1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46
47 #include <asm/tlb.h>
48 #include "internal.h"
49 #include "slab.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/oom.h>
53
54 int sysctl_panic_on_oom;
55 int sysctl_oom_kill_allocating_task;
56 int sysctl_oom_dump_tasks = 1;
57
58 /*
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
62 *
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 * and mark_oom_victim
65 */
66 DEFINE_MUTEX(oom_lock);
67 /* Serializes oom_score_adj and oom_score_adj_min updates */
68 DEFINE_MUTEX(oom_adj_mutex);
69
is_memcg_oom(struct oom_control * oc)70 static inline bool is_memcg_oom(struct oom_control *oc)
71 {
72 return oc->memcg != NULL;
73 }
74
75 #ifdef CONFIG_NUMA
76 /**
77 * oom_cpuset_eligible() - check task eligiblity for kill
78 * @start: task struct of which task to consider
79 * @oc: pointer to struct oom_control
80 *
81 * Task eligibility is determined by whether or not a candidate task, @tsk,
82 * shares the same mempolicy nodes as current if it is bound by such a policy
83 * and whether or not it has the same set of allowed cpuset nodes.
84 *
85 * This function is assuming oom-killer context and 'current' has triggered
86 * the oom-killer.
87 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)88 static bool oom_cpuset_eligible(struct task_struct *start,
89 struct oom_control *oc)
90 {
91 struct task_struct *tsk;
92 bool ret = false;
93 const nodemask_t *mask = oc->nodemask;
94
95 if (is_memcg_oom(oc))
96 return true;
97
98 rcu_read_lock();
99 for_each_thread(start, tsk) {
100 if (mask) {
101 /*
102 * If this is a mempolicy constrained oom, tsk's
103 * cpuset is irrelevant. Only return true if its
104 * mempolicy intersects current, otherwise it may be
105 * needlessly killed.
106 */
107 ret = mempolicy_nodemask_intersects(tsk, mask);
108 } else {
109 /*
110 * This is not a mempolicy constrained oom, so only
111 * check the mems of tsk's cpuset.
112 */
113 ret = cpuset_mems_allowed_intersects(current, tsk);
114 }
115 if (ret)
116 break;
117 }
118 rcu_read_unlock();
119
120 return ret;
121 }
122 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124 {
125 return true;
126 }
127 #endif /* CONFIG_NUMA */
128
129 /*
130 * The process p may have detached its own ->mm while exiting or through
131 * kthread_use_mm(), but one or more of its subthreads may still have a valid
132 * pointer. Return p, or any of its subthreads with a valid ->mm, with
133 * task_lock() held.
134 */
find_lock_task_mm(struct task_struct * p)135 struct task_struct *find_lock_task_mm(struct task_struct *p)
136 {
137 struct task_struct *t;
138
139 rcu_read_lock();
140
141 for_each_thread(p, t) {
142 task_lock(t);
143 if (likely(t->mm))
144 goto found;
145 task_unlock(t);
146 }
147 t = NULL;
148 found:
149 rcu_read_unlock();
150
151 return t;
152 }
153
154 /*
155 * order == -1 means the oom kill is required by sysrq, otherwise only
156 * for display purposes.
157 */
is_sysrq_oom(struct oom_control * oc)158 static inline bool is_sysrq_oom(struct oom_control *oc)
159 {
160 return oc->order == -1;
161 }
162
163 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)164 static bool oom_unkillable_task(struct task_struct *p)
165 {
166 if (is_global_init(p))
167 return true;
168 if (p->flags & PF_KTHREAD)
169 return true;
170 return false;
171 }
172
173 /*
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
176 */
is_dump_unreclaim_slabs(void)177 static bool is_dump_unreclaim_slabs(void)
178 {
179 unsigned long nr_lru;
180
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
188
189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191
192 /**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 *
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible. The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
200 */
oom_badness(struct task_struct * p,unsigned long totalpages)201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 long points;
204 long adj;
205
206 if (oom_unkillable_task(p))
207 return LONG_MIN;
208
209 p = find_lock_task_mm(p);
210 if (!p)
211 return LONG_MIN;
212
213 /*
214 * Do not even consider tasks which are explicitly marked oom
215 * unkillable or have been already oom reaped or the are in
216 * the middle of vfork
217 */
218 adj = (long)p->signal->oom_score_adj;
219 if (adj == OOM_SCORE_ADJ_MIN ||
220 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 in_vfork(p)) {
222 task_unlock(p);
223 return LONG_MIN;
224 }
225
226 /*
227 * The baseline for the badness score is the proportion of RAM that each
228 * task's rss, pagetable and swap space use.
229 */
230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 task_unlock(p);
233
234 /* Normalize to oom_score_adj units */
235 adj *= totalpages / 1000;
236 points += adj;
237
238 return points;
239 }
240
241 static const char * const oom_constraint_text[] = {
242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247
248 /*
249 * Determine the type of allocation constraint.
250 */
constrained_alloc(struct oom_control * oc)251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 struct zone *zone;
254 struct zoneref *z;
255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 bool cpuset_limited = false;
257 int nid;
258
259 if (is_memcg_oom(oc)) {
260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 return CONSTRAINT_MEMCG;
262 }
263
264 /* Default to all available memory */
265 oc->totalpages = totalram_pages() + total_swap_pages;
266
267 if (!IS_ENABLED(CONFIG_NUMA))
268 return CONSTRAINT_NONE;
269
270 if (!oc->zonelist)
271 return CONSTRAINT_NONE;
272 /*
273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 * to kill current.We have to random task kill in this case.
275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 */
277 if (oc->gfp_mask & __GFP_THISNODE)
278 return CONSTRAINT_NONE;
279
280 /*
281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 * the page allocator means a mempolicy is in effect. Cpuset policy
283 * is enforced in get_page_from_freelist().
284 */
285 if (oc->nodemask &&
286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 oc->totalpages = total_swap_pages;
288 for_each_node_mask(nid, *oc->nodemask)
289 oc->totalpages += node_present_pages(nid);
290 return CONSTRAINT_MEMORY_POLICY;
291 }
292
293 /* Check this allocation failure is caused by cpuset's wall function */
294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 highest_zoneidx, oc->nodemask)
296 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 cpuset_limited = true;
298
299 if (cpuset_limited) {
300 oc->totalpages = total_swap_pages;
301 for_each_node_mask(nid, cpuset_current_mems_allowed)
302 oc->totalpages += node_present_pages(nid);
303 return CONSTRAINT_CPUSET;
304 }
305 return CONSTRAINT_NONE;
306 }
307
oom_evaluate_task(struct task_struct * task,void * arg)308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 struct oom_control *oc = arg;
311 long points;
312
313 if (oom_unkillable_task(task))
314 goto next;
315
316 /* p may not have freeable memory in nodemask */
317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 goto next;
319
320 /*
321 * This task already has access to memory reserves and is being killed.
322 * Don't allow any other task to have access to the reserves unless
323 * the task has MMF_OOM_SKIP because chances that it would release
324 * any memory is quite low.
325 */
326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 goto next;
329 goto abort;
330 }
331
332 /*
333 * If task is allocating a lot of memory and has been marked to be
334 * killed first if it triggers an oom, then select it.
335 */
336 if (oom_task_origin(task)) {
337 points = LONG_MAX;
338 goto select;
339 }
340
341 points = oom_badness(task, oc->totalpages);
342 if (points == LONG_MIN || points < oc->chosen_points)
343 goto next;
344
345 select:
346 if (oc->chosen)
347 put_task_struct(oc->chosen);
348 get_task_struct(task);
349 oc->chosen = task;
350 oc->chosen_points = points;
351 next:
352 return 0;
353 abort:
354 if (oc->chosen)
355 put_task_struct(oc->chosen);
356 oc->chosen = (void *)-1UL;
357 return 1;
358 }
359
360 /*
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
363 */
select_bad_process(struct oom_control * oc)364 static void select_bad_process(struct oom_control *oc)
365 {
366 oc->chosen_points = LONG_MIN;
367
368 if (is_memcg_oom(oc))
369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 else {
371 struct task_struct *p;
372
373 rcu_read_lock();
374 for_each_process(p)
375 if (oom_evaluate_task(p, oc))
376 break;
377 rcu_read_unlock();
378 }
379 }
380
dump_task(struct task_struct * p,void * arg)381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 struct oom_control *oc = arg;
384 struct task_struct *task;
385
386 if (oom_unkillable_task(p))
387 return 0;
388
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 return 0;
392
393 task = find_lock_task_mm(p);
394 if (!task) {
395 /*
396 * This is a kthread or all of p's threads have already
397 * detached their mm's. There's no need to report
398 * them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 mm_pgtables_bytes(task->mm),
407 get_mm_counter(task->mm, MM_SWAPENTS),
408 task->signal->oom_score_adj, task->comm);
409 task_unlock(task);
410
411 return 0;
412 }
413
414 /**
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
417 *
418 * Dumps the current memory state of all eligible tasks. Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * are not shown.
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 */
dump_tasks(struct oom_control * oc)424 static void dump_tasks(struct oom_control *oc)
425 {
426 pr_info("Tasks state (memory values in pages):\n");
427 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
428
429 if (is_memcg_oom(oc))
430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 else {
432 struct task_struct *p;
433
434 rcu_read_lock();
435 for_each_process(p)
436 dump_task(p, oc);
437 rcu_read_unlock();
438 }
439 }
440
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)441 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
442 {
443 /* one line summary of the oom killer context. */
444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 oom_constraint_text[oc->constraint],
446 nodemask_pr_args(oc->nodemask));
447 cpuset_print_current_mems_allowed();
448 mem_cgroup_print_oom_context(oc->memcg, victim);
449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 from_kuid(&init_user_ns, task_uid(victim)));
451 }
452
dump_header(struct oom_control * oc,struct task_struct * p)453 static void dump_header(struct oom_control *oc, struct task_struct *p)
454 {
455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 current->signal->oom_score_adj);
458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 pr_warn("COMPACTION is disabled!!!\n");
460
461 dump_stack();
462 if (is_memcg_oom(oc))
463 mem_cgroup_print_oom_meminfo(oc->memcg);
464 else {
465 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
466 if (is_dump_unreclaim_slabs())
467 dump_unreclaimable_slab();
468 }
469 if (sysctl_oom_dump_tasks)
470 dump_tasks(oc);
471 if (p)
472 dump_oom_summary(oc, p);
473 }
474
475 /*
476 * Number of OOM victims in flight
477 */
478 static atomic_t oom_victims = ATOMIC_INIT(0);
479 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
480
481 static bool oom_killer_disabled __read_mostly;
482
483 #define K(x) ((x) << (PAGE_SHIFT-10))
484
485 /*
486 * task->mm can be NULL if the task is the exited group leader. So to
487 * determine whether the task is using a particular mm, we examine all the
488 * task's threads: if one of those is using this mm then this task was also
489 * using it.
490 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)491 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492 {
493 struct task_struct *t;
494
495 for_each_thread(p, t) {
496 struct mm_struct *t_mm = READ_ONCE(t->mm);
497 if (t_mm)
498 return t_mm == mm;
499 }
500 return false;
501 }
502
503 #ifdef CONFIG_MMU
504 /*
505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
506 * victim (if that is possible) to help the OOM killer to move on.
507 */
508 static struct task_struct *oom_reaper_th;
509 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
510 static struct task_struct *oom_reaper_list;
511 static DEFINE_SPINLOCK(oom_reaper_lock);
512
__oom_reap_task_mm(struct mm_struct * mm)513 bool __oom_reap_task_mm(struct mm_struct *mm)
514 {
515 struct vm_area_struct *vma;
516 bool ret = true;
517
518 /*
519 * Tell all users of get_user/copy_from_user etc... that the content
520 * is no longer stable. No barriers really needed because unmapping
521 * should imply barriers already and the reader would hit a page fault
522 * if it stumbled over a reaped memory.
523 */
524 set_bit(MMF_UNSTABLE, &mm->flags);
525
526 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
527 if (!can_madv_lru_vma(vma))
528 continue;
529
530 /*
531 * Only anonymous pages have a good chance to be dropped
532 * without additional steps which we cannot afford as we
533 * are OOM already.
534 *
535 * We do not even care about fs backed pages because all
536 * which are reclaimable have already been reclaimed and
537 * we do not want to block exit_mmap by keeping mm ref
538 * count elevated without a good reason.
539 */
540 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
541 struct mmu_notifier_range range;
542 struct mmu_gather tlb;
543
544 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
545 vma, mm, vma->vm_start,
546 vma->vm_end);
547 tlb_gather_mmu(&tlb, mm, range.start, range.end);
548 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
549 tlb_finish_mmu(&tlb, range.start, range.end);
550 ret = false;
551 continue;
552 }
553 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
554 mmu_notifier_invalidate_range_end(&range);
555 tlb_finish_mmu(&tlb, range.start, range.end);
556 }
557 }
558
559 return ret;
560 }
561
562 /*
563 * Reaps the address space of the give task.
564 *
565 * Returns true on success and false if none or part of the address space
566 * has been reclaimed and the caller should retry later.
567 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)568 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
569 {
570 bool ret = true;
571
572 if (!mmap_read_trylock(mm)) {
573 trace_skip_task_reaping(tsk->pid);
574 return false;
575 }
576
577 /*
578 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
579 * work on the mm anymore. The check for MMF_OOM_SKIP must run
580 * under mmap_lock for reading because it serializes against the
581 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
582 */
583 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
584 trace_skip_task_reaping(tsk->pid);
585 goto out_unlock;
586 }
587
588 trace_start_task_reaping(tsk->pid);
589
590 /* failed to reap part of the address space. Try again later */
591 ret = __oom_reap_task_mm(mm);
592 if (!ret)
593 goto out_finish;
594
595 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
596 task_pid_nr(tsk), tsk->comm,
597 K(get_mm_counter(mm, MM_ANONPAGES)),
598 K(get_mm_counter(mm, MM_FILEPAGES)),
599 K(get_mm_counter(mm, MM_SHMEMPAGES)));
600 out_finish:
601 trace_finish_task_reaping(tsk->pid);
602 out_unlock:
603 mmap_read_unlock(mm);
604
605 return ret;
606 }
607
608 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)609 static void oom_reap_task(struct task_struct *tsk)
610 {
611 int attempts = 0;
612 struct mm_struct *mm = tsk->signal->oom_mm;
613
614 /* Retry the mmap_read_trylock(mm) a few times */
615 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
616 schedule_timeout_idle(HZ/10);
617
618 if (attempts <= MAX_OOM_REAP_RETRIES ||
619 test_bit(MMF_OOM_SKIP, &mm->flags))
620 goto done;
621
622 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
623 task_pid_nr(tsk), tsk->comm);
624 sched_show_task(tsk);
625 debug_show_all_locks();
626
627 done:
628 tsk->oom_reaper_list = NULL;
629
630 /*
631 * Hide this mm from OOM killer because it has been either reaped or
632 * somebody can't call mmap_write_unlock(mm).
633 */
634 set_bit(MMF_OOM_SKIP, &mm->flags);
635
636 /* Drop a reference taken by queue_oom_reaper */
637 put_task_struct(tsk);
638 }
639
oom_reaper(void * unused)640 static int oom_reaper(void *unused)
641 {
642 while (true) {
643 struct task_struct *tsk = NULL;
644
645 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646 spin_lock_irq(&oom_reaper_lock);
647 if (oom_reaper_list != NULL) {
648 tsk = oom_reaper_list;
649 oom_reaper_list = tsk->oom_reaper_list;
650 }
651 spin_unlock_irq(&oom_reaper_lock);
652
653 if (tsk)
654 oom_reap_task(tsk);
655 }
656
657 return 0;
658 }
659
wake_oom_reaper(struct timer_list * timer)660 static void wake_oom_reaper(struct timer_list *timer)
661 {
662 struct task_struct *tsk = container_of(timer, struct task_struct,
663 oom_reaper_timer);
664 struct mm_struct *mm = tsk->signal->oom_mm;
665 unsigned long flags;
666
667 /* The victim managed to terminate on its own - see exit_mmap */
668 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669 put_task_struct(tsk);
670 return;
671 }
672
673 spin_lock_irqsave(&oom_reaper_lock, flags);
674 tsk->oom_reaper_list = oom_reaper_list;
675 oom_reaper_list = tsk;
676 spin_unlock_irqrestore(&oom_reaper_lock, flags);
677 trace_wake_reaper(tsk->pid);
678 wake_up(&oom_reaper_wait);
679 }
680
681 /*
682 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683 * The timers timeout is arbitrary... the longer it is, the longer the worst
684 * case scenario for the OOM can take. If it is too small, the oom_reaper can
685 * get in the way and release resources needed by the process exit path.
686 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687 * before the exit path is able to wake the futex waiters.
688 */
689 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)690 static void queue_oom_reaper(struct task_struct *tsk)
691 {
692 /* mm is already queued? */
693 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694 return;
695
696 get_task_struct(tsk);
697 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699 add_timer(&tsk->oom_reaper_timer);
700 }
701
oom_init(void)702 static int __init oom_init(void)
703 {
704 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
705 return 0;
706 }
subsys_initcall(oom_init)707 subsys_initcall(oom_init)
708 #else
709 static inline void queue_oom_reaper(struct task_struct *tsk)
710 {
711 }
712 #endif /* CONFIG_MMU */
713
714 /**
715 * mark_oom_victim - mark the given task as OOM victim
716 * @tsk: task to mark
717 *
718 * Has to be called with oom_lock held and never after
719 * oom has been disabled already.
720 *
721 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
722 * under task_lock or operate on the current).
723 */
724 static void mark_oom_victim(struct task_struct *tsk)
725 {
726 struct mm_struct *mm = tsk->mm;
727
728 WARN_ON(oom_killer_disabled);
729 /* OOM killer might race with memcg OOM */
730 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
731 return;
732
733 /* oom_mm is bound to the signal struct life time. */
734 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
735 mmgrab(tsk->signal->oom_mm);
736 set_bit(MMF_OOM_VICTIM, &mm->flags);
737 }
738
739 /*
740 * Make sure that the task is woken up from uninterruptible sleep
741 * if it is frozen because OOM killer wouldn't be able to free
742 * any memory and livelock. freezing_slow_path will tell the freezer
743 * that TIF_MEMDIE tasks should be ignored.
744 */
745 __thaw_task(tsk);
746 atomic_inc(&oom_victims);
747 trace_mark_victim(tsk->pid);
748 }
749
750 /**
751 * exit_oom_victim - note the exit of an OOM victim
752 */
exit_oom_victim(void)753 void exit_oom_victim(void)
754 {
755 clear_thread_flag(TIF_MEMDIE);
756
757 if (!atomic_dec_return(&oom_victims))
758 wake_up_all(&oom_victims_wait);
759 }
760
761 /**
762 * oom_killer_enable - enable OOM killer
763 */
oom_killer_enable(void)764 void oom_killer_enable(void)
765 {
766 oom_killer_disabled = false;
767 pr_info("OOM killer enabled.\n");
768 }
769
770 /**
771 * oom_killer_disable - disable OOM killer
772 * @timeout: maximum timeout to wait for oom victims in jiffies
773 *
774 * Forces all page allocations to fail rather than trigger OOM killer.
775 * Will block and wait until all OOM victims are killed or the given
776 * timeout expires.
777 *
778 * The function cannot be called when there are runnable user tasks because
779 * the userspace would see unexpected allocation failures as a result. Any
780 * new usage of this function should be consulted with MM people.
781 *
782 * Returns true if successful and false if the OOM killer cannot be
783 * disabled.
784 */
oom_killer_disable(signed long timeout)785 bool oom_killer_disable(signed long timeout)
786 {
787 signed long ret;
788
789 /*
790 * Make sure to not race with an ongoing OOM killer. Check that the
791 * current is not killed (possibly due to sharing the victim's memory).
792 */
793 if (mutex_lock_killable(&oom_lock))
794 return false;
795 oom_killer_disabled = true;
796 mutex_unlock(&oom_lock);
797
798 ret = wait_event_interruptible_timeout(oom_victims_wait,
799 !atomic_read(&oom_victims), timeout);
800 if (ret <= 0) {
801 oom_killer_enable();
802 return false;
803 }
804 pr_info("OOM killer disabled.\n");
805
806 return true;
807 }
808
__task_will_free_mem(struct task_struct * task)809 static inline bool __task_will_free_mem(struct task_struct *task)
810 {
811 struct signal_struct *sig = task->signal;
812
813 /*
814 * A coredumping process may sleep for an extended period in exit_mm(),
815 * so the oom killer cannot assume that the process will promptly exit
816 * and release memory.
817 */
818 if (sig->flags & SIGNAL_GROUP_COREDUMP)
819 return false;
820
821 if (sig->flags & SIGNAL_GROUP_EXIT)
822 return true;
823
824 if (thread_group_empty(task) && (task->flags & PF_EXITING))
825 return true;
826
827 return false;
828 }
829
830 /*
831 * Checks whether the given task is dying or exiting and likely to
832 * release its address space. This means that all threads and processes
833 * sharing the same mm have to be killed or exiting.
834 * Caller has to make sure that task->mm is stable (hold task_lock or
835 * it operates on the current).
836 */
task_will_free_mem(struct task_struct * task)837 static bool task_will_free_mem(struct task_struct *task)
838 {
839 struct mm_struct *mm = task->mm;
840 struct task_struct *p;
841 bool ret = true;
842
843 /*
844 * Skip tasks without mm because it might have passed its exit_mm and
845 * exit_oom_victim. oom_reaper could have rescued that but do not rely
846 * on that for now. We can consider find_lock_task_mm in future.
847 */
848 if (!mm)
849 return false;
850
851 if (!__task_will_free_mem(task))
852 return false;
853
854 /*
855 * This task has already been drained by the oom reaper so there are
856 * only small chances it will free some more
857 */
858 if (test_bit(MMF_OOM_SKIP, &mm->flags))
859 return false;
860
861 if (atomic_read(&mm->mm_users) <= 1)
862 return true;
863
864 /*
865 * Make sure that all tasks which share the mm with the given tasks
866 * are dying as well to make sure that a) nobody pins its mm and
867 * b) the task is also reapable by the oom reaper.
868 */
869 rcu_read_lock();
870 for_each_process(p) {
871 if (!process_shares_mm(p, mm))
872 continue;
873 if (same_thread_group(task, p))
874 continue;
875 ret = __task_will_free_mem(p);
876 if (!ret)
877 break;
878 }
879 rcu_read_unlock();
880
881 return ret;
882 }
883
__oom_kill_process(struct task_struct * victim,const char * message)884 static void __oom_kill_process(struct task_struct *victim, const char *message)
885 {
886 struct task_struct *p;
887 struct mm_struct *mm;
888 bool can_oom_reap = true;
889
890 p = find_lock_task_mm(victim);
891 if (!p) {
892 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
893 message, task_pid_nr(victim), victim->comm);
894 put_task_struct(victim);
895 return;
896 } else if (victim != p) {
897 get_task_struct(p);
898 put_task_struct(victim);
899 victim = p;
900 }
901
902 /* Get a reference to safely compare mm after task_unlock(victim) */
903 mm = victim->mm;
904 mmgrab(mm);
905
906 /* Raise event before sending signal: task reaper must see this */
907 count_vm_event(OOM_KILL);
908 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
909
910 /*
911 * We should send SIGKILL before granting access to memory reserves
912 * in order to prevent the OOM victim from depleting the memory
913 * reserves from the user space under its control.
914 */
915 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
916 mark_oom_victim(victim);
917 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
918 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
919 K(get_mm_counter(mm, MM_ANONPAGES)),
920 K(get_mm_counter(mm, MM_FILEPAGES)),
921 K(get_mm_counter(mm, MM_SHMEMPAGES)),
922 from_kuid(&init_user_ns, task_uid(victim)),
923 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
924 task_unlock(victim);
925
926 /*
927 * Kill all user processes sharing victim->mm in other thread groups, if
928 * any. They don't get access to memory reserves, though, to avoid
929 * depletion of all memory. This prevents mm->mmap_lock livelock when an
930 * oom killed thread cannot exit because it requires the semaphore and
931 * its contended by another thread trying to allocate memory itself.
932 * That thread will now get access to memory reserves since it has a
933 * pending fatal signal.
934 */
935 rcu_read_lock();
936 for_each_process(p) {
937 if (!process_shares_mm(p, mm))
938 continue;
939 if (same_thread_group(p, victim))
940 continue;
941 if (is_global_init(p)) {
942 can_oom_reap = false;
943 set_bit(MMF_OOM_SKIP, &mm->flags);
944 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
945 task_pid_nr(victim), victim->comm,
946 task_pid_nr(p), p->comm);
947 continue;
948 }
949 /*
950 * No kthead_use_mm() user needs to read from the userspace so
951 * we are ok to reap it.
952 */
953 if (unlikely(p->flags & PF_KTHREAD))
954 continue;
955 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
956 }
957 rcu_read_unlock();
958
959 if (can_oom_reap)
960 queue_oom_reaper(victim);
961
962 mmdrop(mm);
963 put_task_struct(victim);
964 }
965 #undef K
966
967 /*
968 * Kill provided task unless it's secured by setting
969 * oom_score_adj to OOM_SCORE_ADJ_MIN.
970 */
oom_kill_memcg_member(struct task_struct * task,void * message)971 static int oom_kill_memcg_member(struct task_struct *task, void *message)
972 {
973 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
974 !is_global_init(task)) {
975 get_task_struct(task);
976 __oom_kill_process(task, message);
977 }
978 return 0;
979 }
980
oom_kill_process(struct oom_control * oc,const char * message)981 static void oom_kill_process(struct oom_control *oc, const char *message)
982 {
983 struct task_struct *victim = oc->chosen;
984 struct mem_cgroup *oom_group;
985 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
986 DEFAULT_RATELIMIT_BURST);
987
988 /*
989 * If the task is already exiting, don't alarm the sysadmin or kill
990 * its children or threads, just give it access to memory reserves
991 * so it can die quickly
992 */
993 task_lock(victim);
994 if (task_will_free_mem(victim)) {
995 mark_oom_victim(victim);
996 queue_oom_reaper(victim);
997 task_unlock(victim);
998 put_task_struct(victim);
999 return;
1000 }
1001 task_unlock(victim);
1002
1003 if (__ratelimit(&oom_rs))
1004 dump_header(oc, victim);
1005
1006 /*
1007 * Do we need to kill the entire memory cgroup?
1008 * Or even one of the ancestor memory cgroups?
1009 * Check this out before killing the victim task.
1010 */
1011 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1012
1013 __oom_kill_process(victim, message);
1014
1015 /*
1016 * If necessary, kill all tasks in the selected memory cgroup.
1017 */
1018 if (oom_group) {
1019 mem_cgroup_print_oom_group(oom_group);
1020 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1021 (void*)message);
1022 mem_cgroup_put(oom_group);
1023 }
1024 }
1025
1026 /*
1027 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1028 */
check_panic_on_oom(struct oom_control * oc)1029 static void check_panic_on_oom(struct oom_control *oc)
1030 {
1031 if (likely(!sysctl_panic_on_oom))
1032 return;
1033 if (sysctl_panic_on_oom != 2) {
1034 /*
1035 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1036 * does not panic for cpuset, mempolicy, or memcg allocation
1037 * failures.
1038 */
1039 if (oc->constraint != CONSTRAINT_NONE)
1040 return;
1041 }
1042 /* Do not panic for oom kills triggered by sysrq */
1043 if (is_sysrq_oom(oc))
1044 return;
1045 dump_header(oc, NULL);
1046 panic("Out of memory: %s panic_on_oom is enabled\n",
1047 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1048 }
1049
1050 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1051
register_oom_notifier(struct notifier_block * nb)1052 int register_oom_notifier(struct notifier_block *nb)
1053 {
1054 return blocking_notifier_chain_register(&oom_notify_list, nb);
1055 }
1056 EXPORT_SYMBOL_GPL(register_oom_notifier);
1057
unregister_oom_notifier(struct notifier_block * nb)1058 int unregister_oom_notifier(struct notifier_block *nb)
1059 {
1060 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1061 }
1062 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1063
1064 /**
1065 * out_of_memory - kill the "best" process when we run out of memory
1066 * @oc: pointer to struct oom_control
1067 *
1068 * If we run out of memory, we have the choice between either
1069 * killing a random task (bad), letting the system crash (worse)
1070 * OR try to be smart about which process to kill. Note that we
1071 * don't have to be perfect here, we just have to be good.
1072 */
out_of_memory(struct oom_control * oc)1073 bool out_of_memory(struct oom_control *oc)
1074 {
1075 unsigned long freed = 0;
1076
1077 if (oom_killer_disabled)
1078 return false;
1079
1080 if (!is_memcg_oom(oc)) {
1081 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1082 if (freed > 0)
1083 /* Got some memory back in the last second. */
1084 return true;
1085 }
1086
1087 /*
1088 * If current has a pending SIGKILL or is exiting, then automatically
1089 * select it. The goal is to allow it to allocate so that it may
1090 * quickly exit and free its memory.
1091 */
1092 if (task_will_free_mem(current)) {
1093 mark_oom_victim(current);
1094 queue_oom_reaper(current);
1095 return true;
1096 }
1097
1098 /*
1099 * The OOM killer does not compensate for IO-less reclaim.
1100 * pagefault_out_of_memory lost its gfp context so we have to
1101 * make sure exclude 0 mask - all other users should have at least
1102 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1103 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1104 */
1105 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1106 return true;
1107
1108 /*
1109 * Check if there were limitations on the allocation (only relevant for
1110 * NUMA and memcg) that may require different handling.
1111 */
1112 oc->constraint = constrained_alloc(oc);
1113 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1114 oc->nodemask = NULL;
1115 check_panic_on_oom(oc);
1116
1117 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1118 current->mm && !oom_unkillable_task(current) &&
1119 oom_cpuset_eligible(current, oc) &&
1120 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1121 get_task_struct(current);
1122 oc->chosen = current;
1123 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1124 return true;
1125 }
1126
1127 select_bad_process(oc);
1128 /* Found nothing?!?! */
1129 if (!oc->chosen) {
1130 dump_header(oc, NULL);
1131 pr_warn("Out of memory and no killable processes...\n");
1132 /*
1133 * If we got here due to an actual allocation at the
1134 * system level, we cannot survive this and will enter
1135 * an endless loop in the allocator. Bail out now.
1136 */
1137 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1138 panic("System is deadlocked on memory\n");
1139 }
1140 if (oc->chosen && oc->chosen != (void *)-1UL)
1141 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1142 "Memory cgroup out of memory");
1143 return !!oc->chosen;
1144 }
1145
1146 /*
1147 * The pagefault handler calls here because some allocation has failed. We have
1148 * to take care of the memcg OOM here because this is the only safe context without
1149 * any locks held but let the oom killer triggered from the allocation context care
1150 * about the global OOM.
1151 */
pagefault_out_of_memory(void)1152 void pagefault_out_of_memory(void)
1153 {
1154 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1155 DEFAULT_RATELIMIT_BURST);
1156
1157 if (mem_cgroup_oom_synchronize(true))
1158 return;
1159
1160 if (fatal_signal_pending(current))
1161 return;
1162
1163 if (__ratelimit(&pfoom_rs))
1164 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1165 }
1166