• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
23 
24 #include <stdatomic.h>
25 
26 #include "config.h"
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/common.h"
30 #include "libavutil/frame.h"
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/log.h"
33 #include "libavutil/mem_internal.h"
34 #include "libavutil/pixfmt.h"
35 #include "libavutil/pixdesc.h"
36 #include "libavutil/slicethread.h"
37 #include "libavutil/ppc/util_altivec.h"
38 
39 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
40 
41 #define YUVRGB_TABLE_HEADROOM 512
42 #define YUVRGB_TABLE_LUMA_HEADROOM 512
43 
44 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
45 
46 #define DITHER1XBPP
47 
48 #if HAVE_BIGENDIAN
49 #define ALT32_CORR (-1)
50 #else
51 #define ALT32_CORR   1
52 #endif
53 
54 #if ARCH_X86_64
55 #   define APCK_PTR2  8
56 #   define APCK_COEF 16
57 #   define APCK_SIZE 24
58 #else
59 #   define APCK_PTR2  4
60 #   define APCK_COEF  8
61 #   define APCK_SIZE 16
62 #endif
63 
64 #define RETCODE_USE_CASCADE -12345
65 
66 struct SwsContext;
67 
68 typedef enum SwsDither {
69     SWS_DITHER_NONE = 0,
70     SWS_DITHER_AUTO,
71     SWS_DITHER_BAYER,
72     SWS_DITHER_ED,
73     SWS_DITHER_A_DITHER,
74     SWS_DITHER_X_DITHER,
75     NB_SWS_DITHER,
76 } SwsDither;
77 
78 typedef enum SwsAlphaBlend {
79     SWS_ALPHA_BLEND_NONE  = 0,
80     SWS_ALPHA_BLEND_UNIFORM,
81     SWS_ALPHA_BLEND_CHECKERBOARD,
82     SWS_ALPHA_BLEND_NB,
83 } SwsAlphaBlend;
84 
85 typedef struct Range {
86     unsigned int start;
87     unsigned int len;
88 } Range;
89 
90 typedef struct RangeList {
91     Range          *ranges;
92     unsigned int nb_ranges;
93     int             ranges_allocated;
94 } RangeList;
95 
96 int ff_range_add(RangeList *r, unsigned int start, unsigned int len);
97 
98 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
99                        int srcStride[], int srcSliceY, int srcSliceH,
100                        uint8_t *dst[], int dstStride[]);
101 
102 /**
103  * Write one line of horizontally scaled data to planar output
104  * without any additional vertical scaling (or point-scaling).
105  *
106  * @param src     scaled source data, 15 bits for 8-10-bit output,
107  *                19 bits for 16-bit output (in int32_t)
108  * @param dest    pointer to the output plane. For >8-bit
109  *                output, this is in uint16_t
110  * @param dstW    width of destination in pixels
111  * @param dither  ordered dither array of type int16_t and size 8
112  * @param offset  Dither offset
113  */
114 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
115                                const uint8_t *dither, int offset);
116 
117 /**
118  * Write one line of horizontally scaled data to planar output
119  * with multi-point vertical scaling between input pixels.
120  *
121  * @param filter        vertical luma/alpha scaling coefficients, 12 bits [0,4096]
122  * @param src           scaled luma (Y) or alpha (A) source data, 15 bits for
123  *                      8-10-bit output, 19 bits for 16-bit output (in int32_t)
124  * @param filterSize    number of vertical input lines to scale
125  * @param dest          pointer to output plane. For >8-bit
126  *                      output, this is in uint16_t
127  * @param dstW          width of destination pixels
128  * @param offset        Dither offset
129  */
130 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
131                                const int16_t **src, uint8_t *dest, int dstW,
132                                const uint8_t *dither, int offset);
133 
134 /**
135  * Write one line of horizontally scaled chroma to interleaved output
136  * with multi-point vertical scaling between input pixels.
137  *
138  * @param dstFormat     destination pixel format
139  * @param chrDither     ordered dither array of type uint8_t and size 8
140  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
141  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit
142  *                      output, 19 bits for 16-bit output (in int32_t)
143  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit
144  *                      output, 19 bits for 16-bit output (in int32_t)
145  * @param chrFilterSize number of vertical chroma input lines to scale
146  * @param dest          pointer to the output plane. For >8-bit
147  *                      output, this is in uint16_t
148  * @param dstW          width of chroma planes
149  */
150 typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat,
151                                     const uint8_t *chrDither,
152                                     const int16_t *chrFilter,
153                                     int chrFilterSize,
154                                     const int16_t **chrUSrc,
155                                     const int16_t **chrVSrc,
156                                     uint8_t *dest, int dstW);
157 
158 /**
159  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
160  * output without any additional vertical scaling (or point-scaling). Note
161  * that this function may do chroma scaling, see the "uvalpha" argument.
162  *
163  * @param c       SWS scaling context
164  * @param lumSrc  scaled luma (Y) source data, 15 bits for 8-10-bit output,
165  *                19 bits for 16-bit output (in int32_t)
166  * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
167  *                19 bits for 16-bit output (in int32_t)
168  * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
169  *                19 bits for 16-bit output (in int32_t)
170  * @param alpSrc  scaled alpha (A) source data, 15 bits for 8-10-bit output,
171  *                19 bits for 16-bit output (in int32_t)
172  * @param dest    pointer to the output plane. For 16-bit output, this is
173  *                uint16_t
174  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
175  *                to write into dest[]
176  * @param uvalpha chroma scaling coefficient for the second line of chroma
177  *                pixels, either 2048 or 0. If 0, one chroma input is used
178  *                for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
179  *                is set, it generates 1 output pixel). If 2048, two chroma
180  *                input pixels should be averaged for 2 output pixels (this
181  *                only happens if SWS_FLAG_FULL_CHR_INT is not set)
182  * @param y       vertical line number for this output. This does not need
183  *                to be used to calculate the offset in the destination,
184  *                but can be used to generate comfort noise using dithering
185  *                for some output formats.
186  */
187 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
188                                const int16_t *chrUSrc[2],
189                                const int16_t *chrVSrc[2],
190                                const int16_t *alpSrc, uint8_t *dest,
191                                int dstW, int uvalpha, int y);
192 /**
193  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
194  * output by doing bilinear scaling between two input lines.
195  *
196  * @param c       SWS scaling context
197  * @param lumSrc  scaled luma (Y) source data, 15 bits for 8-10-bit output,
198  *                19 bits for 16-bit output (in int32_t)
199  * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
200  *                19 bits for 16-bit output (in int32_t)
201  * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
202  *                19 bits for 16-bit output (in int32_t)
203  * @param alpSrc  scaled alpha (A) source data, 15 bits for 8-10-bit output,
204  *                19 bits for 16-bit output (in int32_t)
205  * @param dest    pointer to the output plane. For 16-bit output, this is
206  *                uint16_t
207  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
208  *                to write into dest[]
209  * @param yalpha  luma/alpha scaling coefficients for the second input line.
210  *                The first line's coefficients can be calculated by using
211  *                4096 - yalpha
212  * @param uvalpha chroma scaling coefficient for the second input line. The
213  *                first line's coefficients can be calculated by using
214  *                4096 - uvalpha
215  * @param y       vertical line number for this output. This does not need
216  *                to be used to calculate the offset in the destination,
217  *                but can be used to generate comfort noise using dithering
218  *                for some output formats.
219  */
220 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
221                                const int16_t *chrUSrc[2],
222                                const int16_t *chrVSrc[2],
223                                const int16_t *alpSrc[2],
224                                uint8_t *dest,
225                                int dstW, int yalpha, int uvalpha, int y);
226 /**
227  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
228  * output by doing multi-point vertical scaling between input pixels.
229  *
230  * @param c             SWS scaling context
231  * @param lumFilter     vertical luma/alpha scaling coefficients, 12 bits [0,4096]
232  * @param lumSrc        scaled luma (Y) source data, 15 bits for 8-10-bit output,
233  *                      19 bits for 16-bit output (in int32_t)
234  * @param lumFilterSize number of vertical luma/alpha input lines to scale
235  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
236  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit output,
237  *                      19 bits for 16-bit output (in int32_t)
238  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit output,
239  *                      19 bits for 16-bit output (in int32_t)
240  * @param chrFilterSize number of vertical chroma input lines to scale
241  * @param alpSrc        scaled alpha (A) source data, 15 bits for 8-10-bit output,
242  *                      19 bits for 16-bit output (in int32_t)
243  * @param dest          pointer to the output plane. For 16-bit output, this is
244  *                      uint16_t
245  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
246  *                      to write into dest[]
247  * @param y             vertical line number for this output. This does not need
248  *                      to be used to calculate the offset in the destination,
249  *                      but can be used to generate comfort noise using dithering
250  *                      or some output formats.
251  */
252 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
253                                const int16_t **lumSrc, int lumFilterSize,
254                                const int16_t *chrFilter,
255                                const int16_t **chrUSrc,
256                                const int16_t **chrVSrc, int chrFilterSize,
257                                const int16_t **alpSrc, uint8_t *dest,
258                                int dstW, int y);
259 
260 /**
261  * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
262  * output by doing multi-point vertical scaling between input pixels.
263  *
264  * @param c             SWS scaling context
265  * @param lumFilter     vertical luma/alpha scaling coefficients, 12 bits [0,4096]
266  * @param lumSrc        scaled luma (Y) source data, 15 bits for 8-10-bit output,
267  *                      19 bits for 16-bit output (in int32_t)
268  * @param lumFilterSize number of vertical luma/alpha input lines to scale
269  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
270  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit output,
271  *                      19 bits for 16-bit output (in int32_t)
272  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit output,
273  *                      19 bits for 16-bit output (in int32_t)
274  * @param chrFilterSize number of vertical chroma input lines to scale
275  * @param alpSrc        scaled alpha (A) source data, 15 bits for 8-10-bit output,
276  *                      19 bits for 16-bit output (in int32_t)
277  * @param dest          pointer to the output planes. For 16-bit output, this is
278  *                      uint16_t
279  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
280  *                      to write into dest[]
281  * @param y             vertical line number for this output. This does not need
282  *                      to be used to calculate the offset in the destination,
283  *                      but can be used to generate comfort noise using dithering
284  *                      or some output formats.
285  */
286 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
287                             const int16_t **lumSrc, int lumFilterSize,
288                             const int16_t *chrFilter,
289                             const int16_t **chrUSrc,
290                             const int16_t **chrVSrc, int chrFilterSize,
291                             const int16_t **alpSrc, uint8_t **dest,
292                             int dstW, int y);
293 
294 struct SwsSlice;
295 struct SwsFilterDescriptor;
296 
297 /* This struct should be aligned on at least a 32-byte boundary. */
298 typedef struct SwsContext {
299     /**
300      * info on struct for av_log
301      */
302     const AVClass *av_class;
303 
304     struct SwsContext *parent;
305 
306     AVSliceThread      *slicethread;
307     struct SwsContext **slice_ctx;
308     int                *slice_err;
309     int              nb_slice_ctx;
310 
311     // values passed to current sws_receive_slice() call
312     int dst_slice_start;
313     int dst_slice_height;
314 
315     /**
316      * Note that src, dst, srcStride, dstStride will be copied in the
317      * sws_scale() wrapper so they can be freely modified here.
318      */
319     SwsFunc convert_unscaled;
320     int srcW;                     ///< Width  of source      luma/alpha planes.
321     int srcH;                     ///< Height of source      luma/alpha planes.
322     int dstH;                     ///< Height of destination luma/alpha planes.
323     int chrSrcW;                  ///< Width  of source      chroma     planes.
324     int chrSrcH;                  ///< Height of source      chroma     planes.
325     int chrDstW;                  ///< Width  of destination chroma     planes.
326     int chrDstH;                  ///< Height of destination chroma     planes.
327     int lumXInc, chrXInc;
328     int lumYInc, chrYInc;
329     enum AVPixelFormat dstFormat; ///< Destination pixel format.
330     enum AVPixelFormat srcFormat; ///< Source      pixel format.
331     int dstFormatBpp;             ///< Number of bits per pixel of the destination pixel format.
332     int srcFormatBpp;             ///< Number of bits per pixel of the source      pixel format.
333     int dstBpc, srcBpc;
334     int chrSrcHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source      image.
335     int chrSrcVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in source      image.
336     int chrDstHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
337     int chrDstVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in destination image.
338     int vChrDrop;                 ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
339     int sliceDir;                 ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
340     int nb_threads;               ///< Number of threads used for scaling
341     double param[2];              ///< Input parameters for scaling algorithms that need them.
342 
343     AVFrame *frame_src;
344     AVFrame *frame_dst;
345 
346     RangeList src_ranges;
347 
348     /* The cascaded_* fields allow spliting a scaler task into multiple
349      * sequential steps, this is for example used to limit the maximum
350      * downscaling factor that needs to be supported in one scaler.
351      */
352     struct SwsContext *cascaded_context[3];
353     int cascaded_tmpStride[4];
354     uint8_t *cascaded_tmp[4];
355     int cascaded1_tmpStride[4];
356     uint8_t *cascaded1_tmp[4];
357     int cascaded_mainindex;
358 
359     double gamma_value;
360     int gamma_flag;
361     int is_internal_gamma;
362     uint16_t *gamma;
363     uint16_t *inv_gamma;
364 
365     int numDesc;
366     int descIndex[2];
367     int numSlice;
368     struct SwsSlice *slice;
369     struct SwsFilterDescriptor *desc;
370 
371     uint32_t pal_yuv[256];
372     uint32_t pal_rgb[256];
373 
374     float uint2float_lut[256];
375 
376     /**
377      * @name Scaled horizontal lines ring buffer.
378      * The horizontal scaler keeps just enough scaled lines in a ring buffer
379      * so they may be passed to the vertical scaler. The pointers to the
380      * allocated buffers for each line are duplicated in sequence in the ring
381      * buffer to simplify indexing and avoid wrapping around between lines
382      * inside the vertical scaler code. The wrapping is done before the
383      * vertical scaler is called.
384      */
385     //@{
386     int lastInLumBuf;             ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
387     int lastInChrBuf;             ///< Last scaled horizontal chroma     line from source in the ring buffer.
388     //@}
389 
390     uint8_t *formatConvBuffer;
391     int needAlpha;
392 
393     /**
394      * @name Horizontal and vertical filters.
395      * To better understand the following fields, here is a pseudo-code of
396      * their usage in filtering a horizontal line:
397      * @code
398      * for (i = 0; i < width; i++) {
399      *     dst[i] = 0;
400      *     for (j = 0; j < filterSize; j++)
401      *         dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
402      *     dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
403      * }
404      * @endcode
405      */
406     //@{
407     int16_t *hLumFilter;          ///< Array of horizontal filter coefficients for luma/alpha planes.
408     int16_t *hChrFilter;          ///< Array of horizontal filter coefficients for chroma     planes.
409     int16_t *vLumFilter;          ///< Array of vertical   filter coefficients for luma/alpha planes.
410     int16_t *vChrFilter;          ///< Array of vertical   filter coefficients for chroma     planes.
411     int32_t *hLumFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
412     int32_t *hChrFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for chroma     planes.
413     int32_t *vLumFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for luma/alpha planes.
414     int32_t *vChrFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for chroma     planes.
415     int hLumFilterSize;           ///< Horizontal filter size for luma/alpha pixels.
416     int hChrFilterSize;           ///< Horizontal filter size for chroma     pixels.
417     int vLumFilterSize;           ///< Vertical   filter size for luma/alpha pixels.
418     int vChrFilterSize;           ///< Vertical   filter size for chroma     pixels.
419     //@}
420 
421     int lumMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
422     int chrMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
423     uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
424     uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
425 
426     int canMMXEXTBeUsed;
427     int warned_unuseable_bilinear;
428 
429     int dstY;                     ///< Last destination vertical line output from last slice.
430     int flags;                    ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
431     void *yuvTable;             // pointer to the yuv->rgb table start so it can be freed()
432     // alignment ensures the offset can be added in a single
433     // instruction on e.g. ARM
434     DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
435     uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
436     uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
437     uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
438     DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
439 #define RY_IDX 0
440 #define GY_IDX 1
441 #define BY_IDX 2
442 #define RU_IDX 3
443 #define GU_IDX 4
444 #define BU_IDX 5
445 #define RV_IDX 6
446 #define GV_IDX 7
447 #define BV_IDX 8
448 #define RGB2YUV_SHIFT 15
449 
450     int *dither_error[4];
451 
452     //Colorspace stuff
453     int contrast, brightness, saturation;    // for sws_getColorspaceDetails
454     int srcColorspaceTable[4];
455     int dstColorspaceTable[4];
456     int srcRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (source      image).
457     int dstRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
458     int src0Alpha;
459     int dst0Alpha;
460     int srcXYZ;
461     int dstXYZ;
462     int src_h_chr_pos;
463     int dst_h_chr_pos;
464     int src_v_chr_pos;
465     int dst_v_chr_pos;
466     int yuv2rgb_y_offset;
467     int yuv2rgb_y_coeff;
468     int yuv2rgb_v2r_coeff;
469     int yuv2rgb_v2g_coeff;
470     int yuv2rgb_u2g_coeff;
471     int yuv2rgb_u2b_coeff;
472 
473 #define RED_DITHER            "0*8"
474 #define GREEN_DITHER          "1*8"
475 #define BLUE_DITHER           "2*8"
476 #define Y_COEFF               "3*8"
477 #define VR_COEFF              "4*8"
478 #define UB_COEFF              "5*8"
479 #define VG_COEFF              "6*8"
480 #define UG_COEFF              "7*8"
481 #define Y_OFFSET              "8*8"
482 #define U_OFFSET              "9*8"
483 #define V_OFFSET              "10*8"
484 #define LUM_MMX_FILTER_OFFSET "11*8"
485 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
486 #define DSTW_OFFSET           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
487 #define ESP_OFFSET            "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
488 #define VROUNDER_OFFSET       "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
489 #define U_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
490 #define V_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
491 #define Y_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
492 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
493 #define UV_OFF_PX             "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
494 #define UV_OFF_BYTE           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
495 #define DITHER16              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
496 #define DITHER32              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
497 #define DITHER32_INT          (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
498 
499     DECLARE_ALIGNED(8, uint64_t, redDither);
500     DECLARE_ALIGNED(8, uint64_t, greenDither);
501     DECLARE_ALIGNED(8, uint64_t, blueDither);
502 
503     DECLARE_ALIGNED(8, uint64_t, yCoeff);
504     DECLARE_ALIGNED(8, uint64_t, vrCoeff);
505     DECLARE_ALIGNED(8, uint64_t, ubCoeff);
506     DECLARE_ALIGNED(8, uint64_t, vgCoeff);
507     DECLARE_ALIGNED(8, uint64_t, ugCoeff);
508     DECLARE_ALIGNED(8, uint64_t, yOffset);
509     DECLARE_ALIGNED(8, uint64_t, uOffset);
510     DECLARE_ALIGNED(8, uint64_t, vOffset);
511     int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
512     int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
513     int dstW;                     ///< Width  of destination luma/alpha planes.
514     DECLARE_ALIGNED(8, uint64_t, esp);
515     DECLARE_ALIGNED(8, uint64_t, vRounder);
516     DECLARE_ALIGNED(8, uint64_t, u_temp);
517     DECLARE_ALIGNED(8, uint64_t, v_temp);
518     DECLARE_ALIGNED(8, uint64_t, y_temp);
519     int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
520     // alignment of these values is not necessary, but merely here
521     // to maintain the same offset across x8632 and x86-64. Once we
522     // use proper offset macros in the asm, they can be removed.
523     DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
524     DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
525     DECLARE_ALIGNED(8, uint16_t, dither16)[8];
526     DECLARE_ALIGNED(8, uint32_t, dither32)[8];
527 
528     const uint8_t *chrDither8, *lumDither8;
529 
530 #if HAVE_ALTIVEC
531     vector signed short   CY;
532     vector signed short   CRV;
533     vector signed short   CBU;
534     vector signed short   CGU;
535     vector signed short   CGV;
536     vector signed short   OY;
537     vector unsigned short CSHIFT;
538     vector signed short  *vYCoeffsBank, *vCCoeffsBank;
539 #endif
540 
541     int use_mmx_vfilter;
542 
543 /* pre defined color-spaces gamma */
544 #define XYZ_GAMMA (2.6f)
545 #define RGB_GAMMA (2.2f)
546     int16_t *xyzgamma;
547     int16_t *rgbgamma;
548     int16_t *xyzgammainv;
549     int16_t *rgbgammainv;
550     int16_t xyz2rgb_matrix[3][4];
551     int16_t rgb2xyz_matrix[3][4];
552 
553     /* function pointers for swscale() */
554     yuv2planar1_fn yuv2plane1;
555     yuv2planarX_fn yuv2planeX;
556     yuv2interleavedX_fn yuv2nv12cX;
557     yuv2packed1_fn yuv2packed1;
558     yuv2packed2_fn yuv2packed2;
559     yuv2packedX_fn yuv2packedX;
560     yuv2anyX_fn yuv2anyX;
561 
562     /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
563     void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
564                       int width, uint32_t *pal);
565     /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
566     void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
567                       int width, uint32_t *pal);
568     /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
569     void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
570                       const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
571                       int width, uint32_t *pal);
572 
573     /**
574      * Functions to read planar input, such as planar RGB, and convert
575      * internally to Y/UV/A.
576      */
577     /** @{ */
578     void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
579     void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
580                           int width, int32_t *rgb2yuv);
581     void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
582     /** @} */
583 
584     /**
585      * Scale one horizontal line of input data using a bilinear filter
586      * to produce one line of output data. Compared to SwsContext->hScale(),
587      * please take note of the following caveats when using these:
588      * - Scaling is done using only 7 bits instead of 14-bit coefficients.
589      * - You can use no more than 5 input pixels to produce 4 output
590      *   pixels. Therefore, this filter should not be used for downscaling
591      *   by more than ~20% in width (because that equals more than 5/4th
592      *   downscaling and thus more than 5 pixels input per 4 pixels output).
593      * - In general, bilinear filters create artifacts during downscaling
594      *   (even when <20%), because one output pixel will span more than one
595      *   input pixel, and thus some pixels will need edges of both neighbor
596      *   pixels to interpolate the output pixel. Since you can use at most
597      *   two input pixels per output pixel in bilinear scaling, this is
598      *   impossible and thus downscaling by any size will create artifacts.
599      * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
600      * in SwsContext->flags.
601      */
602     /** @{ */
603     void (*hyscale_fast)(struct SwsContext *c,
604                          int16_t *dst, int dstWidth,
605                          const uint8_t *src, int srcW, int xInc);
606     void (*hcscale_fast)(struct SwsContext *c,
607                          int16_t *dst1, int16_t *dst2, int dstWidth,
608                          const uint8_t *src1, const uint8_t *src2,
609                          int srcW, int xInc);
610     /** @} */
611 
612     /**
613      * Scale one horizontal line of input data using a filter over the input
614      * lines, to produce one (differently sized) line of output data.
615      *
616      * @param dst        pointer to destination buffer for horizontally scaled
617      *                   data. If the number of bits per component of one
618      *                   destination pixel (SwsContext->dstBpc) is <= 10, data
619      *                   will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
620      *                   SwsContext->dstBpc == 16), data will be 19bpc in
621      *                   32 bits (int32_t) width.
622      * @param dstW       width of destination image
623      * @param src        pointer to source data to be scaled. If the number of
624      *                   bits per component of a source pixel (SwsContext->srcBpc)
625      *                   is 8, this is 8bpc in 8 bits (uint8_t) width. Else
626      *                   (i.e. SwsContext->dstBpc > 8), this is native depth
627      *                   in 16 bits (uint16_t) width. In other words, for 9-bit
628      *                   YUV input, this is 9bpc, for 10-bit YUV input, this is
629      *                   10bpc, and for 16-bit RGB or YUV, this is 16bpc.
630      * @param filter     filter coefficients to be used per output pixel for
631      *                   scaling. This contains 14bpp filtering coefficients.
632      *                   Guaranteed to contain dstW * filterSize entries.
633      * @param filterPos  position of the first input pixel to be used for
634      *                   each output pixel during scaling. Guaranteed to
635      *                   contain dstW entries.
636      * @param filterSize the number of input coefficients to be used (and
637      *                   thus the number of input pixels to be used) for
638      *                   creating a single output pixel. Is aligned to 4
639      *                   (and input coefficients thus padded with zeroes)
640      *                   to simplify creating SIMD code.
641      */
642     /** @{ */
643     void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
644                     const uint8_t *src, const int16_t *filter,
645                     const int32_t *filterPos, int filterSize);
646     void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
647                     const uint8_t *src, const int16_t *filter,
648                     const int32_t *filterPos, int filterSize);
649     /** @} */
650 
651     /// Color range conversion function for luma plane if needed.
652     void (*lumConvertRange)(int16_t *dst, int width);
653     /// Color range conversion function for chroma planes if needed.
654     void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
655 
656     int needs_hcscale; ///< Set if there are chroma planes to be converted.
657 
658     SwsDither dither;
659 
660     SwsAlphaBlend alphablend;
661 
662     // scratch buffer for converting packed rgb0 sources
663     // filled with a copy of the input frame + fully opaque alpha,
664     // then passed as input to further conversion
665     uint8_t     *rgb0_scratch;
666     unsigned int rgb0_scratch_allocated;
667 
668     // scratch buffer for converting XYZ sources
669     // filled with the input converted to rgb48
670     // then passed as input to further conversion
671     uint8_t     *xyz_scratch;
672     unsigned int xyz_scratch_allocated;
673 
674     unsigned int dst_slice_align;
675     atomic_int   stride_unaligned_warned;
676     atomic_int   data_unaligned_warned;
677 } SwsContext;
678 //FIXME check init (where 0)
679 
680 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
681 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
682                              int fullRange, int brightness,
683                              int contrast, int saturation);
684 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
685                                 int brightness, int contrast, int saturation);
686 
687 void ff_updateMMXDitherTables(SwsContext *c, int dstY);
688 
689 av_cold void ff_sws_init_range_convert(SwsContext *c);
690 
691 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
692 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
693 
is16BPS(enum AVPixelFormat pix_fmt)694 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
695 {
696     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
697     av_assert0(desc);
698     return desc->comp[0].depth == 16;
699 }
700 
is32BPS(enum AVPixelFormat pix_fmt)701 static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
702 {
703     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
704     av_assert0(desc);
705     return desc->comp[0].depth == 32;
706 }
707 
isNBPS(enum AVPixelFormat pix_fmt)708 static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
709 {
710     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
711     av_assert0(desc);
712     return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14;
713 }
714 
isBE(enum AVPixelFormat pix_fmt)715 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
716 {
717     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
718     av_assert0(desc);
719     return desc->flags & AV_PIX_FMT_FLAG_BE;
720 }
721 
isYUV(enum AVPixelFormat pix_fmt)722 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
723 {
724     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
725     av_assert0(desc);
726     return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
727 }
728 
isPlanarYUV(enum AVPixelFormat pix_fmt)729 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
730 {
731     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
732     av_assert0(desc);
733     return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
734 }
735 
736 /*
737  * Identity semi-planar YUV formats. Specifically, those are YUV formats
738  * where the second and third components (U & V) are on the same plane.
739  */
isSemiPlanarYUV(enum AVPixelFormat pix_fmt)740 static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt)
741 {
742     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
743     av_assert0(desc);
744     return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane);
745 }
746 
isRGB(enum AVPixelFormat pix_fmt)747 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
748 {
749     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
750     av_assert0(desc);
751     return (desc->flags & AV_PIX_FMT_FLAG_RGB);
752 }
753 
isGray(enum AVPixelFormat pix_fmt)754 static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
755 {
756     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
757     av_assert0(desc);
758     return !(desc->flags & AV_PIX_FMT_FLAG_PAL) &&
759            !(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) &&
760            desc->nb_components <= 2 &&
761            pix_fmt != AV_PIX_FMT_MONOBLACK &&
762            pix_fmt != AV_PIX_FMT_MONOWHITE;
763 }
764 
isRGBinInt(enum AVPixelFormat pix_fmt)765 static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt)
766 {
767     return pix_fmt == AV_PIX_FMT_RGB48BE     ||
768            pix_fmt == AV_PIX_FMT_RGB48LE     ||
769            pix_fmt == AV_PIX_FMT_RGB32       ||
770            pix_fmt == AV_PIX_FMT_RGB32_1     ||
771            pix_fmt == AV_PIX_FMT_RGB24       ||
772            pix_fmt == AV_PIX_FMT_RGB565BE    ||
773            pix_fmt == AV_PIX_FMT_RGB565LE    ||
774            pix_fmt == AV_PIX_FMT_RGB555BE    ||
775            pix_fmt == AV_PIX_FMT_RGB555LE    ||
776            pix_fmt == AV_PIX_FMT_RGB444BE    ||
777            pix_fmt == AV_PIX_FMT_RGB444LE    ||
778            pix_fmt == AV_PIX_FMT_RGB8        ||
779            pix_fmt == AV_PIX_FMT_RGB4        ||
780            pix_fmt == AV_PIX_FMT_RGB4_BYTE   ||
781            pix_fmt == AV_PIX_FMT_RGBA64BE    ||
782            pix_fmt == AV_PIX_FMT_RGBA64LE    ||
783            pix_fmt == AV_PIX_FMT_MONOBLACK   ||
784            pix_fmt == AV_PIX_FMT_MONOWHITE;
785 }
786 
isBGRinInt(enum AVPixelFormat pix_fmt)787 static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt)
788 {
789     return pix_fmt == AV_PIX_FMT_BGR48BE     ||
790            pix_fmt == AV_PIX_FMT_BGR48LE     ||
791            pix_fmt == AV_PIX_FMT_BGR32       ||
792            pix_fmt == AV_PIX_FMT_BGR32_1     ||
793            pix_fmt == AV_PIX_FMT_BGR24       ||
794            pix_fmt == AV_PIX_FMT_BGR565BE    ||
795            pix_fmt == AV_PIX_FMT_BGR565LE    ||
796            pix_fmt == AV_PIX_FMT_BGR555BE    ||
797            pix_fmt == AV_PIX_FMT_BGR555LE    ||
798            pix_fmt == AV_PIX_FMT_BGR444BE    ||
799            pix_fmt == AV_PIX_FMT_BGR444LE    ||
800            pix_fmt == AV_PIX_FMT_BGR8        ||
801            pix_fmt == AV_PIX_FMT_BGR4        ||
802            pix_fmt == AV_PIX_FMT_BGR4_BYTE   ||
803            pix_fmt == AV_PIX_FMT_BGRA64BE    ||
804            pix_fmt == AV_PIX_FMT_BGRA64LE    ||
805            pix_fmt == AV_PIX_FMT_MONOBLACK   ||
806            pix_fmt == AV_PIX_FMT_MONOWHITE;
807 }
808 
isBayer(enum AVPixelFormat pix_fmt)809 static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
810 {
811     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
812     av_assert0(desc);
813     return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER);
814 }
815 
isBayer16BPS(enum AVPixelFormat pix_fmt)816 static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
817 {
818     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
819     av_assert0(desc);
820     return desc->comp[1].depth == 8;
821 }
822 
isAnyRGB(enum AVPixelFormat pix_fmt)823 static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
824 {
825     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
826     av_assert0(desc);
827     return (desc->flags & AV_PIX_FMT_FLAG_RGB) ||
828             pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
829 }
830 
isFloat(enum AVPixelFormat pix_fmt)831 static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
832 {
833     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
834     av_assert0(desc);
835     return desc->flags & AV_PIX_FMT_FLAG_FLOAT;
836 }
837 
isALPHA(enum AVPixelFormat pix_fmt)838 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
839 {
840     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
841     av_assert0(desc);
842     if (pix_fmt == AV_PIX_FMT_PAL8)
843         return 1;
844     return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
845 }
846 
isPacked(enum AVPixelFormat pix_fmt)847 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
848 {
849     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
850     av_assert0(desc);
851     return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
852             pix_fmt == AV_PIX_FMT_PAL8 ||
853             pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
854 }
855 
isPlanar(enum AVPixelFormat pix_fmt)856 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
857 {
858     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
859     av_assert0(desc);
860     return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
861 }
862 
isPackedRGB(enum AVPixelFormat pix_fmt)863 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
864 {
865     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
866     av_assert0(desc);
867     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
868 }
869 
isPlanarRGB(enum AVPixelFormat pix_fmt)870 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
871 {
872     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
873     av_assert0(desc);
874     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
875             (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
876 }
877 
usePal(enum AVPixelFormat pix_fmt)878 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
879 {
880     switch (pix_fmt) {
881     case AV_PIX_FMT_PAL8:
882     case AV_PIX_FMT_BGR4_BYTE:
883     case AV_PIX_FMT_BGR8:
884     case AV_PIX_FMT_GRAY8:
885     case AV_PIX_FMT_RGB4_BYTE:
886     case AV_PIX_FMT_RGB8:
887         return 1;
888     default:
889         return 0;
890     }
891 }
892 
893 /*
894  * Identity formats where the data is in the high bits, and the low bits are shifted away.
895  */
isDataInHighBits(enum AVPixelFormat pix_fmt)896 static av_always_inline int isDataInHighBits(enum AVPixelFormat pix_fmt)
897 {
898     int i;
899     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
900     av_assert0(desc);
901     if (desc->flags & (AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_HWACCEL))
902         return 0;
903     for (i = 0; i < desc->nb_components; i++) {
904         if (!desc->comp[i].shift)
905             return 0;
906         if ((desc->comp[i].shift + desc->comp[i].depth) & 0x7)
907             return 0;
908     }
909     return 1;
910 }
911 
912 /*
913  * Identity formats where the chroma planes are swapped (CrCb order).
914  */
isSwappedChroma(enum AVPixelFormat pix_fmt)915 static av_always_inline int isSwappedChroma(enum AVPixelFormat pix_fmt)
916 {
917     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
918     av_assert0(desc);
919     if (!isYUV(pix_fmt))
920         return 0;
921     if ((desc->flags & AV_PIX_FMT_FLAG_ALPHA) && desc->nb_components < 4)
922         return 0;
923     if (desc->nb_components < 3)
924         return 0;
925     if (!isPlanarYUV(pix_fmt) || isSemiPlanarYUV(pix_fmt))
926         return desc->comp[1].offset > desc->comp[2].offset;
927     else
928         return desc->comp[1].plane > desc->comp[2].plane;
929 }
930 
931 extern const uint64_t ff_dither4[2];
932 extern const uint64_t ff_dither8[2];
933 
934 extern const uint8_t ff_dither_2x2_4[3][8];
935 extern const uint8_t ff_dither_2x2_8[3][8];
936 extern const uint8_t ff_dither_4x4_16[5][8];
937 extern const uint8_t ff_dither_8x8_32[9][8];
938 extern const uint8_t ff_dither_8x8_73[9][8];
939 extern const uint8_t ff_dither_8x8_128[9][8];
940 extern const uint8_t ff_dither_8x8_220[9][8];
941 
942 extern const int32_t ff_yuv2rgb_coeffs[11][4];
943 
944 extern const AVClass ff_sws_context_class;
945 
946 /**
947  * Set c->convert_unscaled to an unscaled converter if one exists for the
948  * specific source and destination formats, bit depths, flags, etc.
949  */
950 void ff_get_unscaled_swscale(SwsContext *c);
951 void ff_get_unscaled_swscale_ppc(SwsContext *c);
952 void ff_get_unscaled_swscale_arm(SwsContext *c);
953 void ff_get_unscaled_swscale_aarch64(SwsContext *c);
954 
955 void ff_sws_init_scale(SwsContext *c);
956 
957 void ff_sws_init_input_funcs(SwsContext *c);
958 void ff_sws_init_output_funcs(SwsContext *c,
959                               yuv2planar1_fn *yuv2plane1,
960                               yuv2planarX_fn *yuv2planeX,
961                               yuv2interleavedX_fn *yuv2nv12cX,
962                               yuv2packed1_fn *yuv2packed1,
963                               yuv2packed2_fn *yuv2packed2,
964                               yuv2packedX_fn *yuv2packedX,
965                               yuv2anyX_fn *yuv2anyX);
966 void ff_sws_init_swscale_ppc(SwsContext *c);
967 void ff_sws_init_swscale_vsx(SwsContext *c);
968 void ff_sws_init_swscale_x86(SwsContext *c);
969 void ff_sws_init_swscale_aarch64(SwsContext *c);
970 void ff_sws_init_swscale_arm(SwsContext *c);
971 
972 void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
973                        const uint8_t *src, int srcW, int xInc);
974 void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
975                        int dstWidth, const uint8_t *src1,
976                        const uint8_t *src2, int srcW, int xInc);
977 int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
978                            int16_t *filter, int32_t *filterPos,
979                            int numSplits);
980 void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
981                             int dstWidth, const uint8_t *src,
982                             int srcW, int xInc);
983 void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
984                             int dstWidth, const uint8_t *src1,
985                             const uint8_t *src2, int srcW, int xInc);
986 
987 /**
988  * Allocate and return an SwsContext.
989  * This is like sws_getContext() but does not perform the init step, allowing
990  * the user to set additional AVOptions.
991  *
992  * @see sws_getContext()
993  */
994 struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
995                                       int dstW, int dstH, enum AVPixelFormat dstFormat,
996                                       int flags, const double *param);
997 
998 int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[],
999                           int srcStride[], int srcSliceY, int srcSliceH,
1000                           uint8_t *dst[], int dstStride[]);
1001 
fillPlane16(uint8_t * plane,int stride,int width,int height,int y,int alpha,int bits,const int big_endian)1002 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
1003                                int alpha, int bits, const int big_endian)
1004 {
1005     int i, j;
1006     uint8_t *ptr = plane + stride * y;
1007     int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1));
1008     for (i = 0; i < height; i++) {
1009 #define FILL(wfunc) \
1010         for (j = 0; j < width; j++) {\
1011             wfunc(ptr+2*j, v);\
1012         }
1013         if (big_endian) {
1014             FILL(AV_WB16);
1015         } else {
1016             FILL(AV_WL16);
1017         }
1018         ptr += stride;
1019     }
1020 #undef FILL
1021 }
1022 
fillPlane32(uint8_t * plane,int stride,int width,int height,int y,int alpha,int bits,const int big_endian,int is_float)1023 static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y,
1024                                int alpha, int bits, const int big_endian, int is_float)
1025 {
1026     int i, j;
1027     uint8_t *ptr = plane + stride * y;
1028     uint32_t v;
1029     uint32_t onef32 = 0x3f800000;
1030     if (is_float)
1031         v = alpha ? onef32 : 0;
1032     else
1033         v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1));
1034 
1035     for (i = 0; i < height; i++) {
1036 #define FILL(wfunc) \
1037         for (j = 0; j < width; j++) {\
1038             wfunc(ptr+4*j, v);\
1039         }
1040         if (big_endian) {
1041             FILL(AV_WB32);
1042         } else {
1043             FILL(AV_WL32);
1044         }
1045         ptr += stride;
1046     }
1047 #undef FILL
1048 }
1049 
1050 
1051 #define MAX_SLICE_PLANES 4
1052 
1053 /// Slice plane
1054 typedef struct SwsPlane
1055 {
1056     int available_lines;    ///< max number of lines that can be hold by this plane
1057     int sliceY;             ///< index of first line
1058     int sliceH;             ///< number of lines
1059     uint8_t **line;         ///< line buffer
1060     uint8_t **tmp;          ///< Tmp line buffer used by mmx code
1061 } SwsPlane;
1062 
1063 /**
1064  * Struct which defines a slice of an image to be scaled or an output for
1065  * a scaled slice.
1066  * A slice can also be used as intermediate ring buffer for scaling steps.
1067  */
1068 typedef struct SwsSlice
1069 {
1070     int width;              ///< Slice line width
1071     int h_chr_sub_sample;   ///< horizontal chroma subsampling factor
1072     int v_chr_sub_sample;   ///< vertical chroma subsampling factor
1073     int is_ring;            ///< flag to identify if this slice is a ring buffer
1074     int should_free_lines;  ///< flag to identify if there are dynamic allocated lines
1075     enum AVPixelFormat fmt; ///< planes pixel format
1076     SwsPlane plane[MAX_SLICE_PLANES];   ///< color planes
1077 } SwsSlice;
1078 
1079 /**
1080  * Struct which holds all necessary data for processing a slice.
1081  * A processing step can be a color conversion or horizontal/vertical scaling.
1082  */
1083 typedef struct SwsFilterDescriptor
1084 {
1085     SwsSlice *src;  ///< Source slice
1086     SwsSlice *dst;  ///< Output slice
1087 
1088     int alpha;      ///< Flag for processing alpha channel
1089     void *instance; ///< Filter instance data
1090 
1091     /// Function for processing input slice sliceH lines starting from line sliceY
1092     int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH);
1093 } SwsFilterDescriptor;
1094 
1095 // warp input lines in the form (src + width*i + j) to slice format (line[i][j])
1096 // relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]
1097 int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative);
1098 
1099 // Initialize scaler filter descriptor chain
1100 int ff_init_filters(SwsContext *c);
1101 
1102 // Free all filter data
1103 int ff_free_filters(SwsContext *c);
1104 
1105 /*
1106  function for applying ring buffer logic into slice s
1107  It checks if the slice can hold more @lum lines, if yes
1108  do nothing otherwise remove @lum least used lines.
1109  It applies the same procedure for @chr lines.
1110 */
1111 int ff_rotate_slice(SwsSlice *s, int lum, int chr);
1112 
1113 /// initializes gamma conversion descriptor
1114 int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table);
1115 
1116 /// initializes lum pixel format conversion descriptor
1117 int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1118 
1119 /// initializes lum horizontal scaling descriptor
1120 int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1121 
1122 /// initializes chr pixel format conversion descriptor
1123 int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1124 
1125 /// initializes chr horizontal scaling descriptor
1126 int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1127 
1128 int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst);
1129 
1130 /// initializes vertical scaling descriptors
1131 int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst);
1132 
1133 /// setup vertical scaler functions
1134 void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX,
1135     yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2,
1136     yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx);
1137 
1138 void ff_sws_slice_worker(void *priv, int jobnr, int threadnr,
1139                          int nb_jobs, int nb_threads);
1140 
1141 //number of extra lines to process
1142 #define MAX_LINES_AHEAD 4
1143 
1144 //shuffle filter and filterPos for hyScale and hcScale filters in avx2
1145 int ff_shuffle_filter_coefficients(SwsContext *c, int* filterPos, int filterSize, int16_t *filter, int dstW);
1146 #endif /* SWSCALE_SWSCALE_INTERNAL_H */
1147