1 /**
2 * MLP encoder
3 * Copyright (c) 2008 Ramiro Polla
4 * Copyright (c) 2016-2019 Jai Luthra
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "config_components.h"
24
25 #include "avcodec.h"
26 #include "codec_internal.h"
27 #include "encode.h"
28 #include "put_bits.h"
29 #include "audio_frame_queue.h"
30 #include "libavutil/channel_layout.h"
31 #include "libavutil/crc.h"
32 #include "libavutil/avstring.h"
33 #include "libavutil/intmath.h"
34 #include "libavutil/samplefmt.h"
35 #include "libavutil/thread.h"
36 #include "mlp.h"
37 #include "lpc.h"
38
39 #define MAJOR_HEADER_INTERVAL 16
40
41 #define MLP_MIN_LPC_ORDER 1
42 #define MLP_MAX_LPC_ORDER 8
43 #define MLP_MIN_LPC_SHIFT 8
44 #define MLP_MAX_LPC_SHIFT 15
45
46 typedef struct {
47 uint8_t min_channel; ///< The index of the first channel coded in this substream.
48 uint8_t max_channel; ///< The index of the last channel coded in this substream.
49 uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage.
50
51 uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams.
52 uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s).
53
54 int data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks.
55
56 int32_t lossless_check_data; ///< XOR of all output samples
57
58 uint8_t max_huff_lsbs; ///< largest huff_lsbs
59 uint8_t max_output_bits; ///< largest output bit-depth
60 } RestartHeader;
61
62 typedef struct {
63 uint8_t count; ///< number of matrices to apply
64
65 uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix
66 int32_t forco[MAX_MATRICES][MAX_CHANNELS+2]; ///< forward coefficients
67 int32_t coeff[MAX_MATRICES][MAX_CHANNELS+2]; ///< decoding coefficients
68 uint8_t fbits[MAX_CHANNELS]; ///< fraction bits
69
70 int8_t shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output.
71 } MatrixParams;
72
73 enum ParamFlags {
74 PARAMS_DEFAULT = 0xff,
75 PARAM_PRESENCE_FLAGS = 1 << 8,
76 PARAM_BLOCKSIZE = 1 << 7,
77 PARAM_MATRIX = 1 << 6,
78 PARAM_OUTSHIFT = 1 << 5,
79 PARAM_QUANTSTEP = 1 << 4,
80 PARAM_FIR = 1 << 3,
81 PARAM_IIR = 1 << 2,
82 PARAM_HUFFOFFSET = 1 << 1,
83 PARAM_PRESENT = 1 << 0,
84 };
85
86 typedef struct {
87 uint16_t blocksize; ///< number of PCM samples in current audio block
88 uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals
89
90 MatrixParams matrix_params;
91
92 uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
93 } DecodingParams;
94
95 typedef struct BestOffset {
96 int32_t offset;
97 int bitcount;
98 int lsb_bits;
99 int32_t min;
100 int32_t max;
101 } BestOffset;
102
103 #define HUFF_OFFSET_MIN (-16384)
104 #define HUFF_OFFSET_MAX ( 16383)
105
106 /** Number of possible codebooks (counting "no codebooks") */
107 #define NUM_CODEBOOKS 4
108
109 typedef struct MLPEncodeContext {
110 AVCodecContext *avctx;
111
112 int num_substreams; ///< Number of substreams contained within this stream.
113
114 int num_channels; /**< Number of channels in major_scratch_buffer.
115 * Normal channels + noise channels. */
116
117 int coded_sample_fmt [2]; ///< sample format encoded for MLP
118 int coded_sample_rate[2]; ///< sample rate encoded for MLP
119 int coded_peak_bitrate; ///< peak bitrate for this major sync header
120
121 int flags; ///< major sync info flags
122
123 /* channel_meaning */
124 int substream_info;
125 int fs;
126 int wordlength;
127 int channel_occupancy;
128 int summary_info;
129
130 int32_t *inout_buffer; ///< Pointer to data currently being read from lavc or written to bitstream.
131 int32_t *major_inout_buffer; ///< Buffer with all in/out data for one entire major frame interval.
132 int32_t *write_buffer; ///< Pointer to data currently being written to bitstream.
133 int32_t *sample_buffer; ///< Pointer to current access unit samples.
134 int32_t *major_scratch_buffer; ///< Scratch buffer big enough to fit all data for one entire major frame interval.
135 int32_t last_frames; ///< Signal last frames.
136
137 int32_t *lpc_sample_buffer;
138
139 unsigned int major_number_of_frames;
140 unsigned int next_major_number_of_frames;
141
142 unsigned int major_frame_size; ///< Number of samples in current major frame being encoded.
143 unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame.
144
145 int32_t *lossless_check_data; ///< Array with lossless_check_data for each access unit.
146
147 unsigned int *max_output_bits; ///< largest output bit-depth
148 unsigned int frame_index; ///< Index of current frame being encoded.
149
150 unsigned int one_sample_buffer_size; ///< Number of samples*channel for one access unit.
151
152 unsigned int max_restart_interval; ///< Max interval of access units in between two major frames.
153 unsigned int min_restart_interval; ///< Min interval of access units in between two major frames.
154 unsigned int restart_intervals; ///< Number of possible major frame sizes.
155
156 uint16_t timestamp; ///< Timestamp of current access unit.
157 uint16_t dts; ///< Decoding timestamp of current access unit.
158
159 uint8_t channel_arrangement; ///< channel arrangement for MLP streams
160
161 uint8_t ch_modifier_thd0; ///< channel modifier for TrueHD stream 0
162 uint8_t ch_modifier_thd1; ///< channel modifier for TrueHD stream 1
163 uint8_t ch_modifier_thd2; ///< channel modifier for TrueHD stream 2
164
165 unsigned int seq_size [MAJOR_HEADER_INTERVAL];
166 unsigned int seq_offset[MAJOR_HEADER_INTERVAL];
167 unsigned int sequence_size;
168
169 ChannelParams *channel_params;
170
171 BestOffset best_offset[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS][NUM_CODEBOOKS];
172
173 DecodingParams *decoding_params;
174 RestartHeader restart_header;
175
176 ChannelParams major_channel_params[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS]; ///< ChannelParams to be written to bitstream.
177 DecodingParams major_decoding_params[MAJOR_HEADER_INTERVAL+1]; ///< DecodingParams to be written to bitstream.
178 int major_params_changed[MAJOR_HEADER_INTERVAL+1]; ///< params_changed to be written to bitstream.
179
180 unsigned int major_cur_subblock_index;
181 unsigned int major_filter_state_subblock;
182 unsigned int major_number_of_subblocks;
183
184 BestOffset (*cur_best_offset)[NUM_CODEBOOKS];
185 ChannelParams *cur_channel_params;
186 DecodingParams *cur_decoding_params;
187 RestartHeader *cur_restart_header;
188
189 AudioFrameQueue afq;
190
191 /* Analysis stage. */
192 unsigned int number_of_frames;
193 unsigned int number_of_samples;
194 unsigned int number_of_subblocks;
195 unsigned int seq_index; ///< Sequence index for high compression levels.
196
197 const ChannelParams *prev_channel_params;
198 const DecodingParams *prev_decoding_params;
199
200 ChannelParams *seq_channel_params;
201 DecodingParams *seq_decoding_params;
202
203 int32_t *filter_state_buffer[NUM_FILTERS];
204
205 unsigned int max_codebook_search;
206
207 int shorten_by;
208
209 LPCContext lpc_ctx;
210 } MLPEncodeContext;
211
212 static ChannelParams restart_channel_params[MAX_CHANNELS];
213 static DecodingParams restart_decoding_params[MAX_SUBSTREAMS];
214 static const BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}};
215
216 #define SYNC_MAJOR 0xf8726f
217 #define MAJOR_SYNC_INFO_SIGNATURE 0xB752
218
219 /* must be set for DVD-A */
220 #define FLAGS_DVDA 0x4000
221 /* FIFO delay must be constant */
222 #define FLAGS_CONST 0x8000
223
224 #define SUBSTREAM_INFO_MAX_2_CHAN 0x01
225 #define SUBSTREAM_INFO_HIGH_RATE 0x02
226 #define SUBSTREAM_INFO_ALWAYS_SET 0x04
227 #define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
228
229 /****************************************************************************
230 ************ Functions that copy, clear, or compare parameters *************
231 ****************************************************************************/
232
233 /** Compares two FilterParams structures and returns 1 if anything has
234 * changed. Returns 0 if they are both equal.
235 */
compare_filter_params(const ChannelParams * prev_cp,const ChannelParams * cp,int filter)236 static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
237 {
238 const FilterParams *prev = &prev_cp->filter_params[filter];
239 const FilterParams *fp = &cp->filter_params[filter];
240
241 if (prev->order != fp->order)
242 return 1;
243
244 if (!prev->order)
245 return 0;
246
247 if (prev->shift != fp->shift)
248 return 1;
249
250 for (int i = 0; i < fp->order; i++)
251 if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
252 return 1;
253
254 return 0;
255 }
256
257 /** Compare two primitive matrices and returns 1 if anything has changed.
258 * Returns 0 if they are both equal.
259 */
compare_matrix_params(MLPEncodeContext * ctx,const MatrixParams * prev,const MatrixParams * mp)260 static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev, const MatrixParams *mp)
261 {
262 RestartHeader *rh = ctx->cur_restart_header;
263
264 if (prev->count != mp->count)
265 return 1;
266
267 if (!prev->count)
268 return 0;
269
270 for (unsigned int channel = rh->min_channel; channel <= rh->max_channel; channel++)
271 if (prev->fbits[channel] != mp->fbits[channel])
272 return 1;
273
274 for (unsigned int mat = 0; mat < mp->count; mat++) {
275 if (prev->outch[mat] != mp->outch[mat])
276 return 1;
277
278 for (unsigned int channel = 0; channel < ctx->num_channels; channel++)
279 if (prev->coeff[mat][channel] != mp->coeff[mat][channel])
280 return 1;
281 }
282
283 return 0;
284 }
285
286 /** Compares two DecodingParams and ChannelParams structures to decide if a
287 * new decoding params header has to be written.
288 */
compare_decoding_params(MLPEncodeContext * ctx)289 static int compare_decoding_params(MLPEncodeContext *ctx)
290 {
291 const DecodingParams *prev = ctx->prev_decoding_params;
292 DecodingParams *dp = ctx->cur_decoding_params;
293 const MatrixParams *prev_mp = &prev->matrix_params;
294 MatrixParams *mp = &dp->matrix_params;
295 RestartHeader *rh = ctx->cur_restart_header;
296 int retval = 0;
297
298 if (prev->param_presence_flags != dp->param_presence_flags)
299 retval |= PARAM_PRESENCE_FLAGS;
300
301 if (prev->blocksize != dp->blocksize)
302 retval |= PARAM_BLOCKSIZE;
303
304 if (compare_matrix_params(ctx, prev_mp, mp))
305 retval |= PARAM_MATRIX;
306
307 for (unsigned int ch = 0; ch <= rh->max_matrix_channel; ch++)
308 if (prev_mp->shift[ch] != mp->shift[ch]) {
309 retval |= PARAM_OUTSHIFT;
310 break;
311 }
312
313 for (unsigned int ch = 0; ch <= rh->max_channel; ch++)
314 if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
315 retval |= PARAM_QUANTSTEP;
316 break;
317 }
318
319 for (unsigned int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
320 const ChannelParams *prev_cp = &ctx->prev_channel_params[ch];
321 ChannelParams *cp = &ctx->cur_channel_params[ch];
322
323 if (!(retval & PARAM_FIR) &&
324 compare_filter_params(prev_cp, cp, FIR))
325 retval |= PARAM_FIR;
326
327 if (!(retval & PARAM_IIR) &&
328 compare_filter_params(prev_cp, cp, IIR))
329 retval |= PARAM_IIR;
330
331 if (prev_cp->huff_offset != cp->huff_offset)
332 retval |= PARAM_HUFFOFFSET;
333
334 if (prev_cp->codebook != cp->codebook ||
335 prev_cp->huff_lsbs != cp->huff_lsbs )
336 retval |= PARAM_PRESENT;
337 }
338
339 return retval;
340 }
341
copy_filter_params(ChannelParams * dst_cp,ChannelParams * src_cp,int filter)342 static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
343 {
344 FilterParams *dst = &dst_cp->filter_params[filter];
345 FilterParams *src = &src_cp->filter_params[filter];
346
347 dst->order = src->order;
348
349 if (dst->order) {
350 dst->shift = src->shift;
351
352 dst->coeff_shift = src->coeff_shift;
353 dst->coeff_bits = src->coeff_bits;
354 }
355
356 for (unsigned int order = 0; order < dst->order; order++)
357 dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
358 }
359
copy_matrix_params(MatrixParams * dst,MatrixParams * src)360 static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
361 {
362 dst->count = src->count;
363
364 if (dst->count) {
365 for (unsigned int channel = 0; channel < MAX_CHANNELS; channel++) {
366
367 dst->fbits[channel] = src->fbits[channel];
368 dst->shift[channel] = src->shift[channel];
369
370 for (unsigned int count = 0; count < MAX_MATRICES; count++)
371 dst->coeff[count][channel] = src->coeff[count][channel];
372 }
373
374 for (unsigned int count = 0; count < MAX_MATRICES; count++)
375 dst->outch[count] = src->outch[count];
376 }
377 }
378
copy_restart_frame_params(MLPEncodeContext * ctx)379 static void copy_restart_frame_params(MLPEncodeContext *ctx)
380 {
381 for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
382 DecodingParams *dp = ctx->seq_decoding_params + index;
383
384 copy_matrix_params(&dp->matrix_params, &ctx->cur_decoding_params->matrix_params);
385
386 for (unsigned int channel = 0; channel < ctx->avctx->ch_layout.nb_channels; channel++) {
387 ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->ch_layout.nb_channels) + channel;
388
389 dp->quant_step_size[channel] = ctx->cur_decoding_params->quant_step_size[channel];
390 dp->matrix_params.shift[channel] = ctx->cur_decoding_params->matrix_params.shift[channel];
391
392 if (index)
393 for (unsigned int filter = 0; filter < NUM_FILTERS; filter++)
394 copy_filter_params(cp, &ctx->cur_channel_params[channel], filter);
395 }
396 }
397 }
398
399 /** Clears a DecodingParams struct the way it should be after a restart header. */
clear_decoding_params(DecodingParams * decoding_params)400 static void clear_decoding_params(DecodingParams *decoding_params)
401 {
402 DecodingParams *dp = decoding_params;
403
404 dp->param_presence_flags = 0xff;
405 dp->blocksize = 8;
406
407 memset(&dp->matrix_params , 0, sizeof(MatrixParams ));
408 memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
409 }
410
411 /** Clears a ChannelParams struct the way it should be after a restart header. */
clear_channel_params(ChannelParams channel_params[MAX_CHANNELS],int nb_channels)412 static void clear_channel_params(ChannelParams channel_params[MAX_CHANNELS], int nb_channels)
413 {
414 for (unsigned channel = 0; channel < nb_channels; channel++) {
415 ChannelParams *cp = &channel_params[channel];
416
417 memset(&cp->filter_params, 0, sizeof(cp->filter_params));
418
419 /* Default audio coding is 24-bit raw PCM. */
420 cp->huff_offset = 0;
421 cp->codebook = 0;
422 cp->huff_lsbs = 24;
423 }
424 }
425
426 /** Sets default vales in our encoder for a DecodingParams struct. */
default_decoding_params(MLPEncodeContext * ctx,DecodingParams * decoding_params)427 static void default_decoding_params(MLPEncodeContext *ctx, DecodingParams *decoding_params)
428 {
429 DecodingParams *dp = decoding_params;
430 uint8_t param_presence_flags = 0;
431
432 clear_decoding_params(decoding_params);
433
434 param_presence_flags |= PARAM_BLOCKSIZE;
435 param_presence_flags |= PARAM_MATRIX;
436 param_presence_flags |= PARAM_OUTSHIFT;
437 param_presence_flags |= PARAM_QUANTSTEP;
438 param_presence_flags |= PARAM_FIR;
439 /*param_presence_flags |= PARAM_IIR; */
440 param_presence_flags |= PARAM_HUFFOFFSET;
441 param_presence_flags |= PARAM_PRESENT;
442
443 dp->param_presence_flags = param_presence_flags;
444 }
445
446 /****************************************************************************/
447
448 /** Calculates the smallest number of bits it takes to encode a given signed
449 * value in two's complement.
450 */
number_sbits(int number)451 static int inline number_sbits(int number)
452 {
453 if (number < -1)
454 number++;
455
456 return av_log2(FFABS(number)) + 1 + !!number;
457 }
458
459 enum InputBitDepth {
460 BITS_16,
461 BITS_20,
462 BITS_24,
463 };
464
mlp_peak_bitrate(int peak_bitrate,int sample_rate)465 static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
466 {
467 return ((peak_bitrate << 4) - 8) / sample_rate;
468 }
469
mlp_encode_init_static(void)470 static av_cold void mlp_encode_init_static(void)
471 {
472 clear_channel_params (restart_channel_params, MAX_CHANNELS);
473 clear_decoding_params(restart_decoding_params);
474 ff_mlp_init_crc();
475 }
476
mlp_encode_init(AVCodecContext * avctx)477 static av_cold int mlp_encode_init(AVCodecContext *avctx)
478 {
479 static AVOnce init_static_once = AV_ONCE_INIT;
480 MLPEncodeContext *ctx = avctx->priv_data;
481 RestartHeader *const rh = &ctx->restart_header;
482 unsigned int sum = 0;
483 size_t size;
484 int ret;
485
486 ctx->avctx = avctx;
487
488 switch (avctx->sample_rate) {
489 case 44100 << 0:
490 avctx->frame_size = 40 << 0;
491 ctx->coded_sample_rate[0] = 0x08 + 0;
492 ctx->fs = 0x08 + 1;
493 break;
494 case 44100 << 1:
495 avctx->frame_size = 40 << 1;
496 ctx->coded_sample_rate[0] = 0x08 + 1;
497 ctx->fs = 0x0C + 1;
498 break;
499 case 44100 << 2:
500 ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
501 avctx->frame_size = 40 << 2;
502 ctx->coded_sample_rate[0] = 0x08 + 2;
503 ctx->fs = 0x10 + 1;
504 break;
505 case 48000 << 0:
506 avctx->frame_size = 40 << 0;
507 ctx->coded_sample_rate[0] = 0x00 + 0;
508 ctx->fs = 0x08 + 2;
509 break;
510 case 48000 << 1:
511 avctx->frame_size = 40 << 1;
512 ctx->coded_sample_rate[0] = 0x00 + 1;
513 ctx->fs = 0x0C + 2;
514 break;
515 case 48000 << 2:
516 ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
517 avctx->frame_size = 40 << 2;
518 ctx->coded_sample_rate[0] = 0x00 + 2;
519 ctx->fs = 0x10 + 2;
520 break;
521 default:
522 av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported "
523 "sample rates are 44100, 88200, 176400, 48000, "
524 "96000, and 192000.\n", avctx->sample_rate);
525 return AVERROR(EINVAL);
526 }
527 ctx->coded_sample_rate[1] = -1 & 0xf;
528
529 /* TODO Keep count of bitrate and calculate real value. */
530 ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
531
532 /* TODO support more channels. */
533 if (avctx->ch_layout.nb_channels > 2) {
534 av_log(avctx, AV_LOG_WARNING,
535 "Only mono and stereo are supported at the moment.\n");
536 }
537
538 ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
539 if (avctx->ch_layout.nb_channels <= 2) {
540 ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
541 }
542
543 switch (avctx->sample_fmt) {
544 case AV_SAMPLE_FMT_S16:
545 ctx->coded_sample_fmt[0] = BITS_16;
546 ctx->wordlength = 16;
547 avctx->bits_per_raw_sample = 16;
548 break;
549 /* TODO 20 bits: */
550 case AV_SAMPLE_FMT_S32:
551 ctx->coded_sample_fmt[0] = BITS_24;
552 ctx->wordlength = 24;
553 avctx->bits_per_raw_sample = 24;
554 break;
555 default:
556 av_log(avctx, AV_LOG_ERROR, "Sample format not supported. "
557 "Only 16- and 24-bit samples are supported.\n");
558 return AVERROR(EINVAL);
559 }
560 ctx->coded_sample_fmt[1] = -1 & 0xf;
561
562 ctx->dts = -avctx->frame_size;
563
564 ctx->num_channels = avctx->ch_layout.nb_channels + 2; /* +2 noise channels */
565 ctx->one_sample_buffer_size = avctx->frame_size
566 * ctx->num_channels;
567 /* TODO Let user pass major header interval as parameter. */
568 ctx->max_restart_interval = MAJOR_HEADER_INTERVAL;
569
570 ctx->max_codebook_search = 3;
571 ctx->min_restart_interval = MAJOR_HEADER_INTERVAL;
572 ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
573
574 /* TODO Let user pass parameters for LPC filter. */
575
576 size = avctx->frame_size * ctx->max_restart_interval;
577 ctx->lpc_sample_buffer = av_calloc(size, sizeof(*ctx->lpc_sample_buffer));
578 if (!ctx->lpc_sample_buffer)
579 return AVERROR(ENOMEM);
580
581 size = ctx->one_sample_buffer_size * ctx->max_restart_interval;
582 ctx->major_scratch_buffer = av_calloc(size, sizeof(*ctx->major_scratch_buffer));
583 if (!ctx->major_scratch_buffer)
584 return AVERROR(ENOMEM);
585
586 ctx->major_inout_buffer = av_calloc(size, sizeof(*ctx->major_inout_buffer));
587 if (!ctx->major_inout_buffer)
588 return AVERROR(ENOMEM);
589
590 ctx->num_substreams = 1; // TODO: change this after adding multi-channel support for TrueHD
591
592 if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
593 static const AVChannelLayout layout_arrangement[] = {
594 AV_CHANNEL_LAYOUT_MONO, AV_CHANNEL_LAYOUT_STEREO,
595 AV_CHANNEL_LAYOUT_2_1, AV_CHANNEL_LAYOUT_QUAD,
596 AV_CHANNEL_LAYOUT_2POINT1, { 0 }, { 0 },
597 AV_CHANNEL_LAYOUT_SURROUND, AV_CHANNEL_LAYOUT_4POINT0,
598 AV_CHANNEL_LAYOUT_5POINT0_BACK, AV_CHANNEL_LAYOUT_3POINT1,
599 AV_CHANNEL_LAYOUT_4POINT1, AV_CHANNEL_LAYOUT_5POINT1_BACK,
600 };
601 int i;
602
603 for (i = 0; i < FF_ARRAY_ELEMS(layout_arrangement); i++)
604 if (!av_channel_layout_compare(&avctx->ch_layout, &layout_arrangement[i]))
605 break;
606 if (i == FF_ARRAY_ELEMS(layout_arrangement)) {
607 av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
608 return AVERROR(EINVAL);
609 }
610 ctx->channel_arrangement = i;
611 ctx->flags = FLAGS_DVDA;
612 ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
613 ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ;
614 } else {
615 /* TrueHD */
616 if (!av_channel_layout_compare(&avctx->ch_layout,
617 &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO)) {
618 ctx->ch_modifier_thd0 = 0;
619 ctx->ch_modifier_thd1 = 0;
620 ctx->ch_modifier_thd2 = 0;
621 ctx->channel_arrangement = 1;
622 } else if (!av_channel_layout_compare(&avctx->ch_layout,
623 &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0_BACK)) {
624 ctx->ch_modifier_thd0 = 1;
625 ctx->ch_modifier_thd1 = 1;
626 ctx->ch_modifier_thd2 = 1;
627 ctx->channel_arrangement = 11;
628 } else if (!av_channel_layout_compare(&avctx->ch_layout,
629 &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1_BACK)) {
630 ctx->ch_modifier_thd0 = 2;
631 ctx->ch_modifier_thd1 = 1;
632 ctx->ch_modifier_thd2 = 2;
633 ctx->channel_arrangement = 15;
634 } else {
635 av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
636 return AVERROR(EINVAL);
637 }
638 ctx->flags = 0;
639 ctx->channel_occupancy = 0;
640 ctx->summary_info = 0;
641 }
642
643 size = ctx->max_restart_interval;
644 ctx->max_output_bits = av_calloc(size, sizeof(*ctx->max_output_bits));
645 if (!ctx->max_output_bits)
646 return AVERROR(ENOMEM);
647
648 size = ctx->max_restart_interval;
649 ctx->lossless_check_data = av_calloc(size, sizeof(*ctx->lossless_check_data));
650 if (!ctx->lossless_check_data)
651 return AVERROR(ENOMEM);
652
653 for (unsigned int index = 0; index < ctx->restart_intervals; index++) {
654 ctx->seq_offset[index] = sum;
655 ctx->seq_size [index] = ((index + 1) * ctx->min_restart_interval) + 1;
656 sum += ctx->seq_size[index];
657 }
658 ctx->sequence_size = sum;
659 size = ctx->restart_intervals * ctx->sequence_size * ctx->avctx->ch_layout.nb_channels;
660 ctx->channel_params = av_calloc(size, sizeof(*ctx->channel_params));
661 if (!ctx->channel_params)
662 return AVERROR(ENOMEM);
663
664 size = ctx->restart_intervals * ctx->sequence_size;
665 ctx->decoding_params = av_calloc(size, sizeof(*ctx->decoding_params));
666 if (!ctx->decoding_params)
667 return AVERROR(ENOMEM);
668
669 /* TODO see if noisegen_seed is really worth it. */
670 rh->noisegen_seed = 0;
671
672 rh->min_channel = 0;
673 rh->max_channel = avctx->ch_layout.nb_channels - 1;
674 /* FIXME: this works for 1 and 2 channels, but check for more */
675 rh->max_matrix_channel = rh->max_channel;
676
677 if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->number_of_samples,
678 MLP_MAX_LPC_ORDER, FF_LPC_TYPE_LEVINSON)) < 0)
679 return ret;
680
681 for (int i = 0; i < NUM_FILTERS; i++) {
682 ctx->filter_state_buffer[i] = av_calloc(avctx->frame_size * ctx->max_restart_interval,
683 sizeof(*ctx->filter_state_buffer[0]));
684 if (!ctx->filter_state_buffer[i])
685 return AVERROR(ENOMEM);
686 }
687
688 ff_af_queue_init(avctx, &ctx->afq);
689
690 ff_thread_once(&init_static_once, mlp_encode_init_static);
691
692 return 0;
693 }
694
695 /****************************************************************************
696 ****************** Functions that write to the bitstream *******************
697 ****************************************************************************/
698
699 /** Writes a major sync header to the bitstream. */
write_major_sync(MLPEncodeContext * ctx,uint8_t * buf,int buf_size)700 static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
701 {
702 PutBitContext pb;
703
704 init_put_bits(&pb, buf, buf_size);
705
706 put_bits(&pb, 24, SYNC_MAJOR );
707
708 if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
709 put_bits(&pb, 8, SYNC_MLP );
710 put_bits(&pb, 4, ctx->coded_sample_fmt [0]);
711 put_bits(&pb, 4, ctx->coded_sample_fmt [1]);
712 put_bits(&pb, 4, ctx->coded_sample_rate[0]);
713 put_bits(&pb, 4, ctx->coded_sample_rate[1]);
714 put_bits(&pb, 4, 0 ); /* ignored */
715 put_bits(&pb, 4, 0 ); /* multi_channel_type */
716 put_bits(&pb, 3, 0 ); /* ignored */
717 put_bits(&pb, 5, ctx->channel_arrangement );
718 } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
719 put_bits(&pb, 8, SYNC_TRUEHD );
720 put_bits(&pb, 4, ctx->coded_sample_rate[0]);
721 put_bits(&pb, 4, 0 ); /* ignored */
722 put_bits(&pb, 2, ctx->ch_modifier_thd0 );
723 put_bits(&pb, 2, ctx->ch_modifier_thd1 );
724 put_bits(&pb, 5, ctx->channel_arrangement );
725 put_bits(&pb, 2, ctx->ch_modifier_thd2 );
726 put_bits(&pb, 13, ctx->channel_arrangement );
727 }
728
729 put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
730 put_bits(&pb, 16, ctx->flags );
731 put_bits(&pb, 16, 0 ); /* ignored */
732 put_bits(&pb, 1, 1 ); /* is_vbr */
733 put_bits(&pb, 15, ctx->coded_peak_bitrate );
734 put_bits(&pb, 4, 1 ); /* num_substreams */
735 put_bits(&pb, 4, 0x1 ); /* ignored */
736
737 /* channel_meaning */
738 put_bits(&pb, 8, ctx->substream_info );
739 put_bits(&pb, 5, ctx->fs );
740 put_bits(&pb, 5, ctx->wordlength );
741 put_bits(&pb, 6, ctx->channel_occupancy );
742 put_bits(&pb, 3, 0 ); /* ignored */
743 put_bits(&pb, 10, 0 ); /* speaker_layout */
744 put_bits(&pb, 3, 0 ); /* copy_protection */
745 put_bits(&pb, 16, 0x8080 ); /* ignored */
746 put_bits(&pb, 7, 0 ); /* ignored */
747 put_bits(&pb, 4, 0 ); /* source_format */
748 put_bits(&pb, 5, ctx->summary_info );
749
750 flush_put_bits(&pb);
751
752 AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
753 }
754
755 /** Writes a restart header to the bitstream. Damaged streams can start being
756 * decoded losslessly again after such a header and the subsequent decoding
757 * params header.
758 */
write_restart_header(MLPEncodeContext * ctx,PutBitContext * pb)759 static void write_restart_header(MLPEncodeContext *ctx, PutBitContext *pb)
760 {
761 RestartHeader *rh = ctx->cur_restart_header;
762 uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data);
763 unsigned int start_count = put_bits_count(pb);
764 PutBitContext tmpb;
765 uint8_t checksum;
766
767 put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */
768 put_bits(pb, 16, ctx->timestamp );
769 put_bits(pb, 4, rh->min_channel );
770 put_bits(pb, 4, rh->max_channel );
771 put_bits(pb, 4, rh->max_matrix_channel);
772 put_bits(pb, 4, rh->noise_shift );
773 put_bits(pb, 23, rh->noisegen_seed );
774 put_bits(pb, 4, 0 ); /* TODO max_shift */
775 put_bits(pb, 5, rh->max_huff_lsbs );
776 put_bits(pb, 5, rh->max_output_bits );
777 put_bits(pb, 5, rh->max_output_bits );
778 put_bits(pb, 1, rh->data_check_present);
779 put_bits(pb, 8, lossless_check );
780 put_bits(pb, 16, 0 ); /* ignored */
781
782 for (unsigned int ch = 0; ch <= rh->max_matrix_channel; ch++)
783 put_bits(pb, 6, ch);
784
785 /* Data must be flushed for the checksum to be correct. */
786 tmpb = *pb;
787 flush_put_bits(&tmpb);
788
789 checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
790
791 put_bits(pb, 8, checksum);
792 }
793
794 /** Writes matrix params for all primitive matrices to the bitstream. */
write_matrix_params(MLPEncodeContext * ctx,PutBitContext * pb)795 static void write_matrix_params(MLPEncodeContext *ctx, PutBitContext *pb)
796 {
797 DecodingParams *dp = ctx->cur_decoding_params;
798 MatrixParams *mp = &dp->matrix_params;
799
800 put_bits(pb, 4, mp->count);
801
802 for (unsigned int mat = 0; mat < mp->count; mat++) {
803 put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
804 put_bits(pb, 4, mp->fbits[mat]);
805 put_bits(pb, 1, 0 ); /* lsb_bypass */
806
807 for (unsigned int channel = 0; channel < ctx->num_channels; channel++) {
808 int32_t coeff = mp->coeff[mat][channel];
809
810 if (coeff) {
811 put_bits(pb, 1, 1);
812
813 coeff >>= 14 - mp->fbits[mat];
814
815 put_sbits(pb, mp->fbits[mat] + 2, coeff);
816 } else {
817 put_bits(pb, 1, 0);
818 }
819 }
820 }
821 }
822
823 /** Writes filter parameters for one filter to the bitstream. */
write_filter_params(MLPEncodeContext * ctx,PutBitContext * pb,unsigned int channel,unsigned int filter)824 static void write_filter_params(MLPEncodeContext *ctx, PutBitContext *pb,
825 unsigned int channel, unsigned int filter)
826 {
827 FilterParams *fp = &ctx->cur_channel_params[channel].filter_params[filter];
828
829 put_bits(pb, 4, fp->order);
830
831 if (fp->order > 0) {
832 int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
833
834 put_bits(pb, 4, fp->shift );
835 put_bits(pb, 5, fp->coeff_bits );
836 put_bits(pb, 3, fp->coeff_shift);
837
838 for (int i = 0; i < fp->order; i++) {
839 put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
840 }
841
842 /* TODO state data for IIR filter. */
843 put_bits(pb, 1, 0);
844 }
845 }
846
847 /** Writes decoding parameters to the bitstream. These change very often,
848 * usually at almost every frame.
849 */
write_decoding_params(MLPEncodeContext * ctx,PutBitContext * pb,int params_changed)850 static void write_decoding_params(MLPEncodeContext *ctx, PutBitContext *pb,
851 int params_changed)
852 {
853 DecodingParams *dp = ctx->cur_decoding_params;
854 RestartHeader *rh = ctx->cur_restart_header;
855 MatrixParams *mp = &dp->matrix_params;
856
857 if (dp->param_presence_flags != PARAMS_DEFAULT &&
858 params_changed & PARAM_PRESENCE_FLAGS) {
859 put_bits(pb, 1, 1);
860 put_bits(pb, 8, dp->param_presence_flags);
861 } else {
862 put_bits(pb, 1, 0);
863 }
864
865 if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
866 if (params_changed & PARAM_BLOCKSIZE) {
867 put_bits(pb, 1, 1);
868 put_bits(pb, 9, dp->blocksize);
869 } else {
870 put_bits(pb, 1, 0);
871 }
872 }
873
874 if (dp->param_presence_flags & PARAM_MATRIX) {
875 if (params_changed & PARAM_MATRIX) {
876 put_bits(pb, 1, 1);
877 write_matrix_params(ctx, pb);
878 } else {
879 put_bits(pb, 1, 0);
880 }
881 }
882
883 if (dp->param_presence_flags & PARAM_OUTSHIFT) {
884 if (params_changed & PARAM_OUTSHIFT) {
885 put_bits(pb, 1, 1);
886 for (unsigned int ch = 0; ch <= rh->max_matrix_channel; ch++)
887 put_sbits(pb, 4, mp->shift[ch]);
888 } else {
889 put_bits(pb, 1, 0);
890 }
891 }
892
893 if (dp->param_presence_flags & PARAM_QUANTSTEP) {
894 if (params_changed & PARAM_QUANTSTEP) {
895 put_bits(pb, 1, 1);
896 for (unsigned int ch = 0; ch <= rh->max_channel; ch++)
897 put_bits(pb, 4, dp->quant_step_size[ch]);
898 } else {
899 put_bits(pb, 1, 0);
900 }
901 }
902
903 for (unsigned int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
904 ChannelParams *cp = &ctx->cur_channel_params[ch];
905
906 if (dp->param_presence_flags & 0xF) {
907 put_bits(pb, 1, 1);
908
909 if (dp->param_presence_flags & PARAM_FIR) {
910 if (params_changed & PARAM_FIR) {
911 put_bits(pb, 1, 1);
912 write_filter_params(ctx, pb, ch, FIR);
913 } else {
914 put_bits(pb, 1, 0);
915 }
916 }
917
918 if (dp->param_presence_flags & PARAM_IIR) {
919 if (params_changed & PARAM_IIR) {
920 put_bits(pb, 1, 1);
921 write_filter_params(ctx, pb, ch, IIR);
922 } else {
923 put_bits(pb, 1, 0);
924 }
925 }
926
927 if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
928 if (params_changed & PARAM_HUFFOFFSET) {
929 put_bits (pb, 1, 1);
930 put_sbits(pb, 15, cp->huff_offset);
931 } else {
932 put_bits(pb, 1, 0);
933 }
934 }
935 if (cp->codebook > 0 && cp->huff_lsbs > 24) {
936 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs\n");
937 }
938
939 put_bits(pb, 2, cp->codebook );
940 put_bits(pb, 5, cp->huff_lsbs);
941 } else {
942 put_bits(pb, 1, 0);
943 }
944 }
945 }
946
947 /** Writes the residuals to the bitstream. That is, the VLC codes from the
948 * codebooks (if any is used), and then the residual.
949 */
write_block_data(MLPEncodeContext * ctx,PutBitContext * pb)950 static void write_block_data(MLPEncodeContext *ctx, PutBitContext *pb)
951 {
952 DecodingParams *dp = ctx->cur_decoding_params;
953 RestartHeader *rh = ctx->cur_restart_header;
954 int32_t *sample_buffer = ctx->write_buffer;
955 int32_t sign_huff_offset[MAX_CHANNELS];
956 int codebook_index [MAX_CHANNELS];
957 int lsb_bits [MAX_CHANNELS];
958
959 for (unsigned int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
960 ChannelParams *cp = &ctx->cur_channel_params[ch];
961 int sign_shift;
962
963 lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
964 codebook_index [ch] = cp->codebook - 1;
965 sign_huff_offset[ch] = cp->huff_offset;
966
967 sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1);
968
969 if (cp->codebook > 0)
970 sign_huff_offset[ch] -= 7 << lsb_bits[ch];
971
972 /* Unsign if needed. */
973 if (sign_shift >= 0)
974 sign_huff_offset[ch] -= 1 << sign_shift;
975 }
976
977 for (unsigned int i = 0; i < dp->blocksize; i++) {
978 for (unsigned int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
979 int32_t sample = *sample_buffer++ >> dp->quant_step_size[ch];
980 sample -= sign_huff_offset[ch];
981
982 if (codebook_index[ch] >= 0) {
983 int vlc = sample >> lsb_bits[ch];
984 put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
985 ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
986 }
987
988 put_sbits(pb, lsb_bits[ch], sample);
989 }
990 sample_buffer += 2; /* noise channels */
991 }
992
993 ctx->write_buffer = sample_buffer;
994 }
995
996 /** Writes the substream data to the bitstream. */
write_substr(MLPEncodeContext * ctx,uint8_t * buf,int buf_size,int restart_frame,uint16_t substream_data_len[MAX_SUBSTREAMS])997 static uint8_t *write_substr(MLPEncodeContext *ctx, uint8_t *buf, int buf_size,
998 int restart_frame,
999 uint16_t substream_data_len[MAX_SUBSTREAMS])
1000 {
1001 int32_t *lossless_check_data = ctx->lossless_check_data;
1002 unsigned int cur_subblock_index = ctx->major_cur_subblock_index;
1003 unsigned int num_subblocks = ctx->major_filter_state_subblock;
1004 RestartHeader *rh = &ctx->restart_header;
1005 int substr_restart_frame = restart_frame;
1006 uint8_t parity, checksum;
1007 PutBitContext pb;
1008 int params_changed;
1009 int end = 0;
1010
1011 lossless_check_data += ctx->frame_index;
1012 ctx->cur_restart_header = rh;
1013
1014 init_put_bits(&pb, buf, buf_size);
1015
1016 for (unsigned int subblock = 0; subblock <= num_subblocks; subblock++) {
1017 unsigned int subblock_index;
1018
1019 subblock_index = cur_subblock_index++;
1020
1021 ctx->cur_decoding_params = &ctx->major_decoding_params[subblock_index];
1022 ctx->cur_channel_params = ctx->major_channel_params[subblock_index];
1023
1024 params_changed = ctx->major_params_changed[subblock_index];
1025
1026 if (substr_restart_frame || params_changed) {
1027 put_bits(&pb, 1, 1);
1028
1029 if (substr_restart_frame) {
1030 put_bits(&pb, 1, 1);
1031
1032 write_restart_header(ctx, &pb);
1033 rh->lossless_check_data = 0;
1034 } else {
1035 put_bits(&pb, 1, 0);
1036 }
1037
1038 write_decoding_params(ctx, &pb, params_changed);
1039 } else {
1040 put_bits(&pb, 1, 0);
1041 }
1042
1043 write_block_data(ctx, &pb);
1044
1045 put_bits(&pb, 1, !substr_restart_frame);
1046
1047 substr_restart_frame = 0;
1048 }
1049
1050 put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
1051
1052 rh->lossless_check_data ^= *lossless_check_data++;
1053
1054 if (ctx->last_frames == 0 && ctx->shorten_by) {
1055 if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
1056 put_bits(&pb, 16, END_OF_STREAM & 0xFFFF);
1057 put_bits(&pb, 16, (ctx->shorten_by & 0x1FFF) | 0x2000);
1058 } else {
1059 put_bits(&pb, 32, END_OF_STREAM);
1060 }
1061 }
1062
1063 /* Data must be flushed for the checksum and parity to be correct;
1064 * notice that we already are word-aligned here. */
1065 flush_put_bits(&pb);
1066
1067 parity = ff_mlp_calculate_parity(buf, put_bytes_output(&pb)) ^ 0xa9;
1068 checksum = ff_mlp_checksum8 (buf, put_bytes_output(&pb));
1069
1070 put_bits(&pb, 8, parity );
1071 put_bits(&pb, 8, checksum);
1072
1073 flush_put_bits(&pb);
1074
1075 end += put_bytes_output(&pb);
1076 substream_data_len[0] = end;
1077
1078 buf += put_bytes_output(&pb);
1079
1080 ctx->major_cur_subblock_index += ctx->major_filter_state_subblock + 1;
1081 ctx->major_filter_state_subblock = 0;
1082
1083 return buf;
1084 }
1085
1086 /** Writes the access unit and substream headers to the bitstream. */
write_frame_headers(MLPEncodeContext * ctx,uint8_t * frame_header,uint8_t * substream_headers,unsigned int length,int restart_frame,uint16_t substream_data_len[1])1087 static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
1088 uint8_t *substream_headers, unsigned int length,
1089 int restart_frame,
1090 uint16_t substream_data_len[1])
1091 {
1092 uint16_t access_unit_header = 0;
1093 uint16_t parity_nibble = 0;
1094
1095 parity_nibble = ctx->dts;
1096 parity_nibble ^= length;
1097
1098 for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
1099 uint16_t substr_hdr = 0;
1100
1101 substr_hdr |= (0 << 15); /* extraword */
1102 substr_hdr |= (!restart_frame << 14); /* !restart_frame */
1103 substr_hdr |= (1 << 13); /* checkdata */
1104 substr_hdr |= (0 << 12); /* ??? */
1105 substr_hdr |= (substream_data_len[substr] / 2) & 0x0FFF;
1106
1107 AV_WB16(substream_headers, substr_hdr);
1108
1109 parity_nibble ^= *substream_headers++;
1110 parity_nibble ^= *substream_headers++;
1111 }
1112
1113 parity_nibble ^= parity_nibble >> 8;
1114 parity_nibble ^= parity_nibble >> 4;
1115 parity_nibble &= 0xF;
1116
1117 access_unit_header |= (parity_nibble ^ 0xF) << 12;
1118 access_unit_header |= length & 0xFFF;
1119
1120 AV_WB16(frame_header , access_unit_header);
1121 AV_WB16(frame_header+2, ctx->dts );
1122 }
1123
1124 /** Writes an entire access unit to the bitstream. */
write_access_unit(MLPEncodeContext * ctx,uint8_t * buf,int buf_size,int restart_frame)1125 static int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
1126 int buf_size, int restart_frame)
1127 {
1128 uint16_t substream_data_len[MAX_SUBSTREAMS];
1129 uint8_t *buf1, *buf0 = buf;
1130 int total_length;
1131
1132 /* Frame header will be written at the end. */
1133 buf += 4;
1134 buf_size -= 4;
1135
1136 if (restart_frame) {
1137 write_major_sync(ctx, buf, buf_size);
1138 buf += 28;
1139 buf_size -= 28;
1140 }
1141
1142 buf1 = buf;
1143
1144 /* Substream headers will be written at the end. */
1145 for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
1146 buf += 2;
1147 buf_size -= 2;
1148 }
1149
1150 buf = write_substr(ctx, buf, buf_size, restart_frame, &substream_data_len[0]);
1151
1152 total_length = buf - buf0;
1153
1154 write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
1155
1156 return total_length;
1157 }
1158
1159 /****************************************************************************
1160 ****************** Functions that input data to context ********************
1161 ****************************************************************************/
1162
1163 /** Inputs data from the samples passed by lavc into the context, shifts them
1164 * appropriately depending on the bit-depth, and calculates the
1165 * lossless_check_data that will be written to the restart header.
1166 */
input_data_internal(MLPEncodeContext * ctx,const uint8_t * samples,int nb_samples,int is24)1167 static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
1168 int nb_samples,
1169 int is24)
1170 {
1171 int32_t *lossless_check_data = ctx->lossless_check_data;
1172 const int32_t *samples_32 = (const int32_t *) samples;
1173 const int16_t *samples_16 = (const int16_t *) samples;
1174 RestartHeader *rh = &ctx->restart_header;
1175 int32_t *sample_buffer = ctx->inout_buffer;
1176 int32_t temp_lossless_check_data = 0;
1177 uint32_t greatest = 0;
1178
1179 lossless_check_data += ctx->frame_index;
1180
1181 for (int i = 0; i < nb_samples; i++) {
1182 for (unsigned int channel = 0; channel <= rh->max_channel; channel++) {
1183 uint32_t abs_sample;
1184 int32_t sample;
1185
1186 sample = is24 ? *samples_32++ >> 8 : *samples_16++ * 256;
1187
1188 /* TODO Find out if number_sbits can be used for negative values. */
1189 abs_sample = FFABS(sample);
1190 greatest = FFMAX(greatest, abs_sample);
1191
1192 temp_lossless_check_data ^= (sample & 0x00ffffff) << channel;
1193 *sample_buffer++ = sample;
1194 }
1195
1196 sample_buffer += 2; /* noise channels */
1197 }
1198
1199 ctx->max_output_bits[ctx->frame_index] = number_sbits(greatest);
1200
1201 *lossless_check_data++ = temp_lossless_check_data;
1202 }
1203
1204 /** Wrapper function for inputting data in two different bit-depths. */
input_data(MLPEncodeContext * ctx,void * samples,int nb_samples)1205 static void input_data(MLPEncodeContext *ctx, void *samples, int nb_samples)
1206 {
1207 input_data_internal(ctx, samples, nb_samples, ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
1208 }
1209
input_to_sample_buffer(MLPEncodeContext * ctx)1210 static void input_to_sample_buffer(MLPEncodeContext *ctx)
1211 {
1212 int32_t *sample_buffer = ctx->sample_buffer;
1213
1214 for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
1215 unsigned int cur_index = (ctx->frame_index + index + 1) % ctx->max_restart_interval;
1216 int32_t *input_buffer = ctx->inout_buffer + cur_index * ctx->one_sample_buffer_size;
1217
1218 for (unsigned int i = 0; i < ctx->avctx->frame_size; i++) {
1219 for (unsigned int channel = 0; channel < ctx->avctx->ch_layout.nb_channels; channel++)
1220 *sample_buffer++ = *input_buffer++;
1221 sample_buffer += 2; /* noise_channels */
1222 input_buffer += 2; /* noise_channels */
1223 }
1224 }
1225 }
1226
1227 /****************************************************************************
1228 ********* Functions that analyze the data and set the parameters ***********
1229 ****************************************************************************/
1230
1231 /** Counts the number of trailing zeroes in a value */
number_trailing_zeroes(int32_t sample)1232 static int number_trailing_zeroes(int32_t sample)
1233 {
1234 int bits = ff_ctz(sample);
1235
1236 /* All samples are 0. TODO Return previous quant_step_size to avoid
1237 * writing a new header. */
1238 if (bits >= 24)
1239 return 0;
1240
1241 return bits;
1242 }
1243
1244 /** Determines how many bits are zero at the end of all samples so they can be
1245 * shifted out.
1246 */
determine_quant_step_size(MLPEncodeContext * ctx)1247 static void determine_quant_step_size(MLPEncodeContext *ctx)
1248 {
1249 DecodingParams *dp = ctx->cur_decoding_params;
1250 RestartHeader *rh = ctx->cur_restart_header;
1251 MatrixParams *mp = &dp->matrix_params;
1252 int32_t *sample_buffer = ctx->sample_buffer;
1253 int32_t sample_mask[MAX_CHANNELS];
1254
1255 memset(sample_mask, 0x00, sizeof(sample_mask));
1256
1257 for (unsigned int i = 0; i < ctx->number_of_samples; i++) {
1258 for (unsigned int channel = 0; channel <= rh->max_channel; channel++)
1259 sample_mask[channel] |= *sample_buffer++;
1260
1261 sample_buffer += 2; /* noise channels */
1262 }
1263
1264 for (unsigned int channel = 0; channel <= rh->max_channel; channel++)
1265 dp->quant_step_size[channel] = number_trailing_zeroes(sample_mask[channel]) - mp->shift[channel];
1266 }
1267
1268 /** Determines the smallest number of bits needed to encode the filter
1269 * coefficients, and if it's possible to right-shift their values without
1270 * losing any precision.
1271 */
code_filter_coeffs(MLPEncodeContext * ctx,FilterParams * fp,int32_t * fcoeff)1272 static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, int32_t *fcoeff)
1273 {
1274 int min = INT_MAX, max = INT_MIN;
1275 int bits, shift;
1276 int coeff_mask = 0;
1277
1278 for (int order = 0; order < fp->order; order++) {
1279 int coeff = fcoeff[order];
1280
1281 if (coeff < min)
1282 min = coeff;
1283 if (coeff > max)
1284 max = coeff;
1285
1286 coeff_mask |= coeff;
1287 }
1288
1289 bits = FFMAX(number_sbits(min), number_sbits(max));
1290
1291 for (shift = 0; shift < 7 && bits + shift < 16 && !(coeff_mask & (1<<shift)); shift++);
1292
1293 fp->coeff_bits = bits;
1294 fp->coeff_shift = shift;
1295 }
1296
1297 /** Determines the best filter parameters for the given data and writes the
1298 * necessary information to the context.
1299 * TODO Add IIR filter predictor!
1300 */
set_filter_params(MLPEncodeContext * ctx,unsigned int channel,unsigned int filter,int clear_filter)1301 static void set_filter_params(MLPEncodeContext *ctx,
1302 unsigned int channel, unsigned int filter,
1303 int clear_filter)
1304 {
1305 ChannelParams *cp = &ctx->cur_channel_params[channel];
1306 FilterParams *fp = &cp->filter_params[filter];
1307
1308 if ((filter == IIR && ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) ||
1309 clear_filter) {
1310 fp->order = 0;
1311 } else if (filter == IIR) {
1312 fp->order = 0;
1313 } else if (filter == FIR) {
1314 const int max_order = (ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE)
1315 ? 4 : MLP_MAX_LPC_ORDER;
1316 int32_t *sample_buffer = ctx->sample_buffer + channel;
1317 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
1318 int32_t *lpc_samples = ctx->lpc_sample_buffer;
1319 int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1320 int shift[MLP_MAX_LPC_ORDER];
1321 int order;
1322
1323 for (unsigned int i = 0; i < ctx->number_of_samples; i++) {
1324 *lpc_samples++ = *sample_buffer;
1325 sample_buffer += ctx->num_channels;
1326 }
1327
1328 order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
1329 ctx->number_of_samples, MLP_MIN_LPC_ORDER,
1330 max_order, 11, coefs, shift, FF_LPC_TYPE_LEVINSON, 0,
1331 ORDER_METHOD_EST, MLP_MIN_LPC_SHIFT,
1332 MLP_MAX_LPC_SHIFT, MLP_MIN_LPC_SHIFT);
1333
1334 fp->order = order;
1335 fp->shift = shift[order-1];
1336
1337 for (unsigned int i = 0; i < order; i++)
1338 fcoeff[i] = coefs[order-1][i];
1339
1340 code_filter_coeffs(ctx, fp, fcoeff);
1341 }
1342 }
1343
1344 /** Tries to determine a good prediction filter, and applies it to the samples
1345 * buffer if the filter is good enough. Sets the filter data to be cleared if
1346 * no good filter was found.
1347 */
determine_filters(MLPEncodeContext * ctx)1348 static void determine_filters(MLPEncodeContext *ctx)
1349 {
1350 RestartHeader *rh = ctx->cur_restart_header;
1351
1352 for (int channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1353 for (int filter = 0; filter < NUM_FILTERS; filter++)
1354 set_filter_params(ctx, channel, filter, 0);
1355 }
1356 }
1357
1358 enum MLPChMode {
1359 MLP_CHMODE_LEFT_RIGHT,
1360 MLP_CHMODE_LEFT_SIDE,
1361 MLP_CHMODE_RIGHT_SIDE,
1362 MLP_CHMODE_MID_SIDE,
1363 };
1364
estimate_stereo_mode(MLPEncodeContext * ctx)1365 static enum MLPChMode estimate_stereo_mode(MLPEncodeContext *ctx)
1366 {
1367 uint64_t score[4], sum[4] = { 0, 0, 0, 0, };
1368 int32_t *right_ch = ctx->sample_buffer + 1;
1369 int32_t *left_ch = ctx->sample_buffer;
1370 int i;
1371 enum MLPChMode best = 0;
1372
1373 for(i = 2; i < ctx->number_of_samples; i++) {
1374 int32_t left = left_ch [i * ctx->num_channels] - 2 * left_ch [(i - 1) * ctx->num_channels] + left_ch [(i - 2) * ctx->num_channels];
1375 int32_t right = right_ch[i * ctx->num_channels] - 2 * right_ch[(i - 1) * ctx->num_channels] + right_ch[(i - 2) * ctx->num_channels];
1376
1377 sum[0] += FFABS( left );
1378 sum[1] += FFABS( right);
1379 sum[2] += FFABS((left + right) >> 1);
1380 sum[3] += FFABS( left - right);
1381 }
1382
1383 score[MLP_CHMODE_LEFT_RIGHT] = sum[0] + sum[1];
1384 score[MLP_CHMODE_LEFT_SIDE] = sum[0] + sum[3];
1385 score[MLP_CHMODE_RIGHT_SIDE] = sum[1] + sum[3];
1386 score[MLP_CHMODE_MID_SIDE] = sum[2] + sum[3];
1387
1388 for(i = 1; i < 3; i++)
1389 if(score[i] < score[best])
1390 best = i;
1391
1392 return best;
1393 }
1394
1395 /** Determines how many fractional bits are needed to encode matrix
1396 * coefficients. Also shifts the coefficients to fit within 2.14 bits.
1397 */
code_matrix_coeffs(MLPEncodeContext * ctx,unsigned int mat)1398 static void code_matrix_coeffs(MLPEncodeContext *ctx, unsigned int mat)
1399 {
1400 DecodingParams *dp = ctx->cur_decoding_params;
1401 MatrixParams *mp = &dp->matrix_params;
1402 int32_t coeff_mask = 0;
1403 unsigned int bits;
1404
1405 for (unsigned int channel = 0; channel < ctx->num_channels; channel++) {
1406 int32_t coeff = mp->coeff[mat][channel];
1407 coeff_mask |= coeff;
1408 }
1409
1410 for (bits = 0; bits < 14 && !(coeff_mask & (1<<bits)); bits++);
1411
1412 mp->fbits [mat] = 14 - bits;
1413 }
1414
1415 /** Determines best coefficients to use for the lossless matrix. */
lossless_matrix_coeffs(MLPEncodeContext * ctx)1416 static void lossless_matrix_coeffs(MLPEncodeContext *ctx)
1417 {
1418 DecodingParams *dp = ctx->cur_decoding_params;
1419 MatrixParams *mp = &dp->matrix_params;
1420 unsigned int shift = 0;
1421 enum MLPChMode mode;
1422
1423 /* No decorrelation for non-stereo. */
1424 if (ctx->num_channels - 2 != 2) {
1425 mp->count = 0;
1426 return;
1427 }
1428
1429 mode = estimate_stereo_mode(ctx);
1430
1431 switch (mode) {
1432 /* TODO: add matrix for MID_SIDE */
1433 case MLP_CHMODE_MID_SIDE:
1434 case MLP_CHMODE_LEFT_RIGHT:
1435 mp->count = 0;
1436 break;
1437 case MLP_CHMODE_LEFT_SIDE:
1438 mp->count = 1;
1439 mp->outch[0] = 1;
1440 mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = -(1 << 14);
1441 mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
1442 mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
1443 mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
1444 break;
1445 case MLP_CHMODE_RIGHT_SIDE:
1446 mp->count = 1;
1447 mp->outch[0] = 0;
1448 mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = 1 << 14;
1449 mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
1450 mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
1451 mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
1452 break;
1453 }
1454
1455 for (int mat = 0; mat < mp->count; mat++)
1456 code_matrix_coeffs(ctx, mat);
1457
1458 for (unsigned int channel = 0; channel < ctx->num_channels; channel++)
1459 mp->shift[channel] = shift;
1460 }
1461
1462 /** Min and max values that can be encoded with each codebook. The values for
1463 * the third codebook take into account the fact that the sign shift for this
1464 * codebook is outside the coded value, so it has one more bit of precision.
1465 * It should actually be -7 -> 7, shifted down by 0.5.
1466 */
1467 static const int codebook_extremes[3][2] = {
1468 {-9, 8}, {-8, 7}, {-15, 14},
1469 };
1470
1471 /** Determines the amount of bits needed to encode the samples using no
1472 * codebooks and a specified offset.
1473 */
no_codebook_bits_offset(MLPEncodeContext * ctx,unsigned int channel,int16_t offset,int32_t min,int32_t max,BestOffset * bo)1474 static void no_codebook_bits_offset(MLPEncodeContext *ctx,
1475 unsigned int channel, int16_t offset,
1476 int32_t min, int32_t max,
1477 BestOffset *bo)
1478 {
1479 DecodingParams *dp = ctx->cur_decoding_params;
1480 int32_t unsign = 0;
1481 int lsb_bits;
1482
1483 min -= offset;
1484 max -= offset;
1485
1486 lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
1487
1488 lsb_bits += !!lsb_bits;
1489
1490 if (lsb_bits > 0)
1491 unsign = 1 << (lsb_bits - 1);
1492
1493 bo->offset = offset;
1494 bo->lsb_bits = lsb_bits;
1495 bo->bitcount = lsb_bits * dp->blocksize;
1496 bo->min = offset - unsign + 1;
1497 bo->max = offset + unsign;
1498 }
1499
1500 /** Determines the least amount of bits needed to encode the samples using no
1501 * codebooks.
1502 */
no_codebook_bits(MLPEncodeContext * ctx,unsigned int channel,int32_t min,int32_t max,BestOffset * bo)1503 static void no_codebook_bits(MLPEncodeContext *ctx,
1504 unsigned int channel,
1505 int32_t min, int32_t max,
1506 BestOffset *bo)
1507 {
1508 DecodingParams *dp = ctx->cur_decoding_params;
1509 int16_t offset;
1510 int32_t unsign = 0;
1511 uint32_t diff;
1512 int lsb_bits;
1513
1514 /* Set offset inside huffoffset's boundaries by adjusting extremes
1515 * so that more bits are used, thus shifting the offset. */
1516 if (min < HUFF_OFFSET_MIN)
1517 max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
1518 if (max > HUFF_OFFSET_MAX)
1519 min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
1520
1521 /* Determine offset and minimum number of bits. */
1522 diff = max - min;
1523
1524 lsb_bits = number_sbits(diff) - 1;
1525
1526 if (lsb_bits > 0)
1527 unsign = 1 << (lsb_bits - 1);
1528
1529 /* If all samples are the same (lsb_bits == 0), offset must be
1530 * adjusted because of sign_shift. */
1531 offset = min + diff / 2 + !!lsb_bits;
1532
1533 bo->offset = offset;
1534 bo->lsb_bits = lsb_bits;
1535 bo->bitcount = lsb_bits * dp->blocksize;
1536 bo->min = max - unsign + 1;
1537 bo->max = min + unsign;
1538 }
1539
1540 /** Determines the least amount of bits needed to encode the samples using a
1541 * given codebook and a given offset.
1542 */
codebook_bits_offset(MLPEncodeContext * ctx,unsigned int channel,int codebook,int32_t sample_min,int32_t sample_max,int16_t offset,BestOffset * bo)1543 static inline void codebook_bits_offset(MLPEncodeContext *ctx,
1544 unsigned int channel, int codebook,
1545 int32_t sample_min, int32_t sample_max,
1546 int16_t offset, BestOffset *bo)
1547 {
1548 int32_t codebook_min = codebook_extremes[codebook][0];
1549 int32_t codebook_max = codebook_extremes[codebook][1];
1550 int32_t *sample_buffer = ctx->sample_buffer + channel;
1551 DecodingParams *dp = ctx->cur_decoding_params;
1552 int codebook_offset = 7 + (2 - codebook);
1553 int32_t unsign_offset = offset;
1554 int lsb_bits = 0, bitcount = 0;
1555 int offset_min = INT_MAX, offset_max = INT_MAX;
1556 int unsign, mask;
1557
1558 sample_min -= offset;
1559 sample_max -= offset;
1560
1561 while (sample_min < codebook_min || sample_max > codebook_max) {
1562 lsb_bits++;
1563 sample_min >>= 1;
1564 sample_max >>= 1;
1565 }
1566
1567 unsign = 1 << lsb_bits;
1568 mask = unsign - 1;
1569
1570 if (codebook == 2) {
1571 unsign_offset -= unsign;
1572 lsb_bits++;
1573 }
1574
1575 for (int i = 0; i < dp->blocksize; i++) {
1576 int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1577 int temp_min, temp_max;
1578
1579 sample -= unsign_offset;
1580
1581 temp_min = sample & mask;
1582 if (temp_min < offset_min)
1583 offset_min = temp_min;
1584
1585 temp_max = unsign - temp_min - 1;
1586 if (temp_max < offset_max)
1587 offset_max = temp_max;
1588
1589 sample >>= lsb_bits;
1590
1591 bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
1592
1593 sample_buffer += ctx->num_channels;
1594 }
1595
1596 bo->offset = offset;
1597 bo->lsb_bits = lsb_bits;
1598 bo->bitcount = lsb_bits * dp->blocksize + bitcount;
1599 bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
1600 bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
1601 }
1602
1603 /** Determines the least amount of bits needed to encode the samples using a
1604 * given codebook. Searches for the best offset to minimize the bits.
1605 */
codebook_bits(MLPEncodeContext * ctx,unsigned int channel,int codebook,int offset,int32_t min,int32_t max,BestOffset * bo,int direction)1606 static inline void codebook_bits(MLPEncodeContext *ctx,
1607 unsigned int channel, int codebook,
1608 int offset, int32_t min, int32_t max,
1609 BestOffset *bo, int direction)
1610 {
1611 int previous_count = INT_MAX;
1612 int offset_min, offset_max;
1613 int is_greater = 0;
1614
1615 offset_min = FFMAX(min, HUFF_OFFSET_MIN);
1616 offset_max = FFMIN(max, HUFF_OFFSET_MAX);
1617
1618 while (offset <= offset_max && offset >= offset_min) {
1619 BestOffset temp_bo;
1620
1621 codebook_bits_offset(ctx, channel, codebook,
1622 min, max, offset,
1623 &temp_bo);
1624
1625 if (temp_bo.bitcount < previous_count) {
1626 if (temp_bo.bitcount < bo->bitcount)
1627 *bo = temp_bo;
1628
1629 is_greater = 0;
1630 } else if (++is_greater >= ctx->max_codebook_search)
1631 break;
1632
1633 previous_count = temp_bo.bitcount;
1634
1635 if (direction) {
1636 offset = temp_bo.max + 1;
1637 } else {
1638 offset = temp_bo.min - 1;
1639 }
1640 }
1641 }
1642
1643 /** Determines the least amount of bits needed to encode the samples using
1644 * any or no codebook.
1645 */
determine_bits(MLPEncodeContext * ctx)1646 static void determine_bits(MLPEncodeContext *ctx)
1647 {
1648 DecodingParams *dp = ctx->cur_decoding_params;
1649 RestartHeader *rh = ctx->cur_restart_header;
1650
1651 for (unsigned int channel = 0; channel <= rh->max_channel; channel++) {
1652 ChannelParams *cp = &ctx->cur_channel_params[channel];
1653 int32_t *sample_buffer = ctx->sample_buffer + channel;
1654 int32_t min = INT32_MAX, max = INT32_MIN;
1655 int no_filters_used = !cp->filter_params[FIR].order;
1656 int average = 0;
1657 int offset = 0;
1658
1659 /* Determine extremes and average. */
1660 for (int i = 0; i < dp->blocksize; i++) {
1661 int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1662 if (sample < min)
1663 min = sample;
1664 if (sample > max)
1665 max = sample;
1666 average += sample;
1667 sample_buffer += ctx->num_channels;
1668 }
1669 average /= dp->blocksize;
1670
1671 /* If filtering is used, we always set the offset to zero, otherwise
1672 * we search for the offset that minimizes the bitcount. */
1673 if (no_filters_used) {
1674 no_codebook_bits(ctx, channel, min, max, &ctx->cur_best_offset[channel][0]);
1675 offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
1676 } else {
1677 no_codebook_bits_offset(ctx, channel, offset, min, max, &ctx->cur_best_offset[channel][0]);
1678 }
1679
1680 for (int i = 1; i < NUM_CODEBOOKS; i++) {
1681 BestOffset temp_bo = { 0, INT_MAX, 0, 0, 0, };
1682 int16_t offset_max;
1683
1684 codebook_bits_offset(ctx, channel, i - 1,
1685 min, max, offset,
1686 &temp_bo);
1687
1688 if (no_filters_used) {
1689 offset_max = temp_bo.max;
1690
1691 codebook_bits(ctx, channel, i - 1, temp_bo.min - 1,
1692 min, max, &temp_bo, 0);
1693 codebook_bits(ctx, channel, i - 1, offset_max + 1,
1694 min, max, &temp_bo, 1);
1695 }
1696
1697 ctx->cur_best_offset[channel][i] = temp_bo;
1698 }
1699 }
1700 }
1701
1702 /****************************************************************************
1703 *************** Functions that process the data in some way ****************
1704 ****************************************************************************/
1705
1706 #define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
1707 #define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
1708
1709 #define MSB_MASK(bits) (-(int)(1u << (bits)))
1710
1711 /** Applies the filter to the current samples, and saves the residual back
1712 * into the samples buffer. If the filter is too bad and overflows the
1713 * maximum amount of bits allowed (24), the samples buffer is left as is and
1714 * the function returns -1.
1715 */
apply_filter(MLPEncodeContext * ctx,unsigned int channel)1716 static int apply_filter(MLPEncodeContext *ctx, unsigned int channel)
1717 {
1718 FilterParams *fp[NUM_FILTERS] = { &ctx->cur_channel_params[channel].filter_params[FIR],
1719 &ctx->cur_channel_params[channel].filter_params[IIR], };
1720 int32_t mask = MSB_MASK(ctx->cur_decoding_params->quant_step_size[channel]);
1721 int32_t *sample_buffer = ctx->sample_buffer + channel;
1722 unsigned int number_of_samples = ctx->number_of_samples;
1723 unsigned int filter_shift = fp[FIR]->shift;
1724 int ret = 0;
1725
1726 for (int i = 0; i < 8; i++) {
1727 ctx->filter_state_buffer[FIR][i] = *sample_buffer;
1728 ctx->filter_state_buffer[IIR][i] = *sample_buffer;
1729
1730 sample_buffer += ctx->num_channels;
1731 }
1732
1733 for (int i = 8; i < number_of_samples; i++) {
1734 int32_t sample = *sample_buffer;
1735 int64_t accum = 0;
1736 int64_t residual;
1737
1738 for (int filter = 0; filter < NUM_FILTERS; filter++) {
1739 int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1740 for (unsigned int order = 0; order < fp[filter]->order; order++)
1741 accum += (int64_t)ctx->filter_state_buffer[filter][i - 1 - order] *
1742 fcoeff[order];
1743 }
1744
1745 accum >>= filter_shift;
1746 residual = sample - (accum & mask);
1747
1748 if (residual < SAMPLE_MIN(24) || residual > SAMPLE_MAX(24)) {
1749 ret = AVERROR_INVALIDDATA;
1750 return ret;
1751 }
1752
1753 ctx->filter_state_buffer[FIR][i] = sample;
1754 ctx->filter_state_buffer[IIR][i] = (int32_t) residual;
1755
1756 sample_buffer += ctx->num_channels;
1757 }
1758
1759 sample_buffer = ctx->sample_buffer + channel;
1760 for (int i = 0; i < number_of_samples; i++) {
1761 *sample_buffer = ctx->filter_state_buffer[IIR][i];
1762
1763 sample_buffer += ctx->num_channels;
1764 }
1765
1766 return ret;
1767 }
1768
apply_filters(MLPEncodeContext * ctx)1769 static void apply_filters(MLPEncodeContext *ctx)
1770 {
1771 RestartHeader *rh = ctx->cur_restart_header;
1772
1773 for (int channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1774 if (apply_filter(ctx, channel) < 0) {
1775 /* Filter is horribly wrong.
1776 * Clear filter params and update state. */
1777 set_filter_params(ctx, channel, FIR, 1);
1778 set_filter_params(ctx, channel, IIR, 1);
1779 apply_filter(ctx, channel);
1780 }
1781 }
1782 }
1783
1784 /** Generates two noise channels worth of data. */
generate_2_noise_channels(MLPEncodeContext * ctx)1785 static void generate_2_noise_channels(MLPEncodeContext *ctx)
1786 {
1787 int32_t *sample_buffer = ctx->sample_buffer + ctx->num_channels - 2;
1788 RestartHeader *rh = ctx->cur_restart_header;
1789 uint32_t seed = rh->noisegen_seed;
1790
1791 for (unsigned int i = 0; i < ctx->number_of_samples; i++) {
1792 uint16_t seed_shr7 = seed >> 7;
1793 *sample_buffer++ = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift);
1794 *sample_buffer++ = ((int8_t) seed_shr7) * (1 << rh->noise_shift);
1795
1796 seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
1797
1798 sample_buffer += ctx->num_channels - 2;
1799 }
1800
1801 rh->noisegen_seed = seed & ((1 << 24)-1);
1802 }
1803
1804 /** Rematrixes all channels using chosen coefficients. */
rematrix_channels(MLPEncodeContext * ctx)1805 static void rematrix_channels(MLPEncodeContext *ctx)
1806 {
1807 DecodingParams *dp = ctx->cur_decoding_params;
1808 MatrixParams *mp = &dp->matrix_params;
1809 int32_t *sample_buffer = ctx->sample_buffer;
1810 unsigned int maxchan = ctx->num_channels;
1811
1812 for (unsigned int mat = 0; mat < mp->count; mat++) {
1813 unsigned int msb_mask_bits = (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S16 ? 8 : 0) - mp->shift[mat];
1814 int32_t mask = MSB_MASK(msb_mask_bits);
1815 unsigned int outch = mp->outch[mat];
1816
1817 sample_buffer = ctx->sample_buffer;
1818 for (unsigned int i = 0; i < ctx->number_of_samples; i++) {
1819 int64_t accum = 0;
1820
1821 for (unsigned int src_ch = 0; src_ch < maxchan; src_ch++) {
1822 int32_t sample = *(sample_buffer + src_ch);
1823 accum += (int64_t) sample * mp->forco[mat][src_ch];
1824 }
1825 sample_buffer[outch] = (accum >> 14) & mask;
1826
1827 sample_buffer += ctx->num_channels;
1828 }
1829 }
1830 }
1831
1832 /****************************************************************************
1833 **** Functions that deal with determining the best parameters and output ***
1834 ****************************************************************************/
1835
1836 typedef struct {
1837 char path[MAJOR_HEADER_INTERVAL + 2];
1838 int cur_idx;
1839 int bitcount;
1840 } PathCounter;
1841
1842 #define CODEBOOK_CHANGE_BITS 21
1843
clear_path_counter(PathCounter * path_counter)1844 static void clear_path_counter(PathCounter *path_counter)
1845 {
1846 memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter));
1847 }
1848
compare_best_offset(const BestOffset * prev,const BestOffset * cur)1849 static int compare_best_offset(const BestOffset *prev, const BestOffset *cur)
1850 {
1851 return prev->lsb_bits != cur->lsb_bits;
1852 }
1853
best_codebook_path_cost(MLPEncodeContext * ctx,unsigned int channel,PathCounter * src,int cur_codebook)1854 static int best_codebook_path_cost(MLPEncodeContext *ctx, unsigned int channel,
1855 PathCounter *src, int cur_codebook)
1856 {
1857 int idx = src->cur_idx;
1858 const BestOffset *cur_bo = ctx->best_offset[idx][channel],
1859 *prev_bo = idx ? ctx->best_offset[idx - 1][channel] :
1860 restart_best_offset;
1861 int bitcount = src->bitcount;
1862 int prev_codebook = src->path[idx];
1863
1864 bitcount += cur_bo[cur_codebook].bitcount;
1865
1866 if (prev_codebook != cur_codebook ||
1867 compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
1868 bitcount += CODEBOOK_CHANGE_BITS;
1869
1870 return bitcount;
1871 }
1872
set_best_codebook(MLPEncodeContext * ctx)1873 static void set_best_codebook(MLPEncodeContext *ctx)
1874 {
1875 DecodingParams *dp = ctx->cur_decoding_params;
1876 RestartHeader *rh = ctx->cur_restart_header;
1877
1878 for (unsigned int channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1879 const BestOffset *prev_bo = restart_best_offset;
1880 BestOffset *cur_bo;
1881 PathCounter path_counter[NUM_CODEBOOKS + 1];
1882 unsigned int best_codebook;
1883 char *best_path;
1884
1885 clear_path_counter(path_counter);
1886
1887 for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
1888 unsigned int best_bitcount = INT_MAX;
1889
1890 cur_bo = ctx->best_offset[index][channel];
1891
1892 for (unsigned int codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
1893 int prev_best_bitcount = INT_MAX;
1894
1895 for (unsigned int last_best = 0; last_best < 2; last_best++) {
1896 PathCounter *dst_path = &path_counter[codebook];
1897 PathCounter *src_path;
1898 int temp_bitcount;
1899
1900 /* First test last path with same headers,
1901 * then with last best. */
1902 if (last_best) {
1903 src_path = &path_counter[NUM_CODEBOOKS];
1904 } else {
1905 if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
1906 continue;
1907 else
1908 src_path = &path_counter[codebook];
1909 }
1910
1911 temp_bitcount = best_codebook_path_cost(ctx, channel, src_path, codebook);
1912
1913 if (temp_bitcount < best_bitcount) {
1914 best_bitcount = temp_bitcount;
1915 best_codebook = codebook;
1916 }
1917
1918 if (temp_bitcount < prev_best_bitcount) {
1919 prev_best_bitcount = temp_bitcount;
1920 if (src_path != dst_path)
1921 memcpy(dst_path, src_path, sizeof(PathCounter));
1922 if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1)
1923 dst_path->path[++dst_path->cur_idx] = codebook;
1924 dst_path->bitcount = temp_bitcount;
1925 }
1926 }
1927 }
1928
1929 prev_bo = cur_bo;
1930
1931 memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
1932 }
1933
1934 best_path = path_counter[NUM_CODEBOOKS].path + 1;
1935
1936 /* Update context. */
1937 for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
1938 ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->ch_layout.nb_channels) + channel;
1939
1940 best_codebook = *best_path++;
1941 cur_bo = &ctx->best_offset[index][channel][best_codebook];
1942
1943 cp->huff_offset = cur_bo->offset;
1944 cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel];
1945 cp->codebook = best_codebook;
1946 }
1947 }
1948 }
1949
1950 /** Analyzes all collected bitcounts and selects the best parameters for each
1951 * individual access unit.
1952 * TODO This is just a stub!
1953 */
set_major_params(MLPEncodeContext * ctx)1954 static void set_major_params(MLPEncodeContext *ctx)
1955 {
1956 RestartHeader *rh = ctx->cur_restart_header;
1957 uint8_t max_huff_lsbs = 0;
1958 uint8_t max_output_bits = 0;
1959 int channels = ctx->avctx->ch_layout.nb_channels;
1960 DecodingParams *seq_dp = ctx->decoding_params + ctx->seq_offset[0] * channels;
1961 ChannelParams *seq_cp = ctx->channel_params + ctx->seq_offset[0] * channels;
1962
1963 for (unsigned int index = 0; index < ctx->seq_size[ctx->restart_intervals-1]; index++) {
1964 memcpy(&ctx->major_decoding_params[index], seq_dp + index, sizeof(DecodingParams));
1965 for (unsigned int channel = 0; channel < channels; channel++) {
1966 uint8_t huff_lsbs = (seq_cp + index*(channels) + channel)->huff_lsbs;
1967 if (max_huff_lsbs < huff_lsbs)
1968 max_huff_lsbs = huff_lsbs;
1969 memcpy(&ctx->major_channel_params[index][channel],
1970 (seq_cp + index*(channels) + channel),
1971 sizeof(ChannelParams));
1972 }
1973 }
1974
1975 rh->max_huff_lsbs = max_huff_lsbs;
1976
1977 for (unsigned int index = 0; index < ctx->number_of_frames; index++)
1978 if (max_output_bits < ctx->max_output_bits[index])
1979 max_output_bits = ctx->max_output_bits[index];
1980 rh->max_output_bits = max_output_bits;
1981
1982 ctx->cur_restart_header = &ctx->restart_header;
1983
1984 ctx->prev_decoding_params = restart_decoding_params;
1985 ctx->prev_channel_params = restart_channel_params;
1986
1987 for (unsigned int index = 0; index < MAJOR_HEADER_INTERVAL + 1; index++) {
1988 ctx->cur_decoding_params = &ctx->major_decoding_params[index];
1989 ctx->cur_channel_params = ctx->major_channel_params[index];
1990
1991 ctx->major_params_changed[index] = compare_decoding_params(ctx);
1992
1993 ctx->prev_decoding_params = ctx->cur_decoding_params;
1994 ctx->prev_channel_params = ctx->cur_channel_params;
1995 }
1996
1997 ctx->major_number_of_subblocks = ctx->number_of_subblocks;
1998 ctx->major_filter_state_subblock = 1;
1999 ctx->major_cur_subblock_index = 0;
2000 }
2001
analyze_sample_buffer(MLPEncodeContext * ctx)2002 static void analyze_sample_buffer(MLPEncodeContext *ctx)
2003 {
2004 ChannelParams *seq_cp = ctx->seq_channel_params;
2005 DecodingParams *seq_dp = ctx->seq_decoding_params;
2006
2007 ctx->cur_restart_header = &ctx->restart_header;
2008 ctx->cur_decoding_params = seq_dp + 1;
2009 ctx->cur_channel_params = seq_cp + ctx->avctx->ch_layout.nb_channels;
2010
2011 determine_quant_step_size(ctx);
2012 generate_2_noise_channels(ctx);
2013 lossless_matrix_coeffs (ctx);
2014 rematrix_channels (ctx);
2015 determine_filters (ctx);
2016 apply_filters (ctx);
2017
2018 copy_restart_frame_params(ctx);
2019
2020 /* Copy frame_size from frames 0...max to decoding_params 1...max + 1
2021 * decoding_params[0] is for the filter state subblock.
2022 */
2023 for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
2024 DecodingParams *dp = seq_dp + (index + 1);
2025 dp->blocksize = ctx->avctx->frame_size;
2026 }
2027 /* The official encoder seems to always encode a filter state subblock
2028 * even if there are no filters. TODO check if it is possible to skip
2029 * the filter state subblock for no filters.
2030 */
2031 (seq_dp + 0)->blocksize = 8;
2032 (seq_dp + 1)->blocksize -= 8;
2033
2034 for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
2035 ctx->cur_decoding_params = seq_dp + index;
2036 ctx->cur_channel_params = seq_cp + index*(ctx->avctx->ch_layout.nb_channels);
2037 ctx->cur_best_offset = ctx->best_offset[index];
2038 determine_bits(ctx);
2039 ctx->sample_buffer += ctx->cur_decoding_params->blocksize * ctx->num_channels;
2040 }
2041
2042 set_best_codebook(ctx);
2043 }
2044
process_major_frame(MLPEncodeContext * ctx)2045 static void process_major_frame(MLPEncodeContext *ctx)
2046 {
2047 ctx->sample_buffer = ctx->major_inout_buffer;
2048
2049 ctx->number_of_frames = ctx->major_number_of_frames;
2050 ctx->number_of_samples = ctx->major_frame_size;
2051
2052 ctx->cur_restart_header = &ctx->restart_header;
2053
2054 ctx->cur_decoding_params = &ctx->major_decoding_params[1];
2055 ctx->cur_channel_params = ctx->major_channel_params[1];
2056
2057 generate_2_noise_channels(ctx);
2058 rematrix_channels (ctx);
2059
2060 apply_filters(ctx);
2061 }
2062
2063 /****************************************************************************/
2064
mlp_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet)2065 static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
2066 const AVFrame *frame, int *got_packet)
2067 {
2068 MLPEncodeContext *ctx = avctx->priv_data;
2069 int bytes_written = 0;
2070 int channels = avctx->ch_layout.nb_channels;
2071 int restart_frame, ret;
2072 uint8_t *data;
2073
2074 if (!frame && !ctx->last_frames)
2075 ctx->last_frames = (ctx->afq.remaining_samples + avctx->frame_size - 1) / avctx->frame_size;
2076
2077 if (!frame && !ctx->last_frames--)
2078 return 0;
2079
2080 if ((ret = ff_alloc_packet(avctx, avpkt, 87500 * channels)) < 0)
2081 return ret;
2082
2083 if (frame) {
2084 /* add current frame to queue */
2085 if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
2086 return ret;
2087 }
2088
2089 data = frame ? frame->data[0] : NULL;
2090
2091 ctx->frame_index = avctx->frame_number % ctx->max_restart_interval;
2092
2093 ctx->inout_buffer = ctx->major_inout_buffer
2094 + ctx->frame_index * ctx->one_sample_buffer_size;
2095
2096 ctx->sample_buffer = ctx->major_scratch_buffer
2097 + ctx->frame_index * ctx->one_sample_buffer_size;
2098
2099 ctx->write_buffer = ctx->inout_buffer;
2100
2101 if (avctx->frame_number < ctx->max_restart_interval) {
2102 if (data)
2103 goto input_and_return;
2104 }
2105
2106 restart_frame = !ctx->frame_index;
2107
2108 if (restart_frame) {
2109 avpkt->flags |= AV_PKT_FLAG_KEY;
2110 set_major_params(ctx);
2111 if (ctx->min_restart_interval != ctx->max_restart_interval)
2112 process_major_frame(ctx);
2113 }
2114
2115 if (ctx->min_restart_interval == ctx->max_restart_interval)
2116 ctx->write_buffer = ctx->sample_buffer;
2117
2118 bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
2119
2120 ctx->timestamp += avctx->frame_size;
2121 ctx->dts += avctx->frame_size;
2122
2123 input_and_return:
2124
2125 if (frame) {
2126 ctx->shorten_by = avctx->frame_size - frame->nb_samples;
2127 ctx->next_major_frame_size += avctx->frame_size;
2128 ctx->next_major_number_of_frames++;
2129 }
2130 if (data)
2131 input_data(ctx, data, frame->nb_samples);
2132
2133 restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
2134
2135 if (!restart_frame) {
2136 for (unsigned int seq_index = 0; seq_index < ctx->restart_intervals; seq_index++) {
2137 unsigned int number_of_samples;
2138
2139 ctx->sample_buffer = ctx->major_scratch_buffer;
2140 ctx->inout_buffer = ctx->major_inout_buffer;
2141
2142 ctx->number_of_frames = ctx->next_major_number_of_frames;
2143 ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
2144
2145 ctx->seq_channel_params = ctx->channel_params + ctx->seq_offset[seq_index] * channels;
2146
2147 ctx->seq_decoding_params = ctx->decoding_params + ctx->seq_offset[seq_index];
2148
2149 number_of_samples = avctx->frame_size * ctx->number_of_frames;
2150 ctx->number_of_samples = number_of_samples;
2151
2152 for (unsigned int index = 0; index < ctx->seq_size[seq_index]; index++) {
2153 clear_channel_params(ctx->seq_channel_params + index * channels, channels);
2154 default_decoding_params(ctx, ctx->seq_decoding_params + index);
2155 }
2156
2157 input_to_sample_buffer(ctx);
2158
2159 analyze_sample_buffer(ctx);
2160 }
2161
2162 if (ctx->frame_index == (ctx->max_restart_interval - 1)) {
2163 ctx->major_frame_size = ctx->next_major_frame_size;
2164 ctx->next_major_frame_size = 0;
2165 ctx->major_number_of_frames = ctx->next_major_number_of_frames;
2166 ctx->next_major_number_of_frames = 0;
2167 }
2168 }
2169
2170 if (!frame && ctx->last_frames < ctx->max_restart_interval - 1)
2171 avctx->frame_number++;
2172
2173 if (bytes_written > 0) {
2174 ff_af_queue_remove(&ctx->afq,
2175 FFMIN(avctx->frame_size, ctx->afq.remaining_samples),
2176 &avpkt->pts,
2177 &avpkt->duration);
2178
2179 av_shrink_packet(avpkt, bytes_written);
2180
2181 *got_packet = 1;
2182 } else {
2183 *got_packet = 0;
2184 }
2185
2186 return 0;
2187 }
2188
mlp_encode_close(AVCodecContext * avctx)2189 static av_cold int mlp_encode_close(AVCodecContext *avctx)
2190 {
2191 MLPEncodeContext *ctx = avctx->priv_data;
2192
2193 ff_lpc_end(&ctx->lpc_ctx);
2194
2195 av_freep(&ctx->lossless_check_data);
2196 av_freep(&ctx->major_scratch_buffer);
2197 av_freep(&ctx->major_inout_buffer);
2198 av_freep(&ctx->lpc_sample_buffer);
2199 av_freep(&ctx->decoding_params);
2200 av_freep(&ctx->channel_params);
2201 av_freep(&ctx->max_output_bits);
2202 ff_af_queue_close(&ctx->afq);
2203
2204 for (int i = 0; i < NUM_FILTERS; i++)
2205 av_freep(&ctx->filter_state_buffer[i]);
2206
2207 return 0;
2208 }
2209
2210 #if CONFIG_MLP_ENCODER
2211 const FFCodec ff_mlp_encoder = {
2212 .p.name ="mlp",
2213 .p.long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
2214 .p.type = AVMEDIA_TYPE_AUDIO,
2215 .p.id = AV_CODEC_ID_MLP,
2216 .priv_data_size = sizeof(MLPEncodeContext),
2217 .init = mlp_encode_init,
2218 FF_CODEC_ENCODE_CB(mlp_encode_frame),
2219 .close = mlp_encode_close,
2220 .p.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL,
2221 .p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_NONE},
2222 .p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2223 #if FF_API_OLD_CHANNEL_LAYOUT
2224 .p.channel_layouts = ff_mlp_channel_layouts,
2225 #endif
2226 .p.ch_layouts = ff_mlp_ch_layouts,
2227 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
2228 };
2229 #endif
2230 #if CONFIG_TRUEHD_ENCODER
2231 const FFCodec ff_truehd_encoder = {
2232 .p.name ="truehd",
2233 .p.long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
2234 .p.type = AVMEDIA_TYPE_AUDIO,
2235 .p.id = AV_CODEC_ID_TRUEHD,
2236 .priv_data_size = sizeof(MLPEncodeContext),
2237 .init = mlp_encode_init,
2238 FF_CODEC_ENCODE_CB(mlp_encode_frame),
2239 .close = mlp_encode_close,
2240 .p.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL,
2241 .p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_NONE},
2242 .p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2243 #if FF_API_OLD_CHANNEL_LAYOUT
2244 .p.channel_layouts = (const uint64_t[]) {AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_5POINT1_BACK, 0},
2245 #endif
2246 .p.ch_layouts = (const AVChannelLayout[]) {
2247 AV_CHANNEL_LAYOUT_STEREO,
2248 AV_CHANNEL_LAYOUT_5POINT0_BACK,
2249 AV_CHANNEL_LAYOUT_5POINT1_BACK,
2250 { 0 }
2251 },
2252 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
2253 };
2254 #endif
2255