• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018 Sergey Lavrushkin
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/avassert.h"
22 #include "libavutil/thread.h"
23 #include "libavutil/cpu.h"
24 #include "dnn_backend_native_layer_conv2d.h"
25 
26 #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
27 
28 //struct to pass parameters
29 typedef struct ThreadCommonParam{
30     DnnOperand *operands;
31     const int32_t *input_operand_indexes;
32     int32_t output_operand_index;
33     const void *parameters;
34     NativeContext *ctx;
35     float *output_data;
36 } ThreadCommonParam;
37 
38 typedef struct ThreadParam{
39     ThreadCommonParam *thread_common_param;
40     int thread_start, thread_end;
41 #if HAVE_PTHREAD_CANCEL
42     pthread_t thread;
43 #endif
44 } ThreadParam;
45 
ff_dnn_load_layer_conv2d(Layer * layer,AVIOContext * model_file_context,int file_size,int operands_num)46 int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
47 {
48     ConvolutionalParams *conv_params;
49     int kernel_size;
50     int dnn_size = 0;
51     conv_params = av_malloc(sizeof(*conv_params));
52     if (!conv_params)
53         return 0;
54 
55     conv_params->dilation = (int32_t)avio_rl32(model_file_context);
56     conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
57     conv_params->activation = (int32_t)avio_rl32(model_file_context);
58     conv_params->input_num = (int32_t)avio_rl32(model_file_context);
59     conv_params->output_num = (int32_t)avio_rl32(model_file_context);
60     conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
61     conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
62     dnn_size += 28;
63 
64     kernel_size = conv_params->input_num * conv_params->output_num *
65                       conv_params->kernel_size * conv_params->kernel_size;
66     dnn_size += kernel_size * 4;
67     if (conv_params->has_bias)
68         dnn_size += conv_params->output_num * 4;
69 
70     if (dnn_size > file_size || conv_params->input_num <= 0 ||
71         conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
72         av_freep(&conv_params);
73         return 0;
74     }
75 
76     conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel));
77     if (!conv_params->kernel) {
78         av_freep(&conv_params);
79         return 0;
80     }
81     for (int i = 0; i < kernel_size; ++i) {
82         conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
83     }
84 
85     conv_params->biases = NULL;
86     if (conv_params->has_bias) {
87         conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases));
88         if (!conv_params->biases){
89             av_freep(&conv_params->kernel);
90             av_freep(&conv_params);
91             return 0;
92         }
93         for (int i = 0; i < conv_params->output_num; ++i){
94             conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
95         }
96     }
97 
98     layer->params = conv_params;
99 
100     layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
101     layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
102     dnn_size += 8;
103 
104     if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
105         return 0;
106     }
107 
108     return dnn_size;
109 }
110 
dnn_execute_layer_conv2d_thread(void * threadarg)111 static void * dnn_execute_layer_conv2d_thread(void *threadarg)
112 {
113     //pass parameters
114     ThreadParam *thread_param = threadarg;
115     ThreadCommonParam *thread_common_param = thread_param->thread_common_param;
116     DnnOperand *operands = thread_common_param->operands;
117     int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
118     int height = operands[input_operand_index].dims[1];
119     int width = operands[input_operand_index].dims[2];
120     int channel = operands[input_operand_index].dims[3];
121     const float *input = operands[input_operand_index].data;
122     const ConvolutionalParams *conv_params = thread_common_param->parameters;
123 
124     int radius = conv_params->kernel_size >> 1;
125     int src_linesize = width * conv_params->input_num;
126     int filter_linesize = conv_params->kernel_size * conv_params->input_num;
127     int filter_size = conv_params->kernel_size * filter_linesize;
128     int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
129 
130     float *output = thread_common_param->output_data;
131     output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
132 
133     av_assert0(channel == conv_params->input_num);
134 
135     for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
136         for (int x = pad_size; x < width - pad_size; ++x) {
137             for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
138                 if (conv_params->has_bias)
139                     output[n_filter] = conv_params->biases[n_filter];
140                 else
141                     output[n_filter] = 0.f;
142 
143                 for (int ch = 0; ch < conv_params->input_num; ++ch) {
144                     for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
145                         for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
146                             float input_pel;
147                             if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
148                                 int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
149                                 int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
150                                 input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
151                             } else {
152                                 int y_pos = y + (kernel_y - radius) * conv_params->dilation;
153                                 int x_pos = x + (kernel_x - radius) * conv_params->dilation;
154                                 input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
155                                                    input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
156                             }
157 
158 
159                             output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
160                                                                                 kernel_x * conv_params->input_num + ch];
161                         }
162                     }
163                 }
164                 switch (conv_params->activation){
165                 case RELU:
166                     output[n_filter] = FFMAX(output[n_filter], 0.0);
167                     break;
168                 case TANH:
169                     output[n_filter] = 2.0f  / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
170                     break;
171                 case SIGMOID:
172                     output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
173                     break;
174                 case NONE:
175                     break;
176                 case LEAKY_RELU:
177                     output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
178                 }
179             }
180             output += conv_params->output_num;
181         }
182     }
183     return NULL;
184 }
185 
186 
ff_dnn_execute_layer_conv2d(DnnOperand * operands,const int32_t * input_operand_indexes,int32_t output_operand_index,const void * parameters,NativeContext * ctx)187 int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
188                                 int32_t output_operand_index, const void *parameters, NativeContext *ctx)
189 {
190 #if HAVE_PTHREAD_CANCEL
191     int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
192         ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
193     int ret = 0, thread_stride;
194     ThreadParam *thread_param;
195 #else
196     ThreadParam thread_param = { 0 };
197 #endif
198     ThreadCommonParam thread_common_param;
199     const ConvolutionalParams *conv_params = parameters;
200     int height = operands[input_operand_indexes[0]].dims[1];
201     int width = operands[input_operand_indexes[0]].dims[2];
202     int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
203     DnnOperand *output_operand = &operands[output_operand_index];
204     void *tmp;
205 
206     output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
207     output_operand->dims[1] = height - pad_size * 2;
208     output_operand->dims[2] = width - pad_size * 2;
209     output_operand->dims[3] = conv_params->output_num;
210     output_operand->data_type = operands[input_operand_indexes[0]].data_type;
211     output_operand->length = ff_calculate_operand_data_length(output_operand);
212     if (output_operand->length <= 0) {
213         av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
214         return AVERROR(EINVAL);
215     }
216     tmp = av_realloc(output_operand->data, output_operand->length);
217     if (!tmp) {
218         av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
219         return AVERROR(ENOMEM);
220     }
221     output_operand->data = tmp;
222     thread_common_param.output_data = output_operand->data;
223     thread_common_param.operands = operands;
224     thread_common_param.input_operand_indexes = input_operand_indexes;
225     thread_common_param.output_operand_index = output_operand_index;
226     thread_common_param.parameters = parameters;
227     thread_common_param.ctx = ctx;
228 
229 #if HAVE_PTHREAD_CANCEL
230     thread_param = av_malloc_array(thread_num, sizeof(*thread_param));
231     if (!thread_param)
232         return AVERROR(ENOMEM);
233     thread_stride = (height - pad_size * 2) / thread_num;
234     //create threads
235     for (int i = 0; i < thread_num; i++){
236         int thread_ret = 0;
237         thread_param[i].thread_common_param = &thread_common_param;
238         thread_param[i].thread_start = thread_stride * i + pad_size;
239         thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride);
240         thread_ret = pthread_create(&thread_param[i].thread, NULL,
241                                     dnn_execute_layer_conv2d_thread, &thread_param[i]);
242         if (thread_ret) {
243             thread_num = i;
244             ret = AVERROR(thread_ret);
245             break;
246         }
247     }
248 
249     for (int i = 0; i < thread_num; i++){
250         pthread_join(thread_param[i].thread, NULL);
251     }
252 
253     //release memory
254     av_freep(&thread_param);
255 
256     return ret;
257 #else
258     thread_param.thread_common_param = &thread_common_param;
259     thread_param.thread_start = pad_size;
260     thread_param.thread_end = height - pad_size;
261     dnn_execute_layer_conv2d_thread(&thread_param);
262 
263     return 0;
264 #endif
265 }
266