1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineModuleInfo.h"
55 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/StackMaps.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalIFunc.h"
75 #include "llvm/IR/GlobalIndirectSymbol.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/RemarkStreamer.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCAsmInfo.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCDirectives.h"
90 #include "llvm/MC/MCDwarf.h"
91 #include "llvm/MC/MCExpr.h"
92 #include "llvm/MC/MCInst.h"
93 #include "llvm/MC/MCSection.h"
94 #include "llvm/MC/MCSectionCOFF.h"
95 #include "llvm/MC/MCSectionELF.h"
96 #include "llvm/MC/MCSectionMachO.h"
97 #include "llvm/MC/MCSectionXCOFF.h"
98 #include "llvm/MC/MCStreamer.h"
99 #include "llvm/MC/MCSubtargetInfo.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/MC/MCSymbolELF.h"
102 #include "llvm/MC/MCSymbolXCOFF.h"
103 #include "llvm/MC/MCTargetOptions.h"
104 #include "llvm/MC/MCValue.h"
105 #include "llvm/MC/SectionKind.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Remarks/Remark.h"
108 #include "llvm/Remarks/RemarkFormat.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133
134 using namespace llvm;
135
136 #define DEBUG_TYPE "asm-printer"
137
138 static const char *const DWARFGroupName = "dwarf";
139 static const char *const DWARFGroupDescription = "DWARF Emission";
140 static const char *const DbgTimerName = "emit";
141 static const char *const DbgTimerDescription = "Debug Info Emission";
142 static const char *const EHTimerName = "write_exception";
143 static const char *const EHTimerDescription = "DWARF Exception Writer";
144 static const char *const CFGuardName = "Control Flow Guard";
145 static const char *const CFGuardDescription = "Control Flow Guard";
146 static const char *const CodeViewLineTablesGroupName = "linetables";
147 static const char *const CodeViewLineTablesGroupDescription =
148 "CodeView Line Tables";
149
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151
152 char AsmPrinter::ID = 0;
153
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155
getGCMap(void * & P)156 static gcp_map_type &getGCMap(void *&P) {
157 if (!P)
158 P = new gcp_map_type();
159 return *(gcp_map_type*)P;
160 }
161
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value. This rounds up to the preferred alignment if possible and legal.
getGVAlignment(const GlobalValue * GV,const DataLayout & DL,Align InAlign)164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165 Align InAlign) {
166 Align Alignment;
167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168 Alignment = Align(DL.getPreferredAlignment(GVar));
169
170 // If InAlign is specified, round it to it.
171 if (InAlign > Alignment)
172 Alignment = InAlign;
173
174 // If the GV has a specified alignment, take it into account.
175 const MaybeAlign GVAlign(GV->getAlignment());
176 if (!GVAlign)
177 return Alignment;
178
179 assert(GVAlign && "GVAlign must be set");
180
181 // If the GVAlign is larger than NumBits, or if we are required to obey
182 // NumBits because the GV has an assigned section, obey it.
183 if (*GVAlign > Alignment || GV->hasSection())
184 Alignment = *GVAlign;
185 return Alignment;
186 }
187
AsmPrinter(TargetMachine & tm,std::unique_ptr<MCStreamer> Streamer)188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191 VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193
~AsmPrinter()194 AsmPrinter::~AsmPrinter() {
195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196
197 if (GCMetadataPrinters) {
198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199
200 delete &GCMap;
201 GCMetadataPrinters = nullptr;
202 }
203 }
204
isPositionIndependent() const205 bool AsmPrinter::isPositionIndependent() const {
206 return TM.isPositionIndependent();
207 }
208
209 /// getFunctionNumber - Return a unique ID for the current function.
getFunctionNumber() const210 unsigned AsmPrinter::getFunctionNumber() const {
211 return MF->getFunctionNumber();
212 }
213
getObjFileLowering() const214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215 return *TM.getObjFileLowering();
216 }
217
getDataLayout() const218 const DataLayout &AsmPrinter::getDataLayout() const {
219 return MMI->getModule()->getDataLayout();
220 }
221
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
getPointerSize() const224 unsigned AsmPrinter::getPointerSize() const {
225 return TM.getPointerSize(0); // FIXME: Default address space
226 }
227
getSubtargetInfo() const228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230 return MF->getSubtarget<MCSubtargetInfo>();
231 }
232
EmitToStreamer(MCStreamer & S,const MCInst & Inst)233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234 S.EmitInstruction(Inst, getSubtargetInfo());
235 }
236
emitInitialRawDwarfLocDirective(const MachineFunction & MF)237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238 assert(DD && "Dwarf debug file is not defined.");
239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242
243 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const244 const MCSection *AsmPrinter::getCurrentSection() const {
245 return OutStreamer->getCurrentSectionOnly();
246 }
247
getAnalysisUsage(AnalysisUsage & AU) const248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249 AU.setPreservesAll();
250 MachineFunctionPass::getAnalysisUsage(AU);
251 AU.addRequired<MachineModuleInfoWrapperPass>();
252 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253 AU.addRequired<GCModuleInfo>();
254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255 AU.addRequired<ProfileSummaryInfoWrapperPass>();
256 }
257
doInitialization(Module & M)258 bool AsmPrinter::doInitialization(Module &M) {
259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261
262 // Initialize TargetLoweringObjectFile.
263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264 .Initialize(OutContext, TM);
265
266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267 .getModuleMetadata(M);
268
269 OutStreamer->InitSections(false);
270
271 // Emit the version-min deployment target directive if needed.
272 //
273 // FIXME: If we end up with a collection of these sorts of Darwin-specific
274 // or ELF-specific things, it may make sense to have a platform helper class
275 // that will work with the target helper class. For now keep it here, as the
276 // alternative is duplicated code in each of the target asm printers that
277 // use the directive, where it would need the same conditionalization
278 // anyway.
279 const Triple &Target = TM.getTargetTriple();
280 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281
282 // Allow the target to emit any magic that it wants at the start of the file.
283 EmitStartOfAsmFile(M);
284
285 // Very minimal debug info. It is ignored if we emit actual debug info. If we
286 // don't, this at least helps the user find where a global came from.
287 if (MAI->hasSingleParameterDotFile()) {
288 // .file "foo.c"
289 OutStreamer->EmitFileDirective(
290 llvm::sys::path::filename(M.getSourceFileName()));
291 }
292
293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295 for (auto &I : *MI)
296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297 MP->beginAssembly(M, *MI, *this);
298
299 // Emit module-level inline asm if it exists.
300 if (!M.getModuleInlineAsm().empty()) {
301 // We're at the module level. Construct MCSubtarget from the default CPU
302 // and target triple.
303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304 TM.getTargetTriple().str(), TM.getTargetCPU(),
305 TM.getTargetFeatureString()));
306 OutStreamer->AddComment("Start of file scope inline assembly");
307 OutStreamer->AddBlankLine();
308 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310 OutStreamer->AddComment("End of file scope inline assembly");
311 OutStreamer->AddBlankLine();
312 }
313
314 if (MAI->doesSupportDebugInformation()) {
315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318 DbgTimerName, DbgTimerDescription,
319 CodeViewLineTablesGroupName,
320 CodeViewLineTablesGroupDescription);
321 }
322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323 DD = new DwarfDebug(this, &M);
324 DD->beginModule();
325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326 DbgTimerDescription, DWARFGroupName,
327 DWARFGroupDescription);
328 }
329 }
330
331 switch (MAI->getExceptionHandlingType()) {
332 case ExceptionHandling::SjLj:
333 case ExceptionHandling::DwarfCFI:
334 case ExceptionHandling::ARM:
335 isCFIMoveForDebugging = true;
336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337 break;
338 for (auto &F: M.getFunctionList()) {
339 // If the module contains any function with unwind data,
340 // .eh_frame has to be emitted.
341 // Ignore functions that won't get emitted.
342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343 isCFIMoveForDebugging = false;
344 break;
345 }
346 }
347 break;
348 default:
349 isCFIMoveForDebugging = false;
350 break;
351 }
352
353 EHStreamer *ES = nullptr;
354 switch (MAI->getExceptionHandlingType()) {
355 case ExceptionHandling::None:
356 break;
357 case ExceptionHandling::SjLj:
358 case ExceptionHandling::DwarfCFI:
359 ES = new DwarfCFIException(this);
360 break;
361 case ExceptionHandling::ARM:
362 ES = new ARMException(this);
363 break;
364 case ExceptionHandling::WinEH:
365 switch (MAI->getWinEHEncodingType()) {
366 default: llvm_unreachable("unsupported unwinding information encoding");
367 case WinEH::EncodingType::Invalid:
368 break;
369 case WinEH::EncodingType::X86:
370 case WinEH::EncodingType::Itanium:
371 ES = new WinException(this);
372 break;
373 }
374 break;
375 case ExceptionHandling::Wasm:
376 ES = new WasmException(this);
377 break;
378 }
379 if (ES)
380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381 EHTimerDescription, DWARFGroupName,
382 DWARFGroupDescription);
383
384 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385 if (mdconst::extract_or_null<ConstantInt>(
386 MMI->getModule()->getModuleFlag("cfguard")))
387 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388 CFGuardDescription, DWARFGroupName,
389 DWARFGroupDescription);
390 return false;
391 }
392
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394 if (!MAI.hasWeakDefCanBeHiddenDirective())
395 return false;
396
397 return GV->canBeOmittedFromSymbolTable();
398 }
399
EmitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402 switch (Linkage) {
403 case GlobalValue::CommonLinkage:
404 case GlobalValue::LinkOnceAnyLinkage:
405 case GlobalValue::LinkOnceODRLinkage:
406 case GlobalValue::WeakAnyLinkage:
407 case GlobalValue::WeakODRLinkage:
408 if (MAI->hasWeakDefDirective()) {
409 // .globl _foo
410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411
412 if (!canBeHidden(GV, *MAI))
413 // .weak_definition _foo
414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415 else
416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417 } else if (MAI->hasLinkOnceDirective()) {
418 // .globl _foo
419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420 //NOTE: linkonce is handled by the section the symbol was assigned to.
421 } else {
422 // .weak _foo
423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424 }
425 return;
426 case GlobalValue::ExternalLinkage:
427 // If external, declare as a global symbol: .globl _foo
428 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429 return;
430 case GlobalValue::PrivateLinkage:
431 return;
432 case GlobalValue::InternalLinkage:
433 if (MAI->hasDotLGloblDirective())
434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435 return;
436 case GlobalValue::AppendingLinkage:
437 case GlobalValue::AvailableExternallyLinkage:
438 case GlobalValue::ExternalWeakLinkage:
439 llvm_unreachable("Should never emit this");
440 }
441 llvm_unreachable("Unknown linkage type!");
442 }
443
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445 const GlobalValue *GV) const {
446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448
getSymbol(const GlobalValue * GV) const449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450 return TM.getSymbol(GV);
451 }
452
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457 "No emulated TLS variables in the common section");
458
459 // Never emit TLS variable xyz in emulated TLS model.
460 // The initialization value is in __emutls_t.xyz instead of xyz.
461 if (IsEmuTLSVar)
462 return;
463
464 if (GV->hasInitializer()) {
465 // Check to see if this is a special global used by LLVM, if so, emit it.
466 if (EmitSpecialLLVMGlobal(GV))
467 return;
468
469 // Skip the emission of global equivalents. The symbol can be emitted later
470 // on by emitGlobalGOTEquivs in case it turns out to be needed.
471 if (GlobalGOTEquivs.count(getSymbol(GV)))
472 return;
473
474 if (isVerbose()) {
475 // When printing the control variable __emutls_v.*,
476 // we don't need to print the original TLS variable name.
477 GV->printAsOperand(OutStreamer->GetCommentOS(),
478 /*PrintType=*/false, GV->getParent());
479 OutStreamer->GetCommentOS() << '\n';
480 }
481 }
482
483 MCSymbol *GVSym = getSymbol(GV);
484 MCSymbol *EmittedSym = GVSym;
485
486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487 // attributes.
488 // GV's or GVSym's attributes will be used for the EmittedSym.
489 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490
491 if (!GV->hasInitializer()) // External globals require no extra code.
492 return;
493
494 GVSym->redefineIfPossible();
495 if (GVSym->isDefined() || GVSym->isVariable())
496 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497 "' is already defined");
498
499 if (MAI->hasDotTypeDotSizeDirective())
500 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501
502 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503
504 const DataLayout &DL = GV->getParent()->getDataLayout();
505 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506
507 // If the alignment is specified, we *must* obey it. Overaligning a global
508 // with a specified alignment is a prompt way to break globals emitted to
509 // sections and expected to be contiguous (e.g. ObjC metadata).
510 const Align Alignment = getGVAlignment(GV, DL);
511
512 for (const HandlerInfo &HI : Handlers) {
513 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514 HI.TimerGroupName, HI.TimerGroupDescription,
515 TimePassesIsEnabled);
516 HI.Handler->setSymbolSize(GVSym, Size);
517 }
518
519 // Handle common symbols
520 if (GVKind.isCommon()) {
521 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
522 // .comm _foo, 42, 4
523 const bool SupportsAlignment =
524 getObjFileLowering().getCommDirectiveSupportsAlignment();
525 OutStreamer->EmitCommonSymbol(GVSym, Size,
526 SupportsAlignment ? Alignment.value() : 0);
527 return;
528 }
529
530 // Determine to which section this global should be emitted.
531 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532
533 // If we have a bss global going to a section that supports the
534 // zerofill directive, do so here.
535 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536 TheSection->isVirtualSection()) {
537 if (Size == 0)
538 Size = 1; // zerofill of 0 bytes is undefined.
539 EmitLinkage(GV, GVSym);
540 // .zerofill __DATA, __bss, _foo, 400, 5
541 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542 return;
543 }
544
545 // If this is a BSS local symbol and we are emitting in the BSS
546 // section use .lcomm/.comm directive.
547 if (GVKind.isBSSLocal() &&
548 getObjFileLowering().getBSSSection() == TheSection) {
549 if (Size == 0)
550 Size = 1; // .comm Foo, 0 is undefined, avoid it.
551
552 // Use .lcomm only if it supports user-specified alignment.
553 // Otherwise, while it would still be correct to use .lcomm in some
554 // cases (e.g. when Align == 1), the external assembler might enfore
555 // some -unknown- default alignment behavior, which could cause
556 // spurious differences between external and integrated assembler.
557 // Prefer to simply fall back to .local / .comm in this case.
558 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559 // .lcomm _foo, 42
560 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561 return;
562 }
563
564 // .local _foo
565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566 // .comm _foo, 42, 4
567 const bool SupportsAlignment =
568 getObjFileLowering().getCommDirectiveSupportsAlignment();
569 OutStreamer->EmitCommonSymbol(GVSym, Size,
570 SupportsAlignment ? Alignment.value() : 0);
571 return;
572 }
573
574 // Handle thread local data for mach-o which requires us to output an
575 // additional structure of data and mangle the original symbol so that we
576 // can reference it later.
577 //
578 // TODO: This should become an "emit thread local global" method on TLOF.
579 // All of this macho specific stuff should be sunk down into TLOFMachO and
580 // stuff like "TLSExtraDataSection" should no longer be part of the parent
581 // TLOF class. This will also make it more obvious that stuff like
582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583 // specific code.
584 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585 // Emit the .tbss symbol
586 MCSymbol *MangSym =
587 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588
589 if (GVKind.isThreadBSS()) {
590 TheSection = getObjFileLowering().getTLSBSSSection();
591 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592 } else if (GVKind.isThreadData()) {
593 OutStreamer->SwitchSection(TheSection);
594
595 EmitAlignment(Alignment, GV);
596 OutStreamer->EmitLabel(MangSym);
597
598 EmitGlobalConstant(GV->getParent()->getDataLayout(),
599 GV->getInitializer());
600 }
601
602 OutStreamer->AddBlankLine();
603
604 // Emit the variable struct for the runtime.
605 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606
607 OutStreamer->SwitchSection(TLVSect);
608 // Emit the linkage here.
609 EmitLinkage(GV, GVSym);
610 OutStreamer->EmitLabel(GVSym);
611
612 // Three pointers in size:
613 // - __tlv_bootstrap - used to make sure support exists
614 // - spare pointer, used when mapped by the runtime
615 // - pointer to mangled symbol above with initializer
616 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618 PtrSize);
619 OutStreamer->EmitIntValue(0, PtrSize);
620 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621
622 OutStreamer->AddBlankLine();
623 return;
624 }
625
626 MCSymbol *EmittedInitSym = GVSym;
627
628 OutStreamer->SwitchSection(TheSection);
629
630 EmitLinkage(GV, EmittedInitSym);
631 EmitAlignment(Alignment, GV);
632
633 OutStreamer->EmitLabel(EmittedInitSym);
634
635 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636
637 if (MAI->hasDotTypeDotSizeDirective())
638 // .size foo, 42
639 OutStreamer->emitELFSize(EmittedInitSym,
640 MCConstantExpr::create(Size, OutContext));
641
642 OutStreamer->AddBlankLine();
643 }
644
645 /// Emit the directive and value for debug thread local expression
646 ///
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
EmitDebugValue(const MCExpr * Value,unsigned Size) const649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650 OutStreamer->EmitValue(Value, Size);
651 }
652
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
EmitFunctionHeader()655 void AsmPrinter::EmitFunctionHeader() {
656 const Function &F = MF->getFunction();
657
658 if (isVerbose())
659 OutStreamer->GetCommentOS()
660 << "-- Begin function "
661 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662
663 // Print out constants referenced by the function
664 EmitConstantPool();
665
666 // Print the 'header' of function.
667 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668 EmitVisibility(CurrentFnSym, F.getVisibility());
669
670 if (MAI->needsFunctionDescriptors() &&
671 F.getLinkage() != GlobalValue::InternalLinkage)
672 EmitLinkage(&F, CurrentFnDescSym);
673
674 EmitLinkage(&F, CurrentFnSym);
675 if (MAI->hasFunctionAlignment())
676 EmitAlignment(MF->getAlignment(), &F);
677
678 if (MAI->hasDotTypeDotSizeDirective())
679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680
681 if (F.hasFnAttribute(Attribute::Cold))
682 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683
684 if (isVerbose()) {
685 F.printAsOperand(OutStreamer->GetCommentOS(),
686 /*PrintType=*/false, F.getParent());
687 OutStreamer->GetCommentOS() << '\n';
688 }
689
690 // Emit the prefix data.
691 if (F.hasPrefixData()) {
692 if (MAI->hasSubsectionsViaSymbols()) {
693 // Preserving prefix data on platforms which use subsections-via-symbols
694 // is a bit tricky. Here we introduce a symbol for the prefix data
695 // and use the .alt_entry attribute to mark the function's real entry point
696 // as an alternative entry point to the prefix-data symbol.
697 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698 OutStreamer->EmitLabel(PrefixSym);
699
700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701
702 // Emit an .alt_entry directive for the actual function symbol.
703 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704 } else {
705 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706 }
707 }
708
709 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
710 // place prefix data before NOPs.
711 unsigned PatchableFunctionPrefix = 0;
712 unsigned PatchableFunctionEntry = 0;
713 (void)F.getFnAttribute("patchable-function-prefix")
714 .getValueAsString()
715 .getAsInteger(10, PatchableFunctionPrefix);
716 (void)F.getFnAttribute("patchable-function-entry")
717 .getValueAsString()
718 .getAsInteger(10, PatchableFunctionEntry);
719 if (PatchableFunctionPrefix) {
720 CurrentPatchableFunctionEntrySym =
721 OutContext.createLinkerPrivateTempSymbol();
722 OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym);
723 emitNops(PatchableFunctionPrefix);
724 } else if (PatchableFunctionEntry) {
725 // May be reassigned when emitting the body, to reference the label after
726 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
727 CurrentPatchableFunctionEntrySym = CurrentFnBegin;
728 }
729
730 // Emit the function descriptor. This is a virtual function to allow targets
731 // to emit their specific function descriptor.
732 if (MAI->needsFunctionDescriptors())
733 EmitFunctionDescriptor();
734
735 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
736 // their wild and crazy things as required.
737 EmitFunctionEntryLabel();
738
739 // If the function had address-taken blocks that got deleted, then we have
740 // references to the dangling symbols. Emit them at the start of the function
741 // so that we don't get references to undefined symbols.
742 std::vector<MCSymbol*> DeadBlockSyms;
743 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
744 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
745 OutStreamer->AddComment("Address taken block that was later removed");
746 OutStreamer->EmitLabel(DeadBlockSyms[i]);
747 }
748
749 if (CurrentFnBegin) {
750 if (MAI->useAssignmentForEHBegin()) {
751 MCSymbol *CurPos = OutContext.createTempSymbol();
752 OutStreamer->EmitLabel(CurPos);
753 OutStreamer->EmitAssignment(CurrentFnBegin,
754 MCSymbolRefExpr::create(CurPos, OutContext));
755 } else {
756 OutStreamer->EmitLabel(CurrentFnBegin);
757 }
758 }
759
760 // Emit pre-function debug and/or EH information.
761 for (const HandlerInfo &HI : Handlers) {
762 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
763 HI.TimerGroupDescription, TimePassesIsEnabled);
764 HI.Handler->beginFunction(MF);
765 }
766
767 // Emit the prologue data.
768 if (F.hasPrologueData())
769 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
770 }
771
772 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
773 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()774 void AsmPrinter::EmitFunctionEntryLabel() {
775 CurrentFnSym->redefineIfPossible();
776
777 // The function label could have already been emitted if two symbols end up
778 // conflicting due to asm renaming. Detect this and emit an error.
779 if (CurrentFnSym->isVariable())
780 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
781 "' is a protected alias");
782 if (CurrentFnSym->isDefined())
783 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
784 "' label emitted multiple times to assembly file");
785
786 return OutStreamer->EmitLabel(CurrentFnSym);
787 }
788
789 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)790 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
791 const MachineFunction *MF = MI.getMF();
792 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
793
794 // Check for spills and reloads
795
796 // We assume a single instruction only has a spill or reload, not
797 // both.
798 Optional<unsigned> Size;
799 if ((Size = MI.getRestoreSize(TII))) {
800 CommentOS << *Size << "-byte Reload\n";
801 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
802 if (*Size)
803 CommentOS << *Size << "-byte Folded Reload\n";
804 } else if ((Size = MI.getSpillSize(TII))) {
805 CommentOS << *Size << "-byte Spill\n";
806 } else if ((Size = MI.getFoldedSpillSize(TII))) {
807 if (*Size)
808 CommentOS << *Size << "-byte Folded Spill\n";
809 }
810
811 // Check for spill-induced copies
812 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
813 CommentOS << " Reload Reuse\n";
814 }
815
816 /// emitImplicitDef - This method emits the specified machine instruction
817 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const818 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
819 Register RegNo = MI->getOperand(0).getReg();
820
821 SmallString<128> Str;
822 raw_svector_ostream OS(Str);
823 OS << "implicit-def: "
824 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
825
826 OutStreamer->AddComment(OS.str());
827 OutStreamer->AddBlankLine();
828 }
829
emitKill(const MachineInstr * MI,AsmPrinter & AP)830 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
831 std::string Str;
832 raw_string_ostream OS(Str);
833 OS << "kill:";
834 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
835 const MachineOperand &Op = MI->getOperand(i);
836 assert(Op.isReg() && "KILL instruction must have only register operands");
837 OS << ' ' << (Op.isDef() ? "def " : "killed ")
838 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
839 }
840 AP.OutStreamer->AddComment(OS.str());
841 AP.OutStreamer->AddBlankLine();
842 }
843
844 /// emitDebugValueComment - This method handles the target-independent form
845 /// of DBG_VALUE, returning true if it was able to do so. A false return
846 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)847 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
848 // This code handles only the 4-operand target-independent form.
849 if (MI->getNumOperands() != 4)
850 return false;
851
852 SmallString<128> Str;
853 raw_svector_ostream OS(Str);
854 OS << "DEBUG_VALUE: ";
855
856 const DILocalVariable *V = MI->getDebugVariable();
857 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
858 StringRef Name = SP->getName();
859 if (!Name.empty())
860 OS << Name << ":";
861 }
862 OS << V->getName();
863 OS << " <- ";
864
865 // The second operand is only an offset if it's an immediate.
866 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
867 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
868 const DIExpression *Expr = MI->getDebugExpression();
869 if (Expr->getNumElements()) {
870 OS << '[';
871 bool NeedSep = false;
872 for (auto Op : Expr->expr_ops()) {
873 if (NeedSep)
874 OS << ", ";
875 else
876 NeedSep = true;
877 OS << dwarf::OperationEncodingString(Op.getOp());
878 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
879 OS << ' ' << Op.getArg(I);
880 }
881 OS << "] ";
882 }
883
884 // Register or immediate value. Register 0 means undef.
885 if (MI->getOperand(0).isFPImm()) {
886 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
887 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
888 OS << (double)APF.convertToFloat();
889 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
890 OS << APF.convertToDouble();
891 } else {
892 // There is no good way to print long double. Convert a copy to
893 // double. Ah well, it's only a comment.
894 bool ignored;
895 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
896 &ignored);
897 OS << "(long double) " << APF.convertToDouble();
898 }
899 } else if (MI->getOperand(0).isImm()) {
900 OS << MI->getOperand(0).getImm();
901 } else if (MI->getOperand(0).isCImm()) {
902 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
903 } else if (MI->getOperand(0).isTargetIndex()) {
904 auto Op = MI->getOperand(0);
905 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
906 return true;
907 } else {
908 unsigned Reg;
909 if (MI->getOperand(0).isReg()) {
910 Reg = MI->getOperand(0).getReg();
911 } else {
912 assert(MI->getOperand(0).isFI() && "Unknown operand type");
913 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
914 Offset += TFI->getFrameIndexReference(*AP.MF,
915 MI->getOperand(0).getIndex(), Reg);
916 MemLoc = true;
917 }
918 if (Reg == 0) {
919 // Suppress offset, it is not meaningful here.
920 OS << "undef";
921 // NOTE: Want this comment at start of line, don't emit with AddComment.
922 AP.OutStreamer->emitRawComment(OS.str());
923 return true;
924 }
925 if (MemLoc)
926 OS << '[';
927 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
928 }
929
930 if (MemLoc)
931 OS << '+' << Offset << ']';
932
933 // NOTE: Want this comment at start of line, don't emit with AddComment.
934 AP.OutStreamer->emitRawComment(OS.str());
935 return true;
936 }
937
938 /// This method handles the target-independent form of DBG_LABEL, returning
939 /// true if it was able to do so. A false return means the target will need
940 /// to handle MI in EmitInstruction.
emitDebugLabelComment(const MachineInstr * MI,AsmPrinter & AP)941 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
942 if (MI->getNumOperands() != 1)
943 return false;
944
945 SmallString<128> Str;
946 raw_svector_ostream OS(Str);
947 OS << "DEBUG_LABEL: ";
948
949 const DILabel *V = MI->getDebugLabel();
950 if (auto *SP = dyn_cast<DISubprogram>(
951 V->getScope()->getNonLexicalBlockFileScope())) {
952 StringRef Name = SP->getName();
953 if (!Name.empty())
954 OS << Name << ":";
955 }
956 OS << V->getName();
957
958 // NOTE: Want this comment at start of line, don't emit with AddComment.
959 AP.OutStreamer->emitRawComment(OS.str());
960 return true;
961 }
962
needsCFIMoves() const963 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
964 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
965 MF->getFunction().needsUnwindTableEntry())
966 return CFI_M_EH;
967
968 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
969 return CFI_M_Debug;
970
971 return CFI_M_None;
972 }
973
needsSEHMoves()974 bool AsmPrinter::needsSEHMoves() {
975 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
976 }
977
emitCFIInstruction(const MachineInstr & MI)978 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
979 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
980 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
981 ExceptionHandlingType != ExceptionHandling::ARM)
982 return;
983
984 if (needsCFIMoves() == CFI_M_None)
985 return;
986
987 // If there is no "real" instruction following this CFI instruction, skip
988 // emitting it; it would be beyond the end of the function's FDE range.
989 auto *MBB = MI.getParent();
990 auto I = std::next(MI.getIterator());
991 while (I != MBB->end() && I->isTransient())
992 ++I;
993 if (I == MBB->instr_end() &&
994 MBB->getReverseIterator() == MBB->getParent()->rbegin())
995 return;
996
997 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
998 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
999 const MCCFIInstruction &CFI = Instrs[CFIIndex];
1000 emitCFIInstruction(CFI);
1001 }
1002
emitFrameAlloc(const MachineInstr & MI)1003 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1004 // The operands are the MCSymbol and the frame offset of the allocation.
1005 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1006 int FrameOffset = MI.getOperand(1).getImm();
1007
1008 // Emit a symbol assignment.
1009 OutStreamer->EmitAssignment(FrameAllocSym,
1010 MCConstantExpr::create(FrameOffset, OutContext));
1011 }
1012
emitStackSizeSection(const MachineFunction & MF)1013 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1014 if (!MF.getTarget().Options.EmitStackSizeSection)
1015 return;
1016
1017 MCSection *StackSizeSection =
1018 getObjFileLowering().getStackSizesSection(*getCurrentSection());
1019 if (!StackSizeSection)
1020 return;
1021
1022 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1023 // Don't emit functions with dynamic stack allocations.
1024 if (FrameInfo.hasVarSizedObjects())
1025 return;
1026
1027 OutStreamer->PushSection();
1028 OutStreamer->SwitchSection(StackSizeSection);
1029
1030 const MCSymbol *FunctionSymbol = getFunctionBegin();
1031 uint64_t StackSize = FrameInfo.getStackSize();
1032 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1033 OutStreamer->EmitULEB128IntValue(StackSize);
1034
1035 OutStreamer->PopSection();
1036 }
1037
needFuncLabelsForEHOrDebugInfo(const MachineFunction & MF,MachineModuleInfo * MMI)1038 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1039 MachineModuleInfo *MMI) {
1040 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1041 return true;
1042
1043 // We might emit an EH table that uses function begin and end labels even if
1044 // we don't have any landingpads.
1045 if (!MF.getFunction().hasPersonalityFn())
1046 return false;
1047 return !isNoOpWithoutInvoke(
1048 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1049 }
1050
1051 /// EmitFunctionBody - This method emits the body and trailer for a
1052 /// function.
EmitFunctionBody()1053 void AsmPrinter::EmitFunctionBody() {
1054 EmitFunctionHeader();
1055
1056 // Emit target-specific gunk before the function body.
1057 EmitFunctionBodyStart();
1058
1059 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1060
1061 if (isVerbose()) {
1062 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1063 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1064 if (!MDT) {
1065 OwnedMDT = std::make_unique<MachineDominatorTree>();
1066 OwnedMDT->getBase().recalculate(*MF);
1067 MDT = OwnedMDT.get();
1068 }
1069
1070 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1071 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1072 if (!MLI) {
1073 OwnedMLI = std::make_unique<MachineLoopInfo>();
1074 OwnedMLI->getBase().analyze(MDT->getBase());
1075 MLI = OwnedMLI.get();
1076 }
1077 }
1078
1079 // Print out code for the function.
1080 bool HasAnyRealCode = false;
1081 int NumInstsInFunction = 0;
1082 for (auto &MBB : *MF) {
1083 // Print a label for the basic block.
1084 EmitBasicBlockStart(MBB);
1085 for (auto &MI : MBB) {
1086 // Print the assembly for the instruction.
1087 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1088 !MI.isDebugInstr()) {
1089 HasAnyRealCode = true;
1090 ++NumInstsInFunction;
1091 }
1092
1093 // If there is a pre-instruction symbol, emit a label for it here.
1094 if (MCSymbol *S = MI.getPreInstrSymbol())
1095 OutStreamer->EmitLabel(S);
1096
1097 if (ShouldPrintDebugScopes) {
1098 for (const HandlerInfo &HI : Handlers) {
1099 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1100 HI.TimerGroupName, HI.TimerGroupDescription,
1101 TimePassesIsEnabled);
1102 HI.Handler->beginInstruction(&MI);
1103 }
1104 }
1105
1106 if (isVerbose())
1107 emitComments(MI, OutStreamer->GetCommentOS());
1108
1109 switch (MI.getOpcode()) {
1110 case TargetOpcode::CFI_INSTRUCTION:
1111 emitCFIInstruction(MI);
1112 break;
1113 case TargetOpcode::LOCAL_ESCAPE:
1114 emitFrameAlloc(MI);
1115 break;
1116 case TargetOpcode::ANNOTATION_LABEL:
1117 case TargetOpcode::EH_LABEL:
1118 case TargetOpcode::GC_LABEL:
1119 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1120 break;
1121 case TargetOpcode::INLINEASM:
1122 case TargetOpcode::INLINEASM_BR:
1123 EmitInlineAsm(&MI);
1124 break;
1125 case TargetOpcode::DBG_VALUE:
1126 if (isVerbose()) {
1127 if (!emitDebugValueComment(&MI, *this))
1128 EmitInstruction(&MI);
1129 }
1130 break;
1131 case TargetOpcode::DBG_LABEL:
1132 if (isVerbose()) {
1133 if (!emitDebugLabelComment(&MI, *this))
1134 EmitInstruction(&MI);
1135 }
1136 break;
1137 case TargetOpcode::IMPLICIT_DEF:
1138 if (isVerbose()) emitImplicitDef(&MI);
1139 break;
1140 case TargetOpcode::KILL:
1141 if (isVerbose()) emitKill(&MI, *this);
1142 break;
1143 default:
1144 EmitInstruction(&MI);
1145 break;
1146 }
1147
1148 // If there is a post-instruction symbol, emit a label for it here.
1149 if (MCSymbol *S = MI.getPostInstrSymbol())
1150 OutStreamer->EmitLabel(S);
1151
1152 if (ShouldPrintDebugScopes) {
1153 for (const HandlerInfo &HI : Handlers) {
1154 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1155 HI.TimerGroupName, HI.TimerGroupDescription,
1156 TimePassesIsEnabled);
1157 HI.Handler->endInstruction();
1158 }
1159 }
1160 }
1161
1162 EmitBasicBlockEnd(MBB);
1163 }
1164
1165 EmittedInsts += NumInstsInFunction;
1166 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1167 MF->getFunction().getSubprogram(),
1168 &MF->front());
1169 R << ore::NV("NumInstructions", NumInstsInFunction)
1170 << " instructions in function";
1171 ORE->emit(R);
1172
1173 // If the function is empty and the object file uses .subsections_via_symbols,
1174 // then we need to emit *something* to the function body to prevent the
1175 // labels from collapsing together. Just emit a noop.
1176 // Similarly, don't emit empty functions on Windows either. It can lead to
1177 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1178 // after linking, causing the kernel not to load the binary:
1179 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1180 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1181 const Triple &TT = TM.getTargetTriple();
1182 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1183 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1184 MCInst Noop;
1185 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1186
1187 // Targets can opt-out of emitting the noop here by leaving the opcode
1188 // unspecified.
1189 if (Noop.getOpcode()) {
1190 OutStreamer->AddComment("avoids zero-length function");
1191 emitNops(1);
1192 }
1193 }
1194
1195 const Function &F = MF->getFunction();
1196 for (const auto &BB : F) {
1197 if (!BB.hasAddressTaken())
1198 continue;
1199 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1200 if (Sym->isDefined())
1201 continue;
1202 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1203 OutStreamer->EmitLabel(Sym);
1204 }
1205
1206 // Emit target-specific gunk after the function body.
1207 EmitFunctionBodyEnd();
1208
1209 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1210 MAI->hasDotTypeDotSizeDirective()) {
1211 // Create a symbol for the end of function.
1212 CurrentFnEnd = createTempSymbol("func_end");
1213 OutStreamer->EmitLabel(CurrentFnEnd);
1214 }
1215
1216 // If the target wants a .size directive for the size of the function, emit
1217 // it.
1218 if (MAI->hasDotTypeDotSizeDirective()) {
1219 // We can get the size as difference between the function label and the
1220 // temp label.
1221 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1222 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1223 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1224 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1225 }
1226
1227 for (const HandlerInfo &HI : Handlers) {
1228 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1229 HI.TimerGroupDescription, TimePassesIsEnabled);
1230 HI.Handler->markFunctionEnd();
1231 }
1232
1233 // Print out jump tables referenced by the function.
1234 EmitJumpTableInfo();
1235
1236 // Emit post-function debug and/or EH information.
1237 for (const HandlerInfo &HI : Handlers) {
1238 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1239 HI.TimerGroupDescription, TimePassesIsEnabled);
1240 HI.Handler->endFunction(MF);
1241 }
1242
1243 // Emit section containing stack size metadata.
1244 emitStackSizeSection(*MF);
1245
1246 emitPatchableFunctionEntries();
1247
1248 if (isVerbose())
1249 OutStreamer->GetCommentOS() << "-- End function\n";
1250
1251 OutStreamer->AddBlankLine();
1252 }
1253
1254 /// Compute the number of Global Variables that uses a Constant.
getNumGlobalVariableUses(const Constant * C)1255 static unsigned getNumGlobalVariableUses(const Constant *C) {
1256 if (!C)
1257 return 0;
1258
1259 if (isa<GlobalVariable>(C))
1260 return 1;
1261
1262 unsigned NumUses = 0;
1263 for (auto *CU : C->users())
1264 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1265
1266 return NumUses;
1267 }
1268
1269 /// Only consider global GOT equivalents if at least one user is a
1270 /// cstexpr inside an initializer of another global variables. Also, don't
1271 /// handle cstexpr inside instructions. During global variable emission,
1272 /// candidates are skipped and are emitted later in case at least one cstexpr
1273 /// isn't replaced by a PC relative GOT entry access.
isGOTEquivalentCandidate(const GlobalVariable * GV,unsigned & NumGOTEquivUsers)1274 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1275 unsigned &NumGOTEquivUsers) {
1276 // Global GOT equivalents are unnamed private globals with a constant
1277 // pointer initializer to another global symbol. They must point to a
1278 // GlobalVariable or Function, i.e., as GlobalValue.
1279 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1280 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1281 !isa<GlobalValue>(GV->getOperand(0)))
1282 return false;
1283
1284 // To be a got equivalent, at least one of its users need to be a constant
1285 // expression used by another global variable.
1286 for (auto *U : GV->users())
1287 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1288
1289 return NumGOTEquivUsers > 0;
1290 }
1291
1292 /// Unnamed constant global variables solely contaning a pointer to
1293 /// another globals variable is equivalent to a GOT table entry; it contains the
1294 /// the address of another symbol. Optimize it and replace accesses to these
1295 /// "GOT equivalents" by using the GOT entry for the final global instead.
1296 /// Compute GOT equivalent candidates among all global variables to avoid
1297 /// emitting them if possible later on, after it use is replaced by a GOT entry
1298 /// access.
computeGlobalGOTEquivs(Module & M)1299 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1300 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1301 return;
1302
1303 for (const auto &G : M.globals()) {
1304 unsigned NumGOTEquivUsers = 0;
1305 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1306 continue;
1307
1308 const MCSymbol *GOTEquivSym = getSymbol(&G);
1309 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1310 }
1311 }
1312
1313 /// Constant expressions using GOT equivalent globals may not be eligible
1314 /// for PC relative GOT entry conversion, in such cases we need to emit such
1315 /// globals we previously omitted in EmitGlobalVariable.
emitGlobalGOTEquivs()1316 void AsmPrinter::emitGlobalGOTEquivs() {
1317 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1318 return;
1319
1320 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1321 for (auto &I : GlobalGOTEquivs) {
1322 const GlobalVariable *GV = I.second.first;
1323 unsigned Cnt = I.second.second;
1324 if (Cnt)
1325 FailedCandidates.push_back(GV);
1326 }
1327 GlobalGOTEquivs.clear();
1328
1329 for (auto *GV : FailedCandidates)
1330 EmitGlobalVariable(GV);
1331 }
1332
emitGlobalIndirectSymbol(Module & M,const GlobalIndirectSymbol & GIS)1333 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1334 const GlobalIndirectSymbol& GIS) {
1335 MCSymbol *Name = getSymbol(&GIS);
1336
1337 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1338 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1339 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1340 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1341 else
1342 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1343
1344 bool IsFunction = GIS.getValueType()->isFunctionTy();
1345
1346 // Treat bitcasts of functions as functions also. This is important at least
1347 // on WebAssembly where object and function addresses can't alias each other.
1348 if (!IsFunction)
1349 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1350 if (CE->getOpcode() == Instruction::BitCast)
1351 IsFunction =
1352 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1353
1354 // Set the symbol type to function if the alias has a function type.
1355 // This affects codegen when the aliasee is not a function.
1356 if (IsFunction)
1357 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1358 ? MCSA_ELF_TypeIndFunction
1359 : MCSA_ELF_TypeFunction);
1360
1361 EmitVisibility(Name, GIS.getVisibility());
1362
1363 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1364
1365 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1366 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1367
1368 // Emit the directives as assignments aka .set:
1369 OutStreamer->EmitAssignment(Name, Expr);
1370
1371 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1372 // If the aliasee does not correspond to a symbol in the output, i.e. the
1373 // alias is not of an object or the aliased object is private, then set the
1374 // size of the alias symbol from the type of the alias. We don't do this in
1375 // other situations as the alias and aliasee having differing types but same
1376 // size may be intentional.
1377 const GlobalObject *BaseObject = GA->getBaseObject();
1378 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1379 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1380 const DataLayout &DL = M.getDataLayout();
1381 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1382 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1383 }
1384 }
1385 }
1386
emitRemarksSection(RemarkStreamer & RS)1387 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) {
1388 if (!RS.needsSection())
1389 return;
1390
1391 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1392
1393 Optional<SmallString<128>> Filename;
1394 if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1395 Filename = *FilenameRef;
1396 sys::fs::make_absolute(*Filename);
1397 assert(!Filename->empty() && "The filename can't be empty.");
1398 }
1399
1400 std::string Buf;
1401 raw_string_ostream OS(Buf);
1402 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1403 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1404 : RemarkSerializer.metaSerializer(OS);
1405 MetaSerializer->emit();
1406
1407 // Switch to the remarks section.
1408 MCSection *RemarksSection =
1409 OutContext.getObjectFileInfo()->getRemarksSection();
1410 OutStreamer->SwitchSection(RemarksSection);
1411
1412 OutStreamer->EmitBinaryData(OS.str());
1413 }
1414
doFinalization(Module & M)1415 bool AsmPrinter::doFinalization(Module &M) {
1416 // Set the MachineFunction to nullptr so that we can catch attempted
1417 // accesses to MF specific features at the module level and so that
1418 // we can conditionalize accesses based on whether or not it is nullptr.
1419 MF = nullptr;
1420
1421 // Gather all GOT equivalent globals in the module. We really need two
1422 // passes over the globals: one to compute and another to avoid its emission
1423 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1424 // where the got equivalent shows up before its use.
1425 computeGlobalGOTEquivs(M);
1426
1427 // Emit global variables.
1428 for (const auto &G : M.globals())
1429 EmitGlobalVariable(&G);
1430
1431 // Emit remaining GOT equivalent globals.
1432 emitGlobalGOTEquivs();
1433
1434 // Emit visibility info for declarations
1435 for (const Function &F : M) {
1436 if (!F.isDeclarationForLinker())
1437 continue;
1438 GlobalValue::VisibilityTypes V = F.getVisibility();
1439 if (V == GlobalValue::DefaultVisibility)
1440 continue;
1441
1442 MCSymbol *Name = getSymbol(&F);
1443 EmitVisibility(Name, V, false);
1444 }
1445
1446 // Emit the remarks section contents.
1447 // FIXME: Figure out when is the safest time to emit this section. It should
1448 // not come after debug info.
1449 if (RemarkStreamer *RS = M.getContext().getRemarkStreamer())
1450 emitRemarksSection(*RS);
1451
1452 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1453
1454 TLOF.emitModuleMetadata(*OutStreamer, M);
1455
1456 if (TM.getTargetTriple().isOSBinFormatELF()) {
1457 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1458
1459 // Output stubs for external and common global variables.
1460 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1461 if (!Stubs.empty()) {
1462 OutStreamer->SwitchSection(TLOF.getDataSection());
1463 const DataLayout &DL = M.getDataLayout();
1464
1465 EmitAlignment(Align(DL.getPointerSize()));
1466 for (const auto &Stub : Stubs) {
1467 OutStreamer->EmitLabel(Stub.first);
1468 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1469 DL.getPointerSize());
1470 }
1471 }
1472 }
1473
1474 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1475 MachineModuleInfoCOFF &MMICOFF =
1476 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1477
1478 // Output stubs for external and common global variables.
1479 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1480 if (!Stubs.empty()) {
1481 const DataLayout &DL = M.getDataLayout();
1482
1483 for (const auto &Stub : Stubs) {
1484 SmallString<256> SectionName = StringRef(".rdata$");
1485 SectionName += Stub.first->getName();
1486 OutStreamer->SwitchSection(OutContext.getCOFFSection(
1487 SectionName,
1488 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1489 COFF::IMAGE_SCN_LNK_COMDAT,
1490 SectionKind::getReadOnly(), Stub.first->getName(),
1491 COFF::IMAGE_COMDAT_SELECT_ANY));
1492 EmitAlignment(Align(DL.getPointerSize()));
1493 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1494 OutStreamer->EmitLabel(Stub.first);
1495 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1496 DL.getPointerSize());
1497 }
1498 }
1499 }
1500
1501 // Finalize debug and EH information.
1502 for (const HandlerInfo &HI : Handlers) {
1503 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1504 HI.TimerGroupDescription, TimePassesIsEnabled);
1505 HI.Handler->endModule();
1506 }
1507 Handlers.clear();
1508 DD = nullptr;
1509
1510 // If the target wants to know about weak references, print them all.
1511 if (MAI->getWeakRefDirective()) {
1512 // FIXME: This is not lazy, it would be nice to only print weak references
1513 // to stuff that is actually used. Note that doing so would require targets
1514 // to notice uses in operands (due to constant exprs etc). This should
1515 // happen with the MC stuff eventually.
1516
1517 // Print out module-level global objects here.
1518 for (const auto &GO : M.global_objects()) {
1519 if (!GO.hasExternalWeakLinkage())
1520 continue;
1521 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1522 }
1523 }
1524
1525 // Print aliases in topological order, that is, for each alias a = b,
1526 // b must be printed before a.
1527 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1528 // such an order to generate correct TOC information.
1529 SmallVector<const GlobalAlias *, 16> AliasStack;
1530 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1531 for (const auto &Alias : M.aliases()) {
1532 for (const GlobalAlias *Cur = &Alias; Cur;
1533 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1534 if (!AliasVisited.insert(Cur).second)
1535 break;
1536 AliasStack.push_back(Cur);
1537 }
1538 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1539 emitGlobalIndirectSymbol(M, *AncestorAlias);
1540 AliasStack.clear();
1541 }
1542 for (const auto &IFunc : M.ifuncs())
1543 emitGlobalIndirectSymbol(M, IFunc);
1544
1545 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1546 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1547 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1548 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1549 MP->finishAssembly(M, *MI, *this);
1550
1551 // Emit llvm.ident metadata in an '.ident' directive.
1552 EmitModuleIdents(M);
1553
1554 // Emit bytes for llvm.commandline metadata.
1555 EmitModuleCommandLines(M);
1556
1557 // Emit __morestack address if needed for indirect calls.
1558 if (MMI->usesMorestackAddr()) {
1559 unsigned Align = 1;
1560 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1561 getDataLayout(), SectionKind::getReadOnly(),
1562 /*C=*/nullptr, Align);
1563 OutStreamer->SwitchSection(ReadOnlySection);
1564
1565 MCSymbol *AddrSymbol =
1566 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1567 OutStreamer->EmitLabel(AddrSymbol);
1568
1569 unsigned PtrSize = MAI->getCodePointerSize();
1570 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1571 PtrSize);
1572 }
1573
1574 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1575 // split-stack is used.
1576 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1577 OutStreamer->SwitchSection(
1578 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1579 if (MMI->hasNosplitStack())
1580 OutStreamer->SwitchSection(
1581 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1582 }
1583
1584 // If we don't have any trampolines, then we don't require stack memory
1585 // to be executable. Some targets have a directive to declare this.
1586 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1587 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1588 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1589 OutStreamer->SwitchSection(S);
1590
1591 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1592 // Emit /EXPORT: flags for each exported global as necessary.
1593 const auto &TLOF = getObjFileLowering();
1594 std::string Flags;
1595
1596 for (const GlobalValue &GV : M.global_values()) {
1597 raw_string_ostream OS(Flags);
1598 TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1599 OS.flush();
1600 if (!Flags.empty()) {
1601 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1602 OutStreamer->EmitBytes(Flags);
1603 }
1604 Flags.clear();
1605 }
1606
1607 // Emit /INCLUDE: flags for each used global as necessary.
1608 if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1609 assert(LU->hasInitializer() &&
1610 "expected llvm.used to have an initializer");
1611 assert(isa<ArrayType>(LU->getValueType()) &&
1612 "expected llvm.used to be an array type");
1613 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1614 for (const Value *Op : A->operands()) {
1615 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1616 // Global symbols with internal or private linkage are not visible to
1617 // the linker, and thus would cause an error when the linker tried to
1618 // preserve the symbol due to the `/include:` directive.
1619 if (GV->hasLocalLinkage())
1620 continue;
1621
1622 raw_string_ostream OS(Flags);
1623 TLOF.emitLinkerFlagsForUsed(OS, GV);
1624 OS.flush();
1625
1626 if (!Flags.empty()) {
1627 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1628 OutStreamer->EmitBytes(Flags);
1629 }
1630 Flags.clear();
1631 }
1632 }
1633 }
1634 }
1635
1636 if (TM.Options.EmitAddrsig) {
1637 // Emit address-significance attributes for all globals.
1638 OutStreamer->EmitAddrsig();
1639 for (const GlobalValue &GV : M.global_values())
1640 if (!GV.use_empty() && !GV.isThreadLocal() &&
1641 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1642 !GV.hasAtLeastLocalUnnamedAddr())
1643 OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1644 }
1645
1646 // Emit symbol partition specifications (ELF only).
1647 if (TM.getTargetTriple().isOSBinFormatELF()) {
1648 unsigned UniqueID = 0;
1649 for (const GlobalValue &GV : M.global_values()) {
1650 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1651 GV.getVisibility() != GlobalValue::DefaultVisibility)
1652 continue;
1653
1654 OutStreamer->SwitchSection(OutContext.getELFSection(
1655 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1656 OutStreamer->EmitBytes(GV.getPartition());
1657 OutStreamer->EmitZeros(1);
1658 OutStreamer->EmitValue(
1659 MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1660 MAI->getCodePointerSize());
1661 }
1662 }
1663
1664 // Allow the target to emit any magic that it wants at the end of the file,
1665 // after everything else has gone out.
1666 EmitEndOfAsmFile(M);
1667
1668 MMI = nullptr;
1669
1670 OutStreamer->Finish();
1671 OutStreamer->reset();
1672 OwnedMLI.reset();
1673 OwnedMDT.reset();
1674
1675 return false;
1676 }
1677
getCurExceptionSym()1678 MCSymbol *AsmPrinter::getCurExceptionSym() {
1679 if (!CurExceptionSym)
1680 CurExceptionSym = createTempSymbol("exception");
1681 return CurExceptionSym;
1682 }
1683
SetupMachineFunction(MachineFunction & MF)1684 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1685 this->MF = &MF;
1686 const Function &F = MF.getFunction();
1687
1688 // Get the function symbol.
1689 if (MAI->needsFunctionDescriptors()) {
1690 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1691 " supported on AIX.");
1692 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1693 " initalized first.");
1694
1695 // Get the function entry point symbol.
1696 CurrentFnSym =
1697 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1698
1699 MCSectionXCOFF *FnEntryPointSec =
1700 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1701 // Set the containing csect.
1702 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1703 } else {
1704 CurrentFnSym = getSymbol(&MF.getFunction());
1705 }
1706
1707 CurrentFnSymForSize = CurrentFnSym;
1708 CurrentFnBegin = nullptr;
1709 CurExceptionSym = nullptr;
1710 bool NeedsLocalForSize = MAI->needsLocalForSize();
1711 if (F.hasFnAttribute("patchable-function-entry") ||
1712 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1713 MF.getTarget().Options.EmitStackSizeSection) {
1714 CurrentFnBegin = createTempSymbol("func_begin");
1715 if (NeedsLocalForSize)
1716 CurrentFnSymForSize = CurrentFnBegin;
1717 }
1718
1719 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1720 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1721 MBFI = (PSI && PSI->hasProfileSummary()) ?
1722 // ORE conditionally computes MBFI. If available, use it, otherwise
1723 // request it.
1724 (ORE->getBFI() ? ORE->getBFI() :
1725 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1726 nullptr;
1727 }
1728
1729 namespace {
1730
1731 // Keep track the alignment, constpool entries per Section.
1732 struct SectionCPs {
1733 MCSection *S;
1734 unsigned Alignment;
1735 SmallVector<unsigned, 4> CPEs;
1736
SectionCPs__anon61f6bba40111::SectionCPs1737 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1738 };
1739
1740 } // end anonymous namespace
1741
1742 /// EmitConstantPool - Print to the current output stream assembly
1743 /// representations of the constants in the constant pool MCP. This is
1744 /// used to print out constants which have been "spilled to memory" by
1745 /// the code generator.
EmitConstantPool()1746 void AsmPrinter::EmitConstantPool() {
1747 const MachineConstantPool *MCP = MF->getConstantPool();
1748 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1749 if (CP.empty()) return;
1750
1751 // Calculate sections for constant pool entries. We collect entries to go into
1752 // the same section together to reduce amount of section switch statements.
1753 SmallVector<SectionCPs, 4> CPSections;
1754 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1755 const MachineConstantPoolEntry &CPE = CP[i];
1756 unsigned Align = CPE.getAlignment();
1757
1758 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1759
1760 const Constant *C = nullptr;
1761 if (!CPE.isMachineConstantPoolEntry())
1762 C = CPE.Val.ConstVal;
1763
1764 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1765 Kind, C, Align);
1766
1767 // The number of sections are small, just do a linear search from the
1768 // last section to the first.
1769 bool Found = false;
1770 unsigned SecIdx = CPSections.size();
1771 while (SecIdx != 0) {
1772 if (CPSections[--SecIdx].S == S) {
1773 Found = true;
1774 break;
1775 }
1776 }
1777 if (!Found) {
1778 SecIdx = CPSections.size();
1779 CPSections.push_back(SectionCPs(S, Align));
1780 }
1781
1782 if (Align > CPSections[SecIdx].Alignment)
1783 CPSections[SecIdx].Alignment = Align;
1784 CPSections[SecIdx].CPEs.push_back(i);
1785 }
1786
1787 // Now print stuff into the calculated sections.
1788 const MCSection *CurSection = nullptr;
1789 unsigned Offset = 0;
1790 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1791 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1792 unsigned CPI = CPSections[i].CPEs[j];
1793 MCSymbol *Sym = GetCPISymbol(CPI);
1794 if (!Sym->isUndefined())
1795 continue;
1796
1797 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1798 cast<MCSymbolXCOFF>(Sym)->setContainingCsect(
1799 cast<MCSectionXCOFF>(CPSections[i].S));
1800 }
1801
1802 if (CurSection != CPSections[i].S) {
1803 OutStreamer->SwitchSection(CPSections[i].S);
1804 EmitAlignment(Align(CPSections[i].Alignment));
1805 CurSection = CPSections[i].S;
1806 Offset = 0;
1807 }
1808
1809 MachineConstantPoolEntry CPE = CP[CPI];
1810
1811 // Emit inter-object padding for alignment.
1812 unsigned AlignMask = CPE.getAlignment() - 1;
1813 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1814 OutStreamer->EmitZeros(NewOffset - Offset);
1815
1816 Type *Ty = CPE.getType();
1817 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1818
1819 OutStreamer->EmitLabel(Sym);
1820 if (CPE.isMachineConstantPoolEntry())
1821 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1822 else
1823 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1824 }
1825 }
1826 }
1827
1828 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1829 /// by the current function to the current output stream.
EmitJumpTableInfo()1830 void AsmPrinter::EmitJumpTableInfo() {
1831 const DataLayout &DL = MF->getDataLayout();
1832 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1833 if (!MJTI) return;
1834 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1835 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1836 if (JT.empty()) return;
1837
1838 // Pick the directive to use to print the jump table entries, and switch to
1839 // the appropriate section.
1840 const Function &F = MF->getFunction();
1841 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1842 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1843 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1844 F);
1845 if (JTInDiffSection) {
1846 // Drop it in the readonly section.
1847 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1848 OutStreamer->SwitchSection(ReadOnlySection);
1849 }
1850
1851 EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1852
1853 // Jump tables in code sections are marked with a data_region directive
1854 // where that's supported.
1855 if (!JTInDiffSection)
1856 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1857
1858 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1859 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1860
1861 // If this jump table was deleted, ignore it.
1862 if (JTBBs.empty()) continue;
1863
1864 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1865 /// emit a .set directive for each unique entry.
1866 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1867 MAI->doesSetDirectiveSuppressReloc()) {
1868 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1869 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1870 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1871 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1872 const MachineBasicBlock *MBB = JTBBs[ii];
1873 if (!EmittedSets.insert(MBB).second)
1874 continue;
1875
1876 // .set LJTSet, LBB32-base
1877 const MCExpr *LHS =
1878 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1879 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1880 MCBinaryExpr::createSub(LHS, Base,
1881 OutContext));
1882 }
1883 }
1884
1885 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1886 // before each jump table. The first label is never referenced, but tells
1887 // the assembler and linker the extents of the jump table object. The
1888 // second label is actually referenced by the code.
1889 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1890 // FIXME: This doesn't have to have any specific name, just any randomly
1891 // named and numbered local label started with 'l' would work. Simplify
1892 // GetJTISymbol.
1893 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1894
1895 MCSymbol* JTISymbol = GetJTISymbol(JTI);
1896 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1897 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect(
1898 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM)));
1899 }
1900 OutStreamer->EmitLabel(JTISymbol);
1901
1902 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1903 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1904 }
1905 if (!JTInDiffSection)
1906 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1907 }
1908
1909 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1910 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1911 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1912 const MachineBasicBlock *MBB,
1913 unsigned UID) const {
1914 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1915 const MCExpr *Value = nullptr;
1916 switch (MJTI->getEntryKind()) {
1917 case MachineJumpTableInfo::EK_Inline:
1918 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1919 case MachineJumpTableInfo::EK_Custom32:
1920 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1921 MJTI, MBB, UID, OutContext);
1922 break;
1923 case MachineJumpTableInfo::EK_BlockAddress:
1924 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1925 // .word LBB123
1926 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1927 break;
1928 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1929 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1930 // with a relocation as gp-relative, e.g.:
1931 // .gprel32 LBB123
1932 MCSymbol *MBBSym = MBB->getSymbol();
1933 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1934 return;
1935 }
1936
1937 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1938 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1939 // with a relocation as gp-relative, e.g.:
1940 // .gpdword LBB123
1941 MCSymbol *MBBSym = MBB->getSymbol();
1942 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1943 return;
1944 }
1945
1946 case MachineJumpTableInfo::EK_LabelDifference32: {
1947 // Each entry is the address of the block minus the address of the jump
1948 // table. This is used for PIC jump tables where gprel32 is not supported.
1949 // e.g.:
1950 // .word LBB123 - LJTI1_2
1951 // If the .set directive avoids relocations, this is emitted as:
1952 // .set L4_5_set_123, LBB123 - LJTI1_2
1953 // .word L4_5_set_123
1954 if (MAI->doesSetDirectiveSuppressReloc()) {
1955 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1956 OutContext);
1957 break;
1958 }
1959 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1960 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1961 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1962 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1963 break;
1964 }
1965 }
1966
1967 assert(Value && "Unknown entry kind!");
1968
1969 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1970 OutStreamer->EmitValue(Value, EntrySize);
1971 }
1972
1973 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1974 /// special global used by LLVM. If so, emit it and return true, otherwise
1975 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1976 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1977 if (GV->getName() == "llvm.used") {
1978 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1979 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1980 return true;
1981 }
1982
1983 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1984 if (GV->getSection() == "llvm.metadata" ||
1985 GV->hasAvailableExternallyLinkage())
1986 return true;
1987
1988 if (!GV->hasAppendingLinkage()) return false;
1989
1990 assert(GV->hasInitializer() && "Not a special LLVM global!");
1991
1992 if (GV->getName() == "llvm.global_ctors") {
1993 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1994 /* isCtor */ true);
1995
1996 return true;
1997 }
1998
1999 if (GV->getName() == "llvm.global_dtors") {
2000 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2001 /* isCtor */ false);
2002
2003 return true;
2004 }
2005
2006 report_fatal_error("unknown special variable");
2007 }
2008
2009 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2010 /// global in the specified llvm.used list.
EmitLLVMUsedList(const ConstantArray * InitList)2011 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
2012 // Should be an array of 'i8*'.
2013 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2014 const GlobalValue *GV =
2015 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2016 if (GV)
2017 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2018 }
2019 }
2020
2021 namespace {
2022
2023 struct Structor {
2024 int Priority = 0;
2025 Constant *Func = nullptr;
2026 GlobalValue *ComdatKey = nullptr;
2027
2028 Structor() = default;
2029 };
2030
2031 } // end anonymous namespace
2032
2033 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2034 /// priority.
EmitXXStructorList(const DataLayout & DL,const Constant * List,bool isCtor)2035 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2036 bool isCtor) {
2037 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the
2038 // init priority.
2039 if (!isa<ConstantArray>(List)) return;
2040
2041 // Sanity check the structors list.
2042 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2043 if (!InitList) return; // Not an array!
2044 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2045 if (!ETy || ETy->getNumElements() != 3 ||
2046 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2047 !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2048 !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2049 return; // Not (int, ptr, ptr).
2050
2051 // Gather the structors in a form that's convenient for sorting by priority.
2052 SmallVector<Structor, 8> Structors;
2053 for (Value *O : InitList->operands()) {
2054 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2055 if (!CS) continue; // Malformed.
2056 if (CS->getOperand(1)->isNullValue())
2057 break; // Found a null terminator, skip the rest.
2058 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2059 if (!Priority) continue; // Malformed.
2060 Structors.push_back(Structor());
2061 Structor &S = Structors.back();
2062 S.Priority = Priority->getLimitedValue(65535);
2063 S.Func = CS->getOperand(1);
2064 if (!CS->getOperand(2)->isNullValue())
2065 S.ComdatKey =
2066 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2067 }
2068
2069 // Emit the function pointers in the target-specific order
2070 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2071 return L.Priority < R.Priority;
2072 });
2073 const Align Align = DL.getPointerPrefAlignment();
2074 for (Structor &S : Structors) {
2075 const TargetLoweringObjectFile &Obj = getObjFileLowering();
2076 const MCSymbol *KeySym = nullptr;
2077 if (GlobalValue *GV = S.ComdatKey) {
2078 if (GV->isDeclarationForLinker())
2079 // If the associated variable is not defined in this module
2080 // (it might be available_externally, or have been an
2081 // available_externally definition that was dropped by the
2082 // EliminateAvailableExternally pass), some other TU
2083 // will provide its dynamic initializer.
2084 continue;
2085
2086 KeySym = getSymbol(GV);
2087 }
2088 MCSection *OutputSection =
2089 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2090 : Obj.getStaticDtorSection(S.Priority, KeySym));
2091 OutStreamer->SwitchSection(OutputSection);
2092 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2093 EmitAlignment(Align);
2094 EmitXXStructor(DL, S.Func);
2095 }
2096 }
2097
EmitModuleIdents(Module & M)2098 void AsmPrinter::EmitModuleIdents(Module &M) {
2099 if (!MAI->hasIdentDirective())
2100 return;
2101
2102 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2103 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2104 const MDNode *N = NMD->getOperand(i);
2105 assert(N->getNumOperands() == 1 &&
2106 "llvm.ident metadata entry can have only one operand");
2107 const MDString *S = cast<MDString>(N->getOperand(0));
2108 OutStreamer->EmitIdent(S->getString());
2109 }
2110 }
2111 }
2112
EmitModuleCommandLines(Module & M)2113 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2114 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2115 if (!CommandLine)
2116 return;
2117
2118 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2119 if (!NMD || !NMD->getNumOperands())
2120 return;
2121
2122 OutStreamer->PushSection();
2123 OutStreamer->SwitchSection(CommandLine);
2124 OutStreamer->EmitZeros(1);
2125 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2126 const MDNode *N = NMD->getOperand(i);
2127 assert(N->getNumOperands() == 1 &&
2128 "llvm.commandline metadata entry can have only one operand");
2129 const MDString *S = cast<MDString>(N->getOperand(0));
2130 OutStreamer->EmitBytes(S->getString());
2131 OutStreamer->EmitZeros(1);
2132 }
2133 OutStreamer->PopSection();
2134 }
2135
2136 //===--------------------------------------------------------------------===//
2137 // Emission and print routines
2138 //
2139
2140 /// Emit a byte directive and value.
2141 ///
emitInt8(int Value) const2142 void AsmPrinter::emitInt8(int Value) const {
2143 OutStreamer->EmitIntValue(Value, 1);
2144 }
2145
2146 /// Emit a short directive and value.
emitInt16(int Value) const2147 void AsmPrinter::emitInt16(int Value) const {
2148 OutStreamer->EmitIntValue(Value, 2);
2149 }
2150
2151 /// Emit a long directive and value.
emitInt32(int Value) const2152 void AsmPrinter::emitInt32(int Value) const {
2153 OutStreamer->EmitIntValue(Value, 4);
2154 }
2155
2156 /// Emit a long long directive and value.
emitInt64(uint64_t Value) const2157 void AsmPrinter::emitInt64(uint64_t Value) const {
2158 OutStreamer->EmitIntValue(Value, 8);
2159 }
2160
2161 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2162 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2163 /// .set if it avoids relocations.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const2164 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2165 unsigned Size) const {
2166 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2167 }
2168
2169 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2170 /// where the size in bytes of the directive is specified by Size and Label
2171 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const2172 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2173 unsigned Size,
2174 bool IsSectionRelative) const {
2175 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2176 OutStreamer->EmitCOFFSecRel32(Label, Offset);
2177 if (Size > 4)
2178 OutStreamer->EmitZeros(Size - 4);
2179 return;
2180 }
2181
2182 // Emit Label+Offset (or just Label if Offset is zero)
2183 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2184 if (Offset)
2185 Expr = MCBinaryExpr::createAdd(
2186 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2187
2188 OutStreamer->EmitValue(Expr, Size);
2189 }
2190
2191 //===----------------------------------------------------------------------===//
2192
2193 // EmitAlignment - Emit an alignment directive to the specified power of
2194 // two boundary. If a global value is specified, and if that global has
2195 // an explicit alignment requested, it will override the alignment request
2196 // if required for correctness.
EmitAlignment(Align Alignment,const GlobalObject * GV) const2197 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2198 if (GV)
2199 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2200
2201 if (Alignment == Align::None())
2202 return; // 1-byte aligned: no need to emit alignment.
2203
2204 if (getCurrentSection()->getKind().isText())
2205 OutStreamer->EmitCodeAlignment(Alignment.value());
2206 else
2207 OutStreamer->EmitValueToAlignment(Alignment.value());
2208 }
2209
2210 //===----------------------------------------------------------------------===//
2211 // Constant emission.
2212 //===----------------------------------------------------------------------===//
2213
lowerConstant(const Constant * CV)2214 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2215 MCContext &Ctx = OutContext;
2216
2217 if (CV->isNullValue() || isa<UndefValue>(CV))
2218 return MCConstantExpr::create(0, Ctx);
2219
2220 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2221 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2222
2223 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2224 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2225
2226 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2227 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2228
2229 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2230 if (!CE) {
2231 llvm_unreachable("Unknown constant value to lower!");
2232 }
2233
2234 switch (CE->getOpcode()) {
2235 default:
2236 // If the code isn't optimized, there may be outstanding folding
2237 // opportunities. Attempt to fold the expression using DataLayout as a
2238 // last resort before giving up.
2239 if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2240 if (C != CE)
2241 return lowerConstant(C);
2242
2243 // Otherwise report the problem to the user.
2244 {
2245 std::string S;
2246 raw_string_ostream OS(S);
2247 OS << "Unsupported expression in static initializer: ";
2248 CE->printAsOperand(OS, /*PrintType=*/false,
2249 !MF ? nullptr : MF->getFunction().getParent());
2250 report_fatal_error(OS.str());
2251 }
2252 case Instruction::GetElementPtr: {
2253 // Generate a symbolic expression for the byte address
2254 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2255 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2256
2257 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2258 if (!OffsetAI)
2259 return Base;
2260
2261 int64_t Offset = OffsetAI.getSExtValue();
2262 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2263 Ctx);
2264 }
2265
2266 case Instruction::Trunc:
2267 // We emit the value and depend on the assembler to truncate the generated
2268 // expression properly. This is important for differences between
2269 // blockaddress labels. Since the two labels are in the same function, it
2270 // is reasonable to treat their delta as a 32-bit value.
2271 LLVM_FALLTHROUGH;
2272 case Instruction::BitCast:
2273 return lowerConstant(CE->getOperand(0));
2274
2275 case Instruction::IntToPtr: {
2276 const DataLayout &DL = getDataLayout();
2277
2278 // Handle casts to pointers by changing them into casts to the appropriate
2279 // integer type. This promotes constant folding and simplifies this code.
2280 Constant *Op = CE->getOperand(0);
2281 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2282 false/*ZExt*/);
2283 return lowerConstant(Op);
2284 }
2285
2286 case Instruction::PtrToInt: {
2287 const DataLayout &DL = getDataLayout();
2288
2289 // Support only foldable casts to/from pointers that can be eliminated by
2290 // changing the pointer to the appropriately sized integer type.
2291 Constant *Op = CE->getOperand(0);
2292 Type *Ty = CE->getType();
2293
2294 const MCExpr *OpExpr = lowerConstant(Op);
2295
2296 // We can emit the pointer value into this slot if the slot is an
2297 // integer slot equal to the size of the pointer.
2298 //
2299 // If the pointer is larger than the resultant integer, then
2300 // as with Trunc just depend on the assembler to truncate it.
2301 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2302 return OpExpr;
2303
2304 // Otherwise the pointer is smaller than the resultant integer, mask off
2305 // the high bits so we are sure to get a proper truncation if the input is
2306 // a constant expr.
2307 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2308 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2309 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2310 }
2311
2312 case Instruction::Sub: {
2313 GlobalValue *LHSGV;
2314 APInt LHSOffset;
2315 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2316 getDataLayout())) {
2317 GlobalValue *RHSGV;
2318 APInt RHSOffset;
2319 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2320 getDataLayout())) {
2321 const MCExpr *RelocExpr =
2322 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2323 if (!RelocExpr)
2324 RelocExpr = MCBinaryExpr::createSub(
2325 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2326 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2327 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2328 if (Addend != 0)
2329 RelocExpr = MCBinaryExpr::createAdd(
2330 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2331 return RelocExpr;
2332 }
2333 }
2334 }
2335 // else fallthrough
2336 LLVM_FALLTHROUGH;
2337
2338 // The MC library also has a right-shift operator, but it isn't consistently
2339 // signed or unsigned between different targets.
2340 case Instruction::Add:
2341 case Instruction::Mul:
2342 case Instruction::SDiv:
2343 case Instruction::SRem:
2344 case Instruction::Shl:
2345 case Instruction::And:
2346 case Instruction::Or:
2347 case Instruction::Xor: {
2348 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2349 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2350 switch (CE->getOpcode()) {
2351 default: llvm_unreachable("Unknown binary operator constant cast expr");
2352 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2353 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2354 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2355 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2356 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2357 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2358 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2359 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2360 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2361 }
2362 }
2363 }
2364 }
2365
2366 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2367 AsmPrinter &AP,
2368 const Constant *BaseCV = nullptr,
2369 uint64_t Offset = 0);
2370
2371 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2372 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2373
2374 /// isRepeatedByteSequence - Determine whether the given value is
2375 /// composed of a repeated sequence of identical bytes and return the
2376 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)2377 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2378 StringRef Data = V->getRawDataValues();
2379 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2380 char C = Data[0];
2381 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2382 if (Data[i] != C) return -1;
2383 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2384 }
2385
2386 /// isRepeatedByteSequence - Determine whether the given value is
2387 /// composed of a repeated sequence of identical bytes and return the
2388 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,const DataLayout & DL)2389 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2390 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2391 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2392 assert(Size % 8 == 0);
2393
2394 // Extend the element to take zero padding into account.
2395 APInt Value = CI->getValue().zextOrSelf(Size);
2396 if (!Value.isSplat(8))
2397 return -1;
2398
2399 return Value.zextOrTrunc(8).getZExtValue();
2400 }
2401 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2402 // Make sure all array elements are sequences of the same repeated
2403 // byte.
2404 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2405 Constant *Op0 = CA->getOperand(0);
2406 int Byte = isRepeatedByteSequence(Op0, DL);
2407 if (Byte == -1)
2408 return -1;
2409
2410 // All array elements must be equal.
2411 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2412 if (CA->getOperand(i) != Op0)
2413 return -1;
2414 return Byte;
2415 }
2416
2417 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2418 return isRepeatedByteSequence(CDS);
2419
2420 return -1;
2421 }
2422
emitGlobalConstantDataSequential(const DataLayout & DL,const ConstantDataSequential * CDS,AsmPrinter & AP)2423 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2424 const ConstantDataSequential *CDS,
2425 AsmPrinter &AP) {
2426 // See if we can aggregate this into a .fill, if so, emit it as such.
2427 int Value = isRepeatedByteSequence(CDS, DL);
2428 if (Value != -1) {
2429 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2430 // Don't emit a 1-byte object as a .fill.
2431 if (Bytes > 1)
2432 return AP.OutStreamer->emitFill(Bytes, Value);
2433 }
2434
2435 // If this can be emitted with .ascii/.asciz, emit it as such.
2436 if (CDS->isString())
2437 return AP.OutStreamer->EmitBytes(CDS->getAsString());
2438
2439 // Otherwise, emit the values in successive locations.
2440 unsigned ElementByteSize = CDS->getElementByteSize();
2441 if (isa<IntegerType>(CDS->getElementType())) {
2442 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2443 if (AP.isVerbose())
2444 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2445 CDS->getElementAsInteger(i));
2446 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2447 ElementByteSize);
2448 }
2449 } else {
2450 Type *ET = CDS->getElementType();
2451 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2452 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2453 }
2454
2455 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2456 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2457 CDS->getNumElements();
2458 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2459 if (unsigned Padding = Size - EmittedSize)
2460 AP.OutStreamer->EmitZeros(Padding);
2461 }
2462
emitGlobalConstantArray(const DataLayout & DL,const ConstantArray * CA,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2463 static void emitGlobalConstantArray(const DataLayout &DL,
2464 const ConstantArray *CA, AsmPrinter &AP,
2465 const Constant *BaseCV, uint64_t Offset) {
2466 // See if we can aggregate some values. Make sure it can be
2467 // represented as a series of bytes of the constant value.
2468 int Value = isRepeatedByteSequence(CA, DL);
2469
2470 if (Value != -1) {
2471 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2472 AP.OutStreamer->emitFill(Bytes, Value);
2473 }
2474 else {
2475 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2476 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2477 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2478 }
2479 }
2480 }
2481
emitGlobalConstantVector(const DataLayout & DL,const ConstantVector * CV,AsmPrinter & AP)2482 static void emitGlobalConstantVector(const DataLayout &DL,
2483 const ConstantVector *CV, AsmPrinter &AP) {
2484 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2485 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2486
2487 unsigned Size = DL.getTypeAllocSize(CV->getType());
2488 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2489 CV->getType()->getNumElements();
2490 if (unsigned Padding = Size - EmittedSize)
2491 AP.OutStreamer->EmitZeros(Padding);
2492 }
2493
emitGlobalConstantStruct(const DataLayout & DL,const ConstantStruct * CS,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2494 static void emitGlobalConstantStruct(const DataLayout &DL,
2495 const ConstantStruct *CS, AsmPrinter &AP,
2496 const Constant *BaseCV, uint64_t Offset) {
2497 // Print the fields in successive locations. Pad to align if needed!
2498 unsigned Size = DL.getTypeAllocSize(CS->getType());
2499 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2500 uint64_t SizeSoFar = 0;
2501 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2502 const Constant *Field = CS->getOperand(i);
2503
2504 // Print the actual field value.
2505 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2506
2507 // Check if padding is needed and insert one or more 0s.
2508 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2509 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2510 - Layout->getElementOffset(i)) - FieldSize;
2511 SizeSoFar += FieldSize + PadSize;
2512
2513 // Insert padding - this may include padding to increase the size of the
2514 // current field up to the ABI size (if the struct is not packed) as well
2515 // as padding to ensure that the next field starts at the right offset.
2516 AP.OutStreamer->EmitZeros(PadSize);
2517 }
2518 assert(SizeSoFar == Layout->getSizeInBytes() &&
2519 "Layout of constant struct may be incorrect!");
2520 }
2521
emitGlobalConstantFP(APFloat APF,Type * ET,AsmPrinter & AP)2522 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2523 assert(ET && "Unknown float type");
2524 APInt API = APF.bitcastToAPInt();
2525
2526 // First print a comment with what we think the original floating-point value
2527 // should have been.
2528 if (AP.isVerbose()) {
2529 SmallString<8> StrVal;
2530 APF.toString(StrVal);
2531 ET->print(AP.OutStreamer->GetCommentOS());
2532 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2533 }
2534
2535 // Now iterate through the APInt chunks, emitting them in endian-correct
2536 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2537 // floats).
2538 unsigned NumBytes = API.getBitWidth() / 8;
2539 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2540 const uint64_t *p = API.getRawData();
2541
2542 // PPC's long double has odd notions of endianness compared to how LLVM
2543 // handles it: p[0] goes first for *big* endian on PPC.
2544 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2545 int Chunk = API.getNumWords() - 1;
2546
2547 if (TrailingBytes)
2548 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2549
2550 for (; Chunk >= 0; --Chunk)
2551 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2552 } else {
2553 unsigned Chunk;
2554 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2555 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2556
2557 if (TrailingBytes)
2558 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2559 }
2560
2561 // Emit the tail padding for the long double.
2562 const DataLayout &DL = AP.getDataLayout();
2563 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2564 }
2565
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)2566 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2567 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2568 }
2569
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)2570 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2571 const DataLayout &DL = AP.getDataLayout();
2572 unsigned BitWidth = CI->getBitWidth();
2573
2574 // Copy the value as we may massage the layout for constants whose bit width
2575 // is not a multiple of 64-bits.
2576 APInt Realigned(CI->getValue());
2577 uint64_t ExtraBits = 0;
2578 unsigned ExtraBitsSize = BitWidth & 63;
2579
2580 if (ExtraBitsSize) {
2581 // The bit width of the data is not a multiple of 64-bits.
2582 // The extra bits are expected to be at the end of the chunk of the memory.
2583 // Little endian:
2584 // * Nothing to be done, just record the extra bits to emit.
2585 // Big endian:
2586 // * Record the extra bits to emit.
2587 // * Realign the raw data to emit the chunks of 64-bits.
2588 if (DL.isBigEndian()) {
2589 // Basically the structure of the raw data is a chunk of 64-bits cells:
2590 // 0 1 BitWidth / 64
2591 // [chunk1][chunk2] ... [chunkN].
2592 // The most significant chunk is chunkN and it should be emitted first.
2593 // However, due to the alignment issue chunkN contains useless bits.
2594 // Realign the chunks so that they contain only useless information:
2595 // ExtraBits 0 1 (BitWidth / 64) - 1
2596 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2597 ExtraBits = Realigned.getRawData()[0] &
2598 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2599 Realigned.lshrInPlace(ExtraBitsSize);
2600 } else
2601 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2602 }
2603
2604 // We don't expect assemblers to support integer data directives
2605 // for more than 64 bits, so we emit the data in at most 64-bit
2606 // quantities at a time.
2607 const uint64_t *RawData = Realigned.getRawData();
2608 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2609 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2610 AP.OutStreamer->EmitIntValue(Val, 8);
2611 }
2612
2613 if (ExtraBitsSize) {
2614 // Emit the extra bits after the 64-bits chunks.
2615
2616 // Emit a directive that fills the expected size.
2617 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2618 Size -= (BitWidth / 64) * 8;
2619 assert(Size && Size * 8 >= ExtraBitsSize &&
2620 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2621 == ExtraBits && "Directive too small for extra bits.");
2622 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2623 }
2624 }
2625
2626 /// Transform a not absolute MCExpr containing a reference to a GOT
2627 /// equivalent global, by a target specific GOT pc relative access to the
2628 /// final symbol.
handleIndirectSymViaGOTPCRel(AsmPrinter & AP,const MCExpr ** ME,const Constant * BaseCst,uint64_t Offset)2629 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2630 const Constant *BaseCst,
2631 uint64_t Offset) {
2632 // The global @foo below illustrates a global that uses a got equivalent.
2633 //
2634 // @bar = global i32 42
2635 // @gotequiv = private unnamed_addr constant i32* @bar
2636 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2637 // i64 ptrtoint (i32* @foo to i64))
2638 // to i32)
2639 //
2640 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2641 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2642 // form:
2643 //
2644 // foo = cstexpr, where
2645 // cstexpr := <gotequiv> - "." + <cst>
2646 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2647 //
2648 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2649 //
2650 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2651 // gotpcrelcst := <offset from @foo base> + <cst>
2652 MCValue MV;
2653 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2654 return;
2655 const MCSymbolRefExpr *SymA = MV.getSymA();
2656 if (!SymA)
2657 return;
2658
2659 // Check that GOT equivalent symbol is cached.
2660 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2661 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2662 return;
2663
2664 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2665 if (!BaseGV)
2666 return;
2667
2668 // Check for a valid base symbol
2669 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2670 const MCSymbolRefExpr *SymB = MV.getSymB();
2671
2672 if (!SymB || BaseSym != &SymB->getSymbol())
2673 return;
2674
2675 // Make sure to match:
2676 //
2677 // gotpcrelcst := <offset from @foo base> + <cst>
2678 //
2679 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2680 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2681 // if the target knows how to encode it.
2682 int64_t GOTPCRelCst = Offset + MV.getConstant();
2683 if (GOTPCRelCst < 0)
2684 return;
2685 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2686 return;
2687
2688 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2689 //
2690 // bar:
2691 // .long 42
2692 // gotequiv:
2693 // .quad bar
2694 // foo:
2695 // .long gotequiv - "." + <cst>
2696 //
2697 // is replaced by the target specific equivalent to:
2698 //
2699 // bar:
2700 // .long 42
2701 // foo:
2702 // .long bar@GOTPCREL+<gotpcrelcst>
2703 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2704 const GlobalVariable *GV = Result.first;
2705 int NumUses = (int)Result.second;
2706 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2707 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2708 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2709 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2710
2711 // Update GOT equivalent usage information
2712 --NumUses;
2713 if (NumUses >= 0)
2714 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2715 }
2716
emitGlobalConstantImpl(const DataLayout & DL,const Constant * CV,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2717 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2718 AsmPrinter &AP, const Constant *BaseCV,
2719 uint64_t Offset) {
2720 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2721
2722 // Globals with sub-elements such as combinations of arrays and structs
2723 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2724 // constant symbol base and the current position with BaseCV and Offset.
2725 if (!BaseCV && CV->hasOneUse())
2726 BaseCV = dyn_cast<Constant>(CV->user_back());
2727
2728 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2729 return AP.OutStreamer->EmitZeros(Size);
2730
2731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2732 switch (Size) {
2733 case 1:
2734 case 2:
2735 case 4:
2736 case 8:
2737 if (AP.isVerbose())
2738 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2739 CI->getZExtValue());
2740 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2741 return;
2742 default:
2743 emitGlobalConstantLargeInt(CI, AP);
2744 return;
2745 }
2746 }
2747
2748 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2749 return emitGlobalConstantFP(CFP, AP);
2750
2751 if (isa<ConstantPointerNull>(CV)) {
2752 AP.OutStreamer->EmitIntValue(0, Size);
2753 return;
2754 }
2755
2756 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2757 return emitGlobalConstantDataSequential(DL, CDS, AP);
2758
2759 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2760 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2761
2762 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2763 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2764
2765 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2766 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2767 // vectors).
2768 if (CE->getOpcode() == Instruction::BitCast)
2769 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2770
2771 if (Size > 8) {
2772 // If the constant expression's size is greater than 64-bits, then we have
2773 // to emit the value in chunks. Try to constant fold the value and emit it
2774 // that way.
2775 Constant *New = ConstantFoldConstant(CE, DL);
2776 if (New && New != CE)
2777 return emitGlobalConstantImpl(DL, New, AP);
2778 }
2779 }
2780
2781 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2782 return emitGlobalConstantVector(DL, V, AP);
2783
2784 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2785 // thread the streamer with EmitValue.
2786 const MCExpr *ME = AP.lowerConstant(CV);
2787
2788 // Since lowerConstant already folded and got rid of all IR pointer and
2789 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2790 // directly.
2791 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2792 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2793
2794 AP.OutStreamer->EmitValue(ME, Size);
2795 }
2796
2797 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const DataLayout & DL,const Constant * CV)2798 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2799 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2800 if (Size)
2801 emitGlobalConstantImpl(DL, CV, *this);
2802 else if (MAI->hasSubsectionsViaSymbols()) {
2803 // If the global has zero size, emit a single byte so that two labels don't
2804 // look like they are at the same location.
2805 OutStreamer->EmitIntValue(0, 1);
2806 }
2807 }
2808
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2809 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2810 // Target doesn't support this yet!
2811 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2812 }
2813
printOffset(int64_t Offset,raw_ostream & OS) const2814 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2815 if (Offset > 0)
2816 OS << '+' << Offset;
2817 else if (Offset < 0)
2818 OS << Offset;
2819 }
2820
emitNops(unsigned N)2821 void AsmPrinter::emitNops(unsigned N) {
2822 MCInst Nop;
2823 MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2824 for (; N; --N)
2825 EmitToStreamer(*OutStreamer, Nop);
2826 }
2827
2828 //===----------------------------------------------------------------------===//
2829 // Symbol Lowering Routines.
2830 //===----------------------------------------------------------------------===//
2831
createTempSymbol(const Twine & Name) const2832 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2833 return OutContext.createTempSymbol(Name, true);
2834 }
2835
GetBlockAddressSymbol(const BlockAddress * BA) const2836 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2837 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2838 }
2839
GetBlockAddressSymbol(const BasicBlock * BB) const2840 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2841 return MMI->getAddrLabelSymbol(BB);
2842 }
2843
2844 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2845 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2846 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2847 const MachineConstantPoolEntry &CPE =
2848 MF->getConstantPool()->getConstants()[CPID];
2849 if (!CPE.isMachineConstantPoolEntry()) {
2850 const DataLayout &DL = MF->getDataLayout();
2851 SectionKind Kind = CPE.getSectionKind(&DL);
2852 const Constant *C = CPE.Val.ConstVal;
2853 unsigned Align = CPE.Alignment;
2854 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2855 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2856 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2857 if (Sym->isUndefined())
2858 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2859 return Sym;
2860 }
2861 }
2862 }
2863 }
2864
2865 const DataLayout &DL = getDataLayout();
2866 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2867 "CPI" + Twine(getFunctionNumber()) + "_" +
2868 Twine(CPID));
2869 }
2870
2871 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const2872 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2873 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2874 }
2875
2876 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2877 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const2878 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2879 const DataLayout &DL = getDataLayout();
2880 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2881 Twine(getFunctionNumber()) + "_" +
2882 Twine(UID) + "_set_" + Twine(MBBID));
2883 }
2884
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const2885 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2886 StringRef Suffix) const {
2887 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2888 }
2889
2890 /// Return the MCSymbol for the specified ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2891 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2892 SmallString<60> NameStr;
2893 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2894 return OutContext.getOrCreateSymbol(NameStr);
2895 }
2896
2897 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2898 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2899 unsigned FunctionNumber) {
2900 if (!Loop) return;
2901 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2902 OS.indent(Loop->getLoopDepth()*2)
2903 << "Parent Loop BB" << FunctionNumber << "_"
2904 << Loop->getHeader()->getNumber()
2905 << " Depth=" << Loop->getLoopDepth() << '\n';
2906 }
2907
2908 /// PrintChildLoopComment - Print comments about child loops within
2909 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2910 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2911 unsigned FunctionNumber) {
2912 // Add child loop information
2913 for (const MachineLoop *CL : *Loop) {
2914 OS.indent(CL->getLoopDepth()*2)
2915 << "Child Loop BB" << FunctionNumber << "_"
2916 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2917 << '\n';
2918 PrintChildLoopComment(OS, CL, FunctionNumber);
2919 }
2920 }
2921
2922 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2923 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2924 const MachineLoopInfo *LI,
2925 const AsmPrinter &AP) {
2926 // Add loop depth information
2927 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2928 if (!Loop) return;
2929
2930 MachineBasicBlock *Header = Loop->getHeader();
2931 assert(Header && "No header for loop");
2932
2933 // If this block is not a loop header, just print out what is the loop header
2934 // and return.
2935 if (Header != &MBB) {
2936 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2937 Twine(AP.getFunctionNumber())+"_" +
2938 Twine(Loop->getHeader()->getNumber())+
2939 " Depth="+Twine(Loop->getLoopDepth()));
2940 return;
2941 }
2942
2943 // Otherwise, it is a loop header. Print out information about child and
2944 // parent loops.
2945 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2946
2947 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2948
2949 OS << "=>";
2950 OS.indent(Loop->getLoopDepth()*2-2);
2951
2952 OS << "This ";
2953 if (Loop->empty())
2954 OS << "Inner ";
2955 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2956
2957 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2958 }
2959
2960 /// EmitBasicBlockStart - This method prints the label for the specified
2961 /// MachineBasicBlock, an alignment (if present) and a comment describing
2962 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock & MBB)2963 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2964 // End the previous funclet and start a new one.
2965 if (MBB.isEHFuncletEntry()) {
2966 for (const HandlerInfo &HI : Handlers) {
2967 HI.Handler->endFunclet();
2968 HI.Handler->beginFunclet(MBB);
2969 }
2970 }
2971
2972 // Emit an alignment directive for this block, if needed.
2973 const Align Alignment = MBB.getAlignment();
2974 if (Alignment != Align::None())
2975 EmitAlignment(Alignment);
2976
2977 // If the block has its address taken, emit any labels that were used to
2978 // reference the block. It is possible that there is more than one label
2979 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2980 // the references were generated.
2981 if (MBB.hasAddressTaken()) {
2982 const BasicBlock *BB = MBB.getBasicBlock();
2983 if (isVerbose())
2984 OutStreamer->AddComment("Block address taken");
2985
2986 // MBBs can have their address taken as part of CodeGen without having
2987 // their corresponding BB's address taken in IR
2988 if (BB->hasAddressTaken())
2989 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2990 OutStreamer->EmitLabel(Sym);
2991 }
2992
2993 // Print some verbose block comments.
2994 if (isVerbose()) {
2995 if (const BasicBlock *BB = MBB.getBasicBlock()) {
2996 if (BB->hasName()) {
2997 BB->printAsOperand(OutStreamer->GetCommentOS(),
2998 /*PrintType=*/false, BB->getModule());
2999 OutStreamer->GetCommentOS() << '\n';
3000 }
3001 }
3002
3003 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3004 emitBasicBlockLoopComments(MBB, MLI, *this);
3005 }
3006
3007 // Print the main label for the block.
3008 if (MBB.pred_empty() ||
3009 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
3010 !MBB.hasLabelMustBeEmitted())) {
3011 if (isVerbose()) {
3012 // NOTE: Want this comment at start of line, don't emit with AddComment.
3013 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3014 false);
3015 }
3016 } else {
3017 if (isVerbose() && MBB.hasLabelMustBeEmitted())
3018 OutStreamer->AddComment("Label of block must be emitted");
3019 OutStreamer->EmitLabel(MBB.getSymbol());
3020 }
3021 }
3022
EmitBasicBlockEnd(const MachineBasicBlock & MBB)3023 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3024
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const3025 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
3026 bool IsDefinition) const {
3027 MCSymbolAttr Attr = MCSA_Invalid;
3028
3029 switch (Visibility) {
3030 default: break;
3031 case GlobalValue::HiddenVisibility:
3032 if (IsDefinition)
3033 Attr = MAI->getHiddenVisibilityAttr();
3034 else
3035 Attr = MAI->getHiddenDeclarationVisibilityAttr();
3036 break;
3037 case GlobalValue::ProtectedVisibility:
3038 Attr = MAI->getProtectedVisibilityAttr();
3039 break;
3040 }
3041
3042 if (Attr != MCSA_Invalid)
3043 OutStreamer->EmitSymbolAttribute(Sym, Attr);
3044 }
3045
3046 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3047 /// exactly one predecessor and the control transfer mechanism between
3048 /// the predecessor and this block is a fall-through.
3049 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const3050 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3051 // If this is a landing pad, it isn't a fall through. If it has no preds,
3052 // then nothing falls through to it.
3053 if (MBB->isEHPad() || MBB->pred_empty())
3054 return false;
3055
3056 // If there isn't exactly one predecessor, it can't be a fall through.
3057 if (MBB->pred_size() > 1)
3058 return false;
3059
3060 // The predecessor has to be immediately before this block.
3061 MachineBasicBlock *Pred = *MBB->pred_begin();
3062 if (!Pred->isLayoutSuccessor(MBB))
3063 return false;
3064
3065 // If the block is completely empty, then it definitely does fall through.
3066 if (Pred->empty())
3067 return true;
3068
3069 // Check the terminators in the previous blocks
3070 for (const auto &MI : Pred->terminators()) {
3071 // If it is not a simple branch, we are in a table somewhere.
3072 if (!MI.isBranch() || MI.isIndirectBranch())
3073 return false;
3074
3075 // If we are the operands of one of the branches, this is not a fall
3076 // through. Note that targets with delay slots will usually bundle
3077 // terminators with the delay slot instruction.
3078 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3079 if (OP->isJTI())
3080 return false;
3081 if (OP->isMBB() && OP->getMBB() == MBB)
3082 return false;
3083 }
3084 }
3085
3086 return true;
3087 }
3088
GetOrCreateGCPrinter(GCStrategy & S)3089 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3090 if (!S.usesMetadata())
3091 return nullptr;
3092
3093 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3094 gcp_map_type::iterator GCPI = GCMap.find(&S);
3095 if (GCPI != GCMap.end())
3096 return GCPI->second.get();
3097
3098 auto Name = S.getName();
3099
3100 for (GCMetadataPrinterRegistry::iterator
3101 I = GCMetadataPrinterRegistry::begin(),
3102 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3103 if (Name == I->getName()) {
3104 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3105 GMP->S = &S;
3106 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3107 return IterBool.first->second.get();
3108 }
3109
3110 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3111 }
3112
emitStackMaps(StackMaps & SM)3113 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3114 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3115 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3116 bool NeedsDefault = false;
3117 if (MI->begin() == MI->end())
3118 // No GC strategy, use the default format.
3119 NeedsDefault = true;
3120 else
3121 for (auto &I : *MI) {
3122 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3123 if (MP->emitStackMaps(SM, *this))
3124 continue;
3125 // The strategy doesn't have printer or doesn't emit custom stack maps.
3126 // Use the default format.
3127 NeedsDefault = true;
3128 }
3129
3130 if (NeedsDefault)
3131 SM.serializeToStackMapSection();
3132 }
3133
3134 /// Pin vtable to this file.
3135 AsmPrinterHandler::~AsmPrinterHandler() = default;
3136
markFunctionEnd()3137 void AsmPrinterHandler::markFunctionEnd() {}
3138
3139 // In the binary's "xray_instr_map" section, an array of these function entries
3140 // describes each instrumentation point. When XRay patches your code, the index
3141 // into this table will be given to your handler as a patch point identifier.
emit(int Bytes,MCStreamer * Out,const MCSymbol * CurrentFnSym) const3142 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3143 const MCSymbol *CurrentFnSym) const {
3144 Out->EmitSymbolValue(Sled, Bytes);
3145 Out->EmitSymbolValue(CurrentFnSym, Bytes);
3146 auto Kind8 = static_cast<uint8_t>(Kind);
3147 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3148 Out->EmitBinaryData(
3149 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3150 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3151 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3152 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3153 Out->EmitZeros(Padding);
3154 }
3155
emitXRayTable()3156 void AsmPrinter::emitXRayTable() {
3157 if (Sleds.empty())
3158 return;
3159
3160 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3161 const Function &F = MF->getFunction();
3162 MCSection *InstMap = nullptr;
3163 MCSection *FnSledIndex = nullptr;
3164 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3165 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3166 assert(Associated != nullptr);
3167 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3168 std::string GroupName;
3169 if (F.hasComdat()) {
3170 Flags |= ELF::SHF_GROUP;
3171 GroupName = F.getComdat()->getName();
3172 }
3173
3174 auto UniqueID = ++XRayFnUniqueID;
3175 InstMap =
3176 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3177 GroupName, UniqueID, Associated);
3178 FnSledIndex =
3179 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3180 GroupName, UniqueID, Associated);
3181 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3182 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3183 SectionKind::getReadOnlyWithRel());
3184 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3185 SectionKind::getReadOnlyWithRel());
3186 } else {
3187 llvm_unreachable("Unsupported target");
3188 }
3189
3190 auto WordSizeBytes = MAI->getCodePointerSize();
3191
3192 // Now we switch to the instrumentation map section. Because this is done
3193 // per-function, we are able to create an index entry that will represent the
3194 // range of sleds associated with a function.
3195 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3196 OutStreamer->SwitchSection(InstMap);
3197 OutStreamer->EmitLabel(SledsStart);
3198 for (const auto &Sled : Sleds)
3199 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3200 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3201 OutStreamer->EmitLabel(SledsEnd);
3202
3203 // We then emit a single entry in the index per function. We use the symbols
3204 // that bound the instrumentation map as the range for a specific function.
3205 // Each entry here will be 2 * word size aligned, as we're writing down two
3206 // pointers. This should work for both 32-bit and 64-bit platforms.
3207 OutStreamer->SwitchSection(FnSledIndex);
3208 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3209 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3210 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3211 OutStreamer->SwitchSection(PrevSection);
3212 Sleds.clear();
3213 }
3214
recordSled(MCSymbol * Sled,const MachineInstr & MI,SledKind Kind,uint8_t Version)3215 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3216 SledKind Kind, uint8_t Version) {
3217 const Function &F = MI.getMF()->getFunction();
3218 auto Attr = F.getFnAttribute("function-instrument");
3219 bool LogArgs = F.hasFnAttribute("xray-log-args");
3220 bool AlwaysInstrument =
3221 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3222 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3223 Kind = SledKind::LOG_ARGS_ENTER;
3224 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3225 AlwaysInstrument, &F, Version});
3226 }
3227
emitPatchableFunctionEntries()3228 void AsmPrinter::emitPatchableFunctionEntries() {
3229 const Function &F = MF->getFunction();
3230 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3231 (void)F.getFnAttribute("patchable-function-prefix")
3232 .getValueAsString()
3233 .getAsInteger(10, PatchableFunctionPrefix);
3234 (void)F.getFnAttribute("patchable-function-entry")
3235 .getValueAsString()
3236 .getAsInteger(10, PatchableFunctionEntry);
3237 if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3238 return;
3239 const unsigned PointerSize = getPointerSize();
3240 if (TM.getTargetTriple().isOSBinFormatELF()) {
3241 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3242
3243 // As of binutils 2.33, GNU as does not support section flag "o" or linkage
3244 // field "unique". Use SHF_LINK_ORDER if we are using the integrated
3245 // assembler.
3246 if (MAI->useIntegratedAssembler()) {
3247 Flags |= ELF::SHF_LINK_ORDER;
3248 std::string GroupName;
3249 if (F.hasComdat()) {
3250 Flags |= ELF::SHF_GROUP;
3251 GroupName = F.getComdat()->getName();
3252 }
3253 MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM);
3254 unsigned UniqueID =
3255 PatchableFunctionEntryID
3256 .try_emplace(Section, PatchableFunctionEntryID.size())
3257 .first->second;
3258 OutStreamer->SwitchSection(OutContext.getELFSection(
3259 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0,
3260 GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym)));
3261 } else {
3262 OutStreamer->SwitchSection(OutContext.getELFSection(
3263 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags));
3264 }
3265 EmitAlignment(Align(PointerSize));
3266 OutStreamer->EmitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3267 }
3268 }
3269
getDwarfVersion() const3270 uint16_t AsmPrinter::getDwarfVersion() const {
3271 return OutStreamer->getContext().getDwarfVersion();
3272 }
3273
setDwarfVersion(uint16_t Version)3274 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3275 OutStreamer->getContext().setDwarfVersion(Version);
3276 }
3277