• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2012 Andrew D'Addesio
3  * Copyright (c) 2013-2014 Mozilla Corporation
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Opus decoder/parser shared code
25  */
26 
27 #include <stdint.h>
28 
29 #include "libavutil/channel_layout.h"
30 #include "libavutil/error.h"
31 #include "libavutil/ffmath.h"
32 
33 #include "opus_celt.h"
34 #include "opustab.h"
35 #include "internal.h"
36 #include "vorbis.h"
37 
38 static const uint16_t opus_frame_duration[32] = {
39     480, 960, 1920, 2880,
40     480, 960, 1920, 2880,
41     480, 960, 1920, 2880,
42     480, 960,
43     480, 960,
44     120, 240,  480,  960,
45     120, 240,  480,  960,
46     120, 240,  480,  960,
47     120, 240,  480,  960,
48 };
49 
50 /**
51  * Read a 1- or 2-byte frame length
52  */
xiph_lacing_16bit(const uint8_t ** ptr,const uint8_t * end)53 static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
54 {
55     int val;
56 
57     if (*ptr >= end)
58         return AVERROR_INVALIDDATA;
59     val = *(*ptr)++;
60     if (val >= 252) {
61         if (*ptr >= end)
62             return AVERROR_INVALIDDATA;
63         val += 4 * *(*ptr)++;
64     }
65     return val;
66 }
67 
68 /**
69  * Read a multi-byte length (used for code 3 packet padding size)
70  */
xiph_lacing_full(const uint8_t ** ptr,const uint8_t * end)71 static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
72 {
73     int val = 0;
74     int next;
75 
76     while (1) {
77         if (*ptr >= end || val > INT_MAX - 254)
78             return AVERROR_INVALIDDATA;
79         next = *(*ptr)++;
80         val += next;
81         if (next < 255)
82             break;
83         else
84             val--;
85     }
86     return val;
87 }
88 
89 /**
90  * Parse Opus packet info from raw packet data
91  */
ff_opus_parse_packet(OpusPacket * pkt,const uint8_t * buf,int buf_size,int self_delimiting)92 int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
93                          int self_delimiting)
94 {
95     const uint8_t *ptr = buf;
96     const uint8_t *end = buf + buf_size;
97     int padding = 0;
98     int frame_bytes, i;
99 
100     if (buf_size < 1)
101         goto fail;
102 
103     /* TOC byte */
104     i = *ptr++;
105     pkt->code   = (i     ) & 0x3;
106     pkt->stereo = (i >> 2) & 0x1;
107     pkt->config = (i >> 3) & 0x1F;
108 
109     /* code 2 and code 3 packets have at least 1 byte after the TOC */
110     if (pkt->code >= 2 && buf_size < 2)
111         goto fail;
112 
113     switch (pkt->code) {
114     case 0:
115         /* 1 frame */
116         pkt->frame_count = 1;
117         pkt->vbr         = 0;
118 
119         if (self_delimiting) {
120             int len = xiph_lacing_16bit(&ptr, end);
121             if (len < 0 || len > end - ptr)
122                 goto fail;
123             end      = ptr + len;
124             buf_size = end - buf;
125         }
126 
127         frame_bytes = end - ptr;
128         if (frame_bytes > MAX_FRAME_SIZE)
129             goto fail;
130         pkt->frame_offset[0] = ptr - buf;
131         pkt->frame_size[0]   = frame_bytes;
132         break;
133     case 1:
134         /* 2 frames, equal size */
135         pkt->frame_count = 2;
136         pkt->vbr         = 0;
137 
138         if (self_delimiting) {
139             int len = xiph_lacing_16bit(&ptr, end);
140             if (len < 0 || 2 * len > end - ptr)
141                 goto fail;
142             end      = ptr + 2 * len;
143             buf_size = end - buf;
144         }
145 
146         frame_bytes = end - ptr;
147         if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
148             goto fail;
149         pkt->frame_offset[0] = ptr - buf;
150         pkt->frame_size[0]   = frame_bytes >> 1;
151         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
152         pkt->frame_size[1]   = frame_bytes >> 1;
153         break;
154     case 2:
155         /* 2 frames, different sizes */
156         pkt->frame_count = 2;
157         pkt->vbr         = 1;
158 
159         /* read 1st frame size */
160         frame_bytes = xiph_lacing_16bit(&ptr, end);
161         if (frame_bytes < 0)
162             goto fail;
163 
164         if (self_delimiting) {
165             int len = xiph_lacing_16bit(&ptr, end);
166             if (len < 0 || len + frame_bytes > end - ptr)
167                 goto fail;
168             end      = ptr + frame_bytes + len;
169             buf_size = end - buf;
170         }
171 
172         pkt->frame_offset[0] = ptr - buf;
173         pkt->frame_size[0]   = frame_bytes;
174 
175         /* calculate 2nd frame size */
176         frame_bytes = end - ptr - pkt->frame_size[0];
177         if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
178             goto fail;
179         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
180         pkt->frame_size[1]   = frame_bytes;
181         break;
182     case 3:
183         /* 1 to 48 frames, can be different sizes */
184         i = *ptr++;
185         pkt->frame_count = (i     ) & 0x3F;
186         padding          = (i >> 6) & 0x01;
187         pkt->vbr         = (i >> 7) & 0x01;
188 
189         if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
190             goto fail;
191 
192         /* read padding size */
193         if (padding) {
194             padding = xiph_lacing_full(&ptr, end);
195             if (padding < 0)
196                 goto fail;
197         }
198 
199         /* read frame sizes */
200         if (pkt->vbr) {
201             /* for VBR, all frames except the final one have their size coded
202                in the bitstream. the last frame size is implicit. */
203             int total_bytes = 0;
204             for (i = 0; i < pkt->frame_count - 1; i++) {
205                 frame_bytes = xiph_lacing_16bit(&ptr, end);
206                 if (frame_bytes < 0)
207                     goto fail;
208                 pkt->frame_size[i] = frame_bytes;
209                 total_bytes += frame_bytes;
210             }
211 
212             if (self_delimiting) {
213                 int len = xiph_lacing_16bit(&ptr, end);
214                 if (len < 0 || len + total_bytes + padding > end - ptr)
215                     goto fail;
216                 end      = ptr + total_bytes + len + padding;
217                 buf_size = end - buf;
218             }
219 
220             frame_bytes = end - ptr - padding;
221             if (total_bytes > frame_bytes)
222                 goto fail;
223             pkt->frame_offset[0] = ptr - buf;
224             for (i = 1; i < pkt->frame_count; i++)
225                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
226             pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
227         } else {
228             /* for CBR, the remaining packet bytes are divided evenly between
229                the frames */
230             if (self_delimiting) {
231                 frame_bytes = xiph_lacing_16bit(&ptr, end);
232                 if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
233                     goto fail;
234                 end      = ptr + pkt->frame_count * frame_bytes + padding;
235                 buf_size = end - buf;
236             } else {
237                 frame_bytes = end - ptr - padding;
238                 if (frame_bytes % pkt->frame_count ||
239                     frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
240                     goto fail;
241                 frame_bytes /= pkt->frame_count;
242             }
243 
244             pkt->frame_offset[0] = ptr - buf;
245             pkt->frame_size[0]   = frame_bytes;
246             for (i = 1; i < pkt->frame_count; i++) {
247                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
248                 pkt->frame_size[i]   = frame_bytes;
249             }
250         }
251     }
252 
253     pkt->packet_size = buf_size;
254     pkt->data_size   = pkt->packet_size - padding;
255 
256     /* total packet duration cannot be larger than 120ms */
257     pkt->frame_duration = opus_frame_duration[pkt->config];
258     if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
259         goto fail;
260 
261     /* set mode and bandwidth */
262     if (pkt->config < 12) {
263         pkt->mode = OPUS_MODE_SILK;
264         pkt->bandwidth = pkt->config >> 2;
265     } else if (pkt->config < 16) {
266         pkt->mode = OPUS_MODE_HYBRID;
267         pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
268     } else {
269         pkt->mode = OPUS_MODE_CELT;
270         pkt->bandwidth = (pkt->config - 16) >> 2;
271         /* skip medium band */
272         if (pkt->bandwidth)
273             pkt->bandwidth++;
274     }
275 
276     return 0;
277 
278 fail:
279     memset(pkt, 0, sizeof(*pkt));
280     return AVERROR_INVALIDDATA;
281 }
282 
channel_reorder_vorbis(int nb_channels,int channel_idx)283 static int channel_reorder_vorbis(int nb_channels, int channel_idx)
284 {
285     return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
286 }
287 
channel_reorder_unknown(int nb_channels,int channel_idx)288 static int channel_reorder_unknown(int nb_channels, int channel_idx)
289 {
290     return channel_idx;
291 }
292 
ff_opus_parse_extradata(AVCodecContext * avctx,OpusContext * s)293 av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
294                                     OpusContext *s)
295 {
296     static const uint8_t default_channel_map[2] = { 0, 1 };
297 
298     int (*channel_reorder)(int, int) = channel_reorder_unknown;
299     int channels = avctx->ch_layout.nb_channels;
300 
301     const uint8_t *extradata, *channel_map;
302     int extradata_size;
303     int version, map_type, streams, stereo_streams, i, j, ret;
304     AVChannelLayout layout = { 0 };
305 
306     if (!avctx->extradata) {
307         if (channels > 2) {
308             av_log(avctx, AV_LOG_ERROR,
309                    "Multichannel configuration without extradata.\n");
310             return AVERROR(EINVAL);
311         }
312         extradata      = opus_default_extradata;
313         extradata_size = sizeof(opus_default_extradata);
314     } else {
315         extradata = avctx->extradata;
316         extradata_size = avctx->extradata_size;
317     }
318 
319     if (extradata_size < 19) {
320         av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
321                extradata_size);
322         return AVERROR_INVALIDDATA;
323     }
324 
325     version = extradata[8];
326     if (version > 15) {
327         avpriv_request_sample(avctx, "Extradata version %d", version);
328         return AVERROR_PATCHWELCOME;
329     }
330 
331     avctx->delay = AV_RL16(extradata + 10);
332     if (avctx->internal)
333         avctx->internal->skip_samples = avctx->delay;
334 
335     channels = avctx->extradata ? extradata[9] : (channels == 1) ? 1 : 2;
336     if (!channels) {
337         av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
338         return AVERROR_INVALIDDATA;
339     }
340 
341     s->gain_i = AV_RL16(extradata + 16);
342     if (s->gain_i)
343         s->gain = ff_exp10(s->gain_i / (20.0 * 256));
344 
345     map_type = extradata[18];
346     if (!map_type) {
347         if (channels > 2) {
348             av_log(avctx, AV_LOG_ERROR,
349                    "Channel mapping 0 is only specified for up to 2 channels\n");
350             ret = AVERROR_INVALIDDATA;
351             goto fail;
352         }
353         layout         = (channels == 1) ? (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO :
354                                            (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
355         streams        = 1;
356         stereo_streams = channels - 1;
357         channel_map    = default_channel_map;
358     } else if (map_type == 1 || map_type == 2 || map_type == 255) {
359         if (extradata_size < 21 + channels) {
360             av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
361                    extradata_size);
362             ret = AVERROR_INVALIDDATA;
363             goto fail;
364         }
365 
366         streams        = extradata[19];
367         stereo_streams = extradata[20];
368         if (!streams || stereo_streams > streams ||
369             streams + stereo_streams > 255) {
370             av_log(avctx, AV_LOG_ERROR,
371                    "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
372             ret = AVERROR_INVALIDDATA;
373             goto fail;
374         }
375 
376         if (map_type == 1) {
377             if (channels > 8) {
378                 av_log(avctx, AV_LOG_ERROR,
379                        "Channel mapping 1 is only specified for up to 8 channels\n");
380                 ret = AVERROR_INVALIDDATA;
381                 goto fail;
382             }
383             av_channel_layout_copy(&layout, &ff_vorbis_ch_layouts[channels - 1]);
384             channel_reorder = channel_reorder_vorbis;
385         } else if (map_type == 2) {
386             int ambisonic_order = ff_sqrt(channels) - 1;
387             if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
388                 channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
389                 av_log(avctx, AV_LOG_ERROR,
390                        "Channel mapping 2 is only specified for channel counts"
391                        " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
392                        " for nonnegative integer n\n");
393                 ret = AVERROR_INVALIDDATA;
394                 goto fail;
395             }
396             if (channels > 227) {
397                 av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
398                 ret = AVERROR_INVALIDDATA;
399                 goto fail;
400             }
401 
402             layout.order = AV_CHANNEL_ORDER_AMBISONIC;
403             layout.nb_channels = channels;
404             if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)))
405                 layout.u.mask = AV_CH_LAYOUT_STEREO;
406         } else {
407             layout.order       = AV_CHANNEL_ORDER_UNSPEC;
408             layout.nb_channels = channels;
409         }
410 
411         channel_map = extradata + 21;
412     } else {
413         avpriv_request_sample(avctx, "Mapping type %d", map_type);
414         return AVERROR_PATCHWELCOME;
415     }
416 
417     s->channel_maps = av_calloc(channels, sizeof(*s->channel_maps));
418     if (!s->channel_maps) {
419         ret = AVERROR(ENOMEM);
420         goto fail;
421     }
422 
423     for (i = 0; i < channels; i++) {
424         ChannelMap *map = &s->channel_maps[i];
425         uint8_t     idx = channel_map[channel_reorder(channels, i)];
426 
427         if (idx == 255) {
428             map->silence = 1;
429             continue;
430         } else if (idx >= streams + stereo_streams) {
431             av_log(avctx, AV_LOG_ERROR,
432                    "Invalid channel map for output channel %d: %d\n", i, idx);
433             av_freep(&s->channel_maps);
434             ret = AVERROR_INVALIDDATA;
435             goto fail;
436         }
437 
438         /* check that we did not see this index yet */
439         map->copy = 0;
440         for (j = 0; j < i; j++)
441             if (channel_map[channel_reorder(channels, j)] == idx) {
442                 map->copy     = 1;
443                 map->copy_idx = j;
444                 break;
445             }
446 
447         if (idx < 2 * stereo_streams) {
448             map->stream_idx  = idx / 2;
449             map->channel_idx = idx & 1;
450         } else {
451             map->stream_idx  = idx - stereo_streams;
452             map->channel_idx = 0;
453         }
454     }
455 
456     ret = av_channel_layout_copy(&avctx->ch_layout, &layout);
457     if (ret < 0)
458         goto fail;
459 
460     s->nb_streams         = streams;
461     s->nb_stereo_streams  = stereo_streams;
462 
463     return 0;
464 fail:
465     av_channel_layout_uninit(&layout);
466     return ret;
467 }
468 
ff_celt_quant_bands(CeltFrame * f,OpusRangeCoder * rc)469 void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
470 {
471     float lowband_scratch[8 * 22];
472     float norm1[2 * 8 * 100];
473     float *norm2 = norm1 + 8 * 100;
474 
475     int totalbits = (f->framebits << 3) - f->anticollapse_needed;
476 
477     int update_lowband = 1;
478     int lowband_offset = 0;
479 
480     int i, j;
481 
482     for (i = f->start_band; i < f->end_band; i++) {
483         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
484         int band_offset = ff_celt_freq_bands[i] << f->size;
485         int band_size   = ff_celt_freq_range[i] << f->size;
486         float *X = f->block[0].coeffs + band_offset;
487         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
488         float *norm_loc1, *norm_loc2;
489 
490         int consumed = opus_rc_tell_frac(rc);
491         int effective_lowband = -1;
492         int b = 0;
493 
494         /* Compute how many bits we want to allocate to this band */
495         if (i != f->start_band)
496             f->remaining -= consumed;
497         f->remaining2 = totalbits - consumed - 1;
498         if (i <= f->coded_bands - 1) {
499             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
500             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
501         }
502 
503         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
504             i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
505             lowband_offset = i;
506 
507         if (i == f->start_band + 1) {
508             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
509             the second to ensure the second band never has to use the LCG. */
510             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
511 
512             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
513 
514             if (f->channels == 2)
515                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
516         }
517 
518         /* Get a conservative estimate of the collapse_mask's for the bands we're
519            going to be folding from. */
520         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
521                                     f->blocks > 1 || f->tf_change[i] < 0)) {
522             int foldstart, foldend;
523 
524             /* This ensures we never repeat spectral content within one band */
525             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
526                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
527             foldstart = lowband_offset;
528             while (ff_celt_freq_bands[--foldstart] > effective_lowband);
529             foldend = lowband_offset - 1;
530             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
531 
532             cm[0] = cm[1] = 0;
533             for (j = foldstart; j < foldend; j++) {
534                 cm[0] |= f->block[0].collapse_masks[j];
535                 cm[1] |= f->block[f->channels - 1].collapse_masks[j];
536             }
537         }
538 
539         if (f->dual_stereo && i == f->intensity_stereo) {
540             /* Switch off dual stereo to do intensity */
541             f->dual_stereo = 0;
542             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
543                 norm1[j] = (norm1[j] + norm2[j]) / 2;
544         }
545 
546         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
547         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
548 
549         if (f->dual_stereo) {
550             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
551                                        f->blocks, norm_loc1, f->size,
552                                        norm1 + band_offset, 0, 1.0f,
553                                        lowband_scratch, cm[0]);
554 
555             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
556                                        f->blocks, norm_loc2, f->size,
557                                        norm2 + band_offset, 0, 1.0f,
558                                        lowband_scratch, cm[1]);
559         } else {
560             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
561                                        f->blocks, norm_loc1, f->size,
562                                        norm1 + band_offset, 0, 1.0f,
563                                        lowband_scratch, cm[0] | cm[1]);
564             cm[1] = cm[0];
565         }
566 
567         f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
568         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
569         f->remaining += f->pulses[i] + consumed;
570 
571         /* Update the folding position only as long as we have 1 bit/sample depth */
572         update_lowband = (b > band_size << 3);
573     }
574 }
575 
576 #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
577 
ff_celt_bitalloc(CeltFrame * f,OpusRangeCoder * rc,int encode)578 void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
579 {
580     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
581     int skip_startband      = f->start_band;
582     int skip_bit            = 0;
583     int intensitystereo_bit = 0;
584     int dualstereo_bit      = 0;
585     int dynalloc            = 6;
586     int extrabits           = 0;
587 
588     int boost[CELT_MAX_BANDS] = { 0 };
589     int trim_offset[CELT_MAX_BANDS];
590     int threshold[CELT_MAX_BANDS];
591     int bits1[CELT_MAX_BANDS];
592     int bits2[CELT_MAX_BANDS];
593 
594     /* Spread */
595     if (opus_rc_tell(rc) + 4 <= f->framebits) {
596         if (encode)
597             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
598         else
599             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
600     } else {
601         f->spread = CELT_SPREAD_NORMAL;
602     }
603 
604     /* Initialize static allocation caps */
605     for (i = 0; i < CELT_MAX_BANDS; i++)
606         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
607 
608     /* Band boosts */
609     tbits_8ths = f->framebits << 3;
610     for (i = f->start_band; i < f->end_band; i++) {
611         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
612         int b_dynalloc = dynalloc;
613         int boost_amount = f->alloc_boost[i];
614         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
615 
616         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
617             int is_boost;
618             if (encode) {
619                 is_boost = boost_amount--;
620                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
621             } else {
622                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
623             }
624 
625             if (!is_boost)
626                 break;
627 
628             boost[i]   += quanta;
629             tbits_8ths -= quanta;
630 
631             b_dynalloc = 1;
632         }
633 
634         if (boost[i])
635             dynalloc = FFMAX(dynalloc - 1, 2);
636     }
637 
638     /* Allocation trim */
639     if (!encode)
640         f->alloc_trim = 5;
641     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
642         if (encode)
643             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
644         else
645             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
646 
647     /* Anti-collapse bit reservation */
648     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
649     f->anticollapse_needed = 0;
650     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
651         f->anticollapse_needed = 1 << 3;
652     tbits_8ths -= f->anticollapse_needed;
653 
654     /* Band skip bit reservation */
655     if (tbits_8ths >= 1 << 3)
656         skip_bit = 1 << 3;
657     tbits_8ths -= skip_bit;
658 
659     /* Intensity/dual stereo bit reservation */
660     if (f->channels == 2) {
661         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
662         if (intensitystereo_bit <= tbits_8ths) {
663             tbits_8ths -= intensitystereo_bit;
664             if (tbits_8ths >= 1 << 3) {
665                 dualstereo_bit = 1 << 3;
666                 tbits_8ths -= 1 << 3;
667             }
668         } else {
669             intensitystereo_bit = 0;
670         }
671     }
672 
673     /* Trim offsets */
674     for (i = f->start_band; i < f->end_band; i++) {
675         int trim     = f->alloc_trim - 5 - f->size;
676         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
677         int duration = f->size + 3;
678         int scale    = duration + f->channels - 1;
679 
680         /* PVQ minimum allocation threshold, below this value the band is
681          * skipped */
682         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
683                              f->channels << 3);
684 
685         trim_offset[i] = trim * (band << scale) >> 6;
686 
687         if (ff_celt_freq_range[i] << f->size == 1)
688             trim_offset[i] -= f->channels << 3;
689     }
690 
691     /* Bisection */
692     low  = 1;
693     high = CELT_VECTORS - 1;
694     while (low <= high) {
695         int center = (low + high) >> 1;
696         done = total = 0;
697 
698         for (i = f->end_band - 1; i >= f->start_band; i--) {
699             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
700 
701             if (bandbits)
702                 bandbits = FFMAX(bandbits + trim_offset[i], 0);
703             bandbits += boost[i];
704 
705             if (bandbits >= threshold[i] || done) {
706                 done = 1;
707                 total += FFMIN(bandbits, f->caps[i]);
708             } else if (bandbits >= f->channels << 3) {
709                 total += f->channels << 3;
710             }
711         }
712 
713         if (total > tbits_8ths)
714             high = center - 1;
715         else
716             low = center + 1;
717     }
718     high = low--;
719 
720     /* Bisection */
721     for (i = f->start_band; i < f->end_band; i++) {
722         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
723         bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
724                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
725 
726         if (bits1[i])
727             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
728         if (bits2[i])
729             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
730 
731         if (low)
732             bits1[i] += boost[i];
733         bits2[i] += boost[i];
734 
735         if (boost[i])
736             skip_startband = i;
737         bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
738     }
739 
740     /* Bisection */
741     low  = 0;
742     high = 1 << CELT_ALLOC_STEPS;
743     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
744         int center = (low + high) >> 1;
745         done = total = 0;
746 
747         for (j = f->end_band - 1; j >= f->start_band; j--) {
748             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
749 
750             if (bandbits >= threshold[j] || done) {
751                 done = 1;
752                 total += FFMIN(bandbits, f->caps[j]);
753             } else if (bandbits >= f->channels << 3)
754                 total += f->channels << 3;
755         }
756         if (total > tbits_8ths)
757             high = center;
758         else
759             low = center;
760     }
761 
762     /* Bisection */
763     done = total = 0;
764     for (i = f->end_band - 1; i >= f->start_band; i--) {
765         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
766 
767         if (bandbits >= threshold[i] || done)
768             done = 1;
769         else
770             bandbits = (bandbits >= f->channels << 3) ?
771             f->channels << 3 : 0;
772 
773         bandbits     = FFMIN(bandbits, f->caps[i]);
774         f->pulses[i] = bandbits;
775         total      += bandbits;
776     }
777 
778     /* Band skipping */
779     for (f->coded_bands = f->end_band; ; f->coded_bands--) {
780         int allocation;
781         j = f->coded_bands - 1;
782 
783         if (j == skip_startband) {
784             /* all remaining bands are not skipped */
785             tbits_8ths += skip_bit;
786             break;
787         }
788 
789         /* determine the number of bits available for coding "do not skip" markers */
790         remaining   = tbits_8ths - total;
791         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
792         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
793         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
794         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
795 
796         /* a "do not skip" marker is only coded if the allocation is
797          * above the chosen threshold */
798         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
799             int do_not_skip;
800             if (encode) {
801                 do_not_skip = f->coded_bands <= f->skip_band_floor;
802                 ff_opus_rc_enc_log(rc, do_not_skip, 1);
803             } else {
804                 do_not_skip = ff_opus_rc_dec_log(rc, 1);
805             }
806 
807             if (do_not_skip)
808                 break;
809 
810             total      += 1 << 3;
811             allocation -= 1 << 3;
812         }
813 
814         /* the band is skipped, so reclaim its bits */
815         total -= f->pulses[j];
816         if (intensitystereo_bit) {
817             total -= intensitystereo_bit;
818             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
819             total += intensitystereo_bit;
820         }
821 
822         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
823     }
824 
825     /* IS start band */
826     if (encode) {
827         if (intensitystereo_bit) {
828             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
829             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
830         }
831     } else {
832         f->intensity_stereo = f->dual_stereo = 0;
833         if (intensitystereo_bit)
834             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
835     }
836 
837     /* DS flag */
838     if (f->intensity_stereo <= f->start_band)
839         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
840     else if (dualstereo_bit)
841         if (encode)
842             ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
843         else
844             f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
845 
846     /* Supply the remaining bits in this frame to lower bands */
847     remaining = tbits_8ths - total;
848     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
849     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
850     for (i = f->start_band; i < f->coded_bands; i++) {
851         const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
852         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
853         remaining    -= bits;
854     }
855 
856     /* Finally determine the allocation */
857     for (i = f->start_band; i < f->coded_bands; i++) {
858         int N = ff_celt_freq_range[i] << f->size;
859         int prev_extra = extrabits;
860         f->pulses[i] += extrabits;
861 
862         if (N > 1) {
863             int dof;        /* degrees of freedom */
864             int temp;       /* dof * channels * log(dof) */
865             int fine_bits;
866             int max_bits;
867             int offset;     /* fine energy quantization offset, i.e.
868                              * extra bits assigned over the standard
869                              * totalbits/dof */
870 
871             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
872             f->pulses[i] -= extrabits;
873 
874             /* intensity stereo makes use of an extra degree of freedom */
875             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
876             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
877             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
878             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
879                 offset += dof << 1;
880 
881             /* grant an additional bias for the first and second pulses */
882             if (f->pulses[i] + offset < 2 * (dof << 3))
883                 offset += temp >> 2;
884             else if (f->pulses[i] + offset < 3 * (dof << 3))
885                 offset += temp >> 3;
886 
887             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
888             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
889             max_bits  = FFMAX(max_bits, 0);
890             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
891 
892             /* If fine_bits was rounded down or capped,
893              * give priority for the final fine energy pass */
894             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
895 
896             /* the remaining bits are assigned to PVQ */
897             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
898         } else {
899             /* all bits go to fine energy except for the sign bit */
900             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
901             f->pulses[i] -= extrabits;
902             f->fine_bits[i] = 0;
903             f->fine_priority[i] = 1;
904         }
905 
906         /* hand back a limited number of extra fine energy bits to this band */
907         if (extrabits > 0) {
908             int fineextra = FFMIN(extrabits >> (f->channels + 2),
909                                   CELT_MAX_FINE_BITS - f->fine_bits[i]);
910             f->fine_bits[i] += fineextra;
911 
912             fineextra <<= f->channels + 2;
913             f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
914             extrabits -= fineextra;
915         }
916     }
917     f->remaining = extrabits;
918 
919     /* skipped bands dedicate all of their bits for fine energy */
920     for (; i < f->end_band; i++) {
921         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
922         f->pulses[i]        = 0;
923         f->fine_priority[i] = f->fine_bits[i] < 1;
924     }
925 }
926