1 /*
2 * Copyright (c) 2007-2008 CSIRO
3 * Copyright (c) 2007-2009 Xiph.Org Foundation
4 * Copyright (c) 2008-2009 Gregory Maxwell
5 * Copyright (c) 2012 Andrew D'Addesio
6 * Copyright (c) 2013-2014 Mozilla Corporation
7 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include "config_components.h"
27
28 #include "opustab.h"
29 #include "opus_pvq.h"
30
31 #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
32 #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
33
celt_cos(int16_t x)34 static inline int16_t celt_cos(int16_t x)
35 {
36 x = (MUL16(x, x) + 4096) >> 13;
37 x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
38 return x + 1;
39 }
40
celt_log2tan(int isin,int icos)41 static inline int celt_log2tan(int isin, int icos)
42 {
43 int lc, ls;
44 lc = opus_ilog(icos);
45 ls = opus_ilog(isin);
46 icos <<= 15 - lc;
47 isin <<= 15 - ls;
48 return (ls << 11) - (lc << 11) +
49 ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
50 ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
51 }
52
celt_bits2pulses(const uint8_t * cache,int bits)53 static inline int celt_bits2pulses(const uint8_t *cache, int bits)
54 {
55 // TODO: Find the size of cache and make it into an array in the parameters list
56 int i, low = 0, high;
57
58 high = cache[0];
59 bits--;
60
61 for (i = 0; i < 6; i++) {
62 int center = (low + high + 1) >> 1;
63 if (cache[center] >= bits)
64 high = center;
65 else
66 low = center;
67 }
68
69 return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
70 }
71
celt_pulses2bits(const uint8_t * cache,int pulses)72 static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
73 {
74 // TODO: Find the size of cache and make it into an array in the parameters list
75 return (pulses == 0) ? 0 : cache[pulses] + 1;
76 }
77
celt_normalize_residual(const int * av_restrict iy,float * av_restrict X,int N,float g)78 static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
79 int N, float g)
80 {
81 int i;
82 for (i = 0; i < N; i++)
83 X[i] = g * iy[i];
84 }
85
celt_exp_rotation_impl(float * X,uint32_t len,uint32_t stride,float c,float s)86 static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
87 float c, float s)
88 {
89 float *Xptr;
90 int i;
91
92 Xptr = X;
93 for (i = 0; i < len - stride; i++) {
94 float x1 = Xptr[0];
95 float x2 = Xptr[stride];
96 Xptr[stride] = c * x2 + s * x1;
97 *Xptr++ = c * x1 - s * x2;
98 }
99
100 Xptr = &X[len - 2 * stride - 1];
101 for (i = len - 2 * stride - 1; i >= 0; i--) {
102 float x1 = Xptr[0];
103 float x2 = Xptr[stride];
104 Xptr[stride] = c * x2 + s * x1;
105 *Xptr-- = c * x1 - s * x2;
106 }
107 }
108
celt_exp_rotation(float * X,uint32_t len,uint32_t stride,uint32_t K,enum CeltSpread spread,const int encode)109 static inline void celt_exp_rotation(float *X, uint32_t len,
110 uint32_t stride, uint32_t K,
111 enum CeltSpread spread, const int encode)
112 {
113 uint32_t stride2 = 0;
114 float c, s;
115 float gain, theta;
116 int i;
117
118 if (2*K >= len || spread == CELT_SPREAD_NONE)
119 return;
120
121 gain = (float)len / (len + (20 - 5*spread) * K);
122 theta = M_PI * gain * gain / 4;
123
124 c = cosf(theta);
125 s = sinf(theta);
126
127 if (len >= stride << 3) {
128 stride2 = 1;
129 /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
130 It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
131 while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
132 stride2++;
133 }
134
135 len /= stride;
136 for (i = 0; i < stride; i++) {
137 if (encode) {
138 celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
139 if (stride2)
140 celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
141 } else {
142 if (stride2)
143 celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
144 celt_exp_rotation_impl(X + i * len, len, 1, c, s);
145 }
146 }
147 }
148
celt_extract_collapse_mask(const int * iy,uint32_t N,uint32_t B)149 static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
150 {
151 int i, j, N0 = N / B;
152 uint32_t collapse_mask = 0;
153
154 if (B <= 1)
155 return 1;
156
157 for (i = 0; i < B; i++)
158 for (j = 0; j < N0; j++)
159 collapse_mask |= (!!iy[i*N0+j]) << i;
160 return collapse_mask;
161 }
162
celt_stereo_merge(float * X,float * Y,float mid,int N)163 static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
164 {
165 int i;
166 float xp = 0, side = 0;
167 float E[2];
168 float mid2;
169 float gain[2];
170
171 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
172 for (i = 0; i < N; i++) {
173 xp += X[i] * Y[i];
174 side += Y[i] * Y[i];
175 }
176
177 /* Compensating for the mid normalization */
178 xp *= mid;
179 mid2 = mid;
180 E[0] = mid2 * mid2 + side - 2 * xp;
181 E[1] = mid2 * mid2 + side + 2 * xp;
182 if (E[0] < 6e-4f || E[1] < 6e-4f) {
183 for (i = 0; i < N; i++)
184 Y[i] = X[i];
185 return;
186 }
187
188 gain[0] = 1.0f / sqrtf(E[0]);
189 gain[1] = 1.0f / sqrtf(E[1]);
190
191 for (i = 0; i < N; i++) {
192 float value[2];
193 /* Apply mid scaling (side is already scaled) */
194 value[0] = mid * X[i];
195 value[1] = Y[i];
196 X[i] = gain[0] * (value[0] - value[1]);
197 Y[i] = gain[1] * (value[0] + value[1]);
198 }
199 }
200
celt_interleave_hadamard(float * tmp,float * X,int N0,int stride,int hadamard)201 static void celt_interleave_hadamard(float *tmp, float *X, int N0,
202 int stride, int hadamard)
203 {
204 int i, j, N = N0*stride;
205 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
206
207 for (i = 0; i < stride; i++)
208 for (j = 0; j < N0; j++)
209 tmp[j*stride+i] = X[order[i]*N0+j];
210
211 memcpy(X, tmp, N*sizeof(float));
212 }
213
celt_deinterleave_hadamard(float * tmp,float * X,int N0,int stride,int hadamard)214 static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
215 int stride, int hadamard)
216 {
217 int i, j, N = N0*stride;
218 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
219
220 for (i = 0; i < stride; i++)
221 for (j = 0; j < N0; j++)
222 tmp[order[i]*N0+j] = X[j*stride+i];
223
224 memcpy(X, tmp, N*sizeof(float));
225 }
226
celt_haar1(float * X,int N0,int stride)227 static void celt_haar1(float *X, int N0, int stride)
228 {
229 int i, j;
230 N0 >>= 1;
231 for (i = 0; i < stride; i++) {
232 for (j = 0; j < N0; j++) {
233 float x0 = X[stride * (2 * j + 0) + i];
234 float x1 = X[stride * (2 * j + 1) + i];
235 X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
236 X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
237 }
238 }
239 }
240
celt_compute_qn(int N,int b,int offset,int pulse_cap,int stereo)241 static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
242 int stereo)
243 {
244 int qn, qb;
245 int N2 = 2 * N - 1;
246 if (stereo && N == 2)
247 N2--;
248
249 /* The upper limit ensures that in a stereo split with itheta==16384, we'll
250 * always have enough bits left over to code at least one pulse in the
251 * side; otherwise it would collapse, since it doesn't get folded. */
252 qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
253 qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
254 return qn;
255 }
256
257 /* Convert the quantized vector to an index */
celt_icwrsi(uint32_t N,uint32_t K,const int * y)258 static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
259 {
260 int i, idx = 0, sum = 0;
261 for (i = N - 1; i >= 0; i--) {
262 const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
263 idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
264 sum += FFABS(y[i]);
265 }
266 return idx;
267 }
268
269 // this code was adapted from libopus
celt_cwrsi(uint32_t N,uint32_t K,uint32_t i,int * y)270 static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
271 {
272 uint64_t norm = 0;
273 uint32_t q, p;
274 int s, val;
275 int k0;
276
277 while (N > 2) {
278 /*Lots of pulses case:*/
279 if (K >= N) {
280 const uint32_t *row = ff_celt_pvq_u_row[N];
281
282 /* Are the pulses in this dimension negative? */
283 p = row[K + 1];
284 s = -(i >= p);
285 i -= p & s;
286
287 /*Count how many pulses were placed in this dimension.*/
288 k0 = K;
289 q = row[N];
290 if (q > i) {
291 K = N;
292 do {
293 p = ff_celt_pvq_u_row[--K][N];
294 } while (p > i);
295 } else
296 for (p = row[K]; p > i; p = row[K])
297 K--;
298
299 i -= p;
300 val = (k0 - K + s) ^ s;
301 norm += val * val;
302 *y++ = val;
303 } else { /*Lots of dimensions case:*/
304 /*Are there any pulses in this dimension at all?*/
305 p = ff_celt_pvq_u_row[K ][N];
306 q = ff_celt_pvq_u_row[K + 1][N];
307
308 if (p <= i && i < q) {
309 i -= p;
310 *y++ = 0;
311 } else {
312 /*Are the pulses in this dimension negative?*/
313 s = -(i >= q);
314 i -= q & s;
315
316 /*Count how many pulses were placed in this dimension.*/
317 k0 = K;
318 do p = ff_celt_pvq_u_row[--K][N];
319 while (p > i);
320
321 i -= p;
322 val = (k0 - K + s) ^ s;
323 norm += val * val;
324 *y++ = val;
325 }
326 }
327 N--;
328 }
329
330 /* N == 2 */
331 p = 2 * K + 1;
332 s = -(i >= p);
333 i -= p & s;
334 k0 = K;
335 K = (i + 1) / 2;
336
337 if (K)
338 i -= 2 * K - 1;
339
340 val = (k0 - K + s) ^ s;
341 norm += val * val;
342 *y++ = val;
343
344 /* N==1 */
345 s = -i;
346 val = (K + s) ^ s;
347 norm += val * val;
348 *y = val;
349
350 return norm;
351 }
352
celt_encode_pulses(OpusRangeCoder * rc,int * y,uint32_t N,uint32_t K)353 static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
354 {
355 ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
356 }
357
celt_decode_pulses(OpusRangeCoder * rc,int * y,uint32_t N,uint32_t K)358 static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
359 {
360 const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
361 return celt_cwrsi(N, K, idx, y);
362 }
363
364 /*
365 * Faster than libopus's search, operates entirely in the signed domain.
366 * Slightly worse/better depending on N, K and the input vector.
367 */
ppp_pvq_search_c(float * X,int * y,int K,int N)368 static float ppp_pvq_search_c(float *X, int *y, int K, int N)
369 {
370 int i, y_norm = 0;
371 float res = 0.0f, xy_norm = 0.0f;
372
373 for (i = 0; i < N; i++)
374 res += FFABS(X[i]);
375
376 res = K/(res + FLT_EPSILON);
377
378 for (i = 0; i < N; i++) {
379 y[i] = lrintf(res*X[i]);
380 y_norm += y[i]*y[i];
381 xy_norm += y[i]*X[i];
382 K -= FFABS(y[i]);
383 }
384
385 while (K) {
386 int max_idx = 0, phase = FFSIGN(K);
387 float max_num = 0.0f;
388 float max_den = 1.0f;
389 y_norm += 1.0f;
390
391 for (i = 0; i < N; i++) {
392 /* If the sum has been overshot and the best place has 0 pulses allocated
393 * to it, attempting to decrease it further will actually increase the
394 * sum. Prevent this by disregarding any 0 positions when decrementing. */
395 const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
396 const int y_new = y_norm + 2*phase*FFABS(y[i]);
397 float xy_new = xy_norm + 1*phase*FFABS(X[i]);
398 xy_new = xy_new * xy_new;
399 if (ca && (max_den*xy_new) > (y_new*max_num)) {
400 max_den = y_new;
401 max_num = xy_new;
402 max_idx = i;
403 }
404 }
405
406 K -= phase;
407
408 phase *= FFSIGN(X[max_idx]);
409 xy_norm += 1*phase*X[max_idx];
410 y_norm += 2*phase*y[max_idx];
411 y[max_idx] += phase;
412 }
413
414 return (float)y_norm;
415 }
416
celt_alg_quant(OpusRangeCoder * rc,float * X,uint32_t N,uint32_t K,enum CeltSpread spread,uint32_t blocks,float gain,CeltPVQ * pvq)417 static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
418 enum CeltSpread spread, uint32_t blocks, float gain,
419 CeltPVQ *pvq)
420 {
421 int *y = pvq->qcoeff;
422
423 celt_exp_rotation(X, N, blocks, K, spread, 1);
424 gain /= sqrtf(pvq->pvq_search(X, y, K, N));
425 celt_encode_pulses(rc, y, N, K);
426 celt_normalize_residual(y, X, N, gain);
427 celt_exp_rotation(X, N, blocks, K, spread, 0);
428 return celt_extract_collapse_mask(y, N, blocks);
429 }
430
431 /** Decode pulse vector and combine the result with the pitch vector to produce
432 the final normalised signal in the current band. */
celt_alg_unquant(OpusRangeCoder * rc,float * X,uint32_t N,uint32_t K,enum CeltSpread spread,uint32_t blocks,float gain,CeltPVQ * pvq)433 static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
434 enum CeltSpread spread, uint32_t blocks, float gain,
435 CeltPVQ *pvq)
436 {
437 int *y = pvq->qcoeff;
438
439 gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
440 celt_normalize_residual(y, X, N, gain);
441 celt_exp_rotation(X, N, blocks, K, spread, 0);
442 return celt_extract_collapse_mask(y, N, blocks);
443 }
444
celt_calc_theta(const float * X,const float * Y,int coupling,int N)445 static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
446 {
447 int i;
448 float e[2] = { 0.0f, 0.0f };
449 if (coupling) { /* Coupling case */
450 for (i = 0; i < N; i++) {
451 e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
452 e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
453 }
454 } else {
455 for (i = 0; i < N; i++) {
456 e[0] += X[i]*X[i];
457 e[1] += Y[i]*Y[i];
458 }
459 }
460 return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
461 }
462
celt_stereo_is_decouple(float * X,float * Y,float e_l,float e_r,int N)463 static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
464 {
465 int i;
466 const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
467 e_l *= energy_n;
468 e_r *= energy_n;
469 for (i = 0; i < N; i++)
470 X[i] = e_l*X[i] + e_r*Y[i];
471 }
472
celt_stereo_ms_decouple(float * X,float * Y,int N)473 static void celt_stereo_ms_decouple(float *X, float *Y, int N)
474 {
475 int i;
476 for (i = 0; i < N; i++) {
477 const float Xret = X[i];
478 X[i] = (X[i] + Y[i])*M_SQRT1_2;
479 Y[i] = (Y[i] - Xret)*M_SQRT1_2;
480 }
481 }
482
quant_band_template(CeltPVQ * pvq,CeltFrame * f,OpusRangeCoder * rc,const int band,float * X,float * Y,int N,int b,uint32_t blocks,float * lowband,int duration,float * lowband_out,int level,float gain,float * lowband_scratch,int fill,int quant)483 static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
484 OpusRangeCoder *rc,
485 const int band, float *X,
486 float *Y, int N, int b,
487 uint32_t blocks, float *lowband,
488 int duration, float *lowband_out,
489 int level, float gain,
490 float *lowband_scratch,
491 int fill, int quant)
492 {
493 int i;
494 const uint8_t *cache;
495 int stereo = !!Y, split = stereo;
496 int imid = 0, iside = 0;
497 uint32_t N0 = N;
498 int N_B = N / blocks;
499 int N_B0 = N_B;
500 int B0 = blocks;
501 int time_divide = 0;
502 int recombine = 0;
503 int inv = 0;
504 float mid = 0, side = 0;
505 int longblocks = (B0 == 1);
506 uint32_t cm = 0;
507
508 if (N == 1) {
509 float *x = X;
510 for (i = 0; i <= stereo; i++) {
511 int sign = 0;
512 if (f->remaining2 >= 1 << 3) {
513 if (quant) {
514 sign = x[0] < 0;
515 ff_opus_rc_put_raw(rc, sign, 1);
516 } else {
517 sign = ff_opus_rc_get_raw(rc, 1);
518 }
519 f->remaining2 -= 1 << 3;
520 }
521 x[0] = 1.0f - 2.0f*sign;
522 x = Y;
523 }
524 if (lowband_out)
525 lowband_out[0] = X[0];
526 return 1;
527 }
528
529 if (!stereo && level == 0) {
530 int tf_change = f->tf_change[band];
531 int k;
532 if (tf_change > 0)
533 recombine = tf_change;
534 /* Band recombining to increase frequency resolution */
535
536 if (lowband &&
537 (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
538 for (i = 0; i < N; i++)
539 lowband_scratch[i] = lowband[i];
540 lowband = lowband_scratch;
541 }
542
543 for (k = 0; k < recombine; k++) {
544 if (quant || lowband)
545 celt_haar1(quant ? X : lowband, N >> k, 1 << k);
546 fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
547 }
548 blocks >>= recombine;
549 N_B <<= recombine;
550
551 /* Increasing the time resolution */
552 while ((N_B & 1) == 0 && tf_change < 0) {
553 if (quant || lowband)
554 celt_haar1(quant ? X : lowband, N_B, blocks);
555 fill |= fill << blocks;
556 blocks <<= 1;
557 N_B >>= 1;
558 time_divide++;
559 tf_change++;
560 }
561 B0 = blocks;
562 N_B0 = N_B;
563
564 /* Reorganize the samples in time order instead of frequency order */
565 if (B0 > 1 && (quant || lowband))
566 celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
567 N_B >> recombine, B0 << recombine,
568 longblocks);
569 }
570
571 /* If we need 1.5 more bit than we can produce, split the band in two. */
572 cache = ff_celt_cache_bits +
573 ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
574 if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
575 N >>= 1;
576 Y = X + N;
577 split = 1;
578 duration -= 1;
579 if (blocks == 1)
580 fill = (fill & 1) | (fill << 1);
581 blocks = (blocks + 1) >> 1;
582 }
583
584 if (split) {
585 int qn;
586 int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
587 int mbits, sbits, delta;
588 int qalloc;
589 int pulse_cap;
590 int offset;
591 int orig_fill;
592 int tell;
593
594 /* Decide on the resolution to give to the split parameter theta */
595 pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
596 offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
597 CELT_QTHETA_OFFSET);
598 qn = (stereo && band >= f->intensity_stereo) ? 1 :
599 celt_compute_qn(N, b, offset, pulse_cap, stereo);
600 tell = opus_rc_tell_frac(rc);
601 if (qn != 1) {
602 if (quant)
603 itheta = (itheta*qn + 8192) >> 14;
604 /* Entropy coding of the angle. We use a uniform pdf for the
605 * time split, a step for stereo, and a triangular one for the rest. */
606 if (quant) {
607 if (stereo && N > 2)
608 ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
609 else if (stereo || B0 > 1)
610 ff_opus_rc_enc_uint(rc, itheta, qn + 1);
611 else
612 ff_opus_rc_enc_uint_tri(rc, itheta, qn);
613 itheta = itheta * 16384 / qn;
614 if (stereo) {
615 if (itheta == 0)
616 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
617 f->block[1].lin_energy[band], N);
618 else
619 celt_stereo_ms_decouple(X, Y, N);
620 }
621 } else {
622 if (stereo && N > 2)
623 itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
624 else if (stereo || B0 > 1)
625 itheta = ff_opus_rc_dec_uint(rc, qn+1);
626 else
627 itheta = ff_opus_rc_dec_uint_tri(rc, qn);
628 itheta = itheta * 16384 / qn;
629 }
630 } else if (stereo) {
631 if (quant) {
632 inv = f->apply_phase_inv ? itheta > 8192 : 0;
633 if (inv) {
634 for (i = 0; i < N; i++)
635 Y[i] *= -1;
636 }
637 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
638 f->block[1].lin_energy[band], N);
639
640 if (b > 2 << 3 && f->remaining2 > 2 << 3) {
641 ff_opus_rc_enc_log(rc, inv, 2);
642 } else {
643 inv = 0;
644 }
645 } else {
646 inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
647 inv = f->apply_phase_inv ? inv : 0;
648 }
649 itheta = 0;
650 }
651 qalloc = opus_rc_tell_frac(rc) - tell;
652 b -= qalloc;
653
654 orig_fill = fill;
655 if (itheta == 0) {
656 imid = 32767;
657 iside = 0;
658 fill = av_mod_uintp2(fill, blocks);
659 delta = -16384;
660 } else if (itheta == 16384) {
661 imid = 0;
662 iside = 32767;
663 fill &= ((1 << blocks) - 1) << blocks;
664 delta = 16384;
665 } else {
666 imid = celt_cos(itheta);
667 iside = celt_cos(16384-itheta);
668 /* This is the mid vs side allocation that minimizes squared error
669 in that band. */
670 delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
671 }
672
673 mid = imid / 32768.0f;
674 side = iside / 32768.0f;
675
676 /* This is a special case for N=2 that only works for stereo and takes
677 advantage of the fact that mid and side are orthogonal to encode
678 the side with just one bit. */
679 if (N == 2 && stereo) {
680 int c;
681 int sign = 0;
682 float tmp;
683 float *x2, *y2;
684 mbits = b;
685 /* Only need one bit for the side */
686 sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
687 mbits -= sbits;
688 c = (itheta > 8192);
689 f->remaining2 -= qalloc+sbits;
690
691 x2 = c ? Y : X;
692 y2 = c ? X : Y;
693 if (sbits) {
694 if (quant) {
695 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
696 ff_opus_rc_put_raw(rc, sign, 1);
697 } else {
698 sign = ff_opus_rc_get_raw(rc, 1);
699 }
700 }
701 sign = 1 - 2 * sign;
702 /* We use orig_fill here because we want to fold the side, but if
703 itheta==16384, we'll have cleared the low bits of fill. */
704 cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
705 lowband_out, level, gain, lowband_scratch, orig_fill);
706 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
707 and there's no need to worry about mixing with the other channel. */
708 y2[0] = -sign * x2[1];
709 y2[1] = sign * x2[0];
710 X[0] *= mid;
711 X[1] *= mid;
712 Y[0] *= side;
713 Y[1] *= side;
714 tmp = X[0];
715 X[0] = tmp - Y[0];
716 Y[0] = tmp + Y[0];
717 tmp = X[1];
718 X[1] = tmp - Y[1];
719 Y[1] = tmp + Y[1];
720 } else {
721 /* "Normal" split code */
722 float *next_lowband2 = NULL;
723 float *next_lowband_out1 = NULL;
724 int next_level = 0;
725 int rebalance;
726 uint32_t cmt;
727
728 /* Give more bits to low-energy MDCTs than they would
729 * otherwise deserve */
730 if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
731 if (itheta > 8192)
732 /* Rough approximation for pre-echo masking */
733 delta -= delta >> (4 - duration);
734 else
735 /* Corresponds to a forward-masking slope of
736 * 1.5 dB per 10 ms */
737 delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
738 }
739 mbits = av_clip((b - delta) / 2, 0, b);
740 sbits = b - mbits;
741 f->remaining2 -= qalloc;
742
743 if (lowband && !stereo)
744 next_lowband2 = lowband + N; /* >32-bit split case */
745
746 /* Only stereo needs to pass on lowband_out.
747 * Otherwise, it's handled at the end */
748 if (stereo)
749 next_lowband_out1 = lowband_out;
750 else
751 next_level = level + 1;
752
753 rebalance = f->remaining2;
754 if (mbits >= sbits) {
755 /* In stereo mode, we do not apply a scaling to the mid
756 * because we need the normalized mid for folding later */
757 cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
758 lowband, duration, next_lowband_out1, next_level,
759 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
760 rebalance = mbits - (rebalance - f->remaining2);
761 if (rebalance > 3 << 3 && itheta != 0)
762 sbits += rebalance - (3 << 3);
763
764 /* For a stereo split, the high bits of fill are always zero,
765 * so no folding will be done to the side. */
766 cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
767 next_lowband2, duration, NULL, next_level,
768 gain * side, NULL, fill >> blocks);
769 cm |= cmt << ((B0 >> 1) & (stereo - 1));
770 } else {
771 /* For a stereo split, the high bits of fill are always zero,
772 * so no folding will be done to the side. */
773 cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
774 next_lowband2, duration, NULL, next_level,
775 gain * side, NULL, fill >> blocks);
776 cm <<= ((B0 >> 1) & (stereo - 1));
777 rebalance = sbits - (rebalance - f->remaining2);
778 if (rebalance > 3 << 3 && itheta != 16384)
779 mbits += rebalance - (3 << 3);
780
781 /* In stereo mode, we do not apply a scaling to the mid because
782 * we need the normalized mid for folding later */
783 cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
784 lowband, duration, next_lowband_out1, next_level,
785 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
786 }
787 }
788 } else {
789 /* This is the basic no-split case */
790 uint32_t q = celt_bits2pulses(cache, b);
791 uint32_t curr_bits = celt_pulses2bits(cache, q);
792 f->remaining2 -= curr_bits;
793
794 /* Ensures we can never bust the budget */
795 while (f->remaining2 < 0 && q > 0) {
796 f->remaining2 += curr_bits;
797 curr_bits = celt_pulses2bits(cache, --q);
798 f->remaining2 -= curr_bits;
799 }
800
801 if (q != 0) {
802 /* Finally do the actual (de)quantization */
803 if (quant) {
804 cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
805 f->spread, blocks, gain, pvq);
806 } else {
807 cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
808 f->spread, blocks, gain, pvq);
809 }
810 } else {
811 /* If there's no pulse, fill the band anyway */
812 uint32_t cm_mask = (1 << blocks) - 1;
813 fill &= cm_mask;
814 if (fill) {
815 if (!lowband) {
816 /* Noise */
817 for (i = 0; i < N; i++)
818 X[i] = (((int32_t)celt_rng(f)) >> 20);
819 cm = cm_mask;
820 } else {
821 /* Folded spectrum */
822 for (i = 0; i < N; i++) {
823 /* About 48 dB below the "normal" folding level */
824 X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
825 }
826 cm = fill;
827 }
828 celt_renormalize_vector(X, N, gain);
829 } else {
830 memset(X, 0, N*sizeof(float));
831 }
832 }
833 }
834
835 /* This code is used by the decoder and by the resynthesis-enabled encoder */
836 if (stereo) {
837 if (N > 2)
838 celt_stereo_merge(X, Y, mid, N);
839 if (inv) {
840 for (i = 0; i < N; i++)
841 Y[i] *= -1;
842 }
843 } else if (level == 0) {
844 int k;
845
846 /* Undo the sample reorganization going from time order to frequency order */
847 if (B0 > 1)
848 celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
849 B0 << recombine, longblocks);
850
851 /* Undo time-freq changes that we did earlier */
852 N_B = N_B0;
853 blocks = B0;
854 for (k = 0; k < time_divide; k++) {
855 blocks >>= 1;
856 N_B <<= 1;
857 cm |= cm >> blocks;
858 celt_haar1(X, N_B, blocks);
859 }
860
861 for (k = 0; k < recombine; k++) {
862 cm = ff_celt_bit_deinterleave[cm];
863 celt_haar1(X, N0>>k, 1<<k);
864 }
865 blocks <<= recombine;
866
867 /* Scale output for later folding */
868 if (lowband_out) {
869 float n = sqrtf(N0);
870 for (i = 0; i < N0; i++)
871 lowband_out[i] = n * X[i];
872 }
873 cm = av_mod_uintp2(cm, blocks);
874 }
875
876 return cm;
877 }
878
QUANT_FN(pvq_decode_band)879 static QUANT_FN(pvq_decode_band)
880 {
881 #if CONFIG_OPUS_DECODER
882 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
883 lowband_out, level, gain, lowband_scratch, fill, 0);
884 #else
885 return 0;
886 #endif
887 }
888
QUANT_FN(pvq_encode_band)889 static QUANT_FN(pvq_encode_band)
890 {
891 #if CONFIG_OPUS_ENCODER
892 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
893 lowband_out, level, gain, lowband_scratch, fill, 1);
894 #else
895 return 0;
896 #endif
897 }
898
ff_celt_pvq_init(CeltPVQ ** pvq,int encode)899 int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
900 {
901 CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
902 if (!s)
903 return AVERROR(ENOMEM);
904
905 s->pvq_search = ppp_pvq_search_c;
906 s->quant_band = encode ? pvq_encode_band : pvq_decode_band;
907
908 #if CONFIG_OPUS_ENCODER && ARCH_X86
909 ff_celt_pvq_init_x86(s);
910 #endif
911
912 *pvq = s;
913
914 return 0;
915 }
916
ff_celt_pvq_uninit(CeltPVQ ** pvq)917 void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
918 {
919 av_freep(pvq);
920 }
921