• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/swab.h>
31 #include <linux/fips.h>
32 #include <crypto/ecdh.h>
33 #include <crypto/rng.h>
34 #include <asm/unaligned.h>
35 #include <linux/ratelimit.h>
36 
37 #include "ecc.h"
38 #include "ecc_curve_defs.h"
39 
40 typedef struct {
41 	u64 m_low;
42 	u64 m_high;
43 } uint128_t;
44 
ecc_get_curve(unsigned int curve_id)45 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
46 {
47 	switch (curve_id) {
48 	/* In FIPS mode only allow P256 and higher */
49 	case ECC_CURVE_NIST_P192:
50 		return fips_enabled ? NULL : &nist_p192;
51 	case ECC_CURVE_NIST_P256:
52 		return &nist_p256;
53 	case ECC_CURVE_NIST_P384:
54 		return &nist_p384;
55 	default:
56 		return NULL;
57 	}
58 }
59 EXPORT_SYMBOL(ecc_get_curve);
60 
ecc_alloc_digits_space(unsigned int ndigits)61 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
62 {
63 	size_t len = ndigits * sizeof(u64);
64 
65 	if (!len)
66 		return NULL;
67 
68 	return kmalloc(len, GFP_KERNEL);
69 }
70 
ecc_free_digits_space(u64 * space)71 static void ecc_free_digits_space(u64 *space)
72 {
73 	kfree_sensitive(space);
74 }
75 
ecc_alloc_point(unsigned int ndigits)76 static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
77 {
78 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
79 
80 	if (!p)
81 		return NULL;
82 
83 	p->x = ecc_alloc_digits_space(ndigits);
84 	if (!p->x)
85 		goto err_alloc_x;
86 
87 	p->y = ecc_alloc_digits_space(ndigits);
88 	if (!p->y)
89 		goto err_alloc_y;
90 
91 	p->ndigits = ndigits;
92 
93 	return p;
94 
95 err_alloc_y:
96 	ecc_free_digits_space(p->x);
97 err_alloc_x:
98 	kfree(p);
99 	return NULL;
100 }
101 
ecc_free_point(struct ecc_point * p)102 static void ecc_free_point(struct ecc_point *p)
103 {
104 	if (!p)
105 		return;
106 
107 	kfree_sensitive(p->x);
108 	kfree_sensitive(p->y);
109 	kfree_sensitive(p);
110 }
111 
vli_clear(u64 * vli,unsigned int ndigits)112 static void vli_clear(u64 *vli, unsigned int ndigits)
113 {
114 	int i;
115 
116 	for (i = 0; i < ndigits; i++)
117 		vli[i] = 0;
118 }
119 
120 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)121 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
122 {
123 	int i;
124 
125 	for (i = 0; i < ndigits; i++) {
126 		if (vli[i])
127 			return false;
128 	}
129 
130 	return true;
131 }
132 EXPORT_SYMBOL(vli_is_zero);
133 
134 /* Returns nonzero if bit bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)135 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
136 {
137 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
138 }
139 
vli_is_negative(const u64 * vli,unsigned int ndigits)140 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
141 {
142 	return vli_test_bit(vli, ndigits * 64 - 1);
143 }
144 
145 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)146 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
147 {
148 	int i;
149 
150 	/* Search from the end until we find a non-zero digit.
151 	 * We do it in reverse because we expect that most digits will
152 	 * be nonzero.
153 	 */
154 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
155 
156 	return (i + 1);
157 }
158 
159 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)160 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
161 {
162 	unsigned int i, num_digits;
163 	u64 digit;
164 
165 	num_digits = vli_num_digits(vli, ndigits);
166 	if (num_digits == 0)
167 		return 0;
168 
169 	digit = vli[num_digits - 1];
170 	for (i = 0; digit; i++)
171 		digit >>= 1;
172 
173 	return ((num_digits - 1) * 64 + i);
174 }
175 
176 /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)177 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
178 {
179 	int i;
180 	const u64 *from = src;
181 
182 	for (i = 0; i < ndigits; i++)
183 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
184 }
185 EXPORT_SYMBOL(vli_from_be64);
186 
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)187 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
188 {
189 	int i;
190 	const u64 *from = src;
191 
192 	for (i = 0; i < ndigits; i++)
193 		dest[i] = get_unaligned_le64(&from[i]);
194 }
195 EXPORT_SYMBOL(vli_from_le64);
196 
197 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)198 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
199 {
200 	int i;
201 
202 	for (i = 0; i < ndigits; i++)
203 		dest[i] = src[i];
204 }
205 
206 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)207 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
208 {
209 	int i;
210 
211 	for (i = ndigits - 1; i >= 0; i--) {
212 		if (left[i] > right[i])
213 			return 1;
214 		else if (left[i] < right[i])
215 			return -1;
216 	}
217 
218 	return 0;
219 }
220 EXPORT_SYMBOL(vli_cmp);
221 
222 /* Computes result = in << c, returning carry. Can modify in place
223  * (if result == in). 0 < shift < 64.
224  */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)225 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
226 		      unsigned int ndigits)
227 {
228 	u64 carry = 0;
229 	int i;
230 
231 	for (i = 0; i < ndigits; i++) {
232 		u64 temp = in[i];
233 
234 		result[i] = (temp << shift) | carry;
235 		carry = temp >> (64 - shift);
236 	}
237 
238 	return carry;
239 }
240 
241 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)242 static void vli_rshift1(u64 *vli, unsigned int ndigits)
243 {
244 	u64 *end = vli;
245 	u64 carry = 0;
246 
247 	vli += ndigits;
248 
249 	while (vli-- > end) {
250 		u64 temp = *vli;
251 		*vli = (temp >> 1) | carry;
252 		carry = temp << 63;
253 	}
254 }
255 
256 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)257 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
258 		   unsigned int ndigits)
259 {
260 	u64 carry = 0;
261 	int i;
262 
263 	for (i = 0; i < ndigits; i++) {
264 		u64 sum;
265 
266 		sum = left[i] + right[i] + carry;
267 		if (sum != left[i])
268 			carry = (sum < left[i]);
269 
270 		result[i] = sum;
271 	}
272 
273 	return carry;
274 }
275 
276 /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)277 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
278 		    unsigned int ndigits)
279 {
280 	u64 carry = right;
281 	int i;
282 
283 	for (i = 0; i < ndigits; i++) {
284 		u64 sum;
285 
286 		sum = left[i] + carry;
287 		if (sum != left[i])
288 			carry = (sum < left[i]);
289 		else
290 			carry = !!carry;
291 
292 		result[i] = sum;
293 	}
294 
295 	return carry;
296 }
297 
298 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)299 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
300 		   unsigned int ndigits)
301 {
302 	u64 borrow = 0;
303 	int i;
304 
305 	for (i = 0; i < ndigits; i++) {
306 		u64 diff;
307 
308 		diff = left[i] - right[i] - borrow;
309 		if (diff != left[i])
310 			borrow = (diff > left[i]);
311 
312 		result[i] = diff;
313 	}
314 
315 	return borrow;
316 }
317 EXPORT_SYMBOL(vli_sub);
318 
319 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)320 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
321 	     unsigned int ndigits)
322 {
323 	u64 borrow = right;
324 	int i;
325 
326 	for (i = 0; i < ndigits; i++) {
327 		u64 diff;
328 
329 		diff = left[i] - borrow;
330 		if (diff != left[i])
331 			borrow = (diff > left[i]);
332 
333 		result[i] = diff;
334 	}
335 
336 	return borrow;
337 }
338 
mul_64_64(u64 left,u64 right)339 static uint128_t mul_64_64(u64 left, u64 right)
340 {
341 	uint128_t result;
342 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
343 	unsigned __int128 m = (unsigned __int128)left * right;
344 
345 	result.m_low  = m;
346 	result.m_high = m >> 64;
347 #else
348 	u64 a0 = left & 0xffffffffull;
349 	u64 a1 = left >> 32;
350 	u64 b0 = right & 0xffffffffull;
351 	u64 b1 = right >> 32;
352 	u64 m0 = a0 * b0;
353 	u64 m1 = a0 * b1;
354 	u64 m2 = a1 * b0;
355 	u64 m3 = a1 * b1;
356 
357 	m2 += (m0 >> 32);
358 	m2 += m1;
359 
360 	/* Overflow */
361 	if (m2 < m1)
362 		m3 += 0x100000000ull;
363 
364 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
365 	result.m_high = m3 + (m2 >> 32);
366 #endif
367 	return result;
368 }
369 
add_128_128(uint128_t a,uint128_t b)370 static uint128_t add_128_128(uint128_t a, uint128_t b)
371 {
372 	uint128_t result;
373 
374 	result.m_low = a.m_low + b.m_low;
375 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
376 
377 	return result;
378 }
379 
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)380 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
381 		     unsigned int ndigits)
382 {
383 	uint128_t r01 = { 0, 0 };
384 	u64 r2 = 0;
385 	unsigned int i, k;
386 
387 	/* Compute each digit of result in sequence, maintaining the
388 	 * carries.
389 	 */
390 	for (k = 0; k < ndigits * 2 - 1; k++) {
391 		unsigned int min;
392 
393 		if (k < ndigits)
394 			min = 0;
395 		else
396 			min = (k + 1) - ndigits;
397 
398 		for (i = min; i <= k && i < ndigits; i++) {
399 			uint128_t product;
400 
401 			product = mul_64_64(left[i], right[k - i]);
402 
403 			r01 = add_128_128(r01, product);
404 			r2 += (r01.m_high < product.m_high);
405 		}
406 
407 		result[k] = r01.m_low;
408 		r01.m_low = r01.m_high;
409 		r01.m_high = r2;
410 		r2 = 0;
411 	}
412 
413 	result[ndigits * 2 - 1] = r01.m_low;
414 }
415 
416 /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)417 static void vli_umult(u64 *result, const u64 *left, u32 right,
418 		      unsigned int ndigits)
419 {
420 	uint128_t r01 = { 0 };
421 	unsigned int k;
422 
423 	for (k = 0; k < ndigits; k++) {
424 		uint128_t product;
425 
426 		product = mul_64_64(left[k], right);
427 		r01 = add_128_128(r01, product);
428 		/* no carry */
429 		result[k] = r01.m_low;
430 		r01.m_low = r01.m_high;
431 		r01.m_high = 0;
432 	}
433 	result[k] = r01.m_low;
434 	for (++k; k < ndigits * 2; k++)
435 		result[k] = 0;
436 }
437 
vli_square(u64 * result,const u64 * left,unsigned int ndigits)438 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
439 {
440 	uint128_t r01 = { 0, 0 };
441 	u64 r2 = 0;
442 	int i, k;
443 
444 	for (k = 0; k < ndigits * 2 - 1; k++) {
445 		unsigned int min;
446 
447 		if (k < ndigits)
448 			min = 0;
449 		else
450 			min = (k + 1) - ndigits;
451 
452 		for (i = min; i <= k && i <= k - i; i++) {
453 			uint128_t product;
454 
455 			product = mul_64_64(left[i], left[k - i]);
456 
457 			if (i < k - i) {
458 				r2 += product.m_high >> 63;
459 				product.m_high = (product.m_high << 1) |
460 						 (product.m_low >> 63);
461 				product.m_low <<= 1;
462 			}
463 
464 			r01 = add_128_128(r01, product);
465 			r2 += (r01.m_high < product.m_high);
466 		}
467 
468 		result[k] = r01.m_low;
469 		r01.m_low = r01.m_high;
470 		r01.m_high = r2;
471 		r2 = 0;
472 	}
473 
474 	result[ndigits * 2 - 1] = r01.m_low;
475 }
476 
477 /* Computes result = (left + right) % mod.
478  * Assumes that left < mod and right < mod, result != mod.
479  */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)480 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
481 			const u64 *mod, unsigned int ndigits)
482 {
483 	u64 carry;
484 
485 	carry = vli_add(result, left, right, ndigits);
486 
487 	/* result > mod (result = mod + remainder), so subtract mod to
488 	 * get remainder.
489 	 */
490 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
491 		vli_sub(result, result, mod, ndigits);
492 }
493 
494 /* Computes result = (left - right) % mod.
495  * Assumes that left < mod and right < mod, result != mod.
496  */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)497 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
498 			const u64 *mod, unsigned int ndigits)
499 {
500 	u64 borrow = vli_sub(result, left, right, ndigits);
501 
502 	/* In this case, p_result == -diff == (max int) - diff.
503 	 * Since -x % d == d - x, we can get the correct result from
504 	 * result + mod (with overflow).
505 	 */
506 	if (borrow)
507 		vli_add(result, result, mod, ndigits);
508 }
509 
510 /*
511  * Computes result = product % mod
512  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
513  *
514  * References:
515  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
516  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
517  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
518  */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)519 static void vli_mmod_special(u64 *result, const u64 *product,
520 			      const u64 *mod, unsigned int ndigits)
521 {
522 	u64 c = -mod[0];
523 	u64 t[ECC_MAX_DIGITS * 2];
524 	u64 r[ECC_MAX_DIGITS * 2];
525 
526 	vli_set(r, product, ndigits * 2);
527 	while (!vli_is_zero(r + ndigits, ndigits)) {
528 		vli_umult(t, r + ndigits, c, ndigits);
529 		vli_clear(r + ndigits, ndigits);
530 		vli_add(r, r, t, ndigits * 2);
531 	}
532 	vli_set(t, mod, ndigits);
533 	vli_clear(t + ndigits, ndigits);
534 	while (vli_cmp(r, t, ndigits * 2) >= 0)
535 		vli_sub(r, r, t, ndigits * 2);
536 	vli_set(result, r, ndigits);
537 }
538 
539 /*
540  * Computes result = product % mod
541  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
542  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
543 
544  * References (loosely based on):
545  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
546  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
547  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
548  *
549  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
550  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
551  * Algorithm 10.25 Fast reduction for special form moduli
552  */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)553 static void vli_mmod_special2(u64 *result, const u64 *product,
554 			       const u64 *mod, unsigned int ndigits)
555 {
556 	u64 c2 = mod[0] * 2;
557 	u64 q[ECC_MAX_DIGITS];
558 	u64 r[ECC_MAX_DIGITS * 2];
559 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
560 	int carry; /* last bit that doesn't fit into q */
561 	int i;
562 
563 	vli_set(m, mod, ndigits);
564 	vli_clear(m + ndigits, ndigits);
565 
566 	vli_set(r, product, ndigits);
567 	/* q and carry are top bits */
568 	vli_set(q, product + ndigits, ndigits);
569 	vli_clear(r + ndigits, ndigits);
570 	carry = vli_is_negative(r, ndigits);
571 	if (carry)
572 		r[ndigits - 1] &= (1ull << 63) - 1;
573 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
574 		u64 qc[ECC_MAX_DIGITS * 2];
575 
576 		vli_umult(qc, q, c2, ndigits);
577 		if (carry)
578 			vli_uadd(qc, qc, mod[0], ndigits * 2);
579 		vli_set(q, qc + ndigits, ndigits);
580 		vli_clear(qc + ndigits, ndigits);
581 		carry = vli_is_negative(qc, ndigits);
582 		if (carry)
583 			qc[ndigits - 1] &= (1ull << 63) - 1;
584 		if (i & 1)
585 			vli_sub(r, r, qc, ndigits * 2);
586 		else
587 			vli_add(r, r, qc, ndigits * 2);
588 	}
589 	while (vli_is_negative(r, ndigits * 2))
590 		vli_add(r, r, m, ndigits * 2);
591 	while (vli_cmp(r, m, ndigits * 2) >= 0)
592 		vli_sub(r, r, m, ndigits * 2);
593 
594 	vli_set(result, r, ndigits);
595 }
596 
597 /*
598  * Computes result = product % mod, where product is 2N words long.
599  * Reference: Ken MacKay's micro-ecc.
600  * Currently only designed to work for curve_p or curve_n.
601  */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)602 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
603 			  unsigned int ndigits)
604 {
605 	u64 mod_m[2 * ECC_MAX_DIGITS];
606 	u64 tmp[2 * ECC_MAX_DIGITS];
607 	u64 *v[2] = { tmp, product };
608 	u64 carry = 0;
609 	unsigned int i;
610 	/* Shift mod so its highest set bit is at the maximum position. */
611 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
612 	int word_shift = shift / 64;
613 	int bit_shift = shift % 64;
614 
615 	vli_clear(mod_m, word_shift);
616 	if (bit_shift > 0) {
617 		for (i = 0; i < ndigits; ++i) {
618 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
619 			carry = mod[i] >> (64 - bit_shift);
620 		}
621 	} else
622 		vli_set(mod_m + word_shift, mod, ndigits);
623 
624 	for (i = 1; shift >= 0; --shift) {
625 		u64 borrow = 0;
626 		unsigned int j;
627 
628 		for (j = 0; j < ndigits * 2; ++j) {
629 			u64 diff = v[i][j] - mod_m[j] - borrow;
630 
631 			if (diff != v[i][j])
632 				borrow = (diff > v[i][j]);
633 			v[1 - i][j] = diff;
634 		}
635 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
636 		vli_rshift1(mod_m, ndigits);
637 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
638 		vli_rshift1(mod_m + ndigits, ndigits);
639 	}
640 	vli_set(result, v[i], ndigits);
641 }
642 
643 /* Computes result = product % mod using Barrett's reduction with precomputed
644  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
645  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
646  * boundary.
647  *
648  * Reference:
649  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
650  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
651  */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)652 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
653 			     unsigned int ndigits)
654 {
655 	u64 q[ECC_MAX_DIGITS * 2];
656 	u64 r[ECC_MAX_DIGITS * 2];
657 	const u64 *mu = mod + ndigits;
658 
659 	vli_mult(q, product + ndigits, mu, ndigits);
660 	if (mu[ndigits])
661 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
662 	vli_mult(r, mod, q + ndigits, ndigits);
663 	vli_sub(r, product, r, ndigits * 2);
664 	while (!vli_is_zero(r + ndigits, ndigits) ||
665 	       vli_cmp(r, mod, ndigits) != -1) {
666 		u64 carry;
667 
668 		carry = vli_sub(r, r, mod, ndigits);
669 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
670 	}
671 	vli_set(result, r, ndigits);
672 }
673 
674 /* Computes p_result = p_product % curve_p.
675  * See algorithm 5 and 6 from
676  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
677  */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)678 static void vli_mmod_fast_192(u64 *result, const u64 *product,
679 			      const u64 *curve_prime, u64 *tmp)
680 {
681 	const unsigned int ndigits = 3;
682 	int carry;
683 
684 	vli_set(result, product, ndigits);
685 
686 	vli_set(tmp, &product[3], ndigits);
687 	carry = vli_add(result, result, tmp, ndigits);
688 
689 	tmp[0] = 0;
690 	tmp[1] = product[3];
691 	tmp[2] = product[4];
692 	carry += vli_add(result, result, tmp, ndigits);
693 
694 	tmp[0] = tmp[1] = product[5];
695 	tmp[2] = 0;
696 	carry += vli_add(result, result, tmp, ndigits);
697 
698 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
699 		carry -= vli_sub(result, result, curve_prime, ndigits);
700 }
701 
702 /* Computes result = product % curve_prime
703  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
704  */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)705 static void vli_mmod_fast_256(u64 *result, const u64 *product,
706 			      const u64 *curve_prime, u64 *tmp)
707 {
708 	int carry;
709 	const unsigned int ndigits = 4;
710 
711 	/* t */
712 	vli_set(result, product, ndigits);
713 
714 	/* s1 */
715 	tmp[0] = 0;
716 	tmp[1] = product[5] & 0xffffffff00000000ull;
717 	tmp[2] = product[6];
718 	tmp[3] = product[7];
719 	carry = vli_lshift(tmp, tmp, 1, ndigits);
720 	carry += vli_add(result, result, tmp, ndigits);
721 
722 	/* s2 */
723 	tmp[1] = product[6] << 32;
724 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
725 	tmp[3] = product[7] >> 32;
726 	carry += vli_lshift(tmp, tmp, 1, ndigits);
727 	carry += vli_add(result, result, tmp, ndigits);
728 
729 	/* s3 */
730 	tmp[0] = product[4];
731 	tmp[1] = product[5] & 0xffffffff;
732 	tmp[2] = 0;
733 	tmp[3] = product[7];
734 	carry += vli_add(result, result, tmp, ndigits);
735 
736 	/* s4 */
737 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
738 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
739 	tmp[2] = product[7];
740 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
741 	carry += vli_add(result, result, tmp, ndigits);
742 
743 	/* d1 */
744 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
745 	tmp[1] = (product[6] >> 32);
746 	tmp[2] = 0;
747 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
748 	carry -= vli_sub(result, result, tmp, ndigits);
749 
750 	/* d2 */
751 	tmp[0] = product[6];
752 	tmp[1] = product[7];
753 	tmp[2] = 0;
754 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
755 	carry -= vli_sub(result, result, tmp, ndigits);
756 
757 	/* d3 */
758 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
759 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
760 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
761 	tmp[3] = (product[6] << 32);
762 	carry -= vli_sub(result, result, tmp, ndigits);
763 
764 	/* d4 */
765 	tmp[0] = product[7];
766 	tmp[1] = product[4] & 0xffffffff00000000ull;
767 	tmp[2] = product[5];
768 	tmp[3] = product[6] & 0xffffffff00000000ull;
769 	carry -= vli_sub(result, result, tmp, ndigits);
770 
771 	if (carry < 0) {
772 		do {
773 			carry += vli_add(result, result, curve_prime, ndigits);
774 		} while (carry < 0);
775 	} else {
776 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
777 			carry -= vli_sub(result, result, curve_prime, ndigits);
778 	}
779 }
780 
781 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
782 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
783 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
784 
785 /* Computes result = product % curve_prime
786  * from "Mathematical routines for the NIST prime elliptic curves"
787  */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)788 static void vli_mmod_fast_384(u64 *result, const u64 *product,
789 				const u64 *curve_prime, u64 *tmp)
790 {
791 	int carry;
792 	const unsigned int ndigits = 6;
793 
794 	/* t */
795 	vli_set(result, product, ndigits);
796 
797 	/* s1 */
798 	tmp[0] = 0;		// 0 || 0
799 	tmp[1] = 0;		// 0 || 0
800 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
801 	tmp[3] = product[11]>>32;	// 0 ||a23
802 	tmp[4] = 0;		// 0 || 0
803 	tmp[5] = 0;		// 0 || 0
804 	carry = vli_lshift(tmp, tmp, 1, ndigits);
805 	carry += vli_add(result, result, tmp, ndigits);
806 
807 	/* s2 */
808 	tmp[0] = product[6];	//a13||a12
809 	tmp[1] = product[7];	//a15||a14
810 	tmp[2] = product[8];	//a17||a16
811 	tmp[3] = product[9];	//a19||a18
812 	tmp[4] = product[10];	//a21||a20
813 	tmp[5] = product[11];	//a23||a22
814 	carry += vli_add(result, result, tmp, ndigits);
815 
816 	/* s3 */
817 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
818 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
819 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
820 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
821 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
822 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
823 	carry += vli_add(result, result, tmp, ndigits);
824 
825 	/* s4 */
826 	tmp[0] = AND64H(product[11]);	//a23|| 0
827 	tmp[1] = (product[10]<<32);	//a20|| 0
828 	tmp[2] = product[6];	//a13||a12
829 	tmp[3] = product[7];	//a15||a14
830 	tmp[4] = product[8];	//a17||a16
831 	tmp[5] = product[9];	//a19||a18
832 	carry += vli_add(result, result, tmp, ndigits);
833 
834 	/* s5 */
835 	tmp[0] = 0;		//  0|| 0
836 	tmp[1] = 0;		//  0|| 0
837 	tmp[2] = product[10];	//a21||a20
838 	tmp[3] = product[11];	//a23||a22
839 	tmp[4] = 0;		//  0|| 0
840 	tmp[5] = 0;		//  0|| 0
841 	carry += vli_add(result, result, tmp, ndigits);
842 
843 	/* s6 */
844 	tmp[0] = AND64L(product[10]);	// 0 ||a20
845 	tmp[1] = AND64H(product[10]);	//a21|| 0
846 	tmp[2] = product[11];	//a23||a22
847 	tmp[3] = 0;		// 0 || 0
848 	tmp[4] = 0;		// 0 || 0
849 	tmp[5] = 0;		// 0 || 0
850 	carry += vli_add(result, result, tmp, ndigits);
851 
852 	/* d1 */
853 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
854 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
855 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
856 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
857 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
858 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
859 	carry -= vli_sub(result, result, tmp, ndigits);
860 
861 	/* d2 */
862 	tmp[0] = (product[10]<<32);	//a20|| 0
863 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
864 	tmp[2] = (product[11]>>32);	// 0 ||a23
865 	tmp[3] = 0;		// 0 || 0
866 	tmp[4] = 0;		// 0 || 0
867 	tmp[5] = 0;		// 0 || 0
868 	carry -= vli_sub(result, result, tmp, ndigits);
869 
870 	/* d3 */
871 	tmp[0] = 0;		// 0 || 0
872 	tmp[1] = AND64H(product[11]);	//a23|| 0
873 	tmp[2] = product[11]>>32;	// 0 ||a23
874 	tmp[3] = 0;		// 0 || 0
875 	tmp[4] = 0;		// 0 || 0
876 	tmp[5] = 0;		// 0 || 0
877 	carry -= vli_sub(result, result, tmp, ndigits);
878 
879 	if (carry < 0) {
880 		do {
881 			carry += vli_add(result, result, curve_prime, ndigits);
882 		} while (carry < 0);
883 	} else {
884 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
885 			carry -= vli_sub(result, result, curve_prime, ndigits);
886 	}
887 
888 }
889 
890 #undef SL32OR32
891 #undef AND64H
892 #undef AND64L
893 
894 /* Computes result = product % curve_prime for different curve_primes.
895  *
896  * Note that curve_primes are distinguished just by heuristic check and
897  * not by complete conformance check.
898  */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)899 static bool vli_mmod_fast(u64 *result, u64 *product,
900 			  const struct ecc_curve *curve)
901 {
902 	u64 tmp[2 * ECC_MAX_DIGITS];
903 	const u64 *curve_prime = curve->p;
904 	const unsigned int ndigits = curve->g.ndigits;
905 
906 	/* All NIST curves have name prefix 'nist_' */
907 	if (strncmp(curve->name, "nist_", 5) != 0) {
908 		/* Try to handle Pseudo-Marsenne primes. */
909 		if (curve_prime[ndigits - 1] == -1ull) {
910 			vli_mmod_special(result, product, curve_prime,
911 					 ndigits);
912 			return true;
913 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
914 			   curve_prime[ndigits - 2] == 0) {
915 			vli_mmod_special2(result, product, curve_prime,
916 					  ndigits);
917 			return true;
918 		}
919 		vli_mmod_barrett(result, product, curve_prime, ndigits);
920 		return true;
921 	}
922 
923 	switch (ndigits) {
924 	case 3:
925 		vli_mmod_fast_192(result, product, curve_prime, tmp);
926 		break;
927 	case 4:
928 		vli_mmod_fast_256(result, product, curve_prime, tmp);
929 		break;
930 	case 6:
931 		vli_mmod_fast_384(result, product, curve_prime, tmp);
932 		break;
933 	default:
934 		pr_err_ratelimited("ecc: unsupported digits size!\n");
935 		return false;
936 	}
937 
938 	return true;
939 }
940 
941 /* Computes result = (left * right) % mod.
942  * Assumes that mod is big enough curve order.
943  */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)944 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
945 		       const u64 *mod, unsigned int ndigits)
946 {
947 	u64 product[ECC_MAX_DIGITS * 2];
948 
949 	vli_mult(product, left, right, ndigits);
950 	vli_mmod_slow(result, product, mod, ndigits);
951 }
952 EXPORT_SYMBOL(vli_mod_mult_slow);
953 
954 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)955 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
956 			      const struct ecc_curve *curve)
957 {
958 	u64 product[2 * ECC_MAX_DIGITS];
959 
960 	vli_mult(product, left, right, curve->g.ndigits);
961 	vli_mmod_fast(result, product, curve);
962 }
963 
964 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)965 static void vli_mod_square_fast(u64 *result, const u64 *left,
966 				const struct ecc_curve *curve)
967 {
968 	u64 product[2 * ECC_MAX_DIGITS];
969 
970 	vli_square(product, left, curve->g.ndigits);
971 	vli_mmod_fast(result, product, curve);
972 }
973 
974 #define EVEN(vli) (!(vli[0] & 1))
975 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
976  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
977  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
978  */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)979 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
980 			unsigned int ndigits)
981 {
982 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
983 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
984 	u64 carry;
985 	int cmp_result;
986 
987 	if (vli_is_zero(input, ndigits)) {
988 		vli_clear(result, ndigits);
989 		return;
990 	}
991 
992 	vli_set(a, input, ndigits);
993 	vli_set(b, mod, ndigits);
994 	vli_clear(u, ndigits);
995 	u[0] = 1;
996 	vli_clear(v, ndigits);
997 
998 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
999 		carry = 0;
1000 
1001 		if (EVEN(a)) {
1002 			vli_rshift1(a, ndigits);
1003 
1004 			if (!EVEN(u))
1005 				carry = vli_add(u, u, mod, ndigits);
1006 
1007 			vli_rshift1(u, ndigits);
1008 			if (carry)
1009 				u[ndigits - 1] |= 0x8000000000000000ull;
1010 		} else if (EVEN(b)) {
1011 			vli_rshift1(b, ndigits);
1012 
1013 			if (!EVEN(v))
1014 				carry = vli_add(v, v, mod, ndigits);
1015 
1016 			vli_rshift1(v, ndigits);
1017 			if (carry)
1018 				v[ndigits - 1] |= 0x8000000000000000ull;
1019 		} else if (cmp_result > 0) {
1020 			vli_sub(a, a, b, ndigits);
1021 			vli_rshift1(a, ndigits);
1022 
1023 			if (vli_cmp(u, v, ndigits) < 0)
1024 				vli_add(u, u, mod, ndigits);
1025 
1026 			vli_sub(u, u, v, ndigits);
1027 			if (!EVEN(u))
1028 				carry = vli_add(u, u, mod, ndigits);
1029 
1030 			vli_rshift1(u, ndigits);
1031 			if (carry)
1032 				u[ndigits - 1] |= 0x8000000000000000ull;
1033 		} else {
1034 			vli_sub(b, b, a, ndigits);
1035 			vli_rshift1(b, ndigits);
1036 
1037 			if (vli_cmp(v, u, ndigits) < 0)
1038 				vli_add(v, v, mod, ndigits);
1039 
1040 			vli_sub(v, v, u, ndigits);
1041 			if (!EVEN(v))
1042 				carry = vli_add(v, v, mod, ndigits);
1043 
1044 			vli_rshift1(v, ndigits);
1045 			if (carry)
1046 				v[ndigits - 1] |= 0x8000000000000000ull;
1047 		}
1048 	}
1049 
1050 	vli_set(result, u, ndigits);
1051 }
1052 EXPORT_SYMBOL(vli_mod_inv);
1053 
1054 /* ------ Point operations ------ */
1055 
1056 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1057 static bool ecc_point_is_zero(const struct ecc_point *point)
1058 {
1059 	return (vli_is_zero(point->x, point->ndigits) &&
1060 		vli_is_zero(point->y, point->ndigits));
1061 }
1062 
1063 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1064  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1065  */
1066 
1067 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1068 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1069 					const struct ecc_curve *curve)
1070 {
1071 	/* t1 = x, t2 = y, t3 = z */
1072 	u64 t4[ECC_MAX_DIGITS];
1073 	u64 t5[ECC_MAX_DIGITS];
1074 	const u64 *curve_prime = curve->p;
1075 	const unsigned int ndigits = curve->g.ndigits;
1076 
1077 	if (vli_is_zero(z1, ndigits))
1078 		return;
1079 
1080 	/* t4 = y1^2 */
1081 	vli_mod_square_fast(t4, y1, curve);
1082 	/* t5 = x1*y1^2 = A */
1083 	vli_mod_mult_fast(t5, x1, t4, curve);
1084 	/* t4 = y1^4 */
1085 	vli_mod_square_fast(t4, t4, curve);
1086 	/* t2 = y1*z1 = z3 */
1087 	vli_mod_mult_fast(y1, y1, z1, curve);
1088 	/* t3 = z1^2 */
1089 	vli_mod_square_fast(z1, z1, curve);
1090 
1091 	/* t1 = x1 + z1^2 */
1092 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1093 	/* t3 = 2*z1^2 */
1094 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1095 	/* t3 = x1 - z1^2 */
1096 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1097 	/* t1 = x1^2 - z1^4 */
1098 	vli_mod_mult_fast(x1, x1, z1, curve);
1099 
1100 	/* t3 = 2*(x1^2 - z1^4) */
1101 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1102 	/* t1 = 3*(x1^2 - z1^4) */
1103 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1104 	if (vli_test_bit(x1, 0)) {
1105 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1106 
1107 		vli_rshift1(x1, ndigits);
1108 		x1[ndigits - 1] |= carry << 63;
1109 	} else {
1110 		vli_rshift1(x1, ndigits);
1111 	}
1112 	/* t1 = 3/2*(x1^2 - z1^4) = B */
1113 
1114 	/* t3 = B^2 */
1115 	vli_mod_square_fast(z1, x1, curve);
1116 	/* t3 = B^2 - A */
1117 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1118 	/* t3 = B^2 - 2A = x3 */
1119 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1120 	/* t5 = A - x3 */
1121 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1122 	/* t1 = B * (A - x3) */
1123 	vli_mod_mult_fast(x1, x1, t5, curve);
1124 	/* t4 = B * (A - x3) - y1^4 = y3 */
1125 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1126 
1127 	vli_set(x1, z1, ndigits);
1128 	vli_set(z1, y1, ndigits);
1129 	vli_set(y1, t4, ndigits);
1130 }
1131 
1132 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1133 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1134 {
1135 	u64 t1[ECC_MAX_DIGITS];
1136 
1137 	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1138 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1139 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1140 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1141 }
1142 
1143 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1144 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1145 				u64 *p_initial_z, const struct ecc_curve *curve)
1146 {
1147 	u64 z[ECC_MAX_DIGITS];
1148 	const unsigned int ndigits = curve->g.ndigits;
1149 
1150 	vli_set(x2, x1, ndigits);
1151 	vli_set(y2, y1, ndigits);
1152 
1153 	vli_clear(z, ndigits);
1154 	z[0] = 1;
1155 
1156 	if (p_initial_z)
1157 		vli_set(z, p_initial_z, ndigits);
1158 
1159 	apply_z(x1, y1, z, curve);
1160 
1161 	ecc_point_double_jacobian(x1, y1, z, curve);
1162 
1163 	apply_z(x2, y2, z, curve);
1164 }
1165 
1166 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1167  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1168  * or P => P', Q => P + Q
1169  */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1170 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1171 			const struct ecc_curve *curve)
1172 {
1173 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1174 	u64 t5[ECC_MAX_DIGITS];
1175 	const u64 *curve_prime = curve->p;
1176 	const unsigned int ndigits = curve->g.ndigits;
1177 
1178 	/* t5 = x2 - x1 */
1179 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1180 	/* t5 = (x2 - x1)^2 = A */
1181 	vli_mod_square_fast(t5, t5, curve);
1182 	/* t1 = x1*A = B */
1183 	vli_mod_mult_fast(x1, x1, t5, curve);
1184 	/* t3 = x2*A = C */
1185 	vli_mod_mult_fast(x2, x2, t5, curve);
1186 	/* t4 = y2 - y1 */
1187 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1188 	/* t5 = (y2 - y1)^2 = D */
1189 	vli_mod_square_fast(t5, y2, curve);
1190 
1191 	/* t5 = D - B */
1192 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1193 	/* t5 = D - B - C = x3 */
1194 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1195 	/* t3 = C - B */
1196 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1197 	/* t2 = y1*(C - B) */
1198 	vli_mod_mult_fast(y1, y1, x2, curve);
1199 	/* t3 = B - x3 */
1200 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1201 	/* t4 = (y2 - y1)*(B - x3) */
1202 	vli_mod_mult_fast(y2, y2, x2, curve);
1203 	/* t4 = y3 */
1204 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1205 
1206 	vli_set(x2, t5, ndigits);
1207 }
1208 
1209 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1210  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1211  * or P => P - Q, Q => P + Q
1212  */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1213 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1214 			const struct ecc_curve *curve)
1215 {
1216 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1217 	u64 t5[ECC_MAX_DIGITS];
1218 	u64 t6[ECC_MAX_DIGITS];
1219 	u64 t7[ECC_MAX_DIGITS];
1220 	const u64 *curve_prime = curve->p;
1221 	const unsigned int ndigits = curve->g.ndigits;
1222 
1223 	/* t5 = x2 - x1 */
1224 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1225 	/* t5 = (x2 - x1)^2 = A */
1226 	vli_mod_square_fast(t5, t5, curve);
1227 	/* t1 = x1*A = B */
1228 	vli_mod_mult_fast(x1, x1, t5, curve);
1229 	/* t3 = x2*A = C */
1230 	vli_mod_mult_fast(x2, x2, t5, curve);
1231 	/* t4 = y2 + y1 */
1232 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1233 	/* t4 = y2 - y1 */
1234 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1235 
1236 	/* t6 = C - B */
1237 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1238 	/* t2 = y1 * (C - B) */
1239 	vli_mod_mult_fast(y1, y1, t6, curve);
1240 	/* t6 = B + C */
1241 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1242 	/* t3 = (y2 - y1)^2 */
1243 	vli_mod_square_fast(x2, y2, curve);
1244 	/* t3 = x3 */
1245 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1246 
1247 	/* t7 = B - x3 */
1248 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1249 	/* t4 = (y2 - y1)*(B - x3) */
1250 	vli_mod_mult_fast(y2, y2, t7, curve);
1251 	/* t4 = y3 */
1252 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1253 
1254 	/* t7 = (y2 + y1)^2 = F */
1255 	vli_mod_square_fast(t7, t5, curve);
1256 	/* t7 = x3' */
1257 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1258 	/* t6 = x3' - B */
1259 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1260 	/* t6 = (y2 + y1)*(x3' - B) */
1261 	vli_mod_mult_fast(t6, t6, t5, curve);
1262 	/* t2 = y3' */
1263 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1264 
1265 	vli_set(x1, t7, ndigits);
1266 }
1267 
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1268 static void ecc_point_mult(struct ecc_point *result,
1269 			   const struct ecc_point *point, const u64 *scalar,
1270 			   u64 *initial_z, const struct ecc_curve *curve,
1271 			   unsigned int ndigits)
1272 {
1273 	/* R0 and R1 */
1274 	u64 rx[2][ECC_MAX_DIGITS];
1275 	u64 ry[2][ECC_MAX_DIGITS];
1276 	u64 z[ECC_MAX_DIGITS];
1277 	u64 sk[2][ECC_MAX_DIGITS];
1278 	u64 *curve_prime = curve->p;
1279 	int i, nb;
1280 	int num_bits;
1281 	int carry;
1282 
1283 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1284 	vli_add(sk[1], sk[0], curve->n, ndigits);
1285 	scalar = sk[!carry];
1286 	num_bits = sizeof(u64) * ndigits * 8 + 1;
1287 
1288 	vli_set(rx[1], point->x, ndigits);
1289 	vli_set(ry[1], point->y, ndigits);
1290 
1291 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1292 
1293 	for (i = num_bits - 2; i > 0; i--) {
1294 		nb = !vli_test_bit(scalar, i);
1295 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1296 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1297 	}
1298 
1299 	nb = !vli_test_bit(scalar, 0);
1300 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1301 
1302 	/* Find final 1/Z value. */
1303 	/* X1 - X0 */
1304 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1305 	/* Yb * (X1 - X0) */
1306 	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1307 	/* xP * Yb * (X1 - X0) */
1308 	vli_mod_mult_fast(z, z, point->x, curve);
1309 
1310 	/* 1 / (xP * Yb * (X1 - X0)) */
1311 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1312 
1313 	/* yP / (xP * Yb * (X1 - X0)) */
1314 	vli_mod_mult_fast(z, z, point->y, curve);
1315 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1316 	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1317 	/* End 1/Z calculation */
1318 
1319 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1320 
1321 	apply_z(rx[0], ry[0], z, curve);
1322 
1323 	vli_set(result->x, rx[0], ndigits);
1324 	vli_set(result->y, ry[0], ndigits);
1325 }
1326 
1327 /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1328 static void ecc_point_add(const struct ecc_point *result,
1329 		   const struct ecc_point *p, const struct ecc_point *q,
1330 		   const struct ecc_curve *curve)
1331 {
1332 	u64 z[ECC_MAX_DIGITS];
1333 	u64 px[ECC_MAX_DIGITS];
1334 	u64 py[ECC_MAX_DIGITS];
1335 	unsigned int ndigits = curve->g.ndigits;
1336 
1337 	vli_set(result->x, q->x, ndigits);
1338 	vli_set(result->y, q->y, ndigits);
1339 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1340 	vli_set(px, p->x, ndigits);
1341 	vli_set(py, p->y, ndigits);
1342 	xycz_add(px, py, result->x, result->y, curve);
1343 	vli_mod_inv(z, z, curve->p, ndigits);
1344 	apply_z(result->x, result->y, z, curve);
1345 }
1346 
1347 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1348  * Based on: Kenneth MacKay's micro-ecc (2014).
1349  */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1350 void ecc_point_mult_shamir(const struct ecc_point *result,
1351 			   const u64 *u1, const struct ecc_point *p,
1352 			   const u64 *u2, const struct ecc_point *q,
1353 			   const struct ecc_curve *curve)
1354 {
1355 	u64 z[ECC_MAX_DIGITS];
1356 	u64 sump[2][ECC_MAX_DIGITS];
1357 	u64 *rx = result->x;
1358 	u64 *ry = result->y;
1359 	unsigned int ndigits = curve->g.ndigits;
1360 	unsigned int num_bits;
1361 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1362 	const struct ecc_point *points[4];
1363 	const struct ecc_point *point;
1364 	unsigned int idx;
1365 	int i;
1366 
1367 	ecc_point_add(&sum, p, q, curve);
1368 	points[0] = NULL;
1369 	points[1] = p;
1370 	points[2] = q;
1371 	points[3] = &sum;
1372 
1373 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1374 	i = num_bits - 1;
1375 	idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1376 	point = points[idx];
1377 
1378 	vli_set(rx, point->x, ndigits);
1379 	vli_set(ry, point->y, ndigits);
1380 	vli_clear(z + 1, ndigits - 1);
1381 	z[0] = 1;
1382 
1383 	for (--i; i >= 0; i--) {
1384 		ecc_point_double_jacobian(rx, ry, z, curve);
1385 		idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1386 		point = points[idx];
1387 		if (point) {
1388 			u64 tx[ECC_MAX_DIGITS];
1389 			u64 ty[ECC_MAX_DIGITS];
1390 			u64 tz[ECC_MAX_DIGITS];
1391 
1392 			vli_set(tx, point->x, ndigits);
1393 			vli_set(ty, point->y, ndigits);
1394 			apply_z(tx, ty, z, curve);
1395 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1396 			xycz_add(tx, ty, rx, ry, curve);
1397 			vli_mod_mult_fast(z, z, tz, curve);
1398 		}
1399 	}
1400 	vli_mod_inv(z, z, curve->p, ndigits);
1401 	apply_z(rx, ry, z, curve);
1402 }
1403 EXPORT_SYMBOL(ecc_point_mult_shamir);
1404 
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1405 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1406 			      const u64 *private_key, unsigned int ndigits)
1407 {
1408 	u64 one[ECC_MAX_DIGITS] = { 1, };
1409 	u64 res[ECC_MAX_DIGITS];
1410 
1411 	if (!private_key)
1412 		return -EINVAL;
1413 
1414 	if (curve->g.ndigits != ndigits)
1415 		return -EINVAL;
1416 
1417 	/* Make sure the private key is in the range [2, n-3]. */
1418 	if (vli_cmp(one, private_key, ndigits) != -1)
1419 		return -EINVAL;
1420 	vli_sub(res, curve->n, one, ndigits);
1421 	vli_sub(res, res, one, ndigits);
1422 	if (vli_cmp(res, private_key, ndigits) != 1)
1423 		return -EINVAL;
1424 
1425 	return 0;
1426 }
1427 
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1428 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1429 		     const u64 *private_key, unsigned int private_key_len)
1430 {
1431 	int nbytes;
1432 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1433 
1434 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1435 
1436 	if (private_key_len != nbytes)
1437 		return -EINVAL;
1438 
1439 	return __ecc_is_key_valid(curve, private_key, ndigits);
1440 }
1441 EXPORT_SYMBOL(ecc_is_key_valid);
1442 
1443 /*
1444  * ECC private keys are generated using the method of extra random bits,
1445  * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1446  *
1447  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1448  *                         than requested
1449  * 0 <= c mod(n-1) <= n-2  and implies that
1450  * 1 <= d <= n-1
1451  *
1452  * This method generates a private key uniformly distributed in the range
1453  * [1, n-1].
1454  */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)1455 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1456 {
1457 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1458 	u64 priv[ECC_MAX_DIGITS];
1459 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1460 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1461 	int err;
1462 
1463 	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1464 	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1465 		return -EINVAL;
1466 
1467 	/*
1468 	 * FIPS 186-4 recommends that the private key should be obtained from a
1469 	 * RBG with a security strength equal to or greater than the security
1470 	 * strength associated with N.
1471 	 *
1472 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1473 	 * ECC is 256 (N >= 512).
1474 	 *
1475 	 * This condition is met by the default RNG because it selects a favored
1476 	 * DRBG with a security strength of 256.
1477 	 */
1478 	if (crypto_get_default_rng())
1479 		return -EFAULT;
1480 
1481 	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1482 	crypto_put_default_rng();
1483 	if (err)
1484 		return err;
1485 
1486 	/* Make sure the private key is in the valid range. */
1487 	if (__ecc_is_key_valid(curve, priv, ndigits))
1488 		return -EINVAL;
1489 
1490 	ecc_swap_digits(priv, privkey, ndigits);
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(ecc_gen_privkey);
1495 
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1496 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1497 		     const u64 *private_key, u64 *public_key)
1498 {
1499 	int ret = 0;
1500 	struct ecc_point *pk;
1501 	u64 priv[ECC_MAX_DIGITS];
1502 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1503 
1504 	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1505 		ret = -EINVAL;
1506 		goto out;
1507 	}
1508 
1509 	ecc_swap_digits(private_key, priv, ndigits);
1510 
1511 	pk = ecc_alloc_point(ndigits);
1512 	if (!pk) {
1513 		ret = -ENOMEM;
1514 		goto out;
1515 	}
1516 
1517 	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1518 
1519 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1520 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1521 		ret = -EAGAIN;
1522 		goto err_free_point;
1523 	}
1524 
1525 	ecc_swap_digits(pk->x, public_key, ndigits);
1526 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1527 
1528 err_free_point:
1529 	ecc_free_point(pk);
1530 out:
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL(ecc_make_pub_key);
1534 
1535 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1536 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1537 				struct ecc_point *pk)
1538 {
1539 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1540 
1541 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1542 		return -EINVAL;
1543 
1544 	/* Check 1: Verify key is not the zero point. */
1545 	if (ecc_point_is_zero(pk))
1546 		return -EINVAL;
1547 
1548 	/* Check 2: Verify key is in the range [1, p-1]. */
1549 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1550 		return -EINVAL;
1551 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1552 		return -EINVAL;
1553 
1554 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1555 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1556 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1557 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1558 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1559 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1560 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1561 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1562 		return -EINVAL;
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1567 
1568 /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1569 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1570 			     struct ecc_point *pk)
1571 {
1572 	struct ecc_point *nQ;
1573 
1574 	/* Checks 1 through 3 */
1575 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1576 
1577 	if (ret)
1578 		return ret;
1579 
1580 	/* Check 4: Verify that nQ is the zero point. */
1581 	nQ = ecc_alloc_point(pk->ndigits);
1582 	if (!nQ)
1583 		return -ENOMEM;
1584 
1585 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1586 	if (!ecc_point_is_zero(nQ))
1587 		ret = -EINVAL;
1588 
1589 	ecc_free_point(nQ);
1590 
1591 	return ret;
1592 }
1593 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1594 
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1595 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1596 			      const u64 *private_key, const u64 *public_key,
1597 			      u64 *secret)
1598 {
1599 	int ret = 0;
1600 	struct ecc_point *product, *pk;
1601 	u64 priv[ECC_MAX_DIGITS];
1602 	u64 rand_z[ECC_MAX_DIGITS];
1603 	unsigned int nbytes;
1604 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1605 
1606 	if (!private_key || !public_key || !curve ||
1607 	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1608 		ret = -EINVAL;
1609 		goto out;
1610 	}
1611 
1612 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1613 
1614 	get_random_bytes(rand_z, nbytes);
1615 
1616 	pk = ecc_alloc_point(ndigits);
1617 	if (!pk) {
1618 		ret = -ENOMEM;
1619 		goto out;
1620 	}
1621 
1622 	ecc_swap_digits(public_key, pk->x, ndigits);
1623 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1624 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1625 	if (ret)
1626 		goto err_alloc_product;
1627 
1628 	ecc_swap_digits(private_key, priv, ndigits);
1629 
1630 	product = ecc_alloc_point(ndigits);
1631 	if (!product) {
1632 		ret = -ENOMEM;
1633 		goto err_alloc_product;
1634 	}
1635 
1636 	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1637 
1638 	if (ecc_point_is_zero(product)) {
1639 		ret = -EFAULT;
1640 		goto err_validity;
1641 	}
1642 
1643 	ecc_swap_digits(product->x, secret, ndigits);
1644 
1645 err_validity:
1646 	memzero_explicit(priv, sizeof(priv));
1647 	memzero_explicit(rand_z, sizeof(rand_z));
1648 	ecc_free_point(product);
1649 err_alloc_product:
1650 	ecc_free_point(pk);
1651 out:
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1655 
1656 MODULE_LICENSE("Dual BSD/GPL");
1657