• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2017-2018 Google, Inc.
3 // Copyright (C) 2017 LunarG, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 //    Redistributions of source code must retain the above copyright
12 //    notice, this list of conditions and the following disclaimer.
13 //
14 //    Redistributions in binary form must reproduce the above
15 //    copyright notice, this list of conditions and the following
16 //    disclaimer in the documentation and/or other materials provided
17 //    with the distribution.
18 //
19 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 //    contributors may be used to endorse or promote products derived
21 //    from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35 //
36 
37 #include "hlslParseHelper.h"
38 #include "hlslScanContext.h"
39 #include "hlslGrammar.h"
40 #include "hlslAttributes.h"
41 
42 #include "../Include/Common.h"
43 #include "../MachineIndependent/Scan.h"
44 #include "../MachineIndependent/preprocessor/PpContext.h"
45 
46 #include "../OSDependent/osinclude.h"
47 
48 #include <algorithm>
49 #include <functional>
50 #include <cctype>
51 #include <array>
52 #include <set>
53 
54 namespace glslang {
55 
HlslParseContext(TSymbolTable & symbolTable,TIntermediate & interm,bool parsingBuiltins,int version,EProfile profile,const SpvVersion & spvVersion,EShLanguage language,TInfoSink & infoSink,const TString sourceEntryPointName,bool forwardCompatible,EShMessages messages)56 HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
57                                    int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
58                                    TInfoSink& infoSink,
59                                    const TString sourceEntryPointName,
60                                    bool forwardCompatible, EShMessages messages) :
61     TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
62                       forwardCompatible, messages, &sourceEntryPointName),
63     annotationNestingLevel(0),
64     inputPatch(nullptr),
65     nextInLocation(0), nextOutLocation(0),
66     entryPointFunction(nullptr),
67     entryPointFunctionBody(nullptr),
68     gsStreamOutput(nullptr),
69     clipDistanceOutput(nullptr),
70     cullDistanceOutput(nullptr),
71     clipDistanceInput(nullptr),
72     cullDistanceInput(nullptr),
73     parsingEntrypointParameters(false)
74 {
75     globalUniformDefaults.clear();
76     globalUniformDefaults.layoutMatrix = ElmRowMajor;
77     globalUniformDefaults.layoutPacking = ElpStd140;
78 
79     globalBufferDefaults.clear();
80     globalBufferDefaults.layoutMatrix = ElmRowMajor;
81     globalBufferDefaults.layoutPacking = ElpStd430;
82 
83     globalInputDefaults.clear();
84     globalOutputDefaults.clear();
85 
86     clipSemanticNSizeIn.fill(0);
87     cullSemanticNSizeIn.fill(0);
88     clipSemanticNSizeOut.fill(0);
89     cullSemanticNSizeOut.fill(0);
90 
91     // "Shaders in the transform
92     // feedback capturing mode have an initial global default of
93     //     layout(xfb_buffer = 0) out;"
94     if (language == EShLangVertex ||
95         language == EShLangTessControl ||
96         language == EShLangTessEvaluation ||
97         language == EShLangGeometry)
98         globalOutputDefaults.layoutXfbBuffer = 0;
99 
100     if (language == EShLangGeometry)
101         globalOutputDefaults.layoutStream = 0;
102 }
103 
~HlslParseContext()104 HlslParseContext::~HlslParseContext()
105 {
106 }
107 
initializeExtensionBehavior()108 void HlslParseContext::initializeExtensionBehavior()
109 {
110     TParseContextBase::initializeExtensionBehavior();
111 
112     // HLSL allows #line by default.
113     extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
114 }
115 
setLimits(const TBuiltInResource & r)116 void HlslParseContext::setLimits(const TBuiltInResource& r)
117 {
118     resources = r;
119     intermediate.setLimits(resources);
120 }
121 
122 //
123 // Parse an array of strings using the parser in HlslRules.
124 //
125 // Returns true for successful acceptance of the shader, false if any errors.
126 //
parseShaderStrings(TPpContext & ppContext,TInputScanner & input,bool versionWillBeError)127 bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
128 {
129     currentScanner = &input;
130     ppContext.setInput(input, versionWillBeError);
131 
132     HlslScanContext scanContext(*this, ppContext);
133     HlslGrammar grammar(scanContext, *this);
134     if (!grammar.parse()) {
135         // Print a message formated such that if you click on the message it will take you right to
136         // the line through most UIs.
137         const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
138         infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
139                       << ", HLSL parsing failed.\n";
140         ++numErrors;
141         return false;
142     }
143 
144     finish();
145 
146     return numErrors == 0;
147 }
148 
149 //
150 // Return true if this l-value node should be converted in some manner.
151 // For instance: turning a load aggregate into a store in an l-value.
152 //
shouldConvertLValue(const TIntermNode * node) const153 bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
154 {
155     if (node == nullptr || node->getAsTyped() == nullptr)
156         return false;
157 
158     const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
159     const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
160 
161     // If it's a swizzled/indexed aggregate, look at the left node instead.
162     if (lhsAsBinary != nullptr &&
163         (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
164         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
165     if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
166         return true;
167 
168     return false;
169 }
170 
growGlobalUniformBlock(const TSourceLoc & loc,TType & memberType,const TString & memberName,TTypeList * newTypeList)171 void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
172                                               TTypeList* newTypeList)
173 {
174     newTypeList = nullptr;
175     correctUniform(memberType.getQualifier());
176     if (memberType.isStruct()) {
177         auto it = ioTypeMap.find(memberType.getStruct());
178         if (it != ioTypeMap.end() && it->second.uniform)
179             newTypeList = it->second.uniform;
180     }
181     TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
182 }
183 
184 //
185 // Return a TLayoutFormat corresponding to the given texture type.
186 //
getLayoutFromTxType(const TSourceLoc & loc,const TType & txType)187 TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
188 {
189     if (txType.isStruct()) {
190         // TODO: implement.
191         error(loc, "unimplemented: structure type in image or buffer", "", "");
192         return ElfNone;
193     }
194 
195     const int components = txType.getVectorSize();
196     const TBasicType txBasicType = txType.getBasicType();
197 
198     const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
199         if (intermediate.getNoStorageFormat())
200             return ElfNone;
201 
202         return components == 1 ? v1 :
203                components == 2 ? v2 : v4;
204     };
205 
206     switch (txBasicType) {
207     case EbtFloat: return selectFormat(ElfR32f,  ElfRg32f,  ElfRgba32f);
208     case EbtInt:   return selectFormat(ElfR32i,  ElfRg32i,  ElfRgba32i);
209     case EbtUint:  return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
210     default:
211         error(loc, "unknown basic type in image format", "", "");
212         return ElfNone;
213     }
214 }
215 
216 //
217 // Both test and if necessary, spit out an error, to see if the node is really
218 // an l-value that can be operated on this way.
219 //
220 // Returns true if there was an error.
221 //
lValueErrorCheck(const TSourceLoc & loc,const char * op,TIntermTyped * node)222 bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
223 {
224     if (shouldConvertLValue(node)) {
225         // if we're writing to a texture, it must be an RW form.
226 
227         TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
228         TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
229 
230         if (!object->getType().getSampler().isImage()) {
231             error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
232             return true;
233         }
234     }
235 
236     // We tolerate samplers as l-values, even though they are nominally
237     // illegal, because we expect a later optimization to eliminate them.
238     if (node->getType().getBasicType() == EbtSampler) {
239         intermediate.setNeedsLegalization();
240         return false;
241     }
242 
243     // Let the base class check errors
244     return TParseContextBase::lValueErrorCheck(loc, op, node);
245 }
246 
247 //
248 // This function handles l-value conversions and verifications.  It uses, but is not synonymous
249 // with lValueErrorCheck.  That function accepts an l-value directly, while this one must be
250 // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
251 // series of other image operations.
252 //
253 // Most things are passed through unmodified, except for error checking.
254 //
handleLvalue(const TSourceLoc & loc,const char * op,TIntermTyped * & node)255 TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
256 {
257     if (node == nullptr)
258         return nullptr;
259 
260     TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
261     TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
262     TIntermAggregate* sequence = nullptr;
263 
264     TIntermTyped* lhs = nodeAsUnary  ? nodeAsUnary->getOperand() :
265                         nodeAsBinary ? nodeAsBinary->getLeft() :
266                         nullptr;
267 
268     // Early bail out if there is no conversion to apply
269     if (!shouldConvertLValue(lhs)) {
270         if (lhs != nullptr)
271             if (lValueErrorCheck(loc, op, lhs))
272                 return nullptr;
273         return node;
274     }
275 
276     // *** If we get here, we're going to apply some conversion to an l-value.
277 
278     // Helper to create a load.
279     const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
280         TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
281         loadOp->setLoc(loc);
282         loadOp->getSequence().push_back(object);
283         loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
284         loadOp->setType(derefType);
285 
286         sequence = intermediate.growAggregate(sequence,
287                                               intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
288                                               loc);
289     };
290 
291     // Helper to create a store.
292     const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
293         TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
294         storeOp->getSequence().push_back(object);
295         storeOp->getSequence().push_back(coord);
296         storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
297         storeOp->setLoc(loc);
298         storeOp->setType(TType(EbtVoid));
299 
300         sequence = intermediate.growAggregate(sequence, storeOp);
301     };
302 
303     // Helper to create an assign.
304     const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
305         sequence = intermediate.growAggregate(sequence,
306                                               intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
307                                               loc);
308     };
309 
310     // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
311     const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
312         // Add a trailing use of the temp, so the sequence returns the proper value.
313         sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
314         sequence->setOperator(EOpSequence);
315         sequence->setLoc(loc);
316         sequence->setType(derefType);
317 
318         return sequence;
319     };
320 
321     // Helper to add unary op
322     const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
323         sequence = intermediate.growAggregate(sequence,
324                                               intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
325                                                                         rhsTmp->getType()),
326                                               loc);
327     };
328 
329     // Return true if swizzle or index writes all components of the given variable.
330     const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
331         if (swizzle == nullptr)  // not a swizzle or index
332             return true;
333 
334         // Track which components are being set.
335         std::array<bool, 4> compIsSet;
336         compIsSet.fill(false);
337 
338         const TIntermConstantUnion* asConst     = swizzle->getRight()->getAsConstantUnion();
339         const TIntermAggregate*     asAggregate = swizzle->getRight()->getAsAggregate();
340 
341         // This could be either a direct index, or a swizzle.
342         if (asConst) {
343             compIsSet[asConst->getConstArray()[0].getIConst()] = true;
344         } else if (asAggregate) {
345             const TIntermSequence& seq = asAggregate->getSequence();
346             for (int comp=0; comp<int(seq.size()); ++comp)
347                 compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
348         } else {
349             assert(0);
350         }
351 
352         // Return true if all components are being set by the index or swizzle
353         return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
354                            [](bool isSet) { return isSet; } );
355     };
356 
357     // Create swizzle matching input swizzle
358     const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
359         if (swizzle)
360             return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
361         else
362             return var;
363     };
364 
365     TIntermBinary*    lhsAsBinary    = lhs->getAsBinaryNode();
366     TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
367     bool lhsIsSwizzle = false;
368 
369     // If it's a swizzled L-value, remember the swizzle, and use the LHS.
370     if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
371         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
372         lhsIsSwizzle = true;
373     }
374 
375     TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
376     TIntermTyped* coord  = lhsAsAggregate->getSequence()[1]->getAsTyped();
377 
378     const TSampler& texSampler = object->getType().getSampler();
379 
380     TType objDerefType;
381     getTextureReturnType(texSampler, objDerefType);
382 
383     if (nodeAsBinary) {
384         TIntermTyped* rhs = nodeAsBinary->getRight();
385         const TOperator assignOp = nodeAsBinary->getOp();
386 
387         bool isModifyOp = false;
388 
389         switch (assignOp) {
390         case EOpAddAssign:
391         case EOpSubAssign:
392         case EOpMulAssign:
393         case EOpVectorTimesMatrixAssign:
394         case EOpVectorTimesScalarAssign:
395         case EOpMatrixTimesScalarAssign:
396         case EOpMatrixTimesMatrixAssign:
397         case EOpDivAssign:
398         case EOpModAssign:
399         case EOpAndAssign:
400         case EOpInclusiveOrAssign:
401         case EOpExclusiveOrAssign:
402         case EOpLeftShiftAssign:
403         case EOpRightShiftAssign:
404             isModifyOp = true;
405             // fall through...
406         case EOpAssign:
407             {
408                 // Since this is an lvalue, we'll convert an image load to a sequence like this
409                 // (to still provide the value):
410                 //   OpSequence
411                 //      OpImageStore(object, lhs, rhs)
412                 //      rhs
413                 // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
414                 // so we'll convert instead to this:
415                 //   OpSequence
416                 //      rhsTmp = rhs
417                 //      OpImageStore(object, coord, rhsTmp)
418                 //      rhsTmp
419                 // If this is a read-modify-write op, like +=, we issue:
420                 //   OpSequence
421                 //      coordtmp = load's param1
422                 //      rhsTmp = OpImageLoad(object, coordTmp)
423                 //      rhsTmp op= rhs
424                 //      OpImageStore(object, coordTmp, rhsTmp)
425                 //      rhsTmp
426                 //
427                 // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
428                 //    ...
429                 //    rhsTmp.some_swizzle = ...
430                 // For partial writes, an error is generated.
431 
432                 TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
433                 TIntermTyped* coordTmp = coord;
434 
435                 if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
436                     rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
437 
438                     // Partial updates not yet supported
439                     if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
440                         error(loc, "unimplemented: partial image updates", "", "");
441                     }
442 
443                     // Assign storeTemp = rhs
444                     if (isModifyOp) {
445                         // We have to make a temp var for the coordinate, to avoid evaluating it twice.
446                         coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
447                         makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
448                         makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
449                     }
450 
451                     // rhsTmp op= rhs.
452                     makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
453                 }
454 
455                 makeStore(object, coordTmp, rhsTmp);         // add a store
456                 return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
457             }
458 
459         default:
460             break;
461         }
462     }
463 
464     if (nodeAsUnary) {
465         const TOperator assignOp = nodeAsUnary->getOp();
466 
467         switch (assignOp) {
468         case EOpPreIncrement:
469         case EOpPreDecrement:
470             {
471                 // We turn this into:
472                 //   OpSequence
473                 //      coordtmp = load's param1
474                 //      rhsTmp = OpImageLoad(object, coordTmp)
475                 //      rhsTmp op
476                 //      OpImageStore(object, coordTmp, rhsTmp)
477                 //      rhsTmp
478 
479                 TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
480                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
481 
482                 makeBinary(EOpAssign, coordTmp, coord);           // coordtmp = load[param1]
483                 makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
484                 makeUnary(assignOp, rhsTmp);                      // op rhsTmp
485                 makeStore(object, coordTmp, rhsTmp);              // OpImageStore(object, coordTmp, rhsTmp)
486                 return finishSequence(rhsTmp, objDerefType);      // return rhsTmp from sequence
487             }
488 
489         case EOpPostIncrement:
490         case EOpPostDecrement:
491             {
492                 // We turn this into:
493                 //   OpSequence
494                 //      coordtmp = load's param1
495                 //      rhsTmp1 = OpImageLoad(object, coordTmp)
496                 //      rhsTmp2 = rhsTmp1
497                 //      rhsTmp2 op
498                 //      OpImageStore(object, coordTmp, rhsTmp2)
499                 //      rhsTmp1 (pre-op value)
500                 TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre",  objDerefType);
501                 TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
502                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
503 
504                 makeBinary(EOpAssign, coordTmp, coord);            // coordtmp = load[param1]
505                 makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
506                 makeBinary(EOpAssign, rhsTmp2, rhsTmp1);           // rhsTmp2 = rhsTmp1
507                 makeUnary(assignOp, rhsTmp2);                      // rhsTmp op
508                 makeStore(object, coordTmp, rhsTmp2);              // OpImageStore(object, coordTmp, rhsTmp2)
509                 return finishSequence(rhsTmp1, objDerefType);      // return rhsTmp from sequence
510             }
511 
512         default:
513             break;
514         }
515     }
516 
517     if (lhs)
518         if (lValueErrorCheck(loc, op, lhs))
519             return nullptr;
520 
521     return node;
522 }
523 
handlePragma(const TSourceLoc & loc,const TVector<TString> & tokens)524 void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
525 {
526     if (pragmaCallback)
527         pragmaCallback(loc.line, tokens);
528 
529     if (tokens.size() == 0)
530         return;
531 
532     // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
533     TVector<TString> lowerTokens = tokens;
534 
535     for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
536         std::transform(it->begin(), it->end(), it->begin(), ::tolower);
537 
538     // Handle pack_matrix
539     if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
540         // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
541         // Row major becomes column major and vice versa.
542 
543         if (lowerTokens[2] == "row_major") {
544             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
545         } else if (lowerTokens[2] == "column_major") {
546             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
547         } else {
548             // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
549             warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
550             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
551         }
552         return;
553     }
554 
555     // Handle once
556     if (lowerTokens[0] == "once") {
557         warn(loc, "not implemented", "#pragma once", "");
558         return;
559     }
560 }
561 
562 //
563 // Look at a '.' matrix selector string and change it into components
564 // for a matrix. There are two types:
565 //
566 //   _21    second row, first column (one based)
567 //   _m21   third row, second column (zero based)
568 //
569 // Returns true if there is no error.
570 //
parseMatrixSwizzleSelector(const TSourceLoc & loc,const TString & fields,int cols,int rows,TSwizzleSelectors<TMatrixSelector> & components)571 bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
572                                                   TSwizzleSelectors<TMatrixSelector>& components)
573 {
574     int startPos[MaxSwizzleSelectors];
575     int numComps = 0;
576     TString compString = fields;
577 
578     // Find where each component starts,
579     // recording the first character position after the '_'.
580     for (size_t c = 0; c < compString.size(); ++c) {
581         if (compString[c] == '_') {
582             if (numComps >= MaxSwizzleSelectors) {
583                 error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
584                 return false;
585             }
586             if (c > compString.size() - 3 ||
587                     ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
588                 error(loc, "matrix component swizzle missing", compString.c_str(), "");
589                 return false;
590             }
591             startPos[numComps++] = (int)c + 1;
592         }
593     }
594 
595     // Process each component
596     for (int i = 0; i < numComps; ++i) {
597         int pos = startPos[i];
598         int bias = -1;
599         if (compString[pos] == 'm' || compString[pos] == 'M') {
600             bias = 0;
601             ++pos;
602         }
603         TMatrixSelector comp;
604         comp.coord1 = compString[pos+0] - '0' + bias;
605         comp.coord2 = compString[pos+1] - '0' + bias;
606         if (comp.coord1 < 0 || comp.coord1 >= cols) {
607             error(loc, "matrix row component out of range", compString.c_str(), "");
608             return false;
609         }
610         if (comp.coord2 < 0 || comp.coord2 >= rows) {
611             error(loc, "matrix column component out of range", compString.c_str(), "");
612             return false;
613         }
614         components.push_back(comp);
615     }
616 
617     return true;
618 }
619 
620 // If the 'comps' express a column of a matrix,
621 // return the column.  Column means the first coords all match.
622 //
623 // Otherwise, return -1.
624 //
getMatrixComponentsColumn(int rows,const TSwizzleSelectors<TMatrixSelector> & selector)625 int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
626 {
627     int col = -1;
628 
629     // right number of comps?
630     if (selector.size() != rows)
631         return -1;
632 
633     // all comps in the same column?
634     // rows in order?
635     col = selector[0].coord1;
636     for (int i = 0; i < rows; ++i) {
637         if (col != selector[i].coord1)
638             return -1;
639         if (i != selector[i].coord2)
640             return -1;
641     }
642 
643     return col;
644 }
645 
646 //
647 // Handle seeing a variable identifier in the grammar.
648 //
handleVariable(const TSourceLoc & loc,const TString * string)649 TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
650 {
651     int thisDepth;
652     TSymbol* symbol = symbolTable.find(*string, thisDepth);
653     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
654         error(loc, "expected symbol, not user-defined type", string->c_str(), "");
655         return nullptr;
656     }
657 
658     const TVariable* variable = nullptr;
659     const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
660     TIntermTyped* node = nullptr;
661     if (anon) {
662         // It was a member of an anonymous container, which could be a 'this' structure.
663 
664         // Create a subtree for its dereference.
665         if (thisDepth > 0) {
666             variable = getImplicitThis(thisDepth);
667             if (variable == nullptr)
668                 error(loc, "cannot access member variables (static member function?)", "this", "");
669         }
670         if (variable == nullptr)
671             variable = anon->getAnonContainer().getAsVariable();
672 
673         TIntermTyped* container = intermediate.addSymbol(*variable, loc);
674         TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
675         node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
676 
677         node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
678         if (node->getType().hiddenMember())
679             error(loc, "member of nameless block was not redeclared", string->c_str(), "");
680     } else {
681         // Not a member of an anonymous container.
682 
683         // The symbol table search was done in the lexical phase.
684         // See if it was a variable.
685         variable = symbol ? symbol->getAsVariable() : nullptr;
686         if (variable) {
687             if ((variable->getType().getBasicType() == EbtBlock ||
688                 variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
689                 error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
690                 variable = nullptr;
691             }
692         } else {
693             if (symbol)
694                 error(loc, "variable name expected", string->c_str(), "");
695         }
696 
697         // Recovery, if it wasn't found or was not a variable.
698         if (variable == nullptr) {
699             error(loc, "unknown variable", string->c_str(), "");
700             variable = new TVariable(string, TType(EbtVoid));
701         }
702 
703         if (variable->getType().getQualifier().isFrontEndConstant())
704             node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
705         else
706             node = intermediate.addSymbol(*variable, loc);
707     }
708 
709     if (variable->getType().getQualifier().isIo())
710         intermediate.addIoAccessed(*string);
711 
712     return node;
713 }
714 
715 //
716 // Handle operator[] on any objects it applies to.  Currently:
717 //    Textures
718 //    Buffers
719 //
handleBracketOperator(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)720 TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
721 {
722     // handle r-value operator[] on textures and images.  l-values will be processed later.
723     if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
724         const TSampler& sampler = base->getType().getSampler();
725         if (sampler.isImage() || sampler.isTexture()) {
726             if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
727                 // The first operator[] to a .mips[] sequence is the mip level.  We'll remember it.
728                 mipsOperatorMipArg.back().mipLevel = index;
729                 return base;  // next [] index is to the same base.
730             } else {
731                 TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
732 
733                 TType sampReturnType;
734                 getTextureReturnType(sampler, sampReturnType);
735 
736                 load->setType(sampReturnType);
737                 load->setLoc(loc);
738                 load->getSequence().push_back(base);
739                 load->getSequence().push_back(index);
740 
741                 // Textures need a MIP.  If we saw one go by, use it.  Otherwise, use zero.
742                 if (sampler.isTexture()) {
743                     if (! mipsOperatorMipArg.empty()) {
744                         load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
745                         mipsOperatorMipArg.pop_back();
746                     } else {
747                         load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
748                     }
749                 }
750 
751                 return load;
752             }
753         }
754     }
755 
756     // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
757     // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
758     TIntermTyped* sbArray = indexStructBufferContent(loc, base);
759     if (sbArray != nullptr) {
760         // Now we'll apply the [] index to that array
761         const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
762 
763         TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
764         const TType derefType(sbArray->getType(), 0);
765         element->setType(derefType);
766         return element;
767     }
768 
769     return nullptr;
770 }
771 
772 //
773 // Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
makeIntegerIndex(TIntermTyped * index)774 TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
775 {
776     const TBasicType indexBasicType = index->getType().getBasicType();
777     const int vecSize = index->getType().getVectorSize();
778 
779     // We can use int types directly as the index
780     if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
781         indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
782         return index;
783 
784     // Cast index to unsigned integer if it isn't one.
785     return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
786 }
787 
788 //
789 // Handle seeing a base[index] dereference in the grammar.
790 //
handleBracketDereference(const TSourceLoc & loc,TIntermTyped * base,TIntermTyped * index)791 TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
792 {
793     index = makeIntegerIndex(index);
794 
795     if (index == nullptr) {
796         error(loc, " unknown index type ", "", "");
797         return nullptr;
798     }
799 
800     TIntermTyped* result = handleBracketOperator(loc, base, index);
801 
802     if (result != nullptr)
803         return result;  // it was handled as an operator[]
804 
805     bool flattened = false;
806     int indexValue = 0;
807     if (index->getQualifier().isFrontEndConstant())
808         indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
809 
810     variableCheck(base);
811     if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
812         if (base->getAsSymbolNode())
813             error(loc, " left of '[' is not of type array, matrix, or vector ",
814                   base->getAsSymbolNode()->getName().c_str(), "");
815         else
816             error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
817     } else if (base->getType().getQualifier().isFrontEndConstant() &&
818                index->getQualifier().isFrontEndConstant()) {
819         // both base and index are front-end constants
820         checkIndex(loc, base->getType(), indexValue);
821         return intermediate.foldDereference(base, indexValue, loc);
822     } else {
823         // at least one of base and index is variable...
824 
825         if (index->getQualifier().isFrontEndConstant())
826             checkIndex(loc, base->getType(), indexValue);
827 
828         if (base->getType().isScalarOrVec1())
829             result = base;
830         else if (base->getAsSymbolNode() && wasFlattened(base)) {
831             if (index->getQualifier().storage != EvqConst)
832                 error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
833 
834             result = flattenAccess(base, indexValue);
835             flattened = (result != base);
836         } else {
837             if (index->getQualifier().isFrontEndConstant()) {
838                 if (base->getType().isUnsizedArray())
839                     base->getWritableType().updateImplicitArraySize(indexValue + 1);
840                 else
841                     checkIndex(loc, base->getType(), indexValue);
842                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
843             } else
844                 result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
845         }
846     }
847 
848     if (result == nullptr) {
849         // Insert dummy error-recovery result
850         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
851     } else {
852         // If the array reference was flattened, it has the correct type.  E.g, if it was
853         // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
854         // In that case, we preserve the qualifiers.
855         if (!flattened) {
856             // Insert valid dereferenced result
857             TType newType(base->getType(), 0);  // dereferenced type
858             if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
859                 newType.getQualifier().storage = EvqConst;
860             else
861                 newType.getQualifier().storage = EvqTemporary;
862             result->setType(newType);
863         }
864     }
865 
866     return result;
867 }
868 
869 // Handle seeing a binary node with a math operation.
handleBinaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * left,TIntermTyped * right)870 TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
871                                                  TIntermTyped* left, TIntermTyped* right)
872 {
873     TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
874     if (result == nullptr)
875         binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
876 
877     return result;
878 }
879 
880 // Handle seeing a unary node with a math operation.
handleUnaryMath(const TSourceLoc & loc,const char * str,TOperator op,TIntermTyped * childNode)881 TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
882                                                 TIntermTyped* childNode)
883 {
884     TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
885 
886     if (result)
887         return result;
888     else
889         unaryOpError(loc, str, childNode->getCompleteString());
890 
891     return childNode;
892 }
893 //
894 // Return true if the name is a struct buffer method
895 //
isStructBufferMethod(const TString & name) const896 bool HlslParseContext::isStructBufferMethod(const TString& name) const
897 {
898     return
899         name == "GetDimensions"              ||
900         name == "Load"                       ||
901         name == "Load2"                      ||
902         name == "Load3"                      ||
903         name == "Load4"                      ||
904         name == "Store"                      ||
905         name == "Store2"                     ||
906         name == "Store3"                     ||
907         name == "Store4"                     ||
908         name == "InterlockedAdd"             ||
909         name == "InterlockedAnd"             ||
910         name == "InterlockedCompareExchange" ||
911         name == "InterlockedCompareStore"    ||
912         name == "InterlockedExchange"        ||
913         name == "InterlockedMax"             ||
914         name == "InterlockedMin"             ||
915         name == "InterlockedOr"              ||
916         name == "InterlockedXor"             ||
917         name == "IncrementCounter"           ||
918         name == "DecrementCounter"           ||
919         name == "Append"                     ||
920         name == "Consume";
921 }
922 
923 //
924 // Handle seeing a base.field dereference in the grammar, where 'field' is a
925 // swizzle or member variable.
926 //
handleDotDereference(const TSourceLoc & loc,TIntermTyped * base,const TString & field)927 TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
928 {
929     variableCheck(base);
930 
931     if (base->isArray()) {
932         error(loc, "cannot apply to an array:", ".", field.c_str());
933         return base;
934     }
935 
936     TIntermTyped* result = base;
937 
938     if (base->getType().getBasicType() == EbtSampler) {
939         // Handle .mips[mipid][pos] operation on textures
940         const TSampler& sampler = base->getType().getSampler();
941         if (sampler.isTexture() && field == "mips") {
942             // Push a null to signify that we expect a mip level under operator[] next.
943             mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
944             // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
945         } else {
946             if (field == "mips")
947                 error(loc, "unexpected texture type for .mips[][] operator:",
948                       base->getType().getCompleteString().c_str(), "");
949             else
950                 error(loc, "unexpected operator on texture type:", field.c_str(),
951                       base->getType().getCompleteString().c_str());
952         }
953     } else if (base->isVector() || base->isScalar()) {
954         TSwizzleSelectors<TVectorSelector> selectors;
955         parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
956 
957         if (base->isScalar()) {
958             if (selectors.size() == 1)
959                 return result;
960             else {
961                 TType type(base->getBasicType(), EvqTemporary, selectors.size());
962                 return addConstructor(loc, base, type);
963             }
964         }
965         if (base->getVectorSize() == 1) {
966             TType scalarType(base->getBasicType(), EvqTemporary, 1);
967             if (selectors.size() == 1)
968                 return addConstructor(loc, base, scalarType);
969             else {
970                 TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
971                 return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
972             }
973         }
974 
975         if (base->getType().getQualifier().isFrontEndConstant())
976             result = intermediate.foldSwizzle(base, selectors, loc);
977         else {
978             if (selectors.size() == 1) {
979                 TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
980                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
981                 result->setType(TType(base->getBasicType(), EvqTemporary));
982             } else {
983                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
984                 result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
985                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
986                                 selectors.size()));
987             }
988         }
989     } else if (base->isMatrix()) {
990         TSwizzleSelectors<TMatrixSelector> selectors;
991         if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
992             return result;
993 
994         if (selectors.size() == 1) {
995             // Representable by m[c][r]
996             if (base->getType().getQualifier().isFrontEndConstant()) {
997                 result = intermediate.foldDereference(base, selectors[0].coord1, loc);
998                 result = intermediate.foldDereference(result, selectors[0].coord2, loc);
999             } else {
1000                 result = intermediate.addIndex(EOpIndexDirect, base,
1001                                                intermediate.addConstantUnion(selectors[0].coord1, loc),
1002                                                loc);
1003                 TType dereferencedCol(base->getType(), 0);
1004                 result->setType(dereferencedCol);
1005                 result = intermediate.addIndex(EOpIndexDirect, result,
1006                                                intermediate.addConstantUnion(selectors[0].coord2, loc),
1007                                                loc);
1008                 TType dereferenced(dereferencedCol, 0);
1009                 result->setType(dereferenced);
1010             }
1011         } else {
1012             int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
1013             if (column >= 0) {
1014                 // Representable by m[c]
1015                 if (base->getType().getQualifier().isFrontEndConstant())
1016                     result = intermediate.foldDereference(base, column, loc);
1017                 else {
1018                     result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
1019                                                    loc);
1020                     TType dereferenced(base->getType(), 0);
1021                     result->setType(dereferenced);
1022                 }
1023             } else {
1024                 // general case, not a column, not a single component
1025                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
1026                 result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
1027                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
1028                                       selectors.size()));
1029            }
1030         }
1031     } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
1032         const TTypeList* fields = base->getType().getStruct();
1033         bool fieldFound = false;
1034         int member;
1035         for (member = 0; member < (int)fields->size(); ++member) {
1036             if ((*fields)[member].type->getFieldName() == field) {
1037                 fieldFound = true;
1038                 break;
1039             }
1040         }
1041         if (fieldFound) {
1042             if (base->getAsSymbolNode() && wasFlattened(base)) {
1043                 result = flattenAccess(base, member);
1044             } else {
1045                 if (base->getType().getQualifier().storage == EvqConst)
1046                     result = intermediate.foldDereference(base, member, loc);
1047                 else {
1048                     TIntermTyped* index = intermediate.addConstantUnion(member, loc);
1049                     result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
1050                     result->setType(*(*fields)[member].type);
1051                 }
1052             }
1053         } else
1054             error(loc, "no such field in structure", field.c_str(), "");
1055     } else
1056         error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
1057 
1058     return result;
1059 }
1060 
1061 //
1062 // Return true if the field should be treated as a built-in method.
1063 // Return false otherwise.
1064 //
isBuiltInMethod(const TSourceLoc &,TIntermTyped * base,const TString & field)1065 bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
1066 {
1067     if (base == nullptr)
1068         return false;
1069 
1070     variableCheck(base);
1071 
1072     if (base->getType().getBasicType() == EbtSampler) {
1073         return true;
1074     } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
1075         return true;
1076     } else if (field == "Append" ||
1077                field == "RestartStrip") {
1078         // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
1079         // the code is around in the shader source.
1080         return true;
1081     } else
1082         return false;
1083 }
1084 
1085 // Independently establish a built-in that is a member of a structure.
1086 // 'arraySizes' are what's desired for the independent built-in, whatever
1087 // the higher-level source/expression of them was.
splitBuiltIn(const TString & baseName,const TType & memberType,const TArraySizes * arraySizes,const TQualifier & outerQualifier)1088 void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
1089                                     const TQualifier& outerQualifier)
1090 {
1091     // Because of arrays of structs, we might be asked more than once,
1092     // but the arraySizes passed in should have captured the whole thing
1093     // the first time.
1094     // However, clip/cull rely on multiple updates.
1095     if (!isClipOrCullDistance(memberType))
1096         if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
1097             splitBuiltIns.end())
1098             return;
1099 
1100     TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
1101 
1102     if (arraySizes != nullptr && !memberType.isArray())
1103         ioVar->getWritableType().copyArraySizes(*arraySizes);
1104 
1105     splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
1106     if (!isClipOrCullDistance(ioVar->getType()))
1107         trackLinkage(*ioVar);
1108 
1109     // Merge qualifier from the user structure
1110     mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
1111 
1112     // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
1113     // shader declared them).  This is done after mergeQualifiers(), in case fixBuiltInIoType looks
1114     // at the qualifier to determine e.g, in or out qualifications.
1115     fixBuiltInIoType(ioVar->getWritableType());
1116 
1117     // But, not location, we're losing that
1118     ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1119 }
1120 
1121 // Split a type into
1122 //   1. a struct of non-I/O members
1123 //   2. a collection of independent I/O variables
split(const TVariable & variable)1124 void HlslParseContext::split(const TVariable& variable)
1125 {
1126     // Create a new variable:
1127     const TType& clonedType = *variable.getType().clone();
1128     const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
1129     splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
1130 }
1131 
1132 // Recursive implementation of split().
1133 // Returns reference to the modified type.
split(const TType & type,const TString & name,const TQualifier & outerQualifier)1134 const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
1135 {
1136     if (type.isStruct()) {
1137         TTypeList* userStructure = type.getWritableStruct();
1138         for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
1139             if (ioType->type->isBuiltIn()) {
1140                 // move out the built-in
1141                 splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
1142                 ioType = userStructure->erase(ioType);
1143             } else {
1144                 split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
1145                 ++ioType;
1146             }
1147         }
1148     }
1149 
1150     return type;
1151 }
1152 
1153 // Is this an aggregate that should be flattened?
1154 // Can be applied to intermediate levels of type in a hierarchy.
1155 // Some things like flattening uniform arrays are only about the top level
1156 // of the aggregate, triggered on 'topLevel'.
shouldFlatten(const TType & type,TStorageQualifier qualifier,bool topLevel) const1157 bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
1158 {
1159     switch (qualifier) {
1160     case EvqVaryingIn:
1161     case EvqVaryingOut:
1162         return type.isStruct() || type.isArray();
1163     case EvqUniform:
1164         return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
1165                (type.isStruct() && type.containsOpaque());
1166     default:
1167         return false;
1168     };
1169 }
1170 
1171 // Top level variable flattening: construct data
flatten(const TVariable & variable,bool linkage,bool arrayed)1172 void HlslParseContext::flatten(const TVariable& variable, bool linkage, bool arrayed)
1173 {
1174     const TType& type = variable.getType();
1175 
1176     // If it's a standalone built-in, there is nothing to flatten
1177     if (type.isBuiltIn() && !type.isStruct())
1178         return;
1179 
1180 
1181     auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
1182                                                   TFlattenData(type.getQualifier().layoutBinding,
1183                                                                type.getQualifier().layoutLocation)));
1184 
1185     if (type.isStruct() && type.getStruct()->size()==0)
1186         return;
1187     // if flattening arrayed io struct, array each member of dereferenced type
1188     if (arrayed) {
1189         const TType dereferencedType(type, 0);
1190         flatten(variable, dereferencedType, entry.first->second, variable.getName(), linkage,
1191                 type.getQualifier(), type.getArraySizes());
1192     } else {
1193         flatten(variable, type, entry.first->second, variable.getName(), linkage,
1194                 type.getQualifier(), nullptr);
1195     }
1196 }
1197 
1198 // Recursively flatten the given variable at the provided type, building the flattenData as we go.
1199 //
1200 // This is mutually recursive with flattenStruct and flattenArray.
1201 // We are going to flatten an arbitrarily nested composite structure into a linear sequence of
1202 // members, and later on, we want to turn a path through the tree structure into a final
1203 // location in this linear sequence.
1204 //
1205 // If the tree was N-ary, that can be directly calculated.  However, we are dealing with
1206 // arbitrary numbers - perhaps a struct of 7 members containing an array of 3.  Thus, we must
1207 // build a data structure to allow the sequence of bracket and dot operators on arrays and
1208 // structs to arrive at the proper member.
1209 //
1210 // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
1211 // The leaves are the indexes into the flattened member array.
1212 // Each level will have the next location for the Nth item stored sequentially, so for instance:
1213 //
1214 // struct { float2 a[2]; int b; float4 c[3] };
1215 //
1216 // This will produce the following flattened tree:
1217 // Pos: 0  1   2    3  4    5  6   7     8   9  10   11  12 13
1218 //     (3, 7,  8,   5, 6,   0, 1,  2,   11, 12, 13,   3,  4, 5}
1219 //
1220 // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
1221 //   (0+2) = 8  -->  (8+1) = 12 -->   12 = 4
1222 //
1223 // so the 4th flattened member in traversal order is ours.
1224 //
flatten(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1225 int HlslParseContext::flatten(const TVariable& variable, const TType& type,
1226                               TFlattenData& flattenData, TString name, bool linkage,
1227                               const TQualifier& outerQualifier,
1228                               const TArraySizes* builtInArraySizes)
1229 {
1230     // If something is an arrayed struct, the array flattener will recursively call flatten()
1231     // to then flatten the struct, so this is an "if else": we don't do both.
1232     if (type.isArray())
1233         return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
1234     else if (type.isStruct())
1235         return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
1236     else {
1237         assert(0); // should never happen
1238         return -1;
1239     }
1240 }
1241 
1242 // Add a single flattened member to the flattened data being tracked for the composite
1243 // Returns true for the final flattening level.
addFlattenedMember(const TVariable & variable,const TType & type,TFlattenData & flattenData,const TString & memberName,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1244 int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
1245                                          const TString& memberName, bool linkage,
1246                                          const TQualifier& outerQualifier,
1247                                          const TArraySizes* builtInArraySizes)
1248 {
1249     if (!shouldFlatten(type, outerQualifier.storage, false)) {
1250         // This is as far as we flatten.  Insert the variable.
1251         TVariable* memberVariable = makeInternalVariable(memberName, type);
1252         mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
1253 
1254         if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
1255             memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
1256 
1257         if (memberVariable->getType().isBuiltIn()) {
1258             // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
1259             memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
1260         } else {
1261             // inherited locations must be auto bumped, not replicated
1262             if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
1263                 memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
1264                 flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
1265                 nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
1266             }
1267         }
1268 
1269         // Only propagate arraysizes here for arrayed io
1270         if (variable.getType().getQualifier().isArrayedIo(language) && builtInArraySizes != nullptr)
1271             memberVariable->getWritableType().copyArraySizes(*builtInArraySizes);
1272 
1273         flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
1274         flattenData.members.push_back(memberVariable);
1275 
1276         if (linkage)
1277             trackLinkage(*memberVariable);
1278 
1279         return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
1280     } else {
1281         // Further recursion required
1282         return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
1283     }
1284 }
1285 
1286 // Figure out the mapping between an aggregate's top members and an
1287 // equivalent set of individual variables.
1288 //
1289 // Assumes shouldFlatten() or equivalent was called first.
flattenStruct(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier,const TArraySizes * builtInArraySizes)1290 int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
1291                                     TFlattenData& flattenData, TString name, bool linkage,
1292                                     const TQualifier& outerQualifier,
1293                                     const TArraySizes* builtInArraySizes)
1294 {
1295     assert(type.isStruct());
1296 
1297     auto members = *type.getStruct();
1298 
1299     // Reserve space for this tree level.
1300     int start = static_cast<int>(flattenData.offsets.size());
1301     int pos = start;
1302     flattenData.offsets.resize(int(pos + members.size()), -1);
1303 
1304     for (int member = 0; member < (int)members.size(); ++member) {
1305         TType& dereferencedType = *members[member].type;
1306         if (dereferencedType.isBuiltIn())
1307             splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
1308         else {
1309             const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1310                                                 name + "." + dereferencedType.getFieldName(),
1311                                                 linkage, outerQualifier,
1312                                                 builtInArraySizes == nullptr && dereferencedType.isArray()
1313                                                                        ? dereferencedType.getArraySizes()
1314                                                                        : builtInArraySizes);
1315             flattenData.offsets[pos++] = mpos;
1316         }
1317     }
1318 
1319     return start;
1320 }
1321 
1322 // Figure out mapping between an array's members and an
1323 // equivalent set of individual variables.
1324 //
1325 // Assumes shouldFlatten() or equivalent was called first.
flattenArray(const TVariable & variable,const TType & type,TFlattenData & flattenData,TString name,bool linkage,const TQualifier & outerQualifier)1326 int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
1327                                    TFlattenData& flattenData, TString name, bool linkage,
1328                                    const TQualifier& outerQualifier)
1329 {
1330     assert(type.isSizedArray());
1331 
1332     const int size = type.getOuterArraySize();
1333     const TType dereferencedType(type, 0);
1334 
1335     if (name.empty())
1336         name = variable.getName();
1337 
1338     // Reserve space for this tree level.
1339     int start = static_cast<int>(flattenData.offsets.size());
1340     int pos   = start;
1341     flattenData.offsets.resize(int(pos + size), -1);
1342 
1343     for (int element=0; element < size; ++element) {
1344         char elementNumBuf[20];  // sufficient for MAXINT
1345         snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
1346         const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
1347                                             name + elementNumBuf, linkage, outerQualifier,
1348                                             type.getArraySizes());
1349 
1350         flattenData.offsets[pos++] = mpos;
1351     }
1352 
1353     return start;
1354 }
1355 
1356 // Return true if we have flattened this node.
wasFlattened(const TIntermTyped * node) const1357 bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
1358 {
1359     return node != nullptr && node->getAsSymbolNode() != nullptr &&
1360            wasFlattened(node->getAsSymbolNode()->getId());
1361 }
1362 
1363 // Return true if we have split this structure
wasSplit(const TIntermTyped * node) const1364 bool HlslParseContext::wasSplit(const TIntermTyped* node) const
1365 {
1366     return node != nullptr && node->getAsSymbolNode() != nullptr &&
1367            wasSplit(node->getAsSymbolNode()->getId());
1368 }
1369 
1370 // Turn an access into an aggregate that was flattened to instead be
1371 // an access to the individual variable the member was flattened to.
1372 // Assumes wasFlattened() or equivalent was called first.
flattenAccess(TIntermTyped * base,int member)1373 TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
1374 {
1375     const TType dereferencedType(base->getType(), member);  // dereferenced type
1376     const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
1377     TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
1378                                             dereferencedType, symbolNode.getFlattenSubset());
1379 
1380     return flattened ? flattened : base;
1381 }
flattenAccess(long long uniqueId,int member,TStorageQualifier outerStorage,const TType & dereferencedType,int subset)1382 TIntermTyped* HlslParseContext::flattenAccess(long long uniqueId, int member, TStorageQualifier outerStorage,
1383     const TType& dereferencedType, int subset)
1384 {
1385     const auto flattenData = flattenMap.find(uniqueId);
1386 
1387     if (flattenData == flattenMap.end())
1388         return nullptr;
1389 
1390     // Calculate new cumulative offset from the packed tree
1391     int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
1392 
1393     TIntermSymbol* subsetSymbol;
1394     if (!shouldFlatten(dereferencedType, outerStorage, false)) {
1395         // Finished flattening: create symbol for variable
1396         member = flattenData->second.offsets[newSubset];
1397         const TVariable* memberVariable = flattenData->second.members[member];
1398         subsetSymbol = intermediate.addSymbol(*memberVariable);
1399         subsetSymbol->setFlattenSubset(-1);
1400     } else {
1401 
1402         // If this is not the final flattening, accumulate the position and return
1403         // an object of the partially dereferenced type.
1404         subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
1405         subsetSymbol->setFlattenSubset(newSubset);
1406     }
1407 
1408     return subsetSymbol;
1409 }
1410 
1411 // For finding where the first leaf is in a subtree of a multi-level aggregate
1412 // that is just getting a subset assigned. Follows the same logic as flattenAccess,
1413 // but logically going down the "left-most" tree branch each step of the way.
1414 //
1415 // Returns the offset into the first leaf of the subset.
findSubtreeOffset(const TIntermNode & node) const1416 int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
1417 {
1418     const TIntermSymbol* sym = node.getAsSymbolNode();
1419     if (sym == nullptr)
1420         return 0;
1421     if (!sym->isArray() && !sym->isStruct())
1422         return 0;
1423     int subset = sym->getFlattenSubset();
1424     if (subset == -1)
1425         return 0;
1426 
1427     // Getting this far means a partial aggregate is identified by the flatten subset.
1428     // Find the first leaf of the subset.
1429 
1430     const auto flattenData = flattenMap.find(sym->getId());
1431     if (flattenData == flattenMap.end())
1432         return 0;
1433 
1434     return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
1435 
1436     do {
1437         subset = flattenData->second.offsets[subset];
1438     } while (true);
1439 }
1440 // Recursively do the desent
findSubtreeOffset(const TType & type,int subset,const TVector<int> & offsets) const1441 int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
1442 {
1443     if (!type.isArray() && !type.isStruct())
1444         return offsets[subset];
1445     TType derefType(type, 0);
1446     return findSubtreeOffset(derefType, offsets[subset], offsets);
1447 };
1448 
1449 // Find and return the split IO TVariable for id, or nullptr if none.
getSplitNonIoVar(long long id) const1450 TVariable* HlslParseContext::getSplitNonIoVar(long long id) const
1451 {
1452     const auto splitNonIoVar = splitNonIoVars.find(id);
1453     if (splitNonIoVar == splitNonIoVars.end())
1454         return nullptr;
1455 
1456     return splitNonIoVar->second;
1457 }
1458 
1459 // Pass through to base class after remembering built-in mappings.
trackLinkage(TSymbol & symbol)1460 void HlslParseContext::trackLinkage(TSymbol& symbol)
1461 {
1462     TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
1463 
1464     if (biType != EbvNone)
1465         builtInTessLinkageSymbols[biType] = symbol.clone();
1466 
1467     TParseContextBase::trackLinkage(symbol);
1468 }
1469 
1470 
1471 // Returns true if the built-in is a clip or cull distance variable.
isClipOrCullDistance(TBuiltInVariable builtIn)1472 bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
1473 {
1474     return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
1475 }
1476 
1477 // Some types require fixed array sizes in SPIR-V, but can be scalars or
1478 // arrays of sizes SPIR-V doesn't allow.  For example, tessellation factors.
1479 // This creates the right size.  A conversion is performed when the internal
1480 // type is copied to or from the external type.  This corrects the externally
1481 // facing input or output type to abide downstream semantics.
fixBuiltInIoType(TType & type)1482 void HlslParseContext::fixBuiltInIoType(TType& type)
1483 {
1484     int requiredArraySize = 0;
1485     int requiredVectorSize = 0;
1486 
1487     switch (type.getQualifier().builtIn) {
1488     case EbvTessLevelOuter: requiredArraySize = 4; break;
1489     case EbvTessLevelInner: requiredArraySize = 2; break;
1490 
1491     case EbvSampleMask:
1492         {
1493             // Promote scalar to array of size 1.  Leave existing arrays alone.
1494             if (!type.isArray())
1495                 requiredArraySize = 1;
1496             break;
1497         }
1498 
1499     case EbvWorkGroupId:        requiredVectorSize = 3; break;
1500     case EbvGlobalInvocationId: requiredVectorSize = 3; break;
1501     case EbvLocalInvocationId:  requiredVectorSize = 3; break;
1502     case EbvTessCoord:          requiredVectorSize = 3; break;
1503 
1504     default:
1505         if (isClipOrCullDistance(type)) {
1506             const int loc = type.getQualifier().layoutLocation;
1507 
1508             if (type.getQualifier().builtIn == EbvClipDistance) {
1509                 if (type.getQualifier().storage == EvqVaryingIn)
1510                     clipSemanticNSizeIn[loc] = type.getVectorSize();
1511                 else
1512                     clipSemanticNSizeOut[loc] = type.getVectorSize();
1513             } else {
1514                 if (type.getQualifier().storage == EvqVaryingIn)
1515                     cullSemanticNSizeIn[loc] = type.getVectorSize();
1516                 else
1517                     cullSemanticNSizeOut[loc] = type.getVectorSize();
1518             }
1519         }
1520 
1521         return;
1522     }
1523 
1524     // Alter or set vector size as needed.
1525     if (requiredVectorSize > 0) {
1526         TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
1527         newType.getQualifier() = type.getQualifier();
1528 
1529         type.shallowCopy(newType);
1530     }
1531 
1532     // Alter or set array size as needed.
1533     if (requiredArraySize > 0) {
1534         if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
1535             TArraySizes* arraySizes = new TArraySizes;
1536             arraySizes->addInnerSize(requiredArraySize);
1537             type.transferArraySizes(arraySizes);
1538         }
1539     }
1540 }
1541 
1542 // Variables that correspond to the user-interface in and out of a stage
1543 // (not the built-in interface) are
1544 //  - assigned locations
1545 //  - registered as a linkage node (part of the stage's external interface).
1546 // Assumes it is called in the order in which locations should be assigned.
assignToInterface(TVariable & variable)1547 void HlslParseContext::assignToInterface(TVariable& variable)
1548 {
1549     const auto assignLocation = [&](TVariable& variable) {
1550         TType& type = variable.getWritableType();
1551         if (!type.isStruct() || type.getStruct()->size() > 0) {
1552             TQualifier& qualifier = type.getQualifier();
1553             if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
1554                 if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
1555                     // Strip off the outer array dimension for those having an extra one.
1556                     int size;
1557                     if (type.isArray() && qualifier.isArrayedIo(language)) {
1558                         TType elementType(type, 0);
1559                         size = intermediate.computeTypeLocationSize(elementType, language);
1560                     } else
1561                         size = intermediate.computeTypeLocationSize(type, language);
1562 
1563                     if (qualifier.storage == EvqVaryingIn) {
1564                         variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
1565                         nextInLocation += size;
1566                     } else {
1567                         variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
1568                         nextOutLocation += size;
1569                     }
1570                 }
1571                 trackLinkage(variable);
1572             }
1573         }
1574     };
1575 
1576     if (wasFlattened(variable.getUniqueId())) {
1577         auto& memberList = flattenMap[variable.getUniqueId()].members;
1578         for (auto member = memberList.begin(); member != memberList.end(); ++member)
1579             assignLocation(**member);
1580     } else if (wasSplit(variable.getUniqueId())) {
1581         TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
1582         assignLocation(*splitIoVar);
1583     } else {
1584         assignLocation(variable);
1585     }
1586 }
1587 
1588 //
1589 // Handle seeing a function declarator in the grammar.  This is the precursor
1590 // to recognizing a function prototype or function definition.
1591 //
handleFunctionDeclarator(const TSourceLoc & loc,TFunction & function,bool prototype)1592 void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
1593 {
1594     //
1595     // Multiple declarations of the same function name are allowed.
1596     //
1597     // If this is a definition, the definition production code will check for redefinitions
1598     // (we don't know at this point if it's a definition or not).
1599     //
1600     bool builtIn;
1601     TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
1602     const TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1603 
1604     if (prototype) {
1605         // All built-in functions are defined, even though they don't have a body.
1606         // Count their prototype as a definition instead.
1607         if (symbolTable.atBuiltInLevel())
1608             function.setDefined();
1609         else {
1610             if (prevDec && ! builtIn)
1611                 symbol->getAsFunction()->setPrototyped();  // need a writable one, but like having prevDec as a const
1612             function.setPrototyped();
1613         }
1614     }
1615 
1616     // This insert won't actually insert it if it's a duplicate signature, but it will still check for
1617     // other forms of name collisions.
1618     if (! symbolTable.insert(function))
1619         error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
1620 }
1621 
1622 // For struct buffers with counters, we must pass the counter buffer as hidden parameter.
1623 // This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
1624 // Otherwise, it's a no-op
addStructBufferHiddenCounterParam(const TSourceLoc & loc,TParameter & param,TIntermAggregate * & paramNodes)1625 void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
1626                                                          TIntermAggregate*& paramNodes)
1627 {
1628     if (! hasStructBuffCounter(*param.type))
1629         return;
1630 
1631     const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
1632 
1633     TType counterType;
1634     counterBufferType(loc, counterType);
1635     TVariable *variable = makeInternalVariable(counterBlockName, counterType);
1636 
1637     if (! symbolTable.insert(*variable))
1638         error(loc, "redefinition", variable->getName().c_str(), "");
1639 
1640     paramNodes = intermediate.growAggregate(paramNodes,
1641                                             intermediate.addSymbol(*variable, loc),
1642                                             loc);
1643 }
1644 
1645 //
1646 // Handle seeing the function prototype in front of a function definition in the grammar.
1647 // The body is handled after this function returns.
1648 //
1649 // Returns an aggregate of parameter-symbol nodes.
1650 //
handleFunctionDefinition(const TSourceLoc & loc,TFunction & function,const TAttributes & attributes,TIntermNode * & entryPointTree)1651 TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
1652                                                              const TAttributes& attributes,
1653                                                              TIntermNode*& entryPointTree)
1654 {
1655     currentCaller = function.getMangledName();
1656     TSymbol* symbol = symbolTable.find(function.getMangledName());
1657     TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
1658 
1659     if (prevDec == nullptr)
1660         error(loc, "can't find function", function.getName().c_str(), "");
1661     // Note:  'prevDec' could be 'function' if this is the first time we've seen function
1662     // as it would have just been put in the symbol table.  Otherwise, we're looking up
1663     // an earlier occurrence.
1664 
1665     if (prevDec && prevDec->isDefined()) {
1666         // Then this function already has a body.
1667         error(loc, "function already has a body", function.getName().c_str(), "");
1668     }
1669     if (prevDec && ! prevDec->isDefined()) {
1670         prevDec->setDefined();
1671 
1672         // Remember the return type for later checking for RETURN statements.
1673         currentFunctionType = &(prevDec->getType());
1674     } else
1675         currentFunctionType = new TType(EbtVoid);
1676     functionReturnsValue = false;
1677 
1678     // Entry points need different I/O and other handling, transform it so the
1679     // rest of this function doesn't care.
1680     entryPointTree = transformEntryPoint(loc, function, attributes);
1681 
1682     //
1683     // New symbol table scope for body of function plus its arguments
1684     //
1685     pushScope();
1686 
1687     //
1688     // Insert parameters into the symbol table.
1689     // If the parameter has no name, it's not an error, just don't insert it
1690     // (could be used for unused args).
1691     //
1692     // Also, accumulate the list of parameters into the AST, so lower level code
1693     // knows where to find parameters.
1694     //
1695     TIntermAggregate* paramNodes = new TIntermAggregate;
1696     for (int i = 0; i < function.getParamCount(); i++) {
1697         TParameter& param = function[i];
1698         if (param.name != nullptr) {
1699             TVariable *variable = new TVariable(param.name, *param.type);
1700 
1701             if (i == 0 && function.hasImplicitThis()) {
1702                 // Anonymous 'this' members are already in a symbol-table level,
1703                 // and we need to know what function parameter to map them to.
1704                 symbolTable.makeInternalVariable(*variable);
1705                 pushImplicitThis(variable);
1706             }
1707 
1708             // Insert the parameters with name in the symbol table.
1709             if (! symbolTable.insert(*variable))
1710                 error(loc, "redefinition", variable->getName().c_str(), "");
1711 
1712             // Add parameters to the AST list.
1713             if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
1714                 // Expand the AST parameter nodes (but not the name mangling or symbol table view)
1715                 // for structures that need to be flattened.
1716                 flatten(*variable, false);
1717                 const TTypeList* structure = variable->getType().getStruct();
1718                 for (int mem = 0; mem < (int)structure->size(); ++mem) {
1719                     paramNodes = intermediate.growAggregate(paramNodes,
1720                                                             flattenAccess(variable->getUniqueId(), mem,
1721                                                                           variable->getType().getQualifier().storage,
1722                                                                           *(*structure)[mem].type),
1723                                                             loc);
1724                 }
1725             } else {
1726                 // Add the parameter to the AST
1727                 paramNodes = intermediate.growAggregate(paramNodes,
1728                                                         intermediate.addSymbol(*variable, loc),
1729                                                         loc);
1730             }
1731 
1732             // Add hidden AST parameter for struct buffer counters, if needed.
1733             addStructBufferHiddenCounterParam(loc, param, paramNodes);
1734         } else
1735             paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
1736     }
1737     if (function.hasIllegalImplicitThis())
1738         pushImplicitThis(nullptr);
1739 
1740     intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
1741     loopNestingLevel = 0;
1742     controlFlowNestingLevel = 0;
1743     postEntryPointReturn = false;
1744 
1745     return paramNodes;
1746 }
1747 
1748 // Handle all [attrib] attribute for the shader entry point
handleEntryPointAttributes(const TSourceLoc & loc,const TAttributes & attributes)1749 void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
1750 {
1751     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1752         switch (it->name) {
1753         case EatNumThreads:
1754         {
1755             const TIntermSequence& sequence = it->args->getSequence();
1756             for (int lid = 0; lid < int(sequence.size()); ++lid)
1757                 intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
1758             break;
1759         }
1760         case EatInstance:
1761         {
1762             int invocations;
1763 
1764             if (!it->getInt(invocations)) {
1765                 error(loc, "invalid instance", "", "");
1766             } else {
1767                 if (!intermediate.setInvocations(invocations))
1768                     error(loc, "cannot change previously set instance attribute", "", "");
1769             }
1770             break;
1771         }
1772         case EatMaxVertexCount:
1773         {
1774             int maxVertexCount;
1775 
1776             if (! it->getInt(maxVertexCount)) {
1777                 error(loc, "invalid maxvertexcount", "", "");
1778             } else {
1779                 if (! intermediate.setVertices(maxVertexCount))
1780                     error(loc, "cannot change previously set maxvertexcount attribute", "", "");
1781             }
1782             break;
1783         }
1784         case EatPatchConstantFunc:
1785         {
1786             TString pcfName;
1787             if (! it->getString(pcfName, 0, false)) {
1788                 error(loc, "invalid patch constant function", "", "");
1789             } else {
1790                 patchConstantFunctionName = pcfName;
1791             }
1792             break;
1793         }
1794         case EatDomain:
1795         {
1796             // Handle [domain("...")]
1797             TString domainStr;
1798             if (! it->getString(domainStr)) {
1799                 error(loc, "invalid domain", "", "");
1800             } else {
1801                 TLayoutGeometry domain = ElgNone;
1802 
1803                 if (domainStr == "tri") {
1804                     domain = ElgTriangles;
1805                 } else if (domainStr == "quad") {
1806                     domain = ElgQuads;
1807                 } else if (domainStr == "isoline") {
1808                     domain = ElgIsolines;
1809                 } else {
1810                     error(loc, "unsupported domain type", domainStr.c_str(), "");
1811                 }
1812 
1813                 if (language == EShLangTessEvaluation) {
1814                     if (! intermediate.setInputPrimitive(domain))
1815                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1816                 } else {
1817                     if (! intermediate.setOutputPrimitive(domain))
1818                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
1819                 }
1820             }
1821             break;
1822         }
1823         case EatOutputTopology:
1824         {
1825             // Handle [outputtopology("...")]
1826             TString topologyStr;
1827             if (! it->getString(topologyStr)) {
1828                 error(loc, "invalid outputtopology", "", "");
1829             } else {
1830                 TVertexOrder vertexOrder = EvoNone;
1831                 TLayoutGeometry primitive = ElgNone;
1832 
1833                 if (topologyStr == "point") {
1834                     intermediate.setPointMode();
1835                 } else if (topologyStr == "line") {
1836                     primitive = ElgIsolines;
1837                 } else if (topologyStr == "triangle_cw") {
1838                     vertexOrder = EvoCw;
1839                     primitive = ElgTriangles;
1840                 } else if (topologyStr == "triangle_ccw") {
1841                     vertexOrder = EvoCcw;
1842                     primitive = ElgTriangles;
1843                 } else {
1844                     error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
1845                 }
1846 
1847                 if (vertexOrder != EvoNone) {
1848                     if (! intermediate.setVertexOrder(vertexOrder)) {
1849                         error(loc, "cannot change previously set outputtopology",
1850                               TQualifier::getVertexOrderString(vertexOrder), "");
1851                     }
1852                 }
1853                 if (primitive != ElgNone)
1854                     intermediate.setOutputPrimitive(primitive);
1855             }
1856             break;
1857         }
1858         case EatPartitioning:
1859         {
1860             // Handle [partitioning("...")]
1861             TString partitionStr;
1862             if (! it->getString(partitionStr)) {
1863                 error(loc, "invalid partitioning", "", "");
1864             } else {
1865                 TVertexSpacing partitioning = EvsNone;
1866 
1867                 if (partitionStr == "integer") {
1868                     partitioning = EvsEqual;
1869                 } else if (partitionStr == "fractional_even") {
1870                     partitioning = EvsFractionalEven;
1871                 } else if (partitionStr == "fractional_odd") {
1872                     partitioning = EvsFractionalOdd;
1873                     //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
1874                 } else {
1875                     error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
1876                 }
1877 
1878                 if (! intermediate.setVertexSpacing(partitioning))
1879                     error(loc, "cannot change previously set partitioning",
1880                           TQualifier::getVertexSpacingString(partitioning), "");
1881             }
1882             break;
1883         }
1884         case EatOutputControlPoints:
1885         {
1886             // Handle [outputcontrolpoints("...")]
1887             int ctrlPoints;
1888             if (! it->getInt(ctrlPoints)) {
1889                 error(loc, "invalid outputcontrolpoints", "", "");
1890             } else {
1891                 if (! intermediate.setVertices(ctrlPoints)) {
1892                     error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
1893                 }
1894             }
1895             break;
1896         }
1897         case EatEarlyDepthStencil:
1898             intermediate.setEarlyFragmentTests();
1899             break;
1900         case EatBuiltIn:
1901         case EatLocation:
1902             // tolerate these because of dual use of entrypoint and type attributes
1903             break;
1904         default:
1905             warn(loc, "attribute does not apply to entry point", "", "");
1906             break;
1907         }
1908     }
1909 }
1910 
1911 // Update the given type with any type-like attribute information in the
1912 // attributes.
transferTypeAttributes(const TSourceLoc & loc,const TAttributes & attributes,TType & type,bool allowEntry)1913 void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
1914     bool allowEntry)
1915 {
1916     if (attributes.size() == 0)
1917         return;
1918 
1919     int value;
1920     TString builtInString;
1921     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
1922         switch (it->name) {
1923         case EatLocation:
1924             // location
1925             if (it->getInt(value))
1926                 type.getQualifier().layoutLocation = value;
1927             else
1928                 error(loc, "needs a literal integer", "location", "");
1929             break;
1930         case EatBinding:
1931             // binding
1932             if (it->getInt(value)) {
1933                 type.getQualifier().layoutBinding = value;
1934                 type.getQualifier().layoutSet = 0;
1935             } else
1936                 error(loc, "needs a literal integer", "binding", "");
1937             // set
1938             if (it->getInt(value, 1))
1939                 type.getQualifier().layoutSet = value;
1940             break;
1941         case EatGlobalBinding:
1942             // global cbuffer binding
1943             if (it->getInt(value))
1944                 globalUniformBinding = value;
1945             else
1946                 error(loc, "needs a literal integer", "global binding", "");
1947             // global cbuffer set
1948             if (it->getInt(value, 1))
1949                 globalUniformSet = value;
1950             break;
1951         case EatInputAttachment:
1952             // input attachment
1953             if (it->getInt(value))
1954                 type.getQualifier().layoutAttachment = value;
1955             else
1956                 error(loc, "needs a literal integer", "input attachment", "");
1957             break;
1958         case EatBuiltIn:
1959             // PointSize built-in
1960             if (it->getString(builtInString, 0, false)) {
1961                 if (builtInString == "PointSize")
1962                     type.getQualifier().builtIn = EbvPointSize;
1963             }
1964             break;
1965         case EatPushConstant:
1966             // push_constant
1967             type.getQualifier().layoutPushConstant = true;
1968             break;
1969         case EatConstantId:
1970             // specialization constant
1971             if (type.getQualifier().storage != EvqConst) {
1972                 error(loc, "needs a const type", "constant_id", "");
1973                 break;
1974             }
1975             if (it->getInt(value)) {
1976                 TSourceLoc loc;
1977                 loc.init();
1978                 setSpecConstantId(loc, type.getQualifier(), value);
1979             }
1980             break;
1981 
1982         // image formats
1983         case EatFormatRgba32f:      type.getQualifier().layoutFormat = ElfRgba32f;      break;
1984         case EatFormatRgba16f:      type.getQualifier().layoutFormat = ElfRgba16f;      break;
1985         case EatFormatR32f:         type.getQualifier().layoutFormat = ElfR32f;         break;
1986         case EatFormatRgba8:        type.getQualifier().layoutFormat = ElfRgba8;        break;
1987         case EatFormatRgba8Snorm:   type.getQualifier().layoutFormat = ElfRgba8Snorm;   break;
1988         case EatFormatRg32f:        type.getQualifier().layoutFormat = ElfRg32f;        break;
1989         case EatFormatRg16f:        type.getQualifier().layoutFormat = ElfRg16f;        break;
1990         case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break;
1991         case EatFormatR16f:         type.getQualifier().layoutFormat = ElfR16f;         break;
1992         case EatFormatRgba16:       type.getQualifier().layoutFormat = ElfRgba16;       break;
1993         case EatFormatRgb10A2:      type.getQualifier().layoutFormat = ElfRgb10A2;      break;
1994         case EatFormatRg16:         type.getQualifier().layoutFormat = ElfRg16;         break;
1995         case EatFormatRg8:          type.getQualifier().layoutFormat = ElfRg8;          break;
1996         case EatFormatR16:          type.getQualifier().layoutFormat = ElfR16;          break;
1997         case EatFormatR8:           type.getQualifier().layoutFormat = ElfR8;           break;
1998         case EatFormatRgba16Snorm:  type.getQualifier().layoutFormat = ElfRgba16Snorm;  break;
1999         case EatFormatRg16Snorm:    type.getQualifier().layoutFormat = ElfRg16Snorm;    break;
2000         case EatFormatRg8Snorm:     type.getQualifier().layoutFormat = ElfRg8Snorm;     break;
2001         case EatFormatR16Snorm:     type.getQualifier().layoutFormat = ElfR16Snorm;     break;
2002         case EatFormatR8Snorm:      type.getQualifier().layoutFormat = ElfR8Snorm;      break;
2003         case EatFormatRgba32i:      type.getQualifier().layoutFormat = ElfRgba32i;      break;
2004         case EatFormatRgba16i:      type.getQualifier().layoutFormat = ElfRgba16i;      break;
2005         case EatFormatRgba8i:       type.getQualifier().layoutFormat = ElfRgba8i;       break;
2006         case EatFormatR32i:         type.getQualifier().layoutFormat = ElfR32i;         break;
2007         case EatFormatRg32i:        type.getQualifier().layoutFormat = ElfRg32i;        break;
2008         case EatFormatRg16i:        type.getQualifier().layoutFormat = ElfRg16i;        break;
2009         case EatFormatRg8i:         type.getQualifier().layoutFormat = ElfRg8i;         break;
2010         case EatFormatR16i:         type.getQualifier().layoutFormat = ElfR16i;         break;
2011         case EatFormatR8i:          type.getQualifier().layoutFormat = ElfR8i;          break;
2012         case EatFormatRgba32ui:     type.getQualifier().layoutFormat = ElfRgba32ui;     break;
2013         case EatFormatRgba16ui:     type.getQualifier().layoutFormat = ElfRgba16ui;     break;
2014         case EatFormatRgba8ui:      type.getQualifier().layoutFormat = ElfRgba8ui;      break;
2015         case EatFormatR32ui:        type.getQualifier().layoutFormat = ElfR32ui;        break;
2016         case EatFormatRgb10a2ui:    type.getQualifier().layoutFormat = ElfRgb10a2ui;    break;
2017         case EatFormatRg32ui:       type.getQualifier().layoutFormat = ElfRg32ui;       break;
2018         case EatFormatRg16ui:       type.getQualifier().layoutFormat = ElfRg16ui;       break;
2019         case EatFormatRg8ui:        type.getQualifier().layoutFormat = ElfRg8ui;        break;
2020         case EatFormatR16ui:        type.getQualifier().layoutFormat = ElfR16ui;        break;
2021         case EatFormatR8ui:         type.getQualifier().layoutFormat = ElfR8ui;         break;
2022         case EatFormatUnknown:      type.getQualifier().layoutFormat = ElfNone;         break;
2023 
2024         case EatNonWritable:  type.getQualifier().readonly = true;   break;
2025         case EatNonReadable:  type.getQualifier().writeonly = true;  break;
2026 
2027         default:
2028             if (! allowEntry)
2029                 warn(loc, "attribute does not apply to a type", "", "");
2030             break;
2031         }
2032     }
2033 }
2034 
2035 //
2036 // Do all special handling for the entry point, including wrapping
2037 // the shader's entry point with the official entry point that will call it.
2038 //
2039 // The following:
2040 //
2041 //    retType shaderEntryPoint(args...) // shader declared entry point
2042 //    { body }
2043 //
2044 // Becomes
2045 //
2046 //    out retType ret;
2047 //    in iargs<that are input>...;
2048 //    out oargs<that are output> ...;
2049 //
2050 //    void shaderEntryPoint()    // synthesized, but official, entry point
2051 //    {
2052 //        args<that are input> = iargs...;
2053 //        ret = @shaderEntryPoint(args...);
2054 //        oargs = args<that are output>...;
2055 //    }
2056 //    retType @shaderEntryPoint(args...)
2057 //    { body }
2058 //
2059 // The symbol table will still map the original entry point name to the
2060 // the modified function and its new name:
2061 //
2062 //    symbol table:  shaderEntryPoint  ->   @shaderEntryPoint
2063 //
2064 // Returns nullptr if no entry-point tree was built, otherwise, returns
2065 // a subtree that creates the entry point.
2066 //
transformEntryPoint(const TSourceLoc & loc,TFunction & userFunction,const TAttributes & attributes)2067 TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
2068                                                    const TAttributes& attributes)
2069 {
2070     // Return true if this is a tessellation patch constant function input to a domain shader.
2071     const auto isDsPcfInput = [this](const TType& type) {
2072         return language == EShLangTessEvaluation &&
2073         type.contains([](const TType* t) {
2074                 return t->getQualifier().builtIn == EbvTessLevelOuter ||
2075                        t->getQualifier().builtIn == EbvTessLevelInner;
2076             });
2077     };
2078 
2079     // if we aren't in the entry point, fix the IO as such and exit
2080     if (! isEntrypointName(userFunction.getName())) {
2081         remapNonEntryPointIO(userFunction);
2082         return nullptr;
2083     }
2084 
2085     entryPointFunction = &userFunction; // needed in finish()
2086 
2087     // Handle entry point attributes
2088     handleEntryPointAttributes(loc, attributes);
2089 
2090     // entry point logic...
2091 
2092     // Move parameters and return value to shader in/out
2093     TVariable* entryPointOutput; // gets created in remapEntryPointIO
2094     TVector<TVariable*> inputs;
2095     TVector<TVariable*> outputs;
2096     remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
2097 
2098     // Further this return/in/out transform by flattening, splitting, and assigning locations
2099     const auto makeVariableInOut = [&](TVariable& variable) {
2100         if (variable.getType().isStruct()) {
2101             bool arrayed = variable.getType().getQualifier().isArrayedIo(language);
2102             flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */, arrayed);
2103         }
2104         // TODO: flatten arrays too
2105         // TODO: flatten everything in I/O
2106         // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
2107 
2108         // For clip and cull distance, multiple output variables potentially get merged
2109         // into one in assignClipCullDistance.  That code in assignClipCullDistance
2110         // handles the interface logic, so we avoid it here in that case.
2111         if (!isClipOrCullDistance(variable.getType()))
2112             assignToInterface(variable);
2113     };
2114     if (entryPointOutput != nullptr)
2115         makeVariableInOut(*entryPointOutput);
2116     for (auto it = inputs.begin(); it != inputs.end(); ++it)
2117         if (!isDsPcfInput((*it)->getType()))  // wait until the end for PCF input (see comment below)
2118             makeVariableInOut(*(*it));
2119     for (auto it = outputs.begin(); it != outputs.end(); ++it)
2120         makeVariableInOut(*(*it));
2121 
2122     // In the domain shader, PCF input must be at the end of the linkage.  That's because in the
2123     // hull shader there is no ordering: the output comes from the separate PCF, which does not
2124     // participate in the argument list.  That is always put at the end of the HS linkage, so the
2125     // input side of the DS must match.  The argument may be in any position in the DS argument list
2126     // however, so this ensures the linkage is built in the correct order regardless of argument order.
2127     if (language == EShLangTessEvaluation) {
2128         for (auto it = inputs.begin(); it != inputs.end(); ++it)
2129             if (isDsPcfInput((*it)->getType()))
2130                 makeVariableInOut(*(*it));
2131     }
2132 
2133     // Add uniform parameters to the $Global uniform block.
2134     TVector<TVariable*> opaque_uniforms;
2135     for (int i = 0; i < userFunction.getParamCount(); i++) {
2136         TType& paramType = *userFunction[i].type;
2137         TString& paramName = *userFunction[i].name;
2138         if (paramType.getQualifier().storage == EvqUniform) {
2139             if (!paramType.containsOpaque()) {
2140                 // Add it to the global uniform block.
2141                 growGlobalUniformBlock(loc, paramType, paramName);
2142             } else {
2143                 // Declare it as a separate variable.
2144                 TVariable *var = makeInternalVariable(paramName.c_str(), paramType);
2145                 opaque_uniforms.push_back(var);
2146             }
2147         }
2148     }
2149 
2150     // Synthesize the call
2151 
2152     pushScope(); // matches the one in handleFunctionBody()
2153 
2154     // new signature
2155     TType voidType(EbtVoid);
2156     TFunction synthEntryPoint(&userFunction.getName(), voidType);
2157     TIntermAggregate* synthParams = new TIntermAggregate();
2158     intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
2159     intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
2160     intermediate.incrementEntryPointCount();
2161     TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
2162 
2163     // change original name
2164     userFunction.addPrefix("@");                         // change the name in the function, but not in the symbol table
2165 
2166     // Copy inputs (shader-in -> calling arg), while building up the call node
2167     TVector<TVariable*> argVars;
2168     TIntermAggregate* synthBody = new TIntermAggregate();
2169     auto inputIt = inputs.begin();
2170     auto opaqueUniformIt = opaque_uniforms.begin();
2171     TIntermTyped* callingArgs = nullptr;
2172 
2173     for (int i = 0; i < userFunction.getParamCount(); i++) {
2174         TParameter& param = userFunction[i];
2175         argVars.push_back(makeInternalVariable(*param.name, *param.type));
2176         argVars.back()->getWritableType().getQualifier().makeTemporary();
2177 
2178         // Track the input patch, which is the only non-builtin supported by hull shader PCF.
2179         if (param.getDeclaredBuiltIn() == EbvInputPatch)
2180             inputPatch = argVars.back();
2181 
2182         TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
2183         handleFunctionArgument(&callee, callingArgs, arg);
2184         if (param.type->getQualifier().isParamInput()) {
2185             TIntermTyped* input = intermediate.addSymbol(**inputIt);
2186             if (input->getType().getQualifier().builtIn == EbvFragCoord && intermediate.getDxPositionW()) {
2187                 // Replace FragCoord W with reciprocal
2188                 auto pos_xyz = handleDotDereference(loc, input, "xyz");
2189                 auto pos_w   = handleDotDereference(loc, input, "w");
2190                 auto one     = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2191                 auto recip_w = intermediate.addBinaryMath(EOpDiv, one, pos_w, loc);
2192                 TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
2193                 dst->getSequence().push_back(pos_xyz);
2194                 dst->getSequence().push_back(recip_w);
2195                 dst->setType(TType(EbtFloat, EvqTemporary, 4));
2196                 dst->setLoc(loc);
2197                 input = dst;
2198             }
2199             intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, input));
2200             inputIt++;
2201         }
2202         if (param.type->getQualifier().storage == EvqUniform) {
2203             if (!param.type->containsOpaque()) {
2204                 // Look it up in the $Global uniform block.
2205                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2206                                                                    handleVariable(loc, param.name)));
2207             } else {
2208                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
2209                                                                    intermediate.addSymbol(**opaqueUniformIt)));
2210                 ++opaqueUniformIt;
2211             }
2212         }
2213     }
2214 
2215     // Call
2216     currentCaller = synthEntryPoint.getMangledName();
2217     TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
2218     currentCaller = userFunction.getMangledName();
2219 
2220     // Return value
2221     if (entryPointOutput) {
2222         TIntermTyped* returnAssign;
2223 
2224         // For hull shaders, the wrapped entry point return value is written to
2225         // an array element as indexed by invocation ID, which we might have to make up.
2226         // This is required to match SPIR-V semantics.
2227         if (language == EShLangTessControl) {
2228             TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
2229 
2230             // If there is no user declared invocation ID, we must make one.
2231             if (invocationIdSym == nullptr) {
2232                 TType invocationIdType(EbtUint, EvqIn, 1);
2233                 TString* invocationIdName = NewPoolTString("InvocationId");
2234                 invocationIdType.getQualifier().builtIn = EbvInvocationId;
2235 
2236                 TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
2237 
2238                 globalQualifierFix(loc, variable->getWritableType().getQualifier());
2239                 trackLinkage(*variable);
2240 
2241                 invocationIdSym = intermediate.addSymbol(*variable);
2242             }
2243 
2244             TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
2245                                                           invocationIdSym, loc);
2246 
2247             // Set the type of the array element being dereferenced
2248             const TType derefElementType(entryPointOutput->getType(), 0);
2249             element->setType(derefElementType);
2250 
2251             returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
2252         } else {
2253             returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
2254         }
2255         intermediate.growAggregate(synthBody, returnAssign);
2256     } else
2257         intermediate.growAggregate(synthBody, callReturn);
2258 
2259     // Output copies
2260     auto outputIt = outputs.begin();
2261     for (int i = 0; i < userFunction.getParamCount(); i++) {
2262         TParameter& param = userFunction[i];
2263 
2264         // GS outputs are via emit, so we do not copy them here.
2265         if (param.type->getQualifier().isParamOutput()) {
2266             if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
2267                 // GS output stream does not assign outputs here: it's the Append() method
2268                 // which writes to the output, probably multiple times separated by Emit.
2269                 // We merely remember the output to use, here.
2270                 gsStreamOutput = *outputIt;
2271             } else {
2272                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
2273                                                                    intermediate.addSymbol(**outputIt),
2274                                                                    intermediate.addSymbol(*argVars[i])));
2275             }
2276 
2277             outputIt++;
2278         }
2279     }
2280 
2281     // Put the pieces together to form a full function subtree
2282     // for the synthesized entry point.
2283     synthBody->setOperator(EOpSequence);
2284     TIntermNode* synthFunctionDef = synthParams;
2285     handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
2286 
2287     entryPointFunctionBody = synthBody;
2288 
2289     return synthFunctionDef;
2290 }
2291 
handleFunctionBody(const TSourceLoc & loc,TFunction & function,TIntermNode * functionBody,TIntermNode * & node)2292 void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
2293                                           TIntermNode*& node)
2294 {
2295     node = intermediate.growAggregate(node, functionBody);
2296     intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
2297     node->getAsAggregate()->setName(function.getMangledName().c_str());
2298 
2299     popScope();
2300     if (function.hasImplicitThis())
2301         popImplicitThis();
2302 
2303     if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
2304         error(loc, "function does not return a value:", "", function.getName().c_str());
2305 }
2306 
2307 // AST I/O is done through shader globals declared in the 'in' or 'out'
2308 // storage class.  An HLSL entry point has a return value, input parameters
2309 // and output parameters.  These need to get remapped to the AST I/O.
remapEntryPointIO(TFunction & function,TVariable * & returnValue,TVector<TVariable * > & inputs,TVector<TVariable * > & outputs)2310 void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
2311     TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
2312 {
2313     // We might have in input structure type with no decorations that caused it
2314     // to look like an input type, yet it has (e.g.) interpolation types that
2315     // must be modified that turn it into an input type.
2316     // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
2317     const auto synthesizeEditedInput = [this](TType& type) {
2318         // True if a type needs to be 'flat'
2319         const auto needsFlat = [](const TType& type) {
2320             return type.containsBasicType(EbtInt) ||
2321                     type.containsBasicType(EbtUint) ||
2322                     type.containsBasicType(EbtInt64) ||
2323                     type.containsBasicType(EbtUint64) ||
2324                     type.containsBasicType(EbtBool) ||
2325                     type.containsBasicType(EbtDouble);
2326         };
2327 
2328         if (language == EShLangFragment && needsFlat(type)) {
2329             if (type.isStruct()) {
2330                 TTypeList* finalList = nullptr;
2331                 auto it = ioTypeMap.find(type.getStruct());
2332                 if (it == ioTypeMap.end() || it->second.input == nullptr) {
2333                     // Getting here means we have no input struct, but we need one.
2334                     auto list = new TTypeList;
2335                     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
2336                         TType* newType = new TType;
2337                         newType->shallowCopy(*member->type);
2338                         TTypeLoc typeLoc = { newType, member->loc };
2339                         list->push_back(typeLoc);
2340                     }
2341                     // install the new input type
2342                     if (it == ioTypeMap.end()) {
2343                         tIoKinds newLists = { list, nullptr, nullptr };
2344                         ioTypeMap[type.getStruct()] = newLists;
2345                     } else
2346                         it->second.input = list;
2347                     finalList = list;
2348                 } else
2349                     finalList = it->second.input;
2350                 // edit for 'flat'
2351                 for (auto member = finalList->begin(); member != finalList->end(); ++member) {
2352                     if (needsFlat(*member->type)) {
2353                         member->type->getQualifier().clearInterpolation();
2354                         member->type->getQualifier().flat = true;
2355                     }
2356                 }
2357             } else {
2358                 type.getQualifier().clearInterpolation();
2359                 type.getQualifier().flat = true;
2360             }
2361         }
2362     };
2363 
2364     // Do the actual work to make a type be a shader input or output variable,
2365     // and clear the original to be non-IO (for use as a normal function parameter/return).
2366     const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
2367         TVariable* ioVariable = makeInternalVariable(name, type);
2368         clearUniformInputOutput(type.getQualifier());
2369         if (type.isStruct()) {
2370             auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
2371             if (newLists != ioTypeMap.end()) {
2372                 if (storage == EvqVaryingIn && newLists->second.input)
2373                     ioVariable->getWritableType().setStruct(newLists->second.input);
2374                 else if (storage == EvqVaryingOut && newLists->second.output)
2375                     ioVariable->getWritableType().setStruct(newLists->second.output);
2376             }
2377         }
2378         if (storage == EvqVaryingIn) {
2379             correctInput(ioVariable->getWritableType().getQualifier());
2380             if (language == EShLangTessEvaluation)
2381                 if (!ioVariable->getType().isArray())
2382                     ioVariable->getWritableType().getQualifier().patch = true;
2383         } else {
2384             correctOutput(ioVariable->getWritableType().getQualifier());
2385         }
2386         ioVariable->getWritableType().getQualifier().storage = storage;
2387 
2388         fixBuiltInIoType(ioVariable->getWritableType());
2389 
2390         return ioVariable;
2391     };
2392 
2393     // return value is actually a shader-scoped output (out)
2394     if (function.getType().getBasicType() == EbtVoid) {
2395         returnValue = nullptr;
2396     } else {
2397         if (language == EShLangTessControl) {
2398             // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
2399             // array in SPIR-V semantics.  We'll write to it indexed by invocation ID.
2400 
2401             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2402 
2403             TType outputType;
2404             outputType.shallowCopy(function.getType());
2405 
2406             // vertices has necessarily already been set when handling entry point attributes.
2407             TArraySizes* arraySizes = new TArraySizes;
2408             arraySizes->addInnerSize(intermediate.getVertices());
2409             outputType.transferArraySizes(arraySizes);
2410 
2411             clearUniformInputOutput(function.getWritableType().getQualifier());
2412             returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
2413         } else {
2414             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
2415         }
2416     }
2417 
2418     // parameters are actually shader-scoped inputs and outputs (in or out)
2419     for (int i = 0; i < function.getParamCount(); i++) {
2420         TType& paramType = *function[i].type;
2421         if (paramType.getQualifier().isParamInput()) {
2422             synthesizeEditedInput(paramType);
2423             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
2424             inputs.push_back(argAsGlobal);
2425         }
2426         if (paramType.getQualifier().isParamOutput()) {
2427             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
2428             outputs.push_back(argAsGlobal);
2429         }
2430     }
2431 }
2432 
2433 // An HLSL function that looks like an entry point, but is not,
2434 // declares entry point IO built-ins, but these have to be undone.
remapNonEntryPointIO(TFunction & function)2435 void HlslParseContext::remapNonEntryPointIO(TFunction& function)
2436 {
2437     // return value
2438     if (function.getType().getBasicType() != EbtVoid)
2439         clearUniformInputOutput(function.getWritableType().getQualifier());
2440 
2441     // parameters.
2442     // References to structuredbuffer types are left unmodified
2443     for (int i = 0; i < function.getParamCount(); i++)
2444         if (!isReference(*function[i].type))
2445             clearUniformInputOutput(function[i].type->getQualifier());
2446 }
2447 
handleDeclare(const TSourceLoc & loc,TIntermTyped * var)2448 TIntermNode* HlslParseContext::handleDeclare(const TSourceLoc& loc, TIntermTyped* var)
2449 {
2450     return intermediate.addUnaryNode(EOpDeclare, var, loc, TType(EbtVoid));
2451 }
2452 
2453 // Handle function returns, including type conversions to the function return type
2454 // if necessary.
handleReturnValue(const TSourceLoc & loc,TIntermTyped * value)2455 TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
2456 {
2457     functionReturnsValue = true;
2458 
2459     if (currentFunctionType->getBasicType() == EbtVoid) {
2460         error(loc, "void function cannot return a value", "return", "");
2461         return intermediate.addBranch(EOpReturn, loc);
2462     } else if (*currentFunctionType != value->getType()) {
2463         value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
2464         if (value && *currentFunctionType != value->getType())
2465             value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
2466         if (value == nullptr || *currentFunctionType != value->getType()) {
2467             error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
2468             return value;
2469         }
2470     }
2471 
2472     return intermediate.addBranch(EOpReturn, value, loc);
2473 }
2474 
handleFunctionArgument(TFunction * function,TIntermTyped * & arguments,TIntermTyped * newArg)2475 void HlslParseContext::handleFunctionArgument(TFunction* function,
2476                                               TIntermTyped*& arguments, TIntermTyped* newArg)
2477 {
2478     TParameter param = { nullptr, new TType, nullptr };
2479     param.type->shallowCopy(newArg->getType());
2480 
2481     function->addParameter(param);
2482     if (arguments)
2483         arguments = intermediate.growAggregate(arguments, newArg);
2484     else
2485         arguments = newArg;
2486 }
2487 
2488 // FragCoord may require special loading: we can optionally reciprocate W.
assignFromFragCoord(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2489 TIntermTyped* HlslParseContext::assignFromFragCoord(const TSourceLoc& loc, TOperator op,
2490                                                     TIntermTyped* left, TIntermTyped* right)
2491 {
2492     // If we are not asked for reciprocal W, use a plain old assign.
2493     if (!intermediate.getDxPositionW())
2494         return intermediate.addAssign(op, left, right, loc);
2495 
2496     // If we get here, we should reciprocate W.
2497     TIntermAggregate* assignList = nullptr;
2498 
2499     // If this is a complex rvalue, we don't want to dereference it many times.  Create a temporary.
2500     TVariable* rhsTempVar = nullptr;
2501     rhsTempVar = makeInternalVariable("@fragcoord", right->getType());
2502     rhsTempVar->getWritableType().getQualifier().makeTemporary();
2503 
2504     {
2505         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2506         assignList = intermediate.growAggregate(assignList,
2507             intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2508     }
2509 
2510     // tmp.w = 1.0 / tmp.w
2511     {
2512         const int W = 3;
2513 
2514         TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2515         TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2516         TIntermTyped* index = intermediate.addConstantUnion(W, loc);
2517 
2518         TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2519         TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2520 
2521         const TType derefType(right->getType(), 0);
2522 
2523         lhsElement->setType(derefType);
2524         rhsElement->setType(derefType);
2525 
2526         auto one     = intermediate.addConstantUnion(1.0, EbtFloat, loc);
2527         auto recip_w = intermediate.addBinaryMath(EOpDiv, one, rhsElement, loc);
2528 
2529         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, recip_w, loc));
2530     }
2531 
2532     // Assign the rhs temp (now with W reciprocal) to the final output
2533     {
2534         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2535         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2536     }
2537 
2538     assert(assignList != nullptr);
2539     assignList->setOperator(EOpSequence);
2540 
2541     return assignList;
2542 }
2543 
2544 // Position may require special handling: we can optionally invert Y.
2545 // See: https://github.com/KhronosGroup/glslang/issues/1173
2546 //      https://github.com/KhronosGroup/glslang/issues/494
assignPosition(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2547 TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
2548                                                TIntermTyped* left, TIntermTyped* right)
2549 {
2550     // If we are not asked for Y inversion, use a plain old assign.
2551     if (!intermediate.getInvertY())
2552         return intermediate.addAssign(op, left, right, loc);
2553 
2554     // If we get here, we should invert Y.
2555     TIntermAggregate* assignList = nullptr;
2556 
2557     // If this is a complex rvalue, we don't want to dereference it many times.  Create a temporary.
2558     TVariable* rhsTempVar = nullptr;
2559     rhsTempVar = makeInternalVariable("@position", right->getType());
2560     rhsTempVar->getWritableType().getQualifier().makeTemporary();
2561 
2562     {
2563         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2564         assignList = intermediate.growAggregate(assignList,
2565                                                 intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
2566     }
2567 
2568     // pos.y = -pos.y
2569     {
2570         const int Y = 1;
2571 
2572         TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
2573         TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
2574         TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
2575 
2576         TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
2577         TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
2578 
2579         const TType derefType(right->getType(), 0);
2580 
2581         lhsElement->setType(derefType);
2582         rhsElement->setType(derefType);
2583 
2584         TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
2585 
2586         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
2587     }
2588 
2589     // Assign the rhs temp (now with Y inversion) to the final output
2590     {
2591         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
2592         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
2593     }
2594 
2595     assert(assignList != nullptr);
2596     assignList->setOperator(EOpSequence);
2597 
2598     return assignList;
2599 }
2600 
2601 // Clip and cull distance require special handling due to a semantic mismatch.  In HLSL,
2602 // these can be float scalar, float vector, or arrays of float scalar or float vector.
2603 // In SPIR-V, they are arrays of scalar floats in all cases.  We must copy individual components
2604 // (e.g, both x and y components of a float2) out into the destination float array.
2605 //
2606 // The values are assigned to sequential members of the output array.  The inner dimension
2607 // is vector components.  The outer dimension is array elements.
assignClipCullDistance(const TSourceLoc & loc,TOperator op,int semanticId,TIntermTyped * left,TIntermTyped * right)2608 TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
2609                                                            TIntermTyped* left, TIntermTyped* right)
2610 {
2611     switch (language) {
2612     case EShLangFragment:
2613     case EShLangVertex:
2614     case EShLangGeometry:
2615         break;
2616     default:
2617         error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
2618         return nullptr;
2619     }
2620 
2621     TVariable** clipCullVar = nullptr;
2622 
2623     // Figure out if we are assigning to, or from, clip or cull distance.
2624     const bool isOutput = isClipOrCullDistance(left->getType());
2625 
2626     // This is the rvalue or lvalue holding the clip or cull distance.
2627     TIntermTyped* clipCullNode = isOutput ? left : right;
2628     // This is the value going into or out of the clip or cull distance.
2629     TIntermTyped* internalNode = isOutput ? right : left;
2630 
2631     const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
2632 
2633     decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
2634 
2635     // Refer to either the clip or the cull distance, depending on semantic.
2636     switch (builtInType) {
2637     case EbvClipDistance:
2638         clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
2639         semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
2640         break;
2641     case EbvCullDistance:
2642         clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
2643         semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
2644         break;
2645 
2646     // called invalidly: we expected a clip or a cull distance.
2647     // static compile time problem: should not happen.
2648     default: assert(0); return nullptr;
2649     }
2650 
2651     // This is the offset in the destination array of a given semantic's data
2652     std::array<int, maxClipCullRegs> semanticOffset;
2653 
2654     // Calculate offset of variable of semantic N in destination array
2655     int arrayLoc = 0;
2656     int vecItems = 0;
2657 
2658     for (int x = 0; x < maxClipCullRegs; ++x) {
2659         // See if we overflowed the vec4 packing
2660         if ((vecItems + (*semanticNSize)[x]) > 4) {
2661             arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
2662             vecItems = 0;
2663         }
2664 
2665         semanticOffset[x] = arrayLoc;
2666         vecItems += (*semanticNSize)[x];
2667         arrayLoc += (*semanticNSize)[x];
2668     }
2669 
2670 
2671     // It can have up to 2 array dimensions (in the case of geometry shader inputs)
2672     const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
2673     const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
2674     // vector sizes:
2675     const int internalVectorSize = internalNode->getType().getVectorSize();
2676     // array sizes, or 1 if it's not an array:
2677     const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
2678     const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
2679 
2680     // The created type may be an array of arrays, e.g, for geometry shader inputs.
2681     const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
2682 
2683     // If we haven't created the output already, create it now.
2684     if (*clipCullVar == nullptr) {
2685         // ClipDistance and CullDistance are handled specially in the entry point input/output copy
2686         // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
2687         // into a float array, or vice versa.  Here, we make the array the right size and type,
2688         // which depends on the incoming data, which has several potential dimensions:
2689         //    * Semantic ID
2690         //    * vector size
2691         //    * array size
2692         // Of those, semantic ID and array size cannot appear simultaneously.
2693         //
2694         // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
2695         // array dimensions.  The shader's declaration may have one or two array dimensions.  One is always
2696         // the geometry's dimension.
2697 
2698         const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
2699 
2700         const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
2701         const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
2702 
2703         TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
2704         clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
2705 
2706         // Create required array dimension
2707         TArraySizes* arraySizes = new TArraySizes;
2708         if (isImplicitlyArrayed)
2709             arraySizes->addInnerSize(requiredOuterArraySize);
2710         arraySizes->addInnerSize(requiredInnerArraySize);
2711         clipCullType.transferArraySizes(arraySizes);
2712 
2713         // Obtain symbol name: we'll use that for the symbol we introduce.
2714         TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
2715         assert(sym != nullptr);
2716 
2717         // We are moving the semantic ID from the layout location, so it is no longer needed or
2718         // desired there.
2719         clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
2720 
2721         // Create variable and track its linkage
2722         *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
2723 
2724         trackLinkage(**clipCullVar);
2725     }
2726 
2727     // Create symbol for the clip or cull variable.
2728     TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
2729 
2730     // vector sizes:
2731     const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
2732 
2733     // array sizes, or 1 if it's not an array:
2734     const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
2735     const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
2736     const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
2737 
2738     // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
2739     // fixBuiltInIoType() should have handled that upstream.
2740     assert(clipCullSym->getType().isArray());
2741     assert(clipCullSym->getType().getVectorSize() == 1);
2742     assert(clipCullSym->getType().getBasicType() == EbtFloat);
2743 
2744     // We may be creating multiple sub-assignments.  This is an aggregate to hold them.
2745     // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
2746     TIntermAggregate* assignList = nullptr;
2747 
2748     // Holds individual component assignments as we make them.
2749     TIntermTyped* clipCullAssign = nullptr;
2750 
2751     // If the types are homomorphic, use a simple assign.  No need to mess about with
2752     // individual components.
2753     if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
2754         clipCullInnerArraySize == internalInnerArraySize &&
2755         clipCullOuterArraySize == internalOuterArraySize &&
2756         clipCullVectorSize == internalVectorSize) {
2757 
2758         if (isOutput)
2759             clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
2760         else
2761             clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
2762 
2763         assignList = intermediate.growAggregate(assignList, clipCullAssign);
2764         assignList->setOperator(EOpSequence);
2765 
2766         return assignList;
2767     }
2768 
2769     // We are going to copy each component of the internal (per array element if indicated) to sequential
2770     // array elements of the clipCullSym.  This tracks the lhs element we're writing to as we go along.
2771     // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
2772     int clipCullInnerArrayPos = semanticOffset[semanticId];
2773     int clipCullOuterArrayPos = 0;
2774 
2775     // Lambda to add an index to a node, set the type of the result, and return the new node.
2776     const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
2777         const TType derefType(node->getType(), 0);
2778         node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
2779         node->setType(derefType);
2780         return node;
2781     };
2782 
2783     // Loop through every component of every element of the internal, and copy to or from the matching external.
2784     for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
2785         for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
2786             for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
2787                 // clip/cull array member to read from / write to:
2788                 TIntermTyped* clipCullMember = clipCullSym;
2789 
2790                 // If implicitly arrayed, there is an outer array dimension involved
2791                 if (isImplicitlyArrayed)
2792                     clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
2793 
2794                 // Index into proper array position for clip cull member
2795                 clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
2796 
2797                 // if needed, start over with next outer array slice.
2798                 if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
2799                     clipCullInnerArrayPos = semanticOffset[semanticId];
2800                     ++clipCullOuterArrayPos;
2801                 }
2802 
2803                 // internal member to read from / write to:
2804                 TIntermTyped* internalMember = internalNode;
2805 
2806                 // If internal node has outer array dimension, index appropriately.
2807                 if (internalArrayDims > 1)
2808                     internalMember = addIndex(internalMember, internalOuterArrayPos);
2809 
2810                 // If internal node has inner array dimension, index appropriately.
2811                 if (internalArrayDims > 0)
2812                     internalMember = addIndex(internalMember, internalInnerArrayPos);
2813 
2814                 // If internal node is a vector, extract the component of interest.
2815                 if (internalNode->getType().isVector())
2816                     internalMember = addIndex(internalMember, internalComponent);
2817 
2818                 // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
2819                 if (isOutput)
2820                     clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
2821                 else
2822                     clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
2823 
2824                 // Track assignment in the sequence.
2825                 assignList = intermediate.growAggregate(assignList, clipCullAssign);
2826             }
2827         }
2828     }
2829 
2830     assert(assignList != nullptr);
2831     assignList->setOperator(EOpSequence);
2832 
2833     return assignList;
2834 }
2835 
2836 // Some simple source assignments need to be flattened to a sequence
2837 // of AST assignments. Catch these and flatten, otherwise, pass through
2838 // to intermediate.addAssign().
2839 //
2840 // Also, assignment to matrix swizzles requires multiple component assignments,
2841 // intercept those as well.
handleAssign(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)2842 TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
2843                                              TIntermTyped* right)
2844 {
2845     if (left == nullptr || right == nullptr)
2846         return nullptr;
2847 
2848     // writing to opaques will require fixing transforms
2849     if (left->getType().containsOpaque())
2850         intermediate.setNeedsLegalization();
2851 
2852     if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
2853         return handleAssignToMatrixSwizzle(loc, op, left, right);
2854 
2855     // Return true if the given node is an index operation into a split variable.
2856     const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
2857         const TIntermBinary* binaryNode = node->getAsBinaryNode();
2858 
2859         if (binaryNode == nullptr)
2860             return false;
2861 
2862         return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
2863                wasSplit(binaryNode->getLeft());
2864     };
2865 
2866     // Return symbol if node is symbol or index ref
2867     const auto getSymbol = [](const TIntermTyped* node) -> const TIntermSymbol* {
2868         const TIntermSymbol* symbolNode = node->getAsSymbolNode();
2869         if (symbolNode != nullptr)
2870             return symbolNode;
2871 
2872         const TIntermBinary* binaryNode = node->getAsBinaryNode();
2873         if (binaryNode != nullptr && (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect))
2874             return binaryNode->getLeft()->getAsSymbolNode();
2875 
2876         return nullptr;
2877     };
2878 
2879     // Return true if this stage assigns clip position with potentially inverted Y
2880     const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
2881         return node->getType().getQualifier().builtIn == EbvPosition &&
2882                (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
2883     };
2884 
2885     const TIntermSymbol* leftSymbol = getSymbol(left);
2886     const TIntermSymbol* rightSymbol = getSymbol(right);
2887 
2888     const bool isSplitLeft    = wasSplit(left) || indexesSplit(left);
2889     const bool isSplitRight   = wasSplit(right) || indexesSplit(right);
2890 
2891     const bool isFlattenLeft  = wasFlattened(leftSymbol);
2892     const bool isFlattenRight = wasFlattened(rightSymbol);
2893 
2894     // OK to do a single assign if neither side is split or flattened.  Otherwise,
2895     // fall through to a member-wise copy.
2896     if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
2897         // Clip and cull distance requires more processing.  See comment above assignClipCullDistance.
2898         if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
2899             const bool isOutput = isClipOrCullDistance(left->getType());
2900 
2901             const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
2902             return assignClipCullDistance(loc, op, semanticId, left, right);
2903         } else if (assignsClipPos(left)) {
2904             // Position can require special handling: see comment above assignPosition
2905             return assignPosition(loc, op, left, right);
2906         } else if (left->getQualifier().builtIn == EbvSampleMask) {
2907             // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
2908             // in the shader.  Copy the scalar RHS into the LHS array element zero, if that happens.
2909             if (left->isArray() && !right->isArray()) {
2910                 const TType derefType(left->getType(), 0);
2911                 left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
2912                 left->setType(derefType);
2913                 // Fall through to add assign.
2914             }
2915         }
2916 
2917         return intermediate.addAssign(op, left, right, loc);
2918     }
2919 
2920     TIntermAggregate* assignList = nullptr;
2921     const TVector<TVariable*>* leftVariables = nullptr;
2922     const TVector<TVariable*>* rightVariables = nullptr;
2923 
2924     // A temporary to store the right node's value, so we don't keep indirecting into it
2925     // if it's not a simple symbol.
2926     TVariable* rhsTempVar = nullptr;
2927 
2928     // If the RHS is a simple symbol node, we'll copy it for each member.
2929     TIntermSymbol* cloneSymNode = nullptr;
2930 
2931     int memberCount = 0;
2932 
2933     // Track how many items there are to copy.
2934     if (left->getType().isStruct())
2935         memberCount = (int)left->getType().getStruct()->size();
2936     if (left->getType().isArray())
2937         memberCount = left->getType().getCumulativeArraySize();
2938 
2939     if (isFlattenLeft)
2940         leftVariables = &flattenMap.find(leftSymbol->getId())->second.members;
2941 
2942     if (isFlattenRight) {
2943         rightVariables = &flattenMap.find(rightSymbol->getId())->second.members;
2944     } else {
2945         // The RHS is not flattened.  There are several cases:
2946         // 1. 1 item to copy:  Use the RHS directly.
2947         // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
2948         // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
2949 
2950         if (memberCount <= 1) {
2951             // case 1: we'll use the symbol directly below.  Nothing to do.
2952         } else {
2953             if (right->getAsSymbolNode() != nullptr) {
2954                 // case 2: we'll copy the symbol per iteration below.
2955                 cloneSymNode = right->getAsSymbolNode();
2956             } else {
2957                 // case 3: assign to a temp, and indirect into that.
2958                 rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
2959                 rhsTempVar->getWritableType().getQualifier().makeTemporary();
2960                 TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
2961 
2962                 // Add this to the aggregate being built.
2963                 assignList = intermediate.growAggregate(assignList,
2964                                                         intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
2965             }
2966         }
2967     }
2968 
2969     // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
2970     // variables, which is awkward when copying between split and unsplit structures.  This variable tracks
2971     // array indirections so they can be percolated from outer structs to inner variables.
2972     std::vector <int> arrayElement;
2973 
2974     TStorageQualifier leftStorage = left->getType().getQualifier().storage;
2975     TStorageQualifier rightStorage = right->getType().getQualifier().storage;
2976 
2977     int leftOffsetStart = findSubtreeOffset(*left);
2978     int rightOffsetStart = findSubtreeOffset(*right);
2979     int leftOffset = leftOffsetStart;
2980     int rightOffset = rightOffsetStart;
2981 
2982     const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
2983                                bool flattened)
2984                            -> TIntermTyped * {
2985         const bool split     = isLeft ? isSplitLeft   : isSplitRight;
2986 
2987         TIntermTyped* subTree;
2988         const TType derefType(type, member);
2989         const TVariable* builtInVar = nullptr;
2990         if ((flattened || split) && derefType.isBuiltIn()) {
2991             auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
2992                                                    derefType.getQualifier().builtIn,
2993                                                    isLeft ? leftStorage : rightStorage));
2994             if (splitPair != splitBuiltIns.end())
2995                 builtInVar = splitPair->second;
2996         }
2997         if (builtInVar != nullptr) {
2998             // copy from interstage IO built-in if needed
2999             subTree = intermediate.addSymbol(*builtInVar);
3000 
3001             if (subTree->getType().isArray()) {
3002                 // Arrayness of builtIn symbols isn't handled by the normal recursion:
3003                 // it's been extracted and moved to the built-in.
3004                 if (!arrayElement.empty()) {
3005                     const TType splitDerefType(subTree->getType(), arrayElement.back());
3006                     subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3007                                                     intermediate.addConstantUnion(arrayElement.back(), loc), loc);
3008                     subTree->setType(splitDerefType);
3009                 } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
3010                     // This might also be a stage with arrayed outputs, in which case there's an index
3011                     // operation we should transfer to the output builtin.
3012 
3013                     const TType splitDerefType(subTree->getType(), 0);
3014                     subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3015                                                     splitNode->getAsBinaryNode()->getRight(), loc);
3016                     subTree->setType(splitDerefType);
3017                 }
3018             }
3019         } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
3020             if (isLeft) {
3021                 // offset will cycle through variables for arrayed io
3022                 if (leftOffset >= static_cast<int>(leftVariables->size()))
3023                     leftOffset = leftOffsetStart;
3024                 subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
3025             } else {
3026                 // offset will cycle through variables for arrayed io
3027                 if (rightOffset >= static_cast<int>(rightVariables->size()))
3028                     rightOffset = rightOffsetStart;
3029                 subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
3030             }
3031 
3032             // arrayed io
3033             if (subTree->getType().isArray()) {
3034                 if (!arrayElement.empty()) {
3035                     const TType derefType(subTree->getType(), arrayElement.front());
3036                     subTree = intermediate.addIndex(EOpIndexDirect, subTree,
3037                                                     intermediate.addConstantUnion(arrayElement.front(), loc), loc);
3038                     subTree->setType(derefType);
3039                 } else {
3040                     // There's an index operation we should transfer to the output builtin.
3041                     assert(splitNode->getAsOperator() != nullptr &&
3042                            splitNode->getAsOperator()->getOp() == EOpIndexIndirect);
3043                     const TType splitDerefType(subTree->getType(), 0);
3044                     subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
3045                                                     splitNode->getAsBinaryNode()->getRight(), loc);
3046                     subTree->setType(splitDerefType);
3047                 }
3048             }
3049         } else {
3050             // Index operator if it's an aggregate, else EOpNull
3051             const TOperator accessOp = type.isArray()  ? EOpIndexDirect
3052                                      : type.isStruct() ? EOpIndexDirectStruct
3053                                      : EOpNull;
3054             if (accessOp == EOpNull) {
3055                 subTree = splitNode;
3056             } else {
3057                 subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
3058                                                 loc);
3059                 const TType splitDerefType(splitNode->getType(), splitMember);
3060                 subTree->setType(splitDerefType);
3061             }
3062         }
3063 
3064         return subTree;
3065     };
3066 
3067     // Use the proper RHS node: a new symbol from a TVariable, copy
3068     // of an TIntermSymbol node, or sometimes the right node directly.
3069     right = rhsTempVar != nullptr   ? intermediate.addSymbol(*rhsTempVar, loc) :
3070             cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
3071             right;
3072 
3073     // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
3074     // whole thing.  So, we'll resort to an explicit type via std::function.
3075     const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3076                              bool topLevel)>
3077     traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
3078                    bool topLevel) -> void {
3079         // If we get here, we are assigning to or from a whole array or struct that must be
3080         // flattened, so have to do member-by-member assignment:
3081 
3082         bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
3083         bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
3084 
3085         if ((left->getType().isArray() || right->getType().isArray()) &&
3086               (shouldFlattenSubsetLeft  || isSplitLeft ||
3087                shouldFlattenSubsetRight || isSplitRight)) {
3088             const int elementsL = left->getType().isArray()  ? left->getType().getOuterArraySize()  : 1;
3089             const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
3090 
3091             // The arrays might not be the same size,
3092             // e.g., if the size has been forced for EbvTessLevelInner/Outer.
3093             const int elementsToCopy = std::min(elementsL, elementsR);
3094 
3095             // array case
3096             for (int element = 0; element < elementsToCopy; ++element) {
3097                 arrayElement.push_back(element);
3098 
3099                 // Add a new AST symbol node if we have a temp variable holding a complex RHS.
3100                 TIntermTyped* subLeft  = getMember(true,  left->getType(),  element, left, element,
3101                                                    shouldFlattenSubsetLeft);
3102                 TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
3103                                                    shouldFlattenSubsetRight);
3104 
3105                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  element, splitLeft,
3106                                                                        element, shouldFlattenSubsetLeft)
3107                                                            : subLeft;
3108                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
3109                                                                        element, shouldFlattenSubsetRight)
3110                                                            : subRight;
3111 
3112                 traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3113 
3114                 arrayElement.pop_back();
3115             }
3116         } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft  || isSplitLeft ||
3117                                                   shouldFlattenSubsetRight || isSplitRight)) {
3118             // struct case
3119             const auto& membersL = *left->getType().getStruct();
3120             const auto& membersR = *right->getType().getStruct();
3121 
3122             // These track the members in the split structures corresponding to the same in the unsplit structures,
3123             // which we traverse in parallel.
3124             int memberL = 0;
3125             int memberR = 0;
3126 
3127             // Handle empty structure assignment
3128             if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
3129                 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3130 
3131             for (int member = 0; member < int(membersL.size()); ++member) {
3132                 const TType& typeL = *membersL[member].type;
3133                 const TType& typeR = *membersR[member].type;
3134 
3135                 TIntermTyped* subLeft  = getMember(true,  left->getType(), member, left, member,
3136                                                    shouldFlattenSubsetLeft);
3137                 TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
3138                                                    shouldFlattenSubsetRight);
3139 
3140                 // If there is no splitting, use the same values to avoid inefficiency.
3141                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  member, splitLeft,
3142                                                                        memberL, shouldFlattenSubsetLeft)
3143                                                            : subLeft;
3144                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
3145                                                                        memberR, shouldFlattenSubsetRight)
3146                                                            : subRight;
3147 
3148                 if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
3149                     // Clip and cull distance built-in assignment is complex in its own right, and is handled in
3150                     // a separate function dedicated to that task.  See comment above assignClipCullDistance;
3151 
3152                     const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
3153 
3154                     // Since all clip/cull semantics boil down to the same built-in type, we need to get the
3155                     // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
3156                     const TType derefType((isOutput ? left : right)->getType(), member);
3157                     const int semanticId = derefType.getQualifier().layoutLocation;
3158 
3159                     TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
3160                                                                               subSplitLeft, subSplitRight);
3161 
3162                     assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
3163                 } else if (subSplitRight->getType().getQualifier().builtIn == EbvFragCoord) {
3164                     // FragCoord can require special handling: see comment above assignFromFragCoord
3165                     TIntermTyped* fragCoordAssign = assignFromFragCoord(loc, op, subSplitLeft, subSplitRight);
3166                     assignList = intermediate.growAggregate(assignList, fragCoordAssign, loc);
3167                 } else if (assignsClipPos(subSplitLeft)) {
3168                     // Position can require special handling: see comment above assignPosition
3169                     TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
3170                     assignList = intermediate.growAggregate(assignList, positionAssign, loc);
3171                 } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
3172                            !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
3173                     // If this is the final flattening (no nested types below to flatten)
3174                     // we'll copy the member, else recurse into the type hierarchy.
3175                     // However, if splitting the struct, that means we can copy a whole
3176                     // subtree here IFF it does not itself contain any interstage built-in
3177                     // IO variables, so we only have to recurse into it if there's something
3178                     // for splitting to do.  That can save a lot of AST verbosity for
3179                     // a bunch of memberwise copies.
3180 
3181                     assignList = intermediate.growAggregate(assignList,
3182                                                             intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
3183                                                             loc);
3184                 } else {
3185                     traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
3186                 }
3187 
3188                 memberL += (typeL.isBuiltIn() ? 0 : 1);
3189                 memberR += (typeR.isBuiltIn() ? 0 : 1);
3190             }
3191         } else {
3192             // Member copy
3193             assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
3194         }
3195 
3196     };
3197 
3198     TIntermTyped* splitLeft  = left;
3199     TIntermTyped* splitRight = right;
3200 
3201     // If either left or right was a split structure, we must read or write it, but still have to
3202     // parallel-recurse through the unsplit structure to identify the built-in IO vars.
3203     // The left can be either a symbol, or an index into a symbol (e.g, array reference)
3204     if (isSplitLeft) {
3205         if (indexesSplit(left)) {
3206             // Index case: Refer to the indexed symbol, if the left is an index operator.
3207             const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3208 
3209             TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3210 
3211             splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
3212                                               left->getAsBinaryNode()->getRight(), loc);
3213 
3214             const TType derefType(splitLeftNonIo->getType(), 0);
3215             splitLeft->setType(derefType);
3216         } else {
3217             // Symbol case: otherwise, if not indexed, we have the symbol directly.
3218             const TIntermSymbol* symNode = left->getAsSymbolNode();
3219             splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
3220         }
3221     }
3222 
3223     if (isSplitRight)
3224         splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
3225 
3226     // This makes the whole assignment, recursing through subtypes as needed.
3227     traverse(left, right, splitLeft, splitRight, true);
3228 
3229     assert(assignList != nullptr);
3230     assignList->setOperator(EOpSequence);
3231 
3232     return assignList;
3233 }
3234 
3235 // An assignment to matrix swizzle must be decomposed into individual assignments.
3236 // These must be selected component-wise from the RHS and stored component-wise
3237 // into the LHS.
handleAssignToMatrixSwizzle(const TSourceLoc & loc,TOperator op,TIntermTyped * left,TIntermTyped * right)3238 TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
3239                                                             TIntermTyped* right)
3240 {
3241     assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
3242 
3243     if (op != EOpAssign)
3244         error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
3245 
3246     // isolate the matrix and swizzle nodes
3247     TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
3248     const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
3249 
3250     // if the RHS isn't already a simple vector, let's store into one
3251     TIntermSymbol* vector = right->getAsSymbolNode();
3252     TIntermTyped* vectorAssign = nullptr;
3253     if (vector == nullptr) {
3254         // create a new intermediate vector variable to assign to
3255         TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
3256         vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
3257 
3258         // assign the right to the new vector
3259         vectorAssign = handleAssign(loc, op, vector, right);
3260     }
3261 
3262     // Assign the vector components to the matrix components.
3263     // Store this as a sequence, so a single aggregate node represents this
3264     // entire operation.
3265     TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
3266     TType columnType(matrix->getType(), 0);
3267     TType componentType(columnType, 0);
3268     TType indexType(EbtInt);
3269     for (int i = 0; i < (int)swizzle.size(); i += 2) {
3270         // the right component, single index into the RHS vector
3271         TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
3272                                     intermediate.addConstantUnion(i/2, loc), loc);
3273 
3274         // the left component, double index into the LHS matrix
3275         TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
3276                                     intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
3277                                                                   indexType, loc),
3278                                     loc);
3279         leftComp->setType(columnType);
3280         leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
3281                                     intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
3282                                                                   indexType, loc),
3283                                     loc);
3284         leftComp->setType(componentType);
3285 
3286         // Add the assignment to the aggregate
3287         result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
3288     }
3289 
3290     result->setOp(EOpSequence);
3291 
3292     return result;
3293 }
3294 
3295 //
3296 // HLSL atomic operations have slightly different arguments than
3297 // GLSL/AST/SPIRV.  The semantics are converted below in decomposeIntrinsic.
3298 // This provides the post-decomposition equivalent opcode.
3299 //
mapAtomicOp(const TSourceLoc & loc,TOperator op,bool isImage)3300 TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
3301 {
3302     switch (op) {
3303     case EOpInterlockedAdd:             return isImage ? EOpImageAtomicAdd      : EOpAtomicAdd;
3304     case EOpInterlockedAnd:             return isImage ? EOpImageAtomicAnd      : EOpAtomicAnd;
3305     case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
3306     case EOpInterlockedMax:             return isImage ? EOpImageAtomicMax      : EOpAtomicMax;
3307     case EOpInterlockedMin:             return isImage ? EOpImageAtomicMin      : EOpAtomicMin;
3308     case EOpInterlockedOr:              return isImage ? EOpImageAtomicOr       : EOpAtomicOr;
3309     case EOpInterlockedXor:             return isImage ? EOpImageAtomicXor      : EOpAtomicXor;
3310     case EOpInterlockedExchange:        return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
3311     case EOpInterlockedCompareStore:  // TODO: ...
3312     default:
3313         error(loc, "unknown atomic operation", "unknown op", "");
3314         return EOpNull;
3315     }
3316 }
3317 
3318 //
3319 // Create a combined sampler/texture from separate sampler and texture.
3320 //
handleSamplerTextureCombine(const TSourceLoc & loc,TIntermTyped * argTex,TIntermTyped * argSampler)3321 TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
3322                                                                 TIntermTyped* argSampler)
3323 {
3324     TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
3325 
3326     txcombine->getSequence().push_back(argTex);
3327     txcombine->getSequence().push_back(argSampler);
3328 
3329     TSampler samplerType = argTex->getType().getSampler();
3330     samplerType.combined = true;
3331 
3332     // TODO:
3333     // This block exists until the spec no longer requires shadow modes on texture objects.
3334     // It can be deleted after that, along with the shadowTextureVariant member.
3335     {
3336         const bool shadowMode = argSampler->getType().getSampler().shadow;
3337 
3338         TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
3339 
3340         if (texSymbol == nullptr)
3341             texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
3342 
3343         if (texSymbol == nullptr) {
3344             error(loc, "unable to find texture symbol", "", "");
3345             return nullptr;
3346         }
3347 
3348         // This forces the texture's shadow state to be the sampler's
3349         // shadow state.  This depends on downstream optimization to
3350         // DCE one variant in [shadow, nonshadow] if both are present,
3351         // or the SPIR-V module would be invalid.
3352         long long newId = texSymbol->getId();
3353 
3354         // Check to see if this texture has been given a shadow mode already.
3355         // If so, look up the one we already have.
3356         const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
3357 
3358         if (textureShadowEntry != textureShadowVariant.end())
3359             newId = textureShadowEntry->second->get(shadowMode);
3360         else
3361             textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
3362 
3363         // Sometimes we have to create another symbol (if this texture has been seen before,
3364         // and we haven't created the form for this shadow mode).
3365         if (newId == -1) {
3366             TType texType;
3367             texType.shallowCopy(argTex->getType());
3368             texType.getSampler().shadow = shadowMode;  // set appropriate shadow mode.
3369             globalQualifierFix(loc, texType.getQualifier());
3370 
3371             TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
3372 
3373             trackLinkage(*newTexture);
3374 
3375             newId = newTexture->getUniqueId();
3376         }
3377 
3378         assert(newId != -1);
3379 
3380         if (textureShadowVariant.find(newId) == textureShadowVariant.end())
3381             textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
3382 
3383         textureShadowVariant[newId]->set(shadowMode, newId);
3384 
3385         // Remember this shadow mode in the texture and the merged type.
3386         argTex->getWritableType().getSampler().shadow = shadowMode;
3387         samplerType.shadow = shadowMode;
3388 
3389         texSymbol->switchId(newId);
3390     }
3391 
3392     txcombine->setType(TType(samplerType, EvqTemporary));
3393     txcombine->setLoc(loc);
3394 
3395     return txcombine;
3396 }
3397 
3398 // Return true if this a buffer type that has an associated counter buffer.
hasStructBuffCounter(const TType & type) const3399 bool HlslParseContext::hasStructBuffCounter(const TType& type) const
3400 {
3401     switch (type.getQualifier().declaredBuiltIn) {
3402     case EbvAppendConsume:       // fall through...
3403     case EbvRWStructuredBuffer:  // ...
3404         return true;
3405     default:
3406         return false; // the other structuredbuffer types do not have a counter.
3407     }
3408 }
3409 
counterBufferType(const TSourceLoc & loc,TType & type)3410 void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
3411 {
3412     // Counter type
3413     TType* counterType = new TType(EbtUint, EvqBuffer);
3414     counterType->setFieldName(intermediate.implicitCounterName);
3415 
3416     TTypeList* blockStruct = new TTypeList;
3417     TTypeLoc  member = { counterType, loc };
3418     blockStruct->push_back(member);
3419 
3420     TType blockType(blockStruct, "", counterType->getQualifier());
3421     blockType.getQualifier().storage = EvqBuffer;
3422 
3423     type.shallowCopy(blockType);
3424     shareStructBufferType(type);
3425 }
3426 
3427 // declare counter for a structured buffer type
declareStructBufferCounter(const TSourceLoc & loc,const TType & bufferType,const TString & name)3428 void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
3429 {
3430     // Bail out if not a struct buffer
3431     if (! isStructBufferType(bufferType))
3432         return;
3433 
3434     if (! hasStructBuffCounter(bufferType))
3435         return;
3436 
3437     TType blockType;
3438     counterBufferType(loc, blockType);
3439 
3440     TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
3441 
3442     // Counter buffer is not yet in use
3443     structBufferCounter[*blockName] = false;
3444 
3445     shareStructBufferType(blockType);
3446     declareBlock(loc, blockType, blockName);
3447 }
3448 
3449 // return the counter that goes with a given structuredbuffer
getStructBufferCounter(const TSourceLoc & loc,TIntermTyped * buffer)3450 TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
3451 {
3452     // Bail out if not a struct buffer
3453     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
3454         return nullptr;
3455 
3456     const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
3457 
3458     // Mark the counter as being used
3459     structBufferCounter[counterBlockName] = true;
3460 
3461     TIntermTyped* counterVar = handleVariable(loc, &counterBlockName);  // find the block structure
3462     TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
3463 
3464     TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
3465     counterMember->setType(TType(EbtUint));
3466     return counterMember;
3467 }
3468 
3469 //
3470 // Decompose structure buffer methods into AST
3471 //
decomposeStructBufferMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3472 void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3473 {
3474     if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
3475         return;
3476 
3477     const TOperator op  = node->getAsOperator()->getOp();
3478     TIntermAggregate* argAggregate = arguments->getAsAggregate();
3479 
3480     // Buffer is the object upon which method is called, so always arg 0
3481     TIntermTyped* bufferObj = nullptr;
3482 
3483     // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
3484     if (argAggregate) {
3485         if (argAggregate->getSequence().empty())
3486             return;
3487         if (argAggregate->getSequence()[0])
3488             bufferObj = argAggregate->getSequence()[0]->getAsTyped();
3489     } else {
3490         bufferObj = arguments->getAsSymbolNode();
3491     }
3492 
3493     if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
3494         return;
3495 
3496     // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
3497     // This lambda adds something to it and returns the old value.
3498     const auto incDecCounter = [&](int incval) -> TIntermTyped* {
3499         TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
3500         TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
3501 
3502         if (counter == nullptr)
3503             return nullptr;
3504 
3505         TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
3506         counterIncrement->setType(TType(EbtUint, EvqTemporary));
3507         counterIncrement->setLoc(loc);
3508         counterIncrement->getSequence().push_back(counter);
3509         counterIncrement->getSequence().push_back(incrementValue);
3510 
3511         return counterIncrement;
3512     };
3513 
3514     // Index to obtain the runtime sized array out of the buffer.
3515     TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
3516     if (argArray == nullptr)
3517         return;  // It might not be a struct buffer method.
3518 
3519     switch (op) {
3520     case EOpMethodLoad:
3521         {
3522             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3523 
3524             const TType& bufferType = bufferObj->getType();
3525 
3526             const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
3527 
3528             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3529             // buffer then, but that's what it calls itself.
3530             const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer   ||
3531                                               builtInType == EbvRWByteAddressBuffer);
3532 
3533 
3534             if (isByteAddressBuffer)
3535                 argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
3536                                                       intermediate.addConstantUnion(2, loc, true),
3537                                                       loc, TType(EbtInt));
3538 
3539             // Index into the array to find the item being loaded.
3540             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3541 
3542             node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3543 
3544             const TType derefType(argArray->getType(), 0);
3545             node->setType(derefType);
3546         }
3547 
3548         break;
3549 
3550     case EOpMethodLoad2:
3551     case EOpMethodLoad3:
3552     case EOpMethodLoad4:
3553         {
3554             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3555 
3556             TOperator constructOp = EOpNull;
3557             int size = 0;
3558 
3559             switch (op) {
3560             case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
3561             case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
3562             case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
3563             default: assert(0);
3564             }
3565 
3566             TIntermTyped* body = nullptr;
3567 
3568             // First, we'll store the address in a variable to avoid multiple shifts
3569             // (we must convert the byte address to an item address)
3570             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3571                                                                    intermediate.addConstantUnion(2, loc, true),
3572                                                                    loc, TType(EbtInt));
3573 
3574             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3575             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3576 
3577             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3578 
3579             TIntermTyped* vec = nullptr;
3580 
3581             // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
3582             // address conversion.
3583             for (int idx=0; idx<size; ++idx) {
3584                 TIntermTyped* offsetIdx = byteAddrIdxVar;
3585 
3586                 // add index offset
3587                 if (idx != 0)
3588                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
3589                                                            intermediate.addConstantUnion(idx, loc, true),
3590                                                            loc, TType(EbtInt));
3591 
3592                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3593                                                                                         : EOpIndexIndirect;
3594 
3595                 TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3596 
3597                 TType derefType(argArray->getType(), 0);
3598                 derefType.getQualifier().makeTemporary();
3599                 indexVal->setType(derefType);
3600 
3601                 vec = intermediate.growAggregate(vec, indexVal);
3602             }
3603 
3604             vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
3605             vec->getAsAggregate()->setOperator(constructOp);
3606 
3607             body = intermediate.growAggregate(body, vec);
3608             body->setType(vec->getType());
3609             body->getAsAggregate()->setOperator(EOpSequence);
3610 
3611             node = body;
3612         }
3613 
3614         break;
3615 
3616     case EOpMethodStore:
3617     case EOpMethodStore2:
3618     case EOpMethodStore3:
3619     case EOpMethodStore4:
3620         {
3621             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
3622             TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped();  // value
3623 
3624             // Index into the array to find the item being loaded.
3625             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
3626             // buffer then, but that's what it calls itself).
3627 
3628             int size = 0;
3629 
3630             switch (op) {
3631             case EOpMethodStore:  size = 1; break;
3632             case EOpMethodStore2: size = 2; break;
3633             case EOpMethodStore3: size = 3; break;
3634             case EOpMethodStore4: size = 4; break;
3635             default: assert(0);
3636             }
3637 
3638             TIntermAggregate* body = nullptr;
3639 
3640             // First, we'll store the address in a variable to avoid multiple shifts
3641             // (we must convert the byte address to an item address)
3642             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
3643                                                                    intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
3644 
3645             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
3646             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
3647 
3648             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
3649 
3650             for (int idx=0; idx<size; ++idx) {
3651                 TIntermTyped* offsetIdx = byteAddrIdxVar;
3652                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
3653 
3654                 // add index offset
3655                 if (idx != 0)
3656                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
3657 
3658                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
3659                                                                                         : EOpIndexIndirect;
3660 
3661                 TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
3662                 const TType derefType(argArray->getType(), 0);
3663                 lValue->setType(derefType);
3664 
3665                 TIntermTyped* rValue;
3666                 if (size == 1) {
3667                     rValue = argValue;
3668                 } else {
3669                     rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
3670                     const TType indexType(argValue->getType(), 0);
3671                     rValue->setType(indexType);
3672                 }
3673 
3674                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3675 
3676                 body = intermediate.growAggregate(body, assign);
3677             }
3678 
3679             body->setOperator(EOpSequence);
3680             node = body;
3681         }
3682 
3683         break;
3684 
3685     case EOpMethodGetDimensions:
3686         {
3687             const int numArgs = (int)argAggregate->getSequence().size();
3688             TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped();  // out num items
3689             TIntermTyped* argStride   = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr;  // out stride
3690 
3691             TIntermAggregate* body = nullptr;
3692 
3693             // Length output:
3694             if (argArray->getType().isSizedArray()) {
3695                 const int length = argArray->getType().getOuterArraySize();
3696                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
3697                                                               intermediate.addConstantUnion(length, loc, true), loc);
3698                 body = intermediate.growAggregate(body, assign, loc);
3699             } else {
3700                 TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
3701                                                                                argNumItems->getType());
3702                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
3703                 body = intermediate.growAggregate(body, assign, loc);
3704             }
3705 
3706             // Stride output:
3707             if (argStride != nullptr) {
3708                 int size;
3709                 int stride;
3710                 intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
3711                                                 argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
3712 
3713                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
3714                                                               intermediate.addConstantUnion(stride, loc, true), loc);
3715 
3716                 body = intermediate.growAggregate(body, assign);
3717             }
3718 
3719             body->setOperator(EOpSequence);
3720             node = body;
3721         }
3722 
3723         break;
3724 
3725     case EOpInterlockedAdd:
3726     case EOpInterlockedAnd:
3727     case EOpInterlockedExchange:
3728     case EOpInterlockedMax:
3729     case EOpInterlockedMin:
3730     case EOpInterlockedOr:
3731     case EOpInterlockedXor:
3732     case EOpInterlockedCompareExchange:
3733     case EOpInterlockedCompareStore:
3734         {
3735             // We'll replace the first argument with the block dereference, and let
3736             // downstream decomposition handle the rest.
3737 
3738             TIntermSequence& sequence = argAggregate->getSequence();
3739 
3740             TIntermTyped* argIndex     = makeIntegerIndex(sequence[1]->getAsTyped());  // index
3741             argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
3742                                                   loc, TType(EbtInt));
3743 
3744             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
3745             TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
3746 
3747             const TType derefType(argArray->getType(), 0);
3748             element->setType(derefType);
3749 
3750             // Replace the numeric byte offset parameter with array reference.
3751             sequence[1] = element;
3752             sequence.erase(sequence.begin(), sequence.begin()+1);
3753         }
3754         break;
3755 
3756     case EOpMethodIncrementCounter:
3757         {
3758             node = incDecCounter(1);
3759             break;
3760         }
3761 
3762     case EOpMethodDecrementCounter:
3763         {
3764             TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
3765             node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
3766                                               preIncValue->getType());
3767             break;
3768         }
3769 
3770     case EOpMethodAppend:
3771         {
3772             TIntermTyped* oldCounter = incDecCounter(1);
3773 
3774             TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
3775             TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
3776 
3777             const TType derefType(argArray->getType(), 0);
3778             lValue->setType(derefType);
3779 
3780             node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
3781 
3782             break;
3783         }
3784 
3785     case EOpMethodConsume:
3786         {
3787             TIntermTyped* oldCounter = incDecCounter(-1);
3788 
3789             TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
3790                                                                   intermediate.addConstantUnion(-1, loc, true), loc,
3791                                                                   oldCounter->getType());
3792 
3793             node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
3794 
3795             const TType derefType(argArray->getType(), 0);
3796             node->setType(derefType);
3797 
3798             break;
3799         }
3800 
3801     default:
3802         break; // most pass through unchanged
3803     }
3804 }
3805 
3806 // Create array of standard sample positions for given sample count.
3807 // TODO: remove when a real method to query sample pos exists in SPIR-V.
getSamplePosArray(int count)3808 TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
3809 {
3810     struct tSamplePos { float x, y; };
3811 
3812     static const tSamplePos pos1[] = {
3813         { 0.0/16.0,  0.0/16.0 },
3814     };
3815 
3816     // standard sample positions for 2, 4, 8, and 16 samples.
3817     static const tSamplePos pos2[] = {
3818         { 4.0/16.0,  4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
3819     };
3820 
3821     static const tSamplePos pos4[] = {
3822         {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0,  2.0/16.0 }, { 2.0/16.0,  6.0/16.0 },
3823     };
3824 
3825     static const tSamplePos pos8[] = {
3826         { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0,  3.0/16.0 }, { 5.0/16.0,  1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
3827         {-5.0/16.0,  5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0,  7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
3828     };
3829 
3830     static const tSamplePos pos16[] = {
3831         { 1.0/16.0,  1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0,  2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
3832         {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0,  5.0/16.0 }, { 5.0/16.0,  3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
3833         {-2.0/16.0,  6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0,  4.0/16.0 },
3834         {-8.0/16.0,  0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0,  7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
3835     };
3836 
3837     const tSamplePos* sampleLoc = nullptr;
3838     int numSamples = count;
3839 
3840     switch (count) {
3841     case 2:  sampleLoc = pos2;  break;
3842     case 4:  sampleLoc = pos4;  break;
3843     case 8:  sampleLoc = pos8;  break;
3844     case 16: sampleLoc = pos16; break;
3845     default:
3846         sampleLoc = pos1;
3847         numSamples = 1;
3848     }
3849 
3850     TConstUnionArray* values = new TConstUnionArray(numSamples*2);
3851 
3852     for (int pos=0; pos<count; ++pos) {
3853         TConstUnion x, y;
3854         x.setDConst(sampleLoc[pos].x);
3855         y.setDConst(sampleLoc[pos].y);
3856 
3857         (*values)[pos*2+0] = x;
3858         (*values)[pos*2+1] = y;
3859     }
3860 
3861     TType retType(EbtFloat, EvqConst, 2);
3862 
3863     if (numSamples != 1) {
3864         TArraySizes* arraySizes = new TArraySizes;
3865         arraySizes->addInnerSize(numSamples);
3866         retType.transferArraySizes(arraySizes);
3867     }
3868 
3869     return new TIntermConstantUnion(*values, retType);
3870 }
3871 
3872 //
3873 // Decompose DX9 and DX10 sample intrinsics & object methods into AST
3874 //
decomposeSampleMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)3875 void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
3876 {
3877     if (node == nullptr || !node->getAsOperator())
3878         return;
3879 
3880     // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
3881     const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
3882         result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
3883 
3884         TIntermTyped* convertedResult = nullptr;
3885 
3886         TType retType;
3887         getTextureReturnType(sampler, retType);
3888 
3889         if (retType.isStruct()) {
3890             // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
3891             TIntermAggregate* conversionAggregate = new TIntermAggregate;
3892             convertedResult = conversionAggregate;
3893 
3894             // Convert vector output to return structure.  We will need a temp symbol to copy the results to.
3895             TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
3896 
3897             // We also need a temp symbol to hold the result of the texture.  We don't want to re-fetch the
3898             // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
3899             TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
3900 
3901             // Initial copy from texture to our sample result shadow.
3902             TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
3903                                                               result, loc);
3904 
3905             conversionAggregate->getSequence().push_back(shadowCopy);
3906 
3907             unsigned vec4Pos = 0;
3908 
3909             for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
3910                 const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
3911 
3912                 // Check for bad struct members.  This should have been caught upstream.  Complain, because
3913                 // wwe don't know what to do with it.  This algorithm could be generalized to handle
3914                 // other things, e.g, sub-structures, but HLSL doesn't allow them.
3915                 if (!memberType.isVector() && !memberType.isScalar()) {
3916                     error(loc, "expected: scalar or vector type in texture structure", "", "");
3917                     return nullptr;
3918                 }
3919 
3920                 // Index into the struct variable to find the member to assign.
3921                 TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
3922                                                                    intermediate.addSymbol(*structVar, loc),
3923                                                                    intermediate.addConstantUnion(m, loc), loc);
3924 
3925                 structMember->setType(memberType);
3926 
3927                 // Assign each component of (possible) vector in struct member.
3928                 for (int component = 0; component < memberType.getVectorSize(); ++component) {
3929                     TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
3930                                                                      intermediate.addSymbol(*sampleShadow, loc),
3931                                                                      intermediate.addConstantUnion(vec4Pos++, loc), loc);
3932                     vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
3933 
3934                     TIntermTyped* memberAssign = nullptr;
3935 
3936                     if (memberType.isVector()) {
3937                         // Vector member: we need to create an access chain to the vector component.
3938 
3939                         TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
3940                                                                                  intermediate.addConstantUnion(component, loc), loc);
3941 
3942                         memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
3943                     } else {
3944                         // Scalar member: we can assign to it directly.
3945                         memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
3946                     }
3947 
3948 
3949                     conversionAggregate->getSequence().push_back(memberAssign);
3950                 }
3951             }
3952 
3953             // Add completed variable so the expression results in the whole struct value we just built.
3954             conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
3955 
3956             // Make it a sequence.
3957             intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
3958         } else {
3959             // vector clamp the output if template vector type is smaller than sample result.
3960             if (retType.getVectorSize() < node->getVectorSize()) {
3961                 // Too many components.  Construct shorter vector from it.
3962                 const TOperator op = intermediate.mapTypeToConstructorOp(retType);
3963 
3964                 convertedResult = constructBuiltIn(retType, op, result, loc, false);
3965             } else {
3966                 // Enough components.  Use directly.
3967                 convertedResult = result;
3968             }
3969         }
3970 
3971         convertedResult->setLoc(loc);
3972         return convertedResult;
3973     };
3974 
3975     const TOperator op  = node->getAsOperator()->getOp();
3976     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
3977 
3978     // Bail out if not a sampler method.
3979     // Note though this is odd to do before checking the op, because the op
3980     // could be something that takes the arguments, and the function in question
3981     // takes the result of the op.  So, this is not the final word.
3982     if (arguments != nullptr) {
3983         if (argAggregate == nullptr) {
3984             if (arguments->getAsTyped()->getBasicType() != EbtSampler)
3985                 return;
3986         } else {
3987             if (argAggregate->getSequence().size() == 0 ||
3988                 argAggregate->getSequence()[0] == nullptr ||
3989                 argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
3990                 return;
3991         }
3992     }
3993 
3994     switch (op) {
3995     // **** DX9 intrinsics: ****
3996     case EOpTexture:
3997         {
3998             // Texture with ddx & ddy is really gradient form in HLSL
3999             if (argAggregate->getSequence().size() == 4)
4000                 node->getAsAggregate()->setOperator(EOpTextureGrad);
4001 
4002             break;
4003         }
4004     case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
4005         {
4006             TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped();   // sampler
4007             TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped();  // coord
4008 
4009             assert(argCoord->getVectorSize() == 4);
4010             TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
4011             TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
4012 
4013             TOperator constructOp = EOpNull;
4014             const TSampler &sampler = argSamp->getType().getSampler();
4015             int coordSize = 0;
4016 
4017             switch (sampler.dim)
4018             {
4019             case Esd1D:   constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
4020             case Esd2D:   constructOp = EOpConstructVec2;  coordSize = 2; break; // 2D
4021             case Esd3D:   constructOp = EOpConstructVec3;  coordSize = 3; break; // 3D
4022             case EsdCube: constructOp = EOpConstructVec3;  coordSize = 3; break; // also 3D
4023             default:
4024                 error(loc, "unhandled DX9 texture LoD dimension", "", "");
4025                 break;
4026             }
4027 
4028             TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
4029             constructCoord->getSequence().push_back(argCoord);
4030             constructCoord->setLoc(loc);
4031             constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
4032 
4033             TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
4034             tex->getSequence().push_back(argSamp);        // sampler
4035             tex->getSequence().push_back(constructCoord); // coordinate
4036             tex->getSequence().push_back(argLod);         // lod
4037 
4038             node = convertReturn(tex, sampler);
4039 
4040             break;
4041         }
4042 
4043     case EOpTextureBias:
4044         {
4045             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // sampler
4046             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // coord
4047 
4048             // HLSL puts bias in W component of coordinate.  We extract it and add it to
4049             // the argument list, instead
4050             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
4051             TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
4052 
4053             TOperator constructOp = EOpNull;
4054             const TSampler& sampler = arg0->getType().getSampler();
4055 
4056             switch (sampler.dim) {
4057             case Esd1D:   constructOp = EOpConstructFloat; break; // 1D
4058             case Esd2D:   constructOp = EOpConstructVec2;  break; // 2D
4059             case Esd3D:   constructOp = EOpConstructVec3;  break; // 3D
4060             case EsdCube: constructOp = EOpConstructVec3;  break; // also 3D
4061             default:
4062                 error(loc, "unhandled DX9 texture bias dimension", "", "");
4063                 break;
4064             }
4065 
4066             TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
4067             constructCoord->getSequence().push_back(arg1);
4068             constructCoord->setLoc(loc);
4069 
4070             // The input vector should never be less than 2, since there's always a bias.
4071             // The max is for safety, and should be a no-op.
4072             constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
4073 
4074             TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
4075             tex->getSequence().push_back(arg0);           // sampler
4076             tex->getSequence().push_back(constructCoord); // coordinate
4077             tex->getSequence().push_back(bias);           // bias
4078 
4079             node = convertReturn(tex, sampler);
4080 
4081             break;
4082         }
4083 
4084     // **** DX10 methods: ****
4085     case EOpMethodSample:     // fall through
4086     case EOpMethodSampleBias: // ...
4087         {
4088             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4089             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4090             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4091             TIntermTyped* argBias   = nullptr;
4092             TIntermTyped* argOffset = nullptr;
4093             const TSampler& sampler = argTex->getType().getSampler();
4094 
4095             int nextArg = 3;
4096 
4097             if (op == EOpMethodSampleBias)  // SampleBias has a bias arg
4098                 argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
4099 
4100             TOperator textureOp = EOpTexture;
4101 
4102             if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
4103                 textureOp = EOpTextureOffset;
4104                 argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
4105             }
4106 
4107             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4108 
4109             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4110             txsample->getSequence().push_back(txcombine);
4111             txsample->getSequence().push_back(argCoord);
4112 
4113             if (argOffset != nullptr)
4114                 txsample->getSequence().push_back(argOffset);
4115 
4116             if (argBias != nullptr)
4117               txsample->getSequence().push_back(argBias);
4118 
4119             node = convertReturn(txsample, sampler);
4120 
4121             break;
4122         }
4123 
4124     case EOpMethodSampleGrad: // ...
4125         {
4126             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4127             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4128             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4129             TIntermTyped* argDDX    = argAggregate->getSequence()[3]->getAsTyped();
4130             TIntermTyped* argDDY    = argAggregate->getSequence()[4]->getAsTyped();
4131             TIntermTyped* argOffset = nullptr;
4132             const TSampler& sampler = argTex->getType().getSampler();
4133 
4134             TOperator textureOp = EOpTextureGrad;
4135 
4136             if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
4137                 textureOp = EOpTextureGradOffset;
4138                 argOffset = argAggregate->getSequence()[5]->getAsTyped();
4139             }
4140 
4141             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4142 
4143             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4144             txsample->getSequence().push_back(txcombine);
4145             txsample->getSequence().push_back(argCoord);
4146             txsample->getSequence().push_back(argDDX);
4147             txsample->getSequence().push_back(argDDY);
4148 
4149             if (argOffset != nullptr)
4150                 txsample->getSequence().push_back(argOffset);
4151 
4152             node = convertReturn(txsample, sampler);
4153 
4154             break;
4155         }
4156 
4157     case EOpMethodGetDimensions:
4158         {
4159             // AST returns a vector of results, which we break apart component-wise into
4160             // separate values to assign to the HLSL method's outputs, ala:
4161             //  tx . GetDimensions(width, height);
4162             //      float2 sizeQueryTemp = EOpTextureQuerySize
4163             //      width = sizeQueryTemp.X;
4164             //      height = sizeQueryTemp.Y;
4165 
4166             TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
4167             const TType& texType = argTex->getType();
4168 
4169             assert(texType.getBasicType() == EbtSampler);
4170 
4171             const TSampler& sampler = texType.getSampler();
4172             const TSamplerDim dim = sampler.dim;
4173             const bool isImage = sampler.isImage();
4174             const bool isMs = sampler.isMultiSample();
4175             const int numArgs = (int)argAggregate->getSequence().size();
4176 
4177             int numDims = 0;
4178 
4179             switch (dim) {
4180             case Esd1D:     numDims = 1; break; // W
4181             case Esd2D:     numDims = 2; break; // W, H
4182             case Esd3D:     numDims = 3; break; // W, H, D
4183             case EsdCube:   numDims = 2; break; // W, H (cube)
4184             case EsdBuffer: numDims = 1; break; // W (buffers)
4185             case EsdRect:   numDims = 2; break; // W, H (rect)
4186             default:
4187                 error(loc, "unhandled DX10 MethodGet dimension", "", "");
4188                 break;
4189             }
4190 
4191             // Arrayed adds another dimension for the number of array elements
4192             if (sampler.isArrayed())
4193                 ++numDims;
4194 
4195             // Establish whether the method itself is querying mip levels.  This can be false even
4196             // if the underlying query requires a MIP level, due to the available HLSL method overloads.
4197             const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
4198 
4199             // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
4200             // True if:
4201             //   1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
4202             // or,
4203             //   2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
4204             const bool mipRequired =
4205                 ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
4206                 mipQuery; // 2...
4207 
4208             // AST assumes integer return.  Will be converted to float if required.
4209             TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
4210             sizeQuery->getSequence().push_back(argTex);
4211 
4212             // If we're building an LOD query, add the LOD.
4213             if (mipRequired) {
4214                 // If the base HLSL query had no MIP level given, use level 0.
4215                 TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
4216                     intermediate.addConstantUnion(0, loc, true);
4217                 sizeQuery->getSequence().push_back(queryLod);
4218             }
4219 
4220             sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
4221             sizeQuery->setLoc(loc);
4222 
4223             // Return value from size query
4224             TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
4225             tempArg->getWritableType().getQualifier().makeTemporary();
4226             TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
4227                                                                    intermediate.addSymbol(*tempArg, loc),
4228                                                                    sizeQuery, loc);
4229 
4230             // Compound statement for assigning outputs
4231             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
4232             // Index of first output parameter
4233             const int outParamBase = mipQuery ? 2 : 1;
4234 
4235             for (int compNum = 0; compNum < numDims; ++compNum) {
4236                 TIntermTyped* indexedOut = nullptr;
4237                 TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
4238 
4239                 if (numDims > 1) {
4240                     TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
4241                     indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
4242                     indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
4243                     indexedOut->setLoc(loc);
4244                 } else {
4245                     indexedOut = sizeQueryReturn;
4246                 }
4247 
4248                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
4249                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
4250 
4251                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4252             }
4253 
4254             // handle mip level parameter
4255             if (mipQuery) {
4256                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4257 
4258                 TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
4259                 levelsQuery->getSequence().push_back(argTex);
4260                 levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
4261                 levelsQuery->setLoc(loc);
4262 
4263                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
4264                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4265             }
4266 
4267             // 2DMS formats query # samples, which needs a different query op
4268             if (sampler.isMultiSample()) {
4269                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
4270 
4271                 TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4272                 samplesQuery->getSequence().push_back(argTex);
4273                 samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4274                 samplesQuery->setLoc(loc);
4275 
4276                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
4277                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4278             }
4279 
4280             compoundStatement->setOperator(EOpSequence);
4281             compoundStatement->setLoc(loc);
4282             compoundStatement->setType(TType(EbtVoid));
4283 
4284             node = compoundStatement;
4285 
4286             break;
4287         }
4288 
4289     case EOpMethodSampleCmp:  // fall through...
4290     case EOpMethodSampleCmpLevelZero:
4291         {
4292             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4293             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4294             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4295             TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
4296             TIntermTyped* argOffset = nullptr;
4297 
4298             // Sampler argument should be a sampler.
4299             if (argSamp->getType().getBasicType() != EbtSampler) {
4300                 error(loc, "expected: sampler type", "", "");
4301                 return;
4302             }
4303 
4304             // Sampler should be a SamplerComparisonState
4305             if (! argSamp->getType().getSampler().isShadow()) {
4306                 error(loc, "expected: SamplerComparisonState", "", "");
4307                 return;
4308             }
4309 
4310             // optional offset value
4311             if (argAggregate->getSequence().size() > 4)
4312                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4313 
4314             const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
4315 
4316             // AST wants comparison value as one of the texture coordinates
4317             TOperator constructOp = EOpNull;
4318             switch (coordDimWithCmpVal) {
4319             // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
4320             case 2: constructOp = EOpConstructVec2;  break;
4321             case 3: constructOp = EOpConstructVec3;  break;
4322             case 4: constructOp = EOpConstructVec4;  break;
4323             case 5: constructOp = EOpConstructVec4;  break; // cubeArrayShadow, cmp value is separate arg.
4324             default:
4325                 error(loc, "unhandled DX10 MethodSample dimension", "", "");
4326                 break;
4327             }
4328 
4329             TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
4330             coordWithCmp->getSequence().push_back(argCoord);
4331             if (coordDimWithCmpVal != 5) // cube array shadow is special.
4332                 coordWithCmp->getSequence().push_back(argCmpVal);
4333             coordWithCmp->setLoc(loc);
4334             coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
4335 
4336             TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
4337             if (argOffset != nullptr)
4338                 textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
4339 
4340             // Create combined sampler & texture op
4341             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4342             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4343             txsample->getSequence().push_back(txcombine);
4344             txsample->getSequence().push_back(coordWithCmp);
4345 
4346             if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
4347                 txsample->getSequence().push_back(argCmpVal);
4348 
4349             // the LevelZero form uses 0 as an explicit LOD
4350             if (op == EOpMethodSampleCmpLevelZero)
4351                 txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
4352 
4353             // Add offset if present
4354             if (argOffset != nullptr)
4355                 txsample->getSequence().push_back(argOffset);
4356 
4357             txsample->setType(node->getType());
4358             txsample->setLoc(loc);
4359             node = txsample;
4360 
4361             break;
4362         }
4363 
4364     case EOpMethodLoad:
4365         {
4366             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4367             TIntermTyped* argCoord  = argAggregate->getSequence()[1]->getAsTyped();
4368             TIntermTyped* argOffset = nullptr;
4369             TIntermTyped* lodComponent = nullptr;
4370             TIntermTyped* coordSwizzle = nullptr;
4371 
4372             const TSampler& sampler = argTex->getType().getSampler();
4373             const bool isMS = sampler.isMultiSample();
4374             const bool isBuffer = sampler.dim == EsdBuffer;
4375             const bool isImage = sampler.isImage();
4376             const TBasicType coordBaseType = argCoord->getType().getBasicType();
4377 
4378             // Last component of coordinate is the mip level, for non-MS.  we separate them here:
4379             if (isMS || isBuffer || isImage) {
4380                 // MS, Buffer, and Image have no LOD
4381                 coordSwizzle = argCoord;
4382             } else {
4383                 // Extract coordinate
4384                 int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
4385                 TSwizzleSelectors<TVectorSelector> coordFields;
4386                 for (int i = 0; i < swizzleSize; ++i)
4387                     coordFields.push_back(i);
4388                 TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
4389                 coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
4390                 coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
4391 
4392                 // Extract LOD
4393                 TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
4394                 lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
4395                 lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
4396             }
4397 
4398             const int numArgs    = (int)argAggregate->getSequence().size();
4399             const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
4400 
4401             // Create texel fetch
4402             const TOperator fetchOp = (isImage   ? EOpImageLoad :
4403                                        hasOffset ? EOpTextureFetchOffset :
4404                                        EOpTextureFetch);
4405             TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
4406 
4407             // Build up the fetch
4408             txfetch->getSequence().push_back(argTex);
4409             txfetch->getSequence().push_back(coordSwizzle);
4410 
4411             if (isMS) {
4412                 // add 2DMS sample index
4413                 TIntermTyped* argSampleIdx  = argAggregate->getSequence()[2]->getAsTyped();
4414                 txfetch->getSequence().push_back(argSampleIdx);
4415             } else if (isBuffer) {
4416                 // Nothing else to do for buffers.
4417             } else if (isImage) {
4418                 // Nothing else to do for images.
4419             } else {
4420                 // 2DMS and buffer have no LOD, but everything else does.
4421                 txfetch->getSequence().push_back(lodComponent);
4422             }
4423 
4424             // Obtain offset arg, if there is one.
4425             if (hasOffset) {
4426                 const int offsetPos  = (isMS ? 3 : 2);
4427                 argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
4428                 txfetch->getSequence().push_back(argOffset);
4429             }
4430 
4431             node = convertReturn(txfetch, sampler);
4432 
4433             break;
4434         }
4435 
4436     case EOpMethodSampleLevel:
4437         {
4438             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4439             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4440             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4441             TIntermTyped* argLod    = argAggregate->getSequence()[3]->getAsTyped();
4442             TIntermTyped* argOffset = nullptr;
4443             const TSampler& sampler = argTex->getType().getSampler();
4444 
4445             const int  numArgs = (int)argAggregate->getSequence().size();
4446 
4447             if (numArgs == 5) // offset, if present
4448                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
4449 
4450             const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
4451             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
4452 
4453             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4454 
4455             txsample->getSequence().push_back(txcombine);
4456             txsample->getSequence().push_back(argCoord);
4457             txsample->getSequence().push_back(argLod);
4458 
4459             if (argOffset != nullptr)
4460                 txsample->getSequence().push_back(argOffset);
4461 
4462             node = convertReturn(txsample, sampler);
4463 
4464             break;
4465         }
4466 
4467     case EOpMethodGather:
4468         {
4469             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4470             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4471             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4472             TIntermTyped* argOffset = nullptr;
4473 
4474             // Offset is optional
4475             if (argAggregate->getSequence().size() > 3)
4476                 argOffset = argAggregate->getSequence()[3]->getAsTyped();
4477 
4478             const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
4479             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4480 
4481             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4482 
4483             txgather->getSequence().push_back(txcombine);
4484             txgather->getSequence().push_back(argCoord);
4485             // Offset if not given is implicitly channel 0 (red)
4486 
4487             if (argOffset != nullptr)
4488                 txgather->getSequence().push_back(argOffset);
4489 
4490             txgather->setType(node->getType());
4491             txgather->setLoc(loc);
4492             node = txgather;
4493 
4494             break;
4495         }
4496 
4497     case EOpMethodGatherRed:      // fall through...
4498     case EOpMethodGatherGreen:    // ...
4499     case EOpMethodGatherBlue:     // ...
4500     case EOpMethodGatherAlpha:    // ...
4501     case EOpMethodGatherCmpRed:   // ...
4502     case EOpMethodGatherCmpGreen: // ...
4503     case EOpMethodGatherCmpBlue:  // ...
4504     case EOpMethodGatherCmpAlpha: // ...
4505         {
4506             int channel = 0;    // the channel we are gathering
4507             int cmpValues = 0;  // 1 if there is a compare value (handier than a bool below)
4508 
4509             switch (op) {
4510             case EOpMethodGatherCmpRed:   cmpValues = 1;  // fall through
4511             case EOpMethodGatherRed:      channel = 0; break;
4512             case EOpMethodGatherCmpGreen: cmpValues = 1;  // fall through
4513             case EOpMethodGatherGreen:    channel = 1; break;
4514             case EOpMethodGatherCmpBlue:  cmpValues = 1;  // fall through
4515             case EOpMethodGatherBlue:     channel = 2; break;
4516             case EOpMethodGatherCmpAlpha: cmpValues = 1;  // fall through
4517             case EOpMethodGatherAlpha:    channel = 3; break;
4518             default:                      assert(0);   break;
4519             }
4520 
4521             // For now, we have nothing to map the component-wise comparison forms
4522             // to, because neither GLSL nor SPIR-V has such an opcode.  Issue an
4523             // unimplemented error instead.  Most of the machinery is here if that
4524             // should ever become available.  However, red can be passed through
4525             // to OpImageDrefGather.  G/B/A cannot, because that opcode does not
4526             // accept a component.
4527             if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
4528                 error(loc, "unimplemented: component-level gather compare", "", "");
4529                 return;
4530             }
4531 
4532             int arg = 0;
4533 
4534             TIntermTyped* argTex        = argAggregate->getSequence()[arg++]->getAsTyped();
4535             TIntermTyped* argSamp       = argAggregate->getSequence()[arg++]->getAsTyped();
4536             TIntermTyped* argCoord      = argAggregate->getSequence()[arg++]->getAsTyped();
4537             TIntermTyped* argOffset     = nullptr;
4538             TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
4539             // TIntermTyped* argStatus     = nullptr; // TODO: residency
4540             TIntermTyped* argCmp        = nullptr;
4541 
4542             const TSamplerDim dim = argTex->getType().getSampler().dim;
4543 
4544             const int  argSize = (int)argAggregate->getSequence().size();
4545             bool hasStatus     = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
4546             bool hasOffset1    = false;
4547             bool hasOffset4    = false;
4548 
4549             // Sampler argument should be a sampler.
4550             if (argSamp->getType().getBasicType() != EbtSampler) {
4551                 error(loc, "expected: sampler type", "", "");
4552                 return;
4553             }
4554 
4555             // Cmp forms require SamplerComparisonState
4556             if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
4557                 error(loc, "expected: SamplerComparisonState", "", "");
4558                 return;
4559             }
4560 
4561             // Only 2D forms can have offsets.  Discover if we have 0, 1 or 4 offsets.
4562             if (dim == Esd2D) {
4563                 hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
4564                 hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
4565             }
4566 
4567             assert(!(hasOffset1 && hasOffset4));
4568 
4569             TOperator textureOp = EOpTextureGather;
4570 
4571             // Compare forms have compare value
4572             if (cmpValues != 0)
4573                 argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4574 
4575             // Some forms have single offset
4576             if (hasOffset1) {
4577                 textureOp = EOpTextureGatherOffset;   // single offset form
4578                 argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
4579             }
4580 
4581             // Some forms have 4 gather offsets
4582             if (hasOffset4) {
4583                 textureOp = EOpTextureGatherOffsets;  // note plural, for 4 offset form
4584                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4585                     argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
4586             }
4587 
4588             // Residency status
4589             if (hasStatus) {
4590                 // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
4591                 error(loc, "unimplemented: residency status", "", "");
4592                 return;
4593             }
4594 
4595             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
4596             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4597 
4598             TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
4599 
4600             txgather->getSequence().push_back(txcombine);
4601             txgather->getSequence().push_back(argCoord);
4602 
4603             // AST wants an array of 4 offsets, where HLSL has separate args.  Here
4604             // we construct an array from the separate args.
4605             if (hasOffset4) {
4606                 TType arrayType(EbtInt, EvqTemporary, 2);
4607                 TArraySizes* arraySizes = new TArraySizes;
4608                 arraySizes->addInnerSize(4);
4609                 arrayType.transferArraySizes(arraySizes);
4610 
4611                 TIntermAggregate* initList = new TIntermAggregate(EOpNull);
4612 
4613                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
4614                     initList->getSequence().push_back(argOffsets[offsetNum]);
4615 
4616                 argOffset = addConstructor(loc, initList, arrayType);
4617             }
4618 
4619             // Add comparison value if we have one
4620             if (argCmp != nullptr)
4621                 txgather->getSequence().push_back(argCmp);
4622 
4623             // Add offset (either 1, or an array of 4) if we have one
4624             if (argOffset != nullptr)
4625                 txgather->getSequence().push_back(argOffset);
4626 
4627             // Add channel value if the sampler is not shadow
4628             if (! argSamp->getType().getSampler().isShadow())
4629                 txgather->getSequence().push_back(argChannel);
4630 
4631             txgather->setType(node->getType());
4632             txgather->setLoc(loc);
4633             node = txgather;
4634 
4635             break;
4636         }
4637 
4638     case EOpMethodCalculateLevelOfDetail:
4639     case EOpMethodCalculateLevelOfDetailUnclamped:
4640         {
4641             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
4642             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
4643             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
4644 
4645             TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
4646 
4647             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
4648             txquerylod->getSequence().push_back(txcombine);
4649             txquerylod->getSequence().push_back(argCoord);
4650 
4651             TIntermTyped* lodComponent = intermediate.addConstantUnion(
4652                 op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
4653                 loc, true);
4654             TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
4655             lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
4656             node = lodComponentIdx;
4657 
4658             break;
4659         }
4660 
4661     case EOpMethodGetSamplePosition:
4662         {
4663             // TODO: this entire decomposition exists because there is not yet a way to query
4664             // the sample position directly through SPIR-V.  Instead, we return fixed sample
4665             // positions for common cases.  *** If the sample positions are set differently,
4666             // this will be wrong. ***
4667 
4668             TIntermTyped* argTex     = argAggregate->getSequence()[0]->getAsTyped();
4669             TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
4670 
4671             TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
4672             samplesQuery->getSequence().push_back(argTex);
4673             samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
4674             samplesQuery->setLoc(loc);
4675 
4676             TIntermAggregate* compoundStatement = nullptr;
4677 
4678             TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
4679             outSampleCount->getWritableType().getQualifier().makeTemporary();
4680             TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
4681                                                               samplesQuery, loc);
4682             compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
4683 
4684             TIntermTyped* idxtest[4];
4685 
4686             // Create tests against 2, 4, 8, and 16 sample values
4687             int count = 0;
4688             for (int val = 2; val <= 16; val *= 2)
4689                 idxtest[count++] =
4690                     intermediate.addBinaryNode(EOpEqual,
4691                                                intermediate.addSymbol(*outSampleCount, loc),
4692                                                intermediate.addConstantUnion(val, loc),
4693                                                loc, TType(EbtBool));
4694 
4695             const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
4696 
4697             // Create index ops into position arrays given sample index.
4698             // TODO: should it be clamped?
4699             TIntermTyped* index[4];
4700             count = 0;
4701             for (int val = 2; val <= 16; val *= 2) {
4702                 index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
4703                 index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
4704             }
4705 
4706             // Create expression as:
4707             // (sampleCount == 2)  ? pos2[idx] :
4708             // (sampleCount == 4)  ? pos4[idx] :
4709             // (sampleCount == 8)  ? pos8[idx] :
4710             // (sampleCount == 16) ? pos16[idx] : float2(0,0);
4711             TIntermTyped* test =
4712                 intermediate.addSelection(idxtest[0], index[0],
4713                     intermediate.addSelection(idxtest[1], index[1],
4714                         intermediate.addSelection(idxtest[2], index[2],
4715                             intermediate.addSelection(idxtest[3], index[3],
4716                                                       getSamplePosArray(1), loc), loc), loc), loc);
4717 
4718             compoundStatement = intermediate.growAggregate(compoundStatement, test);
4719             compoundStatement->setOperator(EOpSequence);
4720             compoundStatement->setLoc(loc);
4721             compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
4722 
4723             node = compoundStatement;
4724 
4725             break;
4726         }
4727 
4728     case EOpSubpassLoad:
4729         {
4730             const TIntermTyped* argSubpass =
4731                 argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
4732                 arguments->getAsTyped();
4733 
4734             const TSampler& sampler = argSubpass->getType().getSampler();
4735 
4736             // subpass load: the multisample form is overloaded.  Here, we convert that to
4737             // the EOpSubpassLoadMS opcode.
4738             if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
4739                 node->getAsOperator()->setOp(EOpSubpassLoadMS);
4740 
4741             node = convertReturn(node, sampler);
4742 
4743             break;
4744         }
4745 
4746 
4747     default:
4748         break; // most pass through unchanged
4749     }
4750 }
4751 
4752 //
4753 // Decompose geometry shader methods
4754 //
decomposeGeometryMethods(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4755 void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4756 {
4757     if (node == nullptr || !node->getAsOperator())
4758         return;
4759 
4760     const TOperator op  = node->getAsOperator()->getOp();
4761     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4762 
4763     switch (op) {
4764     case EOpMethodAppend:
4765         if (argAggregate) {
4766             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4767             if (language != EShLangGeometry) {
4768                 node = nullptr;
4769                 return;
4770             }
4771 
4772             TIntermAggregate* sequence = nullptr;
4773             TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
4774 
4775             emit->setLoc(loc);
4776             emit->setType(TType(EbtVoid));
4777 
4778             TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
4779 
4780             // This will be patched in finalization during finalizeAppendMethods()
4781             sequence = intermediate.growAggregate(sequence, data, loc);
4782             sequence = intermediate.growAggregate(sequence, emit);
4783 
4784             sequence->setOperator(EOpSequence);
4785             sequence->setLoc(loc);
4786             sequence->setType(TType(EbtVoid));
4787 
4788             gsAppends.push_back({sequence, loc});
4789 
4790             node = sequence;
4791         }
4792         break;
4793 
4794     case EOpMethodRestartStrip:
4795         {
4796             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
4797             if (language != EShLangGeometry) {
4798                 node = nullptr;
4799                 return;
4800             }
4801 
4802             TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
4803             cut->setLoc(loc);
4804             cut->setType(TType(EbtVoid));
4805             node = cut;
4806         }
4807         break;
4808 
4809     default:
4810         break; // most pass through unchanged
4811     }
4812 }
4813 
4814 //
4815 // Optionally decompose intrinsics to AST opcodes.
4816 //
decomposeIntrinsic(const TSourceLoc & loc,TIntermTyped * & node,TIntermNode * arguments)4817 void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
4818 {
4819     // Helper to find image data for image atomics:
4820     // OpImageLoad(image[idx])
4821     // We take the image load apart and add its params to the atomic op aggregate node
4822     const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
4823         TIntermAggregate* loadOp = load->getAsAggregate();
4824         if (loadOp == nullptr) {
4825             error(loc, "unknown image type in atomic operation", "", "");
4826             node = nullptr;
4827             return;
4828         }
4829 
4830         atomic->getSequence().push_back(loadOp->getSequence()[0]);
4831         atomic->getSequence().push_back(loadOp->getSequence()[1]);
4832     };
4833 
4834     // Return true if this is an imageLoad, which we will change to an image atomic.
4835     const auto isImageParam = [](TIntermTyped* image) -> bool {
4836         TIntermAggregate* imageAggregate = image->getAsAggregate();
4837         return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
4838     };
4839 
4840     const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
4841         TSymbol* symbol = symbolTable.find(name);
4842         if (nullptr == symbol) {
4843             type.getQualifier().builtIn = builtin;
4844 
4845             TVariable* variable = new TVariable(NewPoolTString(name), type);
4846 
4847             symbolTable.insert(*variable);
4848 
4849             symbol = symbolTable.find(name);
4850             assert(symbol && "Inserted symbol could not be found!");
4851         }
4852 
4853         return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
4854     };
4855 
4856     // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
4857     // opcodes for compatibility with existing software stacks.
4858     static const bool decomposeHlslIntrinsics = true;
4859 
4860     if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
4861         return;
4862 
4863     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
4864     TIntermUnary* fnUnary = node->getAsUnaryNode();
4865     const TOperator op  = node->getAsOperator()->getOp();
4866 
4867     switch (op) {
4868     case EOpGenMul:
4869         {
4870             // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
4871             // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
4872             // we must reverse the operand order here.  Hence, arg0 gets sequence[1], etc.
4873             TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
4874             TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
4875 
4876             if (arg0->isVector() && arg1->isVector()) {  // vec * vec
4877                 node->getAsAggregate()->setOperator(EOpDot);
4878             } else {
4879                 node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
4880             }
4881 
4882             break;
4883         }
4884 
4885     case EOpRcp:
4886         {
4887             // rcp(a) -> 1 / a
4888             TIntermTyped* arg0 = fnUnary->getOperand();
4889             TBasicType   type0 = arg0->getBasicType();
4890             TIntermTyped* one  = intermediate.addConstantUnion(1, type0, loc, true);
4891             node  = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
4892 
4893             break;
4894         }
4895 
4896     case EOpAny: // fall through
4897     case EOpAll:
4898         {
4899             TIntermTyped* typedArg = arguments->getAsTyped();
4900 
4901             // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
4902             // We'll convert here.  Note that for efficiency, we could add a smarter
4903             // decomposition for some type cases, e.g, maybe by decomposing a dot product.
4904             if (typedArg->getType().getBasicType() != EbtBool) {
4905                 const TType boolType(EbtBool, EvqTemporary,
4906                                      typedArg->getVectorSize(),
4907                                      typedArg->getMatrixCols(),
4908                                      typedArg->getMatrixRows(),
4909                                      typedArg->isVector());
4910 
4911                 typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
4912                 node->getAsUnaryNode()->setOperand(typedArg);
4913             }
4914 
4915             break;
4916         }
4917 
4918     case EOpSaturate:
4919         {
4920             // saturate(a) -> clamp(a,0,1)
4921             TIntermTyped* arg0 = fnUnary->getOperand();
4922             TBasicType   type0 = arg0->getBasicType();
4923             TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
4924 
4925             clamp->getSequence().push_back(arg0);
4926             clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
4927             clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
4928             clamp->setLoc(loc);
4929             clamp->setType(node->getType());
4930             clamp->getWritableType().getQualifier().makeTemporary();
4931             node = clamp;
4932 
4933             break;
4934         }
4935 
4936     case EOpSinCos:
4937         {
4938             // sincos(a,b,c) -> b = sin(a), c = cos(a)
4939             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
4940             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
4941             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
4942 
4943             TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
4944             TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
4945             TIntermTyped* sinAssign    = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
4946             TIntermTyped* cosAssign    = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
4947 
4948             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
4949             compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
4950             compoundStatement->setOperator(EOpSequence);
4951             compoundStatement->setLoc(loc);
4952             compoundStatement->setType(TType(EbtVoid));
4953 
4954             node = compoundStatement;
4955 
4956             break;
4957         }
4958 
4959     case EOpClip:
4960         {
4961             // clip(a) -> if (any(a<0)) discard;
4962             TIntermTyped*  arg0 = fnUnary->getOperand();
4963             TBasicType     type0 = arg0->getBasicType();
4964             TIntermTyped*  compareNode = nullptr;
4965 
4966             // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
4967             if (!arg0->isScalar()) {
4968                 // component-wise compare: a < 0
4969                 TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
4970                 less->getSequence().push_back(arg0);
4971                 less->setLoc(loc);
4972 
4973                 // make vec or mat of bool matching dimensions of input
4974                 less->setType(TType(EbtBool, EvqTemporary,
4975                                     arg0->getType().getVectorSize(),
4976                                     arg0->getType().getMatrixCols(),
4977                                     arg0->getType().getMatrixRows(),
4978                                     arg0->getType().isVector()));
4979 
4980                 // calculate # of components for comparison const
4981                 const int constComponentCount =
4982                     std::max(arg0->getType().getVectorSize(), 1) *
4983                     std::max(arg0->getType().getMatrixCols(), 1) *
4984                     std::max(arg0->getType().getMatrixRows(), 1);
4985 
4986                 TConstUnion zero;
4987                 if (arg0->getType().isIntegerDomain())
4988                     zero.setDConst(0);
4989                 else
4990                     zero.setDConst(0.0);
4991                 TConstUnionArray zeros(constComponentCount, zero);
4992 
4993                 less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
4994 
4995                 compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
4996             } else {
4997                 TIntermTyped* zero;
4998                 if (arg0->getType().isIntegerDomain())
4999                     zero = intermediate.addConstantUnion(0, loc, true);
5000                 else
5001                     zero = intermediate.addConstantUnion(0.0, type0, loc, true);
5002                 compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
5003             }
5004 
5005             TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
5006 
5007             node = new TIntermSelection(compareNode, killNode, nullptr);
5008             node->setLoc(loc);
5009 
5010             break;
5011         }
5012 
5013     case EOpLog10:
5014         {
5015             // log10(a) -> log2(a) * 0.301029995663981  (== 1/log2(10))
5016             TIntermTyped* arg0 = fnUnary->getOperand();
5017             TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
5018             TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
5019 
5020             node  = handleBinaryMath(loc, "mul", EOpMul, log2, base);
5021 
5022             break;
5023         }
5024 
5025     case EOpDst:
5026         {
5027             // dest.x = 1;
5028             // dest.y = src0.y * src1.y;
5029             // dest.z = src0.z;
5030             // dest.w = src1.w;
5031 
5032             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5033             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5034 
5035             TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
5036             TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
5037             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
5038 
5039             TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
5040             TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
5041             TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
5042             TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
5043 
5044             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5045 
5046             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5047             dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
5048             dst->getSequence().push_back(src0z);
5049             dst->getSequence().push_back(src1w);
5050             dst->setType(TType(EbtFloat, EvqTemporary, 4));
5051             dst->setLoc(loc);
5052             node = dst;
5053 
5054             break;
5055         }
5056 
5057     case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
5058     case EOpInterlockedMin: // ...
5059     case EOpInterlockedMax: // ...
5060     case EOpInterlockedAnd: // ...
5061     case EOpInterlockedOr:  // ...
5062     case EOpInterlockedXor: // ...
5063     case EOpInterlockedExchange: // always has output arg
5064         {
5065             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
5066             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // value
5067             TIntermTyped* arg2 = nullptr;
5068 
5069             if (argAggregate->getSequence().size() > 2)
5070                 arg2 = argAggregate->getSequence()[2]->getAsTyped();
5071 
5072             const bool isImage = isImageParam(arg0);
5073             const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
5074             TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
5075             atomic->setType(arg0->getType());
5076             atomic->getWritableType().getQualifier().makeTemporary();
5077             atomic->setLoc(loc);
5078 
5079             if (isImage) {
5080                 // orig_value = imageAtomicOp(image, loc, data)
5081                 imageAtomicParams(atomic, arg0);
5082                 atomic->getSequence().push_back(arg1);
5083 
5084                 if (argAggregate->getSequence().size() > 2) {
5085                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5086                 } else {
5087                     node = atomic; // no assignment needed, as there was no out var.
5088                 }
5089             } else {
5090                 // Normal memory variable:
5091                 // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
5092                 if (argAggregate->getSequence().size() > 2) {
5093                     // optional output param is present.  return value goes to arg2.
5094                     atomic->getSequence().push_back(arg0);
5095                     atomic->getSequence().push_back(arg1);
5096 
5097                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
5098                 } else {
5099                     // Set the matching operator.  Since output is absent, this is all we need to do.
5100                     node->getAsAggregate()->setOperator(atomicOp);
5101                     node->setType(atomic->getType());
5102                 }
5103             }
5104 
5105             break;
5106         }
5107 
5108     case EOpInterlockedCompareExchange:
5109         {
5110             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
5111             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // cmp
5112             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();  // value
5113             TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped();  // orig
5114 
5115             const bool isImage = isImageParam(arg0);
5116             TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
5117             atomic->setLoc(loc);
5118             atomic->setType(arg2->getType());
5119             atomic->getWritableType().getQualifier().makeTemporary();
5120 
5121             if (isImage) {
5122                 imageAtomicParams(atomic, arg0);
5123             } else {
5124                 atomic->getSequence().push_back(arg0);
5125             }
5126 
5127             atomic->getSequence().push_back(arg1);
5128             atomic->getSequence().push_back(arg2);
5129             node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
5130 
5131             break;
5132         }
5133 
5134     case EOpEvaluateAttributeSnapped:
5135         {
5136             // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
5137             // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
5138             //   iU = (iU<<28)>>28
5139             //   fU = ((float)iU)/16
5140             // Targets might handle this natively, in which case they can disable
5141             // decompositions.
5142 
5143             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // value
5144             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // offset
5145 
5146             TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
5147             TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
5148                                                 handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
5149                                                 i28);
5150 
5151             TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
5152             TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
5153                                                          intermediate.addConversion(EOpConstructFloat,
5154                                                                                     TType(EbtFloat, EvqTemporary, 2), iU),
5155                                                          recip16);
5156 
5157             TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
5158             interp->getSequence().push_back(arg0);
5159             interp->getSequence().push_back(floatOffset);
5160             interp->setLoc(loc);
5161             interp->setType(arg0->getType());
5162             interp->getWritableType().getQualifier().makeTemporary();
5163 
5164             node = interp;
5165 
5166             break;
5167         }
5168 
5169     case EOpLit:
5170         {
5171             TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
5172             TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
5173             TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
5174 
5175             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
5176 
5177             // Ambient
5178             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5179 
5180             // Diffuse:
5181             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5182             TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
5183             diffuse->getSequence().push_back(n_dot_l);
5184             diffuse->getSequence().push_back(zero);
5185             diffuse->setLoc(loc);
5186             diffuse->setType(TType(EbtFloat));
5187             dst->getSequence().push_back(diffuse);
5188 
5189             // Specular:
5190             TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
5191             min_ndot->getSequence().push_back(n_dot_l);
5192             min_ndot->getSequence().push_back(n_dot_h);
5193             min_ndot->setLoc(loc);
5194             min_ndot->setType(TType(EbtFloat));
5195 
5196             TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
5197             TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m);  // n_dot_h * m
5198 
5199             dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
5200 
5201             // One:
5202             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
5203 
5204             dst->setLoc(loc);
5205             dst->setType(TType(EbtFloat, EvqTemporary, 4));
5206             node = dst;
5207             break;
5208         }
5209 
5210     case EOpAsDouble:
5211         {
5212             // asdouble accepts two 32 bit ints.  we can use EOpUint64BitsToDouble, but must
5213             // first construct a uint64.
5214             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5215             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5216 
5217             if (arg0->getType().isVector()) { // TODO: ...
5218                 error(loc, "double2 conversion not implemented", "asdouble", "");
5219                 break;
5220             }
5221 
5222             TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
5223 
5224             uint64->getSequence().push_back(arg0);
5225             uint64->getSequence().push_back(arg1);
5226             uint64->setType(TType(EbtUint, EvqTemporary, 2));  // convert 2 uints to a uint2
5227             uint64->setLoc(loc);
5228 
5229             // bitcast uint2 to a double
5230             TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
5231             convert->getAsUnaryNode()->setOperand(uint64);
5232             convert->setLoc(loc);
5233             convert->setType(TType(EbtDouble, EvqTemporary));
5234             node = convert;
5235 
5236             break;
5237         }
5238 
5239     case EOpF16tof32:
5240         {
5241             // input uvecN with low 16 bits of each component holding a float16.  convert to float32.
5242             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5243             TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
5244             const int vecSize = argValue->getType().getVectorSize();
5245 
5246             TOperator constructOp = EOpNull;
5247             switch (vecSize) {
5248             case 1: constructOp = EOpNull;          break; // direct use, no construct needed
5249             case 2: constructOp = EOpConstructVec2; break;
5250             case 3: constructOp = EOpConstructVec3; break;
5251             case 4: constructOp = EOpConstructVec4; break;
5252             default: assert(0); break;
5253             }
5254 
5255             // For scalar case, we don't need to construct another type.
5256             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5257 
5258             if (result) {
5259                 result->setType(TType(EbtFloat, EvqTemporary, vecSize));
5260                 result->setLoc(loc);
5261             }
5262 
5263             for (int idx = 0; idx < vecSize; ++idx) {
5264                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5265                 TIntermTyped* component = argValue->getType().isVector() ?
5266                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5267 
5268                 if (component != argValue)
5269                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
5270 
5271                 TIntermTyped* unpackOp  = new TIntermUnary(EOpUnpackHalf2x16);
5272                 unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
5273                 unpackOp->getAsUnaryNode()->setOperand(component);
5274                 unpackOp->setLoc(loc);
5275 
5276                 TIntermTyped* lowOrder  = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
5277 
5278                 if (result != nullptr) {
5279                     result->getSequence().push_back(lowOrder);
5280                     node = result;
5281                 } else {
5282                     node = lowOrder;
5283                 }
5284             }
5285 
5286             break;
5287         }
5288 
5289     case EOpF32tof16:
5290         {
5291             // input floatN converted to 16 bit float in low order bits of each component of uintN
5292             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
5293 
5294             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
5295             const int vecSize = argValue->getType().getVectorSize();
5296 
5297             TOperator constructOp = EOpNull;
5298             switch (vecSize) {
5299             case 1: constructOp = EOpNull;           break; // direct use, no construct needed
5300             case 2: constructOp = EOpConstructUVec2; break;
5301             case 3: constructOp = EOpConstructUVec3; break;
5302             case 4: constructOp = EOpConstructUVec4; break;
5303             default: assert(0); break;
5304             }
5305 
5306             // For scalar case, we don't need to construct another type.
5307             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
5308 
5309             if (result) {
5310                 result->setType(TType(EbtUint, EvqTemporary, vecSize));
5311                 result->setLoc(loc);
5312             }
5313 
5314             for (int idx = 0; idx < vecSize; ++idx) {
5315                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
5316                 TIntermTyped* component = argValue->getType().isVector() ?
5317                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
5318 
5319                 if (component != argValue)
5320                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
5321 
5322                 TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
5323                 vec2ComponentAndZero->getSequence().push_back(component);
5324                 vec2ComponentAndZero->getSequence().push_back(zero);
5325                 vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
5326                 vec2ComponentAndZero->setLoc(loc);
5327 
5328                 TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
5329                 packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
5330                 packOp->setLoc(loc);
5331                 packOp->setType(TType(EbtUint, EvqTemporary));
5332 
5333                 if (result != nullptr) {
5334                     result->getSequence().push_back(packOp);
5335                     node = result;
5336                 } else {
5337                     node = packOp;
5338                 }
5339             }
5340 
5341             break;
5342         }
5343 
5344     case EOpD3DCOLORtoUBYTE4:
5345         {
5346             // ivec4 ( x.zyxw * 255.001953 );
5347             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5348             TSwizzleSelectors<TVectorSelector> selectors;
5349             selectors.push_back(2);
5350             selectors.push_back(1);
5351             selectors.push_back(0);
5352             selectors.push_back(3);
5353             TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
5354             TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
5355             swizzled->setType(arg0->getType());
5356             swizzled->getWritableType().getQualifier().makeTemporary();
5357 
5358             TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
5359             TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
5360             rangeConverted->setType(arg0->getType());
5361             rangeConverted->getWritableType().getQualifier().makeTemporary();
5362 
5363             node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
5364             node->setLoc(loc);
5365             node->setType(TType(EbtInt, EvqTemporary, 4));
5366             break;
5367         }
5368 
5369     case EOpIsFinite:
5370         {
5371             // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
5372             // it to !isnan && !isinf
5373 
5374             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
5375 
5376             // We'll make a temporary in case the RHS is cmoplex
5377             TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
5378             tempArg->getWritableType().getQualifier().makeTemporary();
5379 
5380             TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
5381                                                                 intermediate.addSymbol(*tempArg, loc),
5382                                                                 arg0, loc);
5383 
5384             TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
5385 
5386             const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
5387                                  arg0->getMatrixRows());
5388 
5389             TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
5390             isnan->setType(boolType);
5391 
5392             TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
5393             notnan->setType(boolType);
5394 
5395             TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
5396             isinf->setType(boolType);
5397 
5398             TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
5399             notinf->setType(boolType);
5400 
5401             TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
5402             andNode->setType(boolType);
5403 
5404             compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
5405             compoundStatement->setOperator(EOpSequence);
5406             compoundStatement->setLoc(loc);
5407             compoundStatement->setType(boolType);
5408 
5409             node = compoundStatement;
5410 
5411             break;
5412         }
5413     case EOpWaveGetLaneCount:
5414         {
5415             // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
5416             // so that it inhabits the symbol table, but has a user-invalid name
5417             // in-case some source HLSL defined the symbol also).
5418             TType type(EbtUint, EvqVaryingIn);
5419             node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
5420             break;
5421         }
5422     case EOpWaveGetLaneIndex:
5423         {
5424             // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
5425             // symbol so that it inhabits the symbol table, but has a
5426             // user-invalid name in-case some source HLSL defined the symbol
5427             // also).
5428             TType type(EbtUint, EvqVaryingIn);
5429             node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
5430             break;
5431         }
5432     case EOpWaveActiveCountBits:
5433         {
5434             // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
5435 
5436             // uvec4 type.
5437             TType uvec4Type(EbtUint, EvqTemporary, 4);
5438 
5439             // Get the uvec4 return from subgroupBallot().
5440             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5441                 EOpSubgroupBallot, true, arguments, uvec4Type);
5442 
5443             // uint type.
5444             TType uintType(EbtUint, EvqTemporary);
5445 
5446             node = intermediate.addBuiltInFunctionCall(loc,
5447                 EOpSubgroupBallotBitCount, true, res, uintType);
5448 
5449             break;
5450         }
5451     case EOpWavePrefixCountBits:
5452         {
5453             // Mapped to subgroupBallotExclusiveBitCount(subgroupBallot())
5454             // builtin
5455 
5456             // uvec4 type.
5457             TType uvec4Type(EbtUint, EvqTemporary, 4);
5458 
5459             // Get the uvec4 return from subgroupBallot().
5460             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
5461                 EOpSubgroupBallot, true, arguments, uvec4Type);
5462 
5463             // uint type.
5464             TType uintType(EbtUint, EvqTemporary);
5465 
5466             node = intermediate.addBuiltInFunctionCall(loc,
5467                 EOpSubgroupBallotExclusiveBitCount, true, res, uintType);
5468 
5469             break;
5470         }
5471 
5472     default:
5473         break; // most pass through unchanged
5474     }
5475 }
5476 
5477 //
5478 // Handle seeing function call syntax in the grammar, which could be any of
5479 //  - .length() method
5480 //  - constructor
5481 //  - a call to a built-in function mapped to an operator
5482 //  - a call to a built-in function that will remain a function call (e.g., texturing)
5483 //  - user function
5484 //  - subroutine call (not implemented yet)
5485 //
handleFunctionCall(const TSourceLoc & loc,TFunction * function,TIntermTyped * arguments)5486 TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
5487 {
5488     TIntermTyped* result = nullptr;
5489 
5490     TOperator op = function->getBuiltInOp();
5491     if (op != EOpNull) {
5492         //
5493         // Then this should be a constructor.
5494         // Don't go through the symbol table for constructors.
5495         // Their parameters will be verified algorithmically.
5496         //
5497         TType type(EbtVoid);  // use this to get the type back
5498         if (! constructorError(loc, arguments, *function, op, type)) {
5499             //
5500             // It's a constructor, of type 'type'.
5501             //
5502             result = handleConstructor(loc, arguments, type);
5503             if (result == nullptr) {
5504                 error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
5505                 return nullptr;
5506             }
5507         }
5508     } else {
5509         //
5510         // Find it in the symbol table.
5511         //
5512         const TFunction* fnCandidate = nullptr;
5513         bool builtIn = false;
5514         int thisDepth = 0;
5515 
5516         // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
5517         // and clamp the opposite arg.  Since that's complex, we farm it off to a separate method.
5518         // It doesn't naturally fall out of processing an argument at a time in isolation.
5519         if (function->getName() == "mul")
5520             addGenMulArgumentConversion(loc, *function, arguments);
5521 
5522         TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5523 
5524         // TODO: this needs improvement: there's no way at present to look up a signature in
5525         // the symbol table for an arbitrary type.  This is a temporary hack until that ability exists.
5526         // It will have false positives, since it doesn't check arg counts or types.
5527         if (arguments) {
5528             // Check if first argument is struct buffer type.  It may be an aggregate or a symbol, so we
5529             // look for either case.
5530 
5531             TIntermTyped* arg0 = nullptr;
5532 
5533             if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
5534                 arg0 = aggregate->getSequence()[0]->getAsTyped();
5535             else if (arguments->getAsSymbolNode())
5536                 arg0 = arguments->getAsSymbolNode();
5537 
5538             if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
5539                 static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
5540 
5541                 if (function->getName().length() > methodPrefixSize &&
5542                     isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
5543                     const TString mangle = function->getName() + "(";
5544                     TSymbol* symbol = symbolTable.find(mangle, &builtIn);
5545 
5546                     if (symbol)
5547                         fnCandidate = symbol->getAsFunction();
5548                 }
5549             }
5550         }
5551 
5552         if (fnCandidate == nullptr)
5553             fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
5554 
5555         if (fnCandidate) {
5556             // This is a declared function that might map to
5557             //  - a built-in operator,
5558             //  - a built-in function not mapped to an operator, or
5559             //  - a user function.
5560 
5561             // turn an implicit member-function resolution into an explicit call
5562             TString callerName;
5563             if (thisDepth == 0)
5564                 callerName = fnCandidate->getMangledName();
5565             else {
5566                 // get the explicit (full) name of the function
5567                 callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
5568                 callerName += fnCandidate->getMangledName();
5569                 // insert the implicit calling argument
5570                 pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
5571             }
5572 
5573             // Convert 'in' arguments, so that types match.
5574             // However, skip those that need expansion, that is covered next.
5575             if (arguments)
5576                 addInputArgumentConversions(*fnCandidate, arguments);
5577 
5578             // Expand arguments.  Some arguments must physically expand to a different set
5579             // than what the shader declared and passes.
5580             if (arguments && !builtIn)
5581                 expandArguments(loc, *fnCandidate, arguments);
5582 
5583             // Expansion may have changed the form of arguments
5584             aggregate = arguments ? arguments->getAsAggregate() : nullptr;
5585 
5586             op = fnCandidate->getBuiltInOp();
5587             if (builtIn && op != EOpNull) {
5588                 // SM 4.0 and above guarantees roundEven semantics for round()
5589                 if (!hlslDX9Compatible() && op == EOpRound)
5590                     op = EOpRoundEven;
5591 
5592                 // A function call mapped to a built-in operation.
5593                 result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
5594                                                              fnCandidate->getType());
5595                 if (result == nullptr)  {
5596                     error(arguments->getLoc(), " wrong operand type", "Internal Error",
5597                         "built in unary operator function.  Type: %s",
5598                         static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
5599                 } else if (result->getAsOperator()) {
5600                     builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
5601                 }
5602             } else {
5603                 // This is a function call not mapped to built-in operator.
5604                 // It could still be a built-in function, but only if PureOperatorBuiltins == false.
5605                 result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
5606                 TIntermAggregate* call = result->getAsAggregate();
5607                 call->setName(callerName);
5608 
5609                 // this is how we know whether the given function is a built-in function or a user-defined function
5610                 // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
5611                 // if builtIn == true, it's definitely a built-in function with EOpNull
5612                 if (! builtIn) {
5613                     call->setUserDefined();
5614                     intermediate.addToCallGraph(infoSink, currentCaller, callerName);
5615                 }
5616             }
5617 
5618             // for decompositions, since we want to operate on the function node, not the aggregate holding
5619             // output conversions.
5620             const TIntermTyped* fnNode = result;
5621 
5622             decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
5623             decomposeIntrinsic(loc, result, arguments);           // HLSL->AST intrinsic decompositions
5624             decomposeSampleMethods(loc, result, arguments);       // HLSL->AST sample method decompositions
5625             decomposeGeometryMethods(loc, result, arguments);     // HLSL->AST geometry method decompositions
5626 
5627             // Create the qualifier list, carried in the AST for the call.
5628             // Because some arguments expand to multiple arguments, the qualifier list will
5629             // be longer than the formal parameter list.
5630             if (result == fnNode && result->getAsAggregate()) {
5631                 TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
5632                 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
5633                     TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
5634                     if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
5635                         // add buffer and counter buffer argument qualifier
5636                         qualifierList.push_back(qual);
5637                         qualifierList.push_back(qual);
5638                     } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
5639                                              true)) {
5640                         // add structure member expansion
5641                         for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
5642                             qualifierList.push_back(qual);
5643                     } else {
5644                         // Normal 1:1 case
5645                         qualifierList.push_back(qual);
5646                     }
5647                 }
5648             }
5649 
5650             // Convert 'out' arguments.  If it was a constant folded built-in, it won't be an aggregate anymore.
5651             // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
5652             // Also, build the qualifier list for user function calls, which are always called with an aggregate.
5653             // We don't do this is if there has been a decomposition, which will have added its own conversions
5654             // for output parameters.
5655             if (result == fnNode && result->getAsAggregate())
5656                 result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
5657         }
5658     }
5659 
5660     // generic error recovery
5661     // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
5662     //       reduce cascades
5663     if (result == nullptr)
5664         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
5665 
5666     return result;
5667 }
5668 
5669 // An initial argument list is difficult: it can be null, or a single node,
5670 // or an aggregate if more than one argument.  Add one to the front, maintaining
5671 // this lack of uniformity.
pushFrontArguments(TIntermTyped * front,TIntermTyped * & arguments)5672 void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
5673 {
5674     if (arguments == nullptr)
5675         arguments = front;
5676     else if (arguments->getAsAggregate() != nullptr)
5677         arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
5678     else
5679         arguments = intermediate.growAggregate(front, arguments);
5680 }
5681 
5682 //
5683 // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat.  This is a
5684 // situation not well suited to resolution in intrinsic selection, but we can do so here, since we
5685 // can look at both arguments insert explicit shape changes if required.
5686 //
addGenMulArgumentConversion(const TSourceLoc & loc,TFunction & call,TIntermTyped * & args)5687 void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
5688 {
5689     TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
5690 
5691     if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
5692         // It really ought to have two arguments.
5693         error(loc, "expected: mul arguments", "", "");
5694         return;
5695     }
5696 
5697     TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
5698     TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
5699 
5700     if (arg0->isVector() && arg1->isVector()) {
5701         // For:
5702         //    vec * vec: it's handled during intrinsic selection, so while we could do it here,
5703         //               we can also ignore it, which is easier.
5704     } else if (arg0->isVector() && arg1->isMatrix()) {
5705         // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
5706         if (arg0->getVectorSize() < arg1->getMatrixCols()) {
5707             // vec is smaller, so truncate larger mat dimension
5708             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5709                                   0, arg0->getVectorSize(), arg1->getMatrixRows());
5710             arg1 = addConstructor(loc, arg1, truncType);
5711         } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
5712             // vec is larger, so truncate vec to mat size
5713             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5714                                   arg1->getMatrixCols());
5715             arg0 = addConstructor(loc, arg0, truncType);
5716         }
5717     } else if (arg0->isMatrix() && arg1->isVector()) {
5718         // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
5719         if (arg1->getVectorSize() < arg0->getMatrixRows()) {
5720             // vec is smaller, so truncate larger mat dimension
5721             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5722                                   0, arg0->getMatrixCols(), arg1->getVectorSize());
5723             arg0 = addConstructor(loc, arg0, truncType);
5724         } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
5725             // vec is larger, so truncate vec to mat size
5726             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5727                                   arg0->getMatrixRows());
5728             arg1 = addConstructor(loc, arg1, truncType);
5729         }
5730     } else if (arg0->isMatrix() && arg1->isMatrix()) {
5731         // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
5732         // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
5733         if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
5734             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
5735                                   0, arg0->getMatrixCols(), arg1->getMatrixCols());
5736             arg0 = addConstructor(loc, arg0, truncType);
5737         } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
5738             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
5739                                   0, arg0->getMatrixRows(), arg1->getMatrixRows());
5740             arg1 = addConstructor(loc, arg1, truncType);
5741         }
5742     } else {
5743         // It's something with scalars: we'll just leave it alone.  Function selection will handle it
5744         // downstream.
5745     }
5746 
5747     // Warn if we altered one of the arguments
5748     if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
5749         warn(loc, "mul() matrix size mismatch", "", "");
5750 
5751     // Put arguments back.  (They might be unchanged, in which case this is harmless).
5752     argAggregate->getSequence()[0] = arg0;
5753     argAggregate->getSequence()[1] = arg1;
5754 
5755     call[0].type = &arg0->getWritableType();
5756     call[1].type = &arg1->getWritableType();
5757 }
5758 
5759 //
5760 // Add any needed implicit conversions for function-call arguments to input parameters.
5761 //
addInputArgumentConversions(const TFunction & function,TIntermTyped * & arguments)5762 void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
5763 {
5764     TIntermAggregate* aggregate = arguments->getAsAggregate();
5765 
5766     // Replace a single argument with a single argument.
5767     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5768         if (function.getParamCount() == 1)
5769             arguments = arg;
5770         else {
5771             if (aggregate == nullptr)
5772                 arguments = arg;
5773             else
5774                 aggregate->getSequence()[paramNum] = arg;
5775         }
5776     };
5777 
5778     // Process each argument's conversion
5779     for (int param = 0; param < function.getParamCount(); ++param) {
5780         if (! function[param].type->getQualifier().isParamInput())
5781             continue;
5782 
5783         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5784         // is the single argument itself or its children are the arguments.  Only one argument
5785         // means take 'arguments' itself as the one argument.
5786         TIntermTyped* arg = function.getParamCount() == 1
5787                                    ? arguments->getAsTyped()
5788                                    : (aggregate ?
5789                                         aggregate->getSequence()[param]->getAsTyped() :
5790                                         arguments->getAsTyped());
5791         if (*function[param].type != arg->getType()) {
5792             // In-qualified arguments just need an extra node added above the argument to
5793             // convert to the correct type.
5794             TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
5795             if (convArg != nullptr)
5796                 convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
5797             if (convArg != nullptr)
5798                 setArg(param, convArg);
5799             else
5800                 error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
5801         } else {
5802             if (wasFlattened(arg)) {
5803                 // If both formal and calling arg are to be flattened, leave that to argument
5804                 // expansion, not conversion.
5805                 if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5806                     // Will make a two-level subtree.
5807                     // The deepest will copy member-by-member to build the structure to pass.
5808                     // The level above that will be a two-operand EOpComma sequence that follows the copy by the
5809                     // object itself.
5810                     TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
5811                     internalAggregate->getWritableType().getQualifier().makeTemporary();
5812                     TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
5813                                                                           internalAggregate->getName(),
5814                                                                           internalAggregate->getType());
5815                     internalSymbolNode->setLoc(arg->getLoc());
5816                     // This makes the deepest level, the member-wise copy
5817                     TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
5818                                                                internalSymbolNode, arg)->getAsAggregate();
5819 
5820                     // Now, pair that with the resulting aggregate.
5821                     assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
5822                     assignAgg->setOperator(EOpComma);
5823                     assignAgg->setType(internalAggregate->getType());
5824                     setArg(param, assignAgg);
5825                 }
5826             }
5827         }
5828     }
5829 }
5830 
5831 //
5832 // Add any needed implicit expansion of calling arguments from what the shader listed to what's
5833 // internally needed for the AST (given the constraints downstream).
5834 //
expandArguments(const TSourceLoc & loc,const TFunction & function,TIntermTyped * & arguments)5835 void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
5836 {
5837     TIntermAggregate* aggregate = arguments->getAsAggregate();
5838     int functionParamNumberOffset = 0;
5839 
5840     // Replace a single argument with a single argument.
5841     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
5842         if (function.getParamCount() + functionParamNumberOffset == 1)
5843             arguments = arg;
5844         else {
5845             if (aggregate == nullptr)
5846                 arguments = arg;
5847             else
5848                 aggregate->getSequence()[paramNum] = arg;
5849         }
5850     };
5851 
5852     // Replace a single argument with a list of arguments
5853     const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
5854         if (args.size() == 1)
5855             setArg(paramNum, args.front());
5856         else if (args.size() > 1) {
5857             if (function.getParamCount() + functionParamNumberOffset == 1) {
5858                 arguments = intermediate.makeAggregate(args.front());
5859                 std::for_each(args.begin() + 1, args.end(),
5860                     [&](TIntermTyped* arg) {
5861                         arguments = intermediate.growAggregate(arguments, arg);
5862                     });
5863             } else {
5864                 auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
5865                 aggregate->getSequence().insert(it, args.begin(), args.end());
5866             }
5867             functionParamNumberOffset += (int)(args.size() - 1);
5868         }
5869     };
5870 
5871     // Process each argument's conversion
5872     for (int param = 0; param < function.getParamCount(); ++param) {
5873         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
5874         // is the single argument itself or its children are the arguments.  Only one argument
5875         // means take 'arguments' itself as the one argument.
5876         TIntermTyped* arg = function.getParamCount() == 1
5877                                    ? arguments->getAsTyped()
5878                                    : (aggregate ?
5879                                         aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
5880                                         arguments->getAsTyped());
5881 
5882         if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
5883             // Need to pass the structure members instead of the structure.
5884             TVector<TIntermTyped*> memberArgs;
5885             for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
5886                 memberArgs.push_back(flattenAccess(arg, memb));
5887             setArgList(param + functionParamNumberOffset, memberArgs);
5888         }
5889     }
5890 
5891     // TODO: if we need both hidden counter args (below) and struct expansion (above)
5892     // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
5893     // parameters and arguments.
5894 
5895     // If any argument is a pass-by-reference struct buffer with an associated counter
5896     // buffer, we have to add another hidden parameter for that counter.
5897     if (aggregate)
5898         addStructBuffArguments(loc, aggregate);
5899 }
5900 
5901 //
5902 // Add any needed implicit output conversions for function-call arguments.  This
5903 // can require a new tree topology, complicated further by whether the function
5904 // has a return value.
5905 //
5906 // Returns a node of a subtree that evaluates to the return value of the function.
5907 //
addOutputArgumentConversions(const TFunction & function,TIntermOperator & intermNode)5908 TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
5909 {
5910     assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
5911 
5912     const TSourceLoc& loc = intermNode.getLoc();
5913 
5914     TIntermSequence argSequence; // temp sequence for unary node args
5915 
5916     if (intermNode.getAsUnaryNode())
5917         argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
5918 
5919     TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
5920 
5921     const auto needsConversion = [&](int argNum) {
5922         return function[argNum].type->getQualifier().isParamOutput() &&
5923                (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
5924                 shouldConvertLValue(arguments[argNum]) ||
5925                 wasFlattened(arguments[argNum]->getAsTyped()));
5926     };
5927 
5928     // Will there be any output conversions?
5929     bool outputConversions = false;
5930     for (int i = 0; i < function.getParamCount(); ++i) {
5931         if (needsConversion(i)) {
5932             outputConversions = true;
5933             break;
5934         }
5935     }
5936 
5937     if (! outputConversions)
5938         return &intermNode;
5939 
5940     // Setup for the new tree, if needed:
5941     //
5942     // Output conversions need a different tree topology.
5943     // Out-qualified arguments need a temporary of the correct type, with the call
5944     // followed by an assignment of the temporary to the original argument:
5945     //     void: function(arg, ...)  ->        (          function(tempArg, ...), arg = tempArg, ...)
5946     //     ret = function(arg, ...)  ->  ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
5947     // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
5948     TIntermTyped* conversionTree = nullptr;
5949     TVariable* tempRet = nullptr;
5950     if (intermNode.getBasicType() != EbtVoid) {
5951         // do the "tempRet = function(...), " bit from above
5952         tempRet = makeInternalVariable("tempReturn", intermNode.getType());
5953         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5954         conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
5955     } else
5956         conversionTree = &intermNode;
5957 
5958     conversionTree = intermediate.makeAggregate(conversionTree);
5959 
5960     // Process each argument's conversion
5961     for (int i = 0; i < function.getParamCount(); ++i) {
5962         if (needsConversion(i)) {
5963             // Out-qualified arguments needing conversion need to use the topology setup above.
5964             // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
5965 
5966             // Make a temporary for what the function expects the argument to look like.
5967             TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
5968             tempArg->getWritableType().getQualifier().makeTemporary();
5969             TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
5970 
5971             // This makes the deepest level, the member-wise copy
5972             TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
5973                                                     tempArgNode);
5974             tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
5975             conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
5976 
5977             // replace the argument with another node for the same tempArg variable
5978             arguments[i] = intermediate.addSymbol(*tempArg, loc);
5979         }
5980     }
5981 
5982     // Finalize the tree topology (see bigger comment above).
5983     if (tempRet) {
5984         // do the "..., tempRet" bit from above
5985         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
5986         conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
5987     }
5988 
5989     conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
5990 
5991     return conversionTree;
5992 }
5993 
5994 //
5995 // Add any needed "hidden" counter buffer arguments for function calls.
5996 //
5997 // Modifies the 'aggregate' argument if needed.  Otherwise, is no-op.
5998 //
addStructBuffArguments(const TSourceLoc & loc,TIntermAggregate * & aggregate)5999 void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
6000 {
6001     // See if there are any SB types with counters.
6002     const bool hasStructBuffArg =
6003         std::any_of(aggregate->getSequence().begin(),
6004                     aggregate->getSequence().end(),
6005                     [this](const TIntermNode* node) {
6006                         return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
6007                     });
6008 
6009     // Nothing to do, if we didn't find one.
6010     if (! hasStructBuffArg)
6011         return;
6012 
6013     TIntermSequence argsWithCounterBuffers;
6014 
6015     for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
6016         argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
6017 
6018         if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
6019             const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
6020             if (blockSym != nullptr) {
6021                 TType counterType;
6022                 counterBufferType(loc, counterType);
6023 
6024                 const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
6025 
6026                 TVariable* variable = makeInternalVariable(counterBlockName, counterType);
6027 
6028                 // Mark this buffer's counter block as being in use
6029                 structBufferCounter[counterBlockName] = true;
6030 
6031                 TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
6032                 argsWithCounterBuffers.push_back(sym);
6033             }
6034         }
6035     }
6036 
6037     // Swap with the temp list we've built up.
6038     aggregate->getSequence().swap(argsWithCounterBuffers);
6039 }
6040 
6041 
6042 //
6043 // Do additional checking of built-in function calls that is not caught
6044 // by normal semantic checks on argument type, extension tagging, etc.
6045 //
6046 // Assumes there has been a semantically correct match to a built-in function prototype.
6047 //
builtInOpCheck(const TSourceLoc & loc,const TFunction & fnCandidate,TIntermOperator & callNode)6048 void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
6049 {
6050     // Set up convenience accessors to the argument(s).  There is almost always
6051     // multiple arguments for the cases below, but when there might be one,
6052     // check the unaryArg first.
6053     const TIntermSequence* argp = nullptr;   // confusing to use [] syntax on a pointer, so this is to help get a reference
6054     const TIntermTyped* unaryArg = nullptr;
6055     const TIntermTyped* arg0 = nullptr;
6056     if (callNode.getAsAggregate()) {
6057         argp = &callNode.getAsAggregate()->getSequence();
6058         if (argp->size() > 0)
6059             arg0 = (*argp)[0]->getAsTyped();
6060     } else {
6061         assert(callNode.getAsUnaryNode());
6062         unaryArg = callNode.getAsUnaryNode()->getOperand();
6063         arg0 = unaryArg;
6064     }
6065     const TIntermSequence& aggArgs = *argp;  // only valid when unaryArg is nullptr
6066 
6067     switch (callNode.getOp()) {
6068     case EOpTextureGather:
6069     case EOpTextureGatherOffset:
6070     case EOpTextureGatherOffsets:
6071     {
6072         // Figure out which variants are allowed by what extensions,
6073         // and what arguments must be constant for which situations.
6074 
6075         TString featureString = fnCandidate.getName() + "(...)";
6076         const char* feature = featureString.c_str();
6077         int compArg = -1;  // track which argument, if any, is the constant component argument
6078         switch (callNode.getOp()) {
6079         case EOpTextureGather:
6080             // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
6081             // otherwise, need GL_ARB_texture_gather.
6082             if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
6083                 fnCandidate[0].type->getSampler().shadow) {
6084                 if (! fnCandidate[0].type->getSampler().shadow)
6085                     compArg = 2;
6086             }
6087             break;
6088         case EOpTextureGatherOffset:
6089             // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
6090             if (! fnCandidate[0].type->getSampler().shadow)
6091                 compArg = 3;
6092             break;
6093         case EOpTextureGatherOffsets:
6094             if (! fnCandidate[0].type->getSampler().shadow)
6095                 compArg = 3;
6096             break;
6097         default:
6098             break;
6099         }
6100 
6101         if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
6102             if (aggArgs[compArg]->getAsConstantUnion()) {
6103                 int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
6104                 if (value < 0 || value > 3)
6105                     error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
6106             } else
6107                 error(loc, "must be a compile-time constant:", feature, "component argument");
6108         }
6109 
6110         break;
6111     }
6112 
6113     case EOpTextureOffset:
6114     case EOpTextureFetchOffset:
6115     case EOpTextureProjOffset:
6116     case EOpTextureLodOffset:
6117     case EOpTextureProjLodOffset:
6118     case EOpTextureGradOffset:
6119     case EOpTextureProjGradOffset:
6120     {
6121         // Handle texture-offset limits checking
6122         // Pick which argument has to hold constant offsets
6123         int arg = -1;
6124         switch (callNode.getOp()) {
6125         case EOpTextureOffset:          arg = 2;  break;
6126         case EOpTextureFetchOffset:     arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
6127         case EOpTextureProjOffset:      arg = 2;  break;
6128         case EOpTextureLodOffset:       arg = 3;  break;
6129         case EOpTextureProjLodOffset:   arg = 3;  break;
6130         case EOpTextureGradOffset:      arg = 4;  break;
6131         case EOpTextureProjGradOffset:  arg = 4;  break;
6132         default:
6133             assert(0);
6134             break;
6135         }
6136 
6137         if (arg > 0) {
6138             if (aggArgs[arg]->getAsConstantUnion() == nullptr)
6139                 error(loc, "argument must be compile-time constant", "texel offset", "");
6140             else {
6141                 const TType& type = aggArgs[arg]->getAsTyped()->getType();
6142                 for (int c = 0; c < type.getVectorSize(); ++c) {
6143                     int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
6144                     if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
6145                         error(loc, "value is out of range:", "texel offset",
6146                               "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
6147                 }
6148             }
6149         }
6150 
6151         break;
6152     }
6153 
6154     case EOpTextureQuerySamples:
6155     case EOpImageQuerySamples:
6156         break;
6157 
6158     case EOpImageAtomicAdd:
6159     case EOpImageAtomicMin:
6160     case EOpImageAtomicMax:
6161     case EOpImageAtomicAnd:
6162     case EOpImageAtomicOr:
6163     case EOpImageAtomicXor:
6164     case EOpImageAtomicExchange:
6165     case EOpImageAtomicCompSwap:
6166         break;
6167 
6168     case EOpInterpolateAtCentroid:
6169     case EOpInterpolateAtSample:
6170     case EOpInterpolateAtOffset:
6171         // TODO(greg-lunarg): Re-enable this check. It currently gives false errors for builtins
6172         // defined and passed as members of a struct. In this case the storage class is showing to be
6173         // Function. See glslang #2584
6174 
6175         // Make sure the first argument is an interpolant, or an array element of an interpolant
6176         // if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
6177             // It might still be an array element.
6178             //
6179             // We could check more, but the semantics of the first argument are already met; the
6180             // only way to turn an array into a float/vec* is array dereference and swizzle.
6181             //
6182             // ES and desktop 4.3 and earlier:  swizzles may not be used
6183             // desktop 4.4 and later: swizzles may be used
6184             // const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
6185             // if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
6186             //     error(loc, "first argument must be an interpolant, or interpolant-array element",
6187             //           fnCandidate.getName().c_str(), "");
6188         // }
6189         break;
6190 
6191     default:
6192         break;
6193     }
6194 }
6195 
6196 //
6197 // Handle seeing something in a grammar production that can be done by calling
6198 // a constructor.
6199 //
6200 // The constructor still must be "handled" by handleFunctionCall(), which will
6201 // then call handleConstructor().
6202 //
makeConstructorCall(const TSourceLoc & loc,const TType & type)6203 TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
6204 {
6205     TOperator op = intermediate.mapTypeToConstructorOp(type);
6206 
6207     if (op == EOpNull) {
6208         error(loc, "cannot construct this type", type.getBasicString(), "");
6209         return nullptr;
6210     }
6211 
6212     TString empty("");
6213 
6214     return new TFunction(&empty, type, op);
6215 }
6216 
6217 //
6218 // Handle seeing a "COLON semantic" at the end of a type declaration,
6219 // by updating the type according to the semantic.
6220 //
handleSemantic(TSourceLoc loc,TQualifier & qualifier,TBuiltInVariable builtIn,const TString & upperCase)6221 void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
6222                                       const TString& upperCase)
6223 {
6224     // Parse and return semantic number.  If limit is 0, it will be ignored.  Otherwise, if the parsed
6225     // semantic number is >= limit, errorMsg is issued and 0 is returned.
6226     // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
6227     // accept those in lambda functions.
6228     const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
6229         size_t pos = semantic.find_last_not_of("0123456789");
6230         if (pos == std::string::npos)
6231             return 0u;
6232 
6233         unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
6234 
6235         if (limit != 0 && semanticNum >= limit) {
6236             error(loc, errorMsg, semantic.c_str(), "");
6237             return 0u;
6238         }
6239 
6240         return semanticNum;
6241     };
6242 
6243     if (builtIn == EbvNone && hlslDX9Compatible()) {
6244         if (language == EShLangVertex) {
6245             if (qualifier.isParamOutput()) {
6246                 if (upperCase == "POSITION") {
6247                     builtIn = EbvPosition;
6248                 }
6249                 if (upperCase == "PSIZE") {
6250                     builtIn = EbvPointSize;
6251                 }
6252             }
6253         } else if (language == EShLangFragment) {
6254             if (qualifier.isParamInput() && upperCase == "VPOS") {
6255                 builtIn = EbvFragCoord;
6256             }
6257             if (qualifier.isParamOutput()) {
6258                 if (upperCase.compare(0, 5, "COLOR") == 0) {
6259                     qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6260                     nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6261                 }
6262                 if (upperCase == "DEPTH") {
6263                     builtIn = EbvFragDepth;
6264                 }
6265             }
6266         }
6267     }
6268 
6269     switch(builtIn) {
6270     case EbvNone:
6271         // Get location numbers from fragment outputs, instead of
6272         // auto-assigning them.
6273         if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
6274             qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
6275             nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
6276         } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
6277             builtIn = EbvClipDistance;
6278             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
6279         } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
6280             builtIn = EbvCullDistance;
6281             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
6282         }
6283         break;
6284     case EbvPosition:
6285         // adjust for stage in/out
6286         if (language == EShLangFragment)
6287             builtIn = EbvFragCoord;
6288         break;
6289     case EbvFragStencilRef:
6290         error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
6291         break;
6292     case EbvTessLevelInner:
6293     case EbvTessLevelOuter:
6294         qualifier.patch = true;
6295         break;
6296     default:
6297         break;
6298     }
6299 
6300     if (qualifier.builtIn == EbvNone)
6301         qualifier.builtIn = builtIn;
6302     qualifier.semanticName = intermediate.addSemanticName(upperCase);
6303 }
6304 
6305 //
6306 // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
6307 //
6308 // 'location' has the "c[Subcomponent]" part.
6309 // 'component' points to the "component" part, or nullptr if not present.
6310 //
handlePackOffset(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString & location,const glslang::TString * component)6311 void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
6312                                         const glslang::TString* component)
6313 {
6314     if (location.size() == 0 || location[0] != 'c') {
6315         error(loc, "expected 'c'", "packoffset", "");
6316         return;
6317     }
6318     if (location.size() == 1)
6319         return;
6320     if (! isdigit(location[1])) {
6321         error(loc, "expected number after 'c'", "packoffset", "");
6322         return;
6323     }
6324 
6325     qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
6326     if (component != nullptr) {
6327         int componentOffset = 0;
6328         switch ((*component)[0]) {
6329         case 'x': componentOffset =  0; break;
6330         case 'y': componentOffset =  4; break;
6331         case 'z': componentOffset =  8; break;
6332         case 'w': componentOffset = 12; break;
6333         default:
6334             componentOffset = -1;
6335             break;
6336         }
6337         if (componentOffset < 0 || component->size() > 1) {
6338             error(loc, "expected {x, y, z, w} for component", "packoffset", "");
6339             return;
6340         }
6341         qualifier.layoutOffset += componentOffset;
6342     }
6343 }
6344 
6345 //
6346 // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
6347 //
6348 // 'profile' points to the shader_profile part, or nullptr if not present.
6349 // 'desc' is the type# part.
6350 //
handleRegister(const TSourceLoc & loc,TQualifier & qualifier,const glslang::TString * profile,const glslang::TString & desc,int subComponent,const glslang::TString * spaceDesc)6351 void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
6352                                       const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
6353 {
6354     if (profile != nullptr)
6355         warn(loc, "ignoring shader_profile", "register", "");
6356 
6357     if (desc.size() < 1) {
6358         error(loc, "expected register type", "register", "");
6359         return;
6360     }
6361 
6362     int regNumber = 0;
6363     if (desc.size() > 1) {
6364         if (isdigit(desc[1]))
6365             regNumber = atoi(desc.substr(1, desc.size()).c_str());
6366         else {
6367             error(loc, "expected register number after register type", "register", "");
6368             return;
6369         }
6370     }
6371 
6372     // more information about register types see
6373     // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
6374     const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
6375     switch (std::tolower(desc[0])) {
6376     case 'c':
6377         // c register is the register slot in the global const buffer
6378         // each slot is a vector of 4 32 bit components
6379         qualifier.layoutOffset = regNumber * 4 * 4;
6380         break;
6381         // const buffer register slot
6382     case 'b':
6383         // textrues and structured buffers
6384     case 't':
6385         // samplers
6386     case 's':
6387         // uav resources
6388     case 'u':
6389         // if nothing else has set the binding, do so now
6390         // (other mechanisms override this one)
6391         if (!qualifier.hasBinding())
6392             qualifier.layoutBinding = regNumber + subComponent;
6393 
6394         // This handles per-register layout sets numbers.  For the global mode which sets
6395         // every symbol to the same value, see setLinkageLayoutSets().
6396         if ((resourceInfo.size() % 3) == 0) {
6397             // Apply per-symbol resource set and binding.
6398             for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
6399                 if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
6400                     qualifier.layoutSet = atoi(it[1].c_str());
6401                     qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
6402                     break;
6403                 }
6404             }
6405         }
6406         break;
6407     default:
6408         warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
6409         break;
6410     }
6411 
6412     // space
6413     unsigned int setNumber;
6414     const auto crackSpace = [&]() -> bool {
6415         const int spaceLen = 5;
6416         if (spaceDesc->size() < spaceLen + 1)
6417             return false;
6418         if (spaceDesc->compare(0, spaceLen, "space") != 0)
6419             return false;
6420         if (! isdigit((*spaceDesc)[spaceLen]))
6421             return false;
6422         setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
6423         return true;
6424     };
6425 
6426     // if nothing else has set the set, do so now
6427     // (other mechanisms override this one)
6428     if (spaceDesc && !qualifier.hasSet()) {
6429         if (! crackSpace()) {
6430             error(loc, "expected spaceN", "register", "");
6431             return;
6432         }
6433         qualifier.layoutSet = setNumber;
6434     }
6435 }
6436 
6437 // Convert to a scalar boolean, or if not allowed by HLSL semantics,
6438 // report an error and return nullptr.
convertConditionalExpression(const TSourceLoc & loc,TIntermTyped * condition,bool mustBeScalar)6439 TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
6440                                                              bool mustBeScalar)
6441 {
6442     if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
6443         error(loc, "requires a scalar", "conditional expression", "");
6444         return nullptr;
6445     }
6446 
6447     return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
6448                                       condition);
6449 }
6450 
6451 //
6452 // Same error message for all places assignments don't work.
6453 //
assignError(const TSourceLoc & loc,const char * op,TString left,TString right)6454 void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
6455 {
6456     error(loc, "", op, "cannot convert from '%s' to '%s'",
6457         right.c_str(), left.c_str());
6458 }
6459 
6460 //
6461 // Same error message for all places unary operations don't work.
6462 //
unaryOpError(const TSourceLoc & loc,const char * op,TString operand)6463 void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
6464 {
6465     error(loc, " wrong operand type", op,
6466         "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
6467         op, operand.c_str());
6468 }
6469 
6470 //
6471 // Same error message for all binary operations don't work.
6472 //
binaryOpError(const TSourceLoc & loc,const char * op,TString left,TString right)6473 void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
6474 {
6475     error(loc, " wrong operand types:", op,
6476         "no operation '%s' exists that takes a left-hand operand of type '%s' and "
6477         "a right operand of type '%s' (or there is no acceptable conversion)",
6478         op, left.c_str(), right.c_str());
6479 }
6480 
6481 //
6482 // A basic type of EbtVoid is a key that the name string was seen in the source, but
6483 // it was not found as a variable in the symbol table.  If so, give the error
6484 // message and insert a dummy variable in the symbol table to prevent future errors.
6485 //
variableCheck(TIntermTyped * & nodePtr)6486 void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
6487 {
6488     TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
6489     if (! symbol)
6490         return;
6491 
6492     if (symbol->getType().getBasicType() == EbtVoid) {
6493         error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
6494 
6495         // Add to symbol table to prevent future error messages on the same name
6496         if (symbol->getName().size() > 0) {
6497             TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
6498             symbolTable.insert(*fakeVariable);
6499 
6500             // substitute a symbol node for this new variable
6501             nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
6502         }
6503     }
6504 }
6505 
6506 //
6507 // Both test, and if necessary spit out an error, to see if the node is really
6508 // a constant.
6509 //
constantValueCheck(TIntermTyped * node,const char * token)6510 void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
6511 {
6512     if (node->getQualifier().storage != EvqConst)
6513         error(node->getLoc(), "constant expression required", token, "");
6514 }
6515 
6516 //
6517 // Both test, and if necessary spit out an error, to see if the node is really
6518 // an integer.
6519 //
integerCheck(const TIntermTyped * node,const char * token)6520 void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
6521 {
6522     if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
6523         return;
6524 
6525     error(node->getLoc(), "scalar integer expression required", token, "");
6526 }
6527 
6528 //
6529 // Both test, and if necessary spit out an error, to see if we are currently
6530 // globally scoped.
6531 //
globalCheck(const TSourceLoc & loc,const char * token)6532 void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
6533 {
6534     if (! symbolTable.atGlobalLevel())
6535         error(loc, "not allowed in nested scope", token, "");
6536 }
6537 
builtInName(const TString &)6538 bool HlslParseContext::builtInName(const TString& /*identifier*/)
6539 {
6540     return false;
6541 }
6542 
6543 //
6544 // Make sure there is enough data and not too many arguments provided to the
6545 // constructor to build something of the type of the constructor.  Also returns
6546 // the type of the constructor.
6547 //
6548 // Returns true if there was an error in construction.
6549 //
constructorError(const TSourceLoc & loc,TIntermNode * node,TFunction & function,TOperator op,TType & type)6550 bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
6551                                         TOperator op, TType& type)
6552 {
6553     type.shallowCopy(function.getType());
6554 
6555     bool constructingMatrix = false;
6556     switch (op) {
6557     case EOpConstructTextureSampler:
6558         error(loc, "unhandled texture constructor", "constructor", "");
6559         return true;
6560     case EOpConstructMat2x2:
6561     case EOpConstructMat2x3:
6562     case EOpConstructMat2x4:
6563     case EOpConstructMat3x2:
6564     case EOpConstructMat3x3:
6565     case EOpConstructMat3x4:
6566     case EOpConstructMat4x2:
6567     case EOpConstructMat4x3:
6568     case EOpConstructMat4x4:
6569     case EOpConstructDMat2x2:
6570     case EOpConstructDMat2x3:
6571     case EOpConstructDMat2x4:
6572     case EOpConstructDMat3x2:
6573     case EOpConstructDMat3x3:
6574     case EOpConstructDMat3x4:
6575     case EOpConstructDMat4x2:
6576     case EOpConstructDMat4x3:
6577     case EOpConstructDMat4x4:
6578     case EOpConstructIMat2x2:
6579     case EOpConstructIMat2x3:
6580     case EOpConstructIMat2x4:
6581     case EOpConstructIMat3x2:
6582     case EOpConstructIMat3x3:
6583     case EOpConstructIMat3x4:
6584     case EOpConstructIMat4x2:
6585     case EOpConstructIMat4x3:
6586     case EOpConstructIMat4x4:
6587     case EOpConstructUMat2x2:
6588     case EOpConstructUMat2x3:
6589     case EOpConstructUMat2x4:
6590     case EOpConstructUMat3x2:
6591     case EOpConstructUMat3x3:
6592     case EOpConstructUMat3x4:
6593     case EOpConstructUMat4x2:
6594     case EOpConstructUMat4x3:
6595     case EOpConstructUMat4x4:
6596     case EOpConstructBMat2x2:
6597     case EOpConstructBMat2x3:
6598     case EOpConstructBMat2x4:
6599     case EOpConstructBMat3x2:
6600     case EOpConstructBMat3x3:
6601     case EOpConstructBMat3x4:
6602     case EOpConstructBMat4x2:
6603     case EOpConstructBMat4x3:
6604     case EOpConstructBMat4x4:
6605         constructingMatrix = true;
6606         break;
6607     default:
6608         break;
6609     }
6610 
6611     //
6612     // Walk the arguments for first-pass checks and collection of information.
6613     //
6614 
6615     int size = 0;
6616     bool constType = true;
6617     bool full = false;
6618     bool overFull = false;
6619     bool matrixInMatrix = false;
6620     bool arrayArg = false;
6621     for (int arg = 0; arg < function.getParamCount(); ++arg) {
6622         if (function[arg].type->isArray()) {
6623             if (function[arg].type->isUnsizedArray()) {
6624                 // Can't construct from an unsized array.
6625                 error(loc, "array argument must be sized", "constructor", "");
6626                 return true;
6627             }
6628             arrayArg = true;
6629         }
6630         if (constructingMatrix && function[arg].type->isMatrix())
6631             matrixInMatrix = true;
6632 
6633         // 'full' will go to true when enough args have been seen.  If we loop
6634         // again, there is an extra argument.
6635         if (full) {
6636             // For vectors and matrices, it's okay to have too many components
6637             // available, but not okay to have unused arguments.
6638             overFull = true;
6639         }
6640 
6641         size += function[arg].type->computeNumComponents();
6642         if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
6643             full = true;
6644 
6645         if (function[arg].type->getQualifier().storage != EvqConst)
6646             constType = false;
6647     }
6648 
6649     if (constType)
6650         type.getQualifier().storage = EvqConst;
6651 
6652     if (type.isArray()) {
6653         if (function.getParamCount() == 0) {
6654             error(loc, "array constructor must have at least one argument", "constructor", "");
6655             return true;
6656         }
6657 
6658         if (type.isUnsizedArray()) {
6659             // auto adapt the constructor type to the number of arguments
6660             type.changeOuterArraySize(function.getParamCount());
6661         } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
6662             error(loc, "array constructor needs one argument per array element", "constructor", "");
6663             return true;
6664         }
6665 
6666         if (type.isArrayOfArrays()) {
6667             // Types have to match, but we're still making the type.
6668             // Finish making the type, and the comparison is done later
6669             // when checking for conversion.
6670             TArraySizes& arraySizes = *type.getArraySizes();
6671 
6672             // At least the dimensionalities have to match.
6673             if (! function[0].type->isArray() ||
6674                 arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
6675                 error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
6676                 return true;
6677             }
6678 
6679             if (arraySizes.isInnerUnsized()) {
6680                 // "Arrays of arrays ..., and the size for any dimension is optional"
6681                 // That means we need to adopt (from the first argument) the other array sizes into the type.
6682                 for (int d = 1; d < arraySizes.getNumDims(); ++d) {
6683                     if (arraySizes.getDimSize(d) == UnsizedArraySize) {
6684                         arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
6685                     }
6686                 }
6687             }
6688         }
6689     }
6690 
6691     // Some array -> array type casts are okay
6692     if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
6693         !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
6694         type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
6695         return false;
6696 
6697     if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
6698         error(loc, "constructing non-array constituent from array argument", "constructor", "");
6699         return true;
6700     }
6701 
6702     if (matrixInMatrix && ! type.isArray()) {
6703         return false;
6704     }
6705 
6706     if (overFull) {
6707         error(loc, "too many arguments", "constructor", "");
6708         return true;
6709     }
6710 
6711     if (op == EOpConstructStruct && ! type.isArray()) {
6712         if (isScalarConstructor(node))
6713             return false;
6714 
6715         // Self-type construction: e.g, we can construct a struct from a single identically typed object.
6716         if (function.getParamCount() == 1 && type == *function[0].type)
6717             return false;
6718 
6719         if ((int)type.getStruct()->size() != function.getParamCount()) {
6720             error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
6721             return true;
6722         }
6723     }
6724 
6725     if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
6726         (op == EOpConstructStruct && size < type.computeNumComponents())) {
6727         error(loc, "not enough data provided for construction", "constructor", "");
6728         return true;
6729     }
6730 
6731     return false;
6732 }
6733 
6734 // See if 'node', in the context of constructing aggregates, is a scalar argument
6735 // to a constructor.
6736 //
isScalarConstructor(const TIntermNode * node)6737 bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
6738 {
6739     // Obviously, it must be a scalar, but an aggregate node might not be fully
6740     // completed yet: holding a sequence of initializers under an aggregate
6741     // would not yet be typed, so don't check it's type.  This corresponds to
6742     // the aggregate operator also not being set yet. (An aggregate operation
6743     // that legitimately yields a scalar will have a getOp() of that operator,
6744     // not EOpNull.)
6745 
6746     return node->getAsTyped() != nullptr &&
6747            node->getAsTyped()->isScalar() &&
6748            (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
6749 }
6750 
6751 // Checks to see if a void variable has been declared and raise an error message for such a case
6752 //
6753 // returns true in case of an error
6754 //
voidErrorCheck(const TSourceLoc & loc,const TString & identifier,const TBasicType basicType)6755 bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
6756 {
6757     if (basicType == EbtVoid) {
6758         error(loc, "illegal use of type 'void'", identifier.c_str(), "");
6759         return true;
6760     }
6761 
6762     return false;
6763 }
6764 
6765 //
6766 // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
6767 //
globalQualifierFix(const TSourceLoc &,TQualifier & qualifier)6768 void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
6769 {
6770     // move from parameter/unknown qualifiers to pipeline in/out qualifiers
6771     switch (qualifier.storage) {
6772     case EvqIn:
6773         qualifier.storage = EvqVaryingIn;
6774         break;
6775     case EvqOut:
6776         qualifier.storage = EvqVaryingOut;
6777         break;
6778     default:
6779         break;
6780     }
6781 }
6782 
6783 //
6784 // Merge characteristics of the 'src' qualifier into the 'dst'.
6785 //
mergeQualifiers(TQualifier & dst,const TQualifier & src)6786 void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
6787 {
6788     // Storage qualification
6789     if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
6790         dst.storage = src.storage;
6791     else if ((dst.storage == EvqIn  && src.storage == EvqOut) ||
6792              (dst.storage == EvqOut && src.storage == EvqIn))
6793         dst.storage = EvqInOut;
6794     else if ((dst.storage == EvqIn    && src.storage == EvqConst) ||
6795              (dst.storage == EvqConst && src.storage == EvqIn))
6796         dst.storage = EvqConstReadOnly;
6797 
6798     // Layout qualifiers
6799     mergeObjectLayoutQualifiers(dst, src, false);
6800 
6801     // individual qualifiers
6802 #define MERGE_SINGLETON(field) dst.field |= src.field;
6803     MERGE_SINGLETON(invariant);
6804     MERGE_SINGLETON(noContraction);
6805     MERGE_SINGLETON(centroid);
6806     MERGE_SINGLETON(smooth);
6807     MERGE_SINGLETON(flat);
6808     MERGE_SINGLETON(nopersp);
6809     MERGE_SINGLETON(patch);
6810     MERGE_SINGLETON(sample);
6811     MERGE_SINGLETON(coherent);
6812     MERGE_SINGLETON(volatil);
6813     MERGE_SINGLETON(restrict);
6814     MERGE_SINGLETON(readonly);
6815     MERGE_SINGLETON(writeonly);
6816     MERGE_SINGLETON(specConstant);
6817     MERGE_SINGLETON(nonUniform);
6818 }
6819 
6820 // used to flatten the sampler type space into a single dimension
6821 // correlates with the declaration of defaultSamplerPrecision[]
computeSamplerTypeIndex(TSampler & sampler)6822 int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
6823 {
6824     int arrayIndex = sampler.arrayed ? 1 : 0;
6825     int shadowIndex = sampler.shadow ? 1 : 0;
6826     int externalIndex = sampler.external ? 1 : 0;
6827 
6828     return EsdNumDims *
6829            (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
6830 }
6831 
6832 //
6833 // Do size checking for an array type's size.
6834 //
arraySizeCheck(const TSourceLoc & loc,TIntermTyped * expr,TArraySize & sizePair)6835 void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
6836 {
6837     bool isConst = false;
6838     sizePair.size = 1;
6839     sizePair.node = nullptr;
6840 
6841     TIntermConstantUnion* constant = expr->getAsConstantUnion();
6842     if (constant) {
6843         // handle true (non-specialization) constant
6844         sizePair.size = constant->getConstArray()[0].getIConst();
6845         isConst = true;
6846     } else {
6847         // see if it's a specialization constant instead
6848         if (expr->getQualifier().isSpecConstant()) {
6849             isConst = true;
6850             sizePair.node = expr;
6851             TIntermSymbol* symbol = expr->getAsSymbolNode();
6852             if (symbol && symbol->getConstArray().size() > 0)
6853                 sizePair.size = symbol->getConstArray()[0].getIConst();
6854         }
6855     }
6856 
6857     if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
6858         error(loc, "array size must be a constant integer expression", "", "");
6859         return;
6860     }
6861 
6862     if (sizePair.size <= 0) {
6863         error(loc, "array size must be a positive integer", "", "");
6864         return;
6865     }
6866 }
6867 
6868 //
6869 // Require array to be completely sized
6870 //
arraySizeRequiredCheck(const TSourceLoc & loc,const TArraySizes & arraySizes)6871 void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
6872 {
6873     if (arraySizes.hasUnsized())
6874         error(loc, "array size required", "", "");
6875 }
6876 
structArrayCheck(const TSourceLoc &,const TType & type)6877 void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
6878 {
6879     const TTypeList& structure = *type.getStruct();
6880     for (int m = 0; m < (int)structure.size(); ++m) {
6881         const TType& member = *structure[m].type;
6882         if (member.isArray())
6883             arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
6884     }
6885 }
6886 
6887 //
6888 // Do all the semantic checking for declaring or redeclaring an array, with and
6889 // without a size, and make the right changes to the symbol table.
6890 //
declareArray(const TSourceLoc & loc,const TString & identifier,const TType & type,TSymbol * & symbol,bool track)6891 void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
6892                                     TSymbol*& symbol, bool track)
6893 {
6894     if (symbol == nullptr) {
6895         bool currentScope;
6896         symbol = symbolTable.find(identifier, nullptr, &currentScope);
6897 
6898         if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
6899             // bad shader (errors already reported) trying to redeclare a built-in name as an array
6900             return;
6901         }
6902         if (symbol == nullptr || ! currentScope) {
6903             //
6904             // Successfully process a new definition.
6905             // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
6906             //
6907             symbol = new TVariable(&identifier, type);
6908             symbolTable.insert(*symbol);
6909             if (track && symbolTable.atGlobalLevel())
6910                 trackLinkage(*symbol);
6911 
6912             return;
6913         }
6914         if (symbol->getAsAnonMember()) {
6915             error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
6916             symbol = nullptr;
6917             return;
6918         }
6919     }
6920 
6921     //
6922     // Process a redeclaration.
6923     //
6924 
6925     if (symbol == nullptr) {
6926         error(loc, "array variable name expected", identifier.c_str(), "");
6927         return;
6928     }
6929 
6930     // redeclareBuiltinVariable() should have already done the copyUp()
6931     TType& existingType = symbol->getWritableType();
6932 
6933     if (existingType.isSizedArray()) {
6934         // be more lenient for input arrays to geometry shaders and tessellation control outputs,
6935         // where the redeclaration is the same size
6936         return;
6937     }
6938 
6939     existingType.updateArraySizes(type);
6940 }
6941 
6942 //
6943 // Enforce non-initializer type/qualifier rules.
6944 //
fixConstInit(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * & initializer)6945 void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
6946                                     TIntermTyped*& initializer)
6947 {
6948     //
6949     // Make the qualifier make sense, given that there is an initializer.
6950     //
6951     if (initializer == nullptr) {
6952         if (type.getQualifier().storage == EvqConst ||
6953             type.getQualifier().storage == EvqConstReadOnly) {
6954             initializer = intermediate.makeAggregate(loc);
6955             warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
6956         }
6957     }
6958 }
6959 
6960 //
6961 // See if the identifier is a built-in symbol that can be redeclared, and if so,
6962 // copy the symbol table's read-only built-in variable to the current
6963 // global level, where it can be modified based on the passed in type.
6964 //
6965 // Returns nullptr if no redeclaration took place; meaning a normal declaration still
6966 // needs to occur for it, not necessarily an error.
6967 //
6968 // Returns a redeclared and type-modified variable if a redeclared occurred.
6969 //
redeclareBuiltinVariable(const TSourceLoc &,const TString & identifier,const TQualifier &,const TShaderQualifiers &)6970 TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
6971                                                     const TQualifier& /*qualifier*/,
6972                                                     const TShaderQualifiers& /*publicType*/)
6973 {
6974     if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
6975         return nullptr;
6976 
6977     return nullptr;
6978 }
6979 
6980 //
6981 // Generate index to the array element in a structure buffer (SSBO)
6982 //
indexStructBufferContent(const TSourceLoc & loc,TIntermTyped * buffer) const6983 TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
6984 {
6985     // Bail out if not a struct buffer
6986     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
6987         return nullptr;
6988 
6989     // Runtime sized array is always the last element.
6990     const TTypeList* bufferStruct = buffer->getType().getStruct();
6991     TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
6992 
6993     TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
6994     argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
6995 
6996     return argArray;
6997 }
6998 
6999 //
7000 // IFF type is a structuredbuffer/byteaddressbuffer type, return the content
7001 // (template) type.   E.g, StructuredBuffer<MyType> -> MyType.  Else return nullptr.
7002 //
getStructBufferContentType(const TType & type) const7003 TType* HlslParseContext::getStructBufferContentType(const TType& type) const
7004 {
7005     if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
7006         return nullptr;
7007 
7008     const int memberCount = (int)type.getStruct()->size();
7009     assert(memberCount > 0);
7010 
7011     TType* contentType = (*type.getStruct())[memberCount-1].type;
7012 
7013     return contentType->isUnsizedArray() ? contentType : nullptr;
7014 }
7015 
7016 //
7017 // If an existing struct buffer has a sharable type, then share it.
7018 //
shareStructBufferType(TType & type)7019 void HlslParseContext::shareStructBufferType(TType& type)
7020 {
7021     // PackOffset must be equivalent to share types on a per-member basis.
7022     // Note: cannot use auto type due to recursion.  Thus, this is a std::function.
7023     const std::function<bool(TType& lhs, TType& rhs)>
7024     compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
7025         if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
7026             return false;
7027 
7028         if (lhs.isStruct() != rhs.isStruct())
7029             return false;
7030 
7031         if (lhs.getQualifier().builtIn != rhs.getQualifier().builtIn)
7032             return false;
7033 
7034         if (lhs.isStruct() && rhs.isStruct()) {
7035             if (lhs.getStruct()->size() != rhs.getStruct()->size())
7036                 return false;
7037 
7038             for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
7039                 if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
7040                     return false;
7041         }
7042 
7043         return true;
7044     };
7045 
7046     // We need to compare certain qualifiers in addition to the type.
7047     const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
7048         if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
7049             return false;
7050 
7051         // If both are structures, recursively look for packOffset equality
7052         // as well as type equality.
7053         return compareQualifiers(lhs, rhs) && lhs == rhs;
7054     };
7055 
7056     // This is an exhaustive O(N) search, but real world shaders have
7057     // only a small number of these.
7058     for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
7059         // If the deep structure matches, modulo qualifiers, use it
7060         if (typeEqual(*structBufferTypes[idx], type)) {
7061             type.shallowCopy(*structBufferTypes[idx]);
7062             return;
7063         }
7064     }
7065 
7066     // Otherwise, remember it:
7067     TType* typeCopy = new TType;
7068     typeCopy->shallowCopy(type);
7069     structBufferTypes.push_back(typeCopy);
7070 }
7071 
paramFix(TType & type)7072 void HlslParseContext::paramFix(TType& type)
7073 {
7074     switch (type.getQualifier().storage) {
7075     case EvqConst:
7076         type.getQualifier().storage = EvqConstReadOnly;
7077         break;
7078     case EvqGlobal:
7079     case EvqTemporary:
7080         type.getQualifier().storage = EvqIn;
7081         break;
7082     case EvqBuffer:
7083         {
7084             // SSBO parameter.  These do not go through the declareBlock path since they are fn parameters.
7085             correctUniform(type.getQualifier());
7086             TQualifier bufferQualifier = globalBufferDefaults;
7087             mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
7088             bufferQualifier.storage = type.getQualifier().storage;
7089             bufferQualifier.readonly = type.getQualifier().readonly;
7090             bufferQualifier.coherent = type.getQualifier().coherent;
7091             bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
7092             type.getQualifier() = bufferQualifier;
7093             break;
7094         }
7095     default:
7096         break;
7097     }
7098 }
7099 
specializationCheck(const TSourceLoc & loc,const TType & type,const char * op)7100 void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
7101 {
7102     if (type.containsSpecializationSize())
7103         error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
7104 }
7105 
7106 //
7107 // Layout qualifier stuff.
7108 //
7109 
7110 // Put the id's layout qualification into the public type, for qualifiers not having a number set.
7111 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id)7112 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
7113 {
7114     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7115 
7116     if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
7117         qualifier.layoutMatrix = ElmRowMajor;
7118         return;
7119     }
7120     if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
7121         qualifier.layoutMatrix = ElmColumnMajor;
7122         return;
7123     }
7124     if (id == "push_constant") {
7125         requireVulkan(loc, "push_constant");
7126         qualifier.layoutPushConstant = true;
7127         return;
7128     }
7129     if (language == EShLangGeometry || language == EShLangTessEvaluation) {
7130         if (id == TQualifier::getGeometryString(ElgTriangles)) {
7131             // publicType.shaderQualifiers.geometry = ElgTriangles;
7132             warn(loc, "ignored", id.c_str(), "");
7133             return;
7134         }
7135         if (language == EShLangGeometry) {
7136             if (id == TQualifier::getGeometryString(ElgPoints)) {
7137                 // publicType.shaderQualifiers.geometry = ElgPoints;
7138                 warn(loc, "ignored", id.c_str(), "");
7139                 return;
7140             }
7141             if (id == TQualifier::getGeometryString(ElgLineStrip)) {
7142                 // publicType.shaderQualifiers.geometry = ElgLineStrip;
7143                 warn(loc, "ignored", id.c_str(), "");
7144                 return;
7145             }
7146             if (id == TQualifier::getGeometryString(ElgLines)) {
7147                 // publicType.shaderQualifiers.geometry = ElgLines;
7148                 warn(loc, "ignored", id.c_str(), "");
7149                 return;
7150             }
7151             if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
7152                 // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
7153                 warn(loc, "ignored", id.c_str(), "");
7154                 return;
7155             }
7156             if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
7157                 // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
7158                 warn(loc, "ignored", id.c_str(), "");
7159                 return;
7160             }
7161             if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
7162                 // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
7163                 warn(loc, "ignored", id.c_str(), "");
7164                 return;
7165             }
7166         } else {
7167             assert(language == EShLangTessEvaluation);
7168 
7169             // input primitive
7170             if (id == TQualifier::getGeometryString(ElgTriangles)) {
7171                 // publicType.shaderQualifiers.geometry = ElgTriangles;
7172                 warn(loc, "ignored", id.c_str(), "");
7173                 return;
7174             }
7175             if (id == TQualifier::getGeometryString(ElgQuads)) {
7176                 // publicType.shaderQualifiers.geometry = ElgQuads;
7177                 warn(loc, "ignored", id.c_str(), "");
7178                 return;
7179             }
7180             if (id == TQualifier::getGeometryString(ElgIsolines)) {
7181                 // publicType.shaderQualifiers.geometry = ElgIsolines;
7182                 warn(loc, "ignored", id.c_str(), "");
7183                 return;
7184             }
7185 
7186             // vertex spacing
7187             if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
7188                 // publicType.shaderQualifiers.spacing = EvsEqual;
7189                 warn(loc, "ignored", id.c_str(), "");
7190                 return;
7191             }
7192             if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
7193                 // publicType.shaderQualifiers.spacing = EvsFractionalEven;
7194                 warn(loc, "ignored", id.c_str(), "");
7195                 return;
7196             }
7197             if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
7198                 // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
7199                 warn(loc, "ignored", id.c_str(), "");
7200                 return;
7201             }
7202 
7203             // triangle order
7204             if (id == TQualifier::getVertexOrderString(EvoCw)) {
7205                 // publicType.shaderQualifiers.order = EvoCw;
7206                 warn(loc, "ignored", id.c_str(), "");
7207                 return;
7208             }
7209             if (id == TQualifier::getVertexOrderString(EvoCcw)) {
7210                 // publicType.shaderQualifiers.order = EvoCcw;
7211                 warn(loc, "ignored", id.c_str(), "");
7212                 return;
7213             }
7214 
7215             // point mode
7216             if (id == "point_mode") {
7217                 // publicType.shaderQualifiers.pointMode = true;
7218                 warn(loc, "ignored", id.c_str(), "");
7219                 return;
7220             }
7221         }
7222     }
7223     if (language == EShLangFragment) {
7224         if (id == "origin_upper_left") {
7225             // publicType.shaderQualifiers.originUpperLeft = true;
7226             warn(loc, "ignored", id.c_str(), "");
7227             return;
7228         }
7229         if (id == "pixel_center_integer") {
7230             // publicType.shaderQualifiers.pixelCenterInteger = true;
7231             warn(loc, "ignored", id.c_str(), "");
7232             return;
7233         }
7234         if (id == "early_fragment_tests") {
7235             // publicType.shaderQualifiers.earlyFragmentTests = true;
7236             warn(loc, "ignored", id.c_str(), "");
7237             return;
7238         }
7239         for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
7240             if (id == TQualifier::getLayoutDepthString(depth)) {
7241                 // publicType.shaderQualifiers.layoutDepth = depth;
7242                 warn(loc, "ignored", id.c_str(), "");
7243                 return;
7244             }
7245         }
7246         if (id.compare(0, 13, "blend_support") == 0) {
7247             bool found = false;
7248             for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
7249                 if (id == TQualifier::getBlendEquationString(be)) {
7250                     requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
7251                     intermediate.addBlendEquation(be);
7252                     // publicType.shaderQualifiers.blendEquation = true;
7253                     warn(loc, "ignored", id.c_str(), "");
7254                     found = true;
7255                     break;
7256                 }
7257             }
7258             if (! found)
7259                 error(loc, "unknown blend equation", "blend_support", "");
7260             return;
7261         }
7262     }
7263     error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
7264 }
7265 
7266 // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
7267 // This is before we know any type information for error checking.
setLayoutQualifier(const TSourceLoc & loc,TQualifier & qualifier,TString & id,const TIntermTyped * node)7268 void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
7269                                           const TIntermTyped* node)
7270 {
7271     const char* feature = "layout-id value";
7272     // const char* nonLiteralFeature = "non-literal layout-id value";
7273 
7274     integerCheck(node, feature);
7275     const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
7276     int value = 0;
7277     if (constUnion) {
7278         value = constUnion->getConstArray()[0].getIConst();
7279     }
7280 
7281     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
7282 
7283     if (id == "offset") {
7284         qualifier.layoutOffset = value;
7285         return;
7286     } else if (id == "align") {
7287         // "The specified alignment must be a power of 2, or a compile-time error results."
7288         if (! IsPow2(value))
7289             error(loc, "must be a power of 2", "align", "");
7290         else
7291             qualifier.layoutAlign = value;
7292         return;
7293     } else if (id == "location") {
7294         if ((unsigned int)value >= TQualifier::layoutLocationEnd)
7295             error(loc, "location is too large", id.c_str(), "");
7296         else
7297             qualifier.layoutLocation = value;
7298         return;
7299     } else if (id == "set") {
7300         if ((unsigned int)value >= TQualifier::layoutSetEnd)
7301             error(loc, "set is too large", id.c_str(), "");
7302         else
7303             qualifier.layoutSet = value;
7304         return;
7305     } else if (id == "binding") {
7306         if ((unsigned int)value >= TQualifier::layoutBindingEnd)
7307             error(loc, "binding is too large", id.c_str(), "");
7308         else
7309             qualifier.layoutBinding = value;
7310         return;
7311     } else if (id == "component") {
7312         if ((unsigned)value >= TQualifier::layoutComponentEnd)
7313             error(loc, "component is too large", id.c_str(), "");
7314         else
7315             qualifier.layoutComponent = value;
7316         return;
7317     } else if (id.compare(0, 4, "xfb_") == 0) {
7318         // "Any shader making any static use (after preprocessing) of any of these
7319         // *xfb_* qualifiers will cause the shader to be in a transform feedback
7320         // capturing mode and hence responsible for describing the transform feedback
7321         // setup."
7322         intermediate.setXfbMode();
7323         if (id == "xfb_buffer") {
7324             // "It is a compile-time error to specify an *xfb_buffer* that is greater than
7325             // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
7326             if (value >= resources.maxTransformFeedbackBuffers)
7327                 error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
7328                       resources.maxTransformFeedbackBuffers);
7329             if (value >= (int)TQualifier::layoutXfbBufferEnd)
7330                 error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
7331             else
7332                 qualifier.layoutXfbBuffer = value;
7333             return;
7334         } else if (id == "xfb_offset") {
7335             if (value >= (int)TQualifier::layoutXfbOffsetEnd)
7336                 error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
7337             else
7338                 qualifier.layoutXfbOffset = value;
7339             return;
7340         } else if (id == "xfb_stride") {
7341             // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
7342             // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
7343             if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
7344                 error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
7345                       resources.maxTransformFeedbackInterleavedComponents);
7346             else if (value >= (int)TQualifier::layoutXfbStrideEnd)
7347                 error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
7348             if (value < (int)TQualifier::layoutXfbStrideEnd)
7349                 qualifier.layoutXfbStride = value;
7350             return;
7351         }
7352     }
7353 
7354     if (id == "input_attachment_index") {
7355         requireVulkan(loc, "input_attachment_index");
7356         if (value >= (int)TQualifier::layoutAttachmentEnd)
7357             error(loc, "attachment index is too large", id.c_str(), "");
7358         else
7359             qualifier.layoutAttachment = value;
7360         return;
7361     }
7362     if (id == "constant_id") {
7363         setSpecConstantId(loc, qualifier, value);
7364         return;
7365     }
7366 
7367     switch (language) {
7368     case EShLangVertex:
7369         break;
7370 
7371     case EShLangTessControl:
7372         if (id == "vertices") {
7373             if (value == 0)
7374                 error(loc, "must be greater than 0", "vertices", "");
7375             else
7376                 // publicType.shaderQualifiers.vertices = value;
7377                 warn(loc, "ignored", id.c_str(), "");
7378             return;
7379         }
7380         break;
7381 
7382     case EShLangTessEvaluation:
7383         break;
7384 
7385     case EShLangGeometry:
7386         if (id == "invocations") {
7387             if (value == 0)
7388                 error(loc, "must be at least 1", "invocations", "");
7389             else
7390                 // publicType.shaderQualifiers.invocations = value;
7391                 warn(loc, "ignored", id.c_str(), "");
7392             return;
7393         }
7394         if (id == "max_vertices") {
7395             // publicType.shaderQualifiers.vertices = value;
7396             warn(loc, "ignored", id.c_str(), "");
7397             if (value > resources.maxGeometryOutputVertices)
7398                 error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
7399             return;
7400         }
7401         if (id == "stream") {
7402             qualifier.layoutStream = value;
7403             return;
7404         }
7405         break;
7406 
7407     case EShLangFragment:
7408         if (id == "index") {
7409             qualifier.layoutIndex = value;
7410             return;
7411         }
7412         break;
7413 
7414     case EShLangCompute:
7415         if (id.compare(0, 11, "local_size_") == 0) {
7416             if (id == "local_size_x") {
7417                 // publicType.shaderQualifiers.localSize[0] = value;
7418                 warn(loc, "ignored", id.c_str(), "");
7419                 return;
7420             }
7421             if (id == "local_size_y") {
7422                 // publicType.shaderQualifiers.localSize[1] = value;
7423                 warn(loc, "ignored", id.c_str(), "");
7424                 return;
7425             }
7426             if (id == "local_size_z") {
7427                 // publicType.shaderQualifiers.localSize[2] = value;
7428                 warn(loc, "ignored", id.c_str(), "");
7429                 return;
7430             }
7431             if (spvVersion.spv != 0) {
7432                 if (id == "local_size_x_id") {
7433                     // publicType.shaderQualifiers.localSizeSpecId[0] = value;
7434                     warn(loc, "ignored", id.c_str(), "");
7435                     return;
7436                 }
7437                 if (id == "local_size_y_id") {
7438                     // publicType.shaderQualifiers.localSizeSpecId[1] = value;
7439                     warn(loc, "ignored", id.c_str(), "");
7440                     return;
7441                 }
7442                 if (id == "local_size_z_id") {
7443                     // publicType.shaderQualifiers.localSizeSpecId[2] = value;
7444                     warn(loc, "ignored", id.c_str(), "");
7445                     return;
7446                 }
7447             }
7448         }
7449         break;
7450 
7451     default:
7452         break;
7453     }
7454 
7455     error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
7456 }
7457 
setSpecConstantId(const TSourceLoc & loc,TQualifier & qualifier,int value)7458 void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
7459 {
7460     if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
7461         error(loc, "specialization-constant id is too large", "constant_id", "");
7462     } else {
7463         qualifier.layoutSpecConstantId = value;
7464         qualifier.specConstant = true;
7465         if (! intermediate.addUsedConstantId(value))
7466             error(loc, "specialization-constant id already used", "constant_id", "");
7467     }
7468     return;
7469 }
7470 
7471 // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
7472 //
7473 // "More than one layout qualifier may appear in a single declaration.
7474 // Additionally, the same layout-qualifier-name can occur multiple times
7475 // within a layout qualifier or across multiple layout qualifiers in the
7476 // same declaration. When the same layout-qualifier-name occurs
7477 // multiple times, in a single declaration, the last occurrence overrides
7478 // the former occurrence(s).  Further, if such a layout-qualifier-name
7479 // will effect subsequent declarations or other observable behavior, it
7480 // is only the last occurrence that will have any effect, behaving as if
7481 // the earlier occurrence(s) within the declaration are not present.
7482 // This is also true for overriding layout-qualifier-names, where one
7483 // overrides the other (e.g., row_major vs. column_major); only the last
7484 // occurrence has any effect."
7485 //
mergeObjectLayoutQualifiers(TQualifier & dst,const TQualifier & src,bool inheritOnly)7486 void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
7487 {
7488     if (src.hasMatrix())
7489         dst.layoutMatrix = src.layoutMatrix;
7490     if (src.hasPacking())
7491         dst.layoutPacking = src.layoutPacking;
7492 
7493     if (src.hasStream())
7494         dst.layoutStream = src.layoutStream;
7495 
7496     if (src.hasFormat())
7497         dst.layoutFormat = src.layoutFormat;
7498 
7499     if (src.hasXfbBuffer())
7500         dst.layoutXfbBuffer = src.layoutXfbBuffer;
7501 
7502     if (src.hasAlign())
7503         dst.layoutAlign = src.layoutAlign;
7504 
7505     if (! inheritOnly) {
7506         if (src.hasLocation())
7507             dst.layoutLocation = src.layoutLocation;
7508         if (src.hasComponent())
7509             dst.layoutComponent = src.layoutComponent;
7510         if (src.hasIndex())
7511             dst.layoutIndex = src.layoutIndex;
7512 
7513         if (src.hasOffset())
7514             dst.layoutOffset = src.layoutOffset;
7515 
7516         if (src.hasSet())
7517             dst.layoutSet = src.layoutSet;
7518         if (src.layoutBinding != TQualifier::layoutBindingEnd)
7519             dst.layoutBinding = src.layoutBinding;
7520 
7521         if (src.hasXfbStride())
7522             dst.layoutXfbStride = src.layoutXfbStride;
7523         if (src.hasXfbOffset())
7524             dst.layoutXfbOffset = src.layoutXfbOffset;
7525         if (src.hasAttachment())
7526             dst.layoutAttachment = src.layoutAttachment;
7527         if (src.hasSpecConstantId())
7528             dst.layoutSpecConstantId = src.layoutSpecConstantId;
7529 
7530         if (src.layoutPushConstant)
7531             dst.layoutPushConstant = true;
7532     }
7533 }
7534 
7535 
7536 //
7537 // Look up a function name in the symbol table, and make sure it is a function.
7538 //
7539 // First, look for an exact match.  If there is none, use the generic selector
7540 // TParseContextBase::selectFunction() to find one, parameterized by the
7541 // convertible() and better() predicates defined below.
7542 //
7543 // Return the function symbol if found, otherwise nullptr.
7544 //
findFunction(const TSourceLoc & loc,TFunction & call,bool & builtIn,int & thisDepth,TIntermTyped * & args)7545 const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
7546                                                 TIntermTyped*& args)
7547 {
7548     if (symbolTable.isFunctionNameVariable(call.getName())) {
7549         error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
7550         return nullptr;
7551     }
7552 
7553     // first, look for an exact match
7554     bool dummyScope;
7555     TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
7556     if (symbol)
7557         return symbol->getAsFunction();
7558 
7559     // no exact match, use the generic selector, parameterized by the GLSL rules
7560 
7561     // create list of candidates to send
7562     TVector<const TFunction*> candidateList;
7563     symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
7564 
7565     // These built-in ops can accept any type, so we bypass the argument selection
7566     if (candidateList.size() == 1 && builtIn &&
7567         (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
7568          candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
7569          candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
7570          candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
7571          candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
7572         return candidateList[0];
7573     }
7574 
7575     bool allowOnlyUpConversions = true;
7576 
7577     // can 'from' convert to 'to'?
7578     const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
7579         if (from == to)
7580             return true;
7581 
7582         // no aggregate conversions
7583         if (from.isArray()  || to.isArray() ||
7584             from.isStruct() || to.isStruct())
7585             return false;
7586 
7587         switch (op) {
7588         case EOpInterlockedAdd:
7589         case EOpInterlockedAnd:
7590         case EOpInterlockedCompareExchange:
7591         case EOpInterlockedCompareStore:
7592         case EOpInterlockedExchange:
7593         case EOpInterlockedMax:
7594         case EOpInterlockedMin:
7595         case EOpInterlockedOr:
7596         case EOpInterlockedXor:
7597             // We do not promote the texture or image type for these ocodes.  Normally that would not
7598             // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
7599             // stage it's merely e.g, a basic integer type.
7600             //
7601             // Instead, we want to promote other arguments, but stay within the same family.  In other
7602             // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
7603             // but it is allowed to promote its other arguments.
7604             if (arg == 0)
7605                 return false;
7606             break;
7607         case EOpMethodSample:
7608         case EOpMethodSampleBias:
7609         case EOpMethodSampleCmp:
7610         case EOpMethodSampleCmpLevelZero:
7611         case EOpMethodSampleGrad:
7612         case EOpMethodSampleLevel:
7613         case EOpMethodLoad:
7614         case EOpMethodGetDimensions:
7615         case EOpMethodGetSamplePosition:
7616         case EOpMethodGather:
7617         case EOpMethodCalculateLevelOfDetail:
7618         case EOpMethodCalculateLevelOfDetailUnclamped:
7619         case EOpMethodGatherRed:
7620         case EOpMethodGatherGreen:
7621         case EOpMethodGatherBlue:
7622         case EOpMethodGatherAlpha:
7623         case EOpMethodGatherCmp:
7624         case EOpMethodGatherCmpRed:
7625         case EOpMethodGatherCmpGreen:
7626         case EOpMethodGatherCmpBlue:
7627         case EOpMethodGatherCmpAlpha:
7628         case EOpMethodAppend:
7629         case EOpMethodRestartStrip:
7630             // those are method calls, the object type can not be changed
7631             // they are equal if the dim and type match (is dim sufficient?)
7632             if (arg == 0)
7633                 return from.getSampler().type == to.getSampler().type &&
7634                        from.getSampler().arrayed == to.getSampler().arrayed &&
7635                        from.getSampler().shadow == to.getSampler().shadow &&
7636                        from.getSampler().ms == to.getSampler().ms &&
7637                        from.getSampler().dim == to.getSampler().dim;
7638             break;
7639         default:
7640             break;
7641         }
7642 
7643         // basic types have to be convertible
7644         if (allowOnlyUpConversions)
7645             if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
7646                 return false;
7647 
7648         // shapes have to be convertible
7649         if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
7650             (from.isScalarOrVec1() && to.isVector())    ||
7651             (from.isScalarOrVec1() && to.isMatrix())    ||
7652             (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
7653             return true;
7654 
7655         // TODO: what are the matrix rules? they go here
7656 
7657         return false;
7658     };
7659 
7660     // Is 'to2' a better conversion than 'to1'?
7661     // Ties should not be considered as better.
7662     // Assumes 'convertible' already said true.
7663     const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
7664         // exact match is always better than mismatch
7665         if (from == to2)
7666             return from != to1;
7667         if (from == to1)
7668             return false;
7669 
7670         // shape changes are always worse
7671         if (from.isScalar() || from.isVector()) {
7672             if (from.getVectorSize() == to2.getVectorSize() &&
7673                 from.getVectorSize() != to1.getVectorSize())
7674                 return true;
7675             if (from.getVectorSize() == to1.getVectorSize() &&
7676                 from.getVectorSize() != to2.getVectorSize())
7677                 return false;
7678         }
7679 
7680         // Handle sampler betterness: An exact sampler match beats a non-exact match.
7681         // (If we just looked at basic type, all EbtSamplers would look the same).
7682         // If any type is not a sampler, just use the linearize function below.
7683         if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
7684             // We can ignore the vector size in the comparison.
7685             TSampler to1Sampler = to1.getSampler();
7686             TSampler to2Sampler = to2.getSampler();
7687 
7688             to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
7689 
7690             if (from.getSampler() == to2Sampler)
7691                 return from.getSampler() != to1Sampler;
7692             if (from.getSampler() == to1Sampler)
7693                 return false;
7694         }
7695 
7696         // Might or might not be changing shape, which means basic type might
7697         // or might not match, so within that, the question is how big a
7698         // basic-type conversion is being done.
7699         //
7700         // Use a hierarchy of domains, translated to order of magnitude
7701         // in a linearized view:
7702         //   - floating-point vs. integer
7703         //     - 32 vs. 64 bit (or width in general)
7704         //       - bool vs. non bool
7705         //         - signed vs. not signed
7706         const auto linearize = [](const TBasicType& basicType) -> int {
7707             switch (basicType) {
7708             case EbtBool:     return 1;
7709             case EbtInt:      return 10;
7710             case EbtUint:     return 11;
7711             case EbtInt64:    return 20;
7712             case EbtUint64:   return 21;
7713             case EbtFloat:    return 100;
7714             case EbtDouble:   return 110;
7715             default:          return 0;
7716             }
7717         };
7718 
7719         return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
7720                abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
7721     };
7722 
7723     // for ambiguity reporting
7724     bool tie = false;
7725 
7726     // send to the generic selector
7727     const TFunction* bestMatch = nullptr;
7728 
7729     // printf has var args and is in the symbol table as "printf()",
7730     // mangled to "printf("
7731     if (call.getName() == "printf") {
7732         TSymbol* symbol = symbolTable.find("printf(", &builtIn);
7733         if (symbol)
7734             return symbol->getAsFunction();
7735     }
7736 
7737     bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7738 
7739     if (bestMatch == nullptr) {
7740         // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
7741         // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
7742         // upconversions possible.
7743         allowOnlyUpConversions = false;
7744         bestMatch = selectFunction(candidateList, call, convertible, better, tie);
7745     }
7746 
7747     if (bestMatch == nullptr) {
7748         error(loc, "no matching overloaded function found", call.getName().c_str(), "");
7749         return nullptr;
7750     }
7751 
7752     // For built-ins, we can convert across the arguments.  This will happen in several steps:
7753     // Step 1:  If there's an exact match, use it.
7754     // Step 2a: Otherwise, get the operator from the best match and promote arguments:
7755     // Step 2b: reconstruct the TFunction based on the new arg types
7756     // Step 3:  Re-select after type promotion is applied, to find proper candidate.
7757     if (builtIn) {
7758         // Step 1: If there's an exact match, use it.
7759         if (call.getMangledName() == bestMatch->getMangledName())
7760             return bestMatch;
7761 
7762         // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
7763         // are that kind of operator.
7764         if (args != nullptr) {
7765             // The arg list can be a unary node, or an aggregate.  We have to handle both.
7766             // We will use the normal promote() facilities, which require an interm node.
7767             TIntermOperator* promote = nullptr;
7768 
7769             if (call.getParamCount() == 1) {
7770                 promote = new TIntermUnary(bestMatch->getBuiltInOp());
7771                 promote->getAsUnaryNode()->setOperand(args->getAsTyped());
7772             } else {
7773                 promote = new TIntermAggregate(bestMatch->getBuiltInOp());
7774                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7775             }
7776 
7777             if (! intermediate.promote(promote))
7778                 return nullptr;
7779 
7780             // Obtain the promoted arg list.
7781             if (call.getParamCount() == 1) {
7782                 args = promote->getAsUnaryNode()->getOperand();
7783             } else {
7784                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
7785             }
7786         }
7787 
7788         // Step 2b: reconstruct the TFunction based on the new arg types
7789         TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
7790 
7791         if (args->getAsAggregate()) {
7792             // Handle aggregates: put all args into the new function call
7793             for (int arg = 0; arg < int(args->getAsAggregate()->getSequence().size()); ++arg) {
7794                 // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
7795                 TParameter param = { nullptr, new TType, nullptr };
7796                 param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
7797                 convertedCall.addParameter(param);
7798             }
7799         } else if (args->getAsUnaryNode()) {
7800             // Handle unaries: put all args into the new function call
7801             TParameter param = { nullptr, new TType, nullptr };
7802             param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
7803             convertedCall.addParameter(param);
7804         } else if (args->getAsTyped()) {
7805             // Handle bare e.g, floats, not in an aggregate.
7806             TParameter param = { nullptr, new TType, nullptr };
7807             param.type->shallowCopy(args->getAsTyped()->getType());
7808             convertedCall.addParameter(param);
7809         } else {
7810             assert(0); // unknown argument list.
7811             return nullptr;
7812         }
7813 
7814         // Step 3: Re-select after type promotion, to find proper candidate
7815         // send to the generic selector
7816         bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
7817 
7818         // At this point, there should be no tie.
7819     }
7820 
7821     if (tie)
7822         error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
7823 
7824     // Append default parameter values if needed
7825     if (!tie && bestMatch != nullptr) {
7826         for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
7827             handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
7828         }
7829     }
7830 
7831     return bestMatch;
7832 }
7833 
7834 //
7835 // Do everything necessary to handle a typedef declaration, for a single symbol.
7836 //
7837 // 'parseType' is the type part of the declaration (to the left)
7838 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7839 //
declareTypedef(const TSourceLoc & loc,const TString & identifier,const TType & parseType)7840 void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
7841 {
7842     TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
7843     if (! symbolTable.insert(*typeSymbol))
7844         error(loc, "name already defined", "typedef", identifier.c_str());
7845 }
7846 
7847 // Do everything necessary to handle a struct declaration, including
7848 // making IO aliases because HLSL allows mixed IO in a struct that specializes
7849 // based on the usage (input, output, uniform, none).
declareStruct(const TSourceLoc & loc,TString & structName,TType & type)7850 void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
7851 {
7852     // If it was named, which means the type can be reused later, add
7853     // it to the symbol table.  (Unless it's a block, in which
7854     // case the name is not a type.)
7855     if (type.getBasicType() == EbtBlock || structName.size() == 0)
7856         return;
7857 
7858     TVariable* userTypeDef = new TVariable(&structName, type, true);
7859     if (! symbolTable.insert(*userTypeDef)) {
7860         error(loc, "redefinition", structName.c_str(), "struct");
7861         return;
7862     }
7863 
7864     // See if we need IO aliases for the structure typeList
7865 
7866     const auto condAlloc = [](bool pred, TTypeList*& list) {
7867         if (pred && list == nullptr)
7868             list = new TTypeList;
7869     };
7870 
7871     tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
7872     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7873         condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
7874         condAlloc(  hasInput(member->type->getQualifier()), newLists.input);
7875         condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
7876 
7877         if (member->type->isStruct()) {
7878             auto it = ioTypeMap.find(member->type->getStruct());
7879             if (it != ioTypeMap.end()) {
7880                 condAlloc(it->second.uniform != nullptr, newLists.uniform);
7881                 condAlloc(it->second.input   != nullptr, newLists.input);
7882                 condAlloc(it->second.output  != nullptr, newLists.output);
7883             }
7884         }
7885     }
7886     if (newLists.uniform == nullptr &&
7887         newLists.input   == nullptr &&
7888         newLists.output  == nullptr) {
7889         // Won't do any IO caching, clear up the type and get out now.
7890         for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
7891             clearUniformInputOutput(member->type->getQualifier());
7892         return;
7893     }
7894 
7895     // We have IO involved.
7896 
7897     // Make a pure typeList for the symbol table, and cache side copies of IO versions.
7898     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
7899         const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
7900             if (s != nullptr) {
7901                 ioMember.type = new TType;
7902                 ioMember.type->shallowCopy(*member->type);
7903                 ioMember.type->setStruct(s);
7904             }
7905         };
7906         const auto newMember = [&](TTypeLoc& m) {
7907             if (m.type == nullptr) {
7908                 m.type = new TType;
7909                 m.type->shallowCopy(*member->type);
7910             }
7911         };
7912 
7913         TTypeLoc newUniformMember = { nullptr, member->loc };
7914         TTypeLoc newInputMember   = { nullptr, member->loc };
7915         TTypeLoc newOutputMember  = { nullptr, member->loc };
7916         if (member->type->isStruct()) {
7917             // swap in an IO child if there is one
7918             auto it = ioTypeMap.find(member->type->getStruct());
7919             if (it != ioTypeMap.end()) {
7920                 inheritStruct(it->second.uniform, newUniformMember);
7921                 inheritStruct(it->second.input,   newInputMember);
7922                 inheritStruct(it->second.output,  newOutputMember);
7923             }
7924         }
7925         if (newLists.uniform) {
7926             newMember(newUniformMember);
7927 
7928             // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
7929             if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
7930                 newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
7931 
7932             correctUniform(newUniformMember.type->getQualifier());
7933             newLists.uniform->push_back(newUniformMember);
7934         }
7935         if (newLists.input) {
7936             newMember(newInputMember);
7937             correctInput(newInputMember.type->getQualifier());
7938             newLists.input->push_back(newInputMember);
7939         }
7940         if (newLists.output) {
7941             newMember(newOutputMember);
7942             correctOutput(newOutputMember.type->getQualifier());
7943             newLists.output->push_back(newOutputMember);
7944         }
7945 
7946         // make original pure
7947         clearUniformInputOutput(member->type->getQualifier());
7948     }
7949     ioTypeMap[type.getStruct()] = newLists;
7950 }
7951 
7952 // Lookup a user-type by name.
7953 // If found, fill in the type and return the defining symbol.
7954 // If not found, return nullptr.
lookupUserType(const TString & typeName,TType & type)7955 TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
7956 {
7957     TSymbol* symbol = symbolTable.find(typeName);
7958     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
7959         type.shallowCopy(symbol->getType());
7960         return symbol;
7961     } else
7962         return nullptr;
7963 }
7964 
7965 //
7966 // Do everything necessary to handle a variable (non-block) declaration.
7967 // Either redeclaring a variable, or making a new one, updating the symbol
7968 // table, and all error checking.
7969 //
7970 // Returns a subtree node that computes an initializer, if needed.
7971 // Returns nullptr if there is no code to execute for initialization.
7972 //
7973 // 'parseType' is the type part of the declaration (to the left)
7974 // 'arraySizes' is the arrayness tagged on the identifier (to the right)
7975 //
declareVariable(const TSourceLoc & loc,const TString & identifier,TType & type,TIntermTyped * initializer)7976 TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
7977                                                TIntermTyped* initializer)
7978 {
7979     if (voidErrorCheck(loc, identifier, type.getBasicType()))
7980         return nullptr;
7981 
7982     // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
7983     // This test is implicitly recursive, because initializers propagate constness
7984     // up the aggregate node tree during creation.  E.g, for:
7985     //    { { 1, 2 }, { 3, 4 } }
7986     // the initializer list is marked EvqConst at the top node, and remains so here.  However:
7987     //    { 1, { myvar, 2 }, 3 }
7988     // is not a const intializer, and still becomes EvqGlobal here.
7989 
7990     const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
7991 
7992     if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
7993         // Force to global
7994         type.getQualifier().storage = EvqGlobal;
7995     }
7996 
7997     // make const and initialization consistent
7998     fixConstInit(loc, identifier, type, initializer);
7999 
8000     // Check for redeclaration of built-ins and/or attempting to declare a reserved name
8001     TSymbol* symbol = nullptr;
8002 
8003     inheritGlobalDefaults(type.getQualifier());
8004 
8005     const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
8006 
8007     // correct IO in the type
8008     switch (type.getQualifier().storage) {
8009     case EvqGlobal:
8010     case EvqTemporary:
8011         clearUniformInputOutput(type.getQualifier());
8012         break;
8013     case EvqUniform:
8014     case EvqBuffer:
8015         correctUniform(type.getQualifier());
8016         if (type.isStruct()) {
8017             auto it = ioTypeMap.find(type.getStruct());
8018             if (it != ioTypeMap.end())
8019                 type.setStruct(it->second.uniform);
8020         }
8021 
8022         break;
8023     default:
8024         break;
8025     }
8026 
8027     // Declare the variable
8028     if (type.isArray()) {
8029         // array case
8030         declareArray(loc, identifier, type, symbol, !flattenVar);
8031     } else {
8032         // non-array case
8033         if (symbol == nullptr)
8034             symbol = declareNonArray(loc, identifier, type, !flattenVar);
8035         else if (type != symbol->getType())
8036             error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
8037     }
8038 
8039     if (symbol == nullptr)
8040         return nullptr;
8041 
8042     if (flattenVar)
8043         flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
8044 
8045     TVariable* variable = symbol->getAsVariable();
8046 
8047     if (initializer == nullptr) {
8048         if (intermediate.getDebugInfo())
8049             return executeDeclaration(loc, variable);
8050         else
8051             return nullptr;
8052     }
8053 
8054     // Deal with initializer
8055     if (variable == nullptr) {
8056         error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
8057         return nullptr;
8058     }
8059     return executeInitializer(loc, initializer, variable);
8060 }
8061 
8062 // Pick up global defaults from the provide global defaults into dst.
inheritGlobalDefaults(TQualifier & dst) const8063 void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
8064 {
8065     if (dst.storage == EvqVaryingOut) {
8066         if (! dst.hasStream() && language == EShLangGeometry)
8067             dst.layoutStream = globalOutputDefaults.layoutStream;
8068         if (! dst.hasXfbBuffer())
8069             dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
8070     }
8071 }
8072 
8073 //
8074 // Make an internal-only variable whose name is for debug purposes only
8075 // and won't be searched for.  Callers will only use the return value to use
8076 // the variable, not the name to look it up.  It is okay if the name
8077 // is the same as other names; there won't be any conflict.
8078 //
makeInternalVariable(const char * name,const TType & type) const8079 TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
8080 {
8081     TString* nameString = NewPoolTString(name);
8082     TVariable* variable = new TVariable(nameString, type);
8083     symbolTable.makeInternalVariable(*variable);
8084 
8085     return variable;
8086 }
8087 
8088 // Make a symbol node holding a new internal temporary variable.
makeInternalVariableNode(const TSourceLoc & loc,const char * name,const TType & type) const8089 TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
8090                                                           const TType& type) const
8091 {
8092     TVariable* tmpVar = makeInternalVariable(name, type);
8093     tmpVar->getWritableType().getQualifier().makeTemporary();
8094 
8095     return intermediate.addSymbol(*tmpVar, loc);
8096 }
8097 
8098 //
8099 // Declare a non-array variable, the main point being there is no redeclaration
8100 // for resizing allowed.
8101 //
8102 // Return the successfully declared variable.
8103 //
declareNonArray(const TSourceLoc & loc,const TString & identifier,const TType & type,bool track)8104 TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
8105                                              bool track)
8106 {
8107     // make a new variable
8108     TVariable* variable = new TVariable(&identifier, type);
8109 
8110     // add variable to symbol table
8111     if (symbolTable.insert(*variable)) {
8112         if (track && symbolTable.atGlobalLevel())
8113             trackLinkage(*variable);
8114         return variable;
8115     }
8116 
8117     error(loc, "redefinition", variable->getName().c_str(), "");
8118     return nullptr;
8119 }
8120 
8121 // Return a declaration of a temporary variable
8122 //
8123 // This is used to force a variable to be declared in the correct scope
8124 // when debug information is being generated.
8125 
executeDeclaration(const TSourceLoc & loc,TVariable * variable)8126 TIntermNode* HlslParseContext::executeDeclaration(const TSourceLoc& loc, TVariable* variable)
8127 {
8128   //
8129   // Identifier must be of type temporary.
8130   //
8131   TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8132   if (qualifier != EvqTemporary)
8133       return nullptr;
8134 
8135   TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8136   return handleDeclare(loc, intermSymbol);
8137 }
8138 
8139 //
8140 // Handle all types of initializers from the grammar.
8141 //
8142 // Returning nullptr just means there is no code to execute to handle the
8143 // initializer, which will, for example, be the case for constant initializers.
8144 //
8145 // Returns a subtree that accomplished the initialization.
8146 //
executeInitializer(const TSourceLoc & loc,TIntermTyped * initializer,TVariable * variable)8147 TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
8148 {
8149     //
8150     // Identifier must be of type constant, a global, or a temporary, and
8151     // starting at version 120, desktop allows uniforms to have initializers.
8152     //
8153     TStorageQualifier qualifier = variable->getType().getQualifier().storage;
8154 
8155     //
8156     // If the initializer was from braces { ... }, we convert the whole subtree to a
8157     // constructor-style subtree, allowing the rest of the code to operate
8158     // identically for both kinds of initializers.
8159     //
8160     //
8161     // Type can't be deduced from the initializer list, so a skeletal type to
8162     // follow has to be passed in.  Constness and specialization-constness
8163     // should be deduced bottom up, not dictated by the skeletal type.
8164     //
8165     TType skeletalType;
8166     skeletalType.shallowCopy(variable->getType());
8167     skeletalType.getQualifier().makeTemporary();
8168     if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
8169         initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
8170     if (initializer == nullptr) {
8171         // error recovery; don't leave const without constant values
8172         if (qualifier == EvqConst)
8173             variable->getWritableType().getQualifier().storage = EvqTemporary;
8174         return nullptr;
8175     }
8176 
8177     // Fix outer arrayness if variable is unsized, getting size from the initializer
8178     if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
8179         variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
8180 
8181     // Inner arrayness can also get set by an initializer
8182     if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
8183         initializer->getType().getArraySizes()->getNumDims() ==
8184         variable->getType().getArraySizes()->getNumDims()) {
8185         // adopt unsized sizes from the initializer's sizes
8186         for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
8187             if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
8188                 variable->getWritableType().getArraySizes()->setDimSize(d,
8189                     initializer->getType().getArraySizes()->getDimSize(d));
8190             }
8191         }
8192     }
8193 
8194     // Uniform and global consts require a constant initializer
8195     if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
8196         error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
8197         variable->getWritableType().getQualifier().storage = EvqTemporary;
8198         return nullptr;
8199     }
8200 
8201     // Const variables require a constant initializer
8202     if (qualifier == EvqConst) {
8203         if (initializer->getType().getQualifier().storage != EvqConst) {
8204             variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
8205             qualifier = EvqConstReadOnly;
8206         }
8207     }
8208 
8209     if (qualifier == EvqConst || qualifier == EvqUniform) {
8210         // Compile-time tagging of the variable with its constant value...
8211 
8212         initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
8213         if (initializer != nullptr && variable->getType() != initializer->getType())
8214             initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
8215         if (initializer == nullptr || !initializer->getAsConstantUnion() ||
8216                                       variable->getType() != initializer->getType()) {
8217             error(loc, "non-matching or non-convertible constant type for const initializer",
8218                 variable->getType().getStorageQualifierString(), "");
8219             variable->getWritableType().getQualifier().storage = EvqTemporary;
8220             return nullptr;
8221         }
8222 
8223         variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
8224     } else {
8225         // normal assigning of a value to a variable...
8226         specializationCheck(loc, initializer->getType(), "initializer");
8227         TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
8228         TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
8229         if (initNode == nullptr)
8230             assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
8231         return initNode;
8232     }
8233 
8234     return nullptr;
8235 }
8236 
8237 //
8238 // Reprocess any initializer-list { ... } parts of the initializer.
8239 // Need to hierarchically assign correct types and implicit
8240 // conversions. Will do this mimicking the same process used for
8241 // creating a constructor-style initializer, ensuring we get the
8242 // same form.
8243 //
8244 // Returns a node representing an expression for the initializer list expressed
8245 // as the correct type.
8246 //
8247 // Returns nullptr if there is an error.
8248 //
convertInitializerList(const TSourceLoc & loc,const TType & type,TIntermTyped * initializer,TIntermTyped * scalarInit)8249 TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
8250                                                        TIntermTyped* initializer, TIntermTyped* scalarInit)
8251 {
8252     // Will operate recursively.  Once a subtree is found that is constructor style,
8253     // everything below it is already good: Only the "top part" of the initializer
8254     // can be an initializer list, where "top part" can extend for several (or all) levels.
8255 
8256     // see if we have bottomed out in the tree within the initializer-list part
8257     TIntermAggregate* initList = initializer->getAsAggregate();
8258     if (initList == nullptr || initList->getOp() != EOpNull) {
8259         // We don't have a list, but if it's a scalar and the 'type' is a
8260         // composite, we need to lengthen below to make it useful.
8261         // Otherwise, this is an already formed object to initialize with.
8262         if (type.isScalar() || !initializer->getType().isScalar())
8263             return initializer;
8264         else
8265             initList = intermediate.makeAggregate(initializer);
8266     }
8267 
8268     // Of the initializer-list set of nodes, need to process bottom up,
8269     // so recurse deep, then process on the way up.
8270 
8271     // Go down the tree here...
8272     if (type.isArray()) {
8273         // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
8274         // Later on, initializer execution code will deal with array size logic.
8275         TType arrayType;
8276         arrayType.shallowCopy(type);                     // sharing struct stuff is fine
8277         arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
8278 
8279         // edit array sizes to fill in unsized dimensions
8280         if (type.isUnsizedArray())
8281             arrayType.changeOuterArraySize((int)initList->getSequence().size());
8282 
8283         // set unsized array dimensions that can be derived from the initializer's first element
8284         if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
8285             TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
8286             if (firstInit->getType().isArray() &&
8287                 arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
8288                 for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
8289                     if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
8290                         arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
8291                 }
8292             }
8293         }
8294 
8295         // lengthen list to be long enough
8296         lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
8297 
8298         // recursively process each element
8299         TType elementType(arrayType, 0); // dereferenced type
8300         for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
8301             initList->getSequence()[i] = convertInitializerList(loc, elementType,
8302                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
8303             if (initList->getSequence()[i] == nullptr)
8304                 return nullptr;
8305         }
8306 
8307         return addConstructor(loc, initList, arrayType);
8308     } else if (type.isStruct()) {
8309         // do we have implicit assignments to opaques?
8310         for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
8311             if ((*type.getStruct())[i].type->containsOpaque()) {
8312                 error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
8313                 return nullptr;
8314             }
8315         }
8316 
8317         // lengthen list to be long enough
8318         lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
8319 
8320         if (type.getStruct()->size() != initList->getSequence().size()) {
8321             error(loc, "wrong number of structure members", "initializer list", "");
8322             return nullptr;
8323         }
8324         for (size_t i = 0; i < type.getStruct()->size(); ++i) {
8325             initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
8326                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
8327             if (initList->getSequence()[i] == nullptr)
8328                 return nullptr;
8329         }
8330     } else if (type.isMatrix()) {
8331         if (type.computeNumComponents() == (int)initList->getSequence().size()) {
8332             // This means the matrix is initialized component-wise, rather than as
8333             // a series of rows and columns.  We can just use the list directly as
8334             // a constructor; no further processing needed.
8335         } else {
8336             // lengthen list to be long enough
8337             lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
8338 
8339             if (type.getMatrixCols() != (int)initList->getSequence().size()) {
8340                 error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
8341                 return nullptr;
8342             }
8343             TType vectorType(type, 0); // dereferenced type
8344             for (int i = 0; i < type.getMatrixCols(); ++i) {
8345                 initList->getSequence()[i] = convertInitializerList(loc, vectorType,
8346                                                                     initList->getSequence()[i]->getAsTyped(), scalarInit);
8347                 if (initList->getSequence()[i] == nullptr)
8348                     return nullptr;
8349             }
8350         }
8351     } else if (type.isVector()) {
8352         // lengthen list to be long enough
8353         lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
8354 
8355         // error check; we're at bottom, so work is finished below
8356         if (type.getVectorSize() != (int)initList->getSequence().size()) {
8357             error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
8358                   type.getCompleteString().c_str());
8359             return nullptr;
8360         }
8361     } else if (type.isScalar()) {
8362         // lengthen list to be long enough
8363         lengthenList(loc, initList->getSequence(), 1, scalarInit);
8364 
8365         if ((int)initList->getSequence().size() != 1) {
8366             error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
8367             return nullptr;
8368         }
8369     } else {
8370         error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
8371         return nullptr;
8372     }
8373 
8374     // Now that the subtree is processed, process this node as if the
8375     // initializer list is a set of arguments to a constructor.
8376     TIntermTyped* emulatedConstructorArguments;
8377     if (initList->getSequence().size() == 1)
8378         emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
8379     else
8380         emulatedConstructorArguments = initList;
8381 
8382     return addConstructor(loc, emulatedConstructorArguments, type);
8383 }
8384 
8385 // Lengthen list to be long enough to cover any gap from the current list size
8386 // to 'size'. If the list is longer, do nothing.
8387 // The value to lengthen with is the default for short lists.
8388 //
8389 // By default, lists that are too short due to lack of initializers initialize to zero.
8390 // Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
8391 // based on whether something is passed in as 'scalarInit'.
8392 //
8393 // 'scalarInit' must be safe to use each time this is called (no side effects replication).
8394 //
lengthenList(const TSourceLoc & loc,TIntermSequence & list,int size,TIntermTyped * scalarInit)8395 void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
8396 {
8397     for (int c = (int)list.size(); c < size; ++c) {
8398         if (scalarInit == nullptr)
8399             list.push_back(intermediate.addConstantUnion(0, loc));
8400         else
8401             list.push_back(scalarInit);
8402     }
8403 }
8404 
8405 //
8406 // Test for the correctness of the parameters passed to various constructor functions
8407 // and also convert them to the right data type, if allowed and required.
8408 //
8409 // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
8410 //
handleConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8411 TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8412 {
8413     if (node == nullptr)
8414         return nullptr;
8415 
8416     // Construct identical type
8417     if (type == node->getType())
8418         return node;
8419 
8420     // Handle the idiom "(struct type)<scalar value>"
8421     if (type.isStruct() && isScalarConstructor(node)) {
8422         // 'node' will almost always get used multiple times, so should not be used directly,
8423         // it would create a DAG instead of a tree, which might be okay (would
8424         // like to formalize that for constants and symbols), but if it has
8425         // side effects, they would get executed multiple times, which is not okay.
8426         if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
8427             TIntermAggregate* seq = intermediate.makeAggregate(loc);
8428             TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
8429             seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
8430             seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
8431             seq->setOp(EOpComma);
8432             seq->setType(type);
8433             return seq;
8434         } else
8435             return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
8436     }
8437 
8438     return addConstructor(loc, node, type);
8439 }
8440 
8441 // Add a constructor, either from the grammar, or other programmatic reasons.
8442 //
8443 // 'node' is what to construct from.
8444 // 'type' is what type to construct.
8445 //
8446 // Returns the constructed object.
8447 // Return nullptr if it can't be done.
8448 //
addConstructor(const TSourceLoc & loc,TIntermTyped * node,const TType & type)8449 TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
8450 {
8451     TIntermAggregate* aggrNode = node->getAsAggregate();
8452     TOperator op = intermediate.mapTypeToConstructorOp(type);
8453 
8454     if (op == EOpConstructTextureSampler)
8455         return intermediate.setAggregateOperator(aggrNode, op, type, loc);
8456 
8457     TTypeList::const_iterator memberTypes;
8458     if (op == EOpConstructStruct)
8459         memberTypes = type.getStruct()->begin();
8460 
8461     TType elementType;
8462     if (type.isArray()) {
8463         TType dereferenced(type, 0);
8464         elementType.shallowCopy(dereferenced);
8465     } else
8466         elementType.shallowCopy(type);
8467 
8468     bool singleArg;
8469     if (aggrNode != nullptr) {
8470         if (aggrNode->getOp() != EOpNull)
8471             singleArg = true;
8472         else
8473             singleArg = false;
8474     } else
8475         singleArg = true;
8476 
8477     TIntermTyped *newNode;
8478     if (singleArg) {
8479         // Handle array -> array conversion
8480         // Constructing an array of one type from an array of another type is allowed,
8481         // assuming there are enough components available (semantic-checked earlier).
8482         if (type.isArray() && node->isArray())
8483             newNode = convertArray(node, type);
8484 
8485         // If structure constructor or array constructor is being called
8486         // for only one parameter inside the aggregate, we need to call constructAggregate function once.
8487         else if (type.isArray())
8488             newNode = constructAggregate(node, elementType, 1, node->getLoc());
8489         else if (op == EOpConstructStruct)
8490             newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
8491         else {
8492             // shape conversion for matrix constructor from scalar.  HLSL semantics are: scalar
8493             // is replicated into every element of the matrix (not just the diagnonal), so
8494             // that is handled specially here.
8495             if (type.isMatrix() && node->getType().isScalarOrVec1())
8496                 node = intermediate.addShapeConversion(type, node);
8497 
8498             newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
8499         }
8500 
8501         if (newNode && (type.isArray() || op == EOpConstructStruct))
8502             newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
8503 
8504         return newNode;
8505     }
8506 
8507     //
8508     // Handle list of arguments.
8509     //
8510     TIntermSequence& sequenceVector = aggrNode->getSequence();    // Stores the information about the parameter to the constructor
8511     // if the structure constructor contains more than one parameter, then construct
8512     // each parameter
8513 
8514     int paramCount = 0;  // keeps a track of the constructor parameter number being checked
8515 
8516     // for each parameter to the constructor call, check to see if the right type is passed or convert them
8517     // to the right type if possible (and allowed).
8518     // for structure constructors, just check if the right type is passed, no conversion is allowed.
8519 
8520     for (TIntermSequence::iterator p = sequenceVector.begin();
8521         p != sequenceVector.end(); p++, paramCount++) {
8522         if (type.isArray())
8523             newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
8524         else if (op == EOpConstructStruct)
8525             newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
8526         else
8527             newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
8528 
8529         if (newNode)
8530             *p = newNode;
8531         else
8532             return nullptr;
8533     }
8534 
8535     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
8536 
8537     return constructor;
8538 }
8539 
8540 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
8541 // for the parameter to the constructor (passed to this function). Essentially, it converts
8542 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
8543 // float, then float is converted to int.
8544 //
8545 // Returns nullptr for an error or the constructed node.
8546 //
constructBuiltIn(const TType & type,TOperator op,TIntermTyped * node,const TSourceLoc & loc,bool subset)8547 TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
8548                                                  const TSourceLoc& loc, bool subset)
8549 {
8550     TIntermTyped* newNode;
8551     TOperator basicOp;
8552 
8553     //
8554     // First, convert types as needed.
8555     //
8556     switch (op) {
8557     case EOpConstructF16Vec2:
8558     case EOpConstructF16Vec3:
8559     case EOpConstructF16Vec4:
8560     case EOpConstructF16Mat2x2:
8561     case EOpConstructF16Mat2x3:
8562     case EOpConstructF16Mat2x4:
8563     case EOpConstructF16Mat3x2:
8564     case EOpConstructF16Mat3x3:
8565     case EOpConstructF16Mat3x4:
8566     case EOpConstructF16Mat4x2:
8567     case EOpConstructF16Mat4x3:
8568     case EOpConstructF16Mat4x4:
8569     case EOpConstructFloat16:
8570         basicOp = EOpConstructFloat16;
8571         break;
8572 
8573     case EOpConstructVec2:
8574     case EOpConstructVec3:
8575     case EOpConstructVec4:
8576     case EOpConstructMat2x2:
8577     case EOpConstructMat2x3:
8578     case EOpConstructMat2x4:
8579     case EOpConstructMat3x2:
8580     case EOpConstructMat3x3:
8581     case EOpConstructMat3x4:
8582     case EOpConstructMat4x2:
8583     case EOpConstructMat4x3:
8584     case EOpConstructMat4x4:
8585     case EOpConstructFloat:
8586         basicOp = EOpConstructFloat;
8587         break;
8588 
8589     case EOpConstructDVec2:
8590     case EOpConstructDVec3:
8591     case EOpConstructDVec4:
8592     case EOpConstructDMat2x2:
8593     case EOpConstructDMat2x3:
8594     case EOpConstructDMat2x4:
8595     case EOpConstructDMat3x2:
8596     case EOpConstructDMat3x3:
8597     case EOpConstructDMat3x4:
8598     case EOpConstructDMat4x2:
8599     case EOpConstructDMat4x3:
8600     case EOpConstructDMat4x4:
8601     case EOpConstructDouble:
8602         basicOp = EOpConstructDouble;
8603         break;
8604 
8605     case EOpConstructI16Vec2:
8606     case EOpConstructI16Vec3:
8607     case EOpConstructI16Vec4:
8608     case EOpConstructInt16:
8609         basicOp = EOpConstructInt16;
8610         break;
8611 
8612     case EOpConstructIVec2:
8613     case EOpConstructIVec3:
8614     case EOpConstructIVec4:
8615     case EOpConstructIMat2x2:
8616     case EOpConstructIMat2x3:
8617     case EOpConstructIMat2x4:
8618     case EOpConstructIMat3x2:
8619     case EOpConstructIMat3x3:
8620     case EOpConstructIMat3x4:
8621     case EOpConstructIMat4x2:
8622     case EOpConstructIMat4x3:
8623     case EOpConstructIMat4x4:
8624     case EOpConstructInt:
8625         basicOp = EOpConstructInt;
8626         break;
8627 
8628     case EOpConstructU16Vec2:
8629     case EOpConstructU16Vec3:
8630     case EOpConstructU16Vec4:
8631     case EOpConstructUint16:
8632         basicOp = EOpConstructUint16;
8633         break;
8634 
8635     case EOpConstructUVec2:
8636     case EOpConstructUVec3:
8637     case EOpConstructUVec4:
8638     case EOpConstructUMat2x2:
8639     case EOpConstructUMat2x3:
8640     case EOpConstructUMat2x4:
8641     case EOpConstructUMat3x2:
8642     case EOpConstructUMat3x3:
8643     case EOpConstructUMat3x4:
8644     case EOpConstructUMat4x2:
8645     case EOpConstructUMat4x3:
8646     case EOpConstructUMat4x4:
8647     case EOpConstructUint:
8648         basicOp = EOpConstructUint;
8649         break;
8650 
8651     case EOpConstructBVec2:
8652     case EOpConstructBVec3:
8653     case EOpConstructBVec4:
8654     case EOpConstructBMat2x2:
8655     case EOpConstructBMat2x3:
8656     case EOpConstructBMat2x4:
8657     case EOpConstructBMat3x2:
8658     case EOpConstructBMat3x3:
8659     case EOpConstructBMat3x4:
8660     case EOpConstructBMat4x2:
8661     case EOpConstructBMat4x3:
8662     case EOpConstructBMat4x4:
8663     case EOpConstructBool:
8664         basicOp = EOpConstructBool;
8665         break;
8666 
8667     default:
8668         error(loc, "unsupported construction", "", "");
8669 
8670         return nullptr;
8671     }
8672     newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
8673     if (newNode == nullptr) {
8674         error(loc, "can't convert", "constructor", "");
8675         return nullptr;
8676     }
8677 
8678     //
8679     // Now, if there still isn't an operation to do the construction, and we need one, add one.
8680     //
8681 
8682     // Otherwise, skip out early.
8683     if (subset || (newNode != node && newNode->getType() == type))
8684         return newNode;
8685 
8686     // setAggregateOperator will insert a new node for the constructor, as needed.
8687     return intermediate.setAggregateOperator(newNode, op, type, loc);
8688 }
8689 
8690 // Convert the array in node to the requested type, which is also an array.
8691 // Returns nullptr on failure, otherwise returns aggregate holding the list of
8692 // elements needed to construct the array.
convertArray(TIntermTyped * node,const TType & type)8693 TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
8694 {
8695     assert(node->isArray() && type.isArray());
8696     if (node->getType().computeNumComponents() < type.computeNumComponents())
8697         return nullptr;
8698 
8699     // TODO: write an argument replicator, for the case the argument should not be
8700     // executed multiple times, yet multiple copies are needed.
8701 
8702     TIntermTyped* constructee = node->getAsTyped();
8703     // track where we are in consuming the argument
8704     int constructeeElement = 0;
8705     int constructeeComponent = 0;
8706 
8707     // bump up to the next component to consume
8708     const auto getNextComponent = [&]() {
8709         TIntermTyped* component;
8710         component = handleBracketDereference(node->getLoc(), constructee,
8711                                              intermediate.addConstantUnion(constructeeElement, node->getLoc()));
8712         if (component->isVector())
8713             component = handleBracketDereference(node->getLoc(), component,
8714                                                  intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
8715         // bump component pointer up
8716         ++constructeeComponent;
8717         if (constructeeComponent == constructee->getVectorSize()) {
8718             constructeeComponent = 0;
8719             ++constructeeElement;
8720         }
8721         return component;
8722     };
8723 
8724     // make one subnode per constructed array element
8725     TIntermAggregate* constructor = nullptr;
8726     TType derefType(type, 0);
8727     TType speculativeComponentType(derefType, 0);
8728     TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
8729     TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
8730     TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
8731     for (int e = 0; e < type.getOuterArraySize(); ++e) {
8732         // construct an element
8733         TIntermTyped* elementArg;
8734         if (type.getVectorSize() == constructee->getVectorSize()) {
8735             // same element shape
8736             elementArg = handleBracketDereference(node->getLoc(), constructee,
8737                                                   intermediate.addConstantUnion(e, node->getLoc()));
8738         } else {
8739             // mismatched element shapes
8740             if (type.getVectorSize() == 1)
8741                 elementArg = getNextComponent();
8742             else {
8743                 // make a vector
8744                 TIntermAggregate* elementConstructee = nullptr;
8745                 for (int c = 0; c < type.getVectorSize(); ++c)
8746                     elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
8747                 elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
8748             }
8749         }
8750         // convert basic types
8751         elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
8752         if (elementArg == nullptr)
8753             return nullptr;
8754         // combine with top-level constructor
8755         constructor = intermediate.growAggregate(constructor, elementArg);
8756     }
8757 
8758     return constructor;
8759 }
8760 
8761 // This function tests for the type of the parameters to the structure or array constructor. Raises
8762 // an error message if the expected type does not match the parameter passed to the constructor.
8763 //
8764 // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
8765 //
constructAggregate(TIntermNode * node,const TType & type,int paramCount,const TSourceLoc & loc)8766 TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
8767                                                    const TSourceLoc& loc)
8768 {
8769     // Handle cases that map more 1:1 between constructor arguments and constructed.
8770     TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
8771     if (converted == nullptr || converted->getType() != type) {
8772         error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
8773             node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
8774 
8775         return nullptr;
8776     }
8777 
8778     return converted;
8779 }
8780 
8781 //
8782 // Do everything needed to add an interface block.
8783 //
declareBlock(const TSourceLoc & loc,TType & type,const TString * instanceName)8784 void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
8785 {
8786     assert(type.getWritableStruct() != nullptr);
8787 
8788     // Clean up top-level decorations that don't belong.
8789     switch (type.getQualifier().storage) {
8790     case EvqUniform:
8791     case EvqBuffer:
8792         correctUniform(type.getQualifier());
8793         break;
8794     case EvqVaryingIn:
8795         correctInput(type.getQualifier());
8796         break;
8797     case EvqVaryingOut:
8798         correctOutput(type.getQualifier());
8799         break;
8800     default:
8801         break;
8802     }
8803 
8804     TTypeList& typeList = *type.getWritableStruct();
8805     // fix and check for member storage qualifiers and types that don't belong within a block
8806     for (unsigned int member = 0; member < typeList.size(); ++member) {
8807         TType& memberType = *typeList[member].type;
8808         TQualifier& memberQualifier = memberType.getQualifier();
8809         const TSourceLoc& memberLoc = typeList[member].loc;
8810         globalQualifierFix(memberLoc, memberQualifier);
8811         memberQualifier.storage = type.getQualifier().storage;
8812 
8813         if (memberType.isStruct()) {
8814             // clean up and pick up the right set of decorations
8815             auto it = ioTypeMap.find(memberType.getStruct());
8816             switch (type.getQualifier().storage) {
8817             case EvqUniform:
8818             case EvqBuffer:
8819                 correctUniform(type.getQualifier());
8820                 if (it != ioTypeMap.end() && it->second.uniform)
8821                     memberType.setStruct(it->second.uniform);
8822                 break;
8823             case EvqVaryingIn:
8824                 correctInput(type.getQualifier());
8825                 if (it != ioTypeMap.end() && it->second.input)
8826                     memberType.setStruct(it->second.input);
8827                 break;
8828             case EvqVaryingOut:
8829                 correctOutput(type.getQualifier());
8830                 if (it != ioTypeMap.end() && it->second.output)
8831                     memberType.setStruct(it->second.output);
8832                 break;
8833             default:
8834                 break;
8835             }
8836         }
8837     }
8838 
8839     // Make default block qualification, and adjust the member qualifications
8840 
8841     TQualifier defaultQualification;
8842     switch (type.getQualifier().storage) {
8843     case EvqUniform:    defaultQualification = globalUniformDefaults;    break;
8844     case EvqBuffer:     defaultQualification = globalBufferDefaults;     break;
8845     case EvqVaryingIn:  defaultQualification = globalInputDefaults;      break;
8846     case EvqVaryingOut: defaultQualification = globalOutputDefaults;     break;
8847     default:            defaultQualification.clear();                    break;
8848     }
8849 
8850     // Special case for "push_constant uniform", which has a default of std430,
8851     // contrary to normal uniform defaults, and can't have a default tracked for it.
8852     if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
8853         type.getQualifier().layoutPacking = ElpStd430;
8854 
8855     // fix and check for member layout qualifiers
8856 
8857     mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
8858 
8859     bool memberWithLocation = false;
8860     bool memberWithoutLocation = false;
8861     for (unsigned int member = 0; member < typeList.size(); ++member) {
8862         TQualifier& memberQualifier = typeList[member].type->getQualifier();
8863         const TSourceLoc& memberLoc = typeList[member].loc;
8864         if (memberQualifier.hasStream()) {
8865             if (defaultQualification.layoutStream != memberQualifier.layoutStream)
8866                 error(memberLoc, "member cannot contradict block", "stream", "");
8867         }
8868 
8869         // "This includes a block's inheritance of the
8870         // current global default buffer, a block member's inheritance of the block's
8871         // buffer, and the requirement that any *xfb_buffer* declared on a block
8872         // member must match the buffer inherited from the block."
8873         if (memberQualifier.hasXfbBuffer()) {
8874             if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
8875                 error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
8876         }
8877 
8878         if (memberQualifier.hasLocation()) {
8879             switch (type.getQualifier().storage) {
8880             case EvqVaryingIn:
8881             case EvqVaryingOut:
8882                 memberWithLocation = true;
8883                 break;
8884             default:
8885                 break;
8886             }
8887         } else
8888             memberWithoutLocation = true;
8889 
8890         TQualifier newMemberQualification = defaultQualification;
8891         mergeQualifiers(newMemberQualification, memberQualifier);
8892         memberQualifier = newMemberQualification;
8893     }
8894 
8895     // Process the members
8896     fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
8897     fixXfbOffsets(type.getQualifier(), typeList);
8898     fixBlockUniformOffsets(type.getQualifier(), typeList);
8899 
8900     // reverse merge, so that currentBlockQualifier now has all layout information
8901     // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
8902     mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
8903 
8904     //
8905     // Build and add the interface block as a new type named 'blockName'
8906     //
8907 
8908     // Use the instance name as the interface name if one exists, else the block name.
8909     const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
8910 
8911     TType blockType(&typeList, interfaceName, type.getQualifier());
8912     if (type.isArray())
8913         blockType.transferArraySizes(type.getArraySizes());
8914 
8915     // Add the variable, as anonymous or named instanceName.
8916     // Make an anonymous variable if no name was provided.
8917     if (instanceName == nullptr)
8918         instanceName = NewPoolTString("");
8919 
8920     TVariable& variable = *new TVariable(instanceName, blockType);
8921     if (! symbolTable.insert(variable)) {
8922         if (*instanceName == "")
8923             error(loc, "nameless block contains a member that already has a name at global scope",
8924                   "" /* blockName->c_str() */, "");
8925         else
8926             error(loc, "block instance name redefinition", variable.getName().c_str(), "");
8927 
8928         return;
8929     }
8930 
8931     // Save it in the AST for linker use.
8932     if (symbolTable.atGlobalLevel())
8933         trackLinkage(variable);
8934 }
8935 
8936 //
8937 // "For a block, this process applies to the entire block, or until the first member
8938 // is reached that has a location layout qualifier. When a block member is declared with a location
8939 // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
8940 // declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
8941 // until the next member declared with a location qualifier. The values used for locations do not have to be
8942 // declared in increasing order."
fixBlockLocations(const TSourceLoc & loc,TQualifier & qualifier,TTypeList & typeList,bool memberWithLocation,bool memberWithoutLocation)8943 void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
8944 {
8945     // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
8946     // have a location layout qualifier, or a compile-time error results."
8947     if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
8948         error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
8949     else {
8950         if (memberWithLocation) {
8951             // remove any block-level location and make it per *every* member
8952             int nextLocation = 0;  // by the rule above, initial value is not relevant
8953             if (qualifier.hasAnyLocation()) {
8954                 nextLocation = qualifier.layoutLocation;
8955                 qualifier.layoutLocation = TQualifier::layoutLocationEnd;
8956                 if (qualifier.hasComponent()) {
8957                     // "It is a compile-time error to apply the *component* qualifier to a ... block"
8958                     error(loc, "cannot apply to a block", "component", "");
8959                 }
8960                 if (qualifier.hasIndex()) {
8961                     error(loc, "cannot apply to a block", "index", "");
8962                 }
8963             }
8964             for (unsigned int member = 0; member < typeList.size(); ++member) {
8965                 TQualifier& memberQualifier = typeList[member].type->getQualifier();
8966                 const TSourceLoc& memberLoc = typeList[member].loc;
8967                 if (! memberQualifier.hasLocation()) {
8968                     if (nextLocation >= (int)TQualifier::layoutLocationEnd)
8969                         error(memberLoc, "location is too large", "location", "");
8970                     memberQualifier.layoutLocation = nextLocation;
8971                     memberQualifier.layoutComponent = 0;
8972                 }
8973                 nextLocation = memberQualifier.layoutLocation +
8974                                intermediate.computeTypeLocationSize(*typeList[member].type, language);
8975             }
8976         }
8977     }
8978 }
8979 
fixXfbOffsets(TQualifier & qualifier,TTypeList & typeList)8980 void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
8981 {
8982     // "If a block is qualified with xfb_offset, all its
8983     // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
8984     // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
8985     // offsets."
8986 
8987     if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
8988         return;
8989 
8990     int nextOffset = qualifier.layoutXfbOffset;
8991     for (unsigned int member = 0; member < typeList.size(); ++member) {
8992         TQualifier& memberQualifier = typeList[member].type->getQualifier();
8993         bool contains64BitType = false;
8994         bool contains32BitType = false;
8995         bool contains16BitType = false;
8996         int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
8997         // see if we need to auto-assign an offset to this member
8998         if (! memberQualifier.hasXfbOffset()) {
8999             // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
9000             if (contains64BitType)
9001                 RoundToPow2(nextOffset, 8);
9002             else if (contains32BitType)
9003                 RoundToPow2(nextOffset, 4);
9004             // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
9005             else if (contains16BitType)
9006                 RoundToPow2(nextOffset, 2);
9007             memberQualifier.layoutXfbOffset = nextOffset;
9008         } else
9009             nextOffset = memberQualifier.layoutXfbOffset;
9010         nextOffset += memberSize;
9011     }
9012 
9013     // The above gave all block members an offset, so we can take it off the block now,
9014     // which will avoid double counting the offset usage.
9015     qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
9016 }
9017 
9018 // Calculate and save the offset of each block member, using the recursively
9019 // defined block offset rules and the user-provided offset and align.
9020 //
9021 // Also, compute and save the total size of the block. For the block's size, arrayness
9022 // is not taken into account, as each element is backed by a separate buffer.
9023 //
fixBlockUniformOffsets(const TQualifier & qualifier,TTypeList & typeList)9024 void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
9025 {
9026     if (! qualifier.isUniformOrBuffer())
9027         return;
9028     if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
9029         return;
9030 
9031     int offset = 0;
9032     int memberSize;
9033     for (unsigned int member = 0; member < typeList.size(); ++member) {
9034         TQualifier& memberQualifier = typeList[member].type->getQualifier();
9035         const TSourceLoc& memberLoc = typeList[member].loc;
9036 
9037         // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
9038 
9039         // modify just the children's view of matrix layout, if there is one for this member
9040         TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
9041         int dummyStride;
9042         int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
9043                                                               qualifier.layoutPacking,
9044                                                               subMatrixLayout != ElmNone
9045                                                                   ? subMatrixLayout == ElmRowMajor
9046                                                                   : qualifier.layoutMatrix == ElmRowMajor);
9047         if (memberQualifier.hasOffset()) {
9048             // "The specified offset must be a multiple
9049             // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
9050             if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
9051                 error(memberLoc, "must be a multiple of the member's alignment", "offset",
9052                     "(layout offset = %d | member alignment = %d)", memberQualifier.layoutOffset, memberAlignment);
9053 
9054             // "The offset qualifier forces the qualified member to start at or after the specified
9055             // integral-constant expression, which will be its byte offset from the beginning of the buffer.
9056             // "The actual offset of a member is computed as
9057             // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
9058             offset = std::max(offset, memberQualifier.layoutOffset);
9059         }
9060 
9061         // "The actual alignment of a member will be the greater of the specified align alignment and the standard
9062         // (e.g., std140) base alignment for the member's type."
9063         if (memberQualifier.hasAlign())
9064             memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
9065 
9066         // "If the resulting offset is not a multiple of the actual alignment,
9067         // increase it to the first offset that is a multiple of
9068         // the actual alignment."
9069         RoundToPow2(offset, memberAlignment);
9070         typeList[member].type->getQualifier().layoutOffset = offset;
9071         offset += memberSize;
9072     }
9073 }
9074 
9075 // For an identifier that is already declared, add more qualification to it.
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,const TString & identifier)9076 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
9077 {
9078     TSymbol* symbol = symbolTable.find(identifier);
9079     if (symbol == nullptr) {
9080         error(loc, "identifier not previously declared", identifier.c_str(), "");
9081         return;
9082     }
9083     if (symbol->getAsFunction()) {
9084         error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
9085         return;
9086     }
9087 
9088     if (qualifier.isAuxiliary() ||
9089         qualifier.isMemory() ||
9090         qualifier.isInterpolation() ||
9091         qualifier.hasLayout() ||
9092         qualifier.storage != EvqTemporary ||
9093         qualifier.precision != EpqNone) {
9094         error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
9095         return;
9096     }
9097 
9098     // For read-only built-ins, add a new symbol for holding the modified qualifier.
9099     // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
9100     if (symbol->isReadOnly())
9101         symbol = symbolTable.copyUp(symbol);
9102 
9103     if (qualifier.invariant) {
9104         if (intermediate.inIoAccessed(identifier))
9105             error(loc, "cannot change qualification after use", "invariant", "");
9106         symbol->getWritableType().getQualifier().invariant = true;
9107     } else if (qualifier.noContraction) {
9108         if (intermediate.inIoAccessed(identifier))
9109             error(loc, "cannot change qualification after use", "precise", "");
9110         symbol->getWritableType().getQualifier().noContraction = true;
9111     } else if (qualifier.specConstant) {
9112         symbol->getWritableType().getQualifier().makeSpecConstant();
9113         if (qualifier.hasSpecConstantId())
9114             symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
9115     } else
9116         warn(loc, "unknown requalification", "", "");
9117 }
9118 
addQualifierToExisting(const TSourceLoc & loc,TQualifier qualifier,TIdentifierList & identifiers)9119 void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
9120 {
9121     for (unsigned int i = 0; i < identifiers.size(); ++i)
9122         addQualifierToExisting(loc, qualifier, *identifiers[i]);
9123 }
9124 
9125 //
9126 // Update the intermediate for the given input geometry
9127 //
handleInputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9128 bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9129 {
9130     // these can be declared on non-entry-points, in which case they lose their meaning
9131     if (! parsingEntrypointParameters)
9132         return true;
9133 
9134     switch (geometry) {
9135     case ElgPoints:             // fall through
9136     case ElgLines:              // ...
9137     case ElgTriangles:          // ...
9138     case ElgLinesAdjacency:     // ...
9139     case ElgTrianglesAdjacency: // ...
9140         if (! intermediate.setInputPrimitive(geometry)) {
9141             error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9142             return false;
9143         }
9144         break;
9145 
9146     default:
9147         error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
9148         return false;
9149     }
9150 
9151     return true;
9152 }
9153 
9154 //
9155 // Update the intermediate for the given output geometry
9156 //
handleOutputGeometry(const TSourceLoc & loc,const TLayoutGeometry & geometry)9157 bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
9158 {
9159     // If this is not a geometry shader, ignore.  It might be a mixed shader including several stages.
9160     // Since that's an OK situation, return true for success.
9161     if (language != EShLangGeometry)
9162         return true;
9163 
9164     // these can be declared on non-entry-points, in which case they lose their meaning
9165     if (! parsingEntrypointParameters)
9166         return true;
9167 
9168     switch (geometry) {
9169     case ElgPoints:
9170     case ElgLineStrip:
9171     case ElgTriangleStrip:
9172         if (! intermediate.setOutputPrimitive(geometry)) {
9173             error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
9174             return false;
9175         }
9176         break;
9177     default:
9178         error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
9179         return false;
9180     }
9181 
9182     return true;
9183 }
9184 
9185 //
9186 // Selection attributes
9187 //
handleSelectionAttributes(const TSourceLoc & loc,TIntermSelection * selection,const TAttributes & attributes)9188 void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
9189     const TAttributes& attributes)
9190 {
9191     if (selection == nullptr)
9192         return;
9193 
9194     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9195         switch (it->name) {
9196         case EatFlatten:
9197             selection->setFlatten();
9198             break;
9199         case EatBranch:
9200             selection->setDontFlatten();
9201             break;
9202         default:
9203             warn(loc, "attribute does not apply to a selection", "", "");
9204             break;
9205         }
9206     }
9207 }
9208 
9209 //
9210 // Switch attributes
9211 //
handleSwitchAttributes(const TSourceLoc & loc,TIntermSwitch * selection,const TAttributes & attributes)9212 void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
9213     const TAttributes& attributes)
9214 {
9215     if (selection == nullptr)
9216         return;
9217 
9218     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9219         switch (it->name) {
9220         case EatFlatten:
9221             selection->setFlatten();
9222             break;
9223         case EatBranch:
9224             selection->setDontFlatten();
9225             break;
9226         default:
9227             warn(loc, "attribute does not apply to a switch", "", "");
9228             break;
9229         }
9230     }
9231 }
9232 
9233 //
9234 // Loop attributes
9235 //
handleLoopAttributes(const TSourceLoc & loc,TIntermLoop * loop,const TAttributes & attributes)9236 void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
9237     const TAttributes& attributes)
9238 {
9239     if (loop == nullptr)
9240         return;
9241 
9242     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
9243         switch (it->name) {
9244         case EatUnroll:
9245             loop->setUnroll();
9246             break;
9247         case EatLoop:
9248             loop->setDontUnroll();
9249             break;
9250         default:
9251             warn(loc, "attribute does not apply to a loop", "", "");
9252             break;
9253         }
9254     }
9255 }
9256 
9257 //
9258 // Updating default qualifier for the case of a declaration with just a qualifier,
9259 // no type, block, or identifier.
9260 //
updateStandaloneQualifierDefaults(const TSourceLoc & loc,const TPublicType & publicType)9261 void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
9262 {
9263     if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
9264         assert(language == EShLangTessControl || language == EShLangGeometry);
9265         // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
9266     }
9267     if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
9268         if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
9269             error(loc, "cannot change previously set layout value", "invocations", "");
9270     }
9271     if (publicType.shaderQualifiers.geometry != ElgNone) {
9272         if (publicType.qualifier.storage == EvqVaryingIn) {
9273             switch (publicType.shaderQualifiers.geometry) {
9274             case ElgPoints:
9275             case ElgLines:
9276             case ElgLinesAdjacency:
9277             case ElgTriangles:
9278             case ElgTrianglesAdjacency:
9279             case ElgQuads:
9280             case ElgIsolines:
9281                 break;
9282             default:
9283                 error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9284                       "");
9285             }
9286         } else if (publicType.qualifier.storage == EvqVaryingOut) {
9287             handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
9288         } else
9289             error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
9290                   GetStorageQualifierString(publicType.qualifier.storage));
9291     }
9292     if (publicType.shaderQualifiers.spacing != EvsNone)
9293         intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
9294     if (publicType.shaderQualifiers.order != EvoNone)
9295         intermediate.setVertexOrder(publicType.shaderQualifiers.order);
9296     if (publicType.shaderQualifiers.pointMode)
9297         intermediate.setPointMode();
9298     for (int i = 0; i < 3; ++i) {
9299         if (publicType.shaderQualifiers.localSize[i] > 1) {
9300             int max = 0;
9301             switch (i) {
9302             case 0: max = resources.maxComputeWorkGroupSizeX; break;
9303             case 1: max = resources.maxComputeWorkGroupSizeY; break;
9304             case 2: max = resources.maxComputeWorkGroupSizeZ; break;
9305             default: break;
9306             }
9307             if (intermediate.getLocalSize(i) > (unsigned int)max)
9308                 error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
9309 
9310             // Fix the existing constant gl_WorkGroupSize with this new information.
9311             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9312             workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
9313         }
9314         if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
9315             intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
9316             // Set the workgroup built-in variable as a specialization constant
9317             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
9318             workGroupSize->getWritableType().getQualifier().specConstant = true;
9319         }
9320     }
9321     if (publicType.shaderQualifiers.earlyFragmentTests)
9322         intermediate.setEarlyFragmentTests();
9323 
9324     const TQualifier& qualifier = publicType.qualifier;
9325 
9326     switch (qualifier.storage) {
9327     case EvqUniform:
9328         if (qualifier.hasMatrix())
9329             globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
9330         if (qualifier.hasPacking())
9331             globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
9332         break;
9333     case EvqBuffer:
9334         if (qualifier.hasMatrix())
9335             globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
9336         if (qualifier.hasPacking())
9337             globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
9338         break;
9339     case EvqVaryingIn:
9340         break;
9341     case EvqVaryingOut:
9342         if (qualifier.hasStream())
9343             globalOutputDefaults.layoutStream = qualifier.layoutStream;
9344         if (qualifier.hasXfbBuffer())
9345             globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
9346         if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
9347             if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
9348                 error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
9349                       qualifier.layoutXfbBuffer);
9350         }
9351         break;
9352     default:
9353         error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
9354         return;
9355     }
9356 }
9357 
9358 //
9359 // Take the sequence of statements that has been built up since the last case/default,
9360 // put it on the list of top-level nodes for the current (inner-most) switch statement,
9361 // and follow that by the case/default we are on now.  (See switch topology comment on
9362 // TIntermSwitch.)
9363 //
wrapupSwitchSubsequence(TIntermAggregate * statements,TIntermNode * branchNode)9364 void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
9365 {
9366     TIntermSequence* switchSequence = switchSequenceStack.back();
9367 
9368     if (statements) {
9369         statements->setOperator(EOpSequence);
9370         switchSequence->push_back(statements);
9371     }
9372     if (branchNode) {
9373         // check all previous cases for the same label (or both are 'default')
9374         for (unsigned int s = 0; s < switchSequence->size(); ++s) {
9375             TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
9376             if (prevBranch) {
9377                 TIntermTyped* prevExpression = prevBranch->getExpression();
9378                 TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
9379                 if (prevExpression == nullptr && newExpression == nullptr)
9380                     error(branchNode->getLoc(), "duplicate label", "default", "");
9381                 else if (prevExpression != nullptr &&
9382                     newExpression != nullptr &&
9383                     prevExpression->getAsConstantUnion() &&
9384                     newExpression->getAsConstantUnion() &&
9385                     prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
9386                     newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
9387                     error(branchNode->getLoc(), "duplicated value", "case", "");
9388             }
9389         }
9390         switchSequence->push_back(branchNode);
9391     }
9392 }
9393 
9394 //
9395 // Turn the top-level node sequence built up of wrapupSwitchSubsequence
9396 // into a switch node.
9397 //
addSwitch(const TSourceLoc & loc,TIntermTyped * expression,TIntermAggregate * lastStatements,const TAttributes & attributes)9398 TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
9399                                          TIntermAggregate* lastStatements, const TAttributes& attributes)
9400 {
9401     wrapupSwitchSubsequence(lastStatements, nullptr);
9402 
9403     if (expression == nullptr ||
9404         (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
9405         expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
9406         error(loc, "condition must be a scalar integer expression", "switch", "");
9407 
9408     // If there is nothing to do, drop the switch but still execute the expression
9409     TIntermSequence* switchSequence = switchSequenceStack.back();
9410     if (switchSequence->size() == 0)
9411         return expression;
9412 
9413     if (lastStatements == nullptr) {
9414         // emulate a break for error recovery
9415         lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
9416         lastStatements->setOperator(EOpSequence);
9417         switchSequence->push_back(lastStatements);
9418     }
9419 
9420     TIntermAggregate* body = new TIntermAggregate(EOpSequence);
9421     body->getSequence() = *switchSequenceStack.back();
9422     body->setLoc(loc);
9423 
9424     TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
9425     switchNode->setLoc(loc);
9426     handleSwitchAttributes(loc, switchNode, attributes);
9427 
9428     return switchNode;
9429 }
9430 
9431 // Make a new symbol-table level that is made out of the members of a structure.
9432 // This should be done as an anonymous struct (name is "") so that the symbol table
9433 // finds the members with no explicit reference to a 'this' variable.
pushThisScope(const TType & thisStruct,const TVector<TFunctionDeclarator> & functionDeclarators)9434 void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
9435 {
9436     // member variables
9437     TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
9438     symbolTable.pushThis(thisVariable);
9439 
9440     // member functions
9441     for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
9442         // member should have a prefix matching currentTypePrefix.back()
9443         // but, symbol lookup within the class scope will just use the
9444         // unprefixed name. Hence, there are two: one fully prefixed and
9445         // one with no prefix.
9446         TFunction& member = *it->function->clone();
9447         member.removePrefix(currentTypePrefix.back());
9448         symbolTable.insert(member);
9449     }
9450 }
9451 
9452 // Track levels of class/struct/namespace nesting with a prefix string using
9453 // the type names separated by the scoping operator. E.g., two levels
9454 // would look like:
9455 //
9456 //   outer::inner
9457 //
9458 // The string is empty when at normal global level.
9459 //
pushNamespace(const TString & typeName)9460 void HlslParseContext::pushNamespace(const TString& typeName)
9461 {
9462     // make new type prefix
9463     TString newPrefix;
9464     if (currentTypePrefix.size() > 0)
9465         newPrefix = currentTypePrefix.back();
9466     newPrefix.append(typeName);
9467     newPrefix.append(scopeMangler);
9468     currentTypePrefix.push_back(newPrefix);
9469 }
9470 
9471 // Opposite of pushNamespace(), see above
popNamespace()9472 void HlslParseContext::popNamespace()
9473 {
9474     currentTypePrefix.pop_back();
9475 }
9476 
9477 // Use the class/struct nesting string to create a global name for
9478 // a member of a class/struct.
getFullNamespaceName(TString * & name) const9479 void HlslParseContext::getFullNamespaceName(TString*& name) const
9480 {
9481     if (currentTypePrefix.size() == 0)
9482         return;
9483 
9484     TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
9485     fullName->append(*name);
9486     name = fullName;
9487 }
9488 
9489 // Helper function to add the namespace scope mangling syntax to a string.
addScopeMangler(TString & name)9490 void HlslParseContext::addScopeMangler(TString& name)
9491 {
9492     name.append(scopeMangler);
9493 }
9494 
9495 // Return true if this has uniform-interface like decorations.
hasUniform(const TQualifier & qualifier) const9496 bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
9497 {
9498     return qualifier.hasUniformLayout() ||
9499            qualifier.layoutPushConstant;
9500 }
9501 
9502 // Potentially not the opposite of hasUniform(), as if some characteristic is
9503 // ever used for more than one thing (e.g., uniform or input), hasUniform() should
9504 // say it exists, but clearUniform() should leave it in place.
clearUniform(TQualifier & qualifier)9505 void HlslParseContext::clearUniform(TQualifier& qualifier)
9506 {
9507     qualifier.clearUniformLayout();
9508     qualifier.layoutPushConstant = false;
9509 }
9510 
9511 // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
isInputBuiltIn(const TQualifier & qualifier) const9512 bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
9513 {
9514     switch (qualifier.builtIn) {
9515     case EbvPosition:
9516     case EbvPointSize:
9517         return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
9518     case EbvClipDistance:
9519     case EbvCullDistance:
9520         return language != EShLangVertex && language != EShLangCompute;
9521     case EbvFragCoord:
9522     case EbvFace:
9523     case EbvHelperInvocation:
9524     case EbvLayer:
9525     case EbvPointCoord:
9526     case EbvSampleId:
9527     case EbvSampleMask:
9528     case EbvSamplePosition:
9529     case EbvViewportIndex:
9530         return language == EShLangFragment;
9531     case EbvGlobalInvocationId:
9532     case EbvLocalInvocationIndex:
9533     case EbvLocalInvocationId:
9534     case EbvNumWorkGroups:
9535     case EbvWorkGroupId:
9536     case EbvWorkGroupSize:
9537         return language == EShLangCompute;
9538     case EbvInvocationId:
9539         return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
9540     case EbvPatchVertices:
9541         return language == EShLangTessControl || language == EShLangTessEvaluation;
9542     case EbvInstanceId:
9543     case EbvInstanceIndex:
9544     case EbvVertexId:
9545     case EbvVertexIndex:
9546         return language == EShLangVertex;
9547     case EbvPrimitiveId:
9548         return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
9549     case EbvTessLevelInner:
9550     case EbvTessLevelOuter:
9551         return language == EShLangTessEvaluation;
9552     case EbvTessCoord:
9553         return language == EShLangTessEvaluation;
9554     case EbvViewIndex:
9555         return language != EShLangCompute;
9556     default:
9557         return false;
9558     }
9559 }
9560 
9561 // Return true if there are decorations to preserve for input-like storage.
hasInput(const TQualifier & qualifier) const9562 bool HlslParseContext::hasInput(const TQualifier& qualifier) const
9563 {
9564     if (qualifier.hasAnyLocation())
9565         return true;
9566 
9567     if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
9568         return true;
9569 
9570     if (language == EShLangTessEvaluation && qualifier.patch)
9571         return true;
9572 
9573     if (isInputBuiltIn(qualifier))
9574         return true;
9575 
9576     return false;
9577 }
9578 
9579 // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
isOutputBuiltIn(const TQualifier & qualifier) const9580 bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
9581 {
9582     switch (qualifier.builtIn) {
9583     case EbvPosition:
9584     case EbvPointSize:
9585     case EbvClipVertex:
9586     case EbvClipDistance:
9587     case EbvCullDistance:
9588         return language != EShLangFragment && language != EShLangCompute;
9589     case EbvFragDepth:
9590     case EbvFragDepthGreater:
9591     case EbvFragDepthLesser:
9592     case EbvSampleMask:
9593         return language == EShLangFragment;
9594     case EbvLayer:
9595     case EbvViewportIndex:
9596         return language == EShLangGeometry || language == EShLangVertex;
9597     case EbvPrimitiveId:
9598         return language == EShLangGeometry;
9599     case EbvTessLevelInner:
9600     case EbvTessLevelOuter:
9601         return language == EShLangTessControl;
9602     default:
9603         return false;
9604     }
9605 }
9606 
9607 // Return true if there are decorations to preserve for output-like storage.
hasOutput(const TQualifier & qualifier) const9608 bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
9609 {
9610     if (qualifier.hasAnyLocation())
9611         return true;
9612 
9613     if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
9614         return true;
9615 
9616     if (language == EShLangTessControl && qualifier.patch)
9617         return true;
9618 
9619     if (language == EShLangGeometry && qualifier.hasStream())
9620         return true;
9621 
9622     if (isOutputBuiltIn(qualifier))
9623         return true;
9624 
9625     return false;
9626 }
9627 
9628 // Make the IO decorations etc. be appropriate only for an input interface.
correctInput(TQualifier & qualifier)9629 void HlslParseContext::correctInput(TQualifier& qualifier)
9630 {
9631     clearUniform(qualifier);
9632     if (language == EShLangVertex)
9633         qualifier.clearInterstage();
9634     if (language != EShLangTessEvaluation)
9635         qualifier.patch = false;
9636     if (language != EShLangFragment) {
9637         qualifier.clearInterpolation();
9638         qualifier.sample = false;
9639     }
9640 
9641     qualifier.clearStreamLayout();
9642     qualifier.clearXfbLayout();
9643 
9644     if (! isInputBuiltIn(qualifier))
9645         qualifier.builtIn = EbvNone;
9646 }
9647 
9648 // Make the IO decorations etc. be appropriate only for an output interface.
correctOutput(TQualifier & qualifier)9649 void HlslParseContext::correctOutput(TQualifier& qualifier)
9650 {
9651     clearUniform(qualifier);
9652     if (language == EShLangFragment)
9653         qualifier.clearInterstage();
9654     if (language != EShLangGeometry)
9655         qualifier.clearStreamLayout();
9656     if (language == EShLangFragment)
9657         qualifier.clearXfbLayout();
9658     if (language != EShLangTessControl)
9659         qualifier.patch = false;
9660 
9661     switch (qualifier.builtIn) {
9662     case EbvFragDepth:
9663         intermediate.setDepthReplacing();
9664         intermediate.setDepth(EldAny);
9665         break;
9666     case EbvFragDepthGreater:
9667         intermediate.setDepthReplacing();
9668         intermediate.setDepth(EldGreater);
9669         qualifier.builtIn = EbvFragDepth;
9670         break;
9671     case EbvFragDepthLesser:
9672         intermediate.setDepthReplacing();
9673         intermediate.setDepth(EldLess);
9674         qualifier.builtIn = EbvFragDepth;
9675         break;
9676     default:
9677         break;
9678     }
9679 
9680     if (! isOutputBuiltIn(qualifier))
9681         qualifier.builtIn = EbvNone;
9682 }
9683 
9684 // Make the IO decorations etc. be appropriate only for uniform type interfaces.
correctUniform(TQualifier & qualifier)9685 void HlslParseContext::correctUniform(TQualifier& qualifier)
9686 {
9687     if (qualifier.declaredBuiltIn == EbvNone)
9688         qualifier.declaredBuiltIn = qualifier.builtIn;
9689 
9690     qualifier.builtIn = EbvNone;
9691     qualifier.clearInterstage();
9692     qualifier.clearInterstageLayout();
9693 }
9694 
9695 // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
clearUniformInputOutput(TQualifier & qualifier)9696 void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
9697 {
9698     clearUniform(qualifier);
9699     correctUniform(qualifier);
9700 }
9701 
9702 
9703 // Set texture return type.  Returns success (not all types are valid).
setTextureReturnType(TSampler & sampler,const TType & retType,const TSourceLoc & loc)9704 bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
9705 {
9706     // Seed the output with an invalid index.  We will set it to a valid one if we can.
9707     sampler.structReturnIndex = TSampler::noReturnStruct;
9708 
9709     // Arrays aren't supported.
9710     if (retType.isArray()) {
9711         error(loc, "Arrays not supported in texture template types", "", "");
9712         return false;
9713     }
9714 
9715     // If return type is a vector, remember the vector size in the sampler, and return.
9716     if (retType.isVector() || retType.isScalar()) {
9717         sampler.vectorSize = retType.getVectorSize();
9718         return true;
9719     }
9720 
9721     // If it wasn't a vector, it must be a struct meeting certain requirements.  The requirements
9722     // are checked below: just check for struct-ness here.
9723     if (!retType.isStruct()) {
9724         error(loc, "Invalid texture template type", "", "");
9725         return false;
9726     }
9727 
9728     // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
9729     if (sampler.isSubpass()) {
9730         error(loc, "Unimplemented: structure template type in subpass input", "", "");
9731         return false;
9732     }
9733 
9734     TTypeList* members = retType.getWritableStruct();
9735 
9736     // Check for too many or not enough structure members.
9737     if (members->size() > 4 || members->size() == 0) {
9738         error(loc, "Invalid member count in texture template structure", "", "");
9739         return false;
9740     }
9741 
9742     // Error checking: We must have <= 4 total components, all of the same basic type.
9743     unsigned totalComponents = 0;
9744     for (unsigned m = 0; m < members->size(); ++m) {
9745         // Check for bad member types
9746         if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
9747             error(loc, "Invalid texture template struct member type", "", "");
9748             return false;
9749         }
9750 
9751         const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
9752         totalComponents += memberVectorSize;
9753 
9754         // too many total member components
9755         if (totalComponents > 4) {
9756             error(loc, "Too many components in texture template structure type", "", "");
9757             return false;
9758         }
9759 
9760         // All members must be of a common basic type
9761         if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
9762             error(loc, "Texture template structure members must same basic type", "", "");
9763             return false;
9764         }
9765     }
9766 
9767     // If the structure in the return type already exists in the table, we'll use it.  Otherwise, we'll make
9768     // a new entry.  This is a linear search, but it hardly ever happens, and the list cannot be very large.
9769     for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
9770         if (textureReturnStruct[idx] == members) {
9771             sampler.structReturnIndex = idx;
9772             return true;
9773         }
9774     }
9775 
9776     // It wasn't found as an existing entry.  See if we have room for a new one.
9777     if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
9778         error(loc, "Texture template struct return slots exceeded", "", "");
9779         return false;
9780     }
9781 
9782     // Insert it in the vector that tracks struct return types.
9783     sampler.structReturnIndex = unsigned(textureReturnStruct.size());
9784     textureReturnStruct.push_back(members);
9785 
9786     // Success!
9787     return true;
9788 }
9789 
9790 // Return the sampler return type in retType.
getTextureReturnType(const TSampler & sampler,TType & retType) const9791 void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
9792 {
9793     if (sampler.hasReturnStruct()) {
9794         assert(textureReturnStruct.size() >= sampler.structReturnIndex);
9795 
9796         // We land here if the texture return is a structure.
9797         TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
9798 
9799         const TType resultType(blockStruct, "");
9800         retType.shallowCopy(resultType);
9801     } else {
9802         // We land here if the texture return is a vector or scalar.
9803         const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
9804         retType.shallowCopy(resultType);
9805     }
9806 }
9807 
9808 
9809 // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
findTessLinkageSymbol(TBuiltInVariable biType) const9810 TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
9811 {
9812     const auto it = builtInTessLinkageSymbols.find(biType);
9813     if (it == builtInTessLinkageSymbols.end())  // if it wasn't declared by the user, return nullptr
9814         return nullptr;
9815 
9816     return intermediate.addSymbol(*it->second->getAsVariable());
9817 }
9818 
9819 // Find the patch constant function (issues error, returns nullptr if not found)
findPatchConstantFunction(const TSourceLoc & loc)9820 const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
9821 {
9822     if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
9823         error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
9824         return nullptr;
9825     }
9826 
9827     const TString mangledName = patchConstantFunctionName + "(";
9828 
9829     // create list of PCF candidates
9830     TVector<const TFunction*> candidateList;
9831     bool builtIn;
9832     symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
9833 
9834     // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
9835     // allow any disambiguation of overloads.
9836     if (candidateList.empty()) {
9837         error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
9838         return nullptr;
9839     }
9840 
9841     // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
9842     // HLSL picks the last one in shader source order.  Since that isn't yet implemented here, error
9843     // out if there is more than one candidate.
9844     if (candidateList.size() > 1) {
9845         error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
9846         return nullptr;
9847     }
9848 
9849     return candidateList[0];
9850 }
9851 
9852 // Finalization step: Add patch constant function invocation
addPatchConstantInvocation()9853 void HlslParseContext::addPatchConstantInvocation()
9854 {
9855     TSourceLoc loc;
9856     loc.init();
9857 
9858     // If there's no patch constant function, or we're not a HS, do nothing.
9859     if (patchConstantFunctionName.empty() || language != EShLangTessControl)
9860         return;
9861 
9862     // Look for built-in variables in a function's parameter list.
9863     const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
9864         for (int p=0; p<function.getParamCount(); ++p) {
9865             TStorageQualifier storage = function[p].type->getQualifier().storage;
9866 
9867             if (storage == EvqConstReadOnly) // treated identically to input
9868                 storage = EvqIn;
9869 
9870             if (function[p].getDeclaredBuiltIn() != EbvNone)
9871                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
9872             else
9873                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
9874         }
9875     };
9876 
9877     // If we synthesize a built-in interface variable, we must add it to the linkage.
9878     const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
9879         if (name == nullptr) {
9880             error(loc, "unable to locate patch function parameter name", "", "");
9881             return;
9882         } else {
9883             TVariable& variable = *new TVariable(name, type);
9884             if (! symbolTable.insert(variable)) {
9885                 error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
9886                 return;
9887             }
9888 
9889             globalQualifierFix(loc, variable.getWritableType().getQualifier());
9890 
9891             if (symbolNode != nullptr)
9892                 *symbolNode = intermediate.addSymbol(variable);
9893 
9894             trackLinkage(variable);
9895         }
9896     };
9897 
9898     const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
9899         const TType& type = *patchConstantFunction[param].type;
9900         const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
9901 
9902         return type.isSizedArray() && biType == EbvOutputPatch;
9903     };
9904 
9905     // We will perform these steps.  Each is in a scoped block for separation: they could
9906     // become separate functions to make addPatchConstantInvocation shorter.
9907     //
9908     // 1. Union the interfaces, and create built-ins for anything present in the PCF and
9909     //    declared as a built-in variable that isn't present in the entry point's signature.
9910     //
9911     // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
9912     //    or the ones we created.  Matching is based on built-in type.  We may use synthesized
9913     //    variables from (1) above.
9914     //
9915     // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
9916     //
9917     // 3. Create a return sequence: copy the return value (if any) from the PCF to a
9918     //    (non-sanitized) output variable.  In case this may involve multiple copies, such as for
9919     //    an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
9920     //    indirections into a complex R-value coming from the call to the PCF.
9921     //
9922     // 4. Create a barrier.
9923     //
9924     // 5/5B. Call the PCF inside an if test for (invocation id == 0).
9925 
9926     TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
9927 
9928     if (patchConstantFunctionPtr == nullptr)
9929         return;
9930 
9931     TFunction& patchConstantFunction = *patchConstantFunctionPtr;
9932 
9933     const int pcfParamCount = patchConstantFunction.getParamCount();
9934     TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
9935     TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
9936 
9937     int outPatchParam = -1; // -1 means there isn't one.
9938 
9939     // ================ Step 1A: Union Interfaces ================
9940     // Our patch constant function.
9941     {
9942         std::set<tInterstageIoData> pcfBuiltIns;  // patch constant function built-ins
9943         std::set<tInterstageIoData> epfBuiltIns;  // entry point function built-ins
9944 
9945         assert(entryPointFunction);
9946         assert(entryPointFunctionBody);
9947 
9948         findBuiltIns(patchConstantFunction, pcfBuiltIns);
9949         findBuiltIns(*entryPointFunction,   epfBuiltIns);
9950 
9951         // Find the set of built-ins in the PCF that are not present in the entry point.
9952         std::set<tInterstageIoData> notInEntryPoint;
9953 
9954         notInEntryPoint = pcfBuiltIns;
9955 
9956         // std::set_difference not usable on unordered containers
9957         for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
9958             notInEntryPoint.erase(*bi);
9959 
9960         // Now we'll add those to the entry and to the linkage.
9961         for (int p=0; p<pcfParamCount; ++p) {
9962             const TBuiltInVariable biType   = patchConstantFunction[p].getDeclaredBuiltIn();
9963             TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
9964 
9965             // Track whether there is an output patch param
9966             if (isOutputPatch(patchConstantFunction, p)) {
9967                 if (outPatchParam >= 0) {
9968                     // Presently we only support one per ctrl pt input.
9969                     error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
9970                     return;
9971                 }
9972                 outPatchParam = p;
9973             }
9974 
9975             if (biType != EbvNone) {
9976                 TType* paramType = patchConstantFunction[p].type->clone();
9977 
9978                 if (storage == EvqConstReadOnly) // treated identically to input
9979                     storage = EvqIn;
9980 
9981                 // Presently, the only non-built-in we support is InputPatch, which is treated as
9982                 // a pseudo-built-in.
9983                 if (biType == EbvInputPatch) {
9984                     builtInTessLinkageSymbols[biType] = inputPatch;
9985                 } else if (biType == EbvOutputPatch) {
9986                     // Nothing...
9987                 } else {
9988                     // Use the original declaration type for the linkage
9989                     paramType->getQualifier().builtIn = biType;
9990                     if (biType == EbvTessLevelInner || biType == EbvTessLevelOuter)
9991                         paramType->getQualifier().patch = true;
9992 
9993                     if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
9994                         addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
9995                 }
9996             }
9997         }
9998 
9999         // If we didn't find it because the shader made one, add our own.
10000         if (invocationIdSym == nullptr) {
10001             TType invocationIdType(EbtUint, EvqIn, 1);
10002             TString* invocationIdName = NewPoolTString("InvocationId");
10003             invocationIdType.getQualifier().builtIn = EbvInvocationId;
10004             addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
10005         }
10006 
10007         assert(invocationIdSym);
10008     }
10009 
10010     TIntermTyped* pcfArguments = nullptr;
10011     TVariable* perCtrlPtVar = nullptr;
10012 
10013     // ================ Step 1B: Argument synthesis ================
10014     // Create pcfArguments for synthesis of patchconstantfunction invocation
10015     {
10016         for (int p=0; p<pcfParamCount; ++p) {
10017             TIntermTyped* inputArg = nullptr;
10018 
10019             if (p == outPatchParam) {
10020                 if (perCtrlPtVar == nullptr) {
10021                     perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
10022                                                         *patchConstantFunction[outPatchParam].type);
10023 
10024                     perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
10025                 }
10026                 inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
10027             } else {
10028                 // find which built-in it is
10029                 const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
10030 
10031                 if (biType == EbvInputPatch && inputPatch == nullptr) {
10032                     error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
10033                     return;
10034                 }
10035 
10036                 inputArg = findTessLinkageSymbol(biType);
10037 
10038                 if (inputArg == nullptr) {
10039                     error(loc, "unable to find patch constant function built-in variable", "", "");
10040                     return;
10041                 }
10042             }
10043 
10044             if (pcfParamCount == 1)
10045                 pcfArguments = inputArg;
10046             else
10047                 pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
10048         }
10049     }
10050 
10051     // ================ Step 2: Synthesize call to PCF ================
10052     TIntermAggregate* pcfCallSequence = nullptr;
10053     TIntermTyped* pcfCall = nullptr;
10054 
10055     {
10056         // Create a function call to the patchconstantfunction
10057         if (pcfArguments)
10058             addInputArgumentConversions(patchConstantFunction, pcfArguments);
10059 
10060         // Synthetic call.
10061         pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
10062         pcfCall->getAsAggregate()->setUserDefined();
10063         pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
10064         intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
10065                                     patchConstantFunction.getMangledName());
10066 
10067         if (pcfCall->getAsAggregate()) {
10068             TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
10069             for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
10070                 TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
10071                 qualifierList.push_back(qual);
10072             }
10073             pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
10074         }
10075     }
10076 
10077     // ================ Step 2B: Per Control Point synthesis ================
10078     // If there is per control point data, we must either emulate that with multiple
10079     // invocations of the entry point to build up an array, or (TODO:) use a yet
10080     // unavailable extension to look across the SIMD lanes.  This is the former
10081     // as a placeholder for the latter.
10082     if (outPatchParam >= 0) {
10083         // We must introduce a local temp variable of the type wanted by the PCF input.
10084         const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
10085 
10086         if (entryPointFunction->getType().getBasicType() == EbtVoid) {
10087             error(loc, "entry point must return a value for use with patch constant function", "", "");
10088             return;
10089         }
10090 
10091         // Create calls to wrapped main to fill in the array.  We will substitute fixed values
10092         // of invocation ID when calling the wrapped main.
10093 
10094         // This is the type of the each member of the per ctrl point array.
10095         const TType derefType(perCtrlPtVar->getType(), 0);
10096 
10097         for (int cpt = 0; cpt < arraySize; ++cpt) {
10098             // TODO: improve.  substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
10099             // for this function.
10100             const TString origName = entryPointFunction->getName().substr(1);
10101             TFunction callee(&origName, TType(EbtVoid));
10102             TIntermTyped* callingArgs = nullptr;
10103 
10104             for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
10105                 TParameter& param = (*entryPointFunction)[i];
10106                 TType& paramType = *param.type;
10107 
10108                 if (paramType.getQualifier().isParamOutput()) {
10109                     error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
10110                     return;
10111                 }
10112 
10113                 if (paramType.getQualifier().isParamInput())  {
10114                     TIntermTyped* arg = nullptr;
10115                     if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
10116                         // substitute invocation ID with the array element ID
10117                         arg = intermediate.addConstantUnion(cpt, loc);
10118                     } else {
10119                         TVariable* argVar = makeInternalVariable(*param.name, *param.type);
10120                         argVar->getWritableType().getQualifier().makeTemporary();
10121                         arg = intermediate.addSymbol(*argVar);
10122                     }
10123 
10124                     handleFunctionArgument(&callee, callingArgs, arg);
10125                 }
10126             }
10127 
10128             // Call and assign to per ctrl point variable
10129             currentCaller = intermediate.getEntryPointMangledName().c_str();
10130             TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
10131             TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
10132             TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
10133             TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
10134             element->setType(derefType);
10135             element->setLoc(loc);
10136 
10137             pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
10138                                                          handleAssign(loc, EOpAssign, element, callReturn));
10139         }
10140     }
10141 
10142     // ================ Step 3: Create return Sequence ================
10143     // Return sequence: copy PCF result to a temporary, then to shader output variable.
10144     if (pcfCall->getBasicType() != EbtVoid) {
10145         const TType* retType = &patchConstantFunction.getType();  // return type from the PCF
10146         TType outType; // output type that goes with the return type.
10147         outType.shallowCopy(*retType);
10148 
10149         // substitute the output type
10150         const auto newLists = ioTypeMap.find(retType->getStruct());
10151         if (newLists != ioTypeMap.end())
10152             outType.setStruct(newLists->second.output);
10153 
10154         // Substitute the top level type's built-in type
10155         if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
10156             outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
10157 
10158         outType.getQualifier().patch = true; // make it a per-patch variable
10159 
10160         TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
10161         pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
10162 
10163         if (pcfOutput->getType().isStruct())
10164             flatten(*pcfOutput, false);
10165 
10166         assignToInterface(*pcfOutput);
10167 
10168         TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
10169 
10170         // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
10171         // repeated calls to the PCF:
10172         TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
10173         pcfCallResult->getWritableType().getQualifier().makeTemporary();
10174 
10175         TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
10176         TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
10177         TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
10178                                                    intermediate.addSymbol(*pcfCallResult, loc));
10179 
10180         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
10181         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
10182     } else {
10183         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
10184     }
10185 
10186     // ================ Step 4: Barrier ================
10187     TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
10188     barrier->setLoc(loc);
10189     barrier->setType(TType(EbtVoid));
10190     epBodySeq.insert(epBodySeq.end(), barrier);
10191 
10192     // ================ Step 5: Test on invocation ID ================
10193     TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
10194     TIntermTyped* cmp =  intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
10195 
10196 
10197     // ================ Step 5B: Create if statement on Invocation ID == 0 ================
10198     intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
10199     TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
10200     invocationIdTest->setLoc(loc);
10201 
10202     // add our test sequence before the return.
10203     epBodySeq.insert(epBodySeq.end(), invocationIdTest);
10204 }
10205 
10206 // Finalization step: remove unused buffer blocks from linkage (we don't know until the
10207 // shader is entirely compiled).
10208 // Preserve order of remaining symbols.
removeUnusedStructBufferCounters()10209 void HlslParseContext::removeUnusedStructBufferCounters()
10210 {
10211     const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
10212                                       [this](const TSymbol* sym) {
10213                                           const auto sbcIt = structBufferCounter.find(sym->getName());
10214                                           return sbcIt != structBufferCounter.end() && !sbcIt->second;
10215                                       });
10216 
10217     linkageSymbols.erase(endIt, linkageSymbols.end());
10218 }
10219 
10220 // Finalization step: patch texture shadow modes to match samplers they were combined with
fixTextureShadowModes()10221 void HlslParseContext::fixTextureShadowModes()
10222 {
10223     for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
10224         TSampler& sampler = (*symbol)->getWritableType().getSampler();
10225 
10226         if (sampler.isTexture()) {
10227             const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
10228             if (shadowMode != textureShadowVariant.end()) {
10229 
10230                 if (shadowMode->second->overloaded())
10231                     // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
10232                     intermediate.setNeedsLegalization();
10233 
10234                 sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
10235             }
10236         }
10237     }
10238 }
10239 
10240 // Finalization step: patch append methods to use proper stream output, which isn't known until
10241 // main is parsed, which could happen after the append method is parsed.
finalizeAppendMethods()10242 void HlslParseContext::finalizeAppendMethods()
10243 {
10244     TSourceLoc loc;
10245     loc.init();
10246 
10247     // Nothing to do: bypass test for valid stream output.
10248     if (gsAppends.empty())
10249         return;
10250 
10251     if (gsStreamOutput == nullptr) {
10252         error(loc, "unable to find output symbol for Append()", "", "");
10253         return;
10254     }
10255 
10256     // Patch append sequences, now that we know the stream output symbol.
10257     for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
10258         append->node->getSequence()[0] =
10259             handleAssign(append->loc, EOpAssign,
10260                          intermediate.addSymbol(*gsStreamOutput, append->loc),
10261                          append->node->getSequence()[0]->getAsTyped());
10262     }
10263 }
10264 
10265 // post-processing
finish()10266 void HlslParseContext::finish()
10267 {
10268     // Error check: There was a dangling .mips operator.  These are not nested constructs in the grammar, so
10269     // cannot be detected there.  This is not strictly needed in a non-validating parser; it's just helpful.
10270     if (! mipsOperatorMipArg.empty()) {
10271         error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
10272     }
10273 
10274     removeUnusedStructBufferCounters();
10275     addPatchConstantInvocation();
10276     fixTextureShadowModes();
10277     finalizeAppendMethods();
10278 
10279     // Communicate out (esp. for command line) that we formed AST that will make
10280     // illegal AST SPIR-V and it needs transforms to legalize it.
10281     if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
10282         infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
10283 
10284     TParseContextBase::finish();
10285 }
10286 
10287 } // end namespace glslang
10288