• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 // FIXME: This option is only to test if the strict fp operation processed
92 // correctly by preventing mutating strict fp operation to normal fp operation
93 // during development. When the backend supports strict float operation, this
94 // option will be meaningless.
95 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
96        cl::desc("Don't mutate strict-float node to a legalize node"),
97        cl::init(false), cl::Hidden);
98 
darwinHasSinCos(const Triple & TT)99 static bool darwinHasSinCos(const Triple &TT) {
100   assert(TT.isOSDarwin() && "should be called with darwin triple");
101   // Don't bother with 32 bit x86.
102   if (TT.getArch() == Triple::x86)
103     return false;
104   // Macos < 10.9 has no sincos_stret.
105   if (TT.isMacOSX())
106     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
107   // iOS < 7.0 has no sincos_stret.
108   if (TT.isiOS())
109     return !TT.isOSVersionLT(7, 0);
110   // Any other darwin such as WatchOS/TvOS is new enough.
111   return true;
112 }
113 
114 // Although this default value is arbitrary, it is not random. It is assumed
115 // that a condition that evaluates the same way by a higher percentage than this
116 // is best represented as control flow. Therefore, the default value N should be
117 // set such that the win from N% correct executions is greater than the loss
118 // from (100 - N)% mispredicted executions for the majority of intended targets.
119 static cl::opt<int> MinPercentageForPredictableBranch(
120     "min-predictable-branch", cl::init(99),
121     cl::desc("Minimum percentage (0-100) that a condition must be either true "
122              "or false to assume that the condition is predictable"),
123     cl::Hidden);
124 
InitLibcalls(const Triple & TT)125 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
126 #define HANDLE_LIBCALL(code, name) \
127   setLibcallName(RTLIB::code, name);
128 #include "llvm/IR/RuntimeLibcalls.def"
129 #undef HANDLE_LIBCALL
130   // Initialize calling conventions to their default.
131   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
132     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
133 
134   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
135   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
136     setLibcallName(RTLIB::ADD_F128, "__addkf3");
137     setLibcallName(RTLIB::SUB_F128, "__subkf3");
138     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
139     setLibcallName(RTLIB::DIV_F128, "__divkf3");
140     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
141     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
142     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
143     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
144     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
145     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
146     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
147     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
148     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
149     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
150     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
151     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
152     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
153     setLibcallName(RTLIB::UNE_F128, "__nekf2");
154     setLibcallName(RTLIB::OGE_F128, "__gekf2");
155     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
156     setLibcallName(RTLIB::OLE_F128, "__lekf2");
157     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
158     setLibcallName(RTLIB::UO_F128, "__unordkf2");
159   }
160 
161   // A few names are different on particular architectures or environments.
162   if (TT.isOSDarwin()) {
163     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
164     // of the gnueabi-style __gnu_*_ieee.
165     // FIXME: What about other targets?
166     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
167     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
168 
169     // Some darwins have an optimized __bzero/bzero function.
170     switch (TT.getArch()) {
171     case Triple::x86:
172     case Triple::x86_64:
173       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
174         setLibcallName(RTLIB::BZERO, "__bzero");
175       break;
176     case Triple::aarch64:
177     case Triple::aarch64_32:
178       setLibcallName(RTLIB::BZERO, "bzero");
179       break;
180     default:
181       break;
182     }
183 
184     if (darwinHasSinCos(TT)) {
185       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
186       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
187       if (TT.isWatchABI()) {
188         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
189                               CallingConv::ARM_AAPCS_VFP);
190         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
191                               CallingConv::ARM_AAPCS_VFP);
192       }
193     }
194   } else {
195     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
196     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
197   }
198 
199   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
200       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
201     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
202     setLibcallName(RTLIB::SINCOS_F64, "sincos");
203     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
204     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
205     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
206   }
207 
208   if (TT.isPS4CPU()) {
209     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
210     setLibcallName(RTLIB::SINCOS_F64, "sincos");
211   }
212 
213   if (TT.isOSOpenBSD()) {
214     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
215   }
216 }
217 
218 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
219 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)220 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
221   if (OpVT == MVT::f16) {
222     if (RetVT == MVT::f32)
223       return FPEXT_F16_F32;
224   } else if (OpVT == MVT::f32) {
225     if (RetVT == MVT::f64)
226       return FPEXT_F32_F64;
227     if (RetVT == MVT::f128)
228       return FPEXT_F32_F128;
229     if (RetVT == MVT::ppcf128)
230       return FPEXT_F32_PPCF128;
231   } else if (OpVT == MVT::f64) {
232     if (RetVT == MVT::f128)
233       return FPEXT_F64_F128;
234     else if (RetVT == MVT::ppcf128)
235       return FPEXT_F64_PPCF128;
236   } else if (OpVT == MVT::f80) {
237     if (RetVT == MVT::f128)
238       return FPEXT_F80_F128;
239   }
240 
241   return UNKNOWN_LIBCALL;
242 }
243 
244 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
245 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)246 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
247   if (RetVT == MVT::f16) {
248     if (OpVT == MVT::f32)
249       return FPROUND_F32_F16;
250     if (OpVT == MVT::f64)
251       return FPROUND_F64_F16;
252     if (OpVT == MVT::f80)
253       return FPROUND_F80_F16;
254     if (OpVT == MVT::f128)
255       return FPROUND_F128_F16;
256     if (OpVT == MVT::ppcf128)
257       return FPROUND_PPCF128_F16;
258   } else if (RetVT == MVT::f32) {
259     if (OpVT == MVT::f64)
260       return FPROUND_F64_F32;
261     if (OpVT == MVT::f80)
262       return FPROUND_F80_F32;
263     if (OpVT == MVT::f128)
264       return FPROUND_F128_F32;
265     if (OpVT == MVT::ppcf128)
266       return FPROUND_PPCF128_F32;
267   } else if (RetVT == MVT::f64) {
268     if (OpVT == MVT::f80)
269       return FPROUND_F80_F64;
270     if (OpVT == MVT::f128)
271       return FPROUND_F128_F64;
272     if (OpVT == MVT::ppcf128)
273       return FPROUND_PPCF128_F64;
274   } else if (RetVT == MVT::f80) {
275     if (OpVT == MVT::f128)
276       return FPROUND_F128_F80;
277   }
278 
279   return UNKNOWN_LIBCALL;
280 }
281 
282 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
283 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)284 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
285   if (OpVT == MVT::f32) {
286     if (RetVT == MVT::i32)
287       return FPTOSINT_F32_I32;
288     if (RetVT == MVT::i64)
289       return FPTOSINT_F32_I64;
290     if (RetVT == MVT::i128)
291       return FPTOSINT_F32_I128;
292   } else if (OpVT == MVT::f64) {
293     if (RetVT == MVT::i32)
294       return FPTOSINT_F64_I32;
295     if (RetVT == MVT::i64)
296       return FPTOSINT_F64_I64;
297     if (RetVT == MVT::i128)
298       return FPTOSINT_F64_I128;
299   } else if (OpVT == MVT::f80) {
300     if (RetVT == MVT::i32)
301       return FPTOSINT_F80_I32;
302     if (RetVT == MVT::i64)
303       return FPTOSINT_F80_I64;
304     if (RetVT == MVT::i128)
305       return FPTOSINT_F80_I128;
306   } else if (OpVT == MVT::f128) {
307     if (RetVT == MVT::i32)
308       return FPTOSINT_F128_I32;
309     if (RetVT == MVT::i64)
310       return FPTOSINT_F128_I64;
311     if (RetVT == MVT::i128)
312       return FPTOSINT_F128_I128;
313   } else if (OpVT == MVT::ppcf128) {
314     if (RetVT == MVT::i32)
315       return FPTOSINT_PPCF128_I32;
316     if (RetVT == MVT::i64)
317       return FPTOSINT_PPCF128_I64;
318     if (RetVT == MVT::i128)
319       return FPTOSINT_PPCF128_I128;
320   }
321   return UNKNOWN_LIBCALL;
322 }
323 
324 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
325 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)326 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
327   if (OpVT == MVT::f32) {
328     if (RetVT == MVT::i32)
329       return FPTOUINT_F32_I32;
330     if (RetVT == MVT::i64)
331       return FPTOUINT_F32_I64;
332     if (RetVT == MVT::i128)
333       return FPTOUINT_F32_I128;
334   } else if (OpVT == MVT::f64) {
335     if (RetVT == MVT::i32)
336       return FPTOUINT_F64_I32;
337     if (RetVT == MVT::i64)
338       return FPTOUINT_F64_I64;
339     if (RetVT == MVT::i128)
340       return FPTOUINT_F64_I128;
341   } else if (OpVT == MVT::f80) {
342     if (RetVT == MVT::i32)
343       return FPTOUINT_F80_I32;
344     if (RetVT == MVT::i64)
345       return FPTOUINT_F80_I64;
346     if (RetVT == MVT::i128)
347       return FPTOUINT_F80_I128;
348   } else if (OpVT == MVT::f128) {
349     if (RetVT == MVT::i32)
350       return FPTOUINT_F128_I32;
351     if (RetVT == MVT::i64)
352       return FPTOUINT_F128_I64;
353     if (RetVT == MVT::i128)
354       return FPTOUINT_F128_I128;
355   } else if (OpVT == MVT::ppcf128) {
356     if (RetVT == MVT::i32)
357       return FPTOUINT_PPCF128_I32;
358     if (RetVT == MVT::i64)
359       return FPTOUINT_PPCF128_I64;
360     if (RetVT == MVT::i128)
361       return FPTOUINT_PPCF128_I128;
362   }
363   return UNKNOWN_LIBCALL;
364 }
365 
366 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
367 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)368 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
369   if (OpVT == MVT::i32) {
370     if (RetVT == MVT::f32)
371       return SINTTOFP_I32_F32;
372     if (RetVT == MVT::f64)
373       return SINTTOFP_I32_F64;
374     if (RetVT == MVT::f80)
375       return SINTTOFP_I32_F80;
376     if (RetVT == MVT::f128)
377       return SINTTOFP_I32_F128;
378     if (RetVT == MVT::ppcf128)
379       return SINTTOFP_I32_PPCF128;
380   } else if (OpVT == MVT::i64) {
381     if (RetVT == MVT::f32)
382       return SINTTOFP_I64_F32;
383     if (RetVT == MVT::f64)
384       return SINTTOFP_I64_F64;
385     if (RetVT == MVT::f80)
386       return SINTTOFP_I64_F80;
387     if (RetVT == MVT::f128)
388       return SINTTOFP_I64_F128;
389     if (RetVT == MVT::ppcf128)
390       return SINTTOFP_I64_PPCF128;
391   } else if (OpVT == MVT::i128) {
392     if (RetVT == MVT::f32)
393       return SINTTOFP_I128_F32;
394     if (RetVT == MVT::f64)
395       return SINTTOFP_I128_F64;
396     if (RetVT == MVT::f80)
397       return SINTTOFP_I128_F80;
398     if (RetVT == MVT::f128)
399       return SINTTOFP_I128_F128;
400     if (RetVT == MVT::ppcf128)
401       return SINTTOFP_I128_PPCF128;
402   }
403   return UNKNOWN_LIBCALL;
404 }
405 
406 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
407 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)408 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
409   if (OpVT == MVT::i32) {
410     if (RetVT == MVT::f32)
411       return UINTTOFP_I32_F32;
412     if (RetVT == MVT::f64)
413       return UINTTOFP_I32_F64;
414     if (RetVT == MVT::f80)
415       return UINTTOFP_I32_F80;
416     if (RetVT == MVT::f128)
417       return UINTTOFP_I32_F128;
418     if (RetVT == MVT::ppcf128)
419       return UINTTOFP_I32_PPCF128;
420   } else if (OpVT == MVT::i64) {
421     if (RetVT == MVT::f32)
422       return UINTTOFP_I64_F32;
423     if (RetVT == MVT::f64)
424       return UINTTOFP_I64_F64;
425     if (RetVT == MVT::f80)
426       return UINTTOFP_I64_F80;
427     if (RetVT == MVT::f128)
428       return UINTTOFP_I64_F128;
429     if (RetVT == MVT::ppcf128)
430       return UINTTOFP_I64_PPCF128;
431   } else if (OpVT == MVT::i128) {
432     if (RetVT == MVT::f32)
433       return UINTTOFP_I128_F32;
434     if (RetVT == MVT::f64)
435       return UINTTOFP_I128_F64;
436     if (RetVT == MVT::f80)
437       return UINTTOFP_I128_F80;
438     if (RetVT == MVT::f128)
439       return UINTTOFP_I128_F128;
440     if (RetVT == MVT::ppcf128)
441       return UINTTOFP_I128_PPCF128;
442   }
443   return UNKNOWN_LIBCALL;
444 }
445 
getSYNC(unsigned Opc,MVT VT)446 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
447 #define OP_TO_LIBCALL(Name, Enum)                                              \
448   case Name:                                                                   \
449     switch (VT.SimpleTy) {                                                     \
450     default:                                                                   \
451       return UNKNOWN_LIBCALL;                                                  \
452     case MVT::i8:                                                              \
453       return Enum##_1;                                                         \
454     case MVT::i16:                                                             \
455       return Enum##_2;                                                         \
456     case MVT::i32:                                                             \
457       return Enum##_4;                                                         \
458     case MVT::i64:                                                             \
459       return Enum##_8;                                                         \
460     case MVT::i128:                                                            \
461       return Enum##_16;                                                        \
462     }
463 
464   switch (Opc) {
465     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
466     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
467     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
477   }
478 
479 #undef OP_TO_LIBCALL
480 
481   return UNKNOWN_LIBCALL;
482 }
483 
getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)484 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
485   switch (ElementSize) {
486   case 1:
487     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
488   case 2:
489     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
490   case 4:
491     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
492   case 8:
493     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
494   case 16:
495     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
496   default:
497     return UNKNOWN_LIBCALL;
498   }
499 }
500 
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)501 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
502   switch (ElementSize) {
503   case 1:
504     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
505   case 2:
506     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
507   case 4:
508     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
509   case 8:
510     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
511   case 16:
512     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
513   default:
514     return UNKNOWN_LIBCALL;
515   }
516 }
517 
getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)518 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
519   switch (ElementSize) {
520   case 1:
521     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
522   case 2:
523     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
524   case 4:
525     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
526   case 8:
527     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
528   case 16:
529     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
530   default:
531     return UNKNOWN_LIBCALL;
532   }
533 }
534 
535 /// InitCmpLibcallCCs - Set default comparison libcall CC.
InitCmpLibcallCCs(ISD::CondCode * CCs)536 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
537   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
538   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
539   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
540   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
541   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
542   CCs[RTLIB::UNE_F32] = ISD::SETNE;
543   CCs[RTLIB::UNE_F64] = ISD::SETNE;
544   CCs[RTLIB::UNE_F128] = ISD::SETNE;
545   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
546   CCs[RTLIB::OGE_F32] = ISD::SETGE;
547   CCs[RTLIB::OGE_F64] = ISD::SETGE;
548   CCs[RTLIB::OGE_F128] = ISD::SETGE;
549   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
550   CCs[RTLIB::OLT_F32] = ISD::SETLT;
551   CCs[RTLIB::OLT_F64] = ISD::SETLT;
552   CCs[RTLIB::OLT_F128] = ISD::SETLT;
553   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
554   CCs[RTLIB::OLE_F32] = ISD::SETLE;
555   CCs[RTLIB::OLE_F64] = ISD::SETLE;
556   CCs[RTLIB::OLE_F128] = ISD::SETLE;
557   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
558   CCs[RTLIB::OGT_F32] = ISD::SETGT;
559   CCs[RTLIB::OGT_F64] = ISD::SETGT;
560   CCs[RTLIB::OGT_F128] = ISD::SETGT;
561   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
562   CCs[RTLIB::UO_F32] = ISD::SETNE;
563   CCs[RTLIB::UO_F64] = ISD::SETNE;
564   CCs[RTLIB::UO_F128] = ISD::SETNE;
565   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
566 }
567 
568 /// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase(const TargetMachine & tm)569 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
570   initActions();
571 
572   // Perform these initializations only once.
573   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
574       MaxLoadsPerMemcmp = 8;
575   MaxGluedStoresPerMemcpy = 0;
576   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
577       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
578   HasMultipleConditionRegisters = false;
579   HasExtractBitsInsn = false;
580   JumpIsExpensive = JumpIsExpensiveOverride;
581   PredictableSelectIsExpensive = false;
582   EnableExtLdPromotion = false;
583   StackPointerRegisterToSaveRestore = 0;
584   BooleanContents = UndefinedBooleanContent;
585   BooleanFloatContents = UndefinedBooleanContent;
586   BooleanVectorContents = UndefinedBooleanContent;
587   SchedPreferenceInfo = Sched::ILP;
588   GatherAllAliasesMaxDepth = 18;
589   IsStrictFPEnabled = DisableStrictNodeMutation;
590   // TODO: the default will be switched to 0 in the next commit, along
591   // with the Target-specific changes necessary.
592   MaxAtomicSizeInBitsSupported = 1024;
593 
594   MinCmpXchgSizeInBits = 0;
595   SupportsUnalignedAtomics = false;
596 
597   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
598 
599   InitLibcalls(TM.getTargetTriple());
600   InitCmpLibcallCCs(CmpLibcallCCs);
601 }
602 
initActions()603 void TargetLoweringBase::initActions() {
604   // All operations default to being supported.
605   memset(OpActions, 0, sizeof(OpActions));
606   memset(LoadExtActions, 0, sizeof(LoadExtActions));
607   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
608   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
609   memset(CondCodeActions, 0, sizeof(CondCodeActions));
610   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
611   std::fill(std::begin(TargetDAGCombineArray),
612             std::end(TargetDAGCombineArray), 0);
613 
614   for (MVT VT : MVT::fp_valuetypes()) {
615     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
616     if (IntVT.isValid()) {
617       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
618       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
619     }
620   }
621 
622   // Set default actions for various operations.
623   for (MVT VT : MVT::all_valuetypes()) {
624     // Default all indexed load / store to expand.
625     for (unsigned IM = (unsigned)ISD::PRE_INC;
626          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
627       setIndexedLoadAction(IM, VT, Expand);
628       setIndexedStoreAction(IM, VT, Expand);
629       setIndexedMaskedLoadAction(IM, VT, Expand);
630       setIndexedMaskedStoreAction(IM, VT, Expand);
631     }
632 
633     // Most backends expect to see the node which just returns the value loaded.
634     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
635 
636     // These operations default to expand.
637     setOperationAction(ISD::FGETSIGN, VT, Expand);
638     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
639     setOperationAction(ISD::FMINNUM, VT, Expand);
640     setOperationAction(ISD::FMAXNUM, VT, Expand);
641     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
642     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
643     setOperationAction(ISD::FMINIMUM, VT, Expand);
644     setOperationAction(ISD::FMAXIMUM, VT, Expand);
645     setOperationAction(ISD::FMAD, VT, Expand);
646     setOperationAction(ISD::SMIN, VT, Expand);
647     setOperationAction(ISD::SMAX, VT, Expand);
648     setOperationAction(ISD::UMIN, VT, Expand);
649     setOperationAction(ISD::UMAX, VT, Expand);
650     setOperationAction(ISD::ABS, VT, Expand);
651     setOperationAction(ISD::FSHL, VT, Expand);
652     setOperationAction(ISD::FSHR, VT, Expand);
653     setOperationAction(ISD::SADDSAT, VT, Expand);
654     setOperationAction(ISD::UADDSAT, VT, Expand);
655     setOperationAction(ISD::SSUBSAT, VT, Expand);
656     setOperationAction(ISD::USUBSAT, VT, Expand);
657     setOperationAction(ISD::SMULFIX, VT, Expand);
658     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
659     setOperationAction(ISD::UMULFIX, VT, Expand);
660     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
661     setOperationAction(ISD::SDIVFIX, VT, Expand);
662     setOperationAction(ISD::UDIVFIX, VT, Expand);
663 
664     // Overflow operations default to expand
665     setOperationAction(ISD::SADDO, VT, Expand);
666     setOperationAction(ISD::SSUBO, VT, Expand);
667     setOperationAction(ISD::UADDO, VT, Expand);
668     setOperationAction(ISD::USUBO, VT, Expand);
669     setOperationAction(ISD::SMULO, VT, Expand);
670     setOperationAction(ISD::UMULO, VT, Expand);
671 
672     // ADDCARRY operations default to expand
673     setOperationAction(ISD::ADDCARRY, VT, Expand);
674     setOperationAction(ISD::SUBCARRY, VT, Expand);
675     setOperationAction(ISD::SETCCCARRY, VT, Expand);
676 
677     // ADDC/ADDE/SUBC/SUBE default to expand.
678     setOperationAction(ISD::ADDC, VT, Expand);
679     setOperationAction(ISD::ADDE, VT, Expand);
680     setOperationAction(ISD::SUBC, VT, Expand);
681     setOperationAction(ISD::SUBE, VT, Expand);
682 
683     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
684     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
685     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
686 
687     setOperationAction(ISD::BITREVERSE, VT, Expand);
688 
689     // These library functions default to expand.
690     setOperationAction(ISD::FROUND, VT, Expand);
691     setOperationAction(ISD::FPOWI, VT, Expand);
692 
693     // These operations default to expand for vector types.
694     if (VT.isVector()) {
695       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
696       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
697       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
698       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
699       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
700       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
701     }
702 
703     // Constrained floating-point operations default to expand.
704 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
705     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
706 #include "llvm/IR/ConstrainedOps.def"
707 
708     // For most targets @llvm.get.dynamic.area.offset just returns 0.
709     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
710 
711     // Vector reduction default to expand.
712     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
713     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
714     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
715     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
716     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
717     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
718     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
725   }
726 
727   // Most targets ignore the @llvm.prefetch intrinsic.
728   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
729 
730   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
731   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
732 
733   // ConstantFP nodes default to expand.  Targets can either change this to
734   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
735   // to optimize expansions for certain constants.
736   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
737   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
738   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
739   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
740   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
741 
742   // These library functions default to expand.
743   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
744     setOperationAction(ISD::FCBRT,      VT, Expand);
745     setOperationAction(ISD::FLOG ,      VT, Expand);
746     setOperationAction(ISD::FLOG2,      VT, Expand);
747     setOperationAction(ISD::FLOG10,     VT, Expand);
748     setOperationAction(ISD::FEXP ,      VT, Expand);
749     setOperationAction(ISD::FEXP2,      VT, Expand);
750     setOperationAction(ISD::FFLOOR,     VT, Expand);
751     setOperationAction(ISD::FNEARBYINT, VT, Expand);
752     setOperationAction(ISD::FCEIL,      VT, Expand);
753     setOperationAction(ISD::FRINT,      VT, Expand);
754     setOperationAction(ISD::FTRUNC,     VT, Expand);
755     setOperationAction(ISD::FROUND,     VT, Expand);
756     setOperationAction(ISD::LROUND,     VT, Expand);
757     setOperationAction(ISD::LLROUND,    VT, Expand);
758     setOperationAction(ISD::LRINT,      VT, Expand);
759     setOperationAction(ISD::LLRINT,     VT, Expand);
760   }
761 
762   // Default ISD::TRAP to expand (which turns it into abort).
763   setOperationAction(ISD::TRAP, MVT::Other, Expand);
764 
765   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
766   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
767   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
768 }
769 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const770 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
771                                                EVT) const {
772   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
773 }
774 
getShiftAmountTy(EVT LHSTy,const DataLayout & DL,bool LegalTypes) const775 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
776                                          bool LegalTypes) const {
777   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
778   if (LHSTy.isVector())
779     return LHSTy;
780   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
781                     : getPointerTy(DL);
782 }
783 
canOpTrap(unsigned Op,EVT VT) const784 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
785   assert(isTypeLegal(VT));
786   switch (Op) {
787   default:
788     return false;
789   case ISD::SDIV:
790   case ISD::UDIV:
791   case ISD::SREM:
792   case ISD::UREM:
793     return true;
794   }
795 }
796 
setJumpIsExpensive(bool isExpensive)797 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
798   // If the command-line option was specified, ignore this request.
799   if (!JumpIsExpensiveOverride.getNumOccurrences())
800     JumpIsExpensive = isExpensive;
801 }
802 
803 TargetLoweringBase::LegalizeKind
getTypeConversion(LLVMContext & Context,EVT VT) const804 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
805   // If this is a simple type, use the ComputeRegisterProp mechanism.
806   if (VT.isSimple()) {
807     MVT SVT = VT.getSimpleVT();
808     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
809     MVT NVT = TransformToType[SVT.SimpleTy];
810     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
811 
812     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
813             (NVT.isVector() ||
814              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
815            "Promote may not follow Expand or Promote");
816 
817     if (LA == TypeSplitVector)
818       return LegalizeKind(LA,
819                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
820                                            SVT.getVectorNumElements() / 2));
821     if (LA == TypeScalarizeVector)
822       return LegalizeKind(LA, SVT.getVectorElementType());
823     return LegalizeKind(LA, NVT);
824   }
825 
826   // Handle Extended Scalar Types.
827   if (!VT.isVector()) {
828     assert(VT.isInteger() && "Float types must be simple");
829     unsigned BitSize = VT.getSizeInBits();
830     // First promote to a power-of-two size, then expand if necessary.
831     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
832       EVT NVT = VT.getRoundIntegerType(Context);
833       assert(NVT != VT && "Unable to round integer VT");
834       LegalizeKind NextStep = getTypeConversion(Context, NVT);
835       // Avoid multi-step promotion.
836       if (NextStep.first == TypePromoteInteger)
837         return NextStep;
838       // Return rounded integer type.
839       return LegalizeKind(TypePromoteInteger, NVT);
840     }
841 
842     return LegalizeKind(TypeExpandInteger,
843                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
844   }
845 
846   // Handle vector types.
847   unsigned NumElts = VT.getVectorNumElements();
848   EVT EltVT = VT.getVectorElementType();
849 
850   // Vectors with only one element are always scalarized.
851   if (NumElts == 1)
852     return LegalizeKind(TypeScalarizeVector, EltVT);
853 
854   // Try to widen vector elements until the element type is a power of two and
855   // promote it to a legal type later on, for example:
856   // <3 x i8> -> <4 x i8> -> <4 x i32>
857   if (EltVT.isInteger()) {
858     // Vectors with a number of elements that is not a power of two are always
859     // widened, for example <3 x i8> -> <4 x i8>.
860     if (!VT.isPow2VectorType()) {
861       NumElts = (unsigned)NextPowerOf2(NumElts);
862       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
863       return LegalizeKind(TypeWidenVector, NVT);
864     }
865 
866     // Examine the element type.
867     LegalizeKind LK = getTypeConversion(Context, EltVT);
868 
869     // If type is to be expanded, split the vector.
870     //  <4 x i140> -> <2 x i140>
871     if (LK.first == TypeExpandInteger)
872       return LegalizeKind(TypeSplitVector,
873                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
874 
875     // Promote the integer element types until a legal vector type is found
876     // or until the element integer type is too big. If a legal type was not
877     // found, fallback to the usual mechanism of widening/splitting the
878     // vector.
879     EVT OldEltVT = EltVT;
880     while (true) {
881       // Increase the bitwidth of the element to the next pow-of-two
882       // (which is greater than 8 bits).
883       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
884                   .getRoundIntegerType(Context);
885 
886       // Stop trying when getting a non-simple element type.
887       // Note that vector elements may be greater than legal vector element
888       // types. Example: X86 XMM registers hold 64bit element on 32bit
889       // systems.
890       if (!EltVT.isSimple())
891         break;
892 
893       // Build a new vector type and check if it is legal.
894       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
895       // Found a legal promoted vector type.
896       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
897         return LegalizeKind(TypePromoteInteger,
898                             EVT::getVectorVT(Context, EltVT, NumElts));
899     }
900 
901     // Reset the type to the unexpanded type if we did not find a legal vector
902     // type with a promoted vector element type.
903     EltVT = OldEltVT;
904   }
905 
906   // Try to widen the vector until a legal type is found.
907   // If there is no wider legal type, split the vector.
908   while (true) {
909     // Round up to the next power of 2.
910     NumElts = (unsigned)NextPowerOf2(NumElts);
911 
912     // If there is no simple vector type with this many elements then there
913     // cannot be a larger legal vector type.  Note that this assumes that
914     // there are no skipped intermediate vector types in the simple types.
915     if (!EltVT.isSimple())
916       break;
917     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
918     if (LargerVector == MVT())
919       break;
920 
921     // If this type is legal then widen the vector.
922     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
923       return LegalizeKind(TypeWidenVector, LargerVector);
924   }
925 
926   // Widen odd vectors to next power of two.
927   if (!VT.isPow2VectorType()) {
928     EVT NVT = VT.getPow2VectorType(Context);
929     return LegalizeKind(TypeWidenVector, NVT);
930   }
931 
932   // Vectors with illegal element types are expanded.
933   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
934   return LegalizeKind(TypeSplitVector, NVT);
935 }
936 
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT,TargetLoweringBase * TLI)937 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
938                                           unsigned &NumIntermediates,
939                                           MVT &RegisterVT,
940                                           TargetLoweringBase *TLI) {
941   // Figure out the right, legal destination reg to copy into.
942   unsigned NumElts = VT.getVectorNumElements();
943   MVT EltTy = VT.getVectorElementType();
944 
945   unsigned NumVectorRegs = 1;
946 
947   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
948   // could break down into LHS/RHS like LegalizeDAG does.
949   if (!isPowerOf2_32(NumElts)) {
950     NumVectorRegs = NumElts;
951     NumElts = 1;
952   }
953 
954   // Divide the input until we get to a supported size.  This will always
955   // end with a scalar if the target doesn't support vectors.
956   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
957     NumElts >>= 1;
958     NumVectorRegs <<= 1;
959   }
960 
961   NumIntermediates = NumVectorRegs;
962 
963   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
964   if (!TLI->isTypeLegal(NewVT))
965     NewVT = EltTy;
966   IntermediateVT = NewVT;
967 
968   unsigned NewVTSize = NewVT.getSizeInBits();
969 
970   // Convert sizes such as i33 to i64.
971   if (!isPowerOf2_32(NewVTSize))
972     NewVTSize = NextPowerOf2(NewVTSize);
973 
974   MVT DestVT = TLI->getRegisterType(NewVT);
975   RegisterVT = DestVT;
976   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
977     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
978 
979   // Otherwise, promotion or legal types use the same number of registers as
980   // the vector decimated to the appropriate level.
981   return NumVectorRegs;
982 }
983 
984 /// isLegalRC - Return true if the value types that can be represented by the
985 /// specified register class are all legal.
isLegalRC(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC) const986 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
987                                    const TargetRegisterClass &RC) const {
988   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
989     if (isTypeLegal(*I))
990       return true;
991   return false;
992 }
993 
994 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
995 /// sequence of memory operands that is recognized by PrologEpilogInserter.
996 MachineBasicBlock *
emitPatchPoint(MachineInstr & InitialMI,MachineBasicBlock * MBB) const997 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
998                                    MachineBasicBlock *MBB) const {
999   MachineInstr *MI = &InitialMI;
1000   MachineFunction &MF = *MI->getMF();
1001   MachineFrameInfo &MFI = MF.getFrameInfo();
1002 
1003   // We're handling multiple types of operands here:
1004   // PATCHPOINT MetaArgs - live-in, read only, direct
1005   // STATEPOINT Deopt Spill - live-through, read only, indirect
1006   // STATEPOINT Deopt Alloca - live-through, read only, direct
1007   // (We're currently conservative and mark the deopt slots read/write in
1008   // practice.)
1009   // STATEPOINT GC Spill - live-through, read/write, indirect
1010   // STATEPOINT GC Alloca - live-through, read/write, direct
1011   // The live-in vs live-through is handled already (the live through ones are
1012   // all stack slots), but we need to handle the different type of stackmap
1013   // operands and memory effects here.
1014 
1015   // MI changes inside this loop as we grow operands.
1016   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1017     MachineOperand &MO = MI->getOperand(OperIdx);
1018     if (!MO.isFI())
1019       continue;
1020 
1021     // foldMemoryOperand builds a new MI after replacing a single FI operand
1022     // with the canonical set of five x86 addressing-mode operands.
1023     int FI = MO.getIndex();
1024     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1025 
1026     // Copy operands before the frame-index.
1027     for (unsigned i = 0; i < OperIdx; ++i)
1028       MIB.add(MI->getOperand(i));
1029     // Add frame index operands recognized by stackmaps.cpp
1030     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1031       // indirect-mem-ref tag, size, #FI, offset.
1032       // Used for spills inserted by StatepointLowering.  This codepath is not
1033       // used for patchpoints/stackmaps at all, for these spilling is done via
1034       // foldMemoryOperand callback only.
1035       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1036       MIB.addImm(StackMaps::IndirectMemRefOp);
1037       MIB.addImm(MFI.getObjectSize(FI));
1038       MIB.add(MI->getOperand(OperIdx));
1039       MIB.addImm(0);
1040     } else {
1041       // direct-mem-ref tag, #FI, offset.
1042       // Used by patchpoint, and direct alloca arguments to statepoints
1043       MIB.addImm(StackMaps::DirectMemRefOp);
1044       MIB.add(MI->getOperand(OperIdx));
1045       MIB.addImm(0);
1046     }
1047     // Copy the operands after the frame index.
1048     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1049       MIB.add(MI->getOperand(i));
1050 
1051     // Inherit previous memory operands.
1052     MIB.cloneMemRefs(*MI);
1053     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1054 
1055     // Add a new memory operand for this FI.
1056     assert(MFI.getObjectOffset(FI) != -1);
1057 
1058     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1059     // PATCHPOINT should be updated to do the same. (TODO)
1060     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1061       auto Flags = MachineMemOperand::MOLoad;
1062       MachineMemOperand *MMO = MF.getMachineMemOperand(
1063           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1064           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1065       MIB->addMemOperand(MF, MMO);
1066     }
1067 
1068     // Replace the instruction and update the operand index.
1069     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1070     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1071     MI->eraseFromParent();
1072     MI = MIB;
1073   }
1074   return MBB;
1075 }
1076 
1077 MachineBasicBlock *
emitXRayCustomEvent(MachineInstr & MI,MachineBasicBlock * MBB) const1078 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1079                                         MachineBasicBlock *MBB) const {
1080   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1081          "Called emitXRayCustomEvent on the wrong MI!");
1082   auto &MF = *MI.getMF();
1083   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1084   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1085     MIB.add(MI.getOperand(OpIdx));
1086 
1087   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1088   MI.eraseFromParent();
1089   return MBB;
1090 }
1091 
1092 MachineBasicBlock *
emitXRayTypedEvent(MachineInstr & MI,MachineBasicBlock * MBB) const1093 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1094                                        MachineBasicBlock *MBB) const {
1095   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1096          "Called emitXRayTypedEvent on the wrong MI!");
1097   auto &MF = *MI.getMF();
1098   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1099   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1100     MIB.add(MI.getOperand(OpIdx));
1101 
1102   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1103   MI.eraseFromParent();
1104   return MBB;
1105 }
1106 
1107 /// findRepresentativeClass - Return the largest legal super-reg register class
1108 /// of the register class for the specified type and its associated "cost".
1109 // This function is in TargetLowering because it uses RegClassForVT which would
1110 // need to be moved to TargetRegisterInfo and would necessitate moving
1111 // isTypeLegal over as well - a massive change that would just require
1112 // TargetLowering having a TargetRegisterInfo class member that it would use.
1113 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1114 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1115                                             MVT VT) const {
1116   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1117   if (!RC)
1118     return std::make_pair(RC, 0);
1119 
1120   // Compute the set of all super-register classes.
1121   BitVector SuperRegRC(TRI->getNumRegClasses());
1122   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1123     SuperRegRC.setBitsInMask(RCI.getMask());
1124 
1125   // Find the first legal register class with the largest spill size.
1126   const TargetRegisterClass *BestRC = RC;
1127   for (unsigned i : SuperRegRC.set_bits()) {
1128     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1129     // We want the largest possible spill size.
1130     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1131       continue;
1132     if (!isLegalRC(*TRI, *SuperRC))
1133       continue;
1134     BestRC = SuperRC;
1135   }
1136   return std::make_pair(BestRC, 1);
1137 }
1138 
1139 /// computeRegisterProperties - Once all of the register classes are added,
1140 /// this allows us to compute derived properties we expose.
computeRegisterProperties(const TargetRegisterInfo * TRI)1141 void TargetLoweringBase::computeRegisterProperties(
1142     const TargetRegisterInfo *TRI) {
1143   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1144                 "Too many value types for ValueTypeActions to hold!");
1145 
1146   // Everything defaults to needing one register.
1147   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1148     NumRegistersForVT[i] = 1;
1149     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1150   }
1151   // ...except isVoid, which doesn't need any registers.
1152   NumRegistersForVT[MVT::isVoid] = 0;
1153 
1154   // Find the largest integer register class.
1155   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1156   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1157     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1158 
1159   // Every integer value type larger than this largest register takes twice as
1160   // many registers to represent as the previous ValueType.
1161   for (unsigned ExpandedReg = LargestIntReg + 1;
1162        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1163     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1164     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1165     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1166     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1167                                    TypeExpandInteger);
1168   }
1169 
1170   // Inspect all of the ValueType's smaller than the largest integer
1171   // register to see which ones need promotion.
1172   unsigned LegalIntReg = LargestIntReg;
1173   for (unsigned IntReg = LargestIntReg - 1;
1174        IntReg >= (unsigned)MVT::i1; --IntReg) {
1175     MVT IVT = (MVT::SimpleValueType)IntReg;
1176     if (isTypeLegal(IVT)) {
1177       LegalIntReg = IntReg;
1178     } else {
1179       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1180         (MVT::SimpleValueType)LegalIntReg;
1181       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1182     }
1183   }
1184 
1185   // ppcf128 type is really two f64's.
1186   if (!isTypeLegal(MVT::ppcf128)) {
1187     if (isTypeLegal(MVT::f64)) {
1188       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1189       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1190       TransformToType[MVT::ppcf128] = MVT::f64;
1191       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1192     } else {
1193       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1194       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1195       TransformToType[MVT::ppcf128] = MVT::i128;
1196       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1197     }
1198   }
1199 
1200   // Decide how to handle f128. If the target does not have native f128 support,
1201   // expand it to i128 and we will be generating soft float library calls.
1202   if (!isTypeLegal(MVT::f128)) {
1203     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1204     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1205     TransformToType[MVT::f128] = MVT::i128;
1206     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1207   }
1208 
1209   // Decide how to handle f64. If the target does not have native f64 support,
1210   // expand it to i64 and we will be generating soft float library calls.
1211   if (!isTypeLegal(MVT::f64)) {
1212     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1213     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1214     TransformToType[MVT::f64] = MVT::i64;
1215     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1216   }
1217 
1218   // Decide how to handle f32. If the target does not have native f32 support,
1219   // expand it to i32 and we will be generating soft float library calls.
1220   if (!isTypeLegal(MVT::f32)) {
1221     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1222     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1223     TransformToType[MVT::f32] = MVT::i32;
1224     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1225   }
1226 
1227   // Decide how to handle f16. If the target does not have native f16 support,
1228   // promote it to f32, because there are no f16 library calls (except for
1229   // conversions).
1230   if (!isTypeLegal(MVT::f16)) {
1231     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1232     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1233     TransformToType[MVT::f16] = MVT::f32;
1234     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1235   }
1236 
1237   // Loop over all of the vector value types to see which need transformations.
1238   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1239        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1240     MVT VT = (MVT::SimpleValueType) i;
1241     if (isTypeLegal(VT))
1242       continue;
1243 
1244     MVT EltVT = VT.getVectorElementType();
1245     unsigned NElts = VT.getVectorNumElements();
1246     bool IsLegalWiderType = false;
1247     bool IsScalable = VT.isScalableVector();
1248     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1249     switch (PreferredAction) {
1250     case TypePromoteInteger: {
1251       MVT::SimpleValueType EndVT = IsScalable ?
1252                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1253                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1254       // Try to promote the elements of integer vectors. If no legal
1255       // promotion was found, fall through to the widen-vector method.
1256       for (unsigned nVT = i + 1;
1257            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1258         MVT SVT = (MVT::SimpleValueType) nVT;
1259         // Promote vectors of integers to vectors with the same number
1260         // of elements, with a wider element type.
1261         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1262             SVT.getVectorNumElements() == NElts &&
1263             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1264           TransformToType[i] = SVT;
1265           RegisterTypeForVT[i] = SVT;
1266           NumRegistersForVT[i] = 1;
1267           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1268           IsLegalWiderType = true;
1269           break;
1270         }
1271       }
1272       if (IsLegalWiderType)
1273         break;
1274       LLVM_FALLTHROUGH;
1275     }
1276 
1277     case TypeWidenVector:
1278       if (isPowerOf2_32(NElts)) {
1279         // Try to widen the vector.
1280         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1281           MVT SVT = (MVT::SimpleValueType) nVT;
1282           if (SVT.getVectorElementType() == EltVT
1283               && SVT.getVectorNumElements() > NElts
1284               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1285             TransformToType[i] = SVT;
1286             RegisterTypeForVT[i] = SVT;
1287             NumRegistersForVT[i] = 1;
1288             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1289             IsLegalWiderType = true;
1290             break;
1291           }
1292         }
1293         if (IsLegalWiderType)
1294           break;
1295       } else {
1296         // Only widen to the next power of 2 to keep consistency with EVT.
1297         MVT NVT = VT.getPow2VectorType();
1298         if (isTypeLegal(NVT)) {
1299           TransformToType[i] = NVT;
1300           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1301           RegisterTypeForVT[i] = NVT;
1302           NumRegistersForVT[i] = 1;
1303           break;
1304         }
1305       }
1306       LLVM_FALLTHROUGH;
1307 
1308     case TypeSplitVector:
1309     case TypeScalarizeVector: {
1310       MVT IntermediateVT;
1311       MVT RegisterVT;
1312       unsigned NumIntermediates;
1313       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1314           NumIntermediates, RegisterVT, this);
1315       NumRegistersForVT[i] = NumRegisters;
1316       assert(NumRegistersForVT[i] == NumRegisters &&
1317              "NumRegistersForVT size cannot represent NumRegisters!");
1318       RegisterTypeForVT[i] = RegisterVT;
1319 
1320       MVT NVT = VT.getPow2VectorType();
1321       if (NVT == VT) {
1322         // Type is already a power of 2.  The default action is to split.
1323         TransformToType[i] = MVT::Other;
1324         if (PreferredAction == TypeScalarizeVector)
1325           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1326         else if (PreferredAction == TypeSplitVector)
1327           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1328         else
1329           // Set type action according to the number of elements.
1330           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1331                                                         : TypeSplitVector);
1332       } else {
1333         TransformToType[i] = NVT;
1334         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1335       }
1336       break;
1337     }
1338     default:
1339       llvm_unreachable("Unknown vector legalization action!");
1340     }
1341   }
1342 
1343   // Determine the 'representative' register class for each value type.
1344   // An representative register class is the largest (meaning one which is
1345   // not a sub-register class / subreg register class) legal register class for
1346   // a group of value types. For example, on i386, i8, i16, and i32
1347   // representative would be GR32; while on x86_64 it's GR64.
1348   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1349     const TargetRegisterClass* RRC;
1350     uint8_t Cost;
1351     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1352     RepRegClassForVT[i] = RRC;
1353     RepRegClassCostForVT[i] = Cost;
1354   }
1355 }
1356 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1357 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1358                                            EVT VT) const {
1359   assert(!VT.isVector() && "No default SetCC type for vectors!");
1360   return getPointerTy(DL).SimpleTy;
1361 }
1362 
getCmpLibcallReturnType() const1363 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1364   return MVT::i32; // return the default value
1365 }
1366 
1367 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1368 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1369 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1370 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1371 ///
1372 /// This method returns the number of registers needed, and the VT for each
1373 /// register.  It also returns the VT and quantity of the intermediate values
1374 /// before they are promoted/expanded.
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const1375 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1376                                                 EVT &IntermediateVT,
1377                                                 unsigned &NumIntermediates,
1378                                                 MVT &RegisterVT) const {
1379   unsigned NumElts = VT.getVectorNumElements();
1380 
1381   // If there is a wider vector type with the same element type as this one,
1382   // or a promoted vector type that has the same number of elements which
1383   // are wider, then we should convert to that legal vector type.
1384   // This handles things like <2 x float> -> <4 x float> and
1385   // <4 x i1> -> <4 x i32>.
1386   LegalizeTypeAction TA = getTypeAction(Context, VT);
1387   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1388     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1389     if (isTypeLegal(RegisterEVT)) {
1390       IntermediateVT = RegisterEVT;
1391       RegisterVT = RegisterEVT.getSimpleVT();
1392       NumIntermediates = 1;
1393       return 1;
1394     }
1395   }
1396 
1397   // Figure out the right, legal destination reg to copy into.
1398   EVT EltTy = VT.getVectorElementType();
1399 
1400   unsigned NumVectorRegs = 1;
1401 
1402   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1403   // could break down into LHS/RHS like LegalizeDAG does.
1404   if (!isPowerOf2_32(NumElts)) {
1405     NumVectorRegs = NumElts;
1406     NumElts = 1;
1407   }
1408 
1409   // Divide the input until we get to a supported size.  This will always
1410   // end with a scalar if the target doesn't support vectors.
1411   while (NumElts > 1 && !isTypeLegal(
1412                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1413     NumElts >>= 1;
1414     NumVectorRegs <<= 1;
1415   }
1416 
1417   NumIntermediates = NumVectorRegs;
1418 
1419   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1420   if (!isTypeLegal(NewVT))
1421     NewVT = EltTy;
1422   IntermediateVT = NewVT;
1423 
1424   MVT DestVT = getRegisterType(Context, NewVT);
1425   RegisterVT = DestVT;
1426   unsigned NewVTSize = NewVT.getSizeInBits();
1427 
1428   // Convert sizes such as i33 to i64.
1429   if (!isPowerOf2_32(NewVTSize))
1430     NewVTSize = NextPowerOf2(NewVTSize);
1431 
1432   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1433     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1434 
1435   // Otherwise, promotion or legal types use the same number of registers as
1436   // the vector decimated to the appropriate level.
1437   return NumVectorRegs;
1438 }
1439 
isSuitableForJumpTable(const SwitchInst * SI,uint64_t NumCases,uint64_t Range,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI) const1440 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1441                                                 uint64_t NumCases,
1442                                                 uint64_t Range,
1443                                                 ProfileSummaryInfo *PSI,
1444                                                 BlockFrequencyInfo *BFI) const {
1445   // FIXME: This function check the maximum table size and density, but the
1446   // minimum size is not checked. It would be nice if the minimum size is
1447   // also combined within this function. Currently, the minimum size check is
1448   // performed in findJumpTable() in SelectionDAGBuiler and
1449   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1450   const bool OptForSize =
1451       SI->getParent()->getParent()->hasOptSize() ||
1452       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1453   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1454   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1455 
1456   // Check whether the number of cases is small enough and
1457   // the range is dense enough for a jump table.
1458   return (OptForSize || Range <= MaxJumpTableSize) &&
1459          (NumCases * 100 >= Range * MinDensity);
1460 }
1461 
1462 /// Get the EVTs and ArgFlags collections that represent the legalized return
1463 /// type of the given function.  This does not require a DAG or a return value,
1464 /// and is suitable for use before any DAGs for the function are constructed.
1465 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(CallingConv::ID CC,Type * ReturnType,AttributeList attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,const DataLayout & DL)1466 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1467                          AttributeList attr,
1468                          SmallVectorImpl<ISD::OutputArg> &Outs,
1469                          const TargetLowering &TLI, const DataLayout &DL) {
1470   SmallVector<EVT, 4> ValueVTs;
1471   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1472   unsigned NumValues = ValueVTs.size();
1473   if (NumValues == 0) return;
1474 
1475   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1476     EVT VT = ValueVTs[j];
1477     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1478 
1479     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1480       ExtendKind = ISD::SIGN_EXTEND;
1481     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1482       ExtendKind = ISD::ZERO_EXTEND;
1483 
1484     // FIXME: C calling convention requires the return type to be promoted to
1485     // at least 32-bit. But this is not necessary for non-C calling
1486     // conventions. The frontend should mark functions whose return values
1487     // require promoting with signext or zeroext attributes.
1488     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1489       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1490       if (VT.bitsLT(MinVT))
1491         VT = MinVT;
1492     }
1493 
1494     unsigned NumParts =
1495         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1496     MVT PartVT =
1497         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1498 
1499     // 'inreg' on function refers to return value
1500     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1501     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1502       Flags.setInReg();
1503 
1504     // Propagate extension type if any
1505     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1506       Flags.setSExt();
1507     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1508       Flags.setZExt();
1509 
1510     for (unsigned i = 0; i < NumParts; ++i)
1511       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1512   }
1513 }
1514 
1515 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1516 /// function arguments in the caller parameter area.  This is the actual
1517 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1518 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1519                                                    const DataLayout &DL) const {
1520   return DL.getABITypeAlignment(Ty);
1521 }
1522 
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,unsigned Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1523 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1524     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1525     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1526   // Check if the specified alignment is sufficient based on the data layout.
1527   // TODO: While using the data layout works in practice, a better solution
1528   // would be to implement this check directly (make this a virtual function).
1529   // For example, the ABI alignment may change based on software platform while
1530   // this function should only be affected by hardware implementation.
1531   Type *Ty = VT.getTypeForEVT(Context);
1532   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1533     // Assume that an access that meets the ABI-specified alignment is fast.
1534     if (Fast != nullptr)
1535       *Fast = true;
1536     return true;
1537   }
1538 
1539   // This is a misaligned access.
1540   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1541 }
1542 
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1543 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1544     LLVMContext &Context, const DataLayout &DL, EVT VT,
1545     const MachineMemOperand &MMO, bool *Fast) const {
1546   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1547                                         MMO.getAlignment(), MMO.getFlags(),
1548                                         Fast);
1549 }
1550 
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,unsigned Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1551 bool TargetLoweringBase::allowsMemoryAccess(
1552     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1553     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1554   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1555                                         Flags, Fast);
1556 }
1557 
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1558 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1559                                             const DataLayout &DL, EVT VT,
1560                                             const MachineMemOperand &MMO,
1561                                             bool *Fast) const {
1562   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1563                             MMO.getAlignment(), MMO.getFlags(), Fast);
1564 }
1565 
getPredictableBranchThreshold() const1566 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1567   return BranchProbability(MinPercentageForPredictableBranch, 100);
1568 }
1569 
1570 //===----------------------------------------------------------------------===//
1571 //  TargetTransformInfo Helpers
1572 //===----------------------------------------------------------------------===//
1573 
InstructionOpcodeToISD(unsigned Opcode) const1574 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1575   enum InstructionOpcodes {
1576 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1577 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1578 #include "llvm/IR/Instruction.def"
1579   };
1580   switch (static_cast<InstructionOpcodes>(Opcode)) {
1581   case Ret:            return 0;
1582   case Br:             return 0;
1583   case Switch:         return 0;
1584   case IndirectBr:     return 0;
1585   case Invoke:         return 0;
1586   case CallBr:         return 0;
1587   case Resume:         return 0;
1588   case Unreachable:    return 0;
1589   case CleanupRet:     return 0;
1590   case CatchRet:       return 0;
1591   case CatchPad:       return 0;
1592   case CatchSwitch:    return 0;
1593   case CleanupPad:     return 0;
1594   case FNeg:           return ISD::FNEG;
1595   case Add:            return ISD::ADD;
1596   case FAdd:           return ISD::FADD;
1597   case Sub:            return ISD::SUB;
1598   case FSub:           return ISD::FSUB;
1599   case Mul:            return ISD::MUL;
1600   case FMul:           return ISD::FMUL;
1601   case UDiv:           return ISD::UDIV;
1602   case SDiv:           return ISD::SDIV;
1603   case FDiv:           return ISD::FDIV;
1604   case URem:           return ISD::UREM;
1605   case SRem:           return ISD::SREM;
1606   case FRem:           return ISD::FREM;
1607   case Shl:            return ISD::SHL;
1608   case LShr:           return ISD::SRL;
1609   case AShr:           return ISD::SRA;
1610   case And:            return ISD::AND;
1611   case Or:             return ISD::OR;
1612   case Xor:            return ISD::XOR;
1613   case Alloca:         return 0;
1614   case Load:           return ISD::LOAD;
1615   case Store:          return ISD::STORE;
1616   case GetElementPtr:  return 0;
1617   case Fence:          return 0;
1618   case AtomicCmpXchg:  return 0;
1619   case AtomicRMW:      return 0;
1620   case Trunc:          return ISD::TRUNCATE;
1621   case ZExt:           return ISD::ZERO_EXTEND;
1622   case SExt:           return ISD::SIGN_EXTEND;
1623   case FPToUI:         return ISD::FP_TO_UINT;
1624   case FPToSI:         return ISD::FP_TO_SINT;
1625   case UIToFP:         return ISD::UINT_TO_FP;
1626   case SIToFP:         return ISD::SINT_TO_FP;
1627   case FPTrunc:        return ISD::FP_ROUND;
1628   case FPExt:          return ISD::FP_EXTEND;
1629   case PtrToInt:       return ISD::BITCAST;
1630   case IntToPtr:       return ISD::BITCAST;
1631   case BitCast:        return ISD::BITCAST;
1632   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1633   case ICmp:           return ISD::SETCC;
1634   case FCmp:           return ISD::SETCC;
1635   case PHI:            return 0;
1636   case Call:           return 0;
1637   case Select:         return ISD::SELECT;
1638   case UserOp1:        return 0;
1639   case UserOp2:        return 0;
1640   case VAArg:          return 0;
1641   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1642   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1643   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1644   case ExtractValue:   return ISD::MERGE_VALUES;
1645   case InsertValue:    return ISD::MERGE_VALUES;
1646   case LandingPad:     return 0;
1647   case Freeze:         return 0;
1648   }
1649 
1650   llvm_unreachable("Unknown instruction type encountered!");
1651 }
1652 
1653 std::pair<int, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const1654 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1655                                             Type *Ty) const {
1656   LLVMContext &C = Ty->getContext();
1657   EVT MTy = getValueType(DL, Ty);
1658 
1659   int Cost = 1;
1660   // We keep legalizing the type until we find a legal kind. We assume that
1661   // the only operation that costs anything is the split. After splitting
1662   // we need to handle two types.
1663   while (true) {
1664     LegalizeKind LK = getTypeConversion(C, MTy);
1665 
1666     if (LK.first == TypeLegal)
1667       return std::make_pair(Cost, MTy.getSimpleVT());
1668 
1669     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1670       Cost *= 2;
1671 
1672     // Do not loop with f128 type.
1673     if (MTy == LK.second)
1674       return std::make_pair(Cost, MTy.getSimpleVT());
1675 
1676     // Keep legalizing the type.
1677     MTy = LK.second;
1678   }
1679 }
1680 
getDefaultSafeStackPointerLocation(IRBuilder<> & IRB,bool UseTLS) const1681 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1682                                                               bool UseTLS) const {
1683   // compiler-rt provides a variable with a magic name.  Targets that do not
1684   // link with compiler-rt may also provide such a variable.
1685   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1686   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1687   auto UnsafeStackPtr =
1688       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1689 
1690   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1691 
1692   if (!UnsafeStackPtr) {
1693     auto TLSModel = UseTLS ?
1694         GlobalValue::InitialExecTLSModel :
1695         GlobalValue::NotThreadLocal;
1696     // The global variable is not defined yet, define it ourselves.
1697     // We use the initial-exec TLS model because we do not support the
1698     // variable living anywhere other than in the main executable.
1699     UnsafeStackPtr = new GlobalVariable(
1700         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1701         UnsafeStackPtrVar, nullptr, TLSModel);
1702   } else {
1703     // The variable exists, check its type and attributes.
1704     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1705       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1706     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1707       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1708                          (UseTLS ? "" : "not ") + "be thread-local");
1709   }
1710   return UnsafeStackPtr;
1711 }
1712 
getSafeStackPointerLocation(IRBuilder<> & IRB) const1713 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1714   if (!TM.getTargetTriple().isAndroid())
1715     return getDefaultSafeStackPointerLocation(IRB, true);
1716 
1717   // Android provides a libc function to retrieve the address of the current
1718   // thread's unsafe stack pointer.
1719   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1720   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1721   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1722                                              StackPtrTy->getPointerTo(0));
1723   return IRB.CreateCall(Fn);
1724 }
1725 
1726 //===----------------------------------------------------------------------===//
1727 //  Loop Strength Reduction hooks
1728 //===----------------------------------------------------------------------===//
1729 
1730 /// isLegalAddressingMode - Return true if the addressing mode represented
1731 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1732 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1733                                                const AddrMode &AM, Type *Ty,
1734                                                unsigned AS, Instruction *I) const {
1735   // The default implementation of this implements a conservative RISCy, r+r and
1736   // r+i addr mode.
1737 
1738   // Allows a sign-extended 16-bit immediate field.
1739   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1740     return false;
1741 
1742   // No global is ever allowed as a base.
1743   if (AM.BaseGV)
1744     return false;
1745 
1746   // Only support r+r,
1747   switch (AM.Scale) {
1748   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1749     break;
1750   case 1:
1751     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1752       return false;
1753     // Otherwise we have r+r or r+i.
1754     break;
1755   case 2:
1756     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1757       return false;
1758     // Allow 2*r as r+r.
1759     break;
1760   default: // Don't allow n * r
1761     return false;
1762   }
1763 
1764   return true;
1765 }
1766 
1767 //===----------------------------------------------------------------------===//
1768 //  Stack Protector
1769 //===----------------------------------------------------------------------===//
1770 
1771 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1772 // so that SelectionDAG handle SSP.
getIRStackGuard(IRBuilder<> & IRB) const1773 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1774   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1775     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1776     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1777     return M.getOrInsertGlobal("__guard_local", PtrTy);
1778   }
1779   return nullptr;
1780 }
1781 
1782 // Currently only support "standard" __stack_chk_guard.
1783 // TODO: add LOAD_STACK_GUARD support.
insertSSPDeclarations(Module & M) const1784 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1785   if (!M.getNamedValue("__stack_chk_guard"))
1786     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1787                        GlobalVariable::ExternalLinkage,
1788                        nullptr, "__stack_chk_guard");
1789 }
1790 
1791 // Currently only support "standard" __stack_chk_guard.
1792 // TODO: add LOAD_STACK_GUARD support.
getSDagStackGuard(const Module & M) const1793 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1794   return M.getNamedValue("__stack_chk_guard");
1795 }
1796 
getSSPStackGuardCheck(const Module & M) const1797 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1798   return nullptr;
1799 }
1800 
getMinimumJumpTableEntries() const1801 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1802   return MinimumJumpTableEntries;
1803 }
1804 
setMinimumJumpTableEntries(unsigned Val)1805 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1806   MinimumJumpTableEntries = Val;
1807 }
1808 
getMinimumJumpTableDensity(bool OptForSize) const1809 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1810   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1811 }
1812 
getMaximumJumpTableSize() const1813 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1814   return MaximumJumpTableSize;
1815 }
1816 
setMaximumJumpTableSize(unsigned Val)1817 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1818   MaximumJumpTableSize = Val;
1819 }
1820 
1821 //===----------------------------------------------------------------------===//
1822 //  Reciprocal Estimates
1823 //===----------------------------------------------------------------------===//
1824 
1825 /// Get the reciprocal estimate attribute string for a function that will
1826 /// override the target defaults.
getRecipEstimateForFunc(MachineFunction & MF)1827 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1828   const Function &F = MF.getFunction();
1829   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1830 }
1831 
1832 /// Construct a string for the given reciprocal operation of the given type.
1833 /// This string should match the corresponding option to the front-end's
1834 /// "-mrecip" flag assuming those strings have been passed through in an
1835 /// attribute string. For example, "vec-divf" for a division of a vXf32.
getReciprocalOpName(bool IsSqrt,EVT VT)1836 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1837   std::string Name = VT.isVector() ? "vec-" : "";
1838 
1839   Name += IsSqrt ? "sqrt" : "div";
1840 
1841   // TODO: Handle "half" or other float types?
1842   if (VT.getScalarType() == MVT::f64) {
1843     Name += "d";
1844   } else {
1845     assert(VT.getScalarType() == MVT::f32 &&
1846            "Unexpected FP type for reciprocal estimate");
1847     Name += "f";
1848   }
1849 
1850   return Name;
1851 }
1852 
1853 /// Return the character position and value (a single numeric character) of a
1854 /// customized refinement operation in the input string if it exists. Return
1855 /// false if there is no customized refinement step count.
parseRefinementStep(StringRef In,size_t & Position,uint8_t & Value)1856 static bool parseRefinementStep(StringRef In, size_t &Position,
1857                                 uint8_t &Value) {
1858   const char RefStepToken = ':';
1859   Position = In.find(RefStepToken);
1860   if (Position == StringRef::npos)
1861     return false;
1862 
1863   StringRef RefStepString = In.substr(Position + 1);
1864   // Allow exactly one numeric character for the additional refinement
1865   // step parameter.
1866   if (RefStepString.size() == 1) {
1867     char RefStepChar = RefStepString[0];
1868     if (RefStepChar >= '0' && RefStepChar <= '9') {
1869       Value = RefStepChar - '0';
1870       return true;
1871     }
1872   }
1873   report_fatal_error("Invalid refinement step for -recip.");
1874 }
1875 
1876 /// For the input attribute string, return one of the ReciprocalEstimate enum
1877 /// status values (enabled, disabled, or not specified) for this operation on
1878 /// the specified data type.
getOpEnabled(bool IsSqrt,EVT VT,StringRef Override)1879 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1880   if (Override.empty())
1881     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1882 
1883   SmallVector<StringRef, 4> OverrideVector;
1884   Override.split(OverrideVector, ',');
1885   unsigned NumArgs = OverrideVector.size();
1886 
1887   // Check if "all", "none", or "default" was specified.
1888   if (NumArgs == 1) {
1889     // Look for an optional setting of the number of refinement steps needed
1890     // for this type of reciprocal operation.
1891     size_t RefPos;
1892     uint8_t RefSteps;
1893     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1894       // Split the string for further processing.
1895       Override = Override.substr(0, RefPos);
1896     }
1897 
1898     // All reciprocal types are enabled.
1899     if (Override == "all")
1900       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1901 
1902     // All reciprocal types are disabled.
1903     if (Override == "none")
1904       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1905 
1906     // Target defaults for enablement are used.
1907     if (Override == "default")
1908       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1909   }
1910 
1911   // The attribute string may omit the size suffix ('f'/'d').
1912   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1913   std::string VTNameNoSize = VTName;
1914   VTNameNoSize.pop_back();
1915   static const char DisabledPrefix = '!';
1916 
1917   for (StringRef RecipType : OverrideVector) {
1918     size_t RefPos;
1919     uint8_t RefSteps;
1920     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1921       RecipType = RecipType.substr(0, RefPos);
1922 
1923     // Ignore the disablement token for string matching.
1924     bool IsDisabled = RecipType[0] == DisabledPrefix;
1925     if (IsDisabled)
1926       RecipType = RecipType.substr(1);
1927 
1928     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1929       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1930                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1931   }
1932 
1933   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1934 }
1935 
1936 /// For the input attribute string, return the customized refinement step count
1937 /// for this operation on the specified data type. If the step count does not
1938 /// exist, return the ReciprocalEstimate enum value for unspecified.
getOpRefinementSteps(bool IsSqrt,EVT VT,StringRef Override)1939 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1940   if (Override.empty())
1941     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1942 
1943   SmallVector<StringRef, 4> OverrideVector;
1944   Override.split(OverrideVector, ',');
1945   unsigned NumArgs = OverrideVector.size();
1946 
1947   // Check if "all", "default", or "none" was specified.
1948   if (NumArgs == 1) {
1949     // Look for an optional setting of the number of refinement steps needed
1950     // for this type of reciprocal operation.
1951     size_t RefPos;
1952     uint8_t RefSteps;
1953     if (!parseRefinementStep(Override, RefPos, RefSteps))
1954       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1955 
1956     // Split the string for further processing.
1957     Override = Override.substr(0, RefPos);
1958     assert(Override != "none" &&
1959            "Disabled reciprocals, but specifed refinement steps?");
1960 
1961     // If this is a general override, return the specified number of steps.
1962     if (Override == "all" || Override == "default")
1963       return RefSteps;
1964   }
1965 
1966   // The attribute string may omit the size suffix ('f'/'d').
1967   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1968   std::string VTNameNoSize = VTName;
1969   VTNameNoSize.pop_back();
1970 
1971   for (StringRef RecipType : OverrideVector) {
1972     size_t RefPos;
1973     uint8_t RefSteps;
1974     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1975       continue;
1976 
1977     RecipType = RecipType.substr(0, RefPos);
1978     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1979       return RefSteps;
1980   }
1981 
1982   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1983 }
1984 
getRecipEstimateSqrtEnabled(EVT VT,MachineFunction & MF) const1985 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1986                                                     MachineFunction &MF) const {
1987   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1988 }
1989 
getRecipEstimateDivEnabled(EVT VT,MachineFunction & MF) const1990 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1991                                                    MachineFunction &MF) const {
1992   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1993 }
1994 
getSqrtRefinementSteps(EVT VT,MachineFunction & MF) const1995 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1996                                                MachineFunction &MF) const {
1997   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1998 }
1999 
getDivRefinementSteps(EVT VT,MachineFunction & MF) const2000 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2001                                               MachineFunction &MF) const {
2002   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2003 }
2004 
finalizeLowering(MachineFunction & MF) const2005 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2006   MF.getRegInfo().freezeReservedRegs(MF);
2007 }
2008