193     SkASSERT(!fUsage.isSampled() && !fParent);
194 }
195 
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)196 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
197     for (int i = 0; i < src.numChildProcessors(); ++i) {
198         if (auto fp = src.childProcessor(i)) {
199             this->registerChild(fp->clone(), fp->sampleUsage());
200         } else {
201             this->registerChild(nullptr);
202         }
203     }
204 }
205 
MakeColor(SkPMColor4f color)206 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
207     // Use ColorFilter signature/factory to get the constant output for constant input optimization
208     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
209         uniform half4 color;
210         half4 main(half4 inColor) { return color; }
211     )");
212     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
213     return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
214                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
215                                            : GrSkSLFP::OptFlags::kNone,
216                           "color", color);
217 }
218 
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)219 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
220         std::unique_ptr<GrFragmentProcessor> fp) {
221     if (!fp) {
222         return nullptr;
223     }
224     return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kSrcIn);
225 }
226 
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)227 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
228         std::unique_ptr<GrFragmentProcessor> child) {
229     SkASSERT(child);
230     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
231         uniform colorFilter fp;
232         half4 main(half4 inColor) {
233             return fp.eval(inColor.rgb1) * inColor.a;
234         }
235     )");
236     return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
237                           GrSkSLFP::OptFlags::kPreservesOpaqueInput |
238                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
239                           "fp", std::move(child));
240 }
241 
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)242 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
243         std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
244     auto colorFP = MakeColor(color);
245     return GrBlendFragmentProcessor::Make(std::move(colorFP),
246                                           std::move(inputFP),
247                                           SkBlendMode::kModulate);
248 }
249 
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)250 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
251         std::unique_ptr<GrFragmentProcessor> fp) {
252     SkASSERT(fp);
253     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
254         half4 main(half4 inColor) {
255             return saturate(inColor);
256         }
257     )");
258     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
259     return GrSkSLFP::Make(
260             effect, "Clamp", std::move(fp), GrSkSLFP::OptFlags::kPreservesOpaqueInput);
261 }
262 
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const GrSwizzle & swizzle)263 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
264         std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle) {
265     class SwizzleFragmentProcessor : public GrFragmentProcessor {
266     public:
267         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
268                                                          const GrSwizzle& swizzle) {
269             return std::unique_ptr<GrFragmentProcessor>(
270                     new SwizzleFragmentProcessor(std::move(fp), swizzle));
271         }
272 
273         const char* name() const override { return "Swizzle"; }
274 
275         std::unique_ptr<GrFragmentProcessor> clone() const override {
276             return Make(this->childProcessor(0)->clone(), fSwizzle);
277         }
278 
279     private:
280         SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle)
281                 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
282                 , fSwizzle(swizzle) {
283             this->registerChild(std::move(fp));
284         }
285 
286         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
287             class Impl : public ProgramImpl {
288             public:
289                 void emitCode(EmitArgs& args) override {
290                     SkString childColor = this->invokeChild(0, args);
291 
292                     const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
293                     const GrSwizzle& swizzle = sfp.fSwizzle;
294                     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
295 
296                     fragBuilder->codeAppendf("return %s.%s;",
297                                              childColor.c_str(), swizzle.asString().c_str());
298                 }
299             };
300             return std::make_unique<Impl>();
301         }
302 
303         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
304             b->add32(fSwizzle.asKey());
305         }
306 
307         bool onIsEqual(const GrFragmentProcessor& other) const override {
308             const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
309             return fSwizzle == sfp.fSwizzle;
310         }
311 
312         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
313             return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
314         }
315 
316         GrSwizzle fSwizzle;
317 
318         using INHERITED = GrFragmentProcessor;
319     };
320 
321     if (!fp) {
322         return nullptr;
323     }
324     if (GrSwizzle::RGBA() == swizzle) {
325         return fp;
326     }
327     return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
328 }
329 
330 //////////////////////////////////////////////////////////////////////////////
331 
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)332 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
333         std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
334     if (!fp) {
335         return nullptr;
336     }
337     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
338         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
339         uniform half4 color;
340         half4 main(half4 inColor) {
341             return fp.eval(color);
342         }
343     )");
344     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
345     return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
346                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
347                                            : GrSkSLFP::OptFlags::kNone,
348                           "fp", std::move(fp),
349                           "color", color);
350 }
351 
352 //////////////////////////////////////////////////////////////////////////////
353 
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)354 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
355         std::unique_ptr<GrFragmentProcessor> fp) {
356     if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
357         return fp;
358     }
359     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
360         half4 main(half4 inColor) { return inColor; }
361     )");
362     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
363     return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
364                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
365 }
366 
367 //////////////////////////////////////////////////////////////////////////////
368 
UseDestColorAsInput(std::unique_ptr<GrFragmentProcessor> fp)369 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::UseDestColorAsInput(
370         std::unique_ptr<GrFragmentProcessor> fp) {
371     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender, R"(
372         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
373         half4 main(half4 src, half4 dst) {
374             return fp.eval(dst);
375         }
376     )");
377     return GrSkSLFP::Make(effect, "UseDestColorAsInput", /*inputFP=*/nullptr,
378                           GrSkSLFP::OptFlags::kNone, "fp", std::move(fp));
379 }
380 
381 //////////////////////////////////////////////////////////////////////////////
382 
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)383 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
384         std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
385     class ComposeProcessor : public GrFragmentProcessor {
386     public:
387         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
388                                                          std::unique_ptr<GrFragmentProcessor> g) {
389             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
390                                                                              std::move(g)));
391         }
392 
393         const char* name() const override { return "Compose"; }
394 
395         std::unique_ptr<GrFragmentProcessor> clone() const override {
396             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
397         }
398 
399     private:
400         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
401             class Impl : public ProgramImpl {
402             public:
403                 void emitCode(EmitArgs& args) override {
404                     SkString result = this->invokeChild(1, args);         // g(x)
405                     result = this->invokeChild(0, result.c_str(), args);  // f(g(x))
406                     args.fFragBuilder->codeAppendf("return %s;", result.c_str());
407                 }
408             };
409             return std::make_unique<Impl>();
410         }
411 
412         ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
413                          std::unique_ptr<GrFragmentProcessor> g)
414                 : INHERITED(kSeriesFragmentProcessor_ClassID,
415                             f->optimizationFlags() & g->optimizationFlags()) {
416             this->registerChild(std::move(f));
417             this->registerChild(std::move(g));
418         }
419 
420         ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
421 
422         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
423 
424         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
425 
426         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
427             SkPMColor4f color = inColor;
428             color = ConstantOutputForConstantInput(this->childProcessor(1), color);
429             color = ConstantOutputForConstantInput(this->childProcessor(0), color);
430             return color;
431         }
432 
433         using INHERITED = GrFragmentProcessor;
434     };
435 
436     // Allow either of the composed functions to be null.
437     if (f == nullptr) {
438         return g;
439     }
440     if (g == nullptr) {
441         return f;
442     }
443 
444     // Run an optimization pass on this composition.
445     GrProcessorAnalysisColor inputColor;
446     inputColor.setToUnknown();
447 
448     std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
449     GrColorFragmentProcessorAnalysis info(inputColor, series, SK_ARRAY_COUNT(series));
450 
451     SkPMColor4f knownColor;
452     int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
453     switch (leadingFPsToEliminate) {
454         default:
455             // We shouldn't eliminate more than we started with.
456             SkASSERT(leadingFPsToEliminate <= 2);
457             [[fallthrough]];
458         case 0:
459             // Compose the two processors as requested.
460             return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
461         case 1:
462             // Replace the first processor with a constant color.
463             return ComposeProcessor::Make(/*f=*/std::move(series[1]),
464                                           /*g=*/MakeColor(knownColor));
465         case 2:
466             // Replace the entire composition with a constant color.
467             return MakeColor(knownColor);
468     }
469 }
470 
471 //////////////////////////////////////////////////////////////////////////////
472 
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)473 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
474         std::unique_ptr<GrFragmentProcessor> child,
475         const float matrix[20],
476         bool unpremulInput,
477         bool clampRGBOutput,
478         bool premulOutput) {
479     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
480         uniform half4x4 m;
481         uniform half4   v;
482         uniform int unpremulInput;   // always specialized
483         uniform int clampRGBOutput;  // always specialized
484         uniform int premulOutput;    // always specialized
485         half4 main(half4 color) {
486             if (bool(unpremulInput)) {
487                 color = unpremul(color);
488             }
489             color = m * color + v;
490             if (bool(clampRGBOutput)) {
491                 color = saturate(color);
492             } else {
493                 color.a = saturate(color.a);
494             }
495             if (bool(premulOutput)) {
496                 color.rgb *= color.a;
497             }
498             return color;
499         }
500     )");
501     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
502 
503     SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
504               matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
505               matrix[10], matrix[11], matrix[12], matrix[13],
506               matrix[15], matrix[16], matrix[17], matrix[18]);
507     SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
508     return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
509                           "m", m44,
510                           "v", v4,
511                           "unpremulInput",  GrSkSLFP::Specialize(unpremulInput  ? 1 : 0),
512                           "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
513                           "premulOutput",   GrSkSLFP::Specialize(premulOutput   ? 1 : 0));
514 }
515 
516 //////////////////////////////////////////////////////////////////////////////
517 
SurfaceColor()518 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
519     class SurfaceColorProcessor : public GrFragmentProcessor {
520     public:
521         static std::unique_ptr<GrFragmentProcessor> Make() {
522             return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
523         }
524 
525         std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
526 
527         const char* name() const override { return "SurfaceColor"; }
528 
529     private:
530         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
531             class Impl : public ProgramImpl {
532             public:
533                 void emitCode(EmitArgs& args) override {
534                     const char* dstColor = args.fFragBuilder->dstColor();
535                     args.fFragBuilder->codeAppendf("return %s;", dstColor);
536                 }
537             };
538             return std::make_unique<Impl>();
539         }
540 
541         SurfaceColorProcessor()
542                 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
543             this->setWillReadDstColor();
544         }
545 
546         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
547 
548         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
549 
550         using INHERITED = GrFragmentProcessor;
551     };
552 
553     return SurfaceColorProcessor::Make();
554 }
555 
556 //////////////////////////////////////////////////////////////////////////////
557 
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)558 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
559         std::unique_ptr<GrFragmentProcessor> fp) {
560     if (!fp) {
561         return nullptr;
562     }
563 
564     class DeviceSpace : GrFragmentProcessor {
565     public:
566         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
567             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
568         }
569 
570     private:
571         DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
572                 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
573             // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
574             this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
575         }
576 
577         std::unique_ptr<GrFragmentProcessor> clone() const override {
578             auto child = this->childProcessor(0)->clone();
579             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
580         }
581 
582         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
583             return this->childProcessor(0)->constantOutputForConstantInput(f);
584         }
585 
586         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
587             class Impl : public ProgramImpl {
588             public:
589                 Impl() = default;
590                 void emitCode(ProgramImpl::EmitArgs& args) override {
591                     auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
592                     args.fFragBuilder->codeAppendf("return %s;", child.c_str());
593                 }
594             };
595             return std::make_unique<Impl>();
596         }
597 
598         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
599 
600         bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
601 
602         const char* name() const override { return "DeviceSpace"; }
603     };
604 
605     return DeviceSpace::Make(std::move(fp));
606 }
607 
608 //////////////////////////////////////////////////////////////////////////////
609 
610 #define CLIP_EDGE_SKSL              \
611     "const int kFillBW = 0;"        \
612     "const int kFillAA = 1;"        \
613     "const int kInverseFillBW = 2;" \
614     "const int kInverseFillAA = 3;"
615 
616 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
617 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
618 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
619 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
620 
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)621 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
622         std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
623     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
624         uniform int edgeType;  // GrClipEdgeType, specialized
625         uniform float4 rectUniform;
626 
627         half4 main(float2 xy, half4 inColor) {
628             half coverage;
629             if (edgeType == kFillBW || edgeType == kInverseFillBW) {
630                 // non-AA
631                 coverage = all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),
632                                            float4(rectUniform.xy, sk_FragCoord.xy))) ? 1 : 0;
633             } else {
634                 // compute coverage relative to left and right edges, add, then subtract 1 to
635                 // account for double counting. And similar for top/bottom.
636                 half4 dists4 = clamp(half4(1, 1, -1, -1) *
637                                      half4(sk_FragCoord.xyxy - rectUniform), 0, 1);
638                 half2 dists2 = dists4.xy + dists4.zw - 1;
639                 coverage = dists2.x * dists2.y;
640             }
641 
642             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
643                 coverage = 1.0 - coverage;
644             }
645 
646             return inColor * coverage;
647         }
648     )");
649 
650     SkASSERT(rect.isSorted());
651     // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
652     // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
653     SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
654 
655     return GrSkSLFP::Make(effect, "Rect", std::move(inputFP),
656                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
657                           "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
658                           "rectUniform", rectUniform);
659 }
660 
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)661 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
662                                        GrClipEdgeType edgeType,
663                                        SkPoint center,
664                                        float radius) {
665     // A radius below half causes the implicit insetting done by this processor to become
666     // inverted. We could handle this case by making the processor code more complicated.
667     if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
668         return GrFPFailure(std::move(inputFP));
669     }
670 
671     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
672         uniform int edgeType;  // GrClipEdgeType, specialized
673         // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
674         // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
675         uniform float4 circle;
676 
677         half4 main(float2 xy, half4 inColor) {
678             // TODO: Right now the distance to circle calculation is performed in a space normalized
679             // to the radius and then denormalized. This is to mitigate overflow on devices that
680             // don't have full float.
681             half d;
682             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
683                 d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);
684             } else {
685                 d = half((1.0 - length((circle.xy - sk_FragCoord.xy) *  circle.w)) * circle.z);
686             }
687             if (edgeType == kFillAA || edgeType == kInverseFillAA) {
688                 return inColor * saturate(d);
689             } else {
690                 return d > 0.5 ? inColor : half4(0);
691             }
692         }
693     )");
694 
695     SkScalar effectiveRadius = radius;
696     if (GrClipEdgeTypeIsInverseFill(edgeType)) {
697         effectiveRadius -= 0.5f;
698         // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
699         effectiveRadius = std::max(0.001f, effectiveRadius);
700     } else {
701         effectiveRadius += 0.5f;
702     }
703     SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
704 
705     return GrFPSuccess(GrSkSLFP::Make(effect, "Circle", std::move(inputFP),
706                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
707                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
708                                       "circle", circle));
709 }
710 
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)711 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
712                                         GrClipEdgeType edgeType,
713                                         SkPoint center,
714                                         SkPoint radii,
715                                         const GrShaderCaps& caps) {
716     const bool medPrecision = !caps.floatIs32Bits();
717 
718     // Small radii produce bad results on devices without full float.
719     if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
720         return GrFPFailure(std::move(inputFP));
721     }
722     // Very narrow ellipses produce bad results on devices without full float
723     if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
724         return GrFPFailure(std::move(inputFP));
725     }
726     // Very large ellipses produce bad results on devices without full float
727     if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
728         return GrFPFailure(std::move(inputFP));
729     }
730 
731     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
732         uniform int edgeType;      // GrClipEdgeType, specialized
733         uniform int medPrecision;  // !sk_Caps.floatIs32Bits, specialized
734 
735         uniform float4 ellipse;
736         uniform float2 scale;    // only for medPrecision
737 
738         half4 main(float2 xy, half4 inColor) {
739             // d is the offset to the ellipse center
740             float2 d = sk_FragCoord.xy - ellipse.xy;
741             // If we're on a device with a "real" mediump then we'll do the distance computation in
742             // a space that is normalized by the larger radius or 128, whichever is smaller. The
743             // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
744             // already in this normalized space. The center is not.
745             if (bool(medPrecision)) {
746                 d *= scale.y;
747             }
748             float2 Z = d * ellipse.zw;
749             // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
750             float implicit = dot(Z, d) - 1;
751             // grad_dot is the squared length of the gradient of the implicit.
752             float grad_dot = 4 * dot(Z, Z);
753             // Avoid calling inversesqrt on zero.
754             if (bool(medPrecision)) {
755                 grad_dot = max(grad_dot, 6.1036e-5);
756             } else {
757                 grad_dot = max(grad_dot, 1.1755e-38);
758             }
759             float approx_dist = implicit * inversesqrt(grad_dot);
760             if (bool(medPrecision)) {
761                 approx_dist *= scale.x;
762             }
763 
764             half alpha;
765             if (edgeType == kFillBW) {
766                 alpha = approx_dist > 0.0 ? 0.0 : 1.0;
767             } else if (edgeType == kFillAA) {
768                 alpha = saturate(0.5 - half(approx_dist));
769             } else if (edgeType == kInverseFillBW) {
770                 alpha = approx_dist > 0.0 ? 1.0 : 0.0;
771             } else {  // edgeType == kInverseFillAA
772                 alpha = saturate(0.5 + half(approx_dist));
773             }
774             return inColor * alpha;
775         }
776     )");
777 
778     float invRXSqd;
779     float invRYSqd;
780     SkV2 scale = {1, 1};
781     // If we're using a scale factor to work around precision issues, choose the larger radius as
782     // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
783     if (medPrecision) {
784         if (radii.fX > radii.fY) {
785             invRXSqd = 1.f;
786             invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
787             scale = {radii.fX, 1.f / radii.fX};
788         } else {
789             invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
790             invRYSqd = 1.f;
791             scale = {radii.fY, 1.f / radii.fY};
792         }
793     } else {
794         invRXSqd = 1.f / (radii.fX * radii.fX);
795         invRYSqd = 1.f / (radii.fY * radii.fY);
796     }
797     SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
798 
799     return GrFPSuccess(GrSkSLFP::Make(effect, "Ellipse", std::move(inputFP),
800                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
801                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
802                                       "medPrecision",  GrSkSLFP::Specialize<int>(medPrecision),
803                                       "ellipse", ellipse,
804                                       "scale", scale));
805 }
806 
807 //////////////////////////////////////////////////////////////////////////////
808 
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)809 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
810         std::unique_ptr<GrFragmentProcessor> fp) {
811     class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
812     public:
813         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
814             return std::unique_ptr<GrFragmentProcessor>(
815                     new HighPrecisionFragmentProcessor(std::move(fp)));
816         }
817 
818         const char* name() const override { return "HighPrecision"; }
819 
820         std::unique_ptr<GrFragmentProcessor> clone() const override {
821             return Make(this->childProcessor(0)->clone());
822         }
823 
824     private:
825         HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
826                 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
827                             ProcessorOptimizationFlags(fp.get())) {
828             this->registerChild(std::move(fp));
829         }
830 
831         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
832             class Impl : public ProgramImpl {
833             public:
834                 void emitCode(EmitArgs& args) override {
835                     SkString childColor = this->invokeChild(0, args);
836 
837                     args.fFragBuilder->forceHighPrecision();
838                     args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
839                 }
840             };
841             return std::make_unique<Impl>();
842         }
843 
844         void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
845         bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
846 
847         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
848             return ConstantOutputForConstantInput(this->childProcessor(0), input);
849         }
850 
851         using INHERITED = GrFragmentProcessor;
852     };
853 
854     return HighPrecisionFragmentProcessor::Make(std::move(fp));
855 }
856 
857 //////////////////////////////////////////////////////////////////////////////
858 
859 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
860 
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)861 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
862                           const GrFragmentProcessor& processor) {
863     this->onSetData(pdman, processor);
864 }
865 
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,SkSL::String skslCoords)866 SkString ProgramImpl::invokeChild(int childIndex,
867                                   const char* inputColor,
868                                   const char* destColor,
869                                   EmitArgs& args,
870                                   SkSL::String skslCoords) {
871     SkASSERT(childIndex >= 0);
872 
873     if (!inputColor) {
874         inputColor = args.fInputColor;
875     }
876 
877     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
878     if (!childProc) {
879         // If no child processor is provided, return the input color as-is.
880         return SkString(inputColor);
881     }
882 
883     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
884                                      inputColor);
885 
886     if (childProc->isBlendFunction()) {
887         if (!destColor) {
888             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
889         }
890         invocation.appendf(", %s", destColor);
891     }
892 
893     // Assert that the child has no sample matrix. A uniform matrix sample call would go through
894     // invokeChildWithMatrix, not here.
895     SkASSERT(!childProc->sampleUsage().isUniformMatrix());
896 
897     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
898         SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
899         // The child's function takes a half4 color and a float2 coordinate
900         invocation.appendf(", %s", skslCoords.empty() ? args.fSampleCoord : skslCoords.c_str());
901     }
902 
903     invocation.append(")");
904     return invocation;
905 }
906 
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)907 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
908                                             const char* inputColor,
909                                             const char* destColor,
910                                             EmitArgs& args) {
911     SkASSERT(childIndex >= 0);
912 
913     if (!inputColor) {
914         inputColor = args.fInputColor;
915     }
916 
917     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
918     if (!childProc) {
919         // If no child processor is provided, return the input color as-is.
920         return SkString(inputColor);
921     }
922 
923     SkASSERT(childProc->sampleUsage().isUniformMatrix());
924 
925     // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
926     GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
927             args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
928     SkASSERT(uniform.getType() == kFloat3x3_GrSLType);
929     const SkString& matrixName(uniform.getName());
930 
931     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
932                                      inputColor);
933 
934     if (childProc->isBlendFunction()) {
935         if (!destColor) {
936             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
937         }
938         invocation.appendf(", %s", destColor);
939     }
940 
941     // Produce a string containing the call to the helper function. We have a uniform variable
942     // containing our transform (matrixName). If the parent coords were produced by uniform
943     // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
944     // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
945     // function signature will not take in coords.
946     //
947     // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
948     // the function.
949     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
950         // Only check perspective for this specific matrix transform, not the aggregate FP property.
951         // Any parent perspective will have already been applied when evaluated in the FS.
952         if (childProc->sampleUsage().hasPerspective()) {
953             invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
954         } else if (args.fShaderCaps->nonsquareMatrixSupport()) {
955             invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
956         } else {
957             invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
958         }
959     }
960 
961     invocation.append(")");
962     return invocation;
963 }
964