1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/core/SkGlyph.h"
9
10 #include "src/core/SkArenaAlloc.h"
11 #include "src/core/SkScalerContext.h"
12 #include "src/pathops/SkPathOpsCubic.h"
13 #include "src/pathops/SkPathOpsQuad.h"
14
mask() const15 SkMask SkGlyph::mask() const {
16 SkMask mask;
17 mask.fImage = (uint8_t*)fImage;
18 mask.fBounds.setXYWH(fLeft, fTop, fWidth, fHeight);
19 mask.fRowBytes = this->rowBytes();
20 mask.fFormat = fMaskFormat;
21 return mask;
22 }
23
mask(SkPoint position) const24 SkMask SkGlyph::mask(SkPoint position) const {
25 SkMask answer = this->mask();
26 answer.fBounds.offset(SkScalarFloorToInt(position.x()), SkScalarFloorToInt(position.y()));
27 return answer;
28 }
29
zeroMetrics()30 void SkGlyph::zeroMetrics() {
31 fAdvanceX = 0;
32 fAdvanceY = 0;
33 fWidth = 0;
34 fHeight = 0;
35 fTop = 0;
36 fLeft = 0;
37 }
38
bits_to_bytes(size_t bits)39 static size_t bits_to_bytes(size_t bits) {
40 return (bits + 7) >> 3;
41 }
42
format_alignment(SkMask::Format format)43 static size_t format_alignment(SkMask::Format format) {
44 switch (format) {
45 case SkMask::kBW_Format:
46 case SkMask::kA8_Format:
47 case SkMask::k3D_Format:
48 case SkMask::kSDF_Format:
49 return alignof(uint8_t);
50 case SkMask::kARGB32_Format:
51 return alignof(uint32_t);
52 case SkMask::kLCD16_Format:
53 return alignof(uint16_t);
54 default:
55 SK_ABORT("Unknown mask format.");
56 break;
57 }
58 return 0;
59 }
60
format_rowbytes(int width,SkMask::Format format)61 static size_t format_rowbytes(int width, SkMask::Format format) {
62 return format == SkMask::kBW_Format ? bits_to_bytes(width)
63 : width * format_alignment(format);
64 }
65
formatAlignment() const66 size_t SkGlyph::formatAlignment() const {
67 return format_alignment(this->maskFormat());
68 }
69
allocImage(SkArenaAlloc * alloc)70 size_t SkGlyph::allocImage(SkArenaAlloc* alloc) {
71 SkASSERT(!this->isEmpty());
72 auto size = this->imageSize();
73 fImage = alloc->makeBytesAlignedTo(size, this->formatAlignment());
74
75 return size;
76 }
77
setImage(SkArenaAlloc * alloc,SkScalerContext * scalerContext)78 bool SkGlyph::setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext) {
79 if (!this->setImageHasBeenCalled()) {
80 // It used to be that getImage() could change the fMaskFormat. Extra checking to make
81 // sure there are no regressions.
82 SkDEBUGCODE(SkMask::Format oldFormat = this->maskFormat());
83 this->allocImage(alloc);
84 scalerContext->getImage(*this);
85 SkASSERT(oldFormat == this->maskFormat());
86 return true;
87 }
88 return false;
89 }
90
setImage(SkArenaAlloc * alloc,const void * image)91 bool SkGlyph::setImage(SkArenaAlloc* alloc, const void* image) {
92 if (!this->setImageHasBeenCalled()) {
93 this->allocImage(alloc);
94 memcpy(fImage, image, this->imageSize());
95 return true;
96 }
97 return false;
98 }
99
setMetricsAndImage(SkArenaAlloc * alloc,const SkGlyph & from)100 size_t SkGlyph::setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from) {
101 // Since the code no longer tries to find replacement glyphs, the image should always be
102 // nullptr.
103 SkASSERT(fImage == nullptr);
104
105 // TODO(herb): remove "if" when we are sure there are no colliding glyphs.
106 if (fImage == nullptr) {
107 fAdvanceX = from.fAdvanceX;
108 fAdvanceY = from.fAdvanceY;
109 fWidth = from.fWidth;
110 fHeight = from.fHeight;
111 fTop = from.fTop;
112 fLeft = from.fLeft;
113 fForceBW = from.fForceBW;
114 fMaskFormat = from.fMaskFormat;
115
116 // From glyph may not have an image because the glyph is too large.
117 if (from.fImage != nullptr && this->setImage(alloc, from.image())) {
118 return this->imageSize();
119 }
120 }
121 return 0;
122 }
123
rowBytes() const124 size_t SkGlyph::rowBytes() const {
125 return format_rowbytes(fWidth, fMaskFormat);
126 }
127
rowBytesUsingFormat(SkMask::Format format) const128 size_t SkGlyph::rowBytesUsingFormat(SkMask::Format format) const {
129 return format_rowbytes(fWidth, format);
130 }
131
imageSize() const132 size_t SkGlyph::imageSize() const {
133 if (this->isEmpty() || this->imageTooLarge()) { return 0; }
134
135 size_t size = this->rowBytes() * fHeight;
136
137 if (fMaskFormat == SkMask::k3D_Format) {
138 size *= 3;
139 }
140
141 return size;
142 }
143
installPath(SkArenaAlloc * alloc,const SkPath * path)144 void SkGlyph::installPath(SkArenaAlloc* alloc, const SkPath* path) {
145 SkASSERT(fPathData == nullptr);
146 SkASSERT(!this->setPathHasBeenCalled());
147 fPathData = alloc->make<SkGlyph::PathData>();
148 if (path != nullptr) {
149 fPathData->fPath = *path;
150 fPathData->fPath.updateBoundsCache();
151 fPathData->fPath.getGenerationID();
152 fPathData->fHasPath = true;
153 }
154 }
155
setPath(SkArenaAlloc * alloc,SkScalerContext * scalerContext)156 bool SkGlyph::setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext) {
157 if (!this->setPathHasBeenCalled()) {
158 SkPath path;
159 if (scalerContext->getPath(this->getPackedID(), &path)) {
160 this->installPath(alloc, &path);
161 } else {
162 this->installPath(alloc, nullptr);
163 }
164 return this->path() != nullptr;
165 }
166
167 return false;
168 }
169
setPath(SkArenaAlloc * alloc,const SkPath * path)170 bool SkGlyph::setPath(SkArenaAlloc* alloc, const SkPath* path) {
171 if (!this->setPathHasBeenCalled()) {
172 this->installPath(alloc, path);
173 return this->path() != nullptr;
174 }
175 return false;
176 }
177
path() const178 const SkPath* SkGlyph::path() const {
179 // setPath must have been called previously.
180 SkASSERT(this->setPathHasBeenCalled());
181 if (fPathData->fHasPath) {
182 return &fPathData->fPath;
183 }
184 return nullptr;
185 }
186
calculate_path_gap(SkScalar topOffset,SkScalar bottomOffset,const SkPath & path)187 static std::tuple<SkScalar, SkScalar> calculate_path_gap(
188 SkScalar topOffset, SkScalar bottomOffset, const SkPath& path) {
189
190 // Left and Right of an ever expanding gap around the path.
191 SkScalar left = SK_ScalarMax,
192 right = SK_ScalarMin;
193 auto expandGap = [&left, &right](SkScalar v) {
194 left = std::min(left, v);
195 right = std::max(right, v);
196 };
197
198 // Handle all the different verbs for the path.
199 SkPoint pts[4];
200 auto addLine = [&expandGap, &pts](SkScalar offset) {
201 SkScalar t = sk_ieee_float_divide(offset - pts[0].fY, pts[1].fY - pts[0].fY);
202 if (0 <= t && t < 1) { // this handles divide by zero above
203 expandGap(pts[0].fX + t * (pts[1].fX - pts[0].fX));
204 }
205 };
206
207 auto addQuad = [&expandGap, &pts](SkScalar offset) {
208 SkDQuad quad;
209 quad.set(pts);
210 double roots[2];
211 int count = quad.horizontalIntersect(offset, roots);
212 while (--count >= 0) {
213 expandGap(quad.ptAtT(roots[count]).asSkPoint().fX);
214 }
215 };
216
217 auto addCubic = [&expandGap, &pts](SkScalar offset) {
218 SkDCubic cubic;
219 cubic.set(pts);
220 double roots[3];
221 int count = cubic.horizontalIntersect(offset, roots);
222 while (--count >= 0) {
223 expandGap(cubic.ptAtT(roots[count]).asSkPoint().fX);
224 }
225 };
226
227 // Handle when a verb's points are in the gap between top and bottom.
228 auto addPts = [&expandGap, &pts, topOffset, bottomOffset](int ptCount) {
229 for (int i = 0; i < ptCount; ++i) {
230 if (topOffset < pts[i].fY && pts[i].fY < bottomOffset) {
231 expandGap(pts[i].fX);
232 }
233 }
234 };
235
236 SkPath::Iter iter(path, false);
237 SkPath::Verb verb;
238 while (SkPath::kDone_Verb != (verb = iter.next(pts))) {
239 switch (verb) {
240 case SkPath::kMove_Verb: {
241 break;
242 }
243 case SkPath::kLine_Verb: {
244 addLine(topOffset);
245 addLine(bottomOffset);
246 addPts(2);
247 break;
248 }
249 case SkPath::kQuad_Verb: {
250 SkScalar quadTop = std::min(std::min(pts[0].fY, pts[1].fY), pts[2].fY);
251 if (bottomOffset < quadTop) { break; }
252 SkScalar quadBottom = std::max(std::max(pts[0].fY, pts[1].fY), pts[2].fY);
253 if (topOffset > quadBottom) { break; }
254 addQuad(topOffset);
255 addQuad(bottomOffset);
256 addPts(3);
257 break;
258 }
259 case SkPath::kConic_Verb: {
260 SkASSERT(0); // no support for text composed of conics
261 break;
262 }
263 case SkPath::kCubic_Verb: {
264 SkScalar quadTop =
265 std::min(std::min(std::min(pts[0].fY, pts[1].fY), pts[2].fY), pts[3].fY);
266 if (bottomOffset < quadTop) { break; }
267 SkScalar quadBottom =
268 std::max(std::max(std::max(pts[0].fY, pts[1].fY), pts[2].fY), pts[3].fY);
269 if (topOffset > quadBottom) { break; }
270 addCubic(topOffset);
271 addCubic(bottomOffset);
272 addPts(4);
273 break;
274 }
275 case SkPath::kClose_Verb: {
276 break;
277 }
278 default: {
279 SkASSERT(0);
280 break;
281 }
282 }
283 }
284
285 return std::tie(left, right);
286 }
287
ensureIntercepts(const SkScalar * bounds,SkScalar scale,SkScalar xPos,SkScalar * array,int * count,SkArenaAlloc * alloc)288 void SkGlyph::ensureIntercepts(const SkScalar* bounds, SkScalar scale, SkScalar xPos,
289 SkScalar* array, int* count, SkArenaAlloc* alloc) {
290
291 auto offsetResults = [scale, xPos](
292 const SkGlyph::Intercept* intercept,SkScalar* array, int* count) {
293 if (array) {
294 array += *count;
295 for (int index = 0; index < 2; index++) {
296 *array++ = intercept->fInterval[index] * scale + xPos;
297 }
298 }
299 *count += 2;
300 };
301
302 const SkGlyph::Intercept* match =
303 [this](const SkScalar bounds[2]) -> const SkGlyph::Intercept* {
304 if (!fPathData) {
305 return nullptr;
306 }
307 const SkGlyph::Intercept* intercept = fPathData->fIntercept;
308 while (intercept) {
309 if (bounds[0] == intercept->fBounds[0] && bounds[1] == intercept->fBounds[1]) {
310 return intercept;
311 }
312 intercept = intercept->fNext;
313 }
314 return nullptr;
315 }(bounds);
316
317 if (match) {
318 if (match->fInterval[0] < match->fInterval[1]) {
319 offsetResults(match, array, count);
320 }
321 return;
322 }
323
324 SkGlyph::Intercept* intercept = alloc->make<SkGlyph::Intercept>();
325 intercept->fNext = fPathData->fIntercept;
326 intercept->fBounds[0] = bounds[0];
327 intercept->fBounds[1] = bounds[1];
328 intercept->fInterval[0] = SK_ScalarMax;
329 intercept->fInterval[1] = SK_ScalarMin;
330 fPathData->fIntercept = intercept;
331 const SkPath* path = &(fPathData->fPath);
332 const SkRect& pathBounds = path->getBounds();
333 if (pathBounds.fBottom < bounds[0] || bounds[1] < pathBounds.fTop) {
334 return;
335 }
336
337 std::tie(intercept->fInterval[0], intercept->fInterval[1])
338 = calculate_path_gap(bounds[0], bounds[1], *path);
339
340 if (intercept->fInterval[0] >= intercept->fInterval[1]) {
341 intercept->fInterval[0] = SK_ScalarMax;
342 intercept->fInterval[1] = SK_ScalarMin;
343 return;
344 }
345 offsetResults(intercept, array, count);
346 }
347