1 /*
2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <linux/module.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/swab.h>
31 #include <linux/fips.h>
32 #include <crypto/ecdh.h>
33 #include <crypto/rng.h>
34 #include <asm/unaligned.h>
35 #include <linux/ratelimit.h>
36
37 #include "ecc.h"
38 #include "ecc_curve_defs.h"
39
40 typedef struct {
41 u64 m_low;
42 u64 m_high;
43 } uint128_t;
44
ecc_get_curve(unsigned int curve_id)45 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
46 {
47 switch (curve_id) {
48 /* In FIPS mode only allow P256 and higher */
49 case ECC_CURVE_NIST_P192:
50 return fips_enabled ? NULL : &nist_p192;
51 case ECC_CURVE_NIST_P256:
52 return &nist_p256;
53 case ECC_CURVE_NIST_P384:
54 return &nist_p384;
55 default:
56 return NULL;
57 }
58 }
59 EXPORT_SYMBOL(ecc_get_curve);
60
ecc_alloc_digits_space(unsigned int ndigits)61 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
62 {
63 size_t len = ndigits * sizeof(u64);
64
65 if (!len)
66 return NULL;
67
68 return kmalloc(len, GFP_KERNEL);
69 }
70
ecc_free_digits_space(u64 * space)71 static void ecc_free_digits_space(u64 *space)
72 {
73 kfree_sensitive(space);
74 }
75
ecc_alloc_point(unsigned int ndigits)76 static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
77 {
78 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
79
80 if (!p)
81 return NULL;
82
83 p->x = ecc_alloc_digits_space(ndigits);
84 if (!p->x)
85 goto err_alloc_x;
86
87 p->y = ecc_alloc_digits_space(ndigits);
88 if (!p->y)
89 goto err_alloc_y;
90
91 p->ndigits = ndigits;
92
93 return p;
94
95 err_alloc_y:
96 ecc_free_digits_space(p->x);
97 err_alloc_x:
98 kfree(p);
99 return NULL;
100 }
101
ecc_free_point(struct ecc_point * p)102 static void ecc_free_point(struct ecc_point *p)
103 {
104 if (!p)
105 return;
106
107 kfree_sensitive(p->x);
108 kfree_sensitive(p->y);
109 kfree_sensitive(p);
110 }
111
vli_clear(u64 * vli,unsigned int ndigits)112 static void vli_clear(u64 *vli, unsigned int ndigits)
113 {
114 int i;
115
116 for (i = 0; i < ndigits; i++)
117 vli[i] = 0;
118 }
119
120 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)121 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
122 {
123 int i;
124
125 for (i = 0; i < ndigits; i++) {
126 if (vli[i])
127 return false;
128 }
129
130 return true;
131 }
132 EXPORT_SYMBOL(vli_is_zero);
133
134 /* Returns nonzero if bit bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)135 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
136 {
137 return (vli[bit / 64] & ((u64)1 << (bit % 64)));
138 }
139
vli_is_negative(const u64 * vli,unsigned int ndigits)140 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
141 {
142 return vli_test_bit(vli, ndigits * 64 - 1);
143 }
144
145 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)146 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
147 {
148 int i;
149
150 /* Search from the end until we find a non-zero digit.
151 * We do it in reverse because we expect that most digits will
152 * be nonzero.
153 */
154 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
155
156 return (i + 1);
157 }
158
159 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)160 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
161 {
162 unsigned int i, num_digits;
163 u64 digit;
164
165 num_digits = vli_num_digits(vli, ndigits);
166 if (num_digits == 0)
167 return 0;
168
169 digit = vli[num_digits - 1];
170 for (i = 0; digit; i++)
171 digit >>= 1;
172
173 return ((num_digits - 1) * 64 + i);
174 }
175
176 /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)177 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
178 {
179 int i;
180 const u64 *from = src;
181
182 for (i = 0; i < ndigits; i++)
183 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
184 }
185 EXPORT_SYMBOL(vli_from_be64);
186
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)187 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
188 {
189 int i;
190 const u64 *from = src;
191
192 for (i = 0; i < ndigits; i++)
193 dest[i] = get_unaligned_le64(&from[i]);
194 }
195 EXPORT_SYMBOL(vli_from_le64);
196
197 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)198 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
199 {
200 int i;
201
202 for (i = 0; i < ndigits; i++)
203 dest[i] = src[i];
204 }
205
206 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)207 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
208 {
209 int i;
210
211 for (i = ndigits - 1; i >= 0; i--) {
212 if (left[i] > right[i])
213 return 1;
214 else if (left[i] < right[i])
215 return -1;
216 }
217
218 return 0;
219 }
220 EXPORT_SYMBOL(vli_cmp);
221
222 /* Computes result = in << c, returning carry. Can modify in place
223 * (if result == in). 0 < shift < 64.
224 */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)225 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
226 unsigned int ndigits)
227 {
228 u64 carry = 0;
229 int i;
230
231 for (i = 0; i < ndigits; i++) {
232 u64 temp = in[i];
233
234 result[i] = (temp << shift) | carry;
235 carry = temp >> (64 - shift);
236 }
237
238 return carry;
239 }
240
241 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)242 static void vli_rshift1(u64 *vli, unsigned int ndigits)
243 {
244 u64 *end = vli;
245 u64 carry = 0;
246
247 vli += ndigits;
248
249 while (vli-- > end) {
250 u64 temp = *vli;
251 *vli = (temp >> 1) | carry;
252 carry = temp << 63;
253 }
254 }
255
256 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)257 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
258 unsigned int ndigits)
259 {
260 u64 carry = 0;
261 int i;
262
263 for (i = 0; i < ndigits; i++) {
264 u64 sum;
265
266 sum = left[i] + right[i] + carry;
267 if (sum != left[i])
268 carry = (sum < left[i]);
269
270 result[i] = sum;
271 }
272
273 return carry;
274 }
275
276 /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)277 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
278 unsigned int ndigits)
279 {
280 u64 carry = right;
281 int i;
282
283 for (i = 0; i < ndigits; i++) {
284 u64 sum;
285
286 sum = left[i] + carry;
287 if (sum != left[i])
288 carry = (sum < left[i]);
289 else
290 carry = !!carry;
291
292 result[i] = sum;
293 }
294
295 return carry;
296 }
297
298 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)299 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
300 unsigned int ndigits)
301 {
302 u64 borrow = 0;
303 int i;
304
305 for (i = 0; i < ndigits; i++) {
306 u64 diff;
307
308 diff = left[i] - right[i] - borrow;
309 if (diff != left[i])
310 borrow = (diff > left[i]);
311
312 result[i] = diff;
313 }
314
315 return borrow;
316 }
317 EXPORT_SYMBOL(vli_sub);
318
319 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)320 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
321 unsigned int ndigits)
322 {
323 u64 borrow = right;
324 int i;
325
326 for (i = 0; i < ndigits; i++) {
327 u64 diff;
328
329 diff = left[i] - borrow;
330 if (diff != left[i])
331 borrow = (diff > left[i]);
332
333 result[i] = diff;
334 }
335
336 return borrow;
337 }
338
mul_64_64(u64 left,u64 right)339 static uint128_t mul_64_64(u64 left, u64 right)
340 {
341 uint128_t result;
342 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
343 unsigned __int128 m = (unsigned __int128)left * right;
344
345 result.m_low = m;
346 result.m_high = m >> 64;
347 #else
348 u64 a0 = left & 0xffffffffull;
349 u64 a1 = left >> 32;
350 u64 b0 = right & 0xffffffffull;
351 u64 b1 = right >> 32;
352 u64 m0 = a0 * b0;
353 u64 m1 = a0 * b1;
354 u64 m2 = a1 * b0;
355 u64 m3 = a1 * b1;
356
357 m2 += (m0 >> 32);
358 m2 += m1;
359
360 /* Overflow */
361 if (m2 < m1)
362 m3 += 0x100000000ull;
363
364 result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
365 result.m_high = m3 + (m2 >> 32);
366 #endif
367 return result;
368 }
369
add_128_128(uint128_t a,uint128_t b)370 static uint128_t add_128_128(uint128_t a, uint128_t b)
371 {
372 uint128_t result;
373
374 result.m_low = a.m_low + b.m_low;
375 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
376
377 return result;
378 }
379
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)380 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
381 unsigned int ndigits)
382 {
383 uint128_t r01 = { 0, 0 };
384 u64 r2 = 0;
385 unsigned int i, k;
386
387 /* Compute each digit of result in sequence, maintaining the
388 * carries.
389 */
390 for (k = 0; k < ndigits * 2 - 1; k++) {
391 unsigned int min;
392
393 if (k < ndigits)
394 min = 0;
395 else
396 min = (k + 1) - ndigits;
397
398 for (i = min; i <= k && i < ndigits; i++) {
399 uint128_t product;
400
401 product = mul_64_64(left[i], right[k - i]);
402
403 r01 = add_128_128(r01, product);
404 r2 += (r01.m_high < product.m_high);
405 }
406
407 result[k] = r01.m_low;
408 r01.m_low = r01.m_high;
409 r01.m_high = r2;
410 r2 = 0;
411 }
412
413 result[ndigits * 2 - 1] = r01.m_low;
414 }
415
416 /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)417 static void vli_umult(u64 *result, const u64 *left, u32 right,
418 unsigned int ndigits)
419 {
420 uint128_t r01 = { 0 };
421 unsigned int k;
422
423 for (k = 0; k < ndigits; k++) {
424 uint128_t product;
425
426 product = mul_64_64(left[k], right);
427 r01 = add_128_128(r01, product);
428 /* no carry */
429 result[k] = r01.m_low;
430 r01.m_low = r01.m_high;
431 r01.m_high = 0;
432 }
433 result[k] = r01.m_low;
434 for (++k; k < ndigits * 2; k++)
435 result[k] = 0;
436 }
437
vli_square(u64 * result,const u64 * left,unsigned int ndigits)438 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
439 {
440 uint128_t r01 = { 0, 0 };
441 u64 r2 = 0;
442 int i, k;
443
444 for (k = 0; k < ndigits * 2 - 1; k++) {
445 unsigned int min;
446
447 if (k < ndigits)
448 min = 0;
449 else
450 min = (k + 1) - ndigits;
451
452 for (i = min; i <= k && i <= k - i; i++) {
453 uint128_t product;
454
455 product = mul_64_64(left[i], left[k - i]);
456
457 if (i < k - i) {
458 r2 += product.m_high >> 63;
459 product.m_high = (product.m_high << 1) |
460 (product.m_low >> 63);
461 product.m_low <<= 1;
462 }
463
464 r01 = add_128_128(r01, product);
465 r2 += (r01.m_high < product.m_high);
466 }
467
468 result[k] = r01.m_low;
469 r01.m_low = r01.m_high;
470 r01.m_high = r2;
471 r2 = 0;
472 }
473
474 result[ndigits * 2 - 1] = r01.m_low;
475 }
476
477 /* Computes result = (left + right) % mod.
478 * Assumes that left < mod and right < mod, result != mod.
479 */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)480 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
481 const u64 *mod, unsigned int ndigits)
482 {
483 u64 carry;
484
485 carry = vli_add(result, left, right, ndigits);
486
487 /* result > mod (result = mod + remainder), so subtract mod to
488 * get remainder.
489 */
490 if (carry || vli_cmp(result, mod, ndigits) >= 0)
491 vli_sub(result, result, mod, ndigits);
492 }
493
494 /* Computes result = (left - right) % mod.
495 * Assumes that left < mod and right < mod, result != mod.
496 */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)497 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
498 const u64 *mod, unsigned int ndigits)
499 {
500 u64 borrow = vli_sub(result, left, right, ndigits);
501
502 /* In this case, p_result == -diff == (max int) - diff.
503 * Since -x % d == d - x, we can get the correct result from
504 * result + mod (with overflow).
505 */
506 if (borrow)
507 vli_add(result, result, mod, ndigits);
508 }
509
510 /*
511 * Computes result = product % mod
512 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
513 *
514 * References:
515 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
516 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
517 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
518 */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)519 static void vli_mmod_special(u64 *result, const u64 *product,
520 const u64 *mod, unsigned int ndigits)
521 {
522 u64 c = -mod[0];
523 u64 t[ECC_MAX_DIGITS * 2];
524 u64 r[ECC_MAX_DIGITS * 2];
525
526 vli_set(r, product, ndigits * 2);
527 while (!vli_is_zero(r + ndigits, ndigits)) {
528 vli_umult(t, r + ndigits, c, ndigits);
529 vli_clear(r + ndigits, ndigits);
530 vli_add(r, r, t, ndigits * 2);
531 }
532 vli_set(t, mod, ndigits);
533 vli_clear(t + ndigits, ndigits);
534 while (vli_cmp(r, t, ndigits * 2) >= 0)
535 vli_sub(r, r, t, ndigits * 2);
536 vli_set(result, r, ndigits);
537 }
538
539 /*
540 * Computes result = product % mod
541 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
542 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
543
544 * References (loosely based on):
545 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
546 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
547 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
548 *
549 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
550 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
551 * Algorithm 10.25 Fast reduction for special form moduli
552 */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)553 static void vli_mmod_special2(u64 *result, const u64 *product,
554 const u64 *mod, unsigned int ndigits)
555 {
556 u64 c2 = mod[0] * 2;
557 u64 q[ECC_MAX_DIGITS];
558 u64 r[ECC_MAX_DIGITS * 2];
559 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
560 int carry; /* last bit that doesn't fit into q */
561 int i;
562
563 vli_set(m, mod, ndigits);
564 vli_clear(m + ndigits, ndigits);
565
566 vli_set(r, product, ndigits);
567 /* q and carry are top bits */
568 vli_set(q, product + ndigits, ndigits);
569 vli_clear(r + ndigits, ndigits);
570 carry = vli_is_negative(r, ndigits);
571 if (carry)
572 r[ndigits - 1] &= (1ull << 63) - 1;
573 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
574 u64 qc[ECC_MAX_DIGITS * 2];
575
576 vli_umult(qc, q, c2, ndigits);
577 if (carry)
578 vli_uadd(qc, qc, mod[0], ndigits * 2);
579 vli_set(q, qc + ndigits, ndigits);
580 vli_clear(qc + ndigits, ndigits);
581 carry = vli_is_negative(qc, ndigits);
582 if (carry)
583 qc[ndigits - 1] &= (1ull << 63) - 1;
584 if (i & 1)
585 vli_sub(r, r, qc, ndigits * 2);
586 else
587 vli_add(r, r, qc, ndigits * 2);
588 }
589 while (vli_is_negative(r, ndigits * 2))
590 vli_add(r, r, m, ndigits * 2);
591 while (vli_cmp(r, m, ndigits * 2) >= 0)
592 vli_sub(r, r, m, ndigits * 2);
593
594 vli_set(result, r, ndigits);
595 }
596
597 /*
598 * Computes result = product % mod, where product is 2N words long.
599 * Reference: Ken MacKay's micro-ecc.
600 * Currently only designed to work for curve_p or curve_n.
601 */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)602 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
603 unsigned int ndigits)
604 {
605 u64 mod_m[2 * ECC_MAX_DIGITS];
606 u64 tmp[2 * ECC_MAX_DIGITS];
607 u64 *v[2] = { tmp, product };
608 u64 carry = 0;
609 unsigned int i;
610 /* Shift mod so its highest set bit is at the maximum position. */
611 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
612 int word_shift = shift / 64;
613 int bit_shift = shift % 64;
614
615 vli_clear(mod_m, word_shift);
616 if (bit_shift > 0) {
617 for (i = 0; i < ndigits; ++i) {
618 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
619 carry = mod[i] >> (64 - bit_shift);
620 }
621 } else
622 vli_set(mod_m + word_shift, mod, ndigits);
623
624 for (i = 1; shift >= 0; --shift) {
625 u64 borrow = 0;
626 unsigned int j;
627
628 for (j = 0; j < ndigits * 2; ++j) {
629 u64 diff = v[i][j] - mod_m[j] - borrow;
630
631 if (diff != v[i][j])
632 borrow = (diff > v[i][j]);
633 v[1 - i][j] = diff;
634 }
635 i = !(i ^ borrow); /* Swap the index if there was no borrow */
636 vli_rshift1(mod_m, ndigits);
637 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
638 vli_rshift1(mod_m + ndigits, ndigits);
639 }
640 vli_set(result, v[i], ndigits);
641 }
642
643 /* Computes result = product % mod using Barrett's reduction with precomputed
644 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
645 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
646 * boundary.
647 *
648 * Reference:
649 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
650 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
651 */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)652 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
653 unsigned int ndigits)
654 {
655 u64 q[ECC_MAX_DIGITS * 2];
656 u64 r[ECC_MAX_DIGITS * 2];
657 const u64 *mu = mod + ndigits;
658
659 vli_mult(q, product + ndigits, mu, ndigits);
660 if (mu[ndigits])
661 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
662 vli_mult(r, mod, q + ndigits, ndigits);
663 vli_sub(r, product, r, ndigits * 2);
664 while (!vli_is_zero(r + ndigits, ndigits) ||
665 vli_cmp(r, mod, ndigits) != -1) {
666 u64 carry;
667
668 carry = vli_sub(r, r, mod, ndigits);
669 vli_usub(r + ndigits, r + ndigits, carry, ndigits);
670 }
671 vli_set(result, r, ndigits);
672 }
673
674 /* Computes p_result = p_product % curve_p.
675 * See algorithm 5 and 6 from
676 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
677 */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)678 static void vli_mmod_fast_192(u64 *result, const u64 *product,
679 const u64 *curve_prime, u64 *tmp)
680 {
681 const unsigned int ndigits = 3;
682 int carry;
683
684 vli_set(result, product, ndigits);
685
686 vli_set(tmp, &product[3], ndigits);
687 carry = vli_add(result, result, tmp, ndigits);
688
689 tmp[0] = 0;
690 tmp[1] = product[3];
691 tmp[2] = product[4];
692 carry += vli_add(result, result, tmp, ndigits);
693
694 tmp[0] = tmp[1] = product[5];
695 tmp[2] = 0;
696 carry += vli_add(result, result, tmp, ndigits);
697
698 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
699 carry -= vli_sub(result, result, curve_prime, ndigits);
700 }
701
702 /* Computes result = product % curve_prime
703 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
704 */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)705 static void vli_mmod_fast_256(u64 *result, const u64 *product,
706 const u64 *curve_prime, u64 *tmp)
707 {
708 int carry;
709 const unsigned int ndigits = 4;
710
711 /* t */
712 vli_set(result, product, ndigits);
713
714 /* s1 */
715 tmp[0] = 0;
716 tmp[1] = product[5] & 0xffffffff00000000ull;
717 tmp[2] = product[6];
718 tmp[3] = product[7];
719 carry = vli_lshift(tmp, tmp, 1, ndigits);
720 carry += vli_add(result, result, tmp, ndigits);
721
722 /* s2 */
723 tmp[1] = product[6] << 32;
724 tmp[2] = (product[6] >> 32) | (product[7] << 32);
725 tmp[3] = product[7] >> 32;
726 carry += vli_lshift(tmp, tmp, 1, ndigits);
727 carry += vli_add(result, result, tmp, ndigits);
728
729 /* s3 */
730 tmp[0] = product[4];
731 tmp[1] = product[5] & 0xffffffff;
732 tmp[2] = 0;
733 tmp[3] = product[7];
734 carry += vli_add(result, result, tmp, ndigits);
735
736 /* s4 */
737 tmp[0] = (product[4] >> 32) | (product[5] << 32);
738 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
739 tmp[2] = product[7];
740 tmp[3] = (product[6] >> 32) | (product[4] << 32);
741 carry += vli_add(result, result, tmp, ndigits);
742
743 /* d1 */
744 tmp[0] = (product[5] >> 32) | (product[6] << 32);
745 tmp[1] = (product[6] >> 32);
746 tmp[2] = 0;
747 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
748 carry -= vli_sub(result, result, tmp, ndigits);
749
750 /* d2 */
751 tmp[0] = product[6];
752 tmp[1] = product[7];
753 tmp[2] = 0;
754 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
755 carry -= vli_sub(result, result, tmp, ndigits);
756
757 /* d3 */
758 tmp[0] = (product[6] >> 32) | (product[7] << 32);
759 tmp[1] = (product[7] >> 32) | (product[4] << 32);
760 tmp[2] = (product[4] >> 32) | (product[5] << 32);
761 tmp[3] = (product[6] << 32);
762 carry -= vli_sub(result, result, tmp, ndigits);
763
764 /* d4 */
765 tmp[0] = product[7];
766 tmp[1] = product[4] & 0xffffffff00000000ull;
767 tmp[2] = product[5];
768 tmp[3] = product[6] & 0xffffffff00000000ull;
769 carry -= vli_sub(result, result, tmp, ndigits);
770
771 if (carry < 0) {
772 do {
773 carry += vli_add(result, result, curve_prime, ndigits);
774 } while (carry < 0);
775 } else {
776 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
777 carry -= vli_sub(result, result, curve_prime, ndigits);
778 }
779 }
780
781 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
782 #define AND64H(x64) (x64 & 0xffFFffFF00000000ull)
783 #define AND64L(x64) (x64 & 0x00000000ffFFffFFull)
784
785 /* Computes result = product % curve_prime
786 * from "Mathematical routines for the NIST prime elliptic curves"
787 */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)788 static void vli_mmod_fast_384(u64 *result, const u64 *product,
789 const u64 *curve_prime, u64 *tmp)
790 {
791 int carry;
792 const unsigned int ndigits = 6;
793
794 /* t */
795 vli_set(result, product, ndigits);
796
797 /* s1 */
798 tmp[0] = 0; // 0 || 0
799 tmp[1] = 0; // 0 || 0
800 tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
801 tmp[3] = product[11]>>32; // 0 ||a23
802 tmp[4] = 0; // 0 || 0
803 tmp[5] = 0; // 0 || 0
804 carry = vli_lshift(tmp, tmp, 1, ndigits);
805 carry += vli_add(result, result, tmp, ndigits);
806
807 /* s2 */
808 tmp[0] = product[6]; //a13||a12
809 tmp[1] = product[7]; //a15||a14
810 tmp[2] = product[8]; //a17||a16
811 tmp[3] = product[9]; //a19||a18
812 tmp[4] = product[10]; //a21||a20
813 tmp[5] = product[11]; //a23||a22
814 carry += vli_add(result, result, tmp, ndigits);
815
816 /* s3 */
817 tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
818 tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
819 tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13
820 tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
821 tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
822 tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
823 carry += vli_add(result, result, tmp, ndigits);
824
825 /* s4 */
826 tmp[0] = AND64H(product[11]); //a23|| 0
827 tmp[1] = (product[10]<<32); //a20|| 0
828 tmp[2] = product[6]; //a13||a12
829 tmp[3] = product[7]; //a15||a14
830 tmp[4] = product[8]; //a17||a16
831 tmp[5] = product[9]; //a19||a18
832 carry += vli_add(result, result, tmp, ndigits);
833
834 /* s5 */
835 tmp[0] = 0; // 0|| 0
836 tmp[1] = 0; // 0|| 0
837 tmp[2] = product[10]; //a21||a20
838 tmp[3] = product[11]; //a23||a22
839 tmp[4] = 0; // 0|| 0
840 tmp[5] = 0; // 0|| 0
841 carry += vli_add(result, result, tmp, ndigits);
842
843 /* s6 */
844 tmp[0] = AND64L(product[10]); // 0 ||a20
845 tmp[1] = AND64H(product[10]); //a21|| 0
846 tmp[2] = product[11]; //a23||a22
847 tmp[3] = 0; // 0 || 0
848 tmp[4] = 0; // 0 || 0
849 tmp[5] = 0; // 0 || 0
850 carry += vli_add(result, result, tmp, ndigits);
851
852 /* d1 */
853 tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
854 tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13
855 tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
856 tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
857 tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
858 tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
859 carry -= vli_sub(result, result, tmp, ndigits);
860
861 /* d2 */
862 tmp[0] = (product[10]<<32); //a20|| 0
863 tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
864 tmp[2] = (product[11]>>32); // 0 ||a23
865 tmp[3] = 0; // 0 || 0
866 tmp[4] = 0; // 0 || 0
867 tmp[5] = 0; // 0 || 0
868 carry -= vli_sub(result, result, tmp, ndigits);
869
870 /* d3 */
871 tmp[0] = 0; // 0 || 0
872 tmp[1] = AND64H(product[11]); //a23|| 0
873 tmp[2] = product[11]>>32; // 0 ||a23
874 tmp[3] = 0; // 0 || 0
875 tmp[4] = 0; // 0 || 0
876 tmp[5] = 0; // 0 || 0
877 carry -= vli_sub(result, result, tmp, ndigits);
878
879 if (carry < 0) {
880 do {
881 carry += vli_add(result, result, curve_prime, ndigits);
882 } while (carry < 0);
883 } else {
884 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
885 carry -= vli_sub(result, result, curve_prime, ndigits);
886 }
887
888 }
889
890 #undef SL32OR32
891 #undef AND64H
892 #undef AND64L
893
894 /* Computes result = product % curve_prime for different curve_primes.
895 *
896 * Note that curve_primes are distinguished just by heuristic check and
897 * not by complete conformance check.
898 */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)899 static bool vli_mmod_fast(u64 *result, u64 *product,
900 const struct ecc_curve *curve)
901 {
902 u64 tmp[2 * ECC_MAX_DIGITS];
903 const u64 *curve_prime = curve->p;
904 const unsigned int ndigits = curve->g.ndigits;
905
906 /* All NIST curves have name prefix 'nist_' */
907 if (strncmp(curve->name, "nist_", 5) != 0) {
908 /* Try to handle Pseudo-Marsenne primes. */
909 if (curve_prime[ndigits - 1] == -1ull) {
910 vli_mmod_special(result, product, curve_prime,
911 ndigits);
912 return true;
913 } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
914 curve_prime[ndigits - 2] == 0) {
915 vli_mmod_special2(result, product, curve_prime,
916 ndigits);
917 return true;
918 }
919 vli_mmod_barrett(result, product, curve_prime, ndigits);
920 return true;
921 }
922
923 switch (ndigits) {
924 case 3:
925 vli_mmod_fast_192(result, product, curve_prime, tmp);
926 break;
927 case 4:
928 vli_mmod_fast_256(result, product, curve_prime, tmp);
929 break;
930 case 6:
931 vli_mmod_fast_384(result, product, curve_prime, tmp);
932 break;
933 default:
934 pr_err_ratelimited("ecc: unsupported digits size!\n");
935 return false;
936 }
937
938 return true;
939 }
940
941 /* Computes result = (left * right) % mod.
942 * Assumes that mod is big enough curve order.
943 */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)944 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
945 const u64 *mod, unsigned int ndigits)
946 {
947 u64 product[ECC_MAX_DIGITS * 2];
948
949 vli_mult(product, left, right, ndigits);
950 vli_mmod_slow(result, product, mod, ndigits);
951 }
952 EXPORT_SYMBOL(vli_mod_mult_slow);
953
954 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)955 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
956 const struct ecc_curve *curve)
957 {
958 u64 product[2 * ECC_MAX_DIGITS];
959
960 vli_mult(product, left, right, curve->g.ndigits);
961 vli_mmod_fast(result, product, curve);
962 }
963
964 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)965 static void vli_mod_square_fast(u64 *result, const u64 *left,
966 const struct ecc_curve *curve)
967 {
968 u64 product[2 * ECC_MAX_DIGITS];
969
970 vli_square(product, left, curve->g.ndigits);
971 vli_mmod_fast(result, product, curve);
972 }
973
974 #define EVEN(vli) (!(vli[0] & 1))
975 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
976 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
977 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
978 */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)979 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
980 unsigned int ndigits)
981 {
982 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
983 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
984 u64 carry;
985 int cmp_result;
986
987 if (vli_is_zero(input, ndigits)) {
988 vli_clear(result, ndigits);
989 return;
990 }
991
992 vli_set(a, input, ndigits);
993 vli_set(b, mod, ndigits);
994 vli_clear(u, ndigits);
995 u[0] = 1;
996 vli_clear(v, ndigits);
997
998 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
999 carry = 0;
1000
1001 if (EVEN(a)) {
1002 vli_rshift1(a, ndigits);
1003
1004 if (!EVEN(u))
1005 carry = vli_add(u, u, mod, ndigits);
1006
1007 vli_rshift1(u, ndigits);
1008 if (carry)
1009 u[ndigits - 1] |= 0x8000000000000000ull;
1010 } else if (EVEN(b)) {
1011 vli_rshift1(b, ndigits);
1012
1013 if (!EVEN(v))
1014 carry = vli_add(v, v, mod, ndigits);
1015
1016 vli_rshift1(v, ndigits);
1017 if (carry)
1018 v[ndigits - 1] |= 0x8000000000000000ull;
1019 } else if (cmp_result > 0) {
1020 vli_sub(a, a, b, ndigits);
1021 vli_rshift1(a, ndigits);
1022
1023 if (vli_cmp(u, v, ndigits) < 0)
1024 vli_add(u, u, mod, ndigits);
1025
1026 vli_sub(u, u, v, ndigits);
1027 if (!EVEN(u))
1028 carry = vli_add(u, u, mod, ndigits);
1029
1030 vli_rshift1(u, ndigits);
1031 if (carry)
1032 u[ndigits - 1] |= 0x8000000000000000ull;
1033 } else {
1034 vli_sub(b, b, a, ndigits);
1035 vli_rshift1(b, ndigits);
1036
1037 if (vli_cmp(v, u, ndigits) < 0)
1038 vli_add(v, v, mod, ndigits);
1039
1040 vli_sub(v, v, u, ndigits);
1041 if (!EVEN(v))
1042 carry = vli_add(v, v, mod, ndigits);
1043
1044 vli_rshift1(v, ndigits);
1045 if (carry)
1046 v[ndigits - 1] |= 0x8000000000000000ull;
1047 }
1048 }
1049
1050 vli_set(result, u, ndigits);
1051 }
1052 EXPORT_SYMBOL(vli_mod_inv);
1053
1054 /* ------ Point operations ------ */
1055
1056 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1057 static bool ecc_point_is_zero(const struct ecc_point *point)
1058 {
1059 return (vli_is_zero(point->x, point->ndigits) &&
1060 vli_is_zero(point->y, point->ndigits));
1061 }
1062
1063 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1064 * coordinates. From https://eprint.iacr.org/2011/338.pdf
1065 */
1066
1067 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1068 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1069 const struct ecc_curve *curve)
1070 {
1071 /* t1 = x, t2 = y, t3 = z */
1072 u64 t4[ECC_MAX_DIGITS];
1073 u64 t5[ECC_MAX_DIGITS];
1074 const u64 *curve_prime = curve->p;
1075 const unsigned int ndigits = curve->g.ndigits;
1076
1077 if (vli_is_zero(z1, ndigits))
1078 return;
1079
1080 /* t4 = y1^2 */
1081 vli_mod_square_fast(t4, y1, curve);
1082 /* t5 = x1*y1^2 = A */
1083 vli_mod_mult_fast(t5, x1, t4, curve);
1084 /* t4 = y1^4 */
1085 vli_mod_square_fast(t4, t4, curve);
1086 /* t2 = y1*z1 = z3 */
1087 vli_mod_mult_fast(y1, y1, z1, curve);
1088 /* t3 = z1^2 */
1089 vli_mod_square_fast(z1, z1, curve);
1090
1091 /* t1 = x1 + z1^2 */
1092 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1093 /* t3 = 2*z1^2 */
1094 vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1095 /* t3 = x1 - z1^2 */
1096 vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1097 /* t1 = x1^2 - z1^4 */
1098 vli_mod_mult_fast(x1, x1, z1, curve);
1099
1100 /* t3 = 2*(x1^2 - z1^4) */
1101 vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1102 /* t1 = 3*(x1^2 - z1^4) */
1103 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1104 if (vli_test_bit(x1, 0)) {
1105 u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1106
1107 vli_rshift1(x1, ndigits);
1108 x1[ndigits - 1] |= carry << 63;
1109 } else {
1110 vli_rshift1(x1, ndigits);
1111 }
1112 /* t1 = 3/2*(x1^2 - z1^4) = B */
1113
1114 /* t3 = B^2 */
1115 vli_mod_square_fast(z1, x1, curve);
1116 /* t3 = B^2 - A */
1117 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1118 /* t3 = B^2 - 2A = x3 */
1119 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1120 /* t5 = A - x3 */
1121 vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1122 /* t1 = B * (A - x3) */
1123 vli_mod_mult_fast(x1, x1, t5, curve);
1124 /* t4 = B * (A - x3) - y1^4 = y3 */
1125 vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1126
1127 vli_set(x1, z1, ndigits);
1128 vli_set(z1, y1, ndigits);
1129 vli_set(y1, t4, ndigits);
1130 }
1131
1132 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1133 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1134 {
1135 u64 t1[ECC_MAX_DIGITS];
1136
1137 vli_mod_square_fast(t1, z, curve); /* z^2 */
1138 vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */
1139 vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */
1140 vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */
1141 }
1142
1143 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1144 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1145 u64 *p_initial_z, const struct ecc_curve *curve)
1146 {
1147 u64 z[ECC_MAX_DIGITS];
1148 const unsigned int ndigits = curve->g.ndigits;
1149
1150 vli_set(x2, x1, ndigits);
1151 vli_set(y2, y1, ndigits);
1152
1153 vli_clear(z, ndigits);
1154 z[0] = 1;
1155
1156 if (p_initial_z)
1157 vli_set(z, p_initial_z, ndigits);
1158
1159 apply_z(x1, y1, z, curve);
1160
1161 ecc_point_double_jacobian(x1, y1, z, curve);
1162
1163 apply_z(x2, y2, z, curve);
1164 }
1165
1166 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1167 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1168 * or P => P', Q => P + Q
1169 */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1170 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1171 const struct ecc_curve *curve)
1172 {
1173 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1174 u64 t5[ECC_MAX_DIGITS];
1175 const u64 *curve_prime = curve->p;
1176 const unsigned int ndigits = curve->g.ndigits;
1177
1178 /* t5 = x2 - x1 */
1179 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1180 /* t5 = (x2 - x1)^2 = A */
1181 vli_mod_square_fast(t5, t5, curve);
1182 /* t1 = x1*A = B */
1183 vli_mod_mult_fast(x1, x1, t5, curve);
1184 /* t3 = x2*A = C */
1185 vli_mod_mult_fast(x2, x2, t5, curve);
1186 /* t4 = y2 - y1 */
1187 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1188 /* t5 = (y2 - y1)^2 = D */
1189 vli_mod_square_fast(t5, y2, curve);
1190
1191 /* t5 = D - B */
1192 vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1193 /* t5 = D - B - C = x3 */
1194 vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1195 /* t3 = C - B */
1196 vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1197 /* t2 = y1*(C - B) */
1198 vli_mod_mult_fast(y1, y1, x2, curve);
1199 /* t3 = B - x3 */
1200 vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1201 /* t4 = (y2 - y1)*(B - x3) */
1202 vli_mod_mult_fast(y2, y2, x2, curve);
1203 /* t4 = y3 */
1204 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1205
1206 vli_set(x2, t5, ndigits);
1207 }
1208
1209 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1210 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1211 * or P => P - Q, Q => P + Q
1212 */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1213 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1214 const struct ecc_curve *curve)
1215 {
1216 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1217 u64 t5[ECC_MAX_DIGITS];
1218 u64 t6[ECC_MAX_DIGITS];
1219 u64 t7[ECC_MAX_DIGITS];
1220 const u64 *curve_prime = curve->p;
1221 const unsigned int ndigits = curve->g.ndigits;
1222
1223 /* t5 = x2 - x1 */
1224 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1225 /* t5 = (x2 - x1)^2 = A */
1226 vli_mod_square_fast(t5, t5, curve);
1227 /* t1 = x1*A = B */
1228 vli_mod_mult_fast(x1, x1, t5, curve);
1229 /* t3 = x2*A = C */
1230 vli_mod_mult_fast(x2, x2, t5, curve);
1231 /* t4 = y2 + y1 */
1232 vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1233 /* t4 = y2 - y1 */
1234 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1235
1236 /* t6 = C - B */
1237 vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1238 /* t2 = y1 * (C - B) */
1239 vli_mod_mult_fast(y1, y1, t6, curve);
1240 /* t6 = B + C */
1241 vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1242 /* t3 = (y2 - y1)^2 */
1243 vli_mod_square_fast(x2, y2, curve);
1244 /* t3 = x3 */
1245 vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1246
1247 /* t7 = B - x3 */
1248 vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1249 /* t4 = (y2 - y1)*(B - x3) */
1250 vli_mod_mult_fast(y2, y2, t7, curve);
1251 /* t4 = y3 */
1252 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1253
1254 /* t7 = (y2 + y1)^2 = F */
1255 vli_mod_square_fast(t7, t5, curve);
1256 /* t7 = x3' */
1257 vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1258 /* t6 = x3' - B */
1259 vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1260 /* t6 = (y2 + y1)*(x3' - B) */
1261 vli_mod_mult_fast(t6, t6, t5, curve);
1262 /* t2 = y3' */
1263 vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1264
1265 vli_set(x1, t7, ndigits);
1266 }
1267
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1268 static void ecc_point_mult(struct ecc_point *result,
1269 const struct ecc_point *point, const u64 *scalar,
1270 u64 *initial_z, const struct ecc_curve *curve,
1271 unsigned int ndigits)
1272 {
1273 /* R0 and R1 */
1274 u64 rx[2][ECC_MAX_DIGITS];
1275 u64 ry[2][ECC_MAX_DIGITS];
1276 u64 z[ECC_MAX_DIGITS];
1277 u64 sk[2][ECC_MAX_DIGITS];
1278 u64 *curve_prime = curve->p;
1279 int i, nb;
1280 int num_bits;
1281 int carry;
1282
1283 carry = vli_add(sk[0], scalar, curve->n, ndigits);
1284 vli_add(sk[1], sk[0], curve->n, ndigits);
1285 scalar = sk[!carry];
1286 num_bits = sizeof(u64) * ndigits * 8 + 1;
1287
1288 vli_set(rx[1], point->x, ndigits);
1289 vli_set(ry[1], point->y, ndigits);
1290
1291 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1292
1293 for (i = num_bits - 2; i > 0; i--) {
1294 nb = !vli_test_bit(scalar, i);
1295 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1296 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1297 }
1298
1299 nb = !vli_test_bit(scalar, 0);
1300 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1301
1302 /* Find final 1/Z value. */
1303 /* X1 - X0 */
1304 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1305 /* Yb * (X1 - X0) */
1306 vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1307 /* xP * Yb * (X1 - X0) */
1308 vli_mod_mult_fast(z, z, point->x, curve);
1309
1310 /* 1 / (xP * Yb * (X1 - X0)) */
1311 vli_mod_inv(z, z, curve_prime, point->ndigits);
1312
1313 /* yP / (xP * Yb * (X1 - X0)) */
1314 vli_mod_mult_fast(z, z, point->y, curve);
1315 /* Xb * yP / (xP * Yb * (X1 - X0)) */
1316 vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1317 /* End 1/Z calculation */
1318
1319 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1320
1321 apply_z(rx[0], ry[0], z, curve);
1322
1323 vli_set(result->x, rx[0], ndigits);
1324 vli_set(result->y, ry[0], ndigits);
1325 }
1326
1327 /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1328 static void ecc_point_add(const struct ecc_point *result,
1329 const struct ecc_point *p, const struct ecc_point *q,
1330 const struct ecc_curve *curve)
1331 {
1332 u64 z[ECC_MAX_DIGITS];
1333 u64 px[ECC_MAX_DIGITS];
1334 u64 py[ECC_MAX_DIGITS];
1335 unsigned int ndigits = curve->g.ndigits;
1336
1337 vli_set(result->x, q->x, ndigits);
1338 vli_set(result->y, q->y, ndigits);
1339 vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1340 vli_set(px, p->x, ndigits);
1341 vli_set(py, p->y, ndigits);
1342 xycz_add(px, py, result->x, result->y, curve);
1343 vli_mod_inv(z, z, curve->p, ndigits);
1344 apply_z(result->x, result->y, z, curve);
1345 }
1346
1347 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1348 * Based on: Kenneth MacKay's micro-ecc (2014).
1349 */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1350 void ecc_point_mult_shamir(const struct ecc_point *result,
1351 const u64 *u1, const struct ecc_point *p,
1352 const u64 *u2, const struct ecc_point *q,
1353 const struct ecc_curve *curve)
1354 {
1355 u64 z[ECC_MAX_DIGITS];
1356 u64 sump[2][ECC_MAX_DIGITS];
1357 u64 *rx = result->x;
1358 u64 *ry = result->y;
1359 unsigned int ndigits = curve->g.ndigits;
1360 unsigned int num_bits;
1361 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1362 const struct ecc_point *points[4];
1363 const struct ecc_point *point;
1364 unsigned int idx;
1365 int i;
1366
1367 ecc_point_add(&sum, p, q, curve);
1368 points[0] = NULL;
1369 points[1] = p;
1370 points[2] = q;
1371 points[3] = ∑
1372
1373 num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1374 i = num_bits - 1;
1375 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1376 point = points[idx];
1377
1378 vli_set(rx, point->x, ndigits);
1379 vli_set(ry, point->y, ndigits);
1380 vli_clear(z + 1, ndigits - 1);
1381 z[0] = 1;
1382
1383 for (--i; i >= 0; i--) {
1384 ecc_point_double_jacobian(rx, ry, z, curve);
1385 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1386 point = points[idx];
1387 if (point) {
1388 u64 tx[ECC_MAX_DIGITS];
1389 u64 ty[ECC_MAX_DIGITS];
1390 u64 tz[ECC_MAX_DIGITS];
1391
1392 vli_set(tx, point->x, ndigits);
1393 vli_set(ty, point->y, ndigits);
1394 apply_z(tx, ty, z, curve);
1395 vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1396 xycz_add(tx, ty, rx, ry, curve);
1397 vli_mod_mult_fast(z, z, tz, curve);
1398 }
1399 }
1400 vli_mod_inv(z, z, curve->p, ndigits);
1401 apply_z(rx, ry, z, curve);
1402 }
1403 EXPORT_SYMBOL(ecc_point_mult_shamir);
1404
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1405 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1406 const u64 *private_key, unsigned int ndigits)
1407 {
1408 u64 one[ECC_MAX_DIGITS] = { 1, };
1409 u64 res[ECC_MAX_DIGITS];
1410
1411 if (!private_key)
1412 return -EINVAL;
1413
1414 if (curve->g.ndigits != ndigits)
1415 return -EINVAL;
1416
1417 /* Make sure the private key is in the range [2, n-3]. */
1418 if (vli_cmp(one, private_key, ndigits) != -1)
1419 return -EINVAL;
1420 vli_sub(res, curve->n, one, ndigits);
1421 vli_sub(res, res, one, ndigits);
1422 if (vli_cmp(res, private_key, ndigits) != 1)
1423 return -EINVAL;
1424
1425 return 0;
1426 }
1427
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1428 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1429 const u64 *private_key, unsigned int private_key_len)
1430 {
1431 int nbytes;
1432 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1433
1434 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1435
1436 if (private_key_len != nbytes)
1437 return -EINVAL;
1438
1439 return __ecc_is_key_valid(curve, private_key, ndigits);
1440 }
1441 EXPORT_SYMBOL(ecc_is_key_valid);
1442
1443 /*
1444 * ECC private keys are generated using the method of extra random bits,
1445 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1446 *
1447 * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer
1448 * than requested
1449 * 0 <= c mod(n-1) <= n-2 and implies that
1450 * 1 <= d <= n-1
1451 *
1452 * This method generates a private key uniformly distributed in the range
1453 * [1, n-1].
1454 */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)1455 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1456 {
1457 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1458 u64 priv[ECC_MAX_DIGITS];
1459 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1460 unsigned int nbits = vli_num_bits(curve->n, ndigits);
1461 int err;
1462
1463 /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1464 if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1465 return -EINVAL;
1466
1467 /*
1468 * FIPS 186-4 recommends that the private key should be obtained from a
1469 * RBG with a security strength equal to or greater than the security
1470 * strength associated with N.
1471 *
1472 * The maximum security strength identified by NIST SP800-57pt1r4 for
1473 * ECC is 256 (N >= 512).
1474 *
1475 * This condition is met by the default RNG because it selects a favored
1476 * DRBG with a security strength of 256.
1477 */
1478 if (crypto_get_default_rng())
1479 return -EFAULT;
1480
1481 err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1482 crypto_put_default_rng();
1483 if (err)
1484 return err;
1485
1486 /* Make sure the private key is in the valid range. */
1487 if (__ecc_is_key_valid(curve, priv, ndigits))
1488 return -EINVAL;
1489
1490 ecc_swap_digits(priv, privkey, ndigits);
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL(ecc_gen_privkey);
1495
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1496 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1497 const u64 *private_key, u64 *public_key)
1498 {
1499 int ret = 0;
1500 struct ecc_point *pk;
1501 u64 priv[ECC_MAX_DIGITS];
1502 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1503
1504 if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1505 ret = -EINVAL;
1506 goto out;
1507 }
1508
1509 ecc_swap_digits(private_key, priv, ndigits);
1510
1511 pk = ecc_alloc_point(ndigits);
1512 if (!pk) {
1513 ret = -ENOMEM;
1514 goto out;
1515 }
1516
1517 ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1518
1519 /* SP800-56A rev 3 5.6.2.1.3 key check */
1520 if (ecc_is_pubkey_valid_full(curve, pk)) {
1521 ret = -EAGAIN;
1522 goto err_free_point;
1523 }
1524
1525 ecc_swap_digits(pk->x, public_key, ndigits);
1526 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1527
1528 err_free_point:
1529 ecc_free_point(pk);
1530 out:
1531 return ret;
1532 }
1533 EXPORT_SYMBOL(ecc_make_pub_key);
1534
1535 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1536 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1537 struct ecc_point *pk)
1538 {
1539 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1540
1541 if (WARN_ON(pk->ndigits != curve->g.ndigits))
1542 return -EINVAL;
1543
1544 /* Check 1: Verify key is not the zero point. */
1545 if (ecc_point_is_zero(pk))
1546 return -EINVAL;
1547
1548 /* Check 2: Verify key is in the range [1, p-1]. */
1549 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1550 return -EINVAL;
1551 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1552 return -EINVAL;
1553
1554 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1555 vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1556 vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1557 vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1558 vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1559 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1560 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1561 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1562 return -EINVAL;
1563
1564 return 0;
1565 }
1566 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1567
1568 /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1569 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1570 struct ecc_point *pk)
1571 {
1572 struct ecc_point *nQ;
1573
1574 /* Checks 1 through 3 */
1575 int ret = ecc_is_pubkey_valid_partial(curve, pk);
1576
1577 if (ret)
1578 return ret;
1579
1580 /* Check 4: Verify that nQ is the zero point. */
1581 nQ = ecc_alloc_point(pk->ndigits);
1582 if (!nQ)
1583 return -ENOMEM;
1584
1585 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1586 if (!ecc_point_is_zero(nQ))
1587 ret = -EINVAL;
1588
1589 ecc_free_point(nQ);
1590
1591 return ret;
1592 }
1593 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1594
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1595 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1596 const u64 *private_key, const u64 *public_key,
1597 u64 *secret)
1598 {
1599 int ret = 0;
1600 struct ecc_point *product, *pk;
1601 u64 priv[ECC_MAX_DIGITS];
1602 u64 rand_z[ECC_MAX_DIGITS];
1603 unsigned int nbytes;
1604 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1605
1606 if (!private_key || !public_key || !curve ||
1607 ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1608 ret = -EINVAL;
1609 goto out;
1610 }
1611
1612 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1613
1614 get_random_bytes(rand_z, nbytes);
1615
1616 pk = ecc_alloc_point(ndigits);
1617 if (!pk) {
1618 ret = -ENOMEM;
1619 goto out;
1620 }
1621
1622 ecc_swap_digits(public_key, pk->x, ndigits);
1623 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1624 ret = ecc_is_pubkey_valid_partial(curve, pk);
1625 if (ret)
1626 goto err_alloc_product;
1627
1628 ecc_swap_digits(private_key, priv, ndigits);
1629
1630 product = ecc_alloc_point(ndigits);
1631 if (!product) {
1632 ret = -ENOMEM;
1633 goto err_alloc_product;
1634 }
1635
1636 ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1637
1638 if (ecc_point_is_zero(product)) {
1639 ret = -EFAULT;
1640 goto err_validity;
1641 }
1642
1643 ecc_swap_digits(product->x, secret, ndigits);
1644
1645 err_validity:
1646 memzero_explicit(priv, sizeof(priv));
1647 memzero_explicit(rand_z, sizeof(rand_z));
1648 ecc_free_point(product);
1649 err_alloc_product:
1650 ecc_free_point(pk);
1651 out:
1652 return ret;
1653 }
1654 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1655
1656 MODULE_LICENSE("Dual BSD/GPL");
1657