• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_destroy_keyring(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
put_super(struct super_block * sb)310 static void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* evict all inodes with zero refcount */
454 		evict_inodes(sb);
455 		/* only nonzero refcount inodes can have marks */
456 		fsnotify_sb_delete(sb);
457 		fscrypt_destroy_keyring(sb);
458 
459 		if (sb->s_dio_done_wq) {
460 			destroy_workqueue(sb->s_dio_done_wq);
461 			sb->s_dio_done_wq = NULL;
462 		}
463 
464 		if (sop->put_super)
465 			sop->put_super(sb);
466 
467 		if (!list_empty(&sb->s_inodes)) {
468 			printk("VFS: Busy inodes after unmount of %s. "
469 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
470 			   sb->s_id);
471 		}
472 	}
473 	spin_lock(&sb_lock);
474 	/* should be initialized for __put_super_and_need_restart() */
475 	hlist_del_init(&sb->s_instances);
476 	spin_unlock(&sb_lock);
477 	up_write(&sb->s_umount);
478 	if (sb->s_bdi != &noop_backing_dev_info) {
479 		bdi_put(sb->s_bdi);
480 		sb->s_bdi = &noop_backing_dev_info;
481 	}
482 }
483 
484 EXPORT_SYMBOL(generic_shutdown_super);
485 
mount_capable(struct fs_context * fc)486 bool mount_capable(struct fs_context *fc)
487 {
488 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
489 		return capable(CAP_SYS_ADMIN);
490 	else
491 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
492 }
493 
494 /**
495  * sget_fc - Find or create a superblock
496  * @fc:	Filesystem context.
497  * @test: Comparison callback
498  * @set: Setup callback
499  *
500  * Find or create a superblock using the parameters stored in the filesystem
501  * context and the two callback functions.
502  *
503  * If an extant superblock is matched, then that will be returned with an
504  * elevated reference count that the caller must transfer or discard.
505  *
506  * If no match is made, a new superblock will be allocated and basic
507  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
508  * the set() callback will be invoked), the superblock will be published and it
509  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
510  * as yet unset.
511  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))512 struct super_block *sget_fc(struct fs_context *fc,
513 			    int (*test)(struct super_block *, struct fs_context *),
514 			    int (*set)(struct super_block *, struct fs_context *))
515 {
516 	struct super_block *s = NULL;
517 	struct super_block *old;
518 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
519 	int err;
520 
521 retry:
522 	spin_lock(&sb_lock);
523 	if (test) {
524 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
525 			if (test(old, fc))
526 				goto share_extant_sb;
527 		}
528 	}
529 	if (!s) {
530 		spin_unlock(&sb_lock);
531 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
532 		if (!s)
533 			return ERR_PTR(-ENOMEM);
534 		goto retry;
535 	}
536 
537 	s->s_fs_info = fc->s_fs_info;
538 	err = set(s, fc);
539 	if (err) {
540 		s->s_fs_info = NULL;
541 		spin_unlock(&sb_lock);
542 		destroy_unused_super(s);
543 		return ERR_PTR(err);
544 	}
545 	fc->s_fs_info = NULL;
546 	s->s_type = fc->fs_type;
547 	s->s_iflags |= fc->s_iflags;
548 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
549 	list_add_tail(&s->s_list, &super_blocks);
550 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
551 	spin_unlock(&sb_lock);
552 	get_filesystem(s->s_type);
553 	register_shrinker_prepared(&s->s_shrink);
554 	return s;
555 
556 share_extant_sb:
557 	if (user_ns != old->s_user_ns) {
558 		spin_unlock(&sb_lock);
559 		destroy_unused_super(s);
560 		return ERR_PTR(-EBUSY);
561 	}
562 	if (!grab_super(old))
563 		goto retry;
564 	destroy_unused_super(s);
565 	return old;
566 }
567 EXPORT_SYMBOL(sget_fc);
568 
569 /**
570  *	sget	-	find or create a superblock
571  *	@type:	  filesystem type superblock should belong to
572  *	@test:	  comparison callback
573  *	@set:	  setup callback
574  *	@flags:	  mount flags
575  *	@data:	  argument to each of them
576  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)577 struct super_block *sget(struct file_system_type *type,
578 			int (*test)(struct super_block *,void *),
579 			int (*set)(struct super_block *,void *),
580 			int flags,
581 			void *data)
582 {
583 	struct user_namespace *user_ns = current_user_ns();
584 	struct super_block *s = NULL;
585 	struct super_block *old;
586 	int err;
587 
588 	/* We don't yet pass the user namespace of the parent
589 	 * mount through to here so always use &init_user_ns
590 	 * until that changes.
591 	 */
592 	if (flags & SB_SUBMOUNT)
593 		user_ns = &init_user_ns;
594 
595 retry:
596 	spin_lock(&sb_lock);
597 	if (test) {
598 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
599 			if (!test(old, data))
600 				continue;
601 			if (user_ns != old->s_user_ns) {
602 				spin_unlock(&sb_lock);
603 				destroy_unused_super(s);
604 				return ERR_PTR(-EBUSY);
605 			}
606 			if (!grab_super(old))
607 				goto retry;
608 			destroy_unused_super(s);
609 			return old;
610 		}
611 	}
612 	if (!s) {
613 		spin_unlock(&sb_lock);
614 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
615 		if (!s)
616 			return ERR_PTR(-ENOMEM);
617 		goto retry;
618 	}
619 
620 	err = set(s, data);
621 	if (err) {
622 		spin_unlock(&sb_lock);
623 		destroy_unused_super(s);
624 		return ERR_PTR(err);
625 	}
626 	s->s_type = type;
627 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
628 	list_add_tail(&s->s_list, &super_blocks);
629 	hlist_add_head(&s->s_instances, &type->fs_supers);
630 	spin_unlock(&sb_lock);
631 	get_filesystem(type);
632 	register_shrinker_prepared(&s->s_shrink);
633 	return s;
634 }
635 EXPORT_SYMBOL(sget);
636 
drop_super(struct super_block * sb)637 void drop_super(struct super_block *sb)
638 {
639 	up_read(&sb->s_umount);
640 	put_super(sb);
641 }
642 
643 EXPORT_SYMBOL(drop_super);
644 
drop_super_exclusive(struct super_block * sb)645 void drop_super_exclusive(struct super_block *sb)
646 {
647 	up_write(&sb->s_umount);
648 	put_super(sb);
649 }
650 EXPORT_SYMBOL(drop_super_exclusive);
651 
__iterate_supers(void (* f)(struct super_block *))652 static void __iterate_supers(void (*f)(struct super_block *))
653 {
654 	struct super_block *sb, *p = NULL;
655 
656 	spin_lock(&sb_lock);
657 	list_for_each_entry(sb, &super_blocks, s_list) {
658 		if (hlist_unhashed(&sb->s_instances))
659 			continue;
660 		sb->s_count++;
661 		spin_unlock(&sb_lock);
662 
663 		f(sb);
664 
665 		spin_lock(&sb_lock);
666 		if (p)
667 			__put_super(p);
668 		p = sb;
669 	}
670 	if (p)
671 		__put_super(p);
672 	spin_unlock(&sb_lock);
673 }
674 /**
675  *	iterate_supers - call function for all active superblocks
676  *	@f: function to call
677  *	@arg: argument to pass to it
678  *
679  *	Scans the superblock list and calls given function, passing it
680  *	locked superblock and given argument.
681  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)682 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
683 {
684 	struct super_block *sb, *p = NULL;
685 
686 	spin_lock(&sb_lock);
687 	list_for_each_entry(sb, &super_blocks, s_list) {
688 		if (hlist_unhashed(&sb->s_instances))
689 			continue;
690 		sb->s_count++;
691 		spin_unlock(&sb_lock);
692 
693 		down_read(&sb->s_umount);
694 		if (sb->s_root && (sb->s_flags & SB_BORN))
695 			f(sb, arg);
696 		up_read(&sb->s_umount);
697 
698 		spin_lock(&sb_lock);
699 		if (p)
700 			__put_super(p);
701 		p = sb;
702 	}
703 	if (p)
704 		__put_super(p);
705 	spin_unlock(&sb_lock);
706 }
707 
708 /**
709  *	iterate_supers_type - call function for superblocks of given type
710  *	@type: fs type
711  *	@f: function to call
712  *	@arg: argument to pass to it
713  *
714  *	Scans the superblock list and calls given function, passing it
715  *	locked superblock and given argument.
716  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)717 void iterate_supers_type(struct file_system_type *type,
718 	void (*f)(struct super_block *, void *), void *arg)
719 {
720 	struct super_block *sb, *p = NULL;
721 
722 	spin_lock(&sb_lock);
723 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
724 		sb->s_count++;
725 		spin_unlock(&sb_lock);
726 
727 		down_read(&sb->s_umount);
728 		if (sb->s_root && (sb->s_flags & SB_BORN))
729 			f(sb, arg);
730 		up_read(&sb->s_umount);
731 
732 		spin_lock(&sb_lock);
733 		if (p)
734 			__put_super(p);
735 		p = sb;
736 	}
737 	if (p)
738 		__put_super(p);
739 	spin_unlock(&sb_lock);
740 }
741 
742 EXPORT_SYMBOL(iterate_supers_type);
743 
__get_super(struct block_device * bdev,bool excl)744 static struct super_block *__get_super(struct block_device *bdev, bool excl)
745 {
746 	struct super_block *sb;
747 
748 	if (!bdev)
749 		return NULL;
750 
751 	spin_lock(&sb_lock);
752 rescan:
753 	list_for_each_entry(sb, &super_blocks, s_list) {
754 		if (hlist_unhashed(&sb->s_instances))
755 			continue;
756 		if (sb->s_bdev == bdev) {
757 			sb->s_count++;
758 			spin_unlock(&sb_lock);
759 			if (!excl)
760 				down_read(&sb->s_umount);
761 			else
762 				down_write(&sb->s_umount);
763 			/* still alive? */
764 			if (sb->s_root && (sb->s_flags & SB_BORN))
765 				return sb;
766 			if (!excl)
767 				up_read(&sb->s_umount);
768 			else
769 				up_write(&sb->s_umount);
770 			/* nope, got unmounted */
771 			spin_lock(&sb_lock);
772 			__put_super(sb);
773 			goto rescan;
774 		}
775 	}
776 	spin_unlock(&sb_lock);
777 	return NULL;
778 }
779 
780 /**
781  *	get_super - get the superblock of a device
782  *	@bdev: device to get the superblock for
783  *
784  *	Scans the superblock list and finds the superblock of the file system
785  *	mounted on the device given. %NULL is returned if no match is found.
786  */
get_super(struct block_device * bdev)787 struct super_block *get_super(struct block_device *bdev)
788 {
789 	return __get_super(bdev, false);
790 }
791 EXPORT_SYMBOL(get_super);
792 
__get_super_thawed(struct block_device * bdev,bool excl)793 static struct super_block *__get_super_thawed(struct block_device *bdev,
794 					      bool excl)
795 {
796 	while (1) {
797 		struct super_block *s = __get_super(bdev, excl);
798 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
799 			return s;
800 		if (!excl)
801 			up_read(&s->s_umount);
802 		else
803 			up_write(&s->s_umount);
804 		wait_event(s->s_writers.wait_unfrozen,
805 			   s->s_writers.frozen == SB_UNFROZEN);
806 		put_super(s);
807 	}
808 }
809 
810 /**
811  *	get_super_thawed - get thawed superblock of a device
812  *	@bdev: device to get the superblock for
813  *
814  *	Scans the superblock list and finds the superblock of the file system
815  *	mounted on the device. The superblock is returned once it is thawed
816  *	(or immediately if it was not frozen). %NULL is returned if no match
817  *	is found.
818  */
get_super_thawed(struct block_device * bdev)819 struct super_block *get_super_thawed(struct block_device *bdev)
820 {
821 	return __get_super_thawed(bdev, false);
822 }
823 EXPORT_SYMBOL(get_super_thawed);
824 
825 /**
826  *	get_super_exclusive_thawed - get thawed superblock of a device
827  *	@bdev: device to get the superblock for
828  *
829  *	Scans the superblock list and finds the superblock of the file system
830  *	mounted on the device. The superblock is returned once it is thawed
831  *	(or immediately if it was not frozen) and s_umount semaphore is held
832  *	in exclusive mode. %NULL is returned if no match is found.
833  */
get_super_exclusive_thawed(struct block_device * bdev)834 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
835 {
836 	return __get_super_thawed(bdev, true);
837 }
838 EXPORT_SYMBOL(get_super_exclusive_thawed);
839 
840 /**
841  * get_active_super - get an active reference to the superblock of a device
842  * @bdev: device to get the superblock for
843  *
844  * Scans the superblock list and finds the superblock of the file system
845  * mounted on the device given.  Returns the superblock with an active
846  * reference or %NULL if none was found.
847  */
get_active_super(struct block_device * bdev)848 struct super_block *get_active_super(struct block_device *bdev)
849 {
850 	struct super_block *sb;
851 
852 	if (!bdev)
853 		return NULL;
854 
855 restart:
856 	spin_lock(&sb_lock);
857 	list_for_each_entry(sb, &super_blocks, s_list) {
858 		if (hlist_unhashed(&sb->s_instances))
859 			continue;
860 		if (sb->s_bdev == bdev) {
861 			if (!grab_super(sb))
862 				goto restart;
863 			up_write(&sb->s_umount);
864 			return sb;
865 		}
866 	}
867 	spin_unlock(&sb_lock);
868 	return NULL;
869 }
870 
user_get_super(dev_t dev)871 struct super_block *user_get_super(dev_t dev)
872 {
873 	struct super_block *sb;
874 
875 	spin_lock(&sb_lock);
876 rescan:
877 	list_for_each_entry(sb, &super_blocks, s_list) {
878 		if (hlist_unhashed(&sb->s_instances))
879 			continue;
880 		if (sb->s_dev ==  dev) {
881 			sb->s_count++;
882 			spin_unlock(&sb_lock);
883 			down_read(&sb->s_umount);
884 			/* still alive? */
885 			if (sb->s_root && (sb->s_flags & SB_BORN))
886 				return sb;
887 			up_read(&sb->s_umount);
888 			/* nope, got unmounted */
889 			spin_lock(&sb_lock);
890 			__put_super(sb);
891 			goto rescan;
892 		}
893 	}
894 	spin_unlock(&sb_lock);
895 	return NULL;
896 }
897 
898 /**
899  * reconfigure_super - asks filesystem to change superblock parameters
900  * @fc: The superblock and configuration
901  *
902  * Alters the configuration parameters of a live superblock.
903  */
reconfigure_super(struct fs_context * fc)904 int reconfigure_super(struct fs_context *fc)
905 {
906 	struct super_block *sb = fc->root->d_sb;
907 	int retval;
908 	bool remount_ro = false;
909 	bool remount_rw = false;
910 	bool force = fc->sb_flags & SB_FORCE;
911 
912 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
913 		return -EINVAL;
914 	if (sb->s_writers.frozen != SB_UNFROZEN)
915 		return -EBUSY;
916 
917 	retval = security_sb_remount(sb, fc->security);
918 	if (retval)
919 		return retval;
920 
921 	if (fc->sb_flags_mask & SB_RDONLY) {
922 #ifdef CONFIG_BLOCK
923 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
924 			return -EACCES;
925 #endif
926 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
927 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
928 	}
929 
930 	if (remount_ro) {
931 		if (!hlist_empty(&sb->s_pins)) {
932 			up_write(&sb->s_umount);
933 			group_pin_kill(&sb->s_pins);
934 			down_write(&sb->s_umount);
935 			if (!sb->s_root)
936 				return 0;
937 			if (sb->s_writers.frozen != SB_UNFROZEN)
938 				return -EBUSY;
939 			remount_ro = !sb_rdonly(sb);
940 		}
941 	}
942 	shrink_dcache_sb(sb);
943 
944 	/* If we are reconfiguring to RDONLY and current sb is read/write,
945 	 * make sure there are no files open for writing.
946 	 */
947 	if (remount_ro) {
948 		if (force) {
949 			sb->s_readonly_remount = 1;
950 			smp_wmb();
951 		} else {
952 			retval = sb_prepare_remount_readonly(sb);
953 			if (retval)
954 				return retval;
955 		}
956 	} else if (remount_rw) {
957 		/*
958 		 * We set s_readonly_remount here to protect filesystem's
959 		 * reconfigure code from writes from userspace until
960 		 * reconfigure finishes.
961 		 */
962 		sb->s_readonly_remount = 1;
963 		smp_wmb();
964 	}
965 
966 	if (fc->ops->reconfigure) {
967 		retval = fc->ops->reconfigure(fc);
968 		if (retval) {
969 			if (!force)
970 				goto cancel_readonly;
971 			/* If forced remount, go ahead despite any errors */
972 			WARN(1, "forced remount of a %s fs returned %i\n",
973 			     sb->s_type->name, retval);
974 		}
975 	}
976 
977 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
978 				 (fc->sb_flags & fc->sb_flags_mask)));
979 	/* Needs to be ordered wrt mnt_is_readonly() */
980 	smp_wmb();
981 	sb->s_readonly_remount = 0;
982 
983 	/*
984 	 * Some filesystems modify their metadata via some other path than the
985 	 * bdev buffer cache (eg. use a private mapping, or directories in
986 	 * pagecache, etc). Also file data modifications go via their own
987 	 * mappings. So If we try to mount readonly then copy the filesystem
988 	 * from bdev, we could get stale data, so invalidate it to give a best
989 	 * effort at coherency.
990 	 */
991 	if (remount_ro && sb->s_bdev)
992 		invalidate_bdev(sb->s_bdev);
993 	return 0;
994 
995 cancel_readonly:
996 	sb->s_readonly_remount = 0;
997 	return retval;
998 }
999 
do_emergency_remount_callback(struct super_block * sb)1000 static void do_emergency_remount_callback(struct super_block *sb)
1001 {
1002 	down_write(&sb->s_umount);
1003 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1004 	    !sb_rdonly(sb)) {
1005 		struct fs_context *fc;
1006 
1007 		fc = fs_context_for_reconfigure(sb->s_root,
1008 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1009 		if (!IS_ERR(fc)) {
1010 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1011 				(void)reconfigure_super(fc);
1012 			put_fs_context(fc);
1013 		}
1014 	}
1015 	up_write(&sb->s_umount);
1016 }
1017 
do_emergency_remount(struct work_struct * work)1018 static void do_emergency_remount(struct work_struct *work)
1019 {
1020 	__iterate_supers(do_emergency_remount_callback);
1021 	kfree(work);
1022 	printk("Emergency Remount complete\n");
1023 }
1024 
emergency_remount(void)1025 void emergency_remount(void)
1026 {
1027 	struct work_struct *work;
1028 
1029 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1030 	if (work) {
1031 		INIT_WORK(work, do_emergency_remount);
1032 		schedule_work(work);
1033 	}
1034 }
1035 
do_thaw_all_callback(struct super_block * sb)1036 static void do_thaw_all_callback(struct super_block *sb)
1037 {
1038 	down_write(&sb->s_umount);
1039 	if (sb->s_root && sb->s_flags & SB_BORN) {
1040 		emergency_thaw_bdev(sb);
1041 		thaw_super_locked(sb);
1042 	} else {
1043 		up_write(&sb->s_umount);
1044 	}
1045 }
1046 
do_thaw_all(struct work_struct * work)1047 static void do_thaw_all(struct work_struct *work)
1048 {
1049 	__iterate_supers(do_thaw_all_callback);
1050 	kfree(work);
1051 	printk(KERN_WARNING "Emergency Thaw complete\n");
1052 }
1053 
1054 /**
1055  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1056  *
1057  * Used for emergency unfreeze of all filesystems via SysRq
1058  */
emergency_thaw_all(void)1059 void emergency_thaw_all(void)
1060 {
1061 	struct work_struct *work;
1062 
1063 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1064 	if (work) {
1065 		INIT_WORK(work, do_thaw_all);
1066 		schedule_work(work);
1067 	}
1068 }
1069 
1070 static DEFINE_IDA(unnamed_dev_ida);
1071 
1072 /**
1073  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1074  * @p: Pointer to a dev_t.
1075  *
1076  * Filesystems which don't use real block devices can call this function
1077  * to allocate a virtual block device.
1078  *
1079  * Context: Any context.  Frequently called while holding sb_lock.
1080  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1081  * or -ENOMEM if memory allocation failed.
1082  */
get_anon_bdev(dev_t * p)1083 int get_anon_bdev(dev_t *p)
1084 {
1085 	int dev;
1086 
1087 	/*
1088 	 * Many userspace utilities consider an FSID of 0 invalid.
1089 	 * Always return at least 1 from get_anon_bdev.
1090 	 */
1091 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1092 			GFP_ATOMIC);
1093 	if (dev == -ENOSPC)
1094 		dev = -EMFILE;
1095 	if (dev < 0)
1096 		return dev;
1097 
1098 	*p = MKDEV(0, dev);
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL(get_anon_bdev);
1102 
free_anon_bdev(dev_t dev)1103 void free_anon_bdev(dev_t dev)
1104 {
1105 	ida_free(&unnamed_dev_ida, MINOR(dev));
1106 }
1107 EXPORT_SYMBOL(free_anon_bdev);
1108 
set_anon_super(struct super_block * s,void * data)1109 int set_anon_super(struct super_block *s, void *data)
1110 {
1111 	return get_anon_bdev(&s->s_dev);
1112 }
1113 EXPORT_SYMBOL(set_anon_super);
1114 
kill_anon_super(struct super_block * sb)1115 void kill_anon_super(struct super_block *sb)
1116 {
1117 	dev_t dev = sb->s_dev;
1118 	generic_shutdown_super(sb);
1119 	free_anon_bdev(dev);
1120 }
1121 EXPORT_SYMBOL(kill_anon_super);
1122 
kill_litter_super(struct super_block * sb)1123 void kill_litter_super(struct super_block *sb)
1124 {
1125 	if (sb->s_root)
1126 		d_genocide(sb->s_root);
1127 	kill_anon_super(sb);
1128 }
1129 EXPORT_SYMBOL(kill_litter_super);
1130 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1131 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1132 {
1133 	return set_anon_super(sb, NULL);
1134 }
1135 EXPORT_SYMBOL(set_anon_super_fc);
1136 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1137 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1138 {
1139 	return sb->s_fs_info == fc->s_fs_info;
1140 }
1141 
test_single_super(struct super_block * s,struct fs_context * fc)1142 static int test_single_super(struct super_block *s, struct fs_context *fc)
1143 {
1144 	return 1;
1145 }
1146 
1147 /**
1148  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1149  * @fc: The filesystem context holding the parameters
1150  * @keying: How to distinguish superblocks
1151  * @fill_super: Helper to initialise a new superblock
1152  *
1153  * Search for a superblock and create a new one if not found.  The search
1154  * criterion is controlled by @keying.  If the search fails, a new superblock
1155  * is created and @fill_super() is called to initialise it.
1156  *
1157  * @keying can take one of a number of values:
1158  *
1159  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1160  *     system.  This is typically used for special system filesystems.
1161  *
1162  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1163  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1164  *     key again will turn up the superblock for that key.
1165  *
1166  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1167  *     unkeyed.  Each call will get a new superblock.
1168  *
1169  * A permissions check is made by sget_fc() unless we're getting a superblock
1170  * for a kernel-internal mount or a submount.
1171  */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1172 int vfs_get_super(struct fs_context *fc,
1173 		  enum vfs_get_super_keying keying,
1174 		  int (*fill_super)(struct super_block *sb,
1175 				    struct fs_context *fc))
1176 {
1177 	int (*test)(struct super_block *, struct fs_context *);
1178 	struct super_block *sb;
1179 	int err;
1180 
1181 	switch (keying) {
1182 	case vfs_get_single_super:
1183 	case vfs_get_single_reconf_super:
1184 		test = test_single_super;
1185 		break;
1186 	case vfs_get_keyed_super:
1187 		test = test_keyed_super;
1188 		break;
1189 	case vfs_get_independent_super:
1190 		test = NULL;
1191 		break;
1192 	default:
1193 		BUG();
1194 	}
1195 
1196 	sb = sget_fc(fc, test, set_anon_super_fc);
1197 	if (IS_ERR(sb))
1198 		return PTR_ERR(sb);
1199 
1200 	if (!sb->s_root) {
1201 		err = fill_super(sb, fc);
1202 		if (err)
1203 			goto error;
1204 
1205 		sb->s_flags |= SB_ACTIVE;
1206 		fc->root = dget(sb->s_root);
1207 	} else {
1208 		fc->root = dget(sb->s_root);
1209 		if (keying == vfs_get_single_reconf_super) {
1210 			err = reconfigure_super(fc);
1211 			if (err < 0) {
1212 				dput(fc->root);
1213 				fc->root = NULL;
1214 				goto error;
1215 			}
1216 		}
1217 	}
1218 
1219 	return 0;
1220 
1221 error:
1222 	deactivate_locked_super(sb);
1223 	return err;
1224 }
1225 EXPORT_SYMBOL(vfs_get_super);
1226 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1227 int get_tree_nodev(struct fs_context *fc,
1228 		  int (*fill_super)(struct super_block *sb,
1229 				    struct fs_context *fc))
1230 {
1231 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1232 }
1233 EXPORT_SYMBOL(get_tree_nodev);
1234 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1235 int get_tree_single(struct fs_context *fc,
1236 		  int (*fill_super)(struct super_block *sb,
1237 				    struct fs_context *fc))
1238 {
1239 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1240 }
1241 EXPORT_SYMBOL(get_tree_single);
1242 
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1243 int get_tree_single_reconf(struct fs_context *fc,
1244 		  int (*fill_super)(struct super_block *sb,
1245 				    struct fs_context *fc))
1246 {
1247 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1248 }
1249 EXPORT_SYMBOL(get_tree_single_reconf);
1250 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1251 int get_tree_keyed(struct fs_context *fc,
1252 		  int (*fill_super)(struct super_block *sb,
1253 				    struct fs_context *fc),
1254 		void *key)
1255 {
1256 	fc->s_fs_info = key;
1257 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1258 }
1259 EXPORT_SYMBOL(get_tree_keyed);
1260 
1261 #ifdef CONFIG_BLOCK
1262 
set_bdev_super(struct super_block * s,void * data)1263 static int set_bdev_super(struct super_block *s, void *data)
1264 {
1265 	s->s_bdev = data;
1266 	s->s_dev = s->s_bdev->bd_dev;
1267 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1268 
1269 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1270 		s->s_iflags |= SB_I_STABLE_WRITES;
1271 	return 0;
1272 }
1273 
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1274 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1275 {
1276 	return set_bdev_super(s, fc->sget_key);
1277 }
1278 
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1279 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1280 {
1281 	return s->s_bdev == fc->sget_key;
1282 }
1283 
1284 /**
1285  * get_tree_bdev - Get a superblock based on a single block device
1286  * @fc: The filesystem context holding the parameters
1287  * @fill_super: Helper to initialise a new superblock
1288  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1289 int get_tree_bdev(struct fs_context *fc,
1290 		int (*fill_super)(struct super_block *,
1291 				  struct fs_context *))
1292 {
1293 	struct block_device *bdev;
1294 	struct super_block *s;
1295 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1296 	int error = 0;
1297 
1298 	if (!(fc->sb_flags & SB_RDONLY))
1299 		mode |= FMODE_WRITE;
1300 
1301 	if (!fc->source)
1302 		return invalf(fc, "No source specified");
1303 
1304 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1305 	if (IS_ERR(bdev)) {
1306 		errorf(fc, "%s: Can't open blockdev", fc->source);
1307 		return PTR_ERR(bdev);
1308 	}
1309 
1310 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1311 	 * will protect the lockfs code from trying to start a snapshot while
1312 	 * we are mounting
1313 	 */
1314 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1315 	if (bdev->bd_fsfreeze_count > 0) {
1316 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1317 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1318 		blkdev_put(bdev, mode);
1319 		return -EBUSY;
1320 	}
1321 
1322 	fc->sb_flags |= SB_NOSEC;
1323 	fc->sget_key = bdev;
1324 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1325 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1326 	if (IS_ERR(s)) {
1327 		blkdev_put(bdev, mode);
1328 		return PTR_ERR(s);
1329 	}
1330 
1331 	if (s->s_root) {
1332 		/* Don't summarily change the RO/RW state. */
1333 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1334 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1335 			deactivate_locked_super(s);
1336 			blkdev_put(bdev, mode);
1337 			return -EBUSY;
1338 		}
1339 
1340 		/*
1341 		 * s_umount nests inside bd_mutex during
1342 		 * __invalidate_device().  blkdev_put() acquires
1343 		 * bd_mutex and can't be called under s_umount.  Drop
1344 		 * s_umount temporarily.  This is safe as we're
1345 		 * holding an active reference.
1346 		 */
1347 		up_write(&s->s_umount);
1348 		blkdev_put(bdev, mode);
1349 		down_write(&s->s_umount);
1350 	} else {
1351 		s->s_mode = mode;
1352 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1353 		sb_set_blocksize(s, block_size(bdev));
1354 		error = fill_super(s, fc);
1355 		if (error) {
1356 			deactivate_locked_super(s);
1357 			return error;
1358 		}
1359 
1360 		s->s_flags |= SB_ACTIVE;
1361 		bdev->bd_super = s;
1362 	}
1363 
1364 	BUG_ON(fc->root);
1365 	fc->root = dget(s->s_root);
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL(get_tree_bdev);
1369 
test_bdev_super(struct super_block * s,void * data)1370 static int test_bdev_super(struct super_block *s, void *data)
1371 {
1372 	return (void *)s->s_bdev == data;
1373 }
1374 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1375 struct dentry *mount_bdev(struct file_system_type *fs_type,
1376 	int flags, const char *dev_name, void *data,
1377 	int (*fill_super)(struct super_block *, void *, int))
1378 {
1379 	struct block_device *bdev;
1380 	struct super_block *s;
1381 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1382 	int error = 0;
1383 
1384 	if (!(flags & SB_RDONLY))
1385 		mode |= FMODE_WRITE;
1386 
1387 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1388 	if (IS_ERR(bdev))
1389 		return ERR_CAST(bdev);
1390 
1391 	/*
1392 	 * once the super is inserted into the list by sget, s_umount
1393 	 * will protect the lockfs code from trying to start a snapshot
1394 	 * while we are mounting
1395 	 */
1396 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1397 	if (bdev->bd_fsfreeze_count > 0) {
1398 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1399 		error = -EBUSY;
1400 		goto error_bdev;
1401 	}
1402 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1403 		 bdev);
1404 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1405 	if (IS_ERR(s))
1406 		goto error_s;
1407 
1408 	if (s->s_root) {
1409 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1410 			deactivate_locked_super(s);
1411 			error = -EBUSY;
1412 			goto error_bdev;
1413 		}
1414 
1415 		/*
1416 		 * s_umount nests inside bd_mutex during
1417 		 * __invalidate_device().  blkdev_put() acquires
1418 		 * bd_mutex and can't be called under s_umount.  Drop
1419 		 * s_umount temporarily.  This is safe as we're
1420 		 * holding an active reference.
1421 		 */
1422 		up_write(&s->s_umount);
1423 		blkdev_put(bdev, mode);
1424 		down_write(&s->s_umount);
1425 	} else {
1426 		s->s_mode = mode;
1427 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1428 		sb_set_blocksize(s, block_size(bdev));
1429 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1430 		if (error) {
1431 			deactivate_locked_super(s);
1432 			goto error;
1433 		}
1434 
1435 		s->s_flags |= SB_ACTIVE;
1436 		bdev->bd_super = s;
1437 	}
1438 
1439 	return dget(s->s_root);
1440 
1441 error_s:
1442 	error = PTR_ERR(s);
1443 error_bdev:
1444 	blkdev_put(bdev, mode);
1445 error:
1446 	return ERR_PTR(error);
1447 }
1448 EXPORT_SYMBOL(mount_bdev);
1449 
kill_block_super(struct super_block * sb)1450 void kill_block_super(struct super_block *sb)
1451 {
1452 	struct block_device *bdev = sb->s_bdev;
1453 	fmode_t mode = sb->s_mode;
1454 
1455 	bdev->bd_super = NULL;
1456 	generic_shutdown_super(sb);
1457 	sync_blockdev(bdev);
1458 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1459 	blkdev_put(bdev, mode | FMODE_EXCL);
1460 }
1461 
1462 EXPORT_SYMBOL(kill_block_super);
1463 #endif
1464 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1465 struct dentry *mount_nodev(struct file_system_type *fs_type,
1466 	int flags, void *data,
1467 	int (*fill_super)(struct super_block *, void *, int))
1468 {
1469 	int error;
1470 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1471 
1472 	if (IS_ERR(s))
1473 		return ERR_CAST(s);
1474 
1475 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1476 	if (error) {
1477 		deactivate_locked_super(s);
1478 		return ERR_PTR(error);
1479 	}
1480 	s->s_flags |= SB_ACTIVE;
1481 	return dget(s->s_root);
1482 }
1483 EXPORT_SYMBOL(mount_nodev);
1484 
reconfigure_single(struct super_block * s,int flags,void * data)1485 int reconfigure_single(struct super_block *s,
1486 		       int flags, void *data)
1487 {
1488 	struct fs_context *fc;
1489 	int ret;
1490 
1491 	/* The caller really need to be passing fc down into mount_single(),
1492 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1493 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1494 	 * mount should be rejected if the parameters are not compatible.
1495 	 */
1496 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1497 	if (IS_ERR(fc))
1498 		return PTR_ERR(fc);
1499 
1500 	ret = parse_monolithic_mount_data(fc, data);
1501 	if (ret < 0)
1502 		goto out;
1503 
1504 	ret = reconfigure_super(fc);
1505 out:
1506 	put_fs_context(fc);
1507 	return ret;
1508 }
1509 
compare_single(struct super_block * s,void * p)1510 static int compare_single(struct super_block *s, void *p)
1511 {
1512 	return 1;
1513 }
1514 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1515 struct dentry *mount_single(struct file_system_type *fs_type,
1516 	int flags, void *data,
1517 	int (*fill_super)(struct super_block *, void *, int))
1518 {
1519 	struct super_block *s;
1520 	int error;
1521 
1522 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1523 	if (IS_ERR(s))
1524 		return ERR_CAST(s);
1525 	if (!s->s_root) {
1526 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1527 		if (!error)
1528 			s->s_flags |= SB_ACTIVE;
1529 	} else {
1530 		error = reconfigure_single(s, flags, data);
1531 	}
1532 	if (unlikely(error)) {
1533 		deactivate_locked_super(s);
1534 		return ERR_PTR(error);
1535 	}
1536 	return dget(s->s_root);
1537 }
1538 EXPORT_SYMBOL(mount_single);
1539 
1540 /**
1541  * vfs_get_tree - Get the mountable root
1542  * @fc: The superblock configuration context.
1543  *
1544  * The filesystem is invoked to get or create a superblock which can then later
1545  * be used for mounting.  The filesystem places a pointer to the root to be
1546  * used for mounting in @fc->root.
1547  */
vfs_get_tree(struct fs_context * fc)1548 int vfs_get_tree(struct fs_context *fc)
1549 {
1550 	struct super_block *sb;
1551 	int error;
1552 
1553 	if (fc->root)
1554 		return -EBUSY;
1555 
1556 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1557 	 * on the superblock.
1558 	 */
1559 	error = fc->ops->get_tree(fc);
1560 	if (error < 0)
1561 		return error;
1562 
1563 	if (!fc->root) {
1564 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1565 		       fc->fs_type->name);
1566 		/* We don't know what the locking state of the superblock is -
1567 		 * if there is a superblock.
1568 		 */
1569 		BUG();
1570 	}
1571 
1572 	sb = fc->root->d_sb;
1573 	WARN_ON(!sb->s_bdi);
1574 
1575 	/*
1576 	 * Write barrier is for super_cache_count(). We place it before setting
1577 	 * SB_BORN as the data dependency between the two functions is the
1578 	 * superblock structure contents that we just set up, not the SB_BORN
1579 	 * flag.
1580 	 */
1581 	smp_wmb();
1582 	sb->s_flags |= SB_BORN;
1583 
1584 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1585 	if (unlikely(error)) {
1586 		fc_drop_locked(fc);
1587 		return error;
1588 	}
1589 
1590 	/*
1591 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1592 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1593 	 * this warning for a little while to try and catch filesystems that
1594 	 * violate this rule.
1595 	 */
1596 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1597 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1598 
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(vfs_get_tree);
1602 
1603 /*
1604  * Setup private BDI for given superblock. It gets automatically cleaned up
1605  * in generic_shutdown_super().
1606  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1607 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1608 {
1609 	struct backing_dev_info *bdi;
1610 	int err;
1611 	va_list args;
1612 
1613 	bdi = bdi_alloc(NUMA_NO_NODE);
1614 	if (!bdi)
1615 		return -ENOMEM;
1616 
1617 	va_start(args, fmt);
1618 	err = bdi_register_va(bdi, fmt, args);
1619 	va_end(args);
1620 	if (err) {
1621 		bdi_put(bdi);
1622 		return err;
1623 	}
1624 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1625 	sb->s_bdi = bdi;
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL(super_setup_bdi_name);
1630 
1631 /*
1632  * Setup private BDI for given superblock. I gets automatically cleaned up
1633  * in generic_shutdown_super().
1634  */
super_setup_bdi(struct super_block * sb)1635 int super_setup_bdi(struct super_block *sb)
1636 {
1637 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1638 
1639 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1640 				    atomic_long_inc_return(&bdi_seq));
1641 }
1642 EXPORT_SYMBOL(super_setup_bdi);
1643 
1644 /**
1645  * sb_wait_write - wait until all writers to given file system finish
1646  * @sb: the super for which we wait
1647  * @level: type of writers we wait for (normal vs page fault)
1648  *
1649  * This function waits until there are no writers of given type to given file
1650  * system.
1651  */
sb_wait_write(struct super_block * sb,int level)1652 static void sb_wait_write(struct super_block *sb, int level)
1653 {
1654 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1655 }
1656 
1657 /*
1658  * We are going to return to userspace and forget about these locks, the
1659  * ownership goes to the caller of thaw_super() which does unlock().
1660  */
lockdep_sb_freeze_release(struct super_block * sb)1661 static void lockdep_sb_freeze_release(struct super_block *sb)
1662 {
1663 	int level;
1664 
1665 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1666 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1667 }
1668 
1669 /*
1670  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1671  */
lockdep_sb_freeze_acquire(struct super_block * sb)1672 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1673 {
1674 	int level;
1675 
1676 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1677 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1678 }
1679 
sb_freeze_unlock(struct super_block * sb,int level)1680 static void sb_freeze_unlock(struct super_block *sb, int level)
1681 {
1682 	for (level--; level >= 0; level--)
1683 		percpu_up_write(sb->s_writers.rw_sem + level);
1684 }
1685 
1686 /**
1687  * freeze_super - lock the filesystem and force it into a consistent state
1688  * @sb: the super to lock
1689  *
1690  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1691  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1692  * -EBUSY.
1693  *
1694  * During this function, sb->s_writers.frozen goes through these values:
1695  *
1696  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1697  *
1698  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1699  * writes should be blocked, though page faults are still allowed. We wait for
1700  * all writes to complete and then proceed to the next stage.
1701  *
1702  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1703  * but internal fs threads can still modify the filesystem (although they
1704  * should not dirty new pages or inodes), writeback can run etc. After waiting
1705  * for all running page faults we sync the filesystem which will clean all
1706  * dirty pages and inodes (no new dirty pages or inodes can be created when
1707  * sync is running).
1708  *
1709  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1710  * modification are blocked (e.g. XFS preallocation truncation on inode
1711  * reclaim). This is usually implemented by blocking new transactions for
1712  * filesystems that have them and need this additional guard. After all
1713  * internal writers are finished we call ->freeze_fs() to finish filesystem
1714  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1715  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1716  *
1717  * sb->s_writers.frozen is protected by sb->s_umount.
1718  */
freeze_super(struct super_block * sb)1719 int freeze_super(struct super_block *sb)
1720 {
1721 	int ret;
1722 
1723 	atomic_inc(&sb->s_active);
1724 	down_write(&sb->s_umount);
1725 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1726 		deactivate_locked_super(sb);
1727 		return -EBUSY;
1728 	}
1729 
1730 	if (!(sb->s_flags & SB_BORN)) {
1731 		up_write(&sb->s_umount);
1732 		return 0;	/* sic - it's "nothing to do" */
1733 	}
1734 
1735 	if (sb_rdonly(sb)) {
1736 		/* Nothing to do really... */
1737 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1738 		up_write(&sb->s_umount);
1739 		return 0;
1740 	}
1741 
1742 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1743 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1744 	up_write(&sb->s_umount);
1745 	sb_wait_write(sb, SB_FREEZE_WRITE);
1746 	down_write(&sb->s_umount);
1747 
1748 	/* Now we go and block page faults... */
1749 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1750 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1751 
1752 	/* All writers are done so after syncing there won't be dirty data */
1753 	ret = sync_filesystem(sb);
1754 	if (ret) {
1755 		sb->s_writers.frozen = SB_UNFROZEN;
1756 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1757 		wake_up(&sb->s_writers.wait_unfrozen);
1758 		deactivate_locked_super(sb);
1759 		return ret;
1760 	}
1761 
1762 	/* Now wait for internal filesystem counter */
1763 	sb->s_writers.frozen = SB_FREEZE_FS;
1764 	sb_wait_write(sb, SB_FREEZE_FS);
1765 
1766 	if (sb->s_op->freeze_fs) {
1767 		ret = sb->s_op->freeze_fs(sb);
1768 		if (ret) {
1769 			printk(KERN_ERR
1770 				"VFS:Filesystem freeze failed\n");
1771 			sb->s_writers.frozen = SB_UNFROZEN;
1772 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1773 			wake_up(&sb->s_writers.wait_unfrozen);
1774 			deactivate_locked_super(sb);
1775 			return ret;
1776 		}
1777 	}
1778 	/*
1779 	 * For debugging purposes so that fs can warn if it sees write activity
1780 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1781 	 */
1782 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1783 	lockdep_sb_freeze_release(sb);
1784 	up_write(&sb->s_umount);
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL(freeze_super);
1788 
1789 /**
1790  * thaw_super -- unlock filesystem
1791  * @sb: the super to thaw
1792  *
1793  * Unlocks the filesystem and marks it writeable again after freeze_super().
1794  */
thaw_super_locked(struct super_block * sb)1795 static int thaw_super_locked(struct super_block *sb)
1796 {
1797 	int error;
1798 
1799 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1800 		up_write(&sb->s_umount);
1801 		return -EINVAL;
1802 	}
1803 
1804 	if (sb_rdonly(sb)) {
1805 		sb->s_writers.frozen = SB_UNFROZEN;
1806 		goto out;
1807 	}
1808 
1809 	lockdep_sb_freeze_acquire(sb);
1810 
1811 	if (sb->s_op->unfreeze_fs) {
1812 		error = sb->s_op->unfreeze_fs(sb);
1813 		if (error) {
1814 			printk(KERN_ERR
1815 				"VFS:Filesystem thaw failed\n");
1816 			lockdep_sb_freeze_release(sb);
1817 			up_write(&sb->s_umount);
1818 			return error;
1819 		}
1820 	}
1821 
1822 	sb->s_writers.frozen = SB_UNFROZEN;
1823 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1824 out:
1825 	wake_up(&sb->s_writers.wait_unfrozen);
1826 	deactivate_locked_super(sb);
1827 	return 0;
1828 }
1829 
thaw_super(struct super_block * sb)1830 int thaw_super(struct super_block *sb)
1831 {
1832 	down_write(&sb->s_umount);
1833 	return thaw_super_locked(sb);
1834 }
1835 EXPORT_SYMBOL(thaw_super);
1836