1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18
19 static struct workqueue_struct *hclgevf_wq;
20
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
23 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
24 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 /* required last entry */
26 {0, }
27 };
28
29 static const u8 hclgevf_hash_key[] = {
30 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
31 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
32 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
33 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
34 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
35 };
36
37 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
38
39 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
40 HCLGEVF_CMDQ_TX_ADDR_H_REG,
41 HCLGEVF_CMDQ_TX_DEPTH_REG,
42 HCLGEVF_CMDQ_TX_TAIL_REG,
43 HCLGEVF_CMDQ_TX_HEAD_REG,
44 HCLGEVF_CMDQ_RX_ADDR_L_REG,
45 HCLGEVF_CMDQ_RX_ADDR_H_REG,
46 HCLGEVF_CMDQ_RX_DEPTH_REG,
47 HCLGEVF_CMDQ_RX_TAIL_REG,
48 HCLGEVF_CMDQ_RX_HEAD_REG,
49 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 HCLGEVF_CMDQ_INTR_EN_REG,
52 HCLGEVF_CMDQ_INTR_GEN_REG};
53
54 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
55 HCLGEVF_RST_ING,
56 HCLGEVF_GRO_EN_REG};
57
58 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
59 HCLGEVF_RING_RX_ADDR_H_REG,
60 HCLGEVF_RING_RX_BD_NUM_REG,
61 HCLGEVF_RING_RX_BD_LENGTH_REG,
62 HCLGEVF_RING_RX_MERGE_EN_REG,
63 HCLGEVF_RING_RX_TAIL_REG,
64 HCLGEVF_RING_RX_HEAD_REG,
65 HCLGEVF_RING_RX_FBD_NUM_REG,
66 HCLGEVF_RING_RX_OFFSET_REG,
67 HCLGEVF_RING_RX_FBD_OFFSET_REG,
68 HCLGEVF_RING_RX_STASH_REG,
69 HCLGEVF_RING_RX_BD_ERR_REG,
70 HCLGEVF_RING_TX_ADDR_L_REG,
71 HCLGEVF_RING_TX_ADDR_H_REG,
72 HCLGEVF_RING_TX_BD_NUM_REG,
73 HCLGEVF_RING_TX_PRIORITY_REG,
74 HCLGEVF_RING_TX_TC_REG,
75 HCLGEVF_RING_TX_MERGE_EN_REG,
76 HCLGEVF_RING_TX_TAIL_REG,
77 HCLGEVF_RING_TX_HEAD_REG,
78 HCLGEVF_RING_TX_FBD_NUM_REG,
79 HCLGEVF_RING_TX_OFFSET_REG,
80 HCLGEVF_RING_TX_EBD_NUM_REG,
81 HCLGEVF_RING_TX_EBD_OFFSET_REG,
82 HCLGEVF_RING_TX_BD_ERR_REG,
83 HCLGEVF_RING_EN_REG};
84
85 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
86 HCLGEVF_TQP_INTR_GL0_REG,
87 HCLGEVF_TQP_INTR_GL1_REG,
88 HCLGEVF_TQP_INTR_GL2_REG,
89 HCLGEVF_TQP_INTR_RL_REG};
90
hclgevf_ae_get_hdev(struct hnae3_handle * handle)91 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92 {
93 if (!handle->client)
94 return container_of(handle, struct hclgevf_dev, nic);
95 else if (handle->client->type == HNAE3_CLIENT_ROCE)
96 return container_of(handle, struct hclgevf_dev, roce);
97 else
98 return container_of(handle, struct hclgevf_dev, nic);
99 }
100
hclgevf_tqps_update_stats(struct hnae3_handle * handle)101 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
102 {
103 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
105 struct hclgevf_desc desc;
106 struct hclgevf_tqp *tqp;
107 int status;
108 int i;
109
110 for (i = 0; i < kinfo->num_tqps; i++) {
111 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 hclgevf_cmd_setup_basic_desc(&desc,
113 HCLGEVF_OPC_QUERY_RX_STATUS,
114 true);
115
116 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
117 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
118 if (status) {
119 dev_err(&hdev->pdev->dev,
120 "Query tqp stat fail, status = %d,queue = %d\n",
121 status, i);
122 return status;
123 }
124 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125 le32_to_cpu(desc.data[1]);
126
127 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
128 true);
129
130 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
131 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
132 if (status) {
133 dev_err(&hdev->pdev->dev,
134 "Query tqp stat fail, status = %d,queue = %d\n",
135 status, i);
136 return status;
137 }
138 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139 le32_to_cpu(desc.data[1]);
140 }
141
142 return 0;
143 }
144
hclgevf_tqps_get_stats(struct hnae3_handle * handle,u64 * data)145 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
146 {
147 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
148 struct hclgevf_tqp *tqp;
149 u64 *buff = data;
150 int i;
151
152 for (i = 0; i < kinfo->num_tqps; i++) {
153 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
155 }
156 for (i = 0; i < kinfo->num_tqps; i++) {
157 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
159 }
160
161 return buff;
162 }
163
hclgevf_tqps_get_sset_count(struct hnae3_handle * handle,int strset)164 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
165 {
166 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167
168 return kinfo->num_tqps * 2;
169 }
170
hclgevf_tqps_get_strings(struct hnae3_handle * handle,u8 * data)171 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
172 {
173 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174 u8 *buff = data;
175 int i;
176
177 for (i = 0; i < kinfo->num_tqps; i++) {
178 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
179 struct hclgevf_tqp, q);
180 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 tqp->index);
182 buff += ETH_GSTRING_LEN;
183 }
184
185 for (i = 0; i < kinfo->num_tqps; i++) {
186 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
187 struct hclgevf_tqp, q);
188 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 tqp->index);
190 buff += ETH_GSTRING_LEN;
191 }
192
193 return buff;
194 }
195
hclgevf_update_stats(struct hnae3_handle * handle,struct net_device_stats * net_stats)196 static void hclgevf_update_stats(struct hnae3_handle *handle,
197 struct net_device_stats *net_stats)
198 {
199 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
200 int status;
201
202 status = hclgevf_tqps_update_stats(handle);
203 if (status)
204 dev_err(&hdev->pdev->dev,
205 "VF update of TQPS stats fail, status = %d.\n",
206 status);
207 }
208
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)209 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
210 {
211 if (strset == ETH_SS_TEST)
212 return -EOPNOTSUPP;
213 else if (strset == ETH_SS_STATS)
214 return hclgevf_tqps_get_sset_count(handle, strset);
215
216 return 0;
217 }
218
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)219 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
220 u8 *data)
221 {
222 u8 *p = (char *)data;
223
224 if (strset == ETH_SS_STATS)
225 p = hclgevf_tqps_get_strings(handle, p);
226 }
227
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)228 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
229 {
230 hclgevf_tqps_get_stats(handle, data);
231 }
232
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)233 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
234 u8 subcode)
235 {
236 if (msg) {
237 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
238 msg->code = code;
239 msg->subcode = subcode;
240 }
241 }
242
hclgevf_get_tc_info(struct hclgevf_dev * hdev)243 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
244 {
245 struct hclge_vf_to_pf_msg send_msg;
246 u8 resp_msg;
247 int status;
248
249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
250 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
251 sizeof(resp_msg));
252 if (status) {
253 dev_err(&hdev->pdev->dev,
254 "VF request to get TC info from PF failed %d",
255 status);
256 return status;
257 }
258
259 hdev->hw_tc_map = resp_msg;
260
261 return 0;
262 }
263
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)264 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
265 {
266 struct hnae3_handle *nic = &hdev->nic;
267 struct hclge_vf_to_pf_msg send_msg;
268 u8 resp_msg;
269 int ret;
270
271 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
272 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
273 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
274 sizeof(u8));
275 if (ret) {
276 dev_err(&hdev->pdev->dev,
277 "VF request to get port based vlan state failed %d",
278 ret);
279 return ret;
280 }
281
282 nic->port_base_vlan_state = resp_msg;
283
284 return 0;
285 }
286
hclgevf_get_queue_info(struct hclgevf_dev * hdev)287 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288 {
289 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
290 #define HCLGEVF_TQPS_ALLOC_OFFSET 0
291 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2
292 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4
293
294 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295 struct hclge_vf_to_pf_msg send_msg;
296 int status;
297
298 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
299 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 HCLGEVF_TQPS_RSS_INFO_LEN);
301 if (status) {
302 dev_err(&hdev->pdev->dev,
303 "VF request to get tqp info from PF failed %d",
304 status);
305 return status;
306 }
307
308 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
309 sizeof(u16));
310 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
311 sizeof(u16));
312 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
313 sizeof(u16));
314
315 return 0;
316 }
317
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)318 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
319 {
320 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
321 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
322 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
323
324 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325 struct hclge_vf_to_pf_msg send_msg;
326 int ret;
327
328 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
329 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 HCLGEVF_TQPS_DEPTH_INFO_LEN);
331 if (ret) {
332 dev_err(&hdev->pdev->dev,
333 "VF request to get tqp depth info from PF failed %d",
334 ret);
335 return ret;
336 }
337
338 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
339 sizeof(u16));
340 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
341 sizeof(u16));
342
343 return 0;
344 }
345
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)346 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
347 {
348 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 struct hclge_vf_to_pf_msg send_msg;
350 u16 qid_in_pf = 0;
351 u8 resp_data[2];
352 int ret;
353
354 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
355 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
356 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357 sizeof(resp_data));
358 if (!ret)
359 qid_in_pf = *(u16 *)resp_data;
360
361 return qid_in_pf;
362 }
363
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)364 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
365 {
366 struct hclge_vf_to_pf_msg send_msg;
367 u8 resp_msg[2];
368 int ret;
369
370 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
371 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
372 sizeof(resp_msg));
373 if (ret) {
374 dev_err(&hdev->pdev->dev,
375 "VF request to get the pf port media type failed %d",
376 ret);
377 return ret;
378 }
379
380 hdev->hw.mac.media_type = resp_msg[0];
381 hdev->hw.mac.module_type = resp_msg[1];
382
383 return 0;
384 }
385
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)386 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
387 {
388 struct hclgevf_tqp *tqp;
389 int i;
390
391 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
392 sizeof(struct hclgevf_tqp), GFP_KERNEL);
393 if (!hdev->htqp)
394 return -ENOMEM;
395
396 tqp = hdev->htqp;
397
398 for (i = 0; i < hdev->num_tqps; i++) {
399 tqp->dev = &hdev->pdev->dev;
400 tqp->index = i;
401
402 tqp->q.ae_algo = &ae_algovf;
403 tqp->q.buf_size = hdev->rx_buf_len;
404 tqp->q.tx_desc_num = hdev->num_tx_desc;
405 tqp->q.rx_desc_num = hdev->num_rx_desc;
406 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
407 i * HCLGEVF_TQP_REG_SIZE;
408
409 tqp++;
410 }
411
412 return 0;
413 }
414
hclgevf_knic_setup(struct hclgevf_dev * hdev)415 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
416 {
417 struct hnae3_handle *nic = &hdev->nic;
418 struct hnae3_knic_private_info *kinfo;
419 u16 new_tqps = hdev->num_tqps;
420 unsigned int i;
421
422 kinfo = &nic->kinfo;
423 kinfo->num_tc = 0;
424 kinfo->num_tx_desc = hdev->num_tx_desc;
425 kinfo->num_rx_desc = hdev->num_rx_desc;
426 kinfo->rx_buf_len = hdev->rx_buf_len;
427 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
428 if (hdev->hw_tc_map & BIT(i))
429 kinfo->num_tc++;
430
431 kinfo->rss_size
432 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
433 new_tqps = kinfo->rss_size * kinfo->num_tc;
434 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
435
436 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
437 sizeof(struct hnae3_queue *), GFP_KERNEL);
438 if (!kinfo->tqp)
439 return -ENOMEM;
440
441 for (i = 0; i < kinfo->num_tqps; i++) {
442 hdev->htqp[i].q.handle = &hdev->nic;
443 hdev->htqp[i].q.tqp_index = i;
444 kinfo->tqp[i] = &hdev->htqp[i].q;
445 }
446
447 /* after init the max rss_size and tqps, adjust the default tqp numbers
448 * and rss size with the actual vector numbers
449 */
450 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
451 kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
452 kinfo->rss_size);
453
454 return 0;
455 }
456
hclgevf_request_link_info(struct hclgevf_dev * hdev)457 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
458 {
459 struct hclge_vf_to_pf_msg send_msg;
460 int status;
461
462 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
463 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
464 if (status)
465 dev_err(&hdev->pdev->dev,
466 "VF failed to fetch link status(%d) from PF", status);
467 }
468
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)469 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
470 {
471 struct hnae3_handle *rhandle = &hdev->roce;
472 struct hnae3_handle *handle = &hdev->nic;
473 struct hnae3_client *rclient;
474 struct hnae3_client *client;
475
476 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
477 return;
478
479 client = handle->client;
480 rclient = hdev->roce_client;
481
482 link_state =
483 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
484
485 if (link_state != hdev->hw.mac.link) {
486 client->ops->link_status_change(handle, !!link_state);
487 if (rclient && rclient->ops->link_status_change)
488 rclient->ops->link_status_change(rhandle, !!link_state);
489 hdev->hw.mac.link = link_state;
490 }
491
492 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
493 }
494
hclgevf_update_link_mode(struct hclgevf_dev * hdev)495 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
496 {
497 #define HCLGEVF_ADVERTISING 0
498 #define HCLGEVF_SUPPORTED 1
499
500 struct hclge_vf_to_pf_msg send_msg;
501
502 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
503 send_msg.data[0] = HCLGEVF_ADVERTISING;
504 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
505 send_msg.data[0] = HCLGEVF_SUPPORTED;
506 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
507 }
508
hclgevf_set_handle_info(struct hclgevf_dev * hdev)509 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
510 {
511 struct hnae3_handle *nic = &hdev->nic;
512 int ret;
513
514 nic->ae_algo = &ae_algovf;
515 nic->pdev = hdev->pdev;
516 nic->numa_node_mask = hdev->numa_node_mask;
517 nic->flags |= HNAE3_SUPPORT_VF;
518
519 ret = hclgevf_knic_setup(hdev);
520 if (ret)
521 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
522 ret);
523 return ret;
524 }
525
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)526 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
527 {
528 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
529 dev_warn(&hdev->pdev->dev,
530 "vector(vector_id %d) has been freed.\n", vector_id);
531 return;
532 }
533
534 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
535 hdev->num_msi_left += 1;
536 hdev->num_msi_used -= 1;
537 }
538
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)539 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
540 struct hnae3_vector_info *vector_info)
541 {
542 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
543 struct hnae3_vector_info *vector = vector_info;
544 int alloc = 0;
545 int i, j;
546
547 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
548 vector_num = min(hdev->num_msi_left, vector_num);
549
550 for (j = 0; j < vector_num; j++) {
551 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
552 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
553 vector->vector = pci_irq_vector(hdev->pdev, i);
554 vector->io_addr = hdev->hw.io_base +
555 HCLGEVF_VECTOR_REG_BASE +
556 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
557 hdev->vector_status[i] = 0;
558 hdev->vector_irq[i] = vector->vector;
559
560 vector++;
561 alloc++;
562
563 break;
564 }
565 }
566 }
567 hdev->num_msi_left -= alloc;
568 hdev->num_msi_used += alloc;
569
570 return alloc;
571 }
572
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)573 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
574 {
575 int i;
576
577 for (i = 0; i < hdev->num_msi; i++)
578 if (vector == hdev->vector_irq[i])
579 return i;
580
581 return -EINVAL;
582 }
583
hclgevf_set_rss_algo_key(struct hclgevf_dev * hdev,const u8 hfunc,const u8 * key)584 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
585 const u8 hfunc, const u8 *key)
586 {
587 struct hclgevf_rss_config_cmd *req;
588 unsigned int key_offset = 0;
589 struct hclgevf_desc desc;
590 int key_counts;
591 int key_size;
592 int ret;
593
594 key_counts = HCLGEVF_RSS_KEY_SIZE;
595 req = (struct hclgevf_rss_config_cmd *)desc.data;
596
597 while (key_counts) {
598 hclgevf_cmd_setup_basic_desc(&desc,
599 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
600 false);
601
602 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
603 req->hash_config |=
604 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
605
606 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
607 memcpy(req->hash_key,
608 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
609
610 key_counts -= key_size;
611 key_offset++;
612 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
613 if (ret) {
614 dev_err(&hdev->pdev->dev,
615 "Configure RSS config fail, status = %d\n",
616 ret);
617 return ret;
618 }
619 }
620
621 return 0;
622 }
623
hclgevf_get_rss_key_size(struct hnae3_handle * handle)624 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
625 {
626 return HCLGEVF_RSS_KEY_SIZE;
627 }
628
hclgevf_get_rss_indir_size(struct hnae3_handle * handle)629 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
630 {
631 return HCLGEVF_RSS_IND_TBL_SIZE;
632 }
633
hclgevf_set_rss_indir_table(struct hclgevf_dev * hdev)634 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
635 {
636 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
637 struct hclgevf_rss_indirection_table_cmd *req;
638 struct hclgevf_desc desc;
639 int status;
640 int i, j;
641
642 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
643
644 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
645 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
646 false);
647 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
648 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
649 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
650 req->rss_result[j] =
651 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
652
653 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 if (status) {
655 dev_err(&hdev->pdev->dev,
656 "VF failed(=%d) to set RSS indirection table\n",
657 status);
658 return status;
659 }
660 }
661
662 return 0;
663 }
664
hclgevf_set_rss_tc_mode(struct hclgevf_dev * hdev,u16 rss_size)665 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
666 {
667 struct hclgevf_rss_tc_mode_cmd *req;
668 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
669 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
670 u16 tc_size[HCLGEVF_MAX_TC_NUM];
671 struct hclgevf_desc desc;
672 u16 roundup_size;
673 unsigned int i;
674 int status;
675
676 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
677
678 roundup_size = roundup_pow_of_two(rss_size);
679 roundup_size = ilog2(roundup_size);
680
681 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
682 tc_valid[i] = 1;
683 tc_size[i] = roundup_size;
684 tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0;
685 }
686
687 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
688 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
689 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
690 (tc_valid[i] & 0x1));
691 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
692 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
693 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
694 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
695 }
696 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
697 if (status)
698 dev_err(&hdev->pdev->dev,
699 "VF failed(=%d) to set rss tc mode\n", status);
700
701 return status;
702 }
703
704 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)705 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
706 {
707 #define HCLGEVF_RSS_MBX_RESP_LEN 8
708 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
709 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
710 struct hclge_vf_to_pf_msg send_msg;
711 u16 msg_num, hash_key_index;
712 u8 index;
713 int ret;
714
715 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
716 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
717 HCLGEVF_RSS_MBX_RESP_LEN;
718 for (index = 0; index < msg_num; index++) {
719 send_msg.data[0] = index;
720 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
721 HCLGEVF_RSS_MBX_RESP_LEN);
722 if (ret) {
723 dev_err(&hdev->pdev->dev,
724 "VF get rss hash key from PF failed, ret=%d",
725 ret);
726 return ret;
727 }
728
729 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
730 if (index == msg_num - 1)
731 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
732 &resp_msg[0],
733 HCLGEVF_RSS_KEY_SIZE - hash_key_index);
734 else
735 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
736 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
737 }
738
739 return 0;
740 }
741
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)742 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
743 u8 *hfunc)
744 {
745 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
746 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
747 int i, ret;
748
749 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
750 /* Get hash algorithm */
751 if (hfunc) {
752 switch (rss_cfg->hash_algo) {
753 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
754 *hfunc = ETH_RSS_HASH_TOP;
755 break;
756 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
757 *hfunc = ETH_RSS_HASH_XOR;
758 break;
759 default:
760 *hfunc = ETH_RSS_HASH_UNKNOWN;
761 break;
762 }
763 }
764
765 /* Get the RSS Key required by the user */
766 if (key)
767 memcpy(key, rss_cfg->rss_hash_key,
768 HCLGEVF_RSS_KEY_SIZE);
769 } else {
770 if (hfunc)
771 *hfunc = ETH_RSS_HASH_TOP;
772 if (key) {
773 ret = hclgevf_get_rss_hash_key(hdev);
774 if (ret)
775 return ret;
776 memcpy(key, rss_cfg->rss_hash_key,
777 HCLGEVF_RSS_KEY_SIZE);
778 }
779 }
780
781 if (indir)
782 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 indir[i] = rss_cfg->rss_indirection_tbl[i];
784
785 return 0;
786 }
787
hclgevf_parse_rss_hfunc(struct hclgevf_dev * hdev,const u8 hfunc,u8 * hash_algo)788 static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc,
789 u8 *hash_algo)
790 {
791 switch (hfunc) {
792 case ETH_RSS_HASH_TOP:
793 *hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
794 return 0;
795 case ETH_RSS_HASH_XOR:
796 *hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
797 return 0;
798 case ETH_RSS_HASH_NO_CHANGE:
799 *hash_algo = hdev->rss_cfg.hash_algo;
800 return 0;
801 default:
802 return -EINVAL;
803 }
804 }
805
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)806 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
807 const u8 *key, const u8 hfunc)
808 {
809 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
810 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
811 u8 hash_algo;
812 int ret, i;
813
814 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo);
816 if (ret)
817 return ret;
818
819 /* Set the RSS Hash Key if specififed by the user */
820 if (key) {
821 ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key);
822 if (ret) {
823 dev_err(&hdev->pdev->dev,
824 "invalid hfunc type %u\n", hfunc);
825 return ret;
826 }
827
828 /* Update the shadow RSS key with user specified qids */
829 memcpy(rss_cfg->rss_hash_key, key,
830 HCLGEVF_RSS_KEY_SIZE);
831 } else {
832 ret = hclgevf_set_rss_algo_key(hdev, hash_algo,
833 rss_cfg->rss_hash_key);
834 if (ret)
835 return ret;
836 }
837 rss_cfg->hash_algo = hash_algo;
838 }
839
840 /* update the shadow RSS table with user specified qids */
841 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
842 rss_cfg->rss_indirection_tbl[i] = indir[i];
843
844 /* update the hardware */
845 return hclgevf_set_rss_indir_table(hdev);
846 }
847
hclgevf_get_rss_hash_bits(struct ethtool_rxnfc * nfc)848 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
849 {
850 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
851
852 if (nfc->data & RXH_L4_B_2_3)
853 hash_sets |= HCLGEVF_D_PORT_BIT;
854 else
855 hash_sets &= ~HCLGEVF_D_PORT_BIT;
856
857 if (nfc->data & RXH_IP_SRC)
858 hash_sets |= HCLGEVF_S_IP_BIT;
859 else
860 hash_sets &= ~HCLGEVF_S_IP_BIT;
861
862 if (nfc->data & RXH_IP_DST)
863 hash_sets |= HCLGEVF_D_IP_BIT;
864 else
865 hash_sets &= ~HCLGEVF_D_IP_BIT;
866
867 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
868 hash_sets |= HCLGEVF_V_TAG_BIT;
869
870 return hash_sets;
871 }
872
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)873 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
874 struct ethtool_rxnfc *nfc)
875 {
876 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
878 struct hclgevf_rss_input_tuple_cmd *req;
879 struct hclgevf_desc desc;
880 u8 tuple_sets;
881 int ret;
882
883 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
884 return -EOPNOTSUPP;
885
886 if (nfc->data &
887 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
888 return -EINVAL;
889
890 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
891 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
892
893 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
894 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
895 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
896 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
897 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
898 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
899 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
900 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
901
902 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
903 switch (nfc->flow_type) {
904 case TCP_V4_FLOW:
905 req->ipv4_tcp_en = tuple_sets;
906 break;
907 case TCP_V6_FLOW:
908 req->ipv6_tcp_en = tuple_sets;
909 break;
910 case UDP_V4_FLOW:
911 req->ipv4_udp_en = tuple_sets;
912 break;
913 case UDP_V6_FLOW:
914 req->ipv6_udp_en = tuple_sets;
915 break;
916 case SCTP_V4_FLOW:
917 req->ipv4_sctp_en = tuple_sets;
918 break;
919 case SCTP_V6_FLOW:
920 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
921 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
922 return -EINVAL;
923
924 req->ipv6_sctp_en = tuple_sets;
925 break;
926 case IPV4_FLOW:
927 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
928 break;
929 case IPV6_FLOW:
930 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 break;
932 default:
933 return -EINVAL;
934 }
935
936 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
937 if (ret) {
938 dev_err(&hdev->pdev->dev,
939 "Set rss tuple fail, status = %d\n", ret);
940 return ret;
941 }
942
943 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
944 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
945 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
946 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
947 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
948 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
949 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
950 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
951 return 0;
952 }
953
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)954 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
955 struct ethtool_rxnfc *nfc)
956 {
957 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
959 u8 tuple_sets;
960
961 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
962 return -EOPNOTSUPP;
963
964 nfc->data = 0;
965
966 switch (nfc->flow_type) {
967 case TCP_V4_FLOW:
968 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 break;
970 case UDP_V4_FLOW:
971 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
972 break;
973 case TCP_V6_FLOW:
974 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
975 break;
976 case UDP_V6_FLOW:
977 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
978 break;
979 case SCTP_V4_FLOW:
980 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
981 break;
982 case SCTP_V6_FLOW:
983 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
984 break;
985 case IPV4_FLOW:
986 case IPV6_FLOW:
987 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
988 break;
989 default:
990 return -EINVAL;
991 }
992
993 if (!tuple_sets)
994 return 0;
995
996 if (tuple_sets & HCLGEVF_D_PORT_BIT)
997 nfc->data |= RXH_L4_B_2_3;
998 if (tuple_sets & HCLGEVF_S_PORT_BIT)
999 nfc->data |= RXH_L4_B_0_1;
1000 if (tuple_sets & HCLGEVF_D_IP_BIT)
1001 nfc->data |= RXH_IP_DST;
1002 if (tuple_sets & HCLGEVF_S_IP_BIT)
1003 nfc->data |= RXH_IP_SRC;
1004
1005 return 0;
1006 }
1007
hclgevf_set_rss_input_tuple(struct hclgevf_dev * hdev,struct hclgevf_rss_cfg * rss_cfg)1008 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1009 struct hclgevf_rss_cfg *rss_cfg)
1010 {
1011 struct hclgevf_rss_input_tuple_cmd *req;
1012 struct hclgevf_desc desc;
1013 int ret;
1014
1015 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1016
1017 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1018
1019 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1020 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1021 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1022 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1023 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1024 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1025 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1026 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1027
1028 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1029 if (ret)
1030 dev_err(&hdev->pdev->dev,
1031 "Configure rss input fail, status = %d\n", ret);
1032 return ret;
1033 }
1034
hclgevf_get_tc_size(struct hnae3_handle * handle)1035 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1036 {
1037 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1038 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1039
1040 return rss_cfg->rss_size;
1041 }
1042
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)1043 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1044 int vector_id,
1045 struct hnae3_ring_chain_node *ring_chain)
1046 {
1047 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 struct hclge_vf_to_pf_msg send_msg;
1049 struct hnae3_ring_chain_node *node;
1050 int status;
1051 int i = 0;
1052
1053 memset(&send_msg, 0, sizeof(send_msg));
1054 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1055 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1056 send_msg.vector_id = vector_id;
1057
1058 for (node = ring_chain; node; node = node->next) {
1059 send_msg.param[i].ring_type =
1060 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1061
1062 send_msg.param[i].tqp_index = node->tqp_index;
1063 send_msg.param[i].int_gl_index =
1064 hnae3_get_field(node->int_gl_idx,
1065 HNAE3_RING_GL_IDX_M,
1066 HNAE3_RING_GL_IDX_S);
1067
1068 i++;
1069 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1070 send_msg.ring_num = i;
1071
1072 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1073 NULL, 0);
1074 if (status) {
1075 dev_err(&hdev->pdev->dev,
1076 "Map TQP fail, status is %d.\n",
1077 status);
1078 return status;
1079 }
1080 i = 0;
1081 }
1082 }
1083
1084 return 0;
1085 }
1086
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1087 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1088 struct hnae3_ring_chain_node *ring_chain)
1089 {
1090 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 int vector_id;
1092
1093 vector_id = hclgevf_get_vector_index(hdev, vector);
1094 if (vector_id < 0) {
1095 dev_err(&handle->pdev->dev,
1096 "Get vector index fail. ret =%d\n", vector_id);
1097 return vector_id;
1098 }
1099
1100 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1101 }
1102
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1103 static int hclgevf_unmap_ring_from_vector(
1104 struct hnae3_handle *handle,
1105 int vector,
1106 struct hnae3_ring_chain_node *ring_chain)
1107 {
1108 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1109 int ret, vector_id;
1110
1111 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1112 return 0;
1113
1114 vector_id = hclgevf_get_vector_index(hdev, vector);
1115 if (vector_id < 0) {
1116 dev_err(&handle->pdev->dev,
1117 "Get vector index fail. ret =%d\n", vector_id);
1118 return vector_id;
1119 }
1120
1121 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1122 if (ret)
1123 dev_err(&handle->pdev->dev,
1124 "Unmap ring from vector fail. vector=%d, ret =%d\n",
1125 vector_id,
1126 ret);
1127
1128 return ret;
1129 }
1130
hclgevf_put_vector(struct hnae3_handle * handle,int vector)1131 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1132 {
1133 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 int vector_id;
1135
1136 vector_id = hclgevf_get_vector_index(hdev, vector);
1137 if (vector_id < 0) {
1138 dev_err(&handle->pdev->dev,
1139 "hclgevf_put_vector get vector index fail. ret =%d\n",
1140 vector_id);
1141 return vector_id;
1142 }
1143
1144 hclgevf_free_vector(hdev, vector_id);
1145
1146 return 0;
1147 }
1148
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)1149 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1150 bool en_uc_pmc, bool en_mc_pmc,
1151 bool en_bc_pmc)
1152 {
1153 struct hclge_vf_to_pf_msg send_msg;
1154 int ret;
1155
1156 memset(&send_msg, 0, sizeof(send_msg));
1157 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1158 send_msg.en_bc = en_bc_pmc ? 1 : 0;
1159 send_msg.en_uc = en_uc_pmc ? 1 : 0;
1160 send_msg.en_mc = en_mc_pmc ? 1 : 0;
1161
1162 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1163 if (ret)
1164 dev_err(&hdev->pdev->dev,
1165 "Set promisc mode fail, status is %d.\n", ret);
1166
1167 return ret;
1168 }
1169
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)1170 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1171 bool en_mc_pmc)
1172 {
1173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1174 bool en_bc_pmc;
1175
1176 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1177
1178 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1179 en_bc_pmc);
1180 }
1181
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)1182 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1183 {
1184 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1185
1186 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1187 }
1188
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)1189 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1190 {
1191 struct hnae3_handle *handle = &hdev->nic;
1192 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1193 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1194 int ret;
1195
1196 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1197 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1198 if (!ret)
1199 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1200 }
1201 }
1202
hclgevf_tqp_enable(struct hclgevf_dev * hdev,unsigned int tqp_id,int stream_id,bool enable)1203 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1204 int stream_id, bool enable)
1205 {
1206 struct hclgevf_cfg_com_tqp_queue_cmd *req;
1207 struct hclgevf_desc desc;
1208 int status;
1209
1210 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1211
1212 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1213 false);
1214 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1215 req->stream_id = cpu_to_le16(stream_id);
1216 if (enable)
1217 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1218
1219 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1220 if (status)
1221 dev_err(&hdev->pdev->dev,
1222 "TQP enable fail, status =%d.\n", status);
1223
1224 return status;
1225 }
1226
hclgevf_reset_tqp_stats(struct hnae3_handle * handle)1227 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1228 {
1229 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1230 struct hclgevf_tqp *tqp;
1231 int i;
1232
1233 for (i = 0; i < kinfo->num_tqps; i++) {
1234 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1235 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1236 }
1237 }
1238
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)1239 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1240 {
1241 struct hclge_vf_to_pf_msg send_msg;
1242 u8 host_mac[ETH_ALEN];
1243 int status;
1244
1245 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1246 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1247 ETH_ALEN);
1248 if (status) {
1249 dev_err(&hdev->pdev->dev,
1250 "fail to get VF MAC from host %d", status);
1251 return status;
1252 }
1253
1254 ether_addr_copy(p, host_mac);
1255
1256 return 0;
1257 }
1258
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)1259 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1260 {
1261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1262 u8 host_mac_addr[ETH_ALEN];
1263
1264 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1265 return;
1266
1267 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1268 if (hdev->has_pf_mac)
1269 ether_addr_copy(p, host_mac_addr);
1270 else
1271 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1272 }
1273
hclgevf_set_mac_addr(struct hnae3_handle * handle,void * p,bool is_first)1274 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1275 bool is_first)
1276 {
1277 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1278 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1279 struct hclge_vf_to_pf_msg send_msg;
1280 u8 *new_mac_addr = (u8 *)p;
1281 int status;
1282
1283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1284 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1285 ether_addr_copy(send_msg.data, new_mac_addr);
1286 if (is_first && !hdev->has_pf_mac)
1287 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1288 else
1289 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1290 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1291 if (!status)
1292 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1293
1294 return status;
1295 }
1296
1297 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)1298 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1299 {
1300 struct hclgevf_mac_addr_node *mac_node, *tmp;
1301
1302 list_for_each_entry_safe(mac_node, tmp, list, node)
1303 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1304 return mac_node;
1305
1306 return NULL;
1307 }
1308
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)1309 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1310 enum HCLGEVF_MAC_NODE_STATE state)
1311 {
1312 switch (state) {
1313 /* from set_rx_mode or tmp_add_list */
1314 case HCLGEVF_MAC_TO_ADD:
1315 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1316 mac_node->state = HCLGEVF_MAC_ACTIVE;
1317 break;
1318 /* only from set_rx_mode */
1319 case HCLGEVF_MAC_TO_DEL:
1320 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1321 list_del(&mac_node->node);
1322 kfree(mac_node);
1323 } else {
1324 mac_node->state = HCLGEVF_MAC_TO_DEL;
1325 }
1326 break;
1327 /* only from tmp_add_list, the mac_node->state won't be
1328 * HCLGEVF_MAC_ACTIVE
1329 */
1330 case HCLGEVF_MAC_ACTIVE:
1331 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1332 mac_node->state = HCLGEVF_MAC_ACTIVE;
1333 break;
1334 }
1335 }
1336
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)1337 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1338 enum HCLGEVF_MAC_NODE_STATE state,
1339 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1340 const unsigned char *addr)
1341 {
1342 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1343 struct hclgevf_mac_addr_node *mac_node;
1344 struct list_head *list;
1345
1346 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1347 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1348
1349 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1350
1351 /* if the mac addr is already in the mac list, no need to add a new
1352 * one into it, just check the mac addr state, convert it to a new
1353 * new state, or just remove it, or do nothing.
1354 */
1355 mac_node = hclgevf_find_mac_node(list, addr);
1356 if (mac_node) {
1357 hclgevf_update_mac_node(mac_node, state);
1358 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1359 return 0;
1360 }
1361 /* if this address is never added, unnecessary to delete */
1362 if (state == HCLGEVF_MAC_TO_DEL) {
1363 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1364 return -ENOENT;
1365 }
1366
1367 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1368 if (!mac_node) {
1369 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1370 return -ENOMEM;
1371 }
1372
1373 mac_node->state = state;
1374 ether_addr_copy(mac_node->mac_addr, addr);
1375 list_add_tail(&mac_node->node, list);
1376
1377 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1378 return 0;
1379 }
1380
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1381 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1382 const unsigned char *addr)
1383 {
1384 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1385 HCLGEVF_MAC_ADDR_UC, addr);
1386 }
1387
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1388 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1389 const unsigned char *addr)
1390 {
1391 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1392 HCLGEVF_MAC_ADDR_UC, addr);
1393 }
1394
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1395 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1396 const unsigned char *addr)
1397 {
1398 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1399 HCLGEVF_MAC_ADDR_MC, addr);
1400 }
1401
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1402 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1403 const unsigned char *addr)
1404 {
1405 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1406 HCLGEVF_MAC_ADDR_MC, addr);
1407 }
1408
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1409 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1410 struct hclgevf_mac_addr_node *mac_node,
1411 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1412 {
1413 struct hclge_vf_to_pf_msg send_msg;
1414 u8 code, subcode;
1415
1416 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1417 code = HCLGE_MBX_SET_UNICAST;
1418 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1419 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1420 else
1421 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1422 } else {
1423 code = HCLGE_MBX_SET_MULTICAST;
1424 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1425 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1426 else
1427 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1428 }
1429
1430 hclgevf_build_send_msg(&send_msg, code, subcode);
1431 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1432 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1433 }
1434
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1435 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1436 struct list_head *list,
1437 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1438 {
1439 struct hclgevf_mac_addr_node *mac_node, *tmp;
1440 int ret;
1441
1442 list_for_each_entry_safe(mac_node, tmp, list, node) {
1443 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1444 if (ret) {
1445 dev_err(&hdev->pdev->dev,
1446 "failed to configure mac %pM, state = %d, ret = %d\n",
1447 mac_node->mac_addr, mac_node->state, ret);
1448 return;
1449 }
1450 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1451 mac_node->state = HCLGEVF_MAC_ACTIVE;
1452 } else {
1453 list_del(&mac_node->node);
1454 kfree(mac_node);
1455 }
1456 }
1457 }
1458
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1459 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1460 struct list_head *mac_list)
1461 {
1462 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1463
1464 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1465 /* if the mac address from tmp_add_list is not in the
1466 * uc/mc_mac_list, it means have received a TO_DEL request
1467 * during the time window of sending mac config request to PF
1468 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1469 * then it will be removed at next time. If is TO_ADD, it means
1470 * send TO_ADD request failed, so just remove the mac node.
1471 */
1472 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1473 if (new_node) {
1474 hclgevf_update_mac_node(new_node, mac_node->state);
1475 list_del(&mac_node->node);
1476 kfree(mac_node);
1477 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1478 mac_node->state = HCLGEVF_MAC_TO_DEL;
1479 list_del(&mac_node->node);
1480 list_add_tail(&mac_node->node, mac_list);
1481 } else {
1482 list_del(&mac_node->node);
1483 kfree(mac_node);
1484 }
1485 }
1486 }
1487
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1488 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1489 struct list_head *mac_list)
1490 {
1491 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1492
1493 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1494 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1495 if (new_node) {
1496 /* If the mac addr is exist in the mac list, it means
1497 * received a new request TO_ADD during the time window
1498 * of sending mac addr configurrequest to PF, so just
1499 * change the mac state to ACTIVE.
1500 */
1501 new_node->state = HCLGEVF_MAC_ACTIVE;
1502 list_del(&mac_node->node);
1503 kfree(mac_node);
1504 } else {
1505 list_del(&mac_node->node);
1506 list_add_tail(&mac_node->node, mac_list);
1507 }
1508 }
1509 }
1510
hclgevf_clear_list(struct list_head * list)1511 static void hclgevf_clear_list(struct list_head *list)
1512 {
1513 struct hclgevf_mac_addr_node *mac_node, *tmp;
1514
1515 list_for_each_entry_safe(mac_node, tmp, list, node) {
1516 list_del(&mac_node->node);
1517 kfree(mac_node);
1518 }
1519 }
1520
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1521 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1522 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1523 {
1524 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1525 struct list_head tmp_add_list, tmp_del_list;
1526 struct list_head *list;
1527
1528 INIT_LIST_HEAD(&tmp_add_list);
1529 INIT_LIST_HEAD(&tmp_del_list);
1530
1531 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1532 * we can add/delete these mac addr outside the spin lock
1533 */
1534 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1535 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1536
1537 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1538
1539 list_for_each_entry_safe(mac_node, tmp, list, node) {
1540 switch (mac_node->state) {
1541 case HCLGEVF_MAC_TO_DEL:
1542 list_del(&mac_node->node);
1543 list_add_tail(&mac_node->node, &tmp_del_list);
1544 break;
1545 case HCLGEVF_MAC_TO_ADD:
1546 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1547 if (!new_node)
1548 goto stop_traverse;
1549
1550 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1551 new_node->state = mac_node->state;
1552 list_add_tail(&new_node->node, &tmp_add_list);
1553 break;
1554 default:
1555 break;
1556 }
1557 }
1558
1559 stop_traverse:
1560 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1561
1562 /* delete first, in order to get max mac table space for adding */
1563 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1564 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1565
1566 /* if some mac addresses were added/deleted fail, move back to the
1567 * mac_list, and retry at next time.
1568 */
1569 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1570
1571 hclgevf_sync_from_del_list(&tmp_del_list, list);
1572 hclgevf_sync_from_add_list(&tmp_add_list, list);
1573
1574 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1575 }
1576
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1577 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1578 {
1579 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1580 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1581 }
1582
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1583 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1584 {
1585 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1586
1587 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1588 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1589
1590 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1591 }
1592
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1593 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1594 __be16 proto, u16 vlan_id,
1595 bool is_kill)
1596 {
1597 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1598 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1599 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3
1600
1601 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1602 struct hclge_vf_to_pf_msg send_msg;
1603 int ret;
1604
1605 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1606 return -EINVAL;
1607
1608 if (proto != htons(ETH_P_8021Q))
1609 return -EPROTONOSUPPORT;
1610
1611 /* When device is resetting or reset failed, firmware is unable to
1612 * handle mailbox. Just record the vlan id, and remove it after
1613 * reset finished.
1614 */
1615 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1616 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1617 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1618 return -EBUSY;
1619 }
1620
1621 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1622 HCLGE_MBX_VLAN_FILTER);
1623 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1624 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1625 sizeof(vlan_id));
1626 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1627 sizeof(proto));
1628 /* when remove hw vlan filter failed, record the vlan id,
1629 * and try to remove it from hw later, to be consistence
1630 * with stack.
1631 */
1632 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1633 if (is_kill && ret)
1634 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1635
1636 return ret;
1637 }
1638
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1639 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1640 {
1641 #define HCLGEVF_MAX_SYNC_COUNT 60
1642 struct hnae3_handle *handle = &hdev->nic;
1643 int ret, sync_cnt = 0;
1644 u16 vlan_id;
1645
1646 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1647 while (vlan_id != VLAN_N_VID) {
1648 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1649 vlan_id, true);
1650 if (ret)
1651 return;
1652
1653 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1654 sync_cnt++;
1655 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1656 return;
1657
1658 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1659 }
1660 }
1661
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1662 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1663 {
1664 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1665 struct hclge_vf_to_pf_msg send_msg;
1666
1667 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1668 HCLGE_MBX_VLAN_RX_OFF_CFG);
1669 send_msg.data[0] = enable ? 1 : 0;
1670 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1671 }
1672
hclgevf_reset_tqp(struct hnae3_handle * handle,u16 queue_id)1673 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1674 {
1675 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1676 struct hclge_vf_to_pf_msg send_msg;
1677 int ret;
1678
1679 /* disable vf queue before send queue reset msg to PF */
1680 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1681 if (ret)
1682 return ret;
1683
1684 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1685 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1686 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1687 }
1688
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1689 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1690 {
1691 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1692 struct hclge_vf_to_pf_msg send_msg;
1693
1694 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1695 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1696 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1697 }
1698
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1699 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1700 enum hnae3_reset_notify_type type)
1701 {
1702 struct hnae3_client *client = hdev->nic_client;
1703 struct hnae3_handle *handle = &hdev->nic;
1704 int ret;
1705
1706 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1707 !client)
1708 return 0;
1709
1710 if (!client->ops->reset_notify)
1711 return -EOPNOTSUPP;
1712
1713 ret = client->ops->reset_notify(handle, type);
1714 if (ret)
1715 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1716 type, ret);
1717
1718 return ret;
1719 }
1720
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1721 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1722 enum hnae3_reset_notify_type type)
1723 {
1724 struct hnae3_client *client = hdev->roce_client;
1725 struct hnae3_handle *handle = &hdev->roce;
1726 int ret;
1727
1728 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1729 return 0;
1730
1731 if (!client->ops->reset_notify)
1732 return -EOPNOTSUPP;
1733
1734 ret = client->ops->reset_notify(handle, type);
1735 if (ret)
1736 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1737 type, ret);
1738 return ret;
1739 }
1740
hclgevf_reset_wait(struct hclgevf_dev * hdev)1741 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1742 {
1743 #define HCLGEVF_RESET_WAIT_US 20000
1744 #define HCLGEVF_RESET_WAIT_CNT 2000
1745 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1746 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1747
1748 u32 val;
1749 int ret;
1750
1751 if (hdev->reset_type == HNAE3_VF_RESET)
1752 ret = readl_poll_timeout(hdev->hw.io_base +
1753 HCLGEVF_VF_RST_ING, val,
1754 !(val & HCLGEVF_VF_RST_ING_BIT),
1755 HCLGEVF_RESET_WAIT_US,
1756 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1757 else
1758 ret = readl_poll_timeout(hdev->hw.io_base +
1759 HCLGEVF_RST_ING, val,
1760 !(val & HCLGEVF_RST_ING_BITS),
1761 HCLGEVF_RESET_WAIT_US,
1762 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1763
1764 /* hardware completion status should be available by this time */
1765 if (ret) {
1766 dev_err(&hdev->pdev->dev,
1767 "couldn't get reset done status from h/w, timeout!\n");
1768 return ret;
1769 }
1770
1771 /* we will wait a bit more to let reset of the stack to complete. This
1772 * might happen in case reset assertion was made by PF. Yes, this also
1773 * means we might end up waiting bit more even for VF reset.
1774 */
1775 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1776 msleep(5000);
1777 else
1778 msleep(500);
1779
1780 return 0;
1781 }
1782
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1783 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1784 {
1785 u32 reg_val;
1786
1787 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1788 if (enable)
1789 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1790 else
1791 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1792
1793 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1794 reg_val);
1795 }
1796
hclgevf_reset_stack(struct hclgevf_dev * hdev)1797 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1798 {
1799 int ret;
1800
1801 /* uninitialize the nic client */
1802 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1803 if (ret)
1804 return ret;
1805
1806 /* re-initialize the hclge device */
1807 ret = hclgevf_reset_hdev(hdev);
1808 if (ret) {
1809 dev_err(&hdev->pdev->dev,
1810 "hclge device re-init failed, VF is disabled!\n");
1811 return ret;
1812 }
1813
1814 /* bring up the nic client again */
1815 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1816 if (ret)
1817 return ret;
1818
1819 /* clear handshake status with IMP */
1820 hclgevf_reset_handshake(hdev, false);
1821
1822 /* bring up the nic to enable TX/RX again */
1823 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1824 }
1825
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1826 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1827 {
1828 #define HCLGEVF_RESET_SYNC_TIME 100
1829
1830 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1831 struct hclge_vf_to_pf_msg send_msg;
1832 int ret;
1833
1834 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1835 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1836 if (ret) {
1837 dev_err(&hdev->pdev->dev,
1838 "failed to assert VF reset, ret = %d\n", ret);
1839 return ret;
1840 }
1841 hdev->rst_stats.vf_func_rst_cnt++;
1842 }
1843
1844 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1845 /* inform hardware that preparatory work is done */
1846 msleep(HCLGEVF_RESET_SYNC_TIME);
1847 hclgevf_reset_handshake(hdev, true);
1848 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1849 hdev->reset_type);
1850
1851 return 0;
1852 }
1853
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1854 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1855 {
1856 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1857 hdev->rst_stats.vf_func_rst_cnt);
1858 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1859 hdev->rst_stats.flr_rst_cnt);
1860 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1861 hdev->rst_stats.vf_rst_cnt);
1862 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1863 hdev->rst_stats.rst_done_cnt);
1864 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1865 hdev->rst_stats.hw_rst_done_cnt);
1866 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1867 hdev->rst_stats.rst_cnt);
1868 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1869 hdev->rst_stats.rst_fail_cnt);
1870 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1871 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1872 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1873 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1874 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1875 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1876 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1877 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1878 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1879 }
1880
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1881 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1882 {
1883 /* recover handshake status with IMP when reset fail */
1884 hclgevf_reset_handshake(hdev, true);
1885 hdev->rst_stats.rst_fail_cnt++;
1886 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1887 hdev->rst_stats.rst_fail_cnt);
1888
1889 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1890 set_bit(hdev->reset_type, &hdev->reset_pending);
1891
1892 if (hclgevf_is_reset_pending(hdev)) {
1893 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1894 hclgevf_reset_task_schedule(hdev);
1895 } else {
1896 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1897 hclgevf_dump_rst_info(hdev);
1898 }
1899 }
1900
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1901 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1902 {
1903 int ret;
1904
1905 hdev->rst_stats.rst_cnt++;
1906
1907 /* perform reset of the stack & ae device for a client */
1908 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1909 if (ret)
1910 return ret;
1911
1912 rtnl_lock();
1913 /* bring down the nic to stop any ongoing TX/RX */
1914 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1915 rtnl_unlock();
1916 if (ret)
1917 return ret;
1918
1919 return hclgevf_reset_prepare_wait(hdev);
1920 }
1921
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1922 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1923 {
1924 int ret;
1925
1926 hdev->rst_stats.hw_rst_done_cnt++;
1927 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1928 if (ret)
1929 return ret;
1930
1931 rtnl_lock();
1932 /* now, re-initialize the nic client and ae device */
1933 ret = hclgevf_reset_stack(hdev);
1934 rtnl_unlock();
1935 if (ret) {
1936 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1937 return ret;
1938 }
1939
1940 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1941 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1942 * times
1943 */
1944 if (ret &&
1945 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1946 return ret;
1947
1948 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1949 if (ret)
1950 return ret;
1951
1952 hdev->last_reset_time = jiffies;
1953 hdev->rst_stats.rst_done_cnt++;
1954 hdev->rst_stats.rst_fail_cnt = 0;
1955 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1956
1957 return 0;
1958 }
1959
hclgevf_reset(struct hclgevf_dev * hdev)1960 static void hclgevf_reset(struct hclgevf_dev *hdev)
1961 {
1962 if (hclgevf_reset_prepare(hdev))
1963 goto err_reset;
1964
1965 /* check if VF could successfully fetch the hardware reset completion
1966 * status from the hardware
1967 */
1968 if (hclgevf_reset_wait(hdev)) {
1969 /* can't do much in this situation, will disable VF */
1970 dev_err(&hdev->pdev->dev,
1971 "failed to fetch H/W reset completion status\n");
1972 goto err_reset;
1973 }
1974
1975 if (hclgevf_reset_rebuild(hdev))
1976 goto err_reset;
1977
1978 return;
1979
1980 err_reset:
1981 hclgevf_reset_err_handle(hdev);
1982 }
1983
hclgevf_get_reset_level(struct hclgevf_dev * hdev,unsigned long * addr)1984 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1985 unsigned long *addr)
1986 {
1987 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1988
1989 /* return the highest priority reset level amongst all */
1990 if (test_bit(HNAE3_VF_RESET, addr)) {
1991 rst_level = HNAE3_VF_RESET;
1992 clear_bit(HNAE3_VF_RESET, addr);
1993 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1994 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1995 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1996 rst_level = HNAE3_VF_FULL_RESET;
1997 clear_bit(HNAE3_VF_FULL_RESET, addr);
1998 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2000 rst_level = HNAE3_VF_PF_FUNC_RESET;
2001 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2002 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2003 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2004 rst_level = HNAE3_VF_FUNC_RESET;
2005 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2006 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2007 rst_level = HNAE3_FLR_RESET;
2008 clear_bit(HNAE3_FLR_RESET, addr);
2009 }
2010
2011 return rst_level;
2012 }
2013
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)2014 static void hclgevf_reset_event(struct pci_dev *pdev,
2015 struct hnae3_handle *handle)
2016 {
2017 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2018 struct hclgevf_dev *hdev = ae_dev->priv;
2019
2020 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2021
2022 if (hdev->default_reset_request)
2023 hdev->reset_level =
2024 hclgevf_get_reset_level(hdev,
2025 &hdev->default_reset_request);
2026 else
2027 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2028
2029 /* reset of this VF requested */
2030 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2031 hclgevf_reset_task_schedule(hdev);
2032
2033 hdev->last_reset_time = jiffies;
2034 }
2035
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)2036 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2037 enum hnae3_reset_type rst_type)
2038 {
2039 struct hclgevf_dev *hdev = ae_dev->priv;
2040
2041 set_bit(rst_type, &hdev->default_reset_request);
2042 }
2043
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)2044 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2045 {
2046 writel(en ? 1 : 0, vector->addr);
2047 }
2048
hclgevf_flr_prepare(struct hnae3_ae_dev * ae_dev)2049 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2050 {
2051 #define HCLGEVF_FLR_RETRY_WAIT_MS 500
2052 #define HCLGEVF_FLR_RETRY_CNT 5
2053
2054 struct hclgevf_dev *hdev = ae_dev->priv;
2055 int retry_cnt = 0;
2056 int ret;
2057
2058 retry:
2059 down(&hdev->reset_sem);
2060 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2061 hdev->reset_type = HNAE3_FLR_RESET;
2062 ret = hclgevf_reset_prepare(hdev);
2063 if (ret) {
2064 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2065 ret);
2066 if (hdev->reset_pending ||
2067 retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2068 dev_err(&hdev->pdev->dev,
2069 "reset_pending:0x%lx, retry_cnt:%d\n",
2070 hdev->reset_pending, retry_cnt);
2071 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2072 up(&hdev->reset_sem);
2073 msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2074 goto retry;
2075 }
2076 }
2077
2078 /* disable misc vector before FLR done */
2079 hclgevf_enable_vector(&hdev->misc_vector, false);
2080 hdev->rst_stats.flr_rst_cnt++;
2081 }
2082
hclgevf_flr_done(struct hnae3_ae_dev * ae_dev)2083 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2084 {
2085 struct hclgevf_dev *hdev = ae_dev->priv;
2086 int ret;
2087
2088 hclgevf_enable_vector(&hdev->misc_vector, true);
2089
2090 ret = hclgevf_reset_rebuild(hdev);
2091 if (ret)
2092 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2093 ret);
2094
2095 hdev->reset_type = HNAE3_NONE_RESET;
2096 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2097 up(&hdev->reset_sem);
2098 }
2099
hclgevf_get_fw_version(struct hnae3_handle * handle)2100 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2101 {
2102 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2103
2104 return hdev->fw_version;
2105 }
2106
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)2107 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2108 {
2109 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2110
2111 vector->vector_irq = pci_irq_vector(hdev->pdev,
2112 HCLGEVF_MISC_VECTOR_NUM);
2113 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2114 /* vector status always valid for Vector 0 */
2115 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2116 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2117
2118 hdev->num_msi_left -= 1;
2119 hdev->num_msi_used += 1;
2120 }
2121
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)2122 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2123 {
2124 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2125 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2126 &hdev->state))
2127 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2128 }
2129
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)2130 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2131 {
2132 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2133 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2134 &hdev->state))
2135 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2136 }
2137
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)2138 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2139 unsigned long delay)
2140 {
2141 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2142 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2143 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2144 }
2145
hclgevf_reset_service_task(struct hclgevf_dev * hdev)2146 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2147 {
2148 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
2149
2150 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2151 return;
2152
2153 down(&hdev->reset_sem);
2154 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2155
2156 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2157 &hdev->reset_state)) {
2158 /* PF has initmated that it is about to reset the hardware.
2159 * We now have to poll & check if hardware has actually
2160 * completed the reset sequence. On hardware reset completion,
2161 * VF needs to reset the client and ae device.
2162 */
2163 hdev->reset_attempts = 0;
2164
2165 hdev->last_reset_time = jiffies;
2166 hdev->reset_type =
2167 hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2168 if (hdev->reset_type != HNAE3_NONE_RESET)
2169 hclgevf_reset(hdev);
2170 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2171 &hdev->reset_state)) {
2172 /* we could be here when either of below happens:
2173 * 1. reset was initiated due to watchdog timeout caused by
2174 * a. IMP was earlier reset and our TX got choked down and
2175 * which resulted in watchdog reacting and inducing VF
2176 * reset. This also means our cmdq would be unreliable.
2177 * b. problem in TX due to other lower layer(example link
2178 * layer not functioning properly etc.)
2179 * 2. VF reset might have been initiated due to some config
2180 * change.
2181 *
2182 * NOTE: Theres no clear way to detect above cases than to react
2183 * to the response of PF for this reset request. PF will ack the
2184 * 1b and 2. cases but we will not get any intimation about 1a
2185 * from PF as cmdq would be in unreliable state i.e. mailbox
2186 * communication between PF and VF would be broken.
2187 *
2188 * if we are never geting into pending state it means either:
2189 * 1. PF is not receiving our request which could be due to IMP
2190 * reset
2191 * 2. PF is screwed
2192 * We cannot do much for 2. but to check first we can try reset
2193 * our PCIe + stack and see if it alleviates the problem.
2194 */
2195 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2196 /* prepare for full reset of stack + pcie interface */
2197 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2198
2199 /* "defer" schedule the reset task again */
2200 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2201 } else {
2202 hdev->reset_attempts++;
2203
2204 set_bit(hdev->reset_level, &hdev->reset_pending);
2205 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2206 }
2207 hclgevf_reset_task_schedule(hdev);
2208 }
2209
2210 hdev->reset_type = HNAE3_NONE_RESET;
2211 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2212 up(&hdev->reset_sem);
2213 }
2214
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)2215 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2216 {
2217 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2218 return;
2219
2220 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2221 return;
2222
2223 hclgevf_mbx_async_handler(hdev);
2224
2225 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2226 }
2227
hclgevf_keep_alive(struct hclgevf_dev * hdev)2228 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2229 {
2230 struct hclge_vf_to_pf_msg send_msg;
2231 int ret;
2232
2233 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2234 return;
2235
2236 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2237 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2238 if (ret)
2239 dev_err(&hdev->pdev->dev,
2240 "VF sends keep alive cmd failed(=%d)\n", ret);
2241 }
2242
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)2243 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2244 {
2245 unsigned long delta = round_jiffies_relative(HZ);
2246 struct hnae3_handle *handle = &hdev->nic;
2247
2248 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2249 return;
2250
2251 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2252 delta = jiffies - hdev->last_serv_processed;
2253
2254 if (delta < round_jiffies_relative(HZ)) {
2255 delta = round_jiffies_relative(HZ) - delta;
2256 goto out;
2257 }
2258 }
2259
2260 hdev->serv_processed_cnt++;
2261 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2262 hclgevf_keep_alive(hdev);
2263
2264 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2265 hdev->last_serv_processed = jiffies;
2266 goto out;
2267 }
2268
2269 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2270 hclgevf_tqps_update_stats(handle);
2271
2272 /* request the link status from the PF. PF would be able to tell VF
2273 * about such updates in future so we might remove this later
2274 */
2275 hclgevf_request_link_info(hdev);
2276
2277 hclgevf_update_link_mode(hdev);
2278
2279 hclgevf_sync_vlan_filter(hdev);
2280
2281 hclgevf_sync_mac_table(hdev);
2282
2283 hclgevf_sync_promisc_mode(hdev);
2284
2285 hdev->last_serv_processed = jiffies;
2286
2287 out:
2288 hclgevf_task_schedule(hdev, delta);
2289 }
2290
hclgevf_service_task(struct work_struct * work)2291 static void hclgevf_service_task(struct work_struct *work)
2292 {
2293 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2294 service_task.work);
2295
2296 hclgevf_reset_service_task(hdev);
2297 hclgevf_mailbox_service_task(hdev);
2298 hclgevf_periodic_service_task(hdev);
2299
2300 /* Handle reset and mbx again in case periodical task delays the
2301 * handling by calling hclgevf_task_schedule() in
2302 * hclgevf_periodic_service_task()
2303 */
2304 hclgevf_reset_service_task(hdev);
2305 hclgevf_mailbox_service_task(hdev);
2306 }
2307
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2308 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2309 {
2310 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2311 }
2312
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2313 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2314 u32 *clearval)
2315 {
2316 u32 val, cmdq_stat_reg, rst_ing_reg;
2317
2318 /* fetch the events from their corresponding regs */
2319 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2320 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2321
2322 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2323 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2324 dev_info(&hdev->pdev->dev,
2325 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2326 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2327 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2328 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2329 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2330 hdev->rst_stats.vf_rst_cnt++;
2331 /* set up VF hardware reset status, its PF will clear
2332 * this status when PF has initialized done.
2333 */
2334 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2335 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2336 val | HCLGEVF_VF_RST_ING_BIT);
2337 return HCLGEVF_VECTOR0_EVENT_RST;
2338 }
2339
2340 /* check for vector0 mailbox(=CMDQ RX) event source */
2341 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2342 /* for revision 0x21, clearing interrupt is writing bit 0
2343 * to the clear register, writing bit 1 means to keep the
2344 * old value.
2345 * for revision 0x20, the clear register is a read & write
2346 * register, so we should just write 0 to the bit we are
2347 * handling, and keep other bits as cmdq_stat_reg.
2348 */
2349 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2350 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2351 else
2352 *clearval = cmdq_stat_reg &
2353 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2354
2355 return HCLGEVF_VECTOR0_EVENT_MBX;
2356 }
2357
2358 /* print other vector0 event source */
2359 dev_info(&hdev->pdev->dev,
2360 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2361 cmdq_stat_reg);
2362
2363 return HCLGEVF_VECTOR0_EVENT_OTHER;
2364 }
2365
hclgevf_misc_irq_handle(int irq,void * data)2366 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2367 {
2368 enum hclgevf_evt_cause event_cause;
2369 struct hclgevf_dev *hdev = data;
2370 u32 clearval;
2371
2372 hclgevf_enable_vector(&hdev->misc_vector, false);
2373 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2374 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2375 hclgevf_clear_event_cause(hdev, clearval);
2376
2377 switch (event_cause) {
2378 case HCLGEVF_VECTOR0_EVENT_RST:
2379 hclgevf_reset_task_schedule(hdev);
2380 break;
2381 case HCLGEVF_VECTOR0_EVENT_MBX:
2382 hclgevf_mbx_handler(hdev);
2383 break;
2384 default:
2385 break;
2386 }
2387
2388 hclgevf_enable_vector(&hdev->misc_vector, true);
2389
2390 return IRQ_HANDLED;
2391 }
2392
hclgevf_configure(struct hclgevf_dev * hdev)2393 static int hclgevf_configure(struct hclgevf_dev *hdev)
2394 {
2395 int ret;
2396
2397 /* get current port based vlan state from PF */
2398 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2399 if (ret)
2400 return ret;
2401
2402 /* get queue configuration from PF */
2403 ret = hclgevf_get_queue_info(hdev);
2404 if (ret)
2405 return ret;
2406
2407 /* get queue depth info from PF */
2408 ret = hclgevf_get_queue_depth(hdev);
2409 if (ret)
2410 return ret;
2411
2412 ret = hclgevf_get_pf_media_type(hdev);
2413 if (ret)
2414 return ret;
2415
2416 /* get tc configuration from PF */
2417 return hclgevf_get_tc_info(hdev);
2418 }
2419
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2420 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2421 {
2422 struct pci_dev *pdev = ae_dev->pdev;
2423 struct hclgevf_dev *hdev;
2424
2425 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2426 if (!hdev)
2427 return -ENOMEM;
2428
2429 hdev->pdev = pdev;
2430 hdev->ae_dev = ae_dev;
2431 ae_dev->priv = hdev;
2432
2433 return 0;
2434 }
2435
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2436 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2437 {
2438 struct hnae3_handle *roce = &hdev->roce;
2439 struct hnae3_handle *nic = &hdev->nic;
2440
2441 roce->rinfo.num_vectors = hdev->num_roce_msix;
2442
2443 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2444 hdev->num_msi_left == 0)
2445 return -EINVAL;
2446
2447 roce->rinfo.base_vector = hdev->roce_base_vector;
2448
2449 roce->rinfo.netdev = nic->kinfo.netdev;
2450 roce->rinfo.roce_io_base = hdev->hw.io_base;
2451
2452 roce->pdev = nic->pdev;
2453 roce->ae_algo = nic->ae_algo;
2454 roce->numa_node_mask = nic->numa_node_mask;
2455
2456 return 0;
2457 }
2458
hclgevf_config_gro(struct hclgevf_dev * hdev,bool en)2459 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2460 {
2461 struct hclgevf_cfg_gro_status_cmd *req;
2462 struct hclgevf_desc desc;
2463 int ret;
2464
2465 if (!hnae3_dev_gro_supported(hdev))
2466 return 0;
2467
2468 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2469 false);
2470 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2471
2472 req->gro_en = en ? 1 : 0;
2473
2474 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2475 if (ret)
2476 dev_err(&hdev->pdev->dev,
2477 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2478
2479 return ret;
2480 }
2481
hclgevf_rss_init_cfg(struct hclgevf_dev * hdev)2482 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2483 {
2484 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2485 struct hclgevf_rss_tuple_cfg *tuple_sets;
2486 u32 i;
2487
2488 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2489 rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2490 tuple_sets = &rss_cfg->rss_tuple_sets;
2491 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2492 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2493 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2494 HCLGEVF_RSS_KEY_SIZE);
2495
2496 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2497 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2498 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2499 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2500 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2501 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2502 tuple_sets->ipv6_sctp_en =
2503 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2504 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2505 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2506 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2507 }
2508
2509 /* Initialize RSS indirect table */
2510 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2511 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2512 }
2513
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2514 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2515 {
2516 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2517 int ret;
2518
2519 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2520 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2521 rss_cfg->rss_hash_key);
2522 if (ret)
2523 return ret;
2524
2525 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2526 if (ret)
2527 return ret;
2528 }
2529
2530 ret = hclgevf_set_rss_indir_table(hdev);
2531 if (ret)
2532 return ret;
2533
2534 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2535 }
2536
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2537 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2538 {
2539 struct hnae3_handle *nic = &hdev->nic;
2540 int ret;
2541
2542 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2543 if (ret) {
2544 dev_err(&hdev->pdev->dev,
2545 "failed to enable rx vlan offload, ret = %d\n", ret);
2546 return ret;
2547 }
2548
2549 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2550 false);
2551 }
2552
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2553 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2554 {
2555 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2556
2557 unsigned long last = hdev->serv_processed_cnt;
2558 int i = 0;
2559
2560 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2561 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2562 last == hdev->serv_processed_cnt)
2563 usleep_range(1, 1);
2564 }
2565
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2566 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2567 {
2568 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2569
2570 if (enable) {
2571 hclgevf_task_schedule(hdev, 0);
2572 } else {
2573 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2574
2575 /* flush memory to make sure DOWN is seen by service task */
2576 smp_mb__before_atomic();
2577 hclgevf_flush_link_update(hdev);
2578 }
2579 }
2580
hclgevf_ae_start(struct hnae3_handle * handle)2581 static int hclgevf_ae_start(struct hnae3_handle *handle)
2582 {
2583 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2584
2585 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2586
2587 hclgevf_reset_tqp_stats(handle);
2588
2589 hclgevf_request_link_info(hdev);
2590
2591 hclgevf_update_link_mode(hdev);
2592
2593 return 0;
2594 }
2595
hclgevf_ae_stop(struct hnae3_handle * handle)2596 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2597 {
2598 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2599 int i;
2600
2601 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2602
2603 if (hdev->reset_type != HNAE3_VF_RESET)
2604 for (i = 0; i < handle->kinfo.num_tqps; i++)
2605 if (hclgevf_reset_tqp(handle, i))
2606 break;
2607
2608 hclgevf_reset_tqp_stats(handle);
2609 hclgevf_update_link_status(hdev, 0);
2610 }
2611
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2612 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2613 {
2614 #define HCLGEVF_STATE_ALIVE 1
2615 #define HCLGEVF_STATE_NOT_ALIVE 0
2616
2617 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2618 struct hclge_vf_to_pf_msg send_msg;
2619
2620 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2621 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2622 HCLGEVF_STATE_NOT_ALIVE;
2623 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2624 }
2625
hclgevf_client_start(struct hnae3_handle * handle)2626 static int hclgevf_client_start(struct hnae3_handle *handle)
2627 {
2628 return hclgevf_set_alive(handle, true);
2629 }
2630
hclgevf_client_stop(struct hnae3_handle * handle)2631 static void hclgevf_client_stop(struct hnae3_handle *handle)
2632 {
2633 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2634 int ret;
2635
2636 ret = hclgevf_set_alive(handle, false);
2637 if (ret)
2638 dev_warn(&hdev->pdev->dev,
2639 "%s failed %d\n", __func__, ret);
2640 }
2641
hclgevf_state_init(struct hclgevf_dev * hdev)2642 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2643 {
2644 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2645 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2646 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2647
2648 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2649
2650 mutex_init(&hdev->mbx_resp.mbx_mutex);
2651 sema_init(&hdev->reset_sem, 1);
2652
2653 spin_lock_init(&hdev->mac_table.mac_list_lock);
2654 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2655 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2656
2657 /* bring the device down */
2658 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2659 }
2660
hclgevf_state_uninit(struct hclgevf_dev * hdev)2661 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2662 {
2663 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2664 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2665
2666 if (hdev->service_task.work.func)
2667 cancel_delayed_work_sync(&hdev->service_task);
2668
2669 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2670 }
2671
hclgevf_init_msi(struct hclgevf_dev * hdev)2672 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2673 {
2674 struct pci_dev *pdev = hdev->pdev;
2675 int vectors;
2676 int i;
2677
2678 if (hnae3_dev_roce_supported(hdev))
2679 vectors = pci_alloc_irq_vectors(pdev,
2680 hdev->roce_base_msix_offset + 1,
2681 hdev->num_msi,
2682 PCI_IRQ_MSIX);
2683 else
2684 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2685 hdev->num_msi,
2686 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2687
2688 if (vectors < 0) {
2689 dev_err(&pdev->dev,
2690 "failed(%d) to allocate MSI/MSI-X vectors\n",
2691 vectors);
2692 return vectors;
2693 }
2694 if (vectors < hdev->num_msi)
2695 dev_warn(&hdev->pdev->dev,
2696 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2697 hdev->num_msi, vectors);
2698
2699 hdev->num_msi = vectors;
2700 hdev->num_msi_left = vectors;
2701
2702 hdev->base_msi_vector = pdev->irq;
2703 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2704
2705 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2706 sizeof(u16), GFP_KERNEL);
2707 if (!hdev->vector_status) {
2708 pci_free_irq_vectors(pdev);
2709 return -ENOMEM;
2710 }
2711
2712 for (i = 0; i < hdev->num_msi; i++)
2713 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2714
2715 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2716 sizeof(int), GFP_KERNEL);
2717 if (!hdev->vector_irq) {
2718 devm_kfree(&pdev->dev, hdev->vector_status);
2719 pci_free_irq_vectors(pdev);
2720 return -ENOMEM;
2721 }
2722
2723 return 0;
2724 }
2725
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2726 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2727 {
2728 struct pci_dev *pdev = hdev->pdev;
2729
2730 devm_kfree(&pdev->dev, hdev->vector_status);
2731 devm_kfree(&pdev->dev, hdev->vector_irq);
2732 pci_free_irq_vectors(pdev);
2733 }
2734
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2735 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2736 {
2737 int ret;
2738
2739 hclgevf_get_misc_vector(hdev);
2740
2741 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2742 HCLGEVF_NAME, pci_name(hdev->pdev));
2743 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2744 0, hdev->misc_vector.name, hdev);
2745 if (ret) {
2746 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2747 hdev->misc_vector.vector_irq);
2748 return ret;
2749 }
2750
2751 hclgevf_clear_event_cause(hdev, 0);
2752
2753 /* enable misc. vector(vector 0) */
2754 hclgevf_enable_vector(&hdev->misc_vector, true);
2755
2756 return ret;
2757 }
2758
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2759 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2760 {
2761 /* disable misc vector(vector 0) */
2762 hclgevf_enable_vector(&hdev->misc_vector, false);
2763 synchronize_irq(hdev->misc_vector.vector_irq);
2764 free_irq(hdev->misc_vector.vector_irq, hdev);
2765 hclgevf_free_vector(hdev, 0);
2766 }
2767
hclgevf_info_show(struct hclgevf_dev * hdev)2768 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2769 {
2770 struct device *dev = &hdev->pdev->dev;
2771
2772 dev_info(dev, "VF info begin:\n");
2773
2774 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2775 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2776 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2777 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2778 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2779 dev_info(dev, "PF media type of this VF: %u\n",
2780 hdev->hw.mac.media_type);
2781
2782 dev_info(dev, "VF info end.\n");
2783 }
2784
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2785 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2786 struct hnae3_client *client)
2787 {
2788 struct hclgevf_dev *hdev = ae_dev->priv;
2789 int rst_cnt = hdev->rst_stats.rst_cnt;
2790 int ret;
2791
2792 ret = client->ops->init_instance(&hdev->nic);
2793 if (ret)
2794 return ret;
2795
2796 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2797 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2798 rst_cnt != hdev->rst_stats.rst_cnt) {
2799 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2800
2801 client->ops->uninit_instance(&hdev->nic, 0);
2802 return -EBUSY;
2803 }
2804
2805 hnae3_set_client_init_flag(client, ae_dev, 1);
2806
2807 if (netif_msg_drv(&hdev->nic))
2808 hclgevf_info_show(hdev);
2809
2810 return 0;
2811 }
2812
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2813 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2814 struct hnae3_client *client)
2815 {
2816 struct hclgevf_dev *hdev = ae_dev->priv;
2817 int ret;
2818
2819 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2820 !hdev->nic_client)
2821 return 0;
2822
2823 ret = hclgevf_init_roce_base_info(hdev);
2824 if (ret)
2825 return ret;
2826
2827 ret = client->ops->init_instance(&hdev->roce);
2828 if (ret)
2829 return ret;
2830
2831 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2832 hnae3_set_client_init_flag(client, ae_dev, 1);
2833
2834 return 0;
2835 }
2836
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2837 static int hclgevf_init_client_instance(struct hnae3_client *client,
2838 struct hnae3_ae_dev *ae_dev)
2839 {
2840 struct hclgevf_dev *hdev = ae_dev->priv;
2841 int ret;
2842
2843 switch (client->type) {
2844 case HNAE3_CLIENT_KNIC:
2845 hdev->nic_client = client;
2846 hdev->nic.client = client;
2847
2848 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2849 if (ret)
2850 goto clear_nic;
2851
2852 ret = hclgevf_init_roce_client_instance(ae_dev,
2853 hdev->roce_client);
2854 if (ret)
2855 goto clear_roce;
2856
2857 break;
2858 case HNAE3_CLIENT_ROCE:
2859 if (hnae3_dev_roce_supported(hdev)) {
2860 hdev->roce_client = client;
2861 hdev->roce.client = client;
2862 }
2863
2864 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2865 if (ret)
2866 goto clear_roce;
2867
2868 break;
2869 default:
2870 return -EINVAL;
2871 }
2872
2873 return 0;
2874
2875 clear_nic:
2876 hdev->nic_client = NULL;
2877 hdev->nic.client = NULL;
2878 return ret;
2879 clear_roce:
2880 hdev->roce_client = NULL;
2881 hdev->roce.client = NULL;
2882 return ret;
2883 }
2884
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2885 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2886 struct hnae3_ae_dev *ae_dev)
2887 {
2888 struct hclgevf_dev *hdev = ae_dev->priv;
2889
2890 /* un-init roce, if it exists */
2891 if (hdev->roce_client) {
2892 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2893 msleep(HCLGEVF_WAIT_RESET_DONE);
2894 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2895
2896 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2897 hdev->roce_client = NULL;
2898 hdev->roce.client = NULL;
2899 }
2900
2901 /* un-init nic/unic, if this was not called by roce client */
2902 if (client->ops->uninit_instance && hdev->nic_client &&
2903 client->type != HNAE3_CLIENT_ROCE) {
2904 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2905 msleep(HCLGEVF_WAIT_RESET_DONE);
2906 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2907
2908 client->ops->uninit_instance(&hdev->nic, 0);
2909 hdev->nic_client = NULL;
2910 hdev->nic.client = NULL;
2911 }
2912 }
2913
hclgevf_pci_init(struct hclgevf_dev * hdev)2914 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2915 {
2916 struct pci_dev *pdev = hdev->pdev;
2917 struct hclgevf_hw *hw;
2918 int ret;
2919
2920 ret = pci_enable_device(pdev);
2921 if (ret) {
2922 dev_err(&pdev->dev, "failed to enable PCI device\n");
2923 return ret;
2924 }
2925
2926 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2927 if (ret) {
2928 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2929 goto err_disable_device;
2930 }
2931
2932 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2933 if (ret) {
2934 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2935 goto err_disable_device;
2936 }
2937
2938 pci_set_master(pdev);
2939 hw = &hdev->hw;
2940 hw->hdev = hdev;
2941 hw->io_base = pci_iomap(pdev, 2, 0);
2942 if (!hw->io_base) {
2943 dev_err(&pdev->dev, "can't map configuration register space\n");
2944 ret = -ENOMEM;
2945 goto err_clr_master;
2946 }
2947
2948 return 0;
2949
2950 err_clr_master:
2951 pci_clear_master(pdev);
2952 pci_release_regions(pdev);
2953 err_disable_device:
2954 pci_disable_device(pdev);
2955
2956 return ret;
2957 }
2958
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2959 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2960 {
2961 struct pci_dev *pdev = hdev->pdev;
2962
2963 pci_iounmap(pdev, hdev->hw.io_base);
2964 pci_clear_master(pdev);
2965 pci_release_regions(pdev);
2966 pci_disable_device(pdev);
2967 }
2968
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2969 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2970 {
2971 struct hclgevf_query_res_cmd *req;
2972 struct hclgevf_desc desc;
2973 int ret;
2974
2975 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2976 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2977 if (ret) {
2978 dev_err(&hdev->pdev->dev,
2979 "query vf resource failed, ret = %d.\n", ret);
2980 return ret;
2981 }
2982
2983 req = (struct hclgevf_query_res_cmd *)desc.data;
2984
2985 if (hnae3_dev_roce_supported(hdev)) {
2986 hdev->roce_base_msix_offset =
2987 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2988 HCLGEVF_MSIX_OFT_ROCEE_M,
2989 HCLGEVF_MSIX_OFT_ROCEE_S);
2990 hdev->num_roce_msix =
2991 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2992 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2993
2994 /* nic's msix numbers is always equals to the roce's. */
2995 hdev->num_nic_msix = hdev->num_roce_msix;
2996
2997 /* VF should have NIC vectors and Roce vectors, NIC vectors
2998 * are queued before Roce vectors. The offset is fixed to 64.
2999 */
3000 hdev->num_msi = hdev->num_roce_msix +
3001 hdev->roce_base_msix_offset;
3002 } else {
3003 hdev->num_msi =
3004 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3005 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3006
3007 hdev->num_nic_msix = hdev->num_msi;
3008 }
3009
3010 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3011 dev_err(&hdev->pdev->dev,
3012 "Just %u msi resources, not enough for vf(min:2).\n",
3013 hdev->num_nic_msix);
3014 return -EINVAL;
3015 }
3016
3017 return 0;
3018 }
3019
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)3020 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3021 {
3022 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
3023
3024 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3025
3026 ae_dev->dev_specs.max_non_tso_bd_num =
3027 HCLGEVF_MAX_NON_TSO_BD_NUM;
3028 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3029 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3030 }
3031
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclgevf_desc * desc)3032 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3033 struct hclgevf_desc *desc)
3034 {
3035 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3036 struct hclgevf_dev_specs_0_cmd *req0;
3037
3038 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3039
3040 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3041 ae_dev->dev_specs.rss_ind_tbl_size =
3042 le16_to_cpu(req0->rss_ind_tbl_size);
3043 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3044 }
3045
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)3046 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3047 {
3048 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3049
3050 if (!dev_specs->max_non_tso_bd_num)
3051 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3052 if (!dev_specs->rss_ind_tbl_size)
3053 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3054 if (!dev_specs->rss_key_size)
3055 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3056 }
3057
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)3058 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3059 {
3060 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3061 int ret;
3062 int i;
3063
3064 /* set default specifications as devices lower than version V3 do not
3065 * support querying specifications from firmware.
3066 */
3067 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3068 hclgevf_set_default_dev_specs(hdev);
3069 return 0;
3070 }
3071
3072 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3073 hclgevf_cmd_setup_basic_desc(&desc[i],
3074 HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3075 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3076 }
3077 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3078 true);
3079
3080 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3081 if (ret)
3082 return ret;
3083
3084 hclgevf_parse_dev_specs(hdev, desc);
3085 hclgevf_check_dev_specs(hdev);
3086
3087 return 0;
3088 }
3089
hclgevf_pci_reset(struct hclgevf_dev * hdev)3090 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3091 {
3092 struct pci_dev *pdev = hdev->pdev;
3093 int ret = 0;
3094
3095 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
3096 hdev->reset_type == HNAE3_FLR_RESET) &&
3097 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3098 hclgevf_misc_irq_uninit(hdev);
3099 hclgevf_uninit_msi(hdev);
3100 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3101 }
3102
3103 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3104 pci_set_master(pdev);
3105 ret = hclgevf_init_msi(hdev);
3106 if (ret) {
3107 dev_err(&pdev->dev,
3108 "failed(%d) to init MSI/MSI-X\n", ret);
3109 return ret;
3110 }
3111
3112 ret = hclgevf_misc_irq_init(hdev);
3113 if (ret) {
3114 hclgevf_uninit_msi(hdev);
3115 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3116 ret);
3117 return ret;
3118 }
3119
3120 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3121 }
3122
3123 return ret;
3124 }
3125
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)3126 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3127 {
3128 struct hclge_vf_to_pf_msg send_msg;
3129
3130 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3131 HCLGE_MBX_VPORT_LIST_CLEAR);
3132 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3133 }
3134
hclgevf_reset_hdev(struct hclgevf_dev * hdev)3135 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3136 {
3137 struct pci_dev *pdev = hdev->pdev;
3138 int ret;
3139
3140 ret = hclgevf_pci_reset(hdev);
3141 if (ret) {
3142 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3143 return ret;
3144 }
3145
3146 ret = hclgevf_cmd_init(hdev);
3147 if (ret) {
3148 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3149 return ret;
3150 }
3151
3152 ret = hclgevf_rss_init_hw(hdev);
3153 if (ret) {
3154 dev_err(&hdev->pdev->dev,
3155 "failed(%d) to initialize RSS\n", ret);
3156 return ret;
3157 }
3158
3159 ret = hclgevf_config_gro(hdev, true);
3160 if (ret)
3161 return ret;
3162
3163 ret = hclgevf_init_vlan_config(hdev);
3164 if (ret) {
3165 dev_err(&hdev->pdev->dev,
3166 "failed(%d) to initialize VLAN config\n", ret);
3167 return ret;
3168 }
3169
3170 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3171
3172 dev_info(&hdev->pdev->dev, "Reset done\n");
3173
3174 return 0;
3175 }
3176
hclgevf_init_hdev(struct hclgevf_dev * hdev)3177 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3178 {
3179 struct pci_dev *pdev = hdev->pdev;
3180 int ret;
3181
3182 ret = hclgevf_pci_init(hdev);
3183 if (ret)
3184 return ret;
3185
3186 ret = hclgevf_cmd_queue_init(hdev);
3187 if (ret)
3188 goto err_cmd_queue_init;
3189
3190 ret = hclgevf_cmd_init(hdev);
3191 if (ret)
3192 goto err_cmd_init;
3193
3194 /* Get vf resource */
3195 ret = hclgevf_query_vf_resource(hdev);
3196 if (ret)
3197 goto err_cmd_init;
3198
3199 ret = hclgevf_query_dev_specs(hdev);
3200 if (ret) {
3201 dev_err(&pdev->dev,
3202 "failed to query dev specifications, ret = %d\n", ret);
3203 goto err_cmd_init;
3204 }
3205
3206 ret = hclgevf_init_msi(hdev);
3207 if (ret) {
3208 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3209 goto err_cmd_init;
3210 }
3211
3212 hclgevf_state_init(hdev);
3213 hdev->reset_level = HNAE3_VF_FUNC_RESET;
3214 hdev->reset_type = HNAE3_NONE_RESET;
3215
3216 ret = hclgevf_misc_irq_init(hdev);
3217 if (ret)
3218 goto err_misc_irq_init;
3219
3220 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3221
3222 ret = hclgevf_configure(hdev);
3223 if (ret) {
3224 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3225 goto err_config;
3226 }
3227
3228 ret = hclgevf_alloc_tqps(hdev);
3229 if (ret) {
3230 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3231 goto err_config;
3232 }
3233
3234 ret = hclgevf_set_handle_info(hdev);
3235 if (ret)
3236 goto err_config;
3237
3238 ret = hclgevf_config_gro(hdev, true);
3239 if (ret)
3240 goto err_config;
3241
3242 /* Initialize RSS for this VF */
3243 hclgevf_rss_init_cfg(hdev);
3244 ret = hclgevf_rss_init_hw(hdev);
3245 if (ret) {
3246 dev_err(&hdev->pdev->dev,
3247 "failed(%d) to initialize RSS\n", ret);
3248 goto err_config;
3249 }
3250
3251 /* ensure vf tbl list as empty before init*/
3252 ret = hclgevf_clear_vport_list(hdev);
3253 if (ret) {
3254 dev_err(&pdev->dev,
3255 "failed to clear tbl list configuration, ret = %d.\n",
3256 ret);
3257 goto err_config;
3258 }
3259
3260 ret = hclgevf_init_vlan_config(hdev);
3261 if (ret) {
3262 dev_err(&hdev->pdev->dev,
3263 "failed(%d) to initialize VLAN config\n", ret);
3264 goto err_config;
3265 }
3266
3267 hdev->last_reset_time = jiffies;
3268 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3269 HCLGEVF_DRIVER_NAME);
3270
3271 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3272
3273 return 0;
3274
3275 err_config:
3276 hclgevf_misc_irq_uninit(hdev);
3277 err_misc_irq_init:
3278 hclgevf_state_uninit(hdev);
3279 hclgevf_uninit_msi(hdev);
3280 err_cmd_init:
3281 hclgevf_cmd_uninit(hdev);
3282 err_cmd_queue_init:
3283 hclgevf_pci_uninit(hdev);
3284 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3285 return ret;
3286 }
3287
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3288 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3289 {
3290 struct hclge_vf_to_pf_msg send_msg;
3291
3292 hclgevf_state_uninit(hdev);
3293
3294 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3295 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3296
3297 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3298 hclgevf_misc_irq_uninit(hdev);
3299 hclgevf_uninit_msi(hdev);
3300 }
3301
3302 hclgevf_cmd_uninit(hdev);
3303 hclgevf_pci_uninit(hdev);
3304 hclgevf_uninit_mac_list(hdev);
3305 }
3306
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3307 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3308 {
3309 struct pci_dev *pdev = ae_dev->pdev;
3310 int ret;
3311
3312 ret = hclgevf_alloc_hdev(ae_dev);
3313 if (ret) {
3314 dev_err(&pdev->dev, "hclge device allocation failed\n");
3315 return ret;
3316 }
3317
3318 ret = hclgevf_init_hdev(ae_dev->priv);
3319 if (ret) {
3320 dev_err(&pdev->dev, "hclge device initialization failed\n");
3321 return ret;
3322 }
3323
3324 return 0;
3325 }
3326
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3327 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3328 {
3329 struct hclgevf_dev *hdev = ae_dev->priv;
3330
3331 hclgevf_uninit_hdev(hdev);
3332 ae_dev->priv = NULL;
3333 }
3334
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3335 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3336 {
3337 struct hnae3_handle *nic = &hdev->nic;
3338 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3339
3340 return min_t(u32, hdev->rss_size_max,
3341 hdev->num_tqps / kinfo->num_tc);
3342 }
3343
3344 /**
3345 * hclgevf_get_channels - Get the current channels enabled and max supported.
3346 * @handle: hardware information for network interface
3347 * @ch: ethtool channels structure
3348 *
3349 * We don't support separate tx and rx queues as channels. The other count
3350 * represents how many queues are being used for control. max_combined counts
3351 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3352 * q_vectors since we support a lot more queue pairs than q_vectors.
3353 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3354 static void hclgevf_get_channels(struct hnae3_handle *handle,
3355 struct ethtool_channels *ch)
3356 {
3357 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3358
3359 ch->max_combined = hclgevf_get_max_channels(hdev);
3360 ch->other_count = 0;
3361 ch->max_other = 0;
3362 ch->combined_count = handle->kinfo.rss_size;
3363 }
3364
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3365 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3366 u16 *alloc_tqps, u16 *max_rss_size)
3367 {
3368 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3369
3370 *alloc_tqps = hdev->num_tqps;
3371 *max_rss_size = hdev->rss_size_max;
3372 }
3373
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3374 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3375 u32 new_tqps_num)
3376 {
3377 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3378 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3379 u16 max_rss_size;
3380
3381 kinfo->req_rss_size = new_tqps_num;
3382
3383 max_rss_size = min_t(u16, hdev->rss_size_max,
3384 hdev->num_tqps / kinfo->num_tc);
3385
3386 /* Use the user's configuration when it is not larger than
3387 * max_rss_size, otherwise, use the maximum specification value.
3388 */
3389 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3390 kinfo->req_rss_size <= max_rss_size)
3391 kinfo->rss_size = kinfo->req_rss_size;
3392 else if (kinfo->rss_size > max_rss_size ||
3393 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3394 kinfo->rss_size = max_rss_size;
3395
3396 kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3397 }
3398
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3399 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3400 bool rxfh_configured)
3401 {
3402 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3403 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3404 u16 cur_rss_size = kinfo->rss_size;
3405 u16 cur_tqps = kinfo->num_tqps;
3406 u32 *rss_indir;
3407 unsigned int i;
3408 int ret;
3409
3410 hclgevf_update_rss_size(handle, new_tqps_num);
3411
3412 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3413 if (ret)
3414 return ret;
3415
3416 /* RSS indirection table has been configuared by user */
3417 if (rxfh_configured)
3418 goto out;
3419
3420 /* Reinitializes the rss indirect table according to the new RSS size */
3421 rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3422 if (!rss_indir)
3423 return -ENOMEM;
3424
3425 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3426 rss_indir[i] = i % kinfo->rss_size;
3427
3428 hdev->rss_cfg.rss_size = kinfo->rss_size;
3429
3430 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3431 if (ret)
3432 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3433 ret);
3434
3435 kfree(rss_indir);
3436
3437 out:
3438 if (!ret)
3439 dev_info(&hdev->pdev->dev,
3440 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3441 cur_rss_size, kinfo->rss_size,
3442 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3443
3444 return ret;
3445 }
3446
hclgevf_get_status(struct hnae3_handle * handle)3447 static int hclgevf_get_status(struct hnae3_handle *handle)
3448 {
3449 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3450
3451 return hdev->hw.mac.link;
3452 }
3453
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex)3454 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3455 u8 *auto_neg, u32 *speed,
3456 u8 *duplex)
3457 {
3458 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3459
3460 if (speed)
3461 *speed = hdev->hw.mac.speed;
3462 if (duplex)
3463 *duplex = hdev->hw.mac.duplex;
3464 if (auto_neg)
3465 *auto_neg = AUTONEG_DISABLE;
3466 }
3467
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3468 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3469 u8 duplex)
3470 {
3471 hdev->hw.mac.speed = speed;
3472 hdev->hw.mac.duplex = duplex;
3473 }
3474
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3475 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3476 {
3477 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3478
3479 return hclgevf_config_gro(hdev, enable);
3480 }
3481
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3482 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3483 u8 *module_type)
3484 {
3485 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3486
3487 if (media_type)
3488 *media_type = hdev->hw.mac.media_type;
3489
3490 if (module_type)
3491 *module_type = hdev->hw.mac.module_type;
3492 }
3493
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3494 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3495 {
3496 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3497
3498 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3499 }
3500
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3501 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3502 {
3503 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3504
3505 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3506 }
3507
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3508 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3509 {
3510 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3511
3512 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3513 }
3514
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3515 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3516 {
3517 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3518
3519 return hdev->rst_stats.hw_rst_done_cnt;
3520 }
3521
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3522 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3523 unsigned long *supported,
3524 unsigned long *advertising)
3525 {
3526 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3527
3528 *supported = hdev->hw.mac.supported;
3529 *advertising = hdev->hw.mac.advertising;
3530 }
3531
3532 #define MAX_SEPARATE_NUM 4
3533 #define SEPARATOR_VALUE 0xFFFFFFFF
3534 #define REG_NUM_PER_LINE 4
3535 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3536
hclgevf_get_regs_len(struct hnae3_handle * handle)3537 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3538 {
3539 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3540 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3541
3542 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3543 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3544 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3545 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3546
3547 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3548 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3549 }
3550
hclgevf_get_regs(struct hnae3_handle * handle,u32 * version,void * data)3551 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3552 void *data)
3553 {
3554 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3555 int i, j, reg_um, separator_num;
3556 u32 *reg = data;
3557
3558 *version = hdev->fw_version;
3559
3560 /* fetching per-VF registers values from VF PCIe register space */
3561 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3562 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3563 for (i = 0; i < reg_um; i++)
3564 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3565 for (i = 0; i < separator_num; i++)
3566 *reg++ = SEPARATOR_VALUE;
3567
3568 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3569 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3570 for (i = 0; i < reg_um; i++)
3571 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3572 for (i = 0; i < separator_num; i++)
3573 *reg++ = SEPARATOR_VALUE;
3574
3575 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3576 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3577 for (j = 0; j < hdev->num_tqps; j++) {
3578 for (i = 0; i < reg_um; i++)
3579 *reg++ = hclgevf_read_dev(&hdev->hw,
3580 ring_reg_addr_list[i] +
3581 0x200 * j);
3582 for (i = 0; i < separator_num; i++)
3583 *reg++ = SEPARATOR_VALUE;
3584 }
3585
3586 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3587 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3588 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3589 for (i = 0; i < reg_um; i++)
3590 *reg++ = hclgevf_read_dev(&hdev->hw,
3591 tqp_intr_reg_addr_list[i] +
3592 4 * j);
3593 for (i = 0; i < separator_num; i++)
3594 *reg++ = SEPARATOR_VALUE;
3595 }
3596 }
3597
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,u8 * port_base_vlan_info,u8 data_size)3598 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3599 u8 *port_base_vlan_info, u8 data_size)
3600 {
3601 struct hnae3_handle *nic = &hdev->nic;
3602 struct hclge_vf_to_pf_msg send_msg;
3603 int ret;
3604
3605 rtnl_lock();
3606
3607 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3608 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3609 dev_warn(&hdev->pdev->dev,
3610 "is resetting when updating port based vlan info\n");
3611 rtnl_unlock();
3612 return;
3613 }
3614
3615 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3616 if (ret) {
3617 rtnl_unlock();
3618 return;
3619 }
3620
3621 /* send msg to PF and wait update port based vlan info */
3622 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3623 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3624 memcpy(send_msg.data, port_base_vlan_info, data_size);
3625 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3626 if (!ret) {
3627 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3628 nic->port_base_vlan_state = state;
3629 else
3630 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3631 }
3632
3633 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3634 rtnl_unlock();
3635 }
3636
3637 static const struct hnae3_ae_ops hclgevf_ops = {
3638 .init_ae_dev = hclgevf_init_ae_dev,
3639 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3640 .flr_prepare = hclgevf_flr_prepare,
3641 .flr_done = hclgevf_flr_done,
3642 .init_client_instance = hclgevf_init_client_instance,
3643 .uninit_client_instance = hclgevf_uninit_client_instance,
3644 .start = hclgevf_ae_start,
3645 .stop = hclgevf_ae_stop,
3646 .client_start = hclgevf_client_start,
3647 .client_stop = hclgevf_client_stop,
3648 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3649 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3650 .get_vector = hclgevf_get_vector,
3651 .put_vector = hclgevf_put_vector,
3652 .reset_queue = hclgevf_reset_tqp,
3653 .get_mac_addr = hclgevf_get_mac_addr,
3654 .set_mac_addr = hclgevf_set_mac_addr,
3655 .add_uc_addr = hclgevf_add_uc_addr,
3656 .rm_uc_addr = hclgevf_rm_uc_addr,
3657 .add_mc_addr = hclgevf_add_mc_addr,
3658 .rm_mc_addr = hclgevf_rm_mc_addr,
3659 .get_stats = hclgevf_get_stats,
3660 .update_stats = hclgevf_update_stats,
3661 .get_strings = hclgevf_get_strings,
3662 .get_sset_count = hclgevf_get_sset_count,
3663 .get_rss_key_size = hclgevf_get_rss_key_size,
3664 .get_rss_indir_size = hclgevf_get_rss_indir_size,
3665 .get_rss = hclgevf_get_rss,
3666 .set_rss = hclgevf_set_rss,
3667 .get_rss_tuple = hclgevf_get_rss_tuple,
3668 .set_rss_tuple = hclgevf_set_rss_tuple,
3669 .get_tc_size = hclgevf_get_tc_size,
3670 .get_fw_version = hclgevf_get_fw_version,
3671 .set_vlan_filter = hclgevf_set_vlan_filter,
3672 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3673 .reset_event = hclgevf_reset_event,
3674 .set_default_reset_request = hclgevf_set_def_reset_request,
3675 .set_channels = hclgevf_set_channels,
3676 .get_channels = hclgevf_get_channels,
3677 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3678 .get_regs_len = hclgevf_get_regs_len,
3679 .get_regs = hclgevf_get_regs,
3680 .get_status = hclgevf_get_status,
3681 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3682 .get_media_type = hclgevf_get_media_type,
3683 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3684 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3685 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3686 .set_gro_en = hclgevf_gro_en,
3687 .set_mtu = hclgevf_set_mtu,
3688 .get_global_queue_id = hclgevf_get_qid_global,
3689 .set_timer_task = hclgevf_set_timer_task,
3690 .get_link_mode = hclgevf_get_link_mode,
3691 .set_promisc_mode = hclgevf_set_promisc_mode,
3692 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3693 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3694 };
3695
3696 static struct hnae3_ae_algo ae_algovf = {
3697 .ops = &hclgevf_ops,
3698 .pdev_id_table = ae_algovf_pci_tbl,
3699 };
3700
hclgevf_init(void)3701 static int hclgevf_init(void)
3702 {
3703 pr_info("%s is initializing\n", HCLGEVF_NAME);
3704
3705 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3706 if (!hclgevf_wq) {
3707 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3708 return -ENOMEM;
3709 }
3710
3711 hnae3_register_ae_algo(&ae_algovf);
3712
3713 return 0;
3714 }
3715
hclgevf_exit(void)3716 static void hclgevf_exit(void)
3717 {
3718 hnae3_unregister_ae_algo(&ae_algovf);
3719 destroy_workqueue(hclgevf_wq);
3720 }
3721 module_init(hclgevf_init);
3722 module_exit(hclgevf_exit);
3723
3724 MODULE_LICENSE("GPL");
3725 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3726 MODULE_DESCRIPTION("HCLGEVF Driver");
3727 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3728