• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
is_migration_base(struct hrtimer_clock_base * base)147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
is_migration_base(struct hrtimer_clock_base * base)276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
__ktime_divns(const ktime_t kt,s64 div)303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static const struct debug_obj_descr hrtimer_debug_descr;
346 
hrtimer_debug_hint(void * addr)347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
debug_hrtimer_init(struct hrtimer * timer)412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
debug_hrtimer_deactivate(struct hrtimer * timer)423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 			   enum hrtimer_mode mode);
430 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode)
433 {
434 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 	__hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438 
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 				   clockid_t clock_id, enum hrtimer_mode mode);
441 
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 	__hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449 
destroy_hrtimer_on_stack(struct hrtimer * timer)450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 	debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455 
456 #else
457 
debug_hrtimer_init(struct hrtimer * timer)458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463 
464 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 	   enum hrtimer_mode mode)
467 {
468 	debug_hrtimer_init(timer);
469 	trace_hrtimer_init(timer, clockid, mode);
470 }
471 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)472 static inline void debug_activate(struct hrtimer *timer,
473 				  enum hrtimer_mode mode)
474 {
475 	debug_hrtimer_activate(timer, mode);
476 	trace_hrtimer_start(timer, mode);
477 }
478 
debug_deactivate(struct hrtimer * timer)479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 	unsigned int idx;
489 
490 	if (!*active)
491 		return NULL;
492 
493 	idx = __ffs(*active);
494 	*active &= ~(1U << idx);
495 
496 	return &cpu_base->clock_base[idx];
497 }
498 
499 #define for_each_active_base(base, cpu_base, active)	\
500 	while ((base = __next_base((cpu_base), &(active))))
501 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 					 const struct hrtimer *exclude,
504 					 unsigned int active,
505 					 ktime_t expires_next)
506 {
507 	struct hrtimer_clock_base *base;
508 	ktime_t expires;
509 
510 	for_each_active_base(base, cpu_base, active) {
511 		struct timerqueue_node *next;
512 		struct hrtimer *timer;
513 
514 		next = timerqueue_getnext(&base->active);
515 		timer = container_of(next, struct hrtimer, node);
516 		if (timer == exclude) {
517 			/* Get to the next timer in the queue. */
518 			next = timerqueue_iterate_next(next);
519 			if (!next)
520 				continue;
521 
522 			timer = container_of(next, struct hrtimer, node);
523 		}
524 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 		if (expires < expires_next) {
526 			expires_next = expires;
527 
528 			/* Skip cpu_base update if a timer is being excluded. */
529 			if (exclude)
530 				continue;
531 
532 			if (timer->is_soft)
533 				cpu_base->softirq_next_timer = timer;
534 			else
535 				cpu_base->next_timer = timer;
536 		}
537 	}
538 	/*
539 	 * clock_was_set() might have changed base->offset of any of
540 	 * the clock bases so the result might be negative. Fix it up
541 	 * to prevent a false positive in clockevents_program_event().
542 	 */
543 	if (expires_next < 0)
544 		expires_next = 0;
545 	return expires_next;
546 }
547 
548 /*
549  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550  * but does not set cpu_base::*expires_next, that is done by
551  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552  * cpu_base::*expires_next right away, reprogramming logic would no longer
553  * work.
554  *
555  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556  * those timers will get run whenever the softirq gets handled, at the end of
557  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
558  *
559  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
562  *
563  * @active_mask must be one of:
564  *  - HRTIMER_ACTIVE_ALL,
565  *  - HRTIMER_ACTIVE_SOFT, or
566  *  - HRTIMER_ACTIVE_HARD.
567  */
568 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
570 {
571 	unsigned int active;
572 	struct hrtimer *next_timer = NULL;
573 	ktime_t expires_next = KTIME_MAX;
574 
575 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 		cpu_base->softirq_next_timer = NULL;
578 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
579 							 active, KTIME_MAX);
580 
581 		next_timer = cpu_base->softirq_next_timer;
582 	}
583 
584 	if (active_mask & HRTIMER_ACTIVE_HARD) {
585 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 		cpu_base->next_timer = next_timer;
587 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
588 							 expires_next);
589 	}
590 
591 	return expires_next;
592 }
593 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
595 {
596 	ktime_t expires_next, soft = KTIME_MAX;
597 
598 	/*
599 	 * If the soft interrupt has already been activated, ignore the
600 	 * soft bases. They will be handled in the already raised soft
601 	 * interrupt.
602 	 */
603 	if (!cpu_base->softirq_activated) {
604 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
605 		/*
606 		 * Update the soft expiry time. clock_settime() might have
607 		 * affected it.
608 		 */
609 		cpu_base->softirq_expires_next = soft;
610 	}
611 
612 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
613 	/*
614 	 * If a softirq timer is expiring first, update cpu_base->next_timer
615 	 * and program the hardware with the soft expiry time.
616 	 */
617 	if (expires_next > soft) {
618 		cpu_base->next_timer = cpu_base->softirq_next_timer;
619 		expires_next = soft;
620 	}
621 
622 	return expires_next;
623 }
624 
hrtimer_update_base(struct hrtimer_cpu_base * base)625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
626 {
627 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
630 
631 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 					    offs_real, offs_boot, offs_tai);
633 
634 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
637 
638 	return now;
639 }
640 
641 /*
642  * Is the high resolution mode active ?
643  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
645 {
646 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 		cpu_base->hres_active : 0;
648 }
649 
hrtimer_hres_active(void)650 static inline int hrtimer_hres_active(void)
651 {
652 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
653 }
654 
655 /*
656  * Reprogram the event source with checking both queues for the
657  * next event
658  * Called with interrupts disabled and base->lock held
659  */
660 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
662 {
663 	ktime_t expires_next;
664 
665 	expires_next = hrtimer_update_next_event(cpu_base);
666 
667 	if (skip_equal && expires_next == cpu_base->expires_next)
668 		return;
669 
670 	cpu_base->expires_next = expires_next;
671 
672 	/*
673 	 * If hres is not active, hardware does not have to be
674 	 * reprogrammed yet.
675 	 *
676 	 * If a hang was detected in the last timer interrupt then we
677 	 * leave the hang delay active in the hardware. We want the
678 	 * system to make progress. That also prevents the following
679 	 * scenario:
680 	 * T1 expires 50ms from now
681 	 * T2 expires 5s from now
682 	 *
683 	 * T1 is removed, so this code is called and would reprogram
684 	 * the hardware to 5s from now. Any hrtimer_start after that
685 	 * will not reprogram the hardware due to hang_detected being
686 	 * set. So we'd effectivly block all timers until the T2 event
687 	 * fires.
688 	 */
689 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
690 		return;
691 
692 	tick_program_event(cpu_base->expires_next, 1);
693 }
694 
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697 
698 /*
699  * High resolution timer enabled ?
700  */
701 static bool hrtimer_hres_enabled __read_mostly  = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704 
705 /*
706  * Enable / Disable high resolution mode
707  */
setup_hrtimer_hres(char * str)708 static int __init setup_hrtimer_hres(char *str)
709 {
710 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712 
713 __setup("highres=", setup_hrtimer_hres);
714 
715 /*
716  * hrtimer_high_res_enabled - query, if the highres mode is enabled
717  */
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 	return hrtimer_hres_enabled;
721 }
722 
723 /*
724  * Retrigger next event is called after clock was set
725  *
726  * Called with interrupts disabled via on_each_cpu()
727  */
retrigger_next_event(void * arg)728 static void retrigger_next_event(void *arg)
729 {
730 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731 
732 	if (!__hrtimer_hres_active(base))
733 		return;
734 
735 	raw_spin_lock(&base->lock);
736 	hrtimer_update_base(base);
737 	hrtimer_force_reprogram(base, 0);
738 	raw_spin_unlock(&base->lock);
739 }
740 
741 /*
742  * Switch to high resolution mode
743  */
hrtimer_switch_to_hres(void)744 static void hrtimer_switch_to_hres(void)
745 {
746 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
747 
748 	if (tick_init_highres()) {
749 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
750 			base->cpu);
751 		return;
752 	}
753 	base->hres_active = 1;
754 	hrtimer_resolution = HIGH_RES_NSEC;
755 
756 	tick_setup_sched_timer();
757 	/* "Retrigger" the interrupt to get things going */
758 	retrigger_next_event(NULL);
759 }
760 
761 #else
762 
hrtimer_is_hres_enabled(void)763 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)764 static inline void hrtimer_switch_to_hres(void) { }
retrigger_next_event(void * arg)765 static inline void retrigger_next_event(void *arg) { }
766 
767 #endif /* CONFIG_HIGH_RES_TIMERS */
768 
769 /*
770  * When a timer is enqueued and expires earlier than the already enqueued
771  * timers, we have to check, whether it expires earlier than the timer for
772  * which the clock event device was armed.
773  *
774  * Called with interrupts disabled and base->cpu_base.lock held
775  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)776 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
777 {
778 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
779 	struct hrtimer_clock_base *base = timer->base;
780 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
781 
782 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
783 
784 	/*
785 	 * CLOCK_REALTIME timer might be requested with an absolute
786 	 * expiry time which is less than base->offset. Set it to 0.
787 	 */
788 	if (expires < 0)
789 		expires = 0;
790 
791 	if (timer->is_soft) {
792 		/*
793 		 * soft hrtimer could be started on a remote CPU. In this
794 		 * case softirq_expires_next needs to be updated on the
795 		 * remote CPU. The soft hrtimer will not expire before the
796 		 * first hard hrtimer on the remote CPU -
797 		 * hrtimer_check_target() prevents this case.
798 		 */
799 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
800 
801 		if (timer_cpu_base->softirq_activated)
802 			return;
803 
804 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
805 			return;
806 
807 		timer_cpu_base->softirq_next_timer = timer;
808 		timer_cpu_base->softirq_expires_next = expires;
809 
810 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
811 		    !reprogram)
812 			return;
813 	}
814 
815 	/*
816 	 * If the timer is not on the current cpu, we cannot reprogram
817 	 * the other cpus clock event device.
818 	 */
819 	if (base->cpu_base != cpu_base)
820 		return;
821 
822 	/*
823 	 * If the hrtimer interrupt is running, then it will
824 	 * reevaluate the clock bases and reprogram the clock event
825 	 * device. The callbacks are always executed in hard interrupt
826 	 * context so we don't need an extra check for a running
827 	 * callback.
828 	 */
829 	if (cpu_base->in_hrtirq)
830 		return;
831 
832 	if (expires >= cpu_base->expires_next)
833 		return;
834 
835 	/* Update the pointer to the next expiring timer */
836 	cpu_base->next_timer = timer;
837 	cpu_base->expires_next = expires;
838 
839 	/*
840 	 * If hres is not active, hardware does not have to be
841 	 * programmed yet.
842 	 *
843 	 * If a hang was detected in the last timer interrupt then we
844 	 * do not schedule a timer which is earlier than the expiry
845 	 * which we enforced in the hang detection. We want the system
846 	 * to make progress.
847 	 */
848 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
849 		return;
850 
851 	/*
852 	 * Program the timer hardware. We enforce the expiry for
853 	 * events which are already in the past.
854 	 */
855 	tick_program_event(expires, 1);
856 }
857 
858 /*
859  * Clock realtime was set
860  *
861  * Change the offset of the realtime clock vs. the monotonic
862  * clock.
863  *
864  * We might have to reprogram the high resolution timer interrupt. On
865  * SMP we call the architecture specific code to retrigger _all_ high
866  * resolution timer interrupts. On UP we just disable interrupts and
867  * call the high resolution interrupt code.
868  */
clock_was_set(void)869 void clock_was_set(void)
870 {
871 #ifdef CONFIG_HIGH_RES_TIMERS
872 	/* Retrigger the CPU local events everywhere */
873 	on_each_cpu(retrigger_next_event, NULL, 1);
874 #endif
875 	timerfd_clock_was_set();
876 }
877 
clock_was_set_work(struct work_struct * work)878 static void clock_was_set_work(struct work_struct *work)
879 {
880 	clock_was_set();
881 }
882 
883 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
884 
885 /*
886  * Called from timekeeping and resume code to reprogram the hrtimer
887  * interrupt device on all cpus and to notify timerfd.
888  */
clock_was_set_delayed(void)889 void clock_was_set_delayed(void)
890 {
891 	schedule_work(&hrtimer_work);
892 }
893 
894 /*
895  * During resume we might have to reprogram the high resolution timer
896  * interrupt on all online CPUs.  However, all other CPUs will be
897  * stopped with IRQs interrupts disabled so the clock_was_set() call
898  * must be deferred.
899  */
hrtimers_resume(void)900 void hrtimers_resume(void)
901 {
902 	lockdep_assert_irqs_disabled();
903 	/* Retrigger on the local CPU */
904 	retrigger_next_event(NULL);
905 	/* And schedule a retrigger for all others */
906 	clock_was_set_delayed();
907 }
908 
909 /*
910  * Counterpart to lock_hrtimer_base above:
911  */
912 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
914 {
915 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
916 }
917 
918 /**
919  * hrtimer_forward - forward the timer expiry
920  * @timer:	hrtimer to forward
921  * @now:	forward past this time
922  * @interval:	the interval to forward
923  *
924  * Forward the timer expiry so it will expire in the future.
925  * Returns the number of overruns.
926  *
927  * Can be safely called from the callback function of @timer. If
928  * called from other contexts @timer must neither be enqueued nor
929  * running the callback and the caller needs to take care of
930  * serialization.
931  *
932  * Note: This only updates the timer expiry value and does not requeue
933  * the timer.
934  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
936 {
937 	u64 orun = 1;
938 	ktime_t delta;
939 
940 	delta = ktime_sub(now, hrtimer_get_expires(timer));
941 
942 	if (delta < 0)
943 		return 0;
944 
945 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
946 		return 0;
947 
948 	if (interval < hrtimer_resolution)
949 		interval = hrtimer_resolution;
950 
951 	if (unlikely(delta >= interval)) {
952 		s64 incr = ktime_to_ns(interval);
953 
954 		orun = ktime_divns(delta, incr);
955 		hrtimer_add_expires_ns(timer, incr * orun);
956 		if (hrtimer_get_expires_tv64(timer) > now)
957 			return orun;
958 		/*
959 		 * This (and the ktime_add() below) is the
960 		 * correction for exact:
961 		 */
962 		orun++;
963 	}
964 	hrtimer_add_expires(timer, interval);
965 
966 	return orun;
967 }
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
969 
970 /*
971  * enqueue_hrtimer - internal function to (re)start a timer
972  *
973  * The timer is inserted in expiry order. Insertion into the
974  * red black tree is O(log(n)). Must hold the base lock.
975  *
976  * Returns 1 when the new timer is the leftmost timer in the tree.
977  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)978 static int enqueue_hrtimer(struct hrtimer *timer,
979 			   struct hrtimer_clock_base *base,
980 			   enum hrtimer_mode mode)
981 {
982 	debug_activate(timer, mode);
983 
984 	base->cpu_base->active_bases |= 1 << base->index;
985 
986 	/* Pairs with the lockless read in hrtimer_is_queued() */
987 #ifdef CONFIG_CPU_ISOLATION_OPT
988 	WRITE_ONCE(timer->state, (timer->state | HRTIMER_STATE_ENQUEUED));
989 #else
990 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
991 #endif
992 
993 	return timerqueue_add(&base->active, &timer->node);
994 }
995 
996 /*
997  * __remove_hrtimer - internal function to remove a timer
998  *
999  * Caller must hold the base lock.
1000  *
1001  * High resolution timer mode reprograms the clock event device when the
1002  * timer is the one which expires next. The caller can disable this by setting
1003  * reprogram to zero. This is useful, when the context does a reprogramming
1004  * anyway (e.g. timer interrupt)
1005  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1006 static void __remove_hrtimer(struct hrtimer *timer,
1007 			     struct hrtimer_clock_base *base,
1008 			     u8 newstate, int reprogram)
1009 {
1010 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1011 	u8 state = timer->state;
1012 
1013 	/* Pairs with the lockless read in hrtimer_is_queued() */
1014 #ifdef CONFIG_CPU_ISOLATION_OPT
1015 	/*
1016 	 * We need to preserve PINNED state here, otherwise we may end up
1017 	 * migrating pinned hrtimers as well.
1018 	 */
1019 	WRITE_ONCE(timer->state, newstate | (timer->state & HRTIMER_STATE_PINNED));
1020 #else
1021 	WRITE_ONCE(timer->state, newstate);
1022 #endif
1023 	if (!(state & HRTIMER_STATE_ENQUEUED))
1024 		return;
1025 
1026 	if (!timerqueue_del(&base->active, &timer->node))
1027 		cpu_base->active_bases &= ~(1 << base->index);
1028 
1029 	/*
1030 	 * Note: If reprogram is false we do not update
1031 	 * cpu_base->next_timer. This happens when we remove the first
1032 	 * timer on a remote cpu. No harm as we never dereference
1033 	 * cpu_base->next_timer. So the worst thing what can happen is
1034 	 * an superflous call to hrtimer_force_reprogram() on the
1035 	 * remote cpu later on if the same timer gets enqueued again.
1036 	 */
1037 	if (reprogram && timer == cpu_base->next_timer)
1038 		hrtimer_force_reprogram(cpu_base, 1);
1039 }
1040 
1041 /*
1042  * remove hrtimer, called with base lock held
1043  */
1044 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1045 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1046 	       bool restart, bool keep_local)
1047 {
1048 	u8 state = timer->state;
1049 
1050 	if (state & HRTIMER_STATE_ENQUEUED) {
1051 		bool reprogram;
1052 
1053 		/*
1054 		 * Remove the timer and force reprogramming when high
1055 		 * resolution mode is active and the timer is on the current
1056 		 * CPU. If we remove a timer on another CPU, reprogramming is
1057 		 * skipped. The interrupt event on this CPU is fired and
1058 		 * reprogramming happens in the interrupt handler. This is a
1059 		 * rare case and less expensive than a smp call.
1060 		 */
1061 		debug_deactivate(timer);
1062 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1063 
1064 		/*
1065 		 * If the timer is not restarted then reprogramming is
1066 		 * required if the timer is local. If it is local and about
1067 		 * to be restarted, avoid programming it twice (on removal
1068 		 * and a moment later when it's requeued).
1069 		 */
1070 		if (!restart)
1071 			state = HRTIMER_STATE_INACTIVE;
1072 		else
1073 			reprogram &= !keep_local;
1074 
1075 		__remove_hrtimer(timer, base, state, reprogram);
1076 #ifdef CONFIG_CPU_ISOLATION_OPT
1077 		/* Make sure PINNED flag is cleared after removing hrtimer */
1078 		timer->state &= ~HRTIMER_STATE_PINNED;
1079 #endif
1080 		return 1;
1081 	}
1082 	return 0;
1083 }
1084 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1085 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1086 					    const enum hrtimer_mode mode)
1087 {
1088 #ifdef CONFIG_TIME_LOW_RES
1089 	/*
1090 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1091 	 * granular time values. For relative timers we add hrtimer_resolution
1092 	 * (i.e. one jiffie) to prevent short timeouts.
1093 	 */
1094 	timer->is_rel = mode & HRTIMER_MODE_REL;
1095 	if (timer->is_rel)
1096 		tim = ktime_add_safe(tim, hrtimer_resolution);
1097 #endif
1098 	return tim;
1099 }
1100 
1101 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1102 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1103 {
1104 	ktime_t expires;
1105 
1106 	/*
1107 	 * Find the next SOFT expiration.
1108 	 */
1109 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1110 
1111 	/*
1112 	 * reprogramming needs to be triggered, even if the next soft
1113 	 * hrtimer expires at the same time than the next hard
1114 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1115 	 */
1116 	if (expires == KTIME_MAX)
1117 		return;
1118 
1119 	/*
1120 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1121 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1122 	 */
1123 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1124 }
1125 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1126 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1127 				    u64 delta_ns, const enum hrtimer_mode mode,
1128 				    struct hrtimer_clock_base *base)
1129 {
1130 	struct hrtimer_clock_base *new_base;
1131 	bool force_local, first;
1132 
1133 	/*
1134 	 * If the timer is on the local cpu base and is the first expiring
1135 	 * timer then this might end up reprogramming the hardware twice
1136 	 * (on removal and on enqueue). To avoid that by prevent the
1137 	 * reprogram on removal, keep the timer local to the current CPU
1138 	 * and enforce reprogramming after it is queued no matter whether
1139 	 * it is the new first expiring timer again or not.
1140 	 */
1141 	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1142 	force_local &= base->cpu_base->next_timer == timer;
1143 
1144 	/*
1145 	 * Remove an active timer from the queue. In case it is not queued
1146 	 * on the current CPU, make sure that remove_hrtimer() updates the
1147 	 * remote data correctly.
1148 	 *
1149 	 * If it's on the current CPU and the first expiring timer, then
1150 	 * skip reprogramming, keep the timer local and enforce
1151 	 * reprogramming later if it was the first expiring timer.  This
1152 	 * avoids programming the underlying clock event twice (once at
1153 	 * removal and once after enqueue).
1154 	 */
1155 	remove_hrtimer(timer, base, true, force_local);
1156 
1157 	if (mode & HRTIMER_MODE_REL)
1158 		tim = ktime_add_safe(tim, base->get_time());
1159 
1160 	tim = hrtimer_update_lowres(timer, tim, mode);
1161 
1162 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1163 
1164 	/* Switch the timer base, if necessary: */
1165 	if (!force_local) {
1166 		new_base = switch_hrtimer_base(timer, base,
1167 					       mode & HRTIMER_MODE_PINNED);
1168 	} else {
1169 		new_base = base;
1170 	}
1171 
1172 #ifdef CONFIG_CPU_ISOLATION_OPT
1173 	timer->state &= ~HRTIMER_STATE_PINNED;
1174 	if (mode & HRTIMER_MODE_PINNED)
1175 		timer->state |= HRTIMER_STATE_PINNED;
1176 #endif
1177 
1178 	first = enqueue_hrtimer(timer, new_base, mode);
1179 	if (!force_local)
1180 		return first;
1181 
1182 	/*
1183 	 * Timer was forced to stay on the current CPU to avoid
1184 	 * reprogramming on removal and enqueue. Force reprogram the
1185 	 * hardware by evaluating the new first expiring timer.
1186 	 */
1187 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1188 	return 0;
1189 }
1190 
1191 /**
1192  * hrtimer_start_range_ns - (re)start an hrtimer
1193  * @timer:	the timer to be added
1194  * @tim:	expiry time
1195  * @delta_ns:	"slack" range for the timer
1196  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1197  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1198  *		softirq based mode is considered for debug purpose only!
1199  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1200 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1201 			    u64 delta_ns, const enum hrtimer_mode mode)
1202 {
1203 	struct hrtimer_clock_base *base;
1204 	unsigned long flags;
1205 
1206 	/*
1207 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1208 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1209 	 * expiry mode because unmarked timers are moved to softirq expiry.
1210 	 */
1211 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1212 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1213 	else
1214 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1215 
1216 	base = lock_hrtimer_base(timer, &flags);
1217 
1218 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1219 		hrtimer_reprogram(timer, true);
1220 
1221 	unlock_hrtimer_base(timer, &flags);
1222 }
1223 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1224 
1225 /**
1226  * hrtimer_try_to_cancel - try to deactivate a timer
1227  * @timer:	hrtimer to stop
1228  *
1229  * Returns:
1230  *
1231  *  *  0 when the timer was not active
1232  *  *  1 when the timer was active
1233  *  * -1 when the timer is currently executing the callback function and
1234  *    cannot be stopped
1235  */
hrtimer_try_to_cancel(struct hrtimer * timer)1236 int hrtimer_try_to_cancel(struct hrtimer *timer)
1237 {
1238 	struct hrtimer_clock_base *base;
1239 	unsigned long flags;
1240 	int ret = -1;
1241 
1242 	/*
1243 	 * Check lockless first. If the timer is not active (neither
1244 	 * enqueued nor running the callback, nothing to do here.  The
1245 	 * base lock does not serialize against a concurrent enqueue,
1246 	 * so we can avoid taking it.
1247 	 */
1248 	if (!hrtimer_active(timer))
1249 		return 0;
1250 
1251 	base = lock_hrtimer_base(timer, &flags);
1252 
1253 	if (!hrtimer_callback_running(timer))
1254 		ret = remove_hrtimer(timer, base, false, false);
1255 
1256 	unlock_hrtimer_base(timer, &flags);
1257 
1258 	return ret;
1259 
1260 }
1261 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1262 
1263 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1264 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1265 {
1266 	spin_lock_init(&base->softirq_expiry_lock);
1267 }
1268 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1269 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1270 {
1271 	spin_lock(&base->softirq_expiry_lock);
1272 }
1273 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1274 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1275 {
1276 	spin_unlock(&base->softirq_expiry_lock);
1277 }
1278 
1279 /*
1280  * The counterpart to hrtimer_cancel_wait_running().
1281  *
1282  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1283  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1284  * allows the waiter to acquire the lock and make progress.
1285  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1286 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1287 				      unsigned long flags)
1288 {
1289 	if (atomic_read(&cpu_base->timer_waiters)) {
1290 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1291 		spin_unlock(&cpu_base->softirq_expiry_lock);
1292 		spin_lock(&cpu_base->softirq_expiry_lock);
1293 		raw_spin_lock_irq(&cpu_base->lock);
1294 	}
1295 }
1296 
1297 /*
1298  * This function is called on PREEMPT_RT kernels when the fast path
1299  * deletion of a timer failed because the timer callback function was
1300  * running.
1301  *
1302  * This prevents priority inversion: if the soft irq thread is preempted
1303  * in the middle of a timer callback, then calling del_timer_sync() can
1304  * lead to two issues:
1305  *
1306  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1307  *    handler to complete. This can result in unbound priority inversion.
1308  *
1309  *  - If the caller originates from the task which preempted the timer
1310  *    handler on the same CPU, then spin waiting for the timer handler to
1311  *    complete is never going to end.
1312  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1313 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1314 {
1315 	/* Lockless read. Prevent the compiler from reloading it below */
1316 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1317 
1318 	/*
1319 	 * Just relax if the timer expires in hard interrupt context or if
1320 	 * it is currently on the migration base.
1321 	 */
1322 	if (!timer->is_soft || is_migration_base(base)) {
1323 		cpu_relax();
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * Mark the base as contended and grab the expiry lock, which is
1329 	 * held by the softirq across the timer callback. Drop the lock
1330 	 * immediately so the softirq can expire the next timer. In theory
1331 	 * the timer could already be running again, but that's more than
1332 	 * unlikely and just causes another wait loop.
1333 	 */
1334 	atomic_inc(&base->cpu_base->timer_waiters);
1335 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1336 	atomic_dec(&base->cpu_base->timer_waiters);
1337 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1338 }
1339 #else
1340 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1341 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1342 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1343 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1344 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1345 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1346 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1347 					     unsigned long flags) { }
1348 #endif
1349 
1350 /**
1351  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1352  * @timer:	the timer to be cancelled
1353  *
1354  * Returns:
1355  *  0 when the timer was not active
1356  *  1 when the timer was active
1357  */
hrtimer_cancel(struct hrtimer * timer)1358 int hrtimer_cancel(struct hrtimer *timer)
1359 {
1360 	int ret;
1361 
1362 	do {
1363 		ret = hrtimer_try_to_cancel(timer);
1364 
1365 		if (ret < 0)
1366 			hrtimer_cancel_wait_running(timer);
1367 	} while (ret < 0);
1368 	return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1371 
1372 /**
1373  * hrtimer_get_remaining - get remaining time for the timer
1374  * @timer:	the timer to read
1375  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1376  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1377 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1378 {
1379 	unsigned long flags;
1380 	ktime_t rem;
1381 
1382 	lock_hrtimer_base(timer, &flags);
1383 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1384 		rem = hrtimer_expires_remaining_adjusted(timer);
1385 	else
1386 		rem = hrtimer_expires_remaining(timer);
1387 	unlock_hrtimer_base(timer, &flags);
1388 
1389 	return rem;
1390 }
1391 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1392 
1393 #ifdef CONFIG_NO_HZ_COMMON
1394 /**
1395  * hrtimer_get_next_event - get the time until next expiry event
1396  *
1397  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1398  */
hrtimer_get_next_event(void)1399 u64 hrtimer_get_next_event(void)
1400 {
1401 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1402 	u64 expires = KTIME_MAX;
1403 	unsigned long flags;
1404 
1405 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1406 
1407 	if (!__hrtimer_hres_active(cpu_base))
1408 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1409 
1410 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1411 
1412 	return expires;
1413 }
1414 
1415 /**
1416  * hrtimer_next_event_without - time until next expiry event w/o one timer
1417  * @exclude:	timer to exclude
1418  *
1419  * Returns the next expiry time over all timers except for the @exclude one or
1420  * KTIME_MAX if none of them is pending.
1421  */
hrtimer_next_event_without(const struct hrtimer * exclude)1422 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1423 {
1424 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1425 	u64 expires = KTIME_MAX;
1426 	unsigned long flags;
1427 
1428 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1429 
1430 	if (__hrtimer_hres_active(cpu_base)) {
1431 		unsigned int active;
1432 
1433 		if (!cpu_base->softirq_activated) {
1434 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1435 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1436 							    active, KTIME_MAX);
1437 		}
1438 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1439 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1440 						    expires);
1441 	}
1442 
1443 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1444 
1445 	return expires;
1446 }
1447 #endif
1448 
hrtimer_clockid_to_base(clockid_t clock_id)1449 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1450 {
1451 	if (likely(clock_id < MAX_CLOCKS)) {
1452 		int base = hrtimer_clock_to_base_table[clock_id];
1453 
1454 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1455 			return base;
1456 	}
1457 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1458 	return HRTIMER_BASE_MONOTONIC;
1459 }
1460 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1461 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1462 			   enum hrtimer_mode mode)
1463 {
1464 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1465 	struct hrtimer_cpu_base *cpu_base;
1466 	int base;
1467 
1468 	/*
1469 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1470 	 * marked for hard interrupt expiry mode are moved into soft
1471 	 * interrupt context for latency reasons and because the callbacks
1472 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1473 	 */
1474 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1475 		softtimer = true;
1476 
1477 	memset(timer, 0, sizeof(struct hrtimer));
1478 
1479 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1480 
1481 	/*
1482 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1483 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1484 	 * ensure POSIX compliance.
1485 	 */
1486 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1487 		clock_id = CLOCK_MONOTONIC;
1488 
1489 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1490 	base += hrtimer_clockid_to_base(clock_id);
1491 	timer->is_soft = softtimer;
1492 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1493 	timer->base = &cpu_base->clock_base[base];
1494 	timerqueue_init(&timer->node);
1495 }
1496 
1497 /**
1498  * hrtimer_init - initialize a timer to the given clock
1499  * @timer:	the timer to be initialized
1500  * @clock_id:	the clock to be used
1501  * @mode:       The modes which are relevant for intitialization:
1502  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1503  *              HRTIMER_MODE_REL_SOFT
1504  *
1505  *              The PINNED variants of the above can be handed in,
1506  *              but the PINNED bit is ignored as pinning happens
1507  *              when the hrtimer is started
1508  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1509 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1510 		  enum hrtimer_mode mode)
1511 {
1512 	debug_init(timer, clock_id, mode);
1513 	__hrtimer_init(timer, clock_id, mode);
1514 }
1515 EXPORT_SYMBOL_GPL(hrtimer_init);
1516 
1517 /*
1518  * A timer is active, when it is enqueued into the rbtree or the
1519  * callback function is running or it's in the state of being migrated
1520  * to another cpu.
1521  *
1522  * It is important for this function to not return a false negative.
1523  */
hrtimer_active(const struct hrtimer * timer)1524 bool hrtimer_active(const struct hrtimer *timer)
1525 {
1526 	struct hrtimer_clock_base *base;
1527 	unsigned int seq;
1528 
1529 	do {
1530 		base = READ_ONCE(timer->base);
1531 		seq = raw_read_seqcount_begin(&base->seq);
1532 #ifdef CONFIG_CPU_ISOLATION_OPT
1533 		if (((timer->state & ~HRTIMER_STATE_PINNED) !=
1534 		      HRTIMER_STATE_INACTIVE) || base->running == timer)
1535 #else
1536 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1537 		    base->running == timer)
1538 #endif
1539 			return true;
1540 
1541 	} while (read_seqcount_retry(&base->seq, seq) ||
1542 		 base != READ_ONCE(timer->base));
1543 
1544 	return false;
1545 }
1546 EXPORT_SYMBOL_GPL(hrtimer_active);
1547 
1548 /*
1549  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1550  * distinct sections:
1551  *
1552  *  - queued:	the timer is queued
1553  *  - callback:	the timer is being ran
1554  *  - post:	the timer is inactive or (re)queued
1555  *
1556  * On the read side we ensure we observe timer->state and cpu_base->running
1557  * from the same section, if anything changed while we looked at it, we retry.
1558  * This includes timer->base changing because sequence numbers alone are
1559  * insufficient for that.
1560  *
1561  * The sequence numbers are required because otherwise we could still observe
1562  * a false negative if the read side got smeared over multiple consequtive
1563  * __run_hrtimer() invocations.
1564  */
1565 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1566 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1567 			  struct hrtimer_clock_base *base,
1568 			  struct hrtimer *timer, ktime_t *now,
1569 			  unsigned long flags) __must_hold(&cpu_base->lock)
1570 {
1571 	enum hrtimer_restart (*fn)(struct hrtimer *);
1572 	bool expires_in_hardirq;
1573 	int restart;
1574 
1575 	lockdep_assert_held(&cpu_base->lock);
1576 
1577 	debug_deactivate(timer);
1578 	base->running = timer;
1579 
1580 	/*
1581 	 * Separate the ->running assignment from the ->state assignment.
1582 	 *
1583 	 * As with a regular write barrier, this ensures the read side in
1584 	 * hrtimer_active() cannot observe base->running == NULL &&
1585 	 * timer->state == INACTIVE.
1586 	 */
1587 	raw_write_seqcount_barrier(&base->seq);
1588 
1589 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1590 	fn = timer->function;
1591 
1592 	/*
1593 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1594 	 * timer is restarted with a period then it becomes an absolute
1595 	 * timer. If its not restarted it does not matter.
1596 	 */
1597 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1598 		timer->is_rel = false;
1599 
1600 	/*
1601 	 * The timer is marked as running in the CPU base, so it is
1602 	 * protected against migration to a different CPU even if the lock
1603 	 * is dropped.
1604 	 */
1605 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1606 	trace_hrtimer_expire_entry(timer, now);
1607 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1608 
1609 	restart = fn(timer);
1610 
1611 	lockdep_hrtimer_exit(expires_in_hardirq);
1612 	trace_hrtimer_expire_exit(timer);
1613 	raw_spin_lock_irq(&cpu_base->lock);
1614 
1615 	/*
1616 	 * Note: We clear the running state after enqueue_hrtimer and
1617 	 * we do not reprogram the event hardware. Happens either in
1618 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1619 	 *
1620 	 * Note: Because we dropped the cpu_base->lock above,
1621 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1622 	 * for us already.
1623 	 */
1624 	if (restart != HRTIMER_NORESTART &&
1625 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1626 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1627 
1628 	/*
1629 	 * Separate the ->running assignment from the ->state assignment.
1630 	 *
1631 	 * As with a regular write barrier, this ensures the read side in
1632 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1633 	 * timer->state == INACTIVE.
1634 	 */
1635 	raw_write_seqcount_barrier(&base->seq);
1636 
1637 	WARN_ON_ONCE(base->running != timer);
1638 	base->running = NULL;
1639 }
1640 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1641 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1642 				 unsigned long flags, unsigned int active_mask)
1643 {
1644 	struct hrtimer_clock_base *base;
1645 	unsigned int active = cpu_base->active_bases & active_mask;
1646 
1647 	for_each_active_base(base, cpu_base, active) {
1648 		struct timerqueue_node *node;
1649 		ktime_t basenow;
1650 
1651 		basenow = ktime_add(now, base->offset);
1652 
1653 		while ((node = timerqueue_getnext(&base->active))) {
1654 			struct hrtimer *timer;
1655 
1656 			timer = container_of(node, struct hrtimer, node);
1657 
1658 			/*
1659 			 * The immediate goal for using the softexpires is
1660 			 * minimizing wakeups, not running timers at the
1661 			 * earliest interrupt after their soft expiration.
1662 			 * This allows us to avoid using a Priority Search
1663 			 * Tree, which can answer a stabbing querry for
1664 			 * overlapping intervals and instead use the simple
1665 			 * BST we already have.
1666 			 * We don't add extra wakeups by delaying timers that
1667 			 * are right-of a not yet expired timer, because that
1668 			 * timer will have to trigger a wakeup anyway.
1669 			 */
1670 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1671 				break;
1672 
1673 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1674 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1675 				hrtimer_sync_wait_running(cpu_base, flags);
1676 		}
1677 	}
1678 }
1679 
hrtimer_run_softirq(struct softirq_action * h)1680 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1681 {
1682 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1683 	unsigned long flags;
1684 	ktime_t now;
1685 
1686 	hrtimer_cpu_base_lock_expiry(cpu_base);
1687 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1688 
1689 	now = hrtimer_update_base(cpu_base);
1690 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1691 
1692 	cpu_base->softirq_activated = 0;
1693 	hrtimer_update_softirq_timer(cpu_base, true);
1694 
1695 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1696 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1697 }
1698 
1699 #ifdef CONFIG_HIGH_RES_TIMERS
1700 
1701 /*
1702  * High resolution timer interrupt
1703  * Called with interrupts disabled
1704  */
hrtimer_interrupt(struct clock_event_device * dev)1705 void hrtimer_interrupt(struct clock_event_device *dev)
1706 {
1707 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1708 	ktime_t expires_next, now, entry_time, delta;
1709 	unsigned long flags;
1710 	int retries = 0;
1711 
1712 	BUG_ON(!cpu_base->hres_active);
1713 	cpu_base->nr_events++;
1714 	dev->next_event = KTIME_MAX;
1715 
1716 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1717 	entry_time = now = hrtimer_update_base(cpu_base);
1718 retry:
1719 	cpu_base->in_hrtirq = 1;
1720 	/*
1721 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1722 	 * held to prevent that a timer is enqueued in our queue via
1723 	 * the migration code. This does not affect enqueueing of
1724 	 * timers which run their callback and need to be requeued on
1725 	 * this CPU.
1726 	 */
1727 	cpu_base->expires_next = KTIME_MAX;
1728 
1729 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1730 		cpu_base->softirq_expires_next = KTIME_MAX;
1731 		cpu_base->softirq_activated = 1;
1732 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1733 	}
1734 
1735 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1736 
1737 	/* Reevaluate the clock bases for the [soft] next expiry */
1738 	expires_next = hrtimer_update_next_event(cpu_base);
1739 	/*
1740 	 * Store the new expiry value so the migration code can verify
1741 	 * against it.
1742 	 */
1743 	cpu_base->expires_next = expires_next;
1744 	cpu_base->in_hrtirq = 0;
1745 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1746 
1747 	/* Reprogramming necessary ? */
1748 	if (!tick_program_event(expires_next, 0)) {
1749 		cpu_base->hang_detected = 0;
1750 		return;
1751 	}
1752 
1753 	/*
1754 	 * The next timer was already expired due to:
1755 	 * - tracing
1756 	 * - long lasting callbacks
1757 	 * - being scheduled away when running in a VM
1758 	 *
1759 	 * We need to prevent that we loop forever in the hrtimer
1760 	 * interrupt routine. We give it 3 attempts to avoid
1761 	 * overreacting on some spurious event.
1762 	 *
1763 	 * Acquire base lock for updating the offsets and retrieving
1764 	 * the current time.
1765 	 */
1766 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1767 	now = hrtimer_update_base(cpu_base);
1768 	cpu_base->nr_retries++;
1769 	if (++retries < 3)
1770 		goto retry;
1771 	/*
1772 	 * Give the system a chance to do something else than looping
1773 	 * here. We stored the entry time, so we know exactly how long
1774 	 * we spent here. We schedule the next event this amount of
1775 	 * time away.
1776 	 */
1777 	cpu_base->nr_hangs++;
1778 	cpu_base->hang_detected = 1;
1779 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1780 
1781 	delta = ktime_sub(now, entry_time);
1782 	if ((unsigned int)delta > cpu_base->max_hang_time)
1783 		cpu_base->max_hang_time = (unsigned int) delta;
1784 	/*
1785 	 * Limit it to a sensible value as we enforce a longer
1786 	 * delay. Give the CPU at least 100ms to catch up.
1787 	 */
1788 	if (delta > 100 * NSEC_PER_MSEC)
1789 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1790 	else
1791 		expires_next = ktime_add(now, delta);
1792 	tick_program_event(expires_next, 1);
1793 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1794 }
1795 
1796 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1797 static inline void __hrtimer_peek_ahead_timers(void)
1798 {
1799 	struct tick_device *td;
1800 
1801 	if (!hrtimer_hres_active())
1802 		return;
1803 
1804 	td = this_cpu_ptr(&tick_cpu_device);
1805 	if (td && td->evtdev)
1806 		hrtimer_interrupt(td->evtdev);
1807 }
1808 
1809 #else /* CONFIG_HIGH_RES_TIMERS */
1810 
__hrtimer_peek_ahead_timers(void)1811 static inline void __hrtimer_peek_ahead_timers(void) { }
1812 
1813 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1814 
1815 /*
1816  * Called from run_local_timers in hardirq context every jiffy
1817  */
hrtimer_run_queues(void)1818 void hrtimer_run_queues(void)
1819 {
1820 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1821 	unsigned long flags;
1822 	ktime_t now;
1823 
1824 	if (__hrtimer_hres_active(cpu_base))
1825 		return;
1826 
1827 	/*
1828 	 * This _is_ ugly: We have to check periodically, whether we
1829 	 * can switch to highres and / or nohz mode. The clocksource
1830 	 * switch happens with xtime_lock held. Notification from
1831 	 * there only sets the check bit in the tick_oneshot code,
1832 	 * otherwise we might deadlock vs. xtime_lock.
1833 	 */
1834 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1835 		hrtimer_switch_to_hres();
1836 		return;
1837 	}
1838 
1839 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1840 	now = hrtimer_update_base(cpu_base);
1841 
1842 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1843 		cpu_base->softirq_expires_next = KTIME_MAX;
1844 		cpu_base->softirq_activated = 1;
1845 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1846 	}
1847 
1848 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1849 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1850 }
1851 
1852 /*
1853  * Sleep related functions:
1854  */
hrtimer_wakeup(struct hrtimer * timer)1855 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1856 {
1857 	struct hrtimer_sleeper *t =
1858 		container_of(timer, struct hrtimer_sleeper, timer);
1859 	struct task_struct *task = t->task;
1860 
1861 	t->task = NULL;
1862 	if (task)
1863 		wake_up_process(task);
1864 
1865 	return HRTIMER_NORESTART;
1866 }
1867 
1868 /**
1869  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1870  * @sl:		sleeper to be started
1871  * @mode:	timer mode abs/rel
1872  *
1873  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1874  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1875  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1876 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1877 				   enum hrtimer_mode mode)
1878 {
1879 	/*
1880 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1881 	 * was initialized for hard interrupt delivery, force the mode bit.
1882 	 * This is a special case for hrtimer_sleepers because
1883 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1884 	 * fiddling with this decision is avoided at the call sites.
1885 	 */
1886 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1887 		mode |= HRTIMER_MODE_HARD;
1888 
1889 	hrtimer_start_expires(&sl->timer, mode);
1890 }
1891 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1892 
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1893 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1894 				   clockid_t clock_id, enum hrtimer_mode mode)
1895 {
1896 	/*
1897 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1898 	 * marked for hard interrupt expiry mode are moved into soft
1899 	 * interrupt context either for latency reasons or because the
1900 	 * hrtimer callback takes regular spinlocks or invokes other
1901 	 * functions which are not suitable for hard interrupt context on
1902 	 * PREEMPT_RT.
1903 	 *
1904 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1905 	 * context, but there is a latency concern: Untrusted userspace can
1906 	 * spawn many threads which arm timers for the same expiry time on
1907 	 * the same CPU. That causes a latency spike due to the wakeup of
1908 	 * a gazillion threads.
1909 	 *
1910 	 * OTOH, priviledged real-time user space applications rely on the
1911 	 * low latency of hard interrupt wakeups. If the current task is in
1912 	 * a real-time scheduling class, mark the mode for hard interrupt
1913 	 * expiry.
1914 	 */
1915 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1916 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1917 			mode |= HRTIMER_MODE_HARD;
1918 	}
1919 
1920 	__hrtimer_init(&sl->timer, clock_id, mode);
1921 	sl->timer.function = hrtimer_wakeup;
1922 	sl->task = current;
1923 }
1924 
1925 /**
1926  * hrtimer_init_sleeper - initialize sleeper to the given clock
1927  * @sl:		sleeper to be initialized
1928  * @clock_id:	the clock to be used
1929  * @mode:	timer mode abs/rel
1930  */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1931 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1932 			  enum hrtimer_mode mode)
1933 {
1934 	debug_init(&sl->timer, clock_id, mode);
1935 	__hrtimer_init_sleeper(sl, clock_id, mode);
1936 
1937 }
1938 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1939 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1940 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1941 {
1942 	switch(restart->nanosleep.type) {
1943 #ifdef CONFIG_COMPAT_32BIT_TIME
1944 	case TT_COMPAT:
1945 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1946 			return -EFAULT;
1947 		break;
1948 #endif
1949 	case TT_NATIVE:
1950 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1951 			return -EFAULT;
1952 		break;
1953 	default:
1954 		BUG();
1955 	}
1956 	return -ERESTART_RESTARTBLOCK;
1957 }
1958 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1959 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1960 {
1961 	struct restart_block *restart;
1962 
1963 	do {
1964 		set_current_state(TASK_INTERRUPTIBLE);
1965 		hrtimer_sleeper_start_expires(t, mode);
1966 
1967 		if (likely(t->task))
1968 			freezable_schedule();
1969 
1970 		hrtimer_cancel(&t->timer);
1971 		mode = HRTIMER_MODE_ABS;
1972 
1973 	} while (t->task && !signal_pending(current));
1974 
1975 	__set_current_state(TASK_RUNNING);
1976 
1977 	if (!t->task)
1978 		return 0;
1979 
1980 	restart = &current->restart_block;
1981 	if (restart->nanosleep.type != TT_NONE) {
1982 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1983 		struct timespec64 rmt;
1984 
1985 		if (rem <= 0)
1986 			return 0;
1987 		rmt = ktime_to_timespec64(rem);
1988 
1989 		return nanosleep_copyout(restart, &rmt);
1990 	}
1991 	return -ERESTART_RESTARTBLOCK;
1992 }
1993 
hrtimer_nanosleep_restart(struct restart_block * restart)1994 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1995 {
1996 	struct hrtimer_sleeper t;
1997 	int ret;
1998 
1999 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2000 				      HRTIMER_MODE_ABS);
2001 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2002 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2003 	destroy_hrtimer_on_stack(&t.timer);
2004 	return ret;
2005 }
2006 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2007 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2008 		       const clockid_t clockid)
2009 {
2010 	struct restart_block *restart;
2011 	struct hrtimer_sleeper t;
2012 	int ret = 0;
2013 	u64 slack;
2014 
2015 	slack = current->timer_slack_ns;
2016 	if (dl_task(current) || rt_task(current))
2017 		slack = 0;
2018 
2019 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2020 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2021 	ret = do_nanosleep(&t, mode);
2022 	if (ret != -ERESTART_RESTARTBLOCK)
2023 		goto out;
2024 
2025 	/* Absolute timers do not update the rmtp value and restart: */
2026 	if (mode == HRTIMER_MODE_ABS) {
2027 		ret = -ERESTARTNOHAND;
2028 		goto out;
2029 	}
2030 
2031 	restart = &current->restart_block;
2032 	restart->nanosleep.clockid = t.timer.base->clockid;
2033 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2034 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2035 out:
2036 	destroy_hrtimer_on_stack(&t.timer);
2037 	return ret;
2038 }
2039 
2040 #ifdef CONFIG_64BIT
2041 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2042 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2043 		struct __kernel_timespec __user *, rmtp)
2044 {
2045 	struct timespec64 tu;
2046 
2047 	if (get_timespec64(&tu, rqtp))
2048 		return -EFAULT;
2049 
2050 	if (!timespec64_valid(&tu))
2051 		return -EINVAL;
2052 
2053 	current->restart_block.fn = do_no_restart_syscall;
2054 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2055 	current->restart_block.nanosleep.rmtp = rmtp;
2056 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2057 				 CLOCK_MONOTONIC);
2058 }
2059 
2060 #endif
2061 
2062 #ifdef CONFIG_COMPAT_32BIT_TIME
2063 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2064 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2065 		       struct old_timespec32 __user *, rmtp)
2066 {
2067 	struct timespec64 tu;
2068 
2069 	if (get_old_timespec32(&tu, rqtp))
2070 		return -EFAULT;
2071 
2072 	if (!timespec64_valid(&tu))
2073 		return -EINVAL;
2074 
2075 	current->restart_block.fn = do_no_restart_syscall;
2076 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2077 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2078 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2079 				 CLOCK_MONOTONIC);
2080 }
2081 #endif
2082 
2083 /*
2084  * Functions related to boot-time initialization:
2085  */
hrtimers_prepare_cpu(unsigned int cpu)2086 int hrtimers_prepare_cpu(unsigned int cpu)
2087 {
2088 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2089 	int i;
2090 
2091 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2092 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2093 
2094 		clock_b->cpu_base = cpu_base;
2095 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2096 		timerqueue_init_head(&clock_b->active);
2097 	}
2098 
2099 	cpu_base->cpu = cpu;
2100 	cpu_base->active_bases = 0;
2101 	cpu_base->hres_active = 0;
2102 	cpu_base->hang_detected = 0;
2103 	cpu_base->next_timer = NULL;
2104 	cpu_base->softirq_next_timer = NULL;
2105 	cpu_base->expires_next = KTIME_MAX;
2106 	cpu_base->softirq_expires_next = KTIME_MAX;
2107 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2108 	return 0;
2109 }
2110 
2111 #ifdef CONFIG_HOTPLUG_CPU
2112 
2113 #ifdef CONFIG_CPU_ISOLATION_OPT
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base,bool remove_pinned)2114 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2115 				 struct hrtimer_clock_base *new_base,
2116 				 bool remove_pinned)
2117 {
2118 	struct hrtimer *timer;
2119 	struct timerqueue_node *node;
2120 	struct timerqueue_head pinned;
2121 	int is_pinned;
2122 	bool is_hotplug = !cpu_online(old_base->cpu_base->cpu);
2123 
2124 	timerqueue_init_head(&pinned);
2125 
2126 	while ((node = timerqueue_getnext(&old_base->active))) {
2127 		timer = container_of(node, struct hrtimer, node);
2128 		if (is_hotplug)
2129 			BUG_ON(hrtimer_callback_running(timer));
2130 		debug_deactivate(timer);
2131 
2132 		/*
2133 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2134 		 * timer could be seen as !active and just vanish away
2135 		 * under us on another CPU
2136 		 */
2137 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2138 
2139 		is_pinned = timer->state & HRTIMER_STATE_PINNED;
2140 		if (!remove_pinned && is_pinned) {
2141 			timerqueue_add(&pinned, &timer->node);
2142 			continue;
2143 		}
2144 
2145 		timer->base = new_base;
2146 		/*
2147 		 * Enqueue the timers on the new cpu. This does not
2148 		 * reprogram the event device in case the timer
2149 		 * expires before the earliest on this CPU, but we run
2150 		 * hrtimer_interrupt after we migrated everything to
2151 		 * sort out already expired timers and reprogram the
2152 		 * event device.
2153 		 */
2154 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2155 	}
2156 
2157 	/* Re-queue pinned timers for non-hotplug usecase */
2158 	while ((node = timerqueue_getnext(&pinned))) {
2159 		timer = container_of(node, struct hrtimer, node);
2160 
2161 		timerqueue_del(&pinned, &timer->node);
2162 		enqueue_hrtimer(timer, old_base, HRTIMER_MODE_ABS);
2163 	}
2164 }
2165 
__migrate_hrtimers(unsigned int scpu,bool remove_pinned)2166 static void __migrate_hrtimers(unsigned int scpu, bool remove_pinned)
2167 {
2168 	struct hrtimer_cpu_base *old_base, *new_base;
2169 	unsigned long flags;
2170 	int i;
2171 
2172 	local_irq_save(flags);
2173 	old_base = &per_cpu(hrtimer_bases, scpu);
2174 	new_base = this_cpu_ptr(&hrtimer_bases);
2175 	/*
2176 	 * The caller is globally serialized and nobody else
2177 	 * takes two locks at once, deadlock is not possible.
2178 	 */
2179 	raw_spin_lock(&new_base->lock);
2180 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2181 
2182 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2183 		migrate_hrtimer_list(&old_base->clock_base[i],
2184 				     &new_base->clock_base[i], remove_pinned);
2185 	}
2186 
2187 	/*
2188 	 * The migration might have changed the first expiring softirq
2189 	 * timer on this CPU. Update it.
2190 	 */
2191 	hrtimer_update_softirq_timer(new_base, false);
2192 
2193 	raw_spin_unlock(&old_base->lock);
2194 	raw_spin_unlock(&new_base->lock);
2195 
2196 	/* Check, if we got expired work to do */
2197 	__hrtimer_peek_ahead_timers();
2198 	local_irq_restore(flags);
2199 }
2200 
hrtimers_dead_cpu(unsigned int scpu)2201 int hrtimers_dead_cpu(unsigned int scpu)
2202 {
2203 	BUG_ON(cpu_online(scpu));
2204 	tick_cancel_sched_timer(scpu);
2205 
2206 	/*
2207 	 * this BH disable ensures that raise_softirq_irqoff() does
2208 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2209 	 * holding the cpu_base lock
2210 	 */
2211 	local_bh_disable();
2212 	__migrate_hrtimers(scpu, true);
2213 	local_bh_enable();
2214 	return 0;
2215 }
2216 
hrtimer_quiesce_cpu(void * cpup)2217 void hrtimer_quiesce_cpu(void *cpup)
2218 {
2219 	__migrate_hrtimers(*(int *)cpup, false);
2220 }
2221 
2222 #else
2223 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2224 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2225 				struct hrtimer_clock_base *new_base)
2226 {
2227 	struct hrtimer *timer;
2228 	struct timerqueue_node *node;
2229 
2230 	while ((node = timerqueue_getnext(&old_base->active))) {
2231 		timer = container_of(node, struct hrtimer, node);
2232 		BUG_ON(hrtimer_callback_running(timer));
2233 		debug_deactivate(timer);
2234 
2235 		/*
2236 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2237 		 * timer could be seen as !active and just vanish away
2238 		 * under us on another CPU
2239 		 */
2240 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2241 		timer->base = new_base;
2242 		/*
2243 		 * Enqueue the timers on the new cpu. This does not
2244 		 * reprogram the event device in case the timer
2245 		 * expires before the earliest on this CPU, but we run
2246 		 * hrtimer_interrupt after we migrated everything to
2247 		 * sort out already expired timers and reprogram the
2248 		 * event device.
2249 		 */
2250 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2251 	}
2252 }
2253 
hrtimers_dead_cpu(unsigned int scpu)2254 int hrtimers_dead_cpu(unsigned int scpu)
2255 {
2256 	struct hrtimer_cpu_base *old_base, *new_base;
2257 	int i;
2258 
2259 	BUG_ON(cpu_online(scpu));
2260 	tick_cancel_sched_timer(scpu);
2261 
2262 	/*
2263 	 * this BH disable ensures that raise_softirq_irqoff() does
2264 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2265 	 * holding the cpu_base lock
2266 	 */
2267 	local_bh_disable();
2268 	local_irq_disable();
2269 	old_base = &per_cpu(hrtimer_bases, scpu);
2270 	new_base = this_cpu_ptr(&hrtimer_bases);
2271 	/*
2272 	 * The caller is globally serialized and nobody else
2273 	 * takes two locks at once, deadlock is not possible.
2274 	 */
2275 	raw_spin_lock(&new_base->lock);
2276 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2277 
2278 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2279 		migrate_hrtimer_list(&old_base->clock_base[i],
2280 				     &new_base->clock_base[i]);
2281 	}
2282 
2283 	/*
2284 	 * The migration might have changed the first expiring softirq
2285 	 * timer on this CPU. Update it.
2286 	 */
2287 	hrtimer_update_softirq_timer(new_base, false);
2288 
2289 	raw_spin_unlock(&old_base->lock);
2290 	raw_spin_unlock(&new_base->lock);
2291 
2292 	/* Check, if we got expired work to do */
2293 	__hrtimer_peek_ahead_timers();
2294 	local_irq_enable();
2295 	local_bh_enable();
2296 	return 0;
2297 }
2298 
2299 #endif /* CONFIG_CPU_ISOLATION_OPT */
2300 
2301 #endif /* CONFIG_HOTPLUG_CPU */
2302 
hrtimers_init(void)2303 void __init hrtimers_init(void)
2304 {
2305 	hrtimers_prepare_cpu(smp_processor_id());
2306 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2307 }
2308 
2309 /**
2310  * schedule_hrtimeout_range_clock - sleep until timeout
2311  * @expires:	timeout value (ktime_t)
2312  * @delta:	slack in expires timeout (ktime_t)
2313  * @mode:	timer mode
2314  * @clock_id:	timer clock to be used
2315  */
2316 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2317 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2318 			       const enum hrtimer_mode mode, clockid_t clock_id)
2319 {
2320 	struct hrtimer_sleeper t;
2321 
2322 	/*
2323 	 * Optimize when a zero timeout value is given. It does not
2324 	 * matter whether this is an absolute or a relative time.
2325 	 */
2326 	if (expires && *expires == 0) {
2327 		__set_current_state(TASK_RUNNING);
2328 		return 0;
2329 	}
2330 
2331 	/*
2332 	 * A NULL parameter means "infinite"
2333 	 */
2334 	if (!expires) {
2335 		schedule();
2336 		return -EINTR;
2337 	}
2338 
2339 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2340 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2341 	hrtimer_sleeper_start_expires(&t, mode);
2342 
2343 	if (likely(t.task))
2344 		schedule();
2345 
2346 	hrtimer_cancel(&t.timer);
2347 	destroy_hrtimer_on_stack(&t.timer);
2348 
2349 	__set_current_state(TASK_RUNNING);
2350 
2351 	return !t.task ? 0 : -EINTR;
2352 }
2353 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2354 
2355 /**
2356  * schedule_hrtimeout_range - sleep until timeout
2357  * @expires:	timeout value (ktime_t)
2358  * @delta:	slack in expires timeout (ktime_t)
2359  * @mode:	timer mode
2360  *
2361  * Make the current task sleep until the given expiry time has
2362  * elapsed. The routine will return immediately unless
2363  * the current task state has been set (see set_current_state()).
2364  *
2365  * The @delta argument gives the kernel the freedom to schedule the
2366  * actual wakeup to a time that is both power and performance friendly.
2367  * The kernel give the normal best effort behavior for "@expires+@delta",
2368  * but may decide to fire the timer earlier, but no earlier than @expires.
2369  *
2370  * You can set the task state as follows -
2371  *
2372  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2373  * pass before the routine returns unless the current task is explicitly
2374  * woken up, (e.g. by wake_up_process()).
2375  *
2376  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2377  * delivered to the current task or the current task is explicitly woken
2378  * up.
2379  *
2380  * The current task state is guaranteed to be TASK_RUNNING when this
2381  * routine returns.
2382  *
2383  * Returns 0 when the timer has expired. If the task was woken before the
2384  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2385  * by an explicit wakeup, it returns -EINTR.
2386  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2387 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2388 				     const enum hrtimer_mode mode)
2389 {
2390 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2391 					      CLOCK_MONOTONIC);
2392 }
2393 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2394 
2395 /**
2396  * schedule_hrtimeout - sleep until timeout
2397  * @expires:	timeout value (ktime_t)
2398  * @mode:	timer mode
2399  *
2400  * Make the current task sleep until the given expiry time has
2401  * elapsed. The routine will return immediately unless
2402  * the current task state has been set (see set_current_state()).
2403  *
2404  * You can set the task state as follows -
2405  *
2406  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2407  * pass before the routine returns unless the current task is explicitly
2408  * woken up, (e.g. by wake_up_process()).
2409  *
2410  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2411  * delivered to the current task or the current task is explicitly woken
2412  * up.
2413  *
2414  * The current task state is guaranteed to be TASK_RUNNING when this
2415  * routine returns.
2416  *
2417  * Returns 0 when the timer has expired. If the task was woken before the
2418  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2419  * by an explicit wakeup, it returns -EINTR.
2420  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2421 int __sched schedule_hrtimeout(ktime_t *expires,
2422 			       const enum hrtimer_mode mode)
2423 {
2424 	return schedule_hrtimeout_range(expires, 0, mode);
2425 }
2426 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2427