• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2007-2008 CSIRO
3  * Copyright (c) 2007-2009 Xiph.Org Foundation
4  * Copyright (c) 2008-2009 Gregory Maxwell
5  * Copyright (c) 2012 Andrew D'Addesio
6  * Copyright (c) 2013-2014 Mozilla Corporation
7  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "config_components.h"
27 
28 #include "opustab.h"
29 #include "opus_pvq.h"
30 
31 #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
32 #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
33 
celt_cos(int16_t x)34 static inline int16_t celt_cos(int16_t x)
35 {
36     x = (MUL16(x, x) + 4096) >> 13;
37     x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
38     return x + 1;
39 }
40 
celt_log2tan(int isin,int icos)41 static inline int celt_log2tan(int isin, int icos)
42 {
43     int lc, ls;
44     lc = opus_ilog(icos);
45     ls = opus_ilog(isin);
46     icos <<= 15 - lc;
47     isin <<= 15 - ls;
48     return (ls << 11) - (lc << 11) +
49            ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
50            ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
51 }
52 
celt_bits2pulses(const uint8_t * cache,int bits)53 static inline int celt_bits2pulses(const uint8_t *cache, int bits)
54 {
55     // TODO: Find the size of cache and make it into an array in the parameters list
56     int i, low = 0, high;
57 
58     high = cache[0];
59     bits--;
60 
61     for (i = 0; i < 6; i++) {
62         int center = (low + high + 1) >> 1;
63         if (cache[center] >= bits)
64             high = center;
65         else
66             low = center;
67     }
68 
69     return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
70 }
71 
celt_pulses2bits(const uint8_t * cache,int pulses)72 static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
73 {
74     // TODO: Find the size of cache and make it into an array in the parameters list
75    return (pulses == 0) ? 0 : cache[pulses] + 1;
76 }
77 
celt_normalize_residual(const int * av_restrict iy,float * av_restrict X,int N,float g)78 static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
79                                            int N, float g)
80 {
81     int i;
82     for (i = 0; i < N; i++)
83         X[i] = g * iy[i];
84 }
85 
celt_exp_rotation_impl(float * X,uint32_t len,uint32_t stride,float c,float s)86 static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
87                                    float c, float s)
88 {
89     float *Xptr;
90     int i;
91 
92     Xptr = X;
93     for (i = 0; i < len - stride; i++) {
94         float x1     = Xptr[0];
95         float x2     = Xptr[stride];
96         Xptr[stride] = c * x2 + s * x1;
97         *Xptr++      = c * x1 - s * x2;
98     }
99 
100     Xptr = &X[len - 2 * stride - 1];
101     for (i = len - 2 * stride - 1; i >= 0; i--) {
102         float x1     = Xptr[0];
103         float x2     = Xptr[stride];
104         Xptr[stride] = c * x2 + s * x1;
105         *Xptr--      = c * x1 - s * x2;
106     }
107 }
108 
celt_exp_rotation(float * X,uint32_t len,uint32_t stride,uint32_t K,enum CeltSpread spread,const int encode)109 static inline void celt_exp_rotation(float *X, uint32_t len,
110                                      uint32_t stride, uint32_t K,
111                                      enum CeltSpread spread, const int encode)
112 {
113     uint32_t stride2 = 0;
114     float c, s;
115     float gain, theta;
116     int i;
117 
118     if (2*K >= len || spread == CELT_SPREAD_NONE)
119         return;
120 
121     gain = (float)len / (len + (20 - 5*spread) * K);
122     theta = M_PI * gain * gain / 4;
123 
124     c = cosf(theta);
125     s = sinf(theta);
126 
127     if (len >= stride << 3) {
128         stride2 = 1;
129         /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
130         It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
131         while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
132             stride2++;
133     }
134 
135     len /= stride;
136     for (i = 0; i < stride; i++) {
137         if (encode) {
138             celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
139             if (stride2)
140                 celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
141         } else {
142             if (stride2)
143                 celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
144             celt_exp_rotation_impl(X + i * len, len, 1, c, s);
145         }
146     }
147 }
148 
celt_extract_collapse_mask(const int * iy,uint32_t N,uint32_t B)149 static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
150 {
151     int i, j, N0 = N / B;
152     uint32_t collapse_mask = 0;
153 
154     if (B <= 1)
155         return 1;
156 
157     for (i = 0; i < B; i++)
158         for (j = 0; j < N0; j++)
159             collapse_mask |= (!!iy[i*N0+j]) << i;
160     return collapse_mask;
161 }
162 
celt_stereo_merge(float * X,float * Y,float mid,int N)163 static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
164 {
165     int i;
166     float xp = 0, side = 0;
167     float E[2];
168     float mid2;
169     float gain[2];
170 
171     /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
172     for (i = 0; i < N; i++) {
173         xp   += X[i] * Y[i];
174         side += Y[i] * Y[i];
175     }
176 
177     /* Compensating for the mid normalization */
178     xp *= mid;
179     mid2 = mid;
180     E[0] = mid2 * mid2 + side - 2 * xp;
181     E[1] = mid2 * mid2 + side + 2 * xp;
182     if (E[0] < 6e-4f || E[1] < 6e-4f) {
183         for (i = 0; i < N; i++)
184             Y[i] = X[i];
185         return;
186     }
187 
188     gain[0] = 1.0f / sqrtf(E[0]);
189     gain[1] = 1.0f / sqrtf(E[1]);
190 
191     for (i = 0; i < N; i++) {
192         float value[2];
193         /* Apply mid scaling (side is already scaled) */
194         value[0] = mid * X[i];
195         value[1] = Y[i];
196         X[i] = gain[0] * (value[0] - value[1]);
197         Y[i] = gain[1] * (value[0] + value[1]);
198     }
199 }
200 
celt_interleave_hadamard(float * tmp,float * X,int N0,int stride,int hadamard)201 static void celt_interleave_hadamard(float *tmp, float *X, int N0,
202                                      int stride, int hadamard)
203 {
204     int i, j, N = N0*stride;
205     const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
206 
207     for (i = 0; i < stride; i++)
208         for (j = 0; j < N0; j++)
209             tmp[j*stride+i] = X[order[i]*N0+j];
210 
211     memcpy(X, tmp, N*sizeof(float));
212 }
213 
celt_deinterleave_hadamard(float * tmp,float * X,int N0,int stride,int hadamard)214 static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
215                                        int stride, int hadamard)
216 {
217     int i, j, N = N0*stride;
218     const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
219 
220     for (i = 0; i < stride; i++)
221         for (j = 0; j < N0; j++)
222             tmp[order[i]*N0+j] = X[j*stride+i];
223 
224     memcpy(X, tmp, N*sizeof(float));
225 }
226 
celt_haar1(float * X,int N0,int stride)227 static void celt_haar1(float *X, int N0, int stride)
228 {
229     int i, j;
230     N0 >>= 1;
231     for (i = 0; i < stride; i++) {
232         for (j = 0; j < N0; j++) {
233             float x0 = X[stride * (2 * j + 0) + i];
234             float x1 = X[stride * (2 * j + 1) + i];
235             X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
236             X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
237         }
238     }
239 }
240 
celt_compute_qn(int N,int b,int offset,int pulse_cap,int stereo)241 static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
242                                   int stereo)
243 {
244     int qn, qb;
245     int N2 = 2 * N - 1;
246     if (stereo && N == 2)
247         N2--;
248 
249     /* The upper limit ensures that in a stereo split with itheta==16384, we'll
250      * always have enough bits left over to code at least one pulse in the
251      * side; otherwise it would collapse, since it doesn't get folded. */
252     qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
253     qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
254     return qn;
255 }
256 
257 /* Convert the quantized vector to an index */
celt_icwrsi(uint32_t N,uint32_t K,const int * y)258 static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
259 {
260     int i, idx = 0, sum = 0;
261     for (i = N - 1; i >= 0; i--) {
262         const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
263         idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
264         sum += FFABS(y[i]);
265     }
266     return idx;
267 }
268 
269 // this code was adapted from libopus
celt_cwrsi(uint32_t N,uint32_t K,uint32_t i,int * y)270 static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
271 {
272     uint64_t norm = 0;
273     uint32_t q, p;
274     int s, val;
275     int k0;
276 
277     while (N > 2) {
278         /*Lots of pulses case:*/
279         if (K >= N) {
280             const uint32_t *row = ff_celt_pvq_u_row[N];
281 
282             /* Are the pulses in this dimension negative? */
283             p  = row[K + 1];
284             s  = -(i >= p);
285             i -= p & s;
286 
287             /*Count how many pulses were placed in this dimension.*/
288             k0 = K;
289             q = row[N];
290             if (q > i) {
291                 K = N;
292                 do {
293                     p = ff_celt_pvq_u_row[--K][N];
294                 } while (p > i);
295             } else
296                 for (p = row[K]; p > i; p = row[K])
297                     K--;
298 
299             i    -= p;
300             val   = (k0 - K + s) ^ s;
301             norm += val * val;
302             *y++  = val;
303         } else { /*Lots of dimensions case:*/
304             /*Are there any pulses in this dimension at all?*/
305             p = ff_celt_pvq_u_row[K    ][N];
306             q = ff_celt_pvq_u_row[K + 1][N];
307 
308             if (p <= i && i < q) {
309                 i -= p;
310                 *y++ = 0;
311             } else {
312                 /*Are the pulses in this dimension negative?*/
313                 s  = -(i >= q);
314                 i -= q & s;
315 
316                 /*Count how many pulses were placed in this dimension.*/
317                 k0 = K;
318                 do p = ff_celt_pvq_u_row[--K][N];
319                 while (p > i);
320 
321                 i    -= p;
322                 val   = (k0 - K + s) ^ s;
323                 norm += val * val;
324                 *y++  = val;
325             }
326         }
327         N--;
328     }
329 
330     /* N == 2 */
331     p  = 2 * K + 1;
332     s  = -(i >= p);
333     i -= p & s;
334     k0 = K;
335     K  = (i + 1) / 2;
336 
337     if (K)
338         i -= 2 * K - 1;
339 
340     val   = (k0 - K + s) ^ s;
341     norm += val * val;
342     *y++  = val;
343 
344     /* N==1 */
345     s     = -i;
346     val   = (K + s) ^ s;
347     norm += val * val;
348     *y    = val;
349 
350     return norm;
351 }
352 
celt_encode_pulses(OpusRangeCoder * rc,int * y,uint32_t N,uint32_t K)353 static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
354 {
355     ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
356 }
357 
celt_decode_pulses(OpusRangeCoder * rc,int * y,uint32_t N,uint32_t K)358 static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
359 {
360     const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
361     return celt_cwrsi(N, K, idx, y);
362 }
363 
364 /*
365  * Faster than libopus's search, operates entirely in the signed domain.
366  * Slightly worse/better depending on N, K and the input vector.
367  */
ppp_pvq_search_c(float * X,int * y,int K,int N)368 static float ppp_pvq_search_c(float *X, int *y, int K, int N)
369 {
370     int i, y_norm = 0;
371     float res = 0.0f, xy_norm = 0.0f;
372 
373     for (i = 0; i < N; i++)
374         res += FFABS(X[i]);
375 
376     res = K/(res + FLT_EPSILON);
377 
378     for (i = 0; i < N; i++) {
379         y[i] = lrintf(res*X[i]);
380         y_norm  += y[i]*y[i];
381         xy_norm += y[i]*X[i];
382         K -= FFABS(y[i]);
383     }
384 
385     while (K) {
386         int max_idx = 0, phase = FFSIGN(K);
387         float max_num = 0.0f;
388         float max_den = 1.0f;
389         y_norm += 1.0f;
390 
391         for (i = 0; i < N; i++) {
392             /* If the sum has been overshot and the best place has 0 pulses allocated
393              * to it, attempting to decrease it further will actually increase the
394              * sum. Prevent this by disregarding any 0 positions when decrementing. */
395             const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
396             const int y_new = y_norm  + 2*phase*FFABS(y[i]);
397             float xy_new = xy_norm + 1*phase*FFABS(X[i]);
398             xy_new = xy_new * xy_new;
399             if (ca && (max_den*xy_new) > (y_new*max_num)) {
400                 max_den = y_new;
401                 max_num = xy_new;
402                 max_idx = i;
403             }
404         }
405 
406         K -= phase;
407 
408         phase *= FFSIGN(X[max_idx]);
409         xy_norm += 1*phase*X[max_idx];
410         y_norm  += 2*phase*y[max_idx];
411         y[max_idx] += phase;
412     }
413 
414     return (float)y_norm;
415 }
416 
celt_alg_quant(OpusRangeCoder * rc,float * X,uint32_t N,uint32_t K,enum CeltSpread spread,uint32_t blocks,float gain,CeltPVQ * pvq)417 static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
418                                enum CeltSpread spread, uint32_t blocks, float gain,
419                                CeltPVQ *pvq)
420 {
421     int *y = pvq->qcoeff;
422 
423     celt_exp_rotation(X, N, blocks, K, spread, 1);
424     gain /= sqrtf(pvq->pvq_search(X, y, K, N));
425     celt_encode_pulses(rc, y,  N, K);
426     celt_normalize_residual(y, X, N, gain);
427     celt_exp_rotation(X, N, blocks, K, spread, 0);
428     return celt_extract_collapse_mask(y, N, blocks);
429 }
430 
431 /** Decode pulse vector and combine the result with the pitch vector to produce
432     the final normalised signal in the current band. */
celt_alg_unquant(OpusRangeCoder * rc,float * X,uint32_t N,uint32_t K,enum CeltSpread spread,uint32_t blocks,float gain,CeltPVQ * pvq)433 static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
434                                  enum CeltSpread spread, uint32_t blocks, float gain,
435                                  CeltPVQ *pvq)
436 {
437     int *y = pvq->qcoeff;
438 
439     gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
440     celt_normalize_residual(y, X, N, gain);
441     celt_exp_rotation(X, N, blocks, K, spread, 0);
442     return celt_extract_collapse_mask(y, N, blocks);
443 }
444 
celt_calc_theta(const float * X,const float * Y,int coupling,int N)445 static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
446 {
447     int i;
448     float e[2] = { 0.0f, 0.0f };
449     if (coupling) { /* Coupling case */
450         for (i = 0; i < N; i++) {
451             e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
452             e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
453         }
454     } else {
455         for (i = 0; i < N; i++) {
456             e[0] += X[i]*X[i];
457             e[1] += Y[i]*Y[i];
458         }
459     }
460     return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
461 }
462 
celt_stereo_is_decouple(float * X,float * Y,float e_l,float e_r,int N)463 static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
464 {
465     int i;
466     const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
467     e_l *= energy_n;
468     e_r *= energy_n;
469     for (i = 0; i < N; i++)
470         X[i] = e_l*X[i] + e_r*Y[i];
471 }
472 
celt_stereo_ms_decouple(float * X,float * Y,int N)473 static void celt_stereo_ms_decouple(float *X, float *Y, int N)
474 {
475     int i;
476     for (i = 0; i < N; i++) {
477         const float Xret = X[i];
478         X[i] = (X[i] + Y[i])*M_SQRT1_2;
479         Y[i] = (Y[i] - Xret)*M_SQRT1_2;
480     }
481 }
482 
quant_band_template(CeltPVQ * pvq,CeltFrame * f,OpusRangeCoder * rc,const int band,float * X,float * Y,int N,int b,uint32_t blocks,float * lowband,int duration,float * lowband_out,int level,float gain,float * lowband_scratch,int fill,int quant)483 static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
484                                                      OpusRangeCoder *rc,
485                                                      const int band, float *X,
486                                                      float *Y, int N, int b,
487                                                      uint32_t blocks, float *lowband,
488                                                      int duration, float *lowband_out,
489                                                      int level, float gain,
490                                                      float *lowband_scratch,
491                                                      int fill, int quant)
492 {
493     int i;
494     const uint8_t *cache;
495     int stereo = !!Y, split = stereo;
496     int imid = 0, iside = 0;
497     uint32_t N0 = N;
498     int N_B = N / blocks;
499     int N_B0 = N_B;
500     int B0 = blocks;
501     int time_divide = 0;
502     int recombine = 0;
503     int inv = 0;
504     float mid = 0, side = 0;
505     int longblocks = (B0 == 1);
506     uint32_t cm = 0;
507 
508     if (N == 1) {
509         float *x = X;
510         for (i = 0; i <= stereo; i++) {
511             int sign = 0;
512             if (f->remaining2 >= 1 << 3) {
513                 if (quant) {
514                     sign = x[0] < 0;
515                     ff_opus_rc_put_raw(rc, sign, 1);
516                 } else {
517                     sign = ff_opus_rc_get_raw(rc, 1);
518                 }
519                 f->remaining2 -= 1 << 3;
520             }
521             x[0] = 1.0f - 2.0f*sign;
522             x = Y;
523         }
524         if (lowband_out)
525             lowband_out[0] = X[0];
526         return 1;
527     }
528 
529     if (!stereo && level == 0) {
530         int tf_change = f->tf_change[band];
531         int k;
532         if (tf_change > 0)
533             recombine = tf_change;
534         /* Band recombining to increase frequency resolution */
535 
536         if (lowband &&
537             (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
538             for (i = 0; i < N; i++)
539                 lowband_scratch[i] = lowband[i];
540             lowband = lowband_scratch;
541         }
542 
543         for (k = 0; k < recombine; k++) {
544             if (quant || lowband)
545                 celt_haar1(quant ? X : lowband, N >> k, 1 << k);
546             fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
547         }
548         blocks >>= recombine;
549         N_B <<= recombine;
550 
551         /* Increasing the time resolution */
552         while ((N_B & 1) == 0 && tf_change < 0) {
553             if (quant || lowband)
554                 celt_haar1(quant ? X : lowband, N_B, blocks);
555             fill |= fill << blocks;
556             blocks <<= 1;
557             N_B >>= 1;
558             time_divide++;
559             tf_change++;
560         }
561         B0 = blocks;
562         N_B0 = N_B;
563 
564         /* Reorganize the samples in time order instead of frequency order */
565         if (B0 > 1 && (quant || lowband))
566             celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
567                                        N_B >> recombine, B0 << recombine,
568                                        longblocks);
569     }
570 
571     /* If we need 1.5 more bit than we can produce, split the band in two. */
572     cache = ff_celt_cache_bits +
573             ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
574     if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
575         N >>= 1;
576         Y = X + N;
577         split = 1;
578         duration -= 1;
579         if (blocks == 1)
580             fill = (fill & 1) | (fill << 1);
581         blocks = (blocks + 1) >> 1;
582     }
583 
584     if (split) {
585         int qn;
586         int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
587         int mbits, sbits, delta;
588         int qalloc;
589         int pulse_cap;
590         int offset;
591         int orig_fill;
592         int tell;
593 
594         /* Decide on the resolution to give to the split parameter theta */
595         pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
596         offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
597                                                           CELT_QTHETA_OFFSET);
598         qn = (stereo && band >= f->intensity_stereo) ? 1 :
599              celt_compute_qn(N, b, offset, pulse_cap, stereo);
600         tell = opus_rc_tell_frac(rc);
601         if (qn != 1) {
602             if (quant)
603                 itheta = (itheta*qn + 8192) >> 14;
604             /* Entropy coding of the angle. We use a uniform pdf for the
605              * time split, a step for stereo, and a triangular one for the rest. */
606             if (quant) {
607                 if (stereo && N > 2)
608                     ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
609                 else if (stereo || B0 > 1)
610                     ff_opus_rc_enc_uint(rc, itheta, qn + 1);
611                 else
612                     ff_opus_rc_enc_uint_tri(rc, itheta, qn);
613                 itheta = itheta * 16384 / qn;
614                 if (stereo) {
615                     if (itheta == 0)
616                         celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
617                                                 f->block[1].lin_energy[band], N);
618                     else
619                         celt_stereo_ms_decouple(X, Y, N);
620                 }
621             } else {
622                 if (stereo && N > 2)
623                     itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
624                 else if (stereo || B0 > 1)
625                     itheta = ff_opus_rc_dec_uint(rc, qn+1);
626                 else
627                     itheta = ff_opus_rc_dec_uint_tri(rc, qn);
628                 itheta = itheta * 16384 / qn;
629             }
630         } else if (stereo) {
631             if (quant) {
632                 inv = f->apply_phase_inv ? itheta > 8192 : 0;
633                  if (inv) {
634                     for (i = 0; i < N; i++)
635                        Y[i] *= -1;
636                  }
637                  celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
638                                          f->block[1].lin_energy[band], N);
639 
640                 if (b > 2 << 3 && f->remaining2 > 2 << 3) {
641                     ff_opus_rc_enc_log(rc, inv, 2);
642                 } else {
643                     inv = 0;
644                 }
645             } else {
646                 inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
647                 inv = f->apply_phase_inv ? inv : 0;
648             }
649             itheta = 0;
650         }
651         qalloc = opus_rc_tell_frac(rc) - tell;
652         b -= qalloc;
653 
654         orig_fill = fill;
655         if (itheta == 0) {
656             imid = 32767;
657             iside = 0;
658             fill = av_mod_uintp2(fill, blocks);
659             delta = -16384;
660         } else if (itheta == 16384) {
661             imid = 0;
662             iside = 32767;
663             fill &= ((1 << blocks) - 1) << blocks;
664             delta = 16384;
665         } else {
666             imid = celt_cos(itheta);
667             iside = celt_cos(16384-itheta);
668             /* This is the mid vs side allocation that minimizes squared error
669             in that band. */
670             delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
671         }
672 
673         mid  = imid  / 32768.0f;
674         side = iside / 32768.0f;
675 
676         /* This is a special case for N=2 that only works for stereo and takes
677         advantage of the fact that mid and side are orthogonal to encode
678         the side with just one bit. */
679         if (N == 2 && stereo) {
680             int c;
681             int sign = 0;
682             float tmp;
683             float *x2, *y2;
684             mbits = b;
685             /* Only need one bit for the side */
686             sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
687             mbits -= sbits;
688             c = (itheta > 8192);
689             f->remaining2 -= qalloc+sbits;
690 
691             x2 = c ? Y : X;
692             y2 = c ? X : Y;
693             if (sbits) {
694                 if (quant) {
695                     sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
696                     ff_opus_rc_put_raw(rc, sign, 1);
697                 } else {
698                     sign = ff_opus_rc_get_raw(rc, 1);
699                 }
700             }
701             sign = 1 - 2 * sign;
702             /* We use orig_fill here because we want to fold the side, but if
703             itheta==16384, we'll have cleared the low bits of fill. */
704             cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
705                                  lowband_out, level, gain, lowband_scratch, orig_fill);
706             /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
707             and there's no need to worry about mixing with the other channel. */
708             y2[0] = -sign * x2[1];
709             y2[1] =  sign * x2[0];
710             X[0] *= mid;
711             X[1] *= mid;
712             Y[0] *= side;
713             Y[1] *= side;
714             tmp = X[0];
715             X[0] = tmp - Y[0];
716             Y[0] = tmp + Y[0];
717             tmp = X[1];
718             X[1] = tmp - Y[1];
719             Y[1] = tmp + Y[1];
720         } else {
721             /* "Normal" split code */
722             float *next_lowband2     = NULL;
723             float *next_lowband_out1 = NULL;
724             int next_level = 0;
725             int rebalance;
726             uint32_t cmt;
727 
728             /* Give more bits to low-energy MDCTs than they would
729              * otherwise deserve */
730             if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
731                 if (itheta > 8192)
732                     /* Rough approximation for pre-echo masking */
733                     delta -= delta >> (4 - duration);
734                 else
735                     /* Corresponds to a forward-masking slope of
736                      * 1.5 dB per 10 ms */
737                     delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
738             }
739             mbits = av_clip((b - delta) / 2, 0, b);
740             sbits = b - mbits;
741             f->remaining2 -= qalloc;
742 
743             if (lowband && !stereo)
744                 next_lowband2 = lowband + N; /* >32-bit split case */
745 
746             /* Only stereo needs to pass on lowband_out.
747              * Otherwise, it's handled at the end */
748             if (stereo)
749                 next_lowband_out1 = lowband_out;
750             else
751                 next_level = level + 1;
752 
753             rebalance = f->remaining2;
754             if (mbits >= sbits) {
755                 /* In stereo mode, we do not apply a scaling to the mid
756                  * because we need the normalized mid for folding later */
757                 cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
758                                      lowband, duration, next_lowband_out1, next_level,
759                                      stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
760                 rebalance = mbits - (rebalance - f->remaining2);
761                 if (rebalance > 3 << 3 && itheta != 0)
762                     sbits += rebalance - (3 << 3);
763 
764                 /* For a stereo split, the high bits of fill are always zero,
765                  * so no folding will be done to the side. */
766                 cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
767                                       next_lowband2, duration, NULL, next_level,
768                                       gain * side, NULL, fill >> blocks);
769                 cm |= cmt << ((B0 >> 1) & (stereo - 1));
770             } else {
771                 /* For a stereo split, the high bits of fill are always zero,
772                  * so no folding will be done to the side. */
773                 cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
774                                      next_lowband2, duration, NULL, next_level,
775                                      gain * side, NULL, fill >> blocks);
776                 cm <<= ((B0 >> 1) & (stereo - 1));
777                 rebalance = sbits - (rebalance - f->remaining2);
778                 if (rebalance > 3 << 3 && itheta != 16384)
779                     mbits += rebalance - (3 << 3);
780 
781                 /* In stereo mode, we do not apply a scaling to the mid because
782                  * we need the normalized mid for folding later */
783                 cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
784                                       lowband, duration, next_lowband_out1, next_level,
785                                       stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
786             }
787         }
788     } else {
789         /* This is the basic no-split case */
790         uint32_t q         = celt_bits2pulses(cache, b);
791         uint32_t curr_bits = celt_pulses2bits(cache, q);
792         f->remaining2 -= curr_bits;
793 
794         /* Ensures we can never bust the budget */
795         while (f->remaining2 < 0 && q > 0) {
796             f->remaining2 += curr_bits;
797             curr_bits      = celt_pulses2bits(cache, --q);
798             f->remaining2 -= curr_bits;
799         }
800 
801         if (q != 0) {
802             /* Finally do the actual (de)quantization */
803             if (quant) {
804                 cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
805                                     f->spread, blocks, gain, pvq);
806             } else {
807                 cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
808                                       f->spread, blocks, gain, pvq);
809             }
810         } else {
811             /* If there's no pulse, fill the band anyway */
812             uint32_t cm_mask = (1 << blocks) - 1;
813             fill &= cm_mask;
814             if (fill) {
815                 if (!lowband) {
816                     /* Noise */
817                     for (i = 0; i < N; i++)
818                         X[i] = (((int32_t)celt_rng(f)) >> 20);
819                     cm = cm_mask;
820                 } else {
821                     /* Folded spectrum */
822                     for (i = 0; i < N; i++) {
823                         /* About 48 dB below the "normal" folding level */
824                         X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
825                     }
826                     cm = fill;
827                 }
828                 celt_renormalize_vector(X, N, gain);
829             } else {
830                 memset(X, 0, N*sizeof(float));
831             }
832         }
833     }
834 
835     /* This code is used by the decoder and by the resynthesis-enabled encoder */
836     if (stereo) {
837         if (N > 2)
838             celt_stereo_merge(X, Y, mid, N);
839         if (inv) {
840             for (i = 0; i < N; i++)
841                 Y[i] *= -1;
842         }
843     } else if (level == 0) {
844         int k;
845 
846         /* Undo the sample reorganization going from time order to frequency order */
847         if (B0 > 1)
848             celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
849                                      B0 << recombine, longblocks);
850 
851         /* Undo time-freq changes that we did earlier */
852         N_B = N_B0;
853         blocks = B0;
854         for (k = 0; k < time_divide; k++) {
855             blocks >>= 1;
856             N_B <<= 1;
857             cm |= cm >> blocks;
858             celt_haar1(X, N_B, blocks);
859         }
860 
861         for (k = 0; k < recombine; k++) {
862             cm = ff_celt_bit_deinterleave[cm];
863             celt_haar1(X, N0>>k, 1<<k);
864         }
865         blocks <<= recombine;
866 
867         /* Scale output for later folding */
868         if (lowband_out) {
869             float n = sqrtf(N0);
870             for (i = 0; i < N0; i++)
871                 lowband_out[i] = n * X[i];
872         }
873         cm = av_mod_uintp2(cm, blocks);
874     }
875 
876     return cm;
877 }
878 
QUANT_FN(pvq_decode_band)879 static QUANT_FN(pvq_decode_band)
880 {
881 #if CONFIG_OPUS_DECODER
882     return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
883                                lowband_out, level, gain, lowband_scratch, fill, 0);
884 #else
885     return 0;
886 #endif
887 }
888 
QUANT_FN(pvq_encode_band)889 static QUANT_FN(pvq_encode_band)
890 {
891 #if CONFIG_OPUS_ENCODER
892     return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
893                                lowband_out, level, gain, lowband_scratch, fill, 1);
894 #else
895     return 0;
896 #endif
897 }
898 
ff_celt_pvq_init(CeltPVQ ** pvq,int encode)899 int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
900 {
901     CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
902     if (!s)
903         return AVERROR(ENOMEM);
904 
905     s->pvq_search = ppp_pvq_search_c;
906     s->quant_band = encode ? pvq_encode_band : pvq_decode_band;
907 
908 #if CONFIG_OPUS_ENCODER && ARCH_X86
909     ff_celt_pvq_init_x86(s);
910 #endif
911 
912     *pvq = s;
913 
914     return 0;
915 }
916 
ff_celt_pvq_uninit(CeltPVQ ** pvq)917 void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
918 {
919     av_freep(pvq);
920 }
921