1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
PageHugeFreed(struct page * head)82 static inline bool PageHugeFreed(struct page *head)
83 {
84 return page_private(head + 4) == -1UL;
85 }
86
SetPageHugeFreed(struct page * head)87 static inline void SetPageHugeFreed(struct page *head)
88 {
89 set_page_private(head + 4, -1UL);
90 }
91
ClearPageHugeFreed(struct page * head)92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94 set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
unlock_or_release_subpool(struct hugepage_subpool * spool)100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102 bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104 spin_unlock(&spool->lock);
105
106 /* If no pages are used, and no other handles to the subpool
107 * remain, give up any reservations based on minimum size and
108 * free the subpool */
109 if (free) {
110 if (spool->min_hpages != -1)
111 hugetlb_acct_memory(spool->hstate,
112 -spool->min_hpages);
113 kfree(spool);
114 }
115 }
116
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 long min_hpages)
119 {
120 struct hugepage_subpool *spool;
121
122 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 if (!spool)
124 return NULL;
125
126 spin_lock_init(&spool->lock);
127 spool->count = 1;
128 spool->max_hpages = max_hpages;
129 spool->hstate = h;
130 spool->min_hpages = min_hpages;
131
132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 kfree(spool);
134 return NULL;
135 }
136 spool->rsv_hpages = min_hpages;
137
138 return spool;
139 }
140
hugepage_put_subpool(struct hugepage_subpool * spool)141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143 spin_lock(&spool->lock);
144 BUG_ON(!spool->count);
145 spool->count--;
146 unlock_or_release_subpool(spool);
147 }
148
149 /*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
152 * request. Otherwise, return the number of pages by which the
153 * global pools must be adjusted (upward). The returned value may
154 * only be different than the passed value (delta) in the case where
155 * a subpool minimum size must be maintained.
156 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 long delta)
159 {
160 long ret = delta;
161
162 if (!spool)
163 return ret;
164
165 spin_lock(&spool->lock);
166
167 if (spool->max_hpages != -1) { /* maximum size accounting */
168 if ((spool->used_hpages + delta) <= spool->max_hpages)
169 spool->used_hpages += delta;
170 else {
171 ret = -ENOMEM;
172 goto unlock_ret;
173 }
174 }
175
176 /* minimum size accounting */
177 if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 if (delta > spool->rsv_hpages) {
179 /*
180 * Asking for more reserves than those already taken on
181 * behalf of subpool. Return difference.
182 */
183 ret = delta - spool->rsv_hpages;
184 spool->rsv_hpages = 0;
185 } else {
186 ret = 0; /* reserves already accounted for */
187 spool->rsv_hpages -= delta;
188 }
189 }
190
191 unlock_ret:
192 spin_unlock(&spool->lock);
193 return ret;
194 }
195
196 /*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 long delta)
204 {
205 long ret = delta;
206
207 if (!spool)
208 return delta;
209
210 spin_lock(&spool->lock);
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
231 unlock_or_release_subpool(spool);
232
233 return ret;
234 }
235
subpool_inode(struct inode * inode)236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
subpool_vma(struct vm_area_struct * vma)241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264 }
265
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309 #endif
310 }
311
put_uncharge_info(struct file_region * rg)312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317 #endif
318 }
319
has_same_uncharge_info(struct file_region * rg,struct file_region * org)320 static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328 #else
329 return true;
330 #endif
331 }
332
coalesce_file_region(struct resv_map * resv,struct file_region * rg)333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
343 put_uncharge_info(rg);
344 kfree(rg);
345
346 rg = prg;
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
355 put_uncharge_info(rg);
356 kfree(rg);
357 }
358 }
359
360 /*
361 * Must be called with resv->lock held.
362 *
363 * Calling this with regions_needed != NULL will count the number of pages
364 * to be added but will not modify the linked list. And regions_needed will
365 * indicate the number of file_regions needed in the cache to carry out to add
366 * the regions for this range.
367 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369 struct hugetlb_cgroup *h_cg,
370 struct hstate *h, long *regions_needed)
371 {
372 long add = 0;
373 struct list_head *head = &resv->regions;
374 long last_accounted_offset = f;
375 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377 if (regions_needed)
378 *regions_needed = 0;
379
380 /* In this loop, we essentially handle an entry for the range
381 * [last_accounted_offset, rg->from), at every iteration, with some
382 * bounds checking.
383 */
384 list_for_each_entry_safe(rg, trg, head, link) {
385 /* Skip irrelevant regions that start before our range. */
386 if (rg->from < f) {
387 /* If this region ends after the last accounted offset,
388 * then we need to update last_accounted_offset.
389 */
390 if (rg->to > last_accounted_offset)
391 last_accounted_offset = rg->to;
392 continue;
393 }
394
395 /* When we find a region that starts beyond our range, we've
396 * finished.
397 */
398 if (rg->from > t)
399 break;
400
401 /* Add an entry for last_accounted_offset -> rg->from, and
402 * update last_accounted_offset.
403 */
404 if (rg->from > last_accounted_offset) {
405 add += rg->from - last_accounted_offset;
406 if (!regions_needed) {
407 nrg = get_file_region_entry_from_cache(
408 resv, last_accounted_offset, rg->from);
409 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410 resv, nrg);
411 list_add(&nrg->link, rg->link.prev);
412 coalesce_file_region(resv, nrg);
413 } else
414 *regions_needed += 1;
415 }
416
417 last_accounted_offset = rg->to;
418 }
419
420 /* Handle the case where our range extends beyond
421 * last_accounted_offset.
422 */
423 if (last_accounted_offset < t) {
424 add += t - last_accounted_offset;
425 if (!regions_needed) {
426 nrg = get_file_region_entry_from_cache(
427 resv, last_accounted_offset, t);
428 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429 list_add(&nrg->link, rg->link.prev);
430 coalesce_file_region(resv, nrg);
431 } else
432 *regions_needed += 1;
433 }
434
435 VM_BUG_ON(add < 0);
436 return add;
437 }
438
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)441 static int allocate_file_region_entries(struct resv_map *resv,
442 int regions_needed)
443 __must_hold(&resv->lock)
444 {
445 struct list_head allocated_regions;
446 int to_allocate = 0, i = 0;
447 struct file_region *trg = NULL, *rg = NULL;
448
449 VM_BUG_ON(regions_needed < 0);
450
451 INIT_LIST_HEAD(&allocated_regions);
452
453 /*
454 * Check for sufficient descriptors in the cache to accommodate
455 * the number of in progress add operations plus regions_needed.
456 *
457 * This is a while loop because when we drop the lock, some other call
458 * to region_add or region_del may have consumed some region_entries,
459 * so we keep looping here until we finally have enough entries for
460 * (adds_in_progress + regions_needed).
461 */
462 while (resv->region_cache_count <
463 (resv->adds_in_progress + regions_needed)) {
464 to_allocate = resv->adds_in_progress + regions_needed -
465 resv->region_cache_count;
466
467 /* At this point, we should have enough entries in the cache
468 * for all the existings adds_in_progress. We should only be
469 * needing to allocate for regions_needed.
470 */
471 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473 spin_unlock(&resv->lock);
474 for (i = 0; i < to_allocate; i++) {
475 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476 if (!trg)
477 goto out_of_memory;
478 list_add(&trg->link, &allocated_regions);
479 }
480
481 spin_lock(&resv->lock);
482
483 list_splice(&allocated_regions, &resv->region_cache);
484 resv->region_cache_count += to_allocate;
485 }
486
487 return 0;
488
489 out_of_memory:
490 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491 list_del(&rg->link);
492 kfree(rg);
493 }
494 return -ENOMEM;
495 }
496
497 /*
498 * Add the huge page range represented by [f, t) to the reserve
499 * map. Regions will be taken from the cache to fill in this range.
500 * Sufficient regions should exist in the cache due to the previous
501 * call to region_chg with the same range, but in some cases the cache will not
502 * have sufficient entries due to races with other code doing region_add or
503 * region_del. The extra needed entries will be allocated.
504 *
505 * regions_needed is the out value provided by a previous call to region_chg.
506 *
507 * Return the number of new huge pages added to the map. This number is greater
508 * than or equal to zero. If file_region entries needed to be allocated for
509 * this operation and we were not able to allocate, it returns -ENOMEM.
510 * region_add of regions of length 1 never allocate file_regions and cannot
511 * fail; region_chg will always allocate at least 1 entry and a region_add for
512 * 1 page will only require at most 1 entry.
513 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)514 static long region_add(struct resv_map *resv, long f, long t,
515 long in_regions_needed, struct hstate *h,
516 struct hugetlb_cgroup *h_cg)
517 {
518 long add = 0, actual_regions_needed = 0;
519
520 spin_lock(&resv->lock);
521 retry:
522
523 /* Count how many regions are actually needed to execute this add. */
524 add_reservation_in_range(resv, f, t, NULL, NULL,
525 &actual_regions_needed);
526
527 /*
528 * Check for sufficient descriptors in the cache to accommodate
529 * this add operation. Note that actual_regions_needed may be greater
530 * than in_regions_needed, as the resv_map may have been modified since
531 * the region_chg call. In this case, we need to make sure that we
532 * allocate extra entries, such that we have enough for all the
533 * existing adds_in_progress, plus the excess needed for this
534 * operation.
535 */
536 if (actual_regions_needed > in_regions_needed &&
537 resv->region_cache_count <
538 resv->adds_in_progress +
539 (actual_regions_needed - in_regions_needed)) {
540 /* region_add operation of range 1 should never need to
541 * allocate file_region entries.
542 */
543 VM_BUG_ON(t - f <= 1);
544
545 if (allocate_file_region_entries(
546 resv, actual_regions_needed - in_regions_needed)) {
547 return -ENOMEM;
548 }
549
550 goto retry;
551 }
552
553 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555 resv->adds_in_progress -= in_regions_needed;
556
557 spin_unlock(&resv->lock);
558 VM_BUG_ON(add < 0);
559 return add;
560 }
561
562 /*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
581 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)582 static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
584 {
585 long chg = 0;
586
587 spin_lock(&resv->lock);
588
589 /* Count how many hugepages in this range are NOT represented. */
590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 out_regions_needed);
592
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
595
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
598
599 resv->adds_in_progress += *out_regions_needed;
600
601 spin_unlock(&resv->lock);
602 return chg;
603 }
604
605 /*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)618 static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
620 {
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
623 resv->adds_in_progress -= regions_needed;
624 spin_unlock(&resv->lock);
625 }
626
627 /*
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
640 */
region_del(struct resv_map * resv,long f,long t)641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 struct list_head *head = &resv->regions;
644 struct file_region *rg, *trg;
645 struct file_region *nrg = NULL;
646 long del = 0;
647
648 retry:
649 spin_lock(&resv->lock);
650 list_for_each_entry_safe(rg, trg, head, link) {
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 continue;
660
661 if (rg->from >= t)
662 break;
663
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
677
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
687 hugetlb_cgroup_uncharge_file_region(
688 resv, rg, t - f, false);
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
703 break;
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
708 hugetlb_cgroup_uncharge_file_region(resv, rg,
709 rg->to - rg->from, true);
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
716 hugetlb_cgroup_uncharge_file_region(resv, rg,
717 t - rg->from, false);
718
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
722 hugetlb_cgroup_uncharge_file_region(resv, rg,
723 rg->to - f, false);
724
725 del += rg->to - f;
726 rg->to = f;
727 }
728 }
729
730 spin_unlock(&resv->lock);
731 kfree(nrg);
732 return del;
733 }
734
735 /*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
hugetlb_fix_reserve_counts(struct inode * inode)744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
748 bool reserved = false;
749
750 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 if (rsv_adjust > 0) {
752 struct hstate *h = hstate_inode(inode);
753
754 if (!hugetlb_acct_memory(h, 1))
755 reserved = true;
756 } else if (!rsv_adjust) {
757 reserved = true;
758 }
759
760 if (!reserved)
761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763
764 /*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
region_count(struct resv_map * resv,long f,long t)768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770 struct list_head *head = &resv->regions;
771 struct file_region *rg;
772 long chg = 0;
773
774 spin_lock(&resv->lock);
775 /* Locate each segment we overlap with, and count that overlap. */
776 list_for_each_entry(rg, head, link) {
777 long seg_from;
778 long seg_to;
779
780 if (rg->to <= f)
781 continue;
782 if (rg->from >= t)
783 break;
784
785 seg_from = max(rg->from, f);
786 seg_to = min(rg->to, t);
787
788 chg += seg_to - seg_from;
789 }
790 spin_unlock(&resv->lock);
791
792 return chg;
793 }
794
795 /*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800 struct vm_area_struct *vma, unsigned long address)
801 {
802 return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 (vma->vm_pgoff >> huge_page_order(h));
804 }
805
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 unsigned long address)
808 {
809 return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813 /*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
vma_kernel_pagesize(struct vm_area_struct * vma)817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819 if (vma->vm_ops && vma->vm_ops->pagesize)
820 return vma->vm_ops->pagesize(vma);
821 return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825 /*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
830 */
vma_mmu_pagesize(struct vm_area_struct * vma)831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833 return vma_kernel_pagesize(vma);
834 }
835
836 /*
837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841 #define HPAGE_RESV_OWNER (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845 /*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping. A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated. A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
863 */
get_vma_private_data(struct vm_area_struct * vma)864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866 return (unsigned long)vma->vm_private_data;
867 }
868
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)869 static void set_vma_private_data(struct vm_area_struct *vma,
870 unsigned long value)
871 {
872 vma->vm_private_data = (void *)value;
873 }
874
875 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 struct hugetlb_cgroup *h_cg,
878 struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881 if (!h_cg || !h) {
882 resv_map->reservation_counter = NULL;
883 resv_map->pages_per_hpage = 0;
884 resv_map->css = NULL;
885 } else {
886 resv_map->reservation_counter =
887 &h_cg->rsvd_hugepage[hstate_index(h)];
888 resv_map->pages_per_hpage = pages_per_huge_page(h);
889 resv_map->css = &h_cg->css;
890 }
891 #endif
892 }
893
resv_map_alloc(void)894 struct resv_map *resv_map_alloc(void)
895 {
896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899 if (!resv_map || !rg) {
900 kfree(resv_map);
901 kfree(rg);
902 return NULL;
903 }
904
905 kref_init(&resv_map->refs);
906 spin_lock_init(&resv_map->lock);
907 INIT_LIST_HEAD(&resv_map->regions);
908
909 resv_map->adds_in_progress = 0;
910 /*
911 * Initialize these to 0. On shared mappings, 0's here indicate these
912 * fields don't do cgroup accounting. On private mappings, these will be
913 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 * reservations are to be un-charged from here.
915 */
916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918 INIT_LIST_HEAD(&resv_map->region_cache);
919 list_add(&rg->link, &resv_map->region_cache);
920 resv_map->region_cache_count = 1;
921
922 return resv_map;
923 }
924
resv_map_release(struct kref * ref)925 void resv_map_release(struct kref *ref)
926 {
927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 struct list_head *head = &resv_map->region_cache;
929 struct file_region *rg, *trg;
930
931 /* Clear out any active regions before we release the map. */
932 region_del(resv_map, 0, LONG_MAX);
933
934 /* ... and any entries left in the cache */
935 list_for_each_entry_safe(rg, trg, head, link) {
936 list_del(&rg->link);
937 kfree(rg);
938 }
939
940 VM_BUG_ON(resv_map->adds_in_progress);
941
942 kfree(resv_map);
943 }
944
inode_resv_map(struct inode * inode)945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947 /*
948 * At inode evict time, i_mapping may not point to the original
949 * address space within the inode. This original address space
950 * contains the pointer to the resv_map. So, always use the
951 * address space embedded within the inode.
952 * The VERY common case is inode->mapping == &inode->i_data but,
953 * this may not be true for device special inodes.
954 */
955 return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957
vma_resv_map(struct vm_area_struct * vma)958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 if (vma->vm_flags & VM_MAYSHARE) {
962 struct address_space *mapping = vma->vm_file->f_mapping;
963 struct inode *inode = mapping->host;
964
965 return inode_resv_map(inode);
966
967 } else {
968 return (struct resv_map *)(get_vma_private_data(vma) &
969 ~HPAGE_RESV_MASK);
970 }
971 }
972
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978 set_vma_private_data(vma, (get_vma_private_data(vma) &
979 HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994 return (get_vma_private_data(vma) & flag) != 0;
995 }
996
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 if (!(vma->vm_flags & VM_MAYSHARE))
1002 vma->vm_private_data = (void *)0;
1003 }
1004
1005 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008 if (vma->vm_flags & VM_NORESERVE) {
1009 /*
1010 * This address is already reserved by other process(chg == 0),
1011 * so, we should decrement reserved count. Without decrementing,
1012 * reserve count remains after releasing inode, because this
1013 * allocated page will go into page cache and is regarded as
1014 * coming from reserved pool in releasing step. Currently, we
1015 * don't have any other solution to deal with this situation
1016 * properly, so add work-around here.
1017 */
1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 return true;
1020 else
1021 return false;
1022 }
1023
1024 /* Shared mappings always use reserves */
1025 if (vma->vm_flags & VM_MAYSHARE) {
1026 /*
1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1028 * be a region map for all pages. The only situation where
1029 * there is no region map is if a hole was punched via
1030 * fallocate. In this case, there really are no reserves to
1031 * use. This situation is indicated if chg != 0.
1032 */
1033 if (chg)
1034 return false;
1035 else
1036 return true;
1037 }
1038
1039 /*
1040 * Only the process that called mmap() has reserves for
1041 * private mappings.
1042 */
1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 /*
1045 * Like the shared case above, a hole punch or truncate
1046 * could have been performed on the private mapping.
1047 * Examine the value of chg to determine if reserves
1048 * actually exist or were previously consumed.
1049 * Very Subtle - The value of chg comes from a previous
1050 * call to vma_needs_reserves(). The reserve map for
1051 * private mappings has different (opposite) semantics
1052 * than that of shared mappings. vma_needs_reserves()
1053 * has already taken this difference in semantics into
1054 * account. Therefore, the meaning of chg is the same
1055 * as in the shared case above. Code could easily be
1056 * combined, but keeping it separate draws attention to
1057 * subtle differences.
1058 */
1059 if (chg)
1060 return false;
1061 else
1062 return true;
1063 }
1064
1065 return false;
1066 }
1067
enqueue_huge_page(struct hstate * h,struct page * page)1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070 int nid = page_to_nid(page);
1071 list_move(&page->lru, &h->hugepage_freelists[nid]);
1072 h->free_huge_pages++;
1073 h->free_huge_pages_node[nid]++;
1074 SetPageHugeFreed(page);
1075 }
1076
dequeue_huge_page_node_exact(struct hstate * h,int nid)1077 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078 {
1079 struct page *page;
1080 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081
1082 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083 if (nocma && is_migrate_cma_page(page))
1084 continue;
1085
1086 if (PageHWPoison(page))
1087 continue;
1088
1089 list_move(&page->lru, &h->hugepage_activelist);
1090 set_page_refcounted(page);
1091 ClearPageHugeFreed(page);
1092 h->free_huge_pages--;
1093 h->free_huge_pages_node[nid]--;
1094 return page;
1095 }
1096
1097 return NULL;
1098 }
1099
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1100 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101 nodemask_t *nmask)
1102 {
1103 unsigned int cpuset_mems_cookie;
1104 struct zonelist *zonelist;
1105 struct zone *zone;
1106 struct zoneref *z;
1107 int node = NUMA_NO_NODE;
1108
1109 zonelist = node_zonelist(nid, gfp_mask);
1110
1111 retry_cpuset:
1112 cpuset_mems_cookie = read_mems_allowed_begin();
1113 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114 struct page *page;
1115
1116 if (!cpuset_zone_allowed(zone, gfp_mask))
1117 continue;
1118 /*
1119 * no need to ask again on the same node. Pool is node rather than
1120 * zone aware
1121 */
1122 if (zone_to_nid(zone) == node)
1123 continue;
1124 node = zone_to_nid(zone);
1125
1126 page = dequeue_huge_page_node_exact(h, node);
1127 if (page)
1128 return page;
1129 }
1130 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131 goto retry_cpuset;
1132
1133 return NULL;
1134 }
1135
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1136 static struct page *dequeue_huge_page_vma(struct hstate *h,
1137 struct vm_area_struct *vma,
1138 unsigned long address, int avoid_reserve,
1139 long chg)
1140 {
1141 struct page *page;
1142 struct mempolicy *mpol;
1143 gfp_t gfp_mask;
1144 nodemask_t *nodemask;
1145 int nid;
1146
1147 /*
1148 * A child process with MAP_PRIVATE mappings created by their parent
1149 * have no page reserves. This check ensures that reservations are
1150 * not "stolen". The child may still get SIGKILLed
1151 */
1152 if (!vma_has_reserves(vma, chg) &&
1153 h->free_huge_pages - h->resv_huge_pages == 0)
1154 goto err;
1155
1156 /* If reserves cannot be used, ensure enough pages are in the pool */
1157 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158 goto err;
1159
1160 gfp_mask = htlb_alloc_mask(h);
1161 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164 SetPagePrivate(page);
1165 h->resv_huge_pages--;
1166 }
1167
1168 mpol_cond_put(mpol);
1169 return page;
1170
1171 err:
1172 return NULL;
1173 }
1174
1175 /*
1176 * common helper functions for hstate_next_node_to_{alloc|free}.
1177 * We may have allocated or freed a huge page based on a different
1178 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179 * be outside of *nodes_allowed. Ensure that we use an allowed
1180 * node for alloc or free.
1181 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1182 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183 {
1184 nid = next_node_in(nid, *nodes_allowed);
1185 VM_BUG_ON(nid >= MAX_NUMNODES);
1186
1187 return nid;
1188 }
1189
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1190 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191 {
1192 if (!node_isset(nid, *nodes_allowed))
1193 nid = next_node_allowed(nid, nodes_allowed);
1194 return nid;
1195 }
1196
1197 /*
1198 * returns the previously saved node ["this node"] from which to
1199 * allocate a persistent huge page for the pool and advance the
1200 * next node from which to allocate, handling wrap at end of node
1201 * mask.
1202 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1203 static int hstate_next_node_to_alloc(struct hstate *h,
1204 nodemask_t *nodes_allowed)
1205 {
1206 int nid;
1207
1208 VM_BUG_ON(!nodes_allowed);
1209
1210 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212
1213 return nid;
1214 }
1215
1216 /*
1217 * helper for free_pool_huge_page() - return the previously saved
1218 * node ["this node"] from which to free a huge page. Advance the
1219 * next node id whether or not we find a free huge page to free so
1220 * that the next attempt to free addresses the next node.
1221 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1222 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223 {
1224 int nid;
1225
1226 VM_BUG_ON(!nodes_allowed);
1227
1228 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230
1231 return nid;
1232 }
1233
1234 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1235 for (nr_nodes = nodes_weight(*mask); \
1236 nr_nodes > 0 && \
1237 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1238 nr_nodes--)
1239
1240 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1241 for (nr_nodes = nodes_weight(*mask); \
1242 nr_nodes > 0 && \
1243 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1244 nr_nodes--)
1245
1246 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1247 static void destroy_compound_gigantic_page(struct page *page,
1248 unsigned int order)
1249 {
1250 int i;
1251 int nr_pages = 1 << order;
1252 struct page *p = page + 1;
1253
1254 atomic_set(compound_mapcount_ptr(page), 0);
1255 atomic_set(compound_pincount_ptr(page), 0);
1256
1257 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1258 clear_compound_head(p);
1259 set_page_refcounted(p);
1260 }
1261
1262 set_compound_order(page, 0);
1263 page[1].compound_nr = 0;
1264 __ClearPageHead(page);
1265 }
1266
free_gigantic_page(struct page * page,unsigned int order)1267 static void free_gigantic_page(struct page *page, unsigned int order)
1268 {
1269 /*
1270 * If the page isn't allocated using the cma allocator,
1271 * cma_release() returns false.
1272 */
1273 #ifdef CONFIG_CMA
1274 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1275 return;
1276 #endif
1277
1278 free_contig_range(page_to_pfn(page), 1 << order);
1279 }
1280
1281 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1282 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1283 int nid, nodemask_t *nodemask)
1284 {
1285 unsigned long nr_pages = 1UL << huge_page_order(h);
1286 if (nid == NUMA_NO_NODE)
1287 nid = numa_mem_id();
1288
1289 #ifdef CONFIG_CMA
1290 {
1291 struct page *page;
1292 int node;
1293
1294 if (hugetlb_cma[nid]) {
1295 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1296 huge_page_order(h), true);
1297 if (page)
1298 return page;
1299 }
1300
1301 if (!(gfp_mask & __GFP_THISNODE)) {
1302 for_each_node_mask(node, *nodemask) {
1303 if (node == nid || !hugetlb_cma[node])
1304 continue;
1305
1306 page = cma_alloc(hugetlb_cma[node], nr_pages,
1307 huge_page_order(h), true);
1308 if (page)
1309 return page;
1310 }
1311 }
1312 }
1313 #endif
1314
1315 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1316 }
1317
1318 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1319 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1320 int nid, nodemask_t *nodemask)
1321 {
1322 return NULL;
1323 }
1324 #endif /* CONFIG_CONTIG_ALLOC */
1325
1326 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1327 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1328 int nid, nodemask_t *nodemask)
1329 {
1330 return NULL;
1331 }
free_gigantic_page(struct page * page,unsigned int order)1332 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1333 static inline void destroy_compound_gigantic_page(struct page *page,
1334 unsigned int order) { }
1335 #endif
1336
update_and_free_page(struct hstate * h,struct page * page)1337 static void update_and_free_page(struct hstate *h, struct page *page)
1338 {
1339 int i;
1340 struct page *subpage = page;
1341
1342 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1343 return;
1344
1345 h->nr_huge_pages--;
1346 h->nr_huge_pages_node[page_to_nid(page)]--;
1347 for (i = 0; i < pages_per_huge_page(h);
1348 i++, subpage = mem_map_next(subpage, page, i)) {
1349 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1350 1 << PG_referenced | 1 << PG_dirty |
1351 1 << PG_active | 1 << PG_private |
1352 1 << PG_writeback);
1353 }
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356 /*
1357 * Very subtle
1358 *
1359 * For non-gigantic pages set the destructor to the normal compound
1360 * page dtor. This is needed in case someone takes an additional
1361 * temporary ref to the page, and freeing is delayed until they drop
1362 * their reference.
1363 *
1364 * For gigantic pages set the destructor to the null dtor. This
1365 * destructor will never be called. Before freeing the gigantic
1366 * page destroy_compound_gigantic_page will turn the compound page
1367 * into a simple group of pages. After this the destructor does not
1368 * apply.
1369 *
1370 * This handles the case where more than one ref is held when and
1371 * after update_and_free_page is called.
1372 */
1373 set_page_refcounted(page);
1374 if (hstate_is_gigantic(h)) {
1375 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1376 /*
1377 * Temporarily drop the hugetlb_lock, because
1378 * we might block in free_gigantic_page().
1379 */
1380 spin_unlock(&hugetlb_lock);
1381 destroy_compound_gigantic_page(page, huge_page_order(h));
1382 free_gigantic_page(page, huge_page_order(h));
1383 spin_lock(&hugetlb_lock);
1384 } else {
1385 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1386 __free_pages(page, huge_page_order(h));
1387 }
1388 }
1389
size_to_hstate(unsigned long size)1390 struct hstate *size_to_hstate(unsigned long size)
1391 {
1392 struct hstate *h;
1393
1394 for_each_hstate(h) {
1395 if (huge_page_size(h) == size)
1396 return h;
1397 }
1398 return NULL;
1399 }
1400
1401 /*
1402 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1403 * to hstate->hugepage_activelist.)
1404 *
1405 * This function can be called for tail pages, but never returns true for them.
1406 */
page_huge_active(struct page * page)1407 bool page_huge_active(struct page *page)
1408 {
1409 return PageHeadHuge(page) && PagePrivate(&page[1]);
1410 }
1411
1412 /* never called for tail page */
set_page_huge_active(struct page * page)1413 void set_page_huge_active(struct page *page)
1414 {
1415 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1416 SetPagePrivate(&page[1]);
1417 }
1418
clear_page_huge_active(struct page * page)1419 static void clear_page_huge_active(struct page *page)
1420 {
1421 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1422 ClearPagePrivate(&page[1]);
1423 }
1424
1425 /*
1426 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1427 * code
1428 */
PageHugeTemporary(struct page * page)1429 static inline bool PageHugeTemporary(struct page *page)
1430 {
1431 if (!PageHuge(page))
1432 return false;
1433
1434 return (unsigned long)page[2].mapping == -1U;
1435 }
1436
SetPageHugeTemporary(struct page * page)1437 static inline void SetPageHugeTemporary(struct page *page)
1438 {
1439 page[2].mapping = (void *)-1U;
1440 }
1441
ClearPageHugeTemporary(struct page * page)1442 static inline void ClearPageHugeTemporary(struct page *page)
1443 {
1444 page[2].mapping = NULL;
1445 }
1446
__free_huge_page(struct page * page)1447 static void __free_huge_page(struct page *page)
1448 {
1449 /*
1450 * Can't pass hstate in here because it is called from the
1451 * compound page destructor.
1452 */
1453 struct hstate *h = page_hstate(page);
1454 int nid = page_to_nid(page);
1455 struct hugepage_subpool *spool =
1456 (struct hugepage_subpool *)page_private(page);
1457 bool restore_reserve;
1458
1459 VM_BUG_ON_PAGE(page_count(page), page);
1460 VM_BUG_ON_PAGE(page_mapcount(page), page);
1461
1462 set_page_private(page, 0);
1463 page->mapping = NULL;
1464 restore_reserve = PagePrivate(page);
1465 ClearPagePrivate(page);
1466
1467 /*
1468 * If PagePrivate() was set on page, page allocation consumed a
1469 * reservation. If the page was associated with a subpool, there
1470 * would have been a page reserved in the subpool before allocation
1471 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1472 * reservtion, do not call hugepage_subpool_put_pages() as this will
1473 * remove the reserved page from the subpool.
1474 */
1475 if (!restore_reserve) {
1476 /*
1477 * A return code of zero implies that the subpool will be
1478 * under its minimum size if the reservation is not restored
1479 * after page is free. Therefore, force restore_reserve
1480 * operation.
1481 */
1482 if (hugepage_subpool_put_pages(spool, 1) == 0)
1483 restore_reserve = true;
1484 }
1485
1486 spin_lock(&hugetlb_lock);
1487 clear_page_huge_active(page);
1488 hugetlb_cgroup_uncharge_page(hstate_index(h),
1489 pages_per_huge_page(h), page);
1490 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1491 pages_per_huge_page(h), page);
1492 if (restore_reserve)
1493 h->resv_huge_pages++;
1494
1495 if (PageHugeTemporary(page)) {
1496 list_del(&page->lru);
1497 ClearPageHugeTemporary(page);
1498 update_and_free_page(h, page);
1499 } else if (h->surplus_huge_pages_node[nid]) {
1500 /* remove the page from active list */
1501 list_del(&page->lru);
1502 update_and_free_page(h, page);
1503 h->surplus_huge_pages--;
1504 h->surplus_huge_pages_node[nid]--;
1505 } else {
1506 arch_clear_hugepage_flags(page);
1507 enqueue_huge_page(h, page);
1508 }
1509 spin_unlock(&hugetlb_lock);
1510 }
1511
1512 /*
1513 * As free_huge_page() can be called from a non-task context, we have
1514 * to defer the actual freeing in a workqueue to prevent potential
1515 * hugetlb_lock deadlock.
1516 *
1517 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1518 * be freed and frees them one-by-one. As the page->mapping pointer is
1519 * going to be cleared in __free_huge_page() anyway, it is reused as the
1520 * llist_node structure of a lockless linked list of huge pages to be freed.
1521 */
1522 static LLIST_HEAD(hpage_freelist);
1523
free_hpage_workfn(struct work_struct * work)1524 static void free_hpage_workfn(struct work_struct *work)
1525 {
1526 struct llist_node *node;
1527 struct page *page;
1528
1529 node = llist_del_all(&hpage_freelist);
1530
1531 while (node) {
1532 page = container_of((struct address_space **)node,
1533 struct page, mapping);
1534 node = node->next;
1535 __free_huge_page(page);
1536 }
1537 }
1538 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1539
free_huge_page(struct page * page)1540 void free_huge_page(struct page *page)
1541 {
1542 /*
1543 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1544 */
1545 if (!in_task()) {
1546 /*
1547 * Only call schedule_work() if hpage_freelist is previously
1548 * empty. Otherwise, schedule_work() had been called but the
1549 * workfn hasn't retrieved the list yet.
1550 */
1551 if (llist_add((struct llist_node *)&page->mapping,
1552 &hpage_freelist))
1553 schedule_work(&free_hpage_work);
1554 return;
1555 }
1556
1557 __free_huge_page(page);
1558 }
1559
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1560 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1561 {
1562 INIT_LIST_HEAD(&page->lru);
1563 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1564 set_hugetlb_cgroup(page, NULL);
1565 set_hugetlb_cgroup_rsvd(page, NULL);
1566 spin_lock(&hugetlb_lock);
1567 h->nr_huge_pages++;
1568 h->nr_huge_pages_node[nid]++;
1569 ClearPageHugeFreed(page);
1570 spin_unlock(&hugetlb_lock);
1571 }
1572
prep_compound_gigantic_page(struct page * page,unsigned int order)1573 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1574 {
1575 int i;
1576 int nr_pages = 1 << order;
1577 struct page *p = page + 1;
1578
1579 /* we rely on prep_new_huge_page to set the destructor */
1580 set_compound_order(page, order);
1581 __ClearPageReserved(page);
1582 __SetPageHead(page);
1583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1584 /*
1585 * For gigantic hugepages allocated through bootmem at
1586 * boot, it's safer to be consistent with the not-gigantic
1587 * hugepages and clear the PG_reserved bit from all tail pages
1588 * too. Otherwise drivers using get_user_pages() to access tail
1589 * pages may get the reference counting wrong if they see
1590 * PG_reserved set on a tail page (despite the head page not
1591 * having PG_reserved set). Enforcing this consistency between
1592 * head and tail pages allows drivers to optimize away a check
1593 * on the head page when they need know if put_page() is needed
1594 * after get_user_pages().
1595 */
1596 __ClearPageReserved(p);
1597 set_page_count(p, 0);
1598 set_compound_head(p, page);
1599 }
1600 atomic_set(compound_mapcount_ptr(page), -1);
1601 atomic_set(compound_pincount_ptr(page), 0);
1602 }
1603
1604 /*
1605 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1606 * transparent huge pages. See the PageTransHuge() documentation for more
1607 * details.
1608 */
PageHuge(struct page * page)1609 int PageHuge(struct page *page)
1610 {
1611 if (!PageCompound(page))
1612 return 0;
1613
1614 page = compound_head(page);
1615 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1616 }
1617 EXPORT_SYMBOL_GPL(PageHuge);
1618
1619 /*
1620 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1621 * normal or transparent huge pages.
1622 */
PageHeadHuge(struct page * page_head)1623 int PageHeadHuge(struct page *page_head)
1624 {
1625 if (!PageHead(page_head))
1626 return 0;
1627
1628 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1629 }
1630
1631 /*
1632 * Find and lock address space (mapping) in write mode.
1633 *
1634 * Upon entry, the page is locked which means that page_mapping() is
1635 * stable. Due to locking order, we can only trylock_write. If we can
1636 * not get the lock, simply return NULL to caller.
1637 */
hugetlb_page_mapping_lock_write(struct page * hpage)1638 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1639 {
1640 struct address_space *mapping = page_mapping(hpage);
1641
1642 if (!mapping)
1643 return mapping;
1644
1645 if (i_mmap_trylock_write(mapping))
1646 return mapping;
1647
1648 return NULL;
1649 }
1650
hugetlb_basepage_index(struct page * page)1651 pgoff_t hugetlb_basepage_index(struct page *page)
1652 {
1653 struct page *page_head = compound_head(page);
1654 pgoff_t index = page_index(page_head);
1655 unsigned long compound_idx;
1656
1657 if (compound_order(page_head) >= MAX_ORDER)
1658 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1659 else
1660 compound_idx = page - page_head;
1661
1662 return (index << compound_order(page_head)) + compound_idx;
1663 }
1664
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1665 static struct page *alloc_buddy_huge_page(struct hstate *h,
1666 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1667 nodemask_t *node_alloc_noretry)
1668 {
1669 int order = huge_page_order(h);
1670 struct page *page;
1671 bool alloc_try_hard = true;
1672
1673 /*
1674 * By default we always try hard to allocate the page with
1675 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1676 * a loop (to adjust global huge page counts) and previous allocation
1677 * failed, do not continue to try hard on the same node. Use the
1678 * node_alloc_noretry bitmap to manage this state information.
1679 */
1680 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1681 alloc_try_hard = false;
1682 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1683 if (alloc_try_hard)
1684 gfp_mask |= __GFP_RETRY_MAYFAIL;
1685 if (nid == NUMA_NO_NODE)
1686 nid = numa_mem_id();
1687 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1688 if (page)
1689 __count_vm_event(HTLB_BUDDY_PGALLOC);
1690 else
1691 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1692
1693 /*
1694 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1695 * indicates an overall state change. Clear bit so that we resume
1696 * normal 'try hard' allocations.
1697 */
1698 if (node_alloc_noretry && page && !alloc_try_hard)
1699 node_clear(nid, *node_alloc_noretry);
1700
1701 /*
1702 * If we tried hard to get a page but failed, set bit so that
1703 * subsequent attempts will not try as hard until there is an
1704 * overall state change.
1705 */
1706 if (node_alloc_noretry && !page && alloc_try_hard)
1707 node_set(nid, *node_alloc_noretry);
1708
1709 return page;
1710 }
1711
1712 /*
1713 * Common helper to allocate a fresh hugetlb page. All specific allocators
1714 * should use this function to get new hugetlb pages
1715 */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1716 static struct page *alloc_fresh_huge_page(struct hstate *h,
1717 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1718 nodemask_t *node_alloc_noretry)
1719 {
1720 struct page *page;
1721
1722 if (hstate_is_gigantic(h))
1723 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1724 else
1725 page = alloc_buddy_huge_page(h, gfp_mask,
1726 nid, nmask, node_alloc_noretry);
1727 if (!page)
1728 return NULL;
1729
1730 if (hstate_is_gigantic(h))
1731 prep_compound_gigantic_page(page, huge_page_order(h));
1732 prep_new_huge_page(h, page, page_to_nid(page));
1733
1734 return page;
1735 }
1736
1737 /*
1738 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1739 * manner.
1740 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1741 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1742 nodemask_t *node_alloc_noretry)
1743 {
1744 struct page *page;
1745 int nr_nodes, node;
1746 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1747
1748 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1749 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1750 node_alloc_noretry);
1751 if (page)
1752 break;
1753 }
1754
1755 if (!page)
1756 return 0;
1757
1758 put_page(page); /* free it into the hugepage allocator */
1759
1760 return 1;
1761 }
1762
1763 /*
1764 * Free huge page from pool from next node to free.
1765 * Attempt to keep persistent huge pages more or less
1766 * balanced over allowed nodes.
1767 * Called with hugetlb_lock locked.
1768 */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1769 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1770 bool acct_surplus)
1771 {
1772 int nr_nodes, node;
1773 int ret = 0;
1774
1775 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1776 /*
1777 * If we're returning unused surplus pages, only examine
1778 * nodes with surplus pages.
1779 */
1780 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1781 !list_empty(&h->hugepage_freelists[node])) {
1782 struct page *page =
1783 list_entry(h->hugepage_freelists[node].next,
1784 struct page, lru);
1785 list_del(&page->lru);
1786 h->free_huge_pages--;
1787 h->free_huge_pages_node[node]--;
1788 if (acct_surplus) {
1789 h->surplus_huge_pages--;
1790 h->surplus_huge_pages_node[node]--;
1791 }
1792 update_and_free_page(h, page);
1793 ret = 1;
1794 break;
1795 }
1796 }
1797
1798 return ret;
1799 }
1800
1801 /*
1802 * Dissolve a given free hugepage into free buddy pages. This function does
1803 * nothing for in-use hugepages and non-hugepages.
1804 * This function returns values like below:
1805 *
1806 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1807 * (allocated or reserved.)
1808 * 0: successfully dissolved free hugepages or the page is not a
1809 * hugepage (considered as already dissolved)
1810 */
dissolve_free_huge_page(struct page * page)1811 int dissolve_free_huge_page(struct page *page)
1812 {
1813 int rc = -EBUSY;
1814
1815 retry:
1816 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1817 if (!PageHuge(page))
1818 return 0;
1819
1820 spin_lock(&hugetlb_lock);
1821 if (!PageHuge(page)) {
1822 rc = 0;
1823 goto out;
1824 }
1825
1826 if (!page_count(page)) {
1827 struct page *head = compound_head(page);
1828 struct hstate *h = page_hstate(head);
1829 int nid = page_to_nid(head);
1830 if (h->free_huge_pages - h->resv_huge_pages == 0)
1831 goto out;
1832
1833 /*
1834 * We should make sure that the page is already on the free list
1835 * when it is dissolved.
1836 */
1837 if (unlikely(!PageHugeFreed(head))) {
1838 spin_unlock(&hugetlb_lock);
1839 cond_resched();
1840
1841 /*
1842 * Theoretically, we should return -EBUSY when we
1843 * encounter this race. In fact, we have a chance
1844 * to successfully dissolve the page if we do a
1845 * retry. Because the race window is quite small.
1846 * If we seize this opportunity, it is an optimization
1847 * for increasing the success rate of dissolving page.
1848 */
1849 goto retry;
1850 }
1851
1852 /*
1853 * Move PageHWPoison flag from head page to the raw error page,
1854 * which makes any subpages rather than the error page reusable.
1855 */
1856 if (PageHWPoison(head) && page != head) {
1857 SetPageHWPoison(page);
1858 ClearPageHWPoison(head);
1859 }
1860 list_del(&head->lru);
1861 h->free_huge_pages--;
1862 h->free_huge_pages_node[nid]--;
1863 h->max_huge_pages--;
1864 update_and_free_page(h, head);
1865 rc = 0;
1866 }
1867 out:
1868 spin_unlock(&hugetlb_lock);
1869 return rc;
1870 }
1871
1872 /*
1873 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1874 * make specified memory blocks removable from the system.
1875 * Note that this will dissolve a free gigantic hugepage completely, if any
1876 * part of it lies within the given range.
1877 * Also note that if dissolve_free_huge_page() returns with an error, all
1878 * free hugepages that were dissolved before that error are lost.
1879 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1880 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1881 {
1882 unsigned long pfn;
1883 struct page *page;
1884 int rc = 0;
1885
1886 if (!hugepages_supported())
1887 return rc;
1888
1889 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1890 page = pfn_to_page(pfn);
1891 rc = dissolve_free_huge_page(page);
1892 if (rc)
1893 break;
1894 }
1895
1896 return rc;
1897 }
1898
1899 /*
1900 * Allocates a fresh surplus page from the page allocator.
1901 */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1902 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1903 int nid, nodemask_t *nmask)
1904 {
1905 struct page *page = NULL;
1906
1907 if (hstate_is_gigantic(h))
1908 return NULL;
1909
1910 spin_lock(&hugetlb_lock);
1911 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1912 goto out_unlock;
1913 spin_unlock(&hugetlb_lock);
1914
1915 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1916 if (!page)
1917 return NULL;
1918
1919 spin_lock(&hugetlb_lock);
1920 /*
1921 * We could have raced with the pool size change.
1922 * Double check that and simply deallocate the new page
1923 * if we would end up overcommiting the surpluses. Abuse
1924 * temporary page to workaround the nasty free_huge_page
1925 * codeflow
1926 */
1927 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1928 SetPageHugeTemporary(page);
1929 spin_unlock(&hugetlb_lock);
1930 put_page(page);
1931 return NULL;
1932 } else {
1933 h->surplus_huge_pages++;
1934 h->surplus_huge_pages_node[page_to_nid(page)]++;
1935 }
1936
1937 out_unlock:
1938 spin_unlock(&hugetlb_lock);
1939
1940 return page;
1941 }
1942
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1943 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1944 int nid, nodemask_t *nmask)
1945 {
1946 struct page *page;
1947
1948 if (hstate_is_gigantic(h))
1949 return NULL;
1950
1951 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1952 if (!page)
1953 return NULL;
1954
1955 /*
1956 * We do not account these pages as surplus because they are only
1957 * temporary and will be released properly on the last reference
1958 */
1959 SetPageHugeTemporary(page);
1960
1961 return page;
1962 }
1963
1964 /*
1965 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1966 */
1967 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1968 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1969 struct vm_area_struct *vma, unsigned long addr)
1970 {
1971 struct page *page;
1972 struct mempolicy *mpol;
1973 gfp_t gfp_mask = htlb_alloc_mask(h);
1974 int nid;
1975 nodemask_t *nodemask;
1976
1977 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1978 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1979 mpol_cond_put(mpol);
1980
1981 return page;
1982 }
1983
1984 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)1985 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1986 nodemask_t *nmask, gfp_t gfp_mask)
1987 {
1988 spin_lock(&hugetlb_lock);
1989 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1990 struct page *page;
1991
1992 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1993 if (page) {
1994 spin_unlock(&hugetlb_lock);
1995 return page;
1996 }
1997 }
1998 spin_unlock(&hugetlb_lock);
1999
2000 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2001 }
2002
2003 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2004 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2005 unsigned long address)
2006 {
2007 struct mempolicy *mpol;
2008 nodemask_t *nodemask;
2009 struct page *page;
2010 gfp_t gfp_mask;
2011 int node;
2012
2013 gfp_mask = htlb_alloc_mask(h);
2014 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2015 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2016 mpol_cond_put(mpol);
2017
2018 return page;
2019 }
2020
2021 /*
2022 * Increase the hugetlb pool such that it can accommodate a reservation
2023 * of size 'delta'.
2024 */
gather_surplus_pages(struct hstate * h,long delta)2025 static int gather_surplus_pages(struct hstate *h, long delta)
2026 __must_hold(&hugetlb_lock)
2027 {
2028 struct list_head surplus_list;
2029 struct page *page, *tmp;
2030 int ret;
2031 long i;
2032 long needed, allocated;
2033 bool alloc_ok = true;
2034
2035 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2036 if (needed <= 0) {
2037 h->resv_huge_pages += delta;
2038 return 0;
2039 }
2040
2041 allocated = 0;
2042 INIT_LIST_HEAD(&surplus_list);
2043
2044 ret = -ENOMEM;
2045 retry:
2046 spin_unlock(&hugetlb_lock);
2047 for (i = 0; i < needed; i++) {
2048 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2049 NUMA_NO_NODE, NULL);
2050 if (!page) {
2051 alloc_ok = false;
2052 break;
2053 }
2054 list_add(&page->lru, &surplus_list);
2055 cond_resched();
2056 }
2057 allocated += i;
2058
2059 /*
2060 * After retaking hugetlb_lock, we need to recalculate 'needed'
2061 * because either resv_huge_pages or free_huge_pages may have changed.
2062 */
2063 spin_lock(&hugetlb_lock);
2064 needed = (h->resv_huge_pages + delta) -
2065 (h->free_huge_pages + allocated);
2066 if (needed > 0) {
2067 if (alloc_ok)
2068 goto retry;
2069 /*
2070 * We were not able to allocate enough pages to
2071 * satisfy the entire reservation so we free what
2072 * we've allocated so far.
2073 */
2074 goto free;
2075 }
2076 /*
2077 * The surplus_list now contains _at_least_ the number of extra pages
2078 * needed to accommodate the reservation. Add the appropriate number
2079 * of pages to the hugetlb pool and free the extras back to the buddy
2080 * allocator. Commit the entire reservation here to prevent another
2081 * process from stealing the pages as they are added to the pool but
2082 * before they are reserved.
2083 */
2084 needed += allocated;
2085 h->resv_huge_pages += delta;
2086 ret = 0;
2087
2088 /* Free the needed pages to the hugetlb pool */
2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2090 if ((--needed) < 0)
2091 break;
2092 /*
2093 * This page is now managed by the hugetlb allocator and has
2094 * no users -- drop the buddy allocator's reference.
2095 */
2096 put_page_testzero(page);
2097 VM_BUG_ON_PAGE(page_count(page), page);
2098 enqueue_huge_page(h, page);
2099 }
2100 free:
2101 spin_unlock(&hugetlb_lock);
2102
2103 /* Free unnecessary surplus pages to the buddy allocator */
2104 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2105 put_page(page);
2106 spin_lock(&hugetlb_lock);
2107
2108 return ret;
2109 }
2110
2111 /*
2112 * This routine has two main purposes:
2113 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2114 * in unused_resv_pages. This corresponds to the prior adjustments made
2115 * to the associated reservation map.
2116 * 2) Free any unused surplus pages that may have been allocated to satisfy
2117 * the reservation. As many as unused_resv_pages may be freed.
2118 *
2119 * Called with hugetlb_lock held. However, the lock could be dropped (and
2120 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2121 * we must make sure nobody else can claim pages we are in the process of
2122 * freeing. Do this by ensuring resv_huge_page always is greater than the
2123 * number of huge pages we plan to free when dropping the lock.
2124 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2125 static void return_unused_surplus_pages(struct hstate *h,
2126 unsigned long unused_resv_pages)
2127 {
2128 unsigned long nr_pages;
2129
2130 /* Cannot return gigantic pages currently */
2131 if (hstate_is_gigantic(h))
2132 goto out;
2133
2134 /*
2135 * Part (or even all) of the reservation could have been backed
2136 * by pre-allocated pages. Only free surplus pages.
2137 */
2138 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2139
2140 /*
2141 * We want to release as many surplus pages as possible, spread
2142 * evenly across all nodes with memory. Iterate across these nodes
2143 * until we can no longer free unreserved surplus pages. This occurs
2144 * when the nodes with surplus pages have no free pages.
2145 * free_pool_huge_page() will balance the freed pages across the
2146 * on-line nodes with memory and will handle the hstate accounting.
2147 *
2148 * Note that we decrement resv_huge_pages as we free the pages. If
2149 * we drop the lock, resv_huge_pages will still be sufficiently large
2150 * to cover subsequent pages we may free.
2151 */
2152 while (nr_pages--) {
2153 h->resv_huge_pages--;
2154 unused_resv_pages--;
2155 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2156 goto out;
2157 cond_resched_lock(&hugetlb_lock);
2158 }
2159
2160 out:
2161 /* Fully uncommit the reservation */
2162 h->resv_huge_pages -= unused_resv_pages;
2163 }
2164
2165
2166 /*
2167 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2168 * are used by the huge page allocation routines to manage reservations.
2169 *
2170 * vma_needs_reservation is called to determine if the huge page at addr
2171 * within the vma has an associated reservation. If a reservation is
2172 * needed, the value 1 is returned. The caller is then responsible for
2173 * managing the global reservation and subpool usage counts. After
2174 * the huge page has been allocated, vma_commit_reservation is called
2175 * to add the page to the reservation map. If the page allocation fails,
2176 * the reservation must be ended instead of committed. vma_end_reservation
2177 * is called in such cases.
2178 *
2179 * In the normal case, vma_commit_reservation returns the same value
2180 * as the preceding vma_needs_reservation call. The only time this
2181 * is not the case is if a reserve map was changed between calls. It
2182 * is the responsibility of the caller to notice the difference and
2183 * take appropriate action.
2184 *
2185 * vma_add_reservation is used in error paths where a reservation must
2186 * be restored when a newly allocated huge page must be freed. It is
2187 * to be called after calling vma_needs_reservation to determine if a
2188 * reservation exists.
2189 */
2190 enum vma_resv_mode {
2191 VMA_NEEDS_RESV,
2192 VMA_COMMIT_RESV,
2193 VMA_END_RESV,
2194 VMA_ADD_RESV,
2195 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2196 static long __vma_reservation_common(struct hstate *h,
2197 struct vm_area_struct *vma, unsigned long addr,
2198 enum vma_resv_mode mode)
2199 {
2200 struct resv_map *resv;
2201 pgoff_t idx;
2202 long ret;
2203 long dummy_out_regions_needed;
2204
2205 resv = vma_resv_map(vma);
2206 if (!resv)
2207 return 1;
2208
2209 idx = vma_hugecache_offset(h, vma, addr);
2210 switch (mode) {
2211 case VMA_NEEDS_RESV:
2212 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2213 /* We assume that vma_reservation_* routines always operate on
2214 * 1 page, and that adding to resv map a 1 page entry can only
2215 * ever require 1 region.
2216 */
2217 VM_BUG_ON(dummy_out_regions_needed != 1);
2218 break;
2219 case VMA_COMMIT_RESV:
2220 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2221 /* region_add calls of range 1 should never fail. */
2222 VM_BUG_ON(ret < 0);
2223 break;
2224 case VMA_END_RESV:
2225 region_abort(resv, idx, idx + 1, 1);
2226 ret = 0;
2227 break;
2228 case VMA_ADD_RESV:
2229 if (vma->vm_flags & VM_MAYSHARE) {
2230 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2231 /* region_add calls of range 1 should never fail. */
2232 VM_BUG_ON(ret < 0);
2233 } else {
2234 region_abort(resv, idx, idx + 1, 1);
2235 ret = region_del(resv, idx, idx + 1);
2236 }
2237 break;
2238 default:
2239 BUG();
2240 }
2241
2242 if (vma->vm_flags & VM_MAYSHARE)
2243 return ret;
2244 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2245 /*
2246 * In most cases, reserves always exist for private mappings.
2247 * However, a file associated with mapping could have been
2248 * hole punched or truncated after reserves were consumed.
2249 * As subsequent fault on such a range will not use reserves.
2250 * Subtle - The reserve map for private mappings has the
2251 * opposite meaning than that of shared mappings. If NO
2252 * entry is in the reserve map, it means a reservation exists.
2253 * If an entry exists in the reserve map, it means the
2254 * reservation has already been consumed. As a result, the
2255 * return value of this routine is the opposite of the
2256 * value returned from reserve map manipulation routines above.
2257 */
2258 if (ret)
2259 return 0;
2260 else
2261 return 1;
2262 }
2263 else
2264 return ret < 0 ? ret : 0;
2265 }
2266
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2267 static long vma_needs_reservation(struct hstate *h,
2268 struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2271 }
2272
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2273 static long vma_commit_reservation(struct hstate *h,
2274 struct vm_area_struct *vma, unsigned long addr)
2275 {
2276 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2277 }
2278
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2279 static void vma_end_reservation(struct hstate *h,
2280 struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2283 }
2284
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2285 static long vma_add_reservation(struct hstate *h,
2286 struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2289 }
2290
2291 /*
2292 * This routine is called to restore a reservation on error paths. In the
2293 * specific error paths, a huge page was allocated (via alloc_huge_page)
2294 * and is about to be freed. If a reservation for the page existed,
2295 * alloc_huge_page would have consumed the reservation and set PagePrivate
2296 * in the newly allocated page. When the page is freed via free_huge_page,
2297 * the global reservation count will be incremented if PagePrivate is set.
2298 * However, free_huge_page can not adjust the reserve map. Adjust the
2299 * reserve map here to be consistent with global reserve count adjustments
2300 * to be made by free_huge_page.
2301 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2302 static void restore_reserve_on_error(struct hstate *h,
2303 struct vm_area_struct *vma, unsigned long address,
2304 struct page *page)
2305 {
2306 if (unlikely(PagePrivate(page))) {
2307 long rc = vma_needs_reservation(h, vma, address);
2308
2309 if (unlikely(rc < 0)) {
2310 /*
2311 * Rare out of memory condition in reserve map
2312 * manipulation. Clear PagePrivate so that
2313 * global reserve count will not be incremented
2314 * by free_huge_page. This will make it appear
2315 * as though the reservation for this page was
2316 * consumed. This may prevent the task from
2317 * faulting in the page at a later time. This
2318 * is better than inconsistent global huge page
2319 * accounting of reserve counts.
2320 */
2321 ClearPagePrivate(page);
2322 } else if (rc) {
2323 rc = vma_add_reservation(h, vma, address);
2324 if (unlikely(rc < 0))
2325 /*
2326 * See above comment about rare out of
2327 * memory condition.
2328 */
2329 ClearPagePrivate(page);
2330 } else
2331 vma_end_reservation(h, vma, address);
2332 }
2333 }
2334
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2335 struct page *alloc_huge_page(struct vm_area_struct *vma,
2336 unsigned long addr, int avoid_reserve)
2337 {
2338 struct hugepage_subpool *spool = subpool_vma(vma);
2339 struct hstate *h = hstate_vma(vma);
2340 struct page *page;
2341 long map_chg, map_commit;
2342 long gbl_chg;
2343 int ret, idx;
2344 struct hugetlb_cgroup *h_cg;
2345 bool deferred_reserve;
2346
2347 idx = hstate_index(h);
2348 /*
2349 * Examine the region/reserve map to determine if the process
2350 * has a reservation for the page to be allocated. A return
2351 * code of zero indicates a reservation exists (no change).
2352 */
2353 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2354 if (map_chg < 0)
2355 return ERR_PTR(-ENOMEM);
2356
2357 /*
2358 * Processes that did not create the mapping will have no
2359 * reserves as indicated by the region/reserve map. Check
2360 * that the allocation will not exceed the subpool limit.
2361 * Allocations for MAP_NORESERVE mappings also need to be
2362 * checked against any subpool limit.
2363 */
2364 if (map_chg || avoid_reserve) {
2365 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2366 if (gbl_chg < 0) {
2367 vma_end_reservation(h, vma, addr);
2368 return ERR_PTR(-ENOSPC);
2369 }
2370
2371 /*
2372 * Even though there was no reservation in the region/reserve
2373 * map, there could be reservations associated with the
2374 * subpool that can be used. This would be indicated if the
2375 * return value of hugepage_subpool_get_pages() is zero.
2376 * However, if avoid_reserve is specified we still avoid even
2377 * the subpool reservations.
2378 */
2379 if (avoid_reserve)
2380 gbl_chg = 1;
2381 }
2382
2383 /* If this allocation is not consuming a reservation, charge it now.
2384 */
2385 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2386 if (deferred_reserve) {
2387 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2388 idx, pages_per_huge_page(h), &h_cg);
2389 if (ret)
2390 goto out_subpool_put;
2391 }
2392
2393 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2394 if (ret)
2395 goto out_uncharge_cgroup_reservation;
2396
2397 spin_lock(&hugetlb_lock);
2398 /*
2399 * glb_chg is passed to indicate whether or not a page must be taken
2400 * from the global free pool (global change). gbl_chg == 0 indicates
2401 * a reservation exists for the allocation.
2402 */
2403 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2404 if (!page) {
2405 spin_unlock(&hugetlb_lock);
2406 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2407 if (!page)
2408 goto out_uncharge_cgroup;
2409 spin_lock(&hugetlb_lock);
2410 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411 SetPagePrivate(page);
2412 h->resv_huge_pages--;
2413 }
2414 list_add(&page->lru, &h->hugepage_activelist);
2415 /* Fall through */
2416 }
2417 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2418 /* If allocation is not consuming a reservation, also store the
2419 * hugetlb_cgroup pointer on the page.
2420 */
2421 if (deferred_reserve) {
2422 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2423 h_cg, page);
2424 }
2425
2426 spin_unlock(&hugetlb_lock);
2427
2428 set_page_private(page, (unsigned long)spool);
2429
2430 map_commit = vma_commit_reservation(h, vma, addr);
2431 if (unlikely(map_chg > map_commit)) {
2432 /*
2433 * The page was added to the reservation map between
2434 * vma_needs_reservation and vma_commit_reservation.
2435 * This indicates a race with hugetlb_reserve_pages.
2436 * Adjust for the subpool count incremented above AND
2437 * in hugetlb_reserve_pages for the same page. Also,
2438 * the reservation count added in hugetlb_reserve_pages
2439 * no longer applies.
2440 */
2441 long rsv_adjust;
2442
2443 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2444 hugetlb_acct_memory(h, -rsv_adjust);
2445 if (deferred_reserve)
2446 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2447 pages_per_huge_page(h), page);
2448 }
2449 return page;
2450
2451 out_uncharge_cgroup:
2452 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2453 out_uncharge_cgroup_reservation:
2454 if (deferred_reserve)
2455 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2456 h_cg);
2457 out_subpool_put:
2458 if (map_chg || avoid_reserve)
2459 hugepage_subpool_put_pages(spool, 1);
2460 vma_end_reservation(h, vma, addr);
2461 return ERR_PTR(-ENOSPC);
2462 }
2463
2464 int alloc_bootmem_huge_page(struct hstate *h)
2465 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2466 int __alloc_bootmem_huge_page(struct hstate *h)
2467 {
2468 struct huge_bootmem_page *m;
2469 int nr_nodes, node;
2470
2471 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2472 void *addr;
2473
2474 addr = memblock_alloc_try_nid_raw(
2475 huge_page_size(h), huge_page_size(h),
2476 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2477 if (addr) {
2478 /*
2479 * Use the beginning of the huge page to store the
2480 * huge_bootmem_page struct (until gather_bootmem
2481 * puts them into the mem_map).
2482 */
2483 m = addr;
2484 goto found;
2485 }
2486 }
2487 return 0;
2488
2489 found:
2490 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2491 /* Put them into a private list first because mem_map is not up yet */
2492 INIT_LIST_HEAD(&m->list);
2493 list_add(&m->list, &huge_boot_pages);
2494 m->hstate = h;
2495 return 1;
2496 }
2497
2498 /*
2499 * Put bootmem huge pages into the standard lists after mem_map is up.
2500 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2501 */
gather_bootmem_prealloc(void)2502 static void __init gather_bootmem_prealloc(void)
2503 {
2504 struct huge_bootmem_page *m;
2505
2506 list_for_each_entry(m, &huge_boot_pages, list) {
2507 struct page *page = virt_to_page(m);
2508 struct hstate *h = m->hstate;
2509
2510 VM_BUG_ON(!hstate_is_gigantic(h));
2511 WARN_ON(page_count(page) != 1);
2512 prep_compound_gigantic_page(page, huge_page_order(h));
2513 WARN_ON(PageReserved(page));
2514 prep_new_huge_page(h, page, page_to_nid(page));
2515 put_page(page); /* free it into the hugepage allocator */
2516
2517 /*
2518 * We need to restore the 'stolen' pages to totalram_pages
2519 * in order to fix confusing memory reports from free(1) and
2520 * other side-effects, like CommitLimit going negative.
2521 */
2522 adjust_managed_page_count(page, pages_per_huge_page(h));
2523 cond_resched();
2524 }
2525 }
2526
hugetlb_hstate_alloc_pages(struct hstate * h)2527 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2528 {
2529 unsigned long i;
2530 nodemask_t *node_alloc_noretry;
2531
2532 if (!hstate_is_gigantic(h)) {
2533 /*
2534 * Bit mask controlling how hard we retry per-node allocations.
2535 * Ignore errors as lower level routines can deal with
2536 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2537 * time, we are likely in bigger trouble.
2538 */
2539 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2540 GFP_KERNEL);
2541 } else {
2542 /* allocations done at boot time */
2543 node_alloc_noretry = NULL;
2544 }
2545
2546 /* bit mask controlling how hard we retry per-node allocations */
2547 if (node_alloc_noretry)
2548 nodes_clear(*node_alloc_noretry);
2549
2550 for (i = 0; i < h->max_huge_pages; ++i) {
2551 if (hstate_is_gigantic(h)) {
2552 if (hugetlb_cma_size) {
2553 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2554 goto free;
2555 }
2556 if (!alloc_bootmem_huge_page(h))
2557 break;
2558 } else if (!alloc_pool_huge_page(h,
2559 &node_states[N_MEMORY],
2560 node_alloc_noretry))
2561 break;
2562 cond_resched();
2563 }
2564 if (i < h->max_huge_pages) {
2565 char buf[32];
2566
2567 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2569 h->max_huge_pages, buf, i);
2570 h->max_huge_pages = i;
2571 }
2572 free:
2573 kfree(node_alloc_noretry);
2574 }
2575
hugetlb_init_hstates(void)2576 static void __init hugetlb_init_hstates(void)
2577 {
2578 struct hstate *h;
2579
2580 for_each_hstate(h) {
2581 if (minimum_order > huge_page_order(h))
2582 minimum_order = huge_page_order(h);
2583
2584 /* oversize hugepages were init'ed in early boot */
2585 if (!hstate_is_gigantic(h))
2586 hugetlb_hstate_alloc_pages(h);
2587 }
2588 VM_BUG_ON(minimum_order == UINT_MAX);
2589 }
2590
report_hugepages(void)2591 static void __init report_hugepages(void)
2592 {
2593 struct hstate *h;
2594
2595 for_each_hstate(h) {
2596 char buf[32];
2597
2598 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2599 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2600 buf, h->free_huge_pages);
2601 }
2602 }
2603
2604 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2605 static void try_to_free_low(struct hstate *h, unsigned long count,
2606 nodemask_t *nodes_allowed)
2607 {
2608 int i;
2609
2610 if (hstate_is_gigantic(h))
2611 return;
2612
2613 for_each_node_mask(i, *nodes_allowed) {
2614 struct page *page, *next;
2615 struct list_head *freel = &h->hugepage_freelists[i];
2616 list_for_each_entry_safe(page, next, freel, lru) {
2617 if (count >= h->nr_huge_pages)
2618 return;
2619 if (PageHighMem(page))
2620 continue;
2621 list_del(&page->lru);
2622 update_and_free_page(h, page);
2623 h->free_huge_pages--;
2624 h->free_huge_pages_node[page_to_nid(page)]--;
2625 }
2626 }
2627 }
2628 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2629 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2630 nodemask_t *nodes_allowed)
2631 {
2632 }
2633 #endif
2634
2635 /*
2636 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2637 * balanced by operating on them in a round-robin fashion.
2638 * Returns 1 if an adjustment was made.
2639 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2640 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2641 int delta)
2642 {
2643 int nr_nodes, node;
2644
2645 VM_BUG_ON(delta != -1 && delta != 1);
2646
2647 if (delta < 0) {
2648 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2649 if (h->surplus_huge_pages_node[node])
2650 goto found;
2651 }
2652 } else {
2653 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2654 if (h->surplus_huge_pages_node[node] <
2655 h->nr_huge_pages_node[node])
2656 goto found;
2657 }
2658 }
2659 return 0;
2660
2661 found:
2662 h->surplus_huge_pages += delta;
2663 h->surplus_huge_pages_node[node] += delta;
2664 return 1;
2665 }
2666
2667 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2668 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2669 nodemask_t *nodes_allowed)
2670 {
2671 unsigned long min_count, ret;
2672 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2673
2674 /*
2675 * Bit mask controlling how hard we retry per-node allocations.
2676 * If we can not allocate the bit mask, do not attempt to allocate
2677 * the requested huge pages.
2678 */
2679 if (node_alloc_noretry)
2680 nodes_clear(*node_alloc_noretry);
2681 else
2682 return -ENOMEM;
2683
2684 spin_lock(&hugetlb_lock);
2685
2686 /*
2687 * Check for a node specific request.
2688 * Changing node specific huge page count may require a corresponding
2689 * change to the global count. In any case, the passed node mask
2690 * (nodes_allowed) will restrict alloc/free to the specified node.
2691 */
2692 if (nid != NUMA_NO_NODE) {
2693 unsigned long old_count = count;
2694
2695 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2696 /*
2697 * User may have specified a large count value which caused the
2698 * above calculation to overflow. In this case, they wanted
2699 * to allocate as many huge pages as possible. Set count to
2700 * largest possible value to align with their intention.
2701 */
2702 if (count < old_count)
2703 count = ULONG_MAX;
2704 }
2705
2706 /*
2707 * Gigantic pages runtime allocation depend on the capability for large
2708 * page range allocation.
2709 * If the system does not provide this feature, return an error when
2710 * the user tries to allocate gigantic pages but let the user free the
2711 * boottime allocated gigantic pages.
2712 */
2713 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2714 if (count > persistent_huge_pages(h)) {
2715 spin_unlock(&hugetlb_lock);
2716 NODEMASK_FREE(node_alloc_noretry);
2717 return -EINVAL;
2718 }
2719 /* Fall through to decrease pool */
2720 }
2721
2722 /*
2723 * Increase the pool size
2724 * First take pages out of surplus state. Then make up the
2725 * remaining difference by allocating fresh huge pages.
2726 *
2727 * We might race with alloc_surplus_huge_page() here and be unable
2728 * to convert a surplus huge page to a normal huge page. That is
2729 * not critical, though, it just means the overall size of the
2730 * pool might be one hugepage larger than it needs to be, but
2731 * within all the constraints specified by the sysctls.
2732 */
2733 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2734 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2735 break;
2736 }
2737
2738 while (count > persistent_huge_pages(h)) {
2739 /*
2740 * If this allocation races such that we no longer need the
2741 * page, free_huge_page will handle it by freeing the page
2742 * and reducing the surplus.
2743 */
2744 spin_unlock(&hugetlb_lock);
2745
2746 /* yield cpu to avoid soft lockup */
2747 cond_resched();
2748
2749 ret = alloc_pool_huge_page(h, nodes_allowed,
2750 node_alloc_noretry);
2751 spin_lock(&hugetlb_lock);
2752 if (!ret)
2753 goto out;
2754
2755 /* Bail for signals. Probably ctrl-c from user */
2756 if (signal_pending(current))
2757 goto out;
2758 }
2759
2760 /*
2761 * Decrease the pool size
2762 * First return free pages to the buddy allocator (being careful
2763 * to keep enough around to satisfy reservations). Then place
2764 * pages into surplus state as needed so the pool will shrink
2765 * to the desired size as pages become free.
2766 *
2767 * By placing pages into the surplus state independent of the
2768 * overcommit value, we are allowing the surplus pool size to
2769 * exceed overcommit. There are few sane options here. Since
2770 * alloc_surplus_huge_page() is checking the global counter,
2771 * though, we'll note that we're not allowed to exceed surplus
2772 * and won't grow the pool anywhere else. Not until one of the
2773 * sysctls are changed, or the surplus pages go out of use.
2774 */
2775 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2776 min_count = max(count, min_count);
2777 try_to_free_low(h, min_count, nodes_allowed);
2778 while (min_count < persistent_huge_pages(h)) {
2779 if (!free_pool_huge_page(h, nodes_allowed, 0))
2780 break;
2781 cond_resched_lock(&hugetlb_lock);
2782 }
2783 while (count < persistent_huge_pages(h)) {
2784 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2785 break;
2786 }
2787 out:
2788 h->max_huge_pages = persistent_huge_pages(h);
2789 spin_unlock(&hugetlb_lock);
2790
2791 NODEMASK_FREE(node_alloc_noretry);
2792
2793 return 0;
2794 }
2795
2796 #define HSTATE_ATTR_RO(_name) \
2797 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2798
2799 #define HSTATE_ATTR(_name) \
2800 static struct kobj_attribute _name##_attr = \
2801 __ATTR(_name, 0644, _name##_show, _name##_store)
2802
2803 static struct kobject *hugepages_kobj;
2804 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2805
2806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2807
kobj_to_hstate(struct kobject * kobj,int * nidp)2808 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2809 {
2810 int i;
2811
2812 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2813 if (hstate_kobjs[i] == kobj) {
2814 if (nidp)
2815 *nidp = NUMA_NO_NODE;
2816 return &hstates[i];
2817 }
2818
2819 return kobj_to_node_hstate(kobj, nidp);
2820 }
2821
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2822 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2823 struct kobj_attribute *attr, char *buf)
2824 {
2825 struct hstate *h;
2826 unsigned long nr_huge_pages;
2827 int nid;
2828
2829 h = kobj_to_hstate(kobj, &nid);
2830 if (nid == NUMA_NO_NODE)
2831 nr_huge_pages = h->nr_huge_pages;
2832 else
2833 nr_huge_pages = h->nr_huge_pages_node[nid];
2834
2835 return sprintf(buf, "%lu\n", nr_huge_pages);
2836 }
2837
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2838 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2839 struct hstate *h, int nid,
2840 unsigned long count, size_t len)
2841 {
2842 int err;
2843 nodemask_t nodes_allowed, *n_mask;
2844
2845 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2846 return -EINVAL;
2847
2848 if (nid == NUMA_NO_NODE) {
2849 /*
2850 * global hstate attribute
2851 */
2852 if (!(obey_mempolicy &&
2853 init_nodemask_of_mempolicy(&nodes_allowed)))
2854 n_mask = &node_states[N_MEMORY];
2855 else
2856 n_mask = &nodes_allowed;
2857 } else {
2858 /*
2859 * Node specific request. count adjustment happens in
2860 * set_max_huge_pages() after acquiring hugetlb_lock.
2861 */
2862 init_nodemask_of_node(&nodes_allowed, nid);
2863 n_mask = &nodes_allowed;
2864 }
2865
2866 err = set_max_huge_pages(h, count, nid, n_mask);
2867
2868 return err ? err : len;
2869 }
2870
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2871 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2872 struct kobject *kobj, const char *buf,
2873 size_t len)
2874 {
2875 struct hstate *h;
2876 unsigned long count;
2877 int nid;
2878 int err;
2879
2880 err = kstrtoul(buf, 10, &count);
2881 if (err)
2882 return err;
2883
2884 h = kobj_to_hstate(kobj, &nid);
2885 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2886 }
2887
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2888 static ssize_t nr_hugepages_show(struct kobject *kobj,
2889 struct kobj_attribute *attr, char *buf)
2890 {
2891 return nr_hugepages_show_common(kobj, attr, buf);
2892 }
2893
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2894 static ssize_t nr_hugepages_store(struct kobject *kobj,
2895 struct kobj_attribute *attr, const char *buf, size_t len)
2896 {
2897 return nr_hugepages_store_common(false, kobj, buf, len);
2898 }
2899 HSTATE_ATTR(nr_hugepages);
2900
2901 #ifdef CONFIG_NUMA
2902
2903 /*
2904 * hstate attribute for optionally mempolicy-based constraint on persistent
2905 * huge page alloc/free.
2906 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2907 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2908 struct kobj_attribute *attr, char *buf)
2909 {
2910 return nr_hugepages_show_common(kobj, attr, buf);
2911 }
2912
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2913 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2914 struct kobj_attribute *attr, const char *buf, size_t len)
2915 {
2916 return nr_hugepages_store_common(true, kobj, buf, len);
2917 }
2918 HSTATE_ATTR(nr_hugepages_mempolicy);
2919 #endif
2920
2921
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2922 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2923 struct kobj_attribute *attr, char *buf)
2924 {
2925 struct hstate *h = kobj_to_hstate(kobj, NULL);
2926 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2927 }
2928
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2929 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2930 struct kobj_attribute *attr, const char *buf, size_t count)
2931 {
2932 int err;
2933 unsigned long input;
2934 struct hstate *h = kobj_to_hstate(kobj, NULL);
2935
2936 if (hstate_is_gigantic(h))
2937 return -EINVAL;
2938
2939 err = kstrtoul(buf, 10, &input);
2940 if (err)
2941 return err;
2942
2943 spin_lock(&hugetlb_lock);
2944 h->nr_overcommit_huge_pages = input;
2945 spin_unlock(&hugetlb_lock);
2946
2947 return count;
2948 }
2949 HSTATE_ATTR(nr_overcommit_hugepages);
2950
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2951 static ssize_t free_hugepages_show(struct kobject *kobj,
2952 struct kobj_attribute *attr, char *buf)
2953 {
2954 struct hstate *h;
2955 unsigned long free_huge_pages;
2956 int nid;
2957
2958 h = kobj_to_hstate(kobj, &nid);
2959 if (nid == NUMA_NO_NODE)
2960 free_huge_pages = h->free_huge_pages;
2961 else
2962 free_huge_pages = h->free_huge_pages_node[nid];
2963
2964 return sprintf(buf, "%lu\n", free_huge_pages);
2965 }
2966 HSTATE_ATTR_RO(free_hugepages);
2967
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2968 static ssize_t resv_hugepages_show(struct kobject *kobj,
2969 struct kobj_attribute *attr, char *buf)
2970 {
2971 struct hstate *h = kobj_to_hstate(kobj, NULL);
2972 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2973 }
2974 HSTATE_ATTR_RO(resv_hugepages);
2975
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2976 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2977 struct kobj_attribute *attr, char *buf)
2978 {
2979 struct hstate *h;
2980 unsigned long surplus_huge_pages;
2981 int nid;
2982
2983 h = kobj_to_hstate(kobj, &nid);
2984 if (nid == NUMA_NO_NODE)
2985 surplus_huge_pages = h->surplus_huge_pages;
2986 else
2987 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2988
2989 return sprintf(buf, "%lu\n", surplus_huge_pages);
2990 }
2991 HSTATE_ATTR_RO(surplus_hugepages);
2992
2993 static struct attribute *hstate_attrs[] = {
2994 &nr_hugepages_attr.attr,
2995 &nr_overcommit_hugepages_attr.attr,
2996 &free_hugepages_attr.attr,
2997 &resv_hugepages_attr.attr,
2998 &surplus_hugepages_attr.attr,
2999 #ifdef CONFIG_NUMA
3000 &nr_hugepages_mempolicy_attr.attr,
3001 #endif
3002 NULL,
3003 };
3004
3005 static const struct attribute_group hstate_attr_group = {
3006 .attrs = hstate_attrs,
3007 };
3008
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3009 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3010 struct kobject **hstate_kobjs,
3011 const struct attribute_group *hstate_attr_group)
3012 {
3013 int retval;
3014 int hi = hstate_index(h);
3015
3016 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3017 if (!hstate_kobjs[hi])
3018 return -ENOMEM;
3019
3020 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3021 if (retval) {
3022 kobject_put(hstate_kobjs[hi]);
3023 hstate_kobjs[hi] = NULL;
3024 }
3025
3026 return retval;
3027 }
3028
hugetlb_sysfs_init(void)3029 static void __init hugetlb_sysfs_init(void)
3030 {
3031 struct hstate *h;
3032 int err;
3033
3034 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3035 if (!hugepages_kobj)
3036 return;
3037
3038 for_each_hstate(h) {
3039 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3040 hstate_kobjs, &hstate_attr_group);
3041 if (err)
3042 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3043 }
3044 }
3045
3046 #ifdef CONFIG_NUMA
3047
3048 /*
3049 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3050 * with node devices in node_devices[] using a parallel array. The array
3051 * index of a node device or _hstate == node id.
3052 * This is here to avoid any static dependency of the node device driver, in
3053 * the base kernel, on the hugetlb module.
3054 */
3055 struct node_hstate {
3056 struct kobject *hugepages_kobj;
3057 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3058 };
3059 static struct node_hstate node_hstates[MAX_NUMNODES];
3060
3061 /*
3062 * A subset of global hstate attributes for node devices
3063 */
3064 static struct attribute *per_node_hstate_attrs[] = {
3065 &nr_hugepages_attr.attr,
3066 &free_hugepages_attr.attr,
3067 &surplus_hugepages_attr.attr,
3068 NULL,
3069 };
3070
3071 static const struct attribute_group per_node_hstate_attr_group = {
3072 .attrs = per_node_hstate_attrs,
3073 };
3074
3075 /*
3076 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3077 * Returns node id via non-NULL nidp.
3078 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3079 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3080 {
3081 int nid;
3082
3083 for (nid = 0; nid < nr_node_ids; nid++) {
3084 struct node_hstate *nhs = &node_hstates[nid];
3085 int i;
3086 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3087 if (nhs->hstate_kobjs[i] == kobj) {
3088 if (nidp)
3089 *nidp = nid;
3090 return &hstates[i];
3091 }
3092 }
3093
3094 BUG();
3095 return NULL;
3096 }
3097
3098 /*
3099 * Unregister hstate attributes from a single node device.
3100 * No-op if no hstate attributes attached.
3101 */
hugetlb_unregister_node(struct node * node)3102 static void hugetlb_unregister_node(struct node *node)
3103 {
3104 struct hstate *h;
3105 struct node_hstate *nhs = &node_hstates[node->dev.id];
3106
3107 if (!nhs->hugepages_kobj)
3108 return; /* no hstate attributes */
3109
3110 for_each_hstate(h) {
3111 int idx = hstate_index(h);
3112 if (nhs->hstate_kobjs[idx]) {
3113 kobject_put(nhs->hstate_kobjs[idx]);
3114 nhs->hstate_kobjs[idx] = NULL;
3115 }
3116 }
3117
3118 kobject_put(nhs->hugepages_kobj);
3119 nhs->hugepages_kobj = NULL;
3120 }
3121
3122
3123 /*
3124 * Register hstate attributes for a single node device.
3125 * No-op if attributes already registered.
3126 */
hugetlb_register_node(struct node * node)3127 static void hugetlb_register_node(struct node *node)
3128 {
3129 struct hstate *h;
3130 struct node_hstate *nhs = &node_hstates[node->dev.id];
3131 int err;
3132
3133 if (nhs->hugepages_kobj)
3134 return; /* already allocated */
3135
3136 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3137 &node->dev.kobj);
3138 if (!nhs->hugepages_kobj)
3139 return;
3140
3141 for_each_hstate(h) {
3142 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3143 nhs->hstate_kobjs,
3144 &per_node_hstate_attr_group);
3145 if (err) {
3146 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3147 h->name, node->dev.id);
3148 hugetlb_unregister_node(node);
3149 break;
3150 }
3151 }
3152 }
3153
3154 /*
3155 * hugetlb init time: register hstate attributes for all registered node
3156 * devices of nodes that have memory. All on-line nodes should have
3157 * registered their associated device by this time.
3158 */
hugetlb_register_all_nodes(void)3159 static void __init hugetlb_register_all_nodes(void)
3160 {
3161 int nid;
3162
3163 for_each_node_state(nid, N_MEMORY) {
3164 struct node *node = node_devices[nid];
3165 if (node->dev.id == nid)
3166 hugetlb_register_node(node);
3167 }
3168
3169 /*
3170 * Let the node device driver know we're here so it can
3171 * [un]register hstate attributes on node hotplug.
3172 */
3173 register_hugetlbfs_with_node(hugetlb_register_node,
3174 hugetlb_unregister_node);
3175 }
3176 #else /* !CONFIG_NUMA */
3177
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3178 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179 {
3180 BUG();
3181 if (nidp)
3182 *nidp = -1;
3183 return NULL;
3184 }
3185
hugetlb_register_all_nodes(void)3186 static void hugetlb_register_all_nodes(void) { }
3187
3188 #endif
3189
hugetlb_init(void)3190 static int __init hugetlb_init(void)
3191 {
3192 int i;
3193
3194 if (!hugepages_supported()) {
3195 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3196 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3197 return 0;
3198 }
3199
3200 /*
3201 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3202 * architectures depend on setup being done here.
3203 */
3204 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3205 if (!parsed_default_hugepagesz) {
3206 /*
3207 * If we did not parse a default huge page size, set
3208 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3209 * number of huge pages for this default size was implicitly
3210 * specified, set that here as well.
3211 * Note that the implicit setting will overwrite an explicit
3212 * setting. A warning will be printed in this case.
3213 */
3214 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3215 if (default_hstate_max_huge_pages) {
3216 if (default_hstate.max_huge_pages) {
3217 char buf[32];
3218
3219 string_get_size(huge_page_size(&default_hstate),
3220 1, STRING_UNITS_2, buf, 32);
3221 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3222 default_hstate.max_huge_pages, buf);
3223 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3224 default_hstate_max_huge_pages);
3225 }
3226 default_hstate.max_huge_pages =
3227 default_hstate_max_huge_pages;
3228 }
3229 }
3230
3231 hugetlb_cma_check();
3232 hugetlb_init_hstates();
3233 gather_bootmem_prealloc();
3234 report_hugepages();
3235
3236 hugetlb_sysfs_init();
3237 hugetlb_register_all_nodes();
3238 hugetlb_cgroup_file_init();
3239
3240 #ifdef CONFIG_SMP
3241 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3242 #else
3243 num_fault_mutexes = 1;
3244 #endif
3245 hugetlb_fault_mutex_table =
3246 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3247 GFP_KERNEL);
3248 BUG_ON(!hugetlb_fault_mutex_table);
3249
3250 for (i = 0; i < num_fault_mutexes; i++)
3251 mutex_init(&hugetlb_fault_mutex_table[i]);
3252 return 0;
3253 }
3254 subsys_initcall(hugetlb_init);
3255
3256 /* Overwritten by architectures with more huge page sizes */
__init(weak)3257 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3258 {
3259 return size == HPAGE_SIZE;
3260 }
3261
hugetlb_add_hstate(unsigned int order)3262 void __init hugetlb_add_hstate(unsigned int order)
3263 {
3264 struct hstate *h;
3265 unsigned long i;
3266
3267 if (size_to_hstate(PAGE_SIZE << order)) {
3268 return;
3269 }
3270 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3271 BUG_ON(order == 0);
3272 h = &hstates[hugetlb_max_hstate++];
3273 h->order = order;
3274 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3275 h->nr_huge_pages = 0;
3276 h->free_huge_pages = 0;
3277 for (i = 0; i < MAX_NUMNODES; ++i)
3278 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3279 INIT_LIST_HEAD(&h->hugepage_activelist);
3280 h->next_nid_to_alloc = first_memory_node;
3281 h->next_nid_to_free = first_memory_node;
3282 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3283 huge_page_size(h)/1024);
3284
3285 parsed_hstate = h;
3286 }
3287
3288 /*
3289 * hugepages command line processing
3290 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3291 * specification. If not, ignore the hugepages value. hugepages can also
3292 * be the first huge page command line option in which case it implicitly
3293 * specifies the number of huge pages for the default size.
3294 */
hugepages_setup(char * s)3295 static int __init hugepages_setup(char *s)
3296 {
3297 unsigned long *mhp;
3298 static unsigned long *last_mhp;
3299
3300 if (!parsed_valid_hugepagesz) {
3301 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3302 parsed_valid_hugepagesz = true;
3303 return 0;
3304 }
3305
3306 /*
3307 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3308 * yet, so this hugepages= parameter goes to the "default hstate".
3309 * Otherwise, it goes with the previously parsed hugepagesz or
3310 * default_hugepagesz.
3311 */
3312 else if (!hugetlb_max_hstate)
3313 mhp = &default_hstate_max_huge_pages;
3314 else
3315 mhp = &parsed_hstate->max_huge_pages;
3316
3317 if (mhp == last_mhp) {
3318 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3319 return 0;
3320 }
3321
3322 if (sscanf(s, "%lu", mhp) <= 0)
3323 *mhp = 0;
3324
3325 /*
3326 * Global state is always initialized later in hugetlb_init.
3327 * But we need to allocate >= MAX_ORDER hstates here early to still
3328 * use the bootmem allocator.
3329 */
3330 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3331 hugetlb_hstate_alloc_pages(parsed_hstate);
3332
3333 last_mhp = mhp;
3334
3335 return 1;
3336 }
3337 __setup("hugepages=", hugepages_setup);
3338
3339 /*
3340 * hugepagesz command line processing
3341 * A specific huge page size can only be specified once with hugepagesz.
3342 * hugepagesz is followed by hugepages on the command line. The global
3343 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3344 * hugepagesz argument was valid.
3345 */
hugepagesz_setup(char * s)3346 static int __init hugepagesz_setup(char *s)
3347 {
3348 unsigned long size;
3349 struct hstate *h;
3350
3351 parsed_valid_hugepagesz = false;
3352 size = (unsigned long)memparse(s, NULL);
3353
3354 if (!arch_hugetlb_valid_size(size)) {
3355 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3356 return 0;
3357 }
3358
3359 h = size_to_hstate(size);
3360 if (h) {
3361 /*
3362 * hstate for this size already exists. This is normally
3363 * an error, but is allowed if the existing hstate is the
3364 * default hstate. More specifically, it is only allowed if
3365 * the number of huge pages for the default hstate was not
3366 * previously specified.
3367 */
3368 if (!parsed_default_hugepagesz || h != &default_hstate ||
3369 default_hstate.max_huge_pages) {
3370 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3371 return 0;
3372 }
3373
3374 /*
3375 * No need to call hugetlb_add_hstate() as hstate already
3376 * exists. But, do set parsed_hstate so that a following
3377 * hugepages= parameter will be applied to this hstate.
3378 */
3379 parsed_hstate = h;
3380 parsed_valid_hugepagesz = true;
3381 return 1;
3382 }
3383
3384 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3385 parsed_valid_hugepagesz = true;
3386 return 1;
3387 }
3388 __setup("hugepagesz=", hugepagesz_setup);
3389
3390 /*
3391 * default_hugepagesz command line input
3392 * Only one instance of default_hugepagesz allowed on command line.
3393 */
default_hugepagesz_setup(char * s)3394 static int __init default_hugepagesz_setup(char *s)
3395 {
3396 unsigned long size;
3397
3398 parsed_valid_hugepagesz = false;
3399 if (parsed_default_hugepagesz) {
3400 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3401 return 0;
3402 }
3403
3404 size = (unsigned long)memparse(s, NULL);
3405
3406 if (!arch_hugetlb_valid_size(size)) {
3407 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3408 return 0;
3409 }
3410
3411 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3412 parsed_valid_hugepagesz = true;
3413 parsed_default_hugepagesz = true;
3414 default_hstate_idx = hstate_index(size_to_hstate(size));
3415
3416 /*
3417 * The number of default huge pages (for this size) could have been
3418 * specified as the first hugetlb parameter: hugepages=X. If so,
3419 * then default_hstate_max_huge_pages is set. If the default huge
3420 * page size is gigantic (>= MAX_ORDER), then the pages must be
3421 * allocated here from bootmem allocator.
3422 */
3423 if (default_hstate_max_huge_pages) {
3424 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3425 if (hstate_is_gigantic(&default_hstate))
3426 hugetlb_hstate_alloc_pages(&default_hstate);
3427 default_hstate_max_huge_pages = 0;
3428 }
3429
3430 return 1;
3431 }
3432 __setup("default_hugepagesz=", default_hugepagesz_setup);
3433
allowed_mems_nr(struct hstate * h)3434 static unsigned int allowed_mems_nr(struct hstate *h)
3435 {
3436 int node;
3437 unsigned int nr = 0;
3438 nodemask_t *mpol_allowed;
3439 unsigned int *array = h->free_huge_pages_node;
3440 gfp_t gfp_mask = htlb_alloc_mask(h);
3441
3442 mpol_allowed = policy_nodemask_current(gfp_mask);
3443
3444 for_each_node_mask(node, cpuset_current_mems_allowed) {
3445 if (!mpol_allowed ||
3446 (mpol_allowed && node_isset(node, *mpol_allowed)))
3447 nr += array[node];
3448 }
3449
3450 return nr;
3451 }
3452
3453 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3454 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3455 void *buffer, size_t *length,
3456 loff_t *ppos, unsigned long *out)
3457 {
3458 struct ctl_table dup_table;
3459
3460 /*
3461 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3462 * can duplicate the @table and alter the duplicate of it.
3463 */
3464 dup_table = *table;
3465 dup_table.data = out;
3466
3467 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3468 }
3469
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3470 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3471 struct ctl_table *table, int write,
3472 void *buffer, size_t *length, loff_t *ppos)
3473 {
3474 struct hstate *h = &default_hstate;
3475 unsigned long tmp = h->max_huge_pages;
3476 int ret;
3477
3478 if (!hugepages_supported())
3479 return -EOPNOTSUPP;
3480
3481 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3482 &tmp);
3483 if (ret)
3484 goto out;
3485
3486 if (write)
3487 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3488 NUMA_NO_NODE, tmp, *length);
3489 out:
3490 return ret;
3491 }
3492
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3493 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3494 void *buffer, size_t *length, loff_t *ppos)
3495 {
3496
3497 return hugetlb_sysctl_handler_common(false, table, write,
3498 buffer, length, ppos);
3499 }
3500
3501 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3502 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3503 void *buffer, size_t *length, loff_t *ppos)
3504 {
3505 return hugetlb_sysctl_handler_common(true, table, write,
3506 buffer, length, ppos);
3507 }
3508 #endif /* CONFIG_NUMA */
3509
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3510 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3511 void *buffer, size_t *length, loff_t *ppos)
3512 {
3513 struct hstate *h = &default_hstate;
3514 unsigned long tmp;
3515 int ret;
3516
3517 if (!hugepages_supported())
3518 return -EOPNOTSUPP;
3519
3520 tmp = h->nr_overcommit_huge_pages;
3521
3522 if (write && hstate_is_gigantic(h))
3523 return -EINVAL;
3524
3525 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3526 &tmp);
3527 if (ret)
3528 goto out;
3529
3530 if (write) {
3531 spin_lock(&hugetlb_lock);
3532 h->nr_overcommit_huge_pages = tmp;
3533 spin_unlock(&hugetlb_lock);
3534 }
3535 out:
3536 return ret;
3537 }
3538
3539 #endif /* CONFIG_SYSCTL */
3540
hugetlb_report_meminfo(struct seq_file * m)3541 void hugetlb_report_meminfo(struct seq_file *m)
3542 {
3543 struct hstate *h;
3544 unsigned long total = 0;
3545
3546 if (!hugepages_supported())
3547 return;
3548
3549 for_each_hstate(h) {
3550 unsigned long count = h->nr_huge_pages;
3551
3552 total += (PAGE_SIZE << huge_page_order(h)) * count;
3553
3554 if (h == &default_hstate)
3555 seq_printf(m,
3556 "HugePages_Total: %5lu\n"
3557 "HugePages_Free: %5lu\n"
3558 "HugePages_Rsvd: %5lu\n"
3559 "HugePages_Surp: %5lu\n"
3560 "Hugepagesize: %8lu kB\n",
3561 count,
3562 h->free_huge_pages,
3563 h->resv_huge_pages,
3564 h->surplus_huge_pages,
3565 (PAGE_SIZE << huge_page_order(h)) / 1024);
3566 }
3567
3568 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3569 }
3570
hugetlb_report_node_meminfo(char * buf,int len,int nid)3571 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3572 {
3573 struct hstate *h = &default_hstate;
3574
3575 if (!hugepages_supported())
3576 return 0;
3577
3578 return sysfs_emit_at(buf, len,
3579 "Node %d HugePages_Total: %5u\n"
3580 "Node %d HugePages_Free: %5u\n"
3581 "Node %d HugePages_Surp: %5u\n",
3582 nid, h->nr_huge_pages_node[nid],
3583 nid, h->free_huge_pages_node[nid],
3584 nid, h->surplus_huge_pages_node[nid]);
3585 }
3586
hugetlb_show_meminfo(void)3587 void hugetlb_show_meminfo(void)
3588 {
3589 struct hstate *h;
3590 int nid;
3591
3592 if (!hugepages_supported())
3593 return;
3594
3595 for_each_node_state(nid, N_MEMORY)
3596 for_each_hstate(h)
3597 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3598 nid,
3599 h->nr_huge_pages_node[nid],
3600 h->free_huge_pages_node[nid],
3601 h->surplus_huge_pages_node[nid],
3602 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3603 }
3604
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3605 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3606 {
3607 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3608 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3609 }
3610
3611 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3612 unsigned long hugetlb_total_pages(void)
3613 {
3614 struct hstate *h;
3615 unsigned long nr_total_pages = 0;
3616
3617 for_each_hstate(h)
3618 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3619 return nr_total_pages;
3620 }
3621
hugetlb_acct_memory(struct hstate * h,long delta)3622 static int hugetlb_acct_memory(struct hstate *h, long delta)
3623 {
3624 int ret = -ENOMEM;
3625
3626 spin_lock(&hugetlb_lock);
3627 /*
3628 * When cpuset is configured, it breaks the strict hugetlb page
3629 * reservation as the accounting is done on a global variable. Such
3630 * reservation is completely rubbish in the presence of cpuset because
3631 * the reservation is not checked against page availability for the
3632 * current cpuset. Application can still potentially OOM'ed by kernel
3633 * with lack of free htlb page in cpuset that the task is in.
3634 * Attempt to enforce strict accounting with cpuset is almost
3635 * impossible (or too ugly) because cpuset is too fluid that
3636 * task or memory node can be dynamically moved between cpusets.
3637 *
3638 * The change of semantics for shared hugetlb mapping with cpuset is
3639 * undesirable. However, in order to preserve some of the semantics,
3640 * we fall back to check against current free page availability as
3641 * a best attempt and hopefully to minimize the impact of changing
3642 * semantics that cpuset has.
3643 *
3644 * Apart from cpuset, we also have memory policy mechanism that
3645 * also determines from which node the kernel will allocate memory
3646 * in a NUMA system. So similar to cpuset, we also should consider
3647 * the memory policy of the current task. Similar to the description
3648 * above.
3649 */
3650 if (delta > 0) {
3651 if (gather_surplus_pages(h, delta) < 0)
3652 goto out;
3653
3654 if (delta > allowed_mems_nr(h)) {
3655 return_unused_surplus_pages(h, delta);
3656 goto out;
3657 }
3658 }
3659
3660 ret = 0;
3661 if (delta < 0)
3662 return_unused_surplus_pages(h, (unsigned long) -delta);
3663
3664 out:
3665 spin_unlock(&hugetlb_lock);
3666 return ret;
3667 }
3668
hugetlb_vm_op_open(struct vm_area_struct * vma)3669 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3670 {
3671 struct resv_map *resv = vma_resv_map(vma);
3672
3673 /*
3674 * This new VMA should share its siblings reservation map if present.
3675 * The VMA will only ever have a valid reservation map pointer where
3676 * it is being copied for another still existing VMA. As that VMA
3677 * has a reference to the reservation map it cannot disappear until
3678 * after this open call completes. It is therefore safe to take a
3679 * new reference here without additional locking.
3680 */
3681 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3682 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3683 kref_get(&resv->refs);
3684 }
3685 }
3686
hugetlb_vm_op_close(struct vm_area_struct * vma)3687 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3688 {
3689 struct hstate *h = hstate_vma(vma);
3690 struct resv_map *resv = vma_resv_map(vma);
3691 struct hugepage_subpool *spool = subpool_vma(vma);
3692 unsigned long reserve, start, end;
3693 long gbl_reserve;
3694
3695 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3696 return;
3697
3698 start = vma_hugecache_offset(h, vma, vma->vm_start);
3699 end = vma_hugecache_offset(h, vma, vma->vm_end);
3700
3701 reserve = (end - start) - region_count(resv, start, end);
3702 hugetlb_cgroup_uncharge_counter(resv, start, end);
3703 if (reserve) {
3704 /*
3705 * Decrement reserve counts. The global reserve count may be
3706 * adjusted if the subpool has a minimum size.
3707 */
3708 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3709 hugetlb_acct_memory(h, -gbl_reserve);
3710 }
3711
3712 kref_put(&resv->refs, resv_map_release);
3713 }
3714
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3715 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3716 {
3717 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3718 return -EINVAL;
3719 return 0;
3720 }
3721
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3722 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3723 {
3724 struct hstate *hstate = hstate_vma(vma);
3725
3726 return 1UL << huge_page_shift(hstate);
3727 }
3728
3729 /*
3730 * We cannot handle pagefaults against hugetlb pages at all. They cause
3731 * handle_mm_fault() to try to instantiate regular-sized pages in the
3732 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3733 * this far.
3734 */
hugetlb_vm_op_fault(struct vm_fault * vmf)3735 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3736 {
3737 BUG();
3738 return 0;
3739 }
3740
3741 /*
3742 * When a new function is introduced to vm_operations_struct and added
3743 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3744 * This is because under System V memory model, mappings created via
3745 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3746 * their original vm_ops are overwritten with shm_vm_ops.
3747 */
3748 const struct vm_operations_struct hugetlb_vm_ops = {
3749 .fault = hugetlb_vm_op_fault,
3750 .open = hugetlb_vm_op_open,
3751 .close = hugetlb_vm_op_close,
3752 .split = hugetlb_vm_op_split,
3753 .pagesize = hugetlb_vm_op_pagesize,
3754 };
3755
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3756 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3757 int writable)
3758 {
3759 pte_t entry;
3760
3761 if (writable) {
3762 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3763 vma->vm_page_prot)));
3764 } else {
3765 entry = huge_pte_wrprotect(mk_huge_pte(page,
3766 vma->vm_page_prot));
3767 }
3768 entry = pte_mkyoung(entry);
3769 entry = pte_mkhuge(entry);
3770 entry = arch_make_huge_pte(entry, vma, page, writable);
3771
3772 return entry;
3773 }
3774
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3775 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3776 unsigned long address, pte_t *ptep)
3777 {
3778 pte_t entry;
3779
3780 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3781 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3782 update_mmu_cache(vma, address, ptep);
3783 }
3784
is_hugetlb_entry_migration(pte_t pte)3785 bool is_hugetlb_entry_migration(pte_t pte)
3786 {
3787 swp_entry_t swp;
3788
3789 if (huge_pte_none(pte) || pte_present(pte))
3790 return false;
3791 swp = pte_to_swp_entry(pte);
3792 if (is_migration_entry(swp))
3793 return true;
3794 else
3795 return false;
3796 }
3797
is_hugetlb_entry_hwpoisoned(pte_t pte)3798 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3799 {
3800 swp_entry_t swp;
3801
3802 if (huge_pte_none(pte) || pte_present(pte))
3803 return false;
3804 swp = pte_to_swp_entry(pte);
3805 if (is_hwpoison_entry(swp))
3806 return true;
3807 else
3808 return false;
3809 }
3810
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3811 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3812 struct vm_area_struct *vma)
3813 {
3814 pte_t *src_pte, *dst_pte, entry, dst_entry;
3815 struct page *ptepage;
3816 unsigned long addr;
3817 int cow;
3818 struct hstate *h = hstate_vma(vma);
3819 unsigned long sz = huge_page_size(h);
3820 struct address_space *mapping = vma->vm_file->f_mapping;
3821 struct mmu_notifier_range range;
3822 int ret = 0;
3823
3824 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3825
3826 if (cow) {
3827 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3828 vma->vm_start,
3829 vma->vm_end);
3830 mmu_notifier_invalidate_range_start(&range);
3831 } else {
3832 /*
3833 * For shared mappings i_mmap_rwsem must be held to call
3834 * huge_pte_alloc, otherwise the returned ptep could go
3835 * away if part of a shared pmd and another thread calls
3836 * huge_pmd_unshare.
3837 */
3838 i_mmap_lock_read(mapping);
3839 }
3840
3841 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3842 spinlock_t *src_ptl, *dst_ptl;
3843 src_pte = huge_pte_offset(src, addr, sz);
3844 if (!src_pte)
3845 continue;
3846 dst_pte = huge_pte_alloc(dst, addr, sz);
3847 if (!dst_pte) {
3848 ret = -ENOMEM;
3849 break;
3850 }
3851
3852 /*
3853 * If the pagetables are shared don't copy or take references.
3854 * dst_pte == src_pte is the common case of src/dest sharing.
3855 *
3856 * However, src could have 'unshared' and dst shares with
3857 * another vma. If dst_pte !none, this implies sharing.
3858 * Check here before taking page table lock, and once again
3859 * after taking the lock below.
3860 */
3861 dst_entry = huge_ptep_get(dst_pte);
3862 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3863 continue;
3864
3865 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3866 src_ptl = huge_pte_lockptr(h, src, src_pte);
3867 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3868 entry = huge_ptep_get(src_pte);
3869 dst_entry = huge_ptep_get(dst_pte);
3870 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3871 /*
3872 * Skip if src entry none. Also, skip in the
3873 * unlikely case dst entry !none as this implies
3874 * sharing with another vma.
3875 */
3876 ;
3877 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3878 is_hugetlb_entry_hwpoisoned(entry))) {
3879 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3880
3881 if (is_write_migration_entry(swp_entry) && cow) {
3882 /*
3883 * COW mappings require pages in both
3884 * parent and child to be set to read.
3885 */
3886 make_migration_entry_read(&swp_entry);
3887 entry = swp_entry_to_pte(swp_entry);
3888 set_huge_swap_pte_at(src, addr, src_pte,
3889 entry, sz);
3890 }
3891 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3892 } else {
3893 if (cow) {
3894 /*
3895 * No need to notify as we are downgrading page
3896 * table protection not changing it to point
3897 * to a new page.
3898 *
3899 * See Documentation/vm/mmu_notifier.rst
3900 */
3901 huge_ptep_set_wrprotect(src, addr, src_pte);
3902 }
3903 entry = huge_ptep_get(src_pte);
3904 ptepage = pte_page(entry);
3905 get_page(ptepage);
3906 page_dup_rmap(ptepage, true);
3907 set_huge_pte_at(dst, addr, dst_pte, entry);
3908 hugetlb_count_add(pages_per_huge_page(h), dst);
3909 }
3910 spin_unlock(src_ptl);
3911 spin_unlock(dst_ptl);
3912 }
3913
3914 if (cow)
3915 mmu_notifier_invalidate_range_end(&range);
3916 else
3917 i_mmap_unlock_read(mapping);
3918
3919 return ret;
3920 }
3921
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3922 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3923 unsigned long start, unsigned long end,
3924 struct page *ref_page)
3925 {
3926 struct mm_struct *mm = vma->vm_mm;
3927 unsigned long address;
3928 pte_t *ptep;
3929 pte_t pte;
3930 spinlock_t *ptl;
3931 struct page *page;
3932 struct hstate *h = hstate_vma(vma);
3933 unsigned long sz = huge_page_size(h);
3934 struct mmu_notifier_range range;
3935 bool force_flush = false;
3936
3937 WARN_ON(!is_vm_hugetlb_page(vma));
3938 BUG_ON(start & ~huge_page_mask(h));
3939 BUG_ON(end & ~huge_page_mask(h));
3940
3941 /*
3942 * This is a hugetlb vma, all the pte entries should point
3943 * to huge page.
3944 */
3945 tlb_change_page_size(tlb, sz);
3946 tlb_start_vma(tlb, vma);
3947
3948 /*
3949 * If sharing possible, alert mmu notifiers of worst case.
3950 */
3951 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3952 end);
3953 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3954 mmu_notifier_invalidate_range_start(&range);
3955 address = start;
3956 for (; address < end; address += sz) {
3957 ptep = huge_pte_offset(mm, address, sz);
3958 if (!ptep)
3959 continue;
3960
3961 ptl = huge_pte_lock(h, mm, ptep);
3962 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3963 spin_unlock(ptl);
3964 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3965 force_flush = true;
3966 continue;
3967 }
3968
3969 pte = huge_ptep_get(ptep);
3970 if (huge_pte_none(pte)) {
3971 spin_unlock(ptl);
3972 continue;
3973 }
3974
3975 /*
3976 * Migrating hugepage or HWPoisoned hugepage is already
3977 * unmapped and its refcount is dropped, so just clear pte here.
3978 */
3979 if (unlikely(!pte_present(pte))) {
3980 huge_pte_clear(mm, address, ptep, sz);
3981 spin_unlock(ptl);
3982 continue;
3983 }
3984
3985 page = pte_page(pte);
3986 /*
3987 * If a reference page is supplied, it is because a specific
3988 * page is being unmapped, not a range. Ensure the page we
3989 * are about to unmap is the actual page of interest.
3990 */
3991 if (ref_page) {
3992 if (page != ref_page) {
3993 spin_unlock(ptl);
3994 continue;
3995 }
3996 /*
3997 * Mark the VMA as having unmapped its page so that
3998 * future faults in this VMA will fail rather than
3999 * looking like data was lost
4000 */
4001 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4002 }
4003
4004 pte = huge_ptep_get_and_clear(mm, address, ptep);
4005 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4006 if (huge_pte_dirty(pte))
4007 set_page_dirty(page);
4008
4009 hugetlb_count_sub(pages_per_huge_page(h), mm);
4010 page_remove_rmap(page, true);
4011
4012 spin_unlock(ptl);
4013 tlb_remove_page_size(tlb, page, huge_page_size(h));
4014 /*
4015 * Bail out after unmapping reference page if supplied
4016 */
4017 if (ref_page)
4018 break;
4019 }
4020 mmu_notifier_invalidate_range_end(&range);
4021 tlb_end_vma(tlb, vma);
4022
4023 /*
4024 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4025 * could defer the flush until now, since by holding i_mmap_rwsem we
4026 * guaranteed that the last refernece would not be dropped. But we must
4027 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4028 * dropped and the last reference to the shared PMDs page might be
4029 * dropped as well.
4030 *
4031 * In theory we could defer the freeing of the PMD pages as well, but
4032 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4033 * detect sharing, so we cannot defer the release of the page either.
4034 * Instead, do flush now.
4035 */
4036 if (force_flush)
4037 tlb_flush_mmu_tlbonly(tlb);
4038 }
4039
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4040 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4041 struct vm_area_struct *vma, unsigned long start,
4042 unsigned long end, struct page *ref_page)
4043 {
4044 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4045
4046 /*
4047 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4048 * test will fail on a vma being torn down, and not grab a page table
4049 * on its way out. We're lucky that the flag has such an appropriate
4050 * name, and can in fact be safely cleared here. We could clear it
4051 * before the __unmap_hugepage_range above, but all that's necessary
4052 * is to clear it before releasing the i_mmap_rwsem. This works
4053 * because in the context this is called, the VMA is about to be
4054 * destroyed and the i_mmap_rwsem is held.
4055 */
4056 vma->vm_flags &= ~VM_MAYSHARE;
4057 }
4058
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4059 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4060 unsigned long end, struct page *ref_page)
4061 {
4062 struct mm_struct *mm;
4063 struct mmu_gather tlb;
4064 unsigned long tlb_start = start;
4065 unsigned long tlb_end = end;
4066
4067 /*
4068 * If shared PMDs were possibly used within this vma range, adjust
4069 * start/end for worst case tlb flushing.
4070 * Note that we can not be sure if PMDs are shared until we try to
4071 * unmap pages. However, we want to make sure TLB flushing covers
4072 * the largest possible range.
4073 */
4074 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4075
4076 mm = vma->vm_mm;
4077
4078 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4079 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4080 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4081 }
4082
4083 /*
4084 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4085 * mappping it owns the reserve page for. The intention is to unmap the page
4086 * from other VMAs and let the children be SIGKILLed if they are faulting the
4087 * same region.
4088 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4089 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4090 struct page *page, unsigned long address)
4091 {
4092 struct hstate *h = hstate_vma(vma);
4093 struct vm_area_struct *iter_vma;
4094 struct address_space *mapping;
4095 pgoff_t pgoff;
4096
4097 /*
4098 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4099 * from page cache lookup which is in HPAGE_SIZE units.
4100 */
4101 address = address & huge_page_mask(h);
4102 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4103 vma->vm_pgoff;
4104 mapping = vma->vm_file->f_mapping;
4105
4106 /*
4107 * Take the mapping lock for the duration of the table walk. As
4108 * this mapping should be shared between all the VMAs,
4109 * __unmap_hugepage_range() is called as the lock is already held
4110 */
4111 i_mmap_lock_write(mapping);
4112 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4113 /* Do not unmap the current VMA */
4114 if (iter_vma == vma)
4115 continue;
4116
4117 /*
4118 * Shared VMAs have their own reserves and do not affect
4119 * MAP_PRIVATE accounting but it is possible that a shared
4120 * VMA is using the same page so check and skip such VMAs.
4121 */
4122 if (iter_vma->vm_flags & VM_MAYSHARE)
4123 continue;
4124
4125 /*
4126 * Unmap the page from other VMAs without their own reserves.
4127 * They get marked to be SIGKILLed if they fault in these
4128 * areas. This is because a future no-page fault on this VMA
4129 * could insert a zeroed page instead of the data existing
4130 * from the time of fork. This would look like data corruption
4131 */
4132 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4133 unmap_hugepage_range(iter_vma, address,
4134 address + huge_page_size(h), page);
4135 }
4136 i_mmap_unlock_write(mapping);
4137 }
4138
4139 /*
4140 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4141 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4142 * cannot race with other handlers or page migration.
4143 * Keep the pte_same checks anyway to make transition from the mutex easier.
4144 */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4145 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4146 unsigned long address, pte_t *ptep,
4147 struct page *pagecache_page, spinlock_t *ptl)
4148 {
4149 pte_t pte;
4150 struct hstate *h = hstate_vma(vma);
4151 struct page *old_page, *new_page;
4152 int outside_reserve = 0;
4153 vm_fault_t ret = 0;
4154 unsigned long haddr = address & huge_page_mask(h);
4155 struct mmu_notifier_range range;
4156
4157 pte = huge_ptep_get(ptep);
4158 old_page = pte_page(pte);
4159
4160 retry_avoidcopy:
4161 /* If no-one else is actually using this page, avoid the copy
4162 * and just make the page writable */
4163 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4164 page_move_anon_rmap(old_page, vma);
4165 set_huge_ptep_writable(vma, haddr, ptep);
4166 return 0;
4167 }
4168
4169 /*
4170 * If the process that created a MAP_PRIVATE mapping is about to
4171 * perform a COW due to a shared page count, attempt to satisfy
4172 * the allocation without using the existing reserves. The pagecache
4173 * page is used to determine if the reserve at this address was
4174 * consumed or not. If reserves were used, a partial faulted mapping
4175 * at the time of fork() could consume its reserves on COW instead
4176 * of the full address range.
4177 */
4178 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4179 old_page != pagecache_page)
4180 outside_reserve = 1;
4181
4182 get_page(old_page);
4183
4184 /*
4185 * Drop page table lock as buddy allocator may be called. It will
4186 * be acquired again before returning to the caller, as expected.
4187 */
4188 spin_unlock(ptl);
4189 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4190
4191 if (IS_ERR(new_page)) {
4192 /*
4193 * If a process owning a MAP_PRIVATE mapping fails to COW,
4194 * it is due to references held by a child and an insufficient
4195 * huge page pool. To guarantee the original mappers
4196 * reliability, unmap the page from child processes. The child
4197 * may get SIGKILLed if it later faults.
4198 */
4199 if (outside_reserve) {
4200 struct address_space *mapping = vma->vm_file->f_mapping;
4201 pgoff_t idx;
4202 u32 hash;
4203
4204 put_page(old_page);
4205 BUG_ON(huge_pte_none(pte));
4206 /*
4207 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4208 * unmapping. unmapping needs to hold i_mmap_rwsem
4209 * in write mode. Dropping i_mmap_rwsem in read mode
4210 * here is OK as COW mappings do not interact with
4211 * PMD sharing.
4212 *
4213 * Reacquire both after unmap operation.
4214 */
4215 idx = vma_hugecache_offset(h, vma, haddr);
4216 hash = hugetlb_fault_mutex_hash(mapping, idx);
4217 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4218 i_mmap_unlock_read(mapping);
4219
4220 unmap_ref_private(mm, vma, old_page, haddr);
4221
4222 i_mmap_lock_read(mapping);
4223 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4224 spin_lock(ptl);
4225 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4226 if (likely(ptep &&
4227 pte_same(huge_ptep_get(ptep), pte)))
4228 goto retry_avoidcopy;
4229 /*
4230 * race occurs while re-acquiring page table
4231 * lock, and our job is done.
4232 */
4233 return 0;
4234 }
4235
4236 ret = vmf_error(PTR_ERR(new_page));
4237 goto out_release_old;
4238 }
4239
4240 /*
4241 * When the original hugepage is shared one, it does not have
4242 * anon_vma prepared.
4243 */
4244 if (unlikely(anon_vma_prepare(vma))) {
4245 ret = VM_FAULT_OOM;
4246 goto out_release_all;
4247 }
4248
4249 copy_user_huge_page(new_page, old_page, address, vma,
4250 pages_per_huge_page(h));
4251 __SetPageUptodate(new_page);
4252
4253 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4254 haddr + huge_page_size(h));
4255 mmu_notifier_invalidate_range_start(&range);
4256
4257 /*
4258 * Retake the page table lock to check for racing updates
4259 * before the page tables are altered
4260 */
4261 spin_lock(ptl);
4262 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4263 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4264 ClearPagePrivate(new_page);
4265
4266 /* Break COW */
4267 huge_ptep_clear_flush(vma, haddr, ptep);
4268 mmu_notifier_invalidate_range(mm, range.start, range.end);
4269 set_huge_pte_at(mm, haddr, ptep,
4270 make_huge_pte(vma, new_page, 1));
4271 page_remove_rmap(old_page, true);
4272 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4273 set_page_huge_active(new_page);
4274 /* Make the old page be freed below */
4275 new_page = old_page;
4276 }
4277 spin_unlock(ptl);
4278 mmu_notifier_invalidate_range_end(&range);
4279 out_release_all:
4280 restore_reserve_on_error(h, vma, haddr, new_page);
4281 put_page(new_page);
4282 out_release_old:
4283 put_page(old_page);
4284
4285 spin_lock(ptl); /* Caller expects lock to be held */
4286 return ret;
4287 }
4288
4289 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4290 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4291 struct vm_area_struct *vma, unsigned long address)
4292 {
4293 struct address_space *mapping;
4294 pgoff_t idx;
4295
4296 mapping = vma->vm_file->f_mapping;
4297 idx = vma_hugecache_offset(h, vma, address);
4298
4299 return find_lock_page(mapping, idx);
4300 }
4301
4302 /*
4303 * Return whether there is a pagecache page to back given address within VMA.
4304 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4305 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4306 static bool hugetlbfs_pagecache_present(struct hstate *h,
4307 struct vm_area_struct *vma, unsigned long address)
4308 {
4309 struct address_space *mapping;
4310 pgoff_t idx;
4311 struct page *page;
4312
4313 mapping = vma->vm_file->f_mapping;
4314 idx = vma_hugecache_offset(h, vma, address);
4315
4316 page = find_get_page(mapping, idx);
4317 if (page)
4318 put_page(page);
4319 return page != NULL;
4320 }
4321
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4322 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4323 pgoff_t idx)
4324 {
4325 struct inode *inode = mapping->host;
4326 struct hstate *h = hstate_inode(inode);
4327 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4328
4329 if (err)
4330 return err;
4331 ClearPagePrivate(page);
4332
4333 /*
4334 * set page dirty so that it will not be removed from cache/file
4335 * by non-hugetlbfs specific code paths.
4336 */
4337 set_page_dirty(page);
4338
4339 spin_lock(&inode->i_lock);
4340 inode->i_blocks += blocks_per_huge_page(h);
4341 spin_unlock(&inode->i_lock);
4342 return 0;
4343 }
4344
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4345 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4346 struct vm_area_struct *vma,
4347 struct address_space *mapping, pgoff_t idx,
4348 unsigned long address, pte_t *ptep, unsigned int flags)
4349 {
4350 struct hstate *h = hstate_vma(vma);
4351 vm_fault_t ret = VM_FAULT_SIGBUS;
4352 int anon_rmap = 0;
4353 unsigned long size;
4354 struct page *page;
4355 pte_t new_pte;
4356 spinlock_t *ptl;
4357 unsigned long haddr = address & huge_page_mask(h);
4358 bool new_page = false;
4359 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4360
4361 /*
4362 * Currently, we are forced to kill the process in the event the
4363 * original mapper has unmapped pages from the child due to a failed
4364 * COW. Warn that such a situation has occurred as it may not be obvious
4365 */
4366 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4367 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4368 current->pid);
4369 goto out;
4370 }
4371
4372 /*
4373 * We can not race with truncation due to holding i_mmap_rwsem.
4374 * i_size is modified when holding i_mmap_rwsem, so check here
4375 * once for faults beyond end of file.
4376 */
4377 size = i_size_read(mapping->host) >> huge_page_shift(h);
4378 if (idx >= size)
4379 goto out;
4380
4381 retry:
4382 page = find_lock_page(mapping, idx);
4383 if (!page) {
4384 /*
4385 * Check for page in userfault range
4386 */
4387 if (userfaultfd_missing(vma)) {
4388 struct vm_fault vmf = {
4389 .vma = vma,
4390 .address = haddr,
4391 .flags = flags,
4392 /*
4393 * Hard to debug if it ends up being
4394 * used by a callee that assumes
4395 * something about the other
4396 * uninitialized fields... same as in
4397 * memory.c
4398 */
4399 };
4400
4401 /*
4402 * vma_lock and hugetlb_fault_mutex must be dropped
4403 * before handling userfault. Also mmap_lock will
4404 * be dropped during handling userfault, any vma
4405 * operation should be careful from here.
4406 */
4407 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4408 i_mmap_unlock_read(mapping);
4409 return handle_userfault(&vmf, VM_UFFD_MISSING);
4410 }
4411
4412 page = alloc_huge_page(vma, haddr, 0);
4413 if (IS_ERR(page)) {
4414 /*
4415 * Returning error will result in faulting task being
4416 * sent SIGBUS. The hugetlb fault mutex prevents two
4417 * tasks from racing to fault in the same page which
4418 * could result in false unable to allocate errors.
4419 * Page migration does not take the fault mutex, but
4420 * does a clear then write of pte's under page table
4421 * lock. Page fault code could race with migration,
4422 * notice the clear pte and try to allocate a page
4423 * here. Before returning error, get ptl and make
4424 * sure there really is no pte entry.
4425 */
4426 ptl = huge_pte_lock(h, mm, ptep);
4427 if (!huge_pte_none(huge_ptep_get(ptep))) {
4428 ret = 0;
4429 spin_unlock(ptl);
4430 goto out;
4431 }
4432 spin_unlock(ptl);
4433 ret = vmf_error(PTR_ERR(page));
4434 goto out;
4435 }
4436 clear_huge_page(page, address, pages_per_huge_page(h));
4437 __SetPageUptodate(page);
4438 new_page = true;
4439
4440 if (vma->vm_flags & VM_MAYSHARE) {
4441 int err = huge_add_to_page_cache(page, mapping, idx);
4442 if (err) {
4443 put_page(page);
4444 if (err == -EEXIST)
4445 goto retry;
4446 goto out;
4447 }
4448 } else {
4449 lock_page(page);
4450 if (unlikely(anon_vma_prepare(vma))) {
4451 ret = VM_FAULT_OOM;
4452 goto backout_unlocked;
4453 }
4454 anon_rmap = 1;
4455 }
4456 } else {
4457 /*
4458 * If memory error occurs between mmap() and fault, some process
4459 * don't have hwpoisoned swap entry for errored virtual address.
4460 * So we need to block hugepage fault by PG_hwpoison bit check.
4461 */
4462 if (unlikely(PageHWPoison(page))) {
4463 ret = VM_FAULT_HWPOISON_LARGE |
4464 VM_FAULT_SET_HINDEX(hstate_index(h));
4465 goto backout_unlocked;
4466 }
4467 }
4468
4469 /*
4470 * If we are going to COW a private mapping later, we examine the
4471 * pending reservations for this page now. This will ensure that
4472 * any allocations necessary to record that reservation occur outside
4473 * the spinlock.
4474 */
4475 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4476 if (vma_needs_reservation(h, vma, haddr) < 0) {
4477 ret = VM_FAULT_OOM;
4478 goto backout_unlocked;
4479 }
4480 /* Just decrements count, does not deallocate */
4481 vma_end_reservation(h, vma, haddr);
4482 }
4483
4484 ptl = huge_pte_lock(h, mm, ptep);
4485 ret = 0;
4486 if (!huge_pte_none(huge_ptep_get(ptep)))
4487 goto backout;
4488
4489 if (anon_rmap) {
4490 ClearPagePrivate(page);
4491 hugepage_add_new_anon_rmap(page, vma, haddr);
4492 } else
4493 page_dup_rmap(page, true);
4494 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4495 && (vma->vm_flags & VM_SHARED)));
4496 set_huge_pte_at(mm, haddr, ptep, new_pte);
4497
4498 hugetlb_count_add(pages_per_huge_page(h), mm);
4499 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4500 /* Optimization, do the COW without a second fault */
4501 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4502 }
4503
4504 spin_unlock(ptl);
4505
4506 /*
4507 * Only make newly allocated pages active. Existing pages found
4508 * in the pagecache could be !page_huge_active() if they have been
4509 * isolated for migration.
4510 */
4511 if (new_page)
4512 set_page_huge_active(page);
4513
4514 unlock_page(page);
4515 out:
4516 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4517 i_mmap_unlock_read(mapping);
4518 return ret;
4519
4520 backout:
4521 spin_unlock(ptl);
4522 backout_unlocked:
4523 unlock_page(page);
4524 restore_reserve_on_error(h, vma, haddr, page);
4525 put_page(page);
4526 goto out;
4527 }
4528
4529 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4530 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4531 {
4532 unsigned long key[2];
4533 u32 hash;
4534
4535 key[0] = (unsigned long) mapping;
4536 key[1] = idx;
4537
4538 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4539
4540 return hash & (num_fault_mutexes - 1);
4541 }
4542 #else
4543 /*
4544 * For uniprocesor systems we always use a single mutex, so just
4545 * return 0 and avoid the hashing overhead.
4546 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4547 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4548 {
4549 return 0;
4550 }
4551 #endif
4552
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4553 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4554 unsigned long address, unsigned int flags)
4555 {
4556 pte_t *ptep, entry;
4557 spinlock_t *ptl;
4558 vm_fault_t ret;
4559 u32 hash;
4560 pgoff_t idx;
4561 struct page *page = NULL;
4562 struct page *pagecache_page = NULL;
4563 struct hstate *h = hstate_vma(vma);
4564 struct address_space *mapping;
4565 int need_wait_lock = 0;
4566 unsigned long haddr = address & huge_page_mask(h);
4567
4568 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4569 if (ptep) {
4570 /*
4571 * Since we hold no locks, ptep could be stale. That is
4572 * OK as we are only making decisions based on content and
4573 * not actually modifying content here.
4574 */
4575 entry = huge_ptep_get(ptep);
4576 if (unlikely(is_hugetlb_entry_migration(entry))) {
4577 migration_entry_wait_huge(vma, mm, ptep);
4578 return 0;
4579 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4580 return VM_FAULT_HWPOISON_LARGE |
4581 VM_FAULT_SET_HINDEX(hstate_index(h));
4582 }
4583
4584 /*
4585 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4586 * until finished with ptep. This serves two purposes:
4587 * 1) It prevents huge_pmd_unshare from being called elsewhere
4588 * and making the ptep no longer valid.
4589 * 2) It synchronizes us with i_size modifications during truncation.
4590 *
4591 * ptep could have already be assigned via huge_pte_offset. That
4592 * is OK, as huge_pte_alloc will return the same value unless
4593 * something has changed.
4594 */
4595 mapping = vma->vm_file->f_mapping;
4596 i_mmap_lock_read(mapping);
4597 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4598 if (!ptep) {
4599 i_mmap_unlock_read(mapping);
4600 return VM_FAULT_OOM;
4601 }
4602
4603 /*
4604 * Serialize hugepage allocation and instantiation, so that we don't
4605 * get spurious allocation failures if two CPUs race to instantiate
4606 * the same page in the page cache.
4607 */
4608 idx = vma_hugecache_offset(h, vma, haddr);
4609 hash = hugetlb_fault_mutex_hash(mapping, idx);
4610 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4611
4612 entry = huge_ptep_get(ptep);
4613 if (huge_pte_none(entry))
4614 /*
4615 * hugetlb_no_page will drop vma lock and hugetlb fault
4616 * mutex internally, which make us return immediately.
4617 */
4618 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4619
4620 ret = 0;
4621
4622 /*
4623 * entry could be a migration/hwpoison entry at this point, so this
4624 * check prevents the kernel from going below assuming that we have
4625 * an active hugepage in pagecache. This goto expects the 2nd page
4626 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4627 * properly handle it.
4628 */
4629 if (!pte_present(entry))
4630 goto out_mutex;
4631
4632 /*
4633 * If we are going to COW the mapping later, we examine the pending
4634 * reservations for this page now. This will ensure that any
4635 * allocations necessary to record that reservation occur outside the
4636 * spinlock. For private mappings, we also lookup the pagecache
4637 * page now as it is used to determine if a reservation has been
4638 * consumed.
4639 */
4640 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4641 if (vma_needs_reservation(h, vma, haddr) < 0) {
4642 ret = VM_FAULT_OOM;
4643 goto out_mutex;
4644 }
4645 /* Just decrements count, does not deallocate */
4646 vma_end_reservation(h, vma, haddr);
4647
4648 if (!(vma->vm_flags & VM_MAYSHARE))
4649 pagecache_page = hugetlbfs_pagecache_page(h,
4650 vma, haddr);
4651 }
4652
4653 ptl = huge_pte_lock(h, mm, ptep);
4654
4655 /* Check for a racing update before calling hugetlb_cow */
4656 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4657 goto out_ptl;
4658
4659 /*
4660 * hugetlb_cow() requires page locks of pte_page(entry) and
4661 * pagecache_page, so here we need take the former one
4662 * when page != pagecache_page or !pagecache_page.
4663 */
4664 page = pte_page(entry);
4665 if (page != pagecache_page)
4666 if (!trylock_page(page)) {
4667 need_wait_lock = 1;
4668 goto out_ptl;
4669 }
4670
4671 get_page(page);
4672
4673 if (flags & FAULT_FLAG_WRITE) {
4674 if (!huge_pte_write(entry)) {
4675 ret = hugetlb_cow(mm, vma, address, ptep,
4676 pagecache_page, ptl);
4677 goto out_put_page;
4678 }
4679 entry = huge_pte_mkdirty(entry);
4680 }
4681 entry = pte_mkyoung(entry);
4682 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4683 flags & FAULT_FLAG_WRITE))
4684 update_mmu_cache(vma, haddr, ptep);
4685 out_put_page:
4686 if (page != pagecache_page)
4687 unlock_page(page);
4688 put_page(page);
4689 out_ptl:
4690 spin_unlock(ptl);
4691
4692 if (pagecache_page) {
4693 unlock_page(pagecache_page);
4694 put_page(pagecache_page);
4695 }
4696 out_mutex:
4697 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4698 i_mmap_unlock_read(mapping);
4699 /*
4700 * Generally it's safe to hold refcount during waiting page lock. But
4701 * here we just wait to defer the next page fault to avoid busy loop and
4702 * the page is not used after unlocked before returning from the current
4703 * page fault. So we are safe from accessing freed page, even if we wait
4704 * here without taking refcount.
4705 */
4706 if (need_wait_lock)
4707 wait_on_page_locked(page);
4708 return ret;
4709 }
4710
4711 /*
4712 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4713 * modifications for huge pages.
4714 */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)4715 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4716 pte_t *dst_pte,
4717 struct vm_area_struct *dst_vma,
4718 unsigned long dst_addr,
4719 unsigned long src_addr,
4720 struct page **pagep)
4721 {
4722 struct address_space *mapping;
4723 pgoff_t idx;
4724 unsigned long size;
4725 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4726 struct hstate *h = hstate_vma(dst_vma);
4727 pte_t _dst_pte;
4728 spinlock_t *ptl;
4729 int ret;
4730 struct page *page;
4731
4732 if (!*pagep) {
4733 /* If a page already exists, then it's UFFDIO_COPY for
4734 * a non-missing case. Return -EEXIST.
4735 */
4736 if (vm_shared &&
4737 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4738 ret = -EEXIST;
4739 goto out;
4740 }
4741
4742 page = alloc_huge_page(dst_vma, dst_addr, 0);
4743 if (IS_ERR(page)) {
4744 ret = -ENOMEM;
4745 goto out;
4746 }
4747
4748 ret = copy_huge_page_from_user(page,
4749 (const void __user *) src_addr,
4750 pages_per_huge_page(h), false);
4751
4752 /* fallback to copy_from_user outside mmap_lock */
4753 if (unlikely(ret)) {
4754 ret = -ENOENT;
4755 *pagep = page;
4756 /* don't free the page */
4757 goto out;
4758 }
4759 } else {
4760 page = *pagep;
4761 *pagep = NULL;
4762 }
4763
4764 /*
4765 * The memory barrier inside __SetPageUptodate makes sure that
4766 * preceding stores to the page contents become visible before
4767 * the set_pte_at() write.
4768 */
4769 __SetPageUptodate(page);
4770
4771 mapping = dst_vma->vm_file->f_mapping;
4772 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4773
4774 /*
4775 * If shared, add to page cache
4776 */
4777 if (vm_shared) {
4778 size = i_size_read(mapping->host) >> huge_page_shift(h);
4779 ret = -EFAULT;
4780 if (idx >= size)
4781 goto out_release_nounlock;
4782
4783 /*
4784 * Serialization between remove_inode_hugepages() and
4785 * huge_add_to_page_cache() below happens through the
4786 * hugetlb_fault_mutex_table that here must be hold by
4787 * the caller.
4788 */
4789 ret = huge_add_to_page_cache(page, mapping, idx);
4790 if (ret)
4791 goto out_release_nounlock;
4792 }
4793
4794 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4795 spin_lock(ptl);
4796
4797 /*
4798 * Recheck the i_size after holding PT lock to make sure not
4799 * to leave any page mapped (as page_mapped()) beyond the end
4800 * of the i_size (remove_inode_hugepages() is strict about
4801 * enforcing that). If we bail out here, we'll also leave a
4802 * page in the radix tree in the vm_shared case beyond the end
4803 * of the i_size, but remove_inode_hugepages() will take care
4804 * of it as soon as we drop the hugetlb_fault_mutex_table.
4805 */
4806 size = i_size_read(mapping->host) >> huge_page_shift(h);
4807 ret = -EFAULT;
4808 if (idx >= size)
4809 goto out_release_unlock;
4810
4811 ret = -EEXIST;
4812 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4813 goto out_release_unlock;
4814
4815 if (vm_shared) {
4816 page_dup_rmap(page, true);
4817 } else {
4818 ClearPagePrivate(page);
4819 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4820 }
4821
4822 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4823 if (dst_vma->vm_flags & VM_WRITE)
4824 _dst_pte = huge_pte_mkdirty(_dst_pte);
4825 _dst_pte = pte_mkyoung(_dst_pte);
4826
4827 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4828
4829 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4830 dst_vma->vm_flags & VM_WRITE);
4831 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4832
4833 /* No need to invalidate - it was non-present before */
4834 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4835
4836 spin_unlock(ptl);
4837 set_page_huge_active(page);
4838 if (vm_shared)
4839 unlock_page(page);
4840 ret = 0;
4841 out:
4842 return ret;
4843 out_release_unlock:
4844 spin_unlock(ptl);
4845 if (vm_shared)
4846 unlock_page(page);
4847 out_release_nounlock:
4848 put_page(page);
4849 goto out;
4850 }
4851
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)4852 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4853 struct page **pages, struct vm_area_struct **vmas,
4854 unsigned long *position, unsigned long *nr_pages,
4855 long i, unsigned int flags, int *locked)
4856 {
4857 unsigned long pfn_offset;
4858 unsigned long vaddr = *position;
4859 unsigned long remainder = *nr_pages;
4860 struct hstate *h = hstate_vma(vma);
4861 int err = -EFAULT;
4862
4863 while (vaddr < vma->vm_end && remainder) {
4864 pte_t *pte;
4865 spinlock_t *ptl = NULL;
4866 int absent;
4867 struct page *page;
4868
4869 /*
4870 * If we have a pending SIGKILL, don't keep faulting pages and
4871 * potentially allocating memory.
4872 */
4873 if (fatal_signal_pending(current)) {
4874 remainder = 0;
4875 break;
4876 }
4877
4878 /*
4879 * Some archs (sparc64, sh*) have multiple pte_ts to
4880 * each hugepage. We have to make sure we get the
4881 * first, for the page indexing below to work.
4882 *
4883 * Note that page table lock is not held when pte is null.
4884 */
4885 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4886 huge_page_size(h));
4887 if (pte)
4888 ptl = huge_pte_lock(h, mm, pte);
4889 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4890
4891 /*
4892 * When coredumping, it suits get_dump_page if we just return
4893 * an error where there's an empty slot with no huge pagecache
4894 * to back it. This way, we avoid allocating a hugepage, and
4895 * the sparse dumpfile avoids allocating disk blocks, but its
4896 * huge holes still show up with zeroes where they need to be.
4897 */
4898 if (absent && (flags & FOLL_DUMP) &&
4899 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4900 if (pte)
4901 spin_unlock(ptl);
4902 remainder = 0;
4903 break;
4904 }
4905
4906 /*
4907 * We need call hugetlb_fault for both hugepages under migration
4908 * (in which case hugetlb_fault waits for the migration,) and
4909 * hwpoisoned hugepages (in which case we need to prevent the
4910 * caller from accessing to them.) In order to do this, we use
4911 * here is_swap_pte instead of is_hugetlb_entry_migration and
4912 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4913 * both cases, and because we can't follow correct pages
4914 * directly from any kind of swap entries.
4915 */
4916 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4917 ((flags & FOLL_WRITE) &&
4918 !huge_pte_write(huge_ptep_get(pte)))) {
4919 vm_fault_t ret;
4920 unsigned int fault_flags = 0;
4921
4922 if (pte)
4923 spin_unlock(ptl);
4924 if (flags & FOLL_WRITE)
4925 fault_flags |= FAULT_FLAG_WRITE;
4926 if (locked)
4927 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4928 FAULT_FLAG_KILLABLE;
4929 if (flags & FOLL_NOWAIT)
4930 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4931 FAULT_FLAG_RETRY_NOWAIT;
4932 if (flags & FOLL_TRIED) {
4933 /*
4934 * Note: FAULT_FLAG_ALLOW_RETRY and
4935 * FAULT_FLAG_TRIED can co-exist
4936 */
4937 fault_flags |= FAULT_FLAG_TRIED;
4938 }
4939 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4940 if (ret & VM_FAULT_ERROR) {
4941 err = vm_fault_to_errno(ret, flags);
4942 remainder = 0;
4943 break;
4944 }
4945 if (ret & VM_FAULT_RETRY) {
4946 if (locked &&
4947 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4948 *locked = 0;
4949 *nr_pages = 0;
4950 /*
4951 * VM_FAULT_RETRY must not return an
4952 * error, it will return zero
4953 * instead.
4954 *
4955 * No need to update "position" as the
4956 * caller will not check it after
4957 * *nr_pages is set to 0.
4958 */
4959 return i;
4960 }
4961 continue;
4962 }
4963
4964 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4965 page = pte_page(huge_ptep_get(pte));
4966
4967 /*
4968 * If subpage information not requested, update counters
4969 * and skip the same_page loop below.
4970 */
4971 if (!pages && !vmas && !pfn_offset &&
4972 (vaddr + huge_page_size(h) < vma->vm_end) &&
4973 (remainder >= pages_per_huge_page(h))) {
4974 vaddr += huge_page_size(h);
4975 remainder -= pages_per_huge_page(h);
4976 i += pages_per_huge_page(h);
4977 spin_unlock(ptl);
4978 continue;
4979 }
4980
4981 same_page:
4982 if (pages) {
4983 pages[i] = mem_map_offset(page, pfn_offset);
4984 /*
4985 * try_grab_page() should always succeed here, because:
4986 * a) we hold the ptl lock, and b) we've just checked
4987 * that the huge page is present in the page tables. If
4988 * the huge page is present, then the tail pages must
4989 * also be present. The ptl prevents the head page and
4990 * tail pages from being rearranged in any way. So this
4991 * page must be available at this point, unless the page
4992 * refcount overflowed:
4993 */
4994 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4995 spin_unlock(ptl);
4996 remainder = 0;
4997 err = -ENOMEM;
4998 break;
4999 }
5000 }
5001
5002 if (vmas)
5003 vmas[i] = vma;
5004
5005 vaddr += PAGE_SIZE;
5006 ++pfn_offset;
5007 --remainder;
5008 ++i;
5009 if (vaddr < vma->vm_end && remainder &&
5010 pfn_offset < pages_per_huge_page(h)) {
5011 /*
5012 * We use pfn_offset to avoid touching the pageframes
5013 * of this compound page.
5014 */
5015 goto same_page;
5016 }
5017 spin_unlock(ptl);
5018 }
5019 *nr_pages = remainder;
5020 /*
5021 * setting position is actually required only if remainder is
5022 * not zero but it's faster not to add a "if (remainder)"
5023 * branch.
5024 */
5025 *position = vaddr;
5026
5027 return i ? i : err;
5028 }
5029
5030 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5031 /*
5032 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5033 * implement this.
5034 */
5035 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5036 #endif
5037
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5038 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5039 unsigned long address, unsigned long end, pgprot_t newprot)
5040 {
5041 struct mm_struct *mm = vma->vm_mm;
5042 unsigned long start = address;
5043 pte_t *ptep;
5044 pte_t pte;
5045 struct hstate *h = hstate_vma(vma);
5046 unsigned long pages = 0;
5047 bool shared_pmd = false;
5048 struct mmu_notifier_range range;
5049
5050 /*
5051 * In the case of shared PMDs, the area to flush could be beyond
5052 * start/end. Set range.start/range.end to cover the maximum possible
5053 * range if PMD sharing is possible.
5054 */
5055 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5056 0, vma, mm, start, end);
5057 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5058
5059 BUG_ON(address >= end);
5060 flush_cache_range(vma, range.start, range.end);
5061
5062 mmu_notifier_invalidate_range_start(&range);
5063 i_mmap_lock_write(vma->vm_file->f_mapping);
5064 for (; address < end; address += huge_page_size(h)) {
5065 spinlock_t *ptl;
5066 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5067 if (!ptep)
5068 continue;
5069 ptl = huge_pte_lock(h, mm, ptep);
5070 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5071 pages++;
5072 spin_unlock(ptl);
5073 shared_pmd = true;
5074 continue;
5075 }
5076 pte = huge_ptep_get(ptep);
5077 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5078 spin_unlock(ptl);
5079 continue;
5080 }
5081 if (unlikely(is_hugetlb_entry_migration(pte))) {
5082 swp_entry_t entry = pte_to_swp_entry(pte);
5083
5084 if (is_write_migration_entry(entry)) {
5085 pte_t newpte;
5086
5087 make_migration_entry_read(&entry);
5088 newpte = swp_entry_to_pte(entry);
5089 set_huge_swap_pte_at(mm, address, ptep,
5090 newpte, huge_page_size(h));
5091 pages++;
5092 }
5093 spin_unlock(ptl);
5094 continue;
5095 }
5096 if (!huge_pte_none(pte)) {
5097 pte_t old_pte;
5098
5099 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5100 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5101 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5102 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5103 pages++;
5104 }
5105 spin_unlock(ptl);
5106 }
5107 /*
5108 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5109 * may have cleared our pud entry and done put_page on the page table:
5110 * once we release i_mmap_rwsem, another task can do the final put_page
5111 * and that page table be reused and filled with junk. If we actually
5112 * did unshare a page of pmds, flush the range corresponding to the pud.
5113 */
5114 if (shared_pmd)
5115 flush_hugetlb_tlb_range(vma, range.start, range.end);
5116 else
5117 flush_hugetlb_tlb_range(vma, start, end);
5118 /*
5119 * No need to call mmu_notifier_invalidate_range() we are downgrading
5120 * page table protection not changing it to point to a new page.
5121 *
5122 * See Documentation/vm/mmu_notifier.rst
5123 */
5124 i_mmap_unlock_write(vma->vm_file->f_mapping);
5125 mmu_notifier_invalidate_range_end(&range);
5126
5127 return pages << h->order;
5128 }
5129
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5130 int hugetlb_reserve_pages(struct inode *inode,
5131 long from, long to,
5132 struct vm_area_struct *vma,
5133 vm_flags_t vm_flags)
5134 {
5135 long ret, chg, add = -1;
5136 struct hstate *h = hstate_inode(inode);
5137 struct hugepage_subpool *spool = subpool_inode(inode);
5138 struct resv_map *resv_map;
5139 struct hugetlb_cgroup *h_cg = NULL;
5140 long gbl_reserve, regions_needed = 0;
5141
5142 /* This should never happen */
5143 if (from > to) {
5144 VM_WARN(1, "%s called with a negative range\n", __func__);
5145 return -EINVAL;
5146 }
5147
5148 /*
5149 * Only apply hugepage reservation if asked. At fault time, an
5150 * attempt will be made for VM_NORESERVE to allocate a page
5151 * without using reserves
5152 */
5153 if (vm_flags & VM_NORESERVE)
5154 return 0;
5155
5156 /*
5157 * Shared mappings base their reservation on the number of pages that
5158 * are already allocated on behalf of the file. Private mappings need
5159 * to reserve the full area even if read-only as mprotect() may be
5160 * called to make the mapping read-write. Assume !vma is a shm mapping
5161 */
5162 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5163 /*
5164 * resv_map can not be NULL as hugetlb_reserve_pages is only
5165 * called for inodes for which resv_maps were created (see
5166 * hugetlbfs_get_inode).
5167 */
5168 resv_map = inode_resv_map(inode);
5169
5170 chg = region_chg(resv_map, from, to, ®ions_needed);
5171
5172 } else {
5173 /* Private mapping. */
5174 resv_map = resv_map_alloc();
5175 if (!resv_map)
5176 return -ENOMEM;
5177
5178 chg = to - from;
5179
5180 set_vma_resv_map(vma, resv_map);
5181 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5182 }
5183
5184 if (chg < 0) {
5185 ret = chg;
5186 goto out_err;
5187 }
5188
5189 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5190 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5191
5192 if (ret < 0) {
5193 ret = -ENOMEM;
5194 goto out_err;
5195 }
5196
5197 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5198 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5199 * of the resv_map.
5200 */
5201 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5202 }
5203
5204 /*
5205 * There must be enough pages in the subpool for the mapping. If
5206 * the subpool has a minimum size, there may be some global
5207 * reservations already in place (gbl_reserve).
5208 */
5209 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5210 if (gbl_reserve < 0) {
5211 ret = -ENOSPC;
5212 goto out_uncharge_cgroup;
5213 }
5214
5215 /*
5216 * Check enough hugepages are available for the reservation.
5217 * Hand the pages back to the subpool if there are not
5218 */
5219 ret = hugetlb_acct_memory(h, gbl_reserve);
5220 if (ret < 0) {
5221 goto out_put_pages;
5222 }
5223
5224 /*
5225 * Account for the reservations made. Shared mappings record regions
5226 * that have reservations as they are shared by multiple VMAs.
5227 * When the last VMA disappears, the region map says how much
5228 * the reservation was and the page cache tells how much of
5229 * the reservation was consumed. Private mappings are per-VMA and
5230 * only the consumed reservations are tracked. When the VMA
5231 * disappears, the original reservation is the VMA size and the
5232 * consumed reservations are stored in the map. Hence, nothing
5233 * else has to be done for private mappings here
5234 */
5235 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5236 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5237
5238 if (unlikely(add < 0)) {
5239 hugetlb_acct_memory(h, -gbl_reserve);
5240 ret = add;
5241 goto out_put_pages;
5242 } else if (unlikely(chg > add)) {
5243 /*
5244 * pages in this range were added to the reserve
5245 * map between region_chg and region_add. This
5246 * indicates a race with alloc_huge_page. Adjust
5247 * the subpool and reserve counts modified above
5248 * based on the difference.
5249 */
5250 long rsv_adjust;
5251
5252 /*
5253 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5254 * reference to h_cg->css. See comment below for detail.
5255 */
5256 hugetlb_cgroup_uncharge_cgroup_rsvd(
5257 hstate_index(h),
5258 (chg - add) * pages_per_huge_page(h), h_cg);
5259
5260 rsv_adjust = hugepage_subpool_put_pages(spool,
5261 chg - add);
5262 hugetlb_acct_memory(h, -rsv_adjust);
5263 } else if (h_cg) {
5264 /*
5265 * The file_regions will hold their own reference to
5266 * h_cg->css. So we should release the reference held
5267 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5268 * done.
5269 */
5270 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5271 }
5272 }
5273 return 0;
5274 out_put_pages:
5275 /* put back original number of pages, chg */
5276 (void)hugepage_subpool_put_pages(spool, chg);
5277 out_uncharge_cgroup:
5278 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5279 chg * pages_per_huge_page(h), h_cg);
5280 out_err:
5281 if (!vma || vma->vm_flags & VM_MAYSHARE)
5282 /* Only call region_abort if the region_chg succeeded but the
5283 * region_add failed or didn't run.
5284 */
5285 if (chg >= 0 && add < 0)
5286 region_abort(resv_map, from, to, regions_needed);
5287 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5288 kref_put(&resv_map->refs, resv_map_release);
5289 return ret;
5290 }
5291
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5292 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5293 long freed)
5294 {
5295 struct hstate *h = hstate_inode(inode);
5296 struct resv_map *resv_map = inode_resv_map(inode);
5297 long chg = 0;
5298 struct hugepage_subpool *spool = subpool_inode(inode);
5299 long gbl_reserve;
5300
5301 /*
5302 * Since this routine can be called in the evict inode path for all
5303 * hugetlbfs inodes, resv_map could be NULL.
5304 */
5305 if (resv_map) {
5306 chg = region_del(resv_map, start, end);
5307 /*
5308 * region_del() can fail in the rare case where a region
5309 * must be split and another region descriptor can not be
5310 * allocated. If end == LONG_MAX, it will not fail.
5311 */
5312 if (chg < 0)
5313 return chg;
5314 }
5315
5316 spin_lock(&inode->i_lock);
5317 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5318 spin_unlock(&inode->i_lock);
5319
5320 /*
5321 * If the subpool has a minimum size, the number of global
5322 * reservations to be released may be adjusted.
5323 */
5324 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5325 hugetlb_acct_memory(h, -gbl_reserve);
5326
5327 return 0;
5328 }
5329
5330 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5331 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5332 struct vm_area_struct *vma,
5333 unsigned long addr, pgoff_t idx)
5334 {
5335 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5336 svma->vm_start;
5337 unsigned long sbase = saddr & PUD_MASK;
5338 unsigned long s_end = sbase + PUD_SIZE;
5339
5340 /* Allow segments to share if only one is marked locked */
5341 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5342 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5343
5344 /*
5345 * match the virtual addresses, permission and the alignment of the
5346 * page table page.
5347 */
5348 if (pmd_index(addr) != pmd_index(saddr) ||
5349 vm_flags != svm_flags ||
5350 sbase < svma->vm_start || svma->vm_end < s_end)
5351 return 0;
5352
5353 return saddr;
5354 }
5355
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5356 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5357 {
5358 unsigned long base = addr & PUD_MASK;
5359 unsigned long end = base + PUD_SIZE;
5360
5361 /*
5362 * check on proper vm_flags and page table alignment
5363 */
5364 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5365 return true;
5366 return false;
5367 }
5368
5369 /*
5370 * Determine if start,end range within vma could be mapped by shared pmd.
5371 * If yes, adjust start and end to cover range associated with possible
5372 * shared pmd mappings.
5373 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5374 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5375 unsigned long *start, unsigned long *end)
5376 {
5377 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5378 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5379
5380 /*
5381 * vma need span at least one aligned PUD size and the start,end range
5382 * must at least partialy within it.
5383 */
5384 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5385 (*end <= v_start) || (*start >= v_end))
5386 return;
5387
5388 /* Extend the range to be PUD aligned for a worst case scenario */
5389 if (*start > v_start)
5390 *start = ALIGN_DOWN(*start, PUD_SIZE);
5391
5392 if (*end < v_end)
5393 *end = ALIGN(*end, PUD_SIZE);
5394 }
5395
5396 /*
5397 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5398 * and returns the corresponding pte. While this is not necessary for the
5399 * !shared pmd case because we can allocate the pmd later as well, it makes the
5400 * code much cleaner.
5401 *
5402 * This routine must be called with i_mmap_rwsem held in at least read mode if
5403 * sharing is possible. For hugetlbfs, this prevents removal of any page
5404 * table entries associated with the address space. This is important as we
5405 * are setting up sharing based on existing page table entries (mappings).
5406 *
5407 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5408 * huge_pte_alloc know that sharing is not possible and do not take
5409 * i_mmap_rwsem as a performance optimization. This is handled by the
5410 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5411 * only required for subsequent processing.
5412 */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)5413 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5414 {
5415 struct vm_area_struct *vma = find_vma(mm, addr);
5416 struct address_space *mapping = vma->vm_file->f_mapping;
5417 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5418 vma->vm_pgoff;
5419 struct vm_area_struct *svma;
5420 unsigned long saddr;
5421 pte_t *spte = NULL;
5422 pte_t *pte;
5423 spinlock_t *ptl;
5424
5425 if (!vma_shareable(vma, addr))
5426 return (pte_t *)pmd_alloc(mm, pud, addr);
5427
5428 i_mmap_assert_locked(mapping);
5429 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5430 if (svma == vma)
5431 continue;
5432
5433 saddr = page_table_shareable(svma, vma, addr, idx);
5434 if (saddr) {
5435 spte = huge_pte_offset(svma->vm_mm, saddr,
5436 vma_mmu_pagesize(svma));
5437 if (spte) {
5438 get_page(virt_to_page(spte));
5439 break;
5440 }
5441 }
5442 }
5443
5444 if (!spte)
5445 goto out;
5446
5447 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5448 if (pud_none(*pud)) {
5449 pud_populate(mm, pud,
5450 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5451 mm_inc_nr_pmds(mm);
5452 } else {
5453 put_page(virt_to_page(spte));
5454 }
5455 spin_unlock(ptl);
5456 out:
5457 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5458 return pte;
5459 }
5460
5461 /*
5462 * unmap huge page backed by shared pte.
5463 *
5464 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5465 * indicated by page_count > 1, unmap is achieved by clearing pud and
5466 * decrementing the ref count. If count == 1, the pte page is not shared.
5467 *
5468 * Called with page table lock held and i_mmap_rwsem held in write mode.
5469 *
5470 * returns: 1 successfully unmapped a shared pte page
5471 * 0 the underlying pte page is not shared, or it is the last user
5472 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5473 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5474 unsigned long *addr, pte_t *ptep)
5475 {
5476 pgd_t *pgd = pgd_offset(mm, *addr);
5477 p4d_t *p4d = p4d_offset(pgd, *addr);
5478 pud_t *pud = pud_offset(p4d, *addr);
5479
5480 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5481 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5482 if (page_count(virt_to_page(ptep)) == 1)
5483 return 0;
5484
5485 pud_clear(pud);
5486 put_page(virt_to_page(ptep));
5487 mm_dec_nr_pmds(mm);
5488 /*
5489 * This update of passed address optimizes loops sequentially
5490 * processing addresses in increments of huge page size (PMD_SIZE
5491 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
5492 * Update address to the 'last page' in the cleared area so that
5493 * calling loop can move to first page past this area.
5494 */
5495 *addr |= PUD_SIZE - PMD_SIZE;
5496 return 1;
5497 }
5498 #define want_pmd_share() (1)
5499 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)5500 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5501 {
5502 return NULL;
5503 }
5504
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5505 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5506 unsigned long *addr, pte_t *ptep)
5507 {
5508 return 0;
5509 }
5510
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5511 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5512 unsigned long *start, unsigned long *end)
5513 {
5514 }
5515 #define want_pmd_share() (0)
5516 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5517
5518 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)5519 pte_t *huge_pte_alloc(struct mm_struct *mm,
5520 unsigned long addr, unsigned long sz)
5521 {
5522 pgd_t *pgd;
5523 p4d_t *p4d;
5524 pud_t *pud;
5525 pte_t *pte = NULL;
5526
5527 pgd = pgd_offset(mm, addr);
5528 p4d = p4d_alloc(mm, pgd, addr);
5529 if (!p4d)
5530 return NULL;
5531 pud = pud_alloc(mm, p4d, addr);
5532 if (pud) {
5533 if (sz == PUD_SIZE) {
5534 pte = (pte_t *)pud;
5535 } else {
5536 BUG_ON(sz != PMD_SIZE);
5537 if (want_pmd_share() && pud_none(*pud))
5538 pte = huge_pmd_share(mm, addr, pud);
5539 else
5540 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5541 }
5542 }
5543 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5544
5545 return pte;
5546 }
5547
5548 /*
5549 * huge_pte_offset() - Walk the page table to resolve the hugepage
5550 * entry at address @addr
5551 *
5552 * Return: Pointer to page table entry (PUD or PMD) for
5553 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5554 * size @sz doesn't match the hugepage size at this level of the page
5555 * table.
5556 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5557 pte_t *huge_pte_offset(struct mm_struct *mm,
5558 unsigned long addr, unsigned long sz)
5559 {
5560 pgd_t *pgd;
5561 p4d_t *p4d;
5562 pud_t *pud;
5563 pmd_t *pmd;
5564
5565 pgd = pgd_offset(mm, addr);
5566 if (!pgd_present(*pgd))
5567 return NULL;
5568 p4d = p4d_offset(pgd, addr);
5569 if (!p4d_present(*p4d))
5570 return NULL;
5571
5572 pud = pud_offset(p4d, addr);
5573 if (sz == PUD_SIZE)
5574 /* must be pud huge, non-present or none */
5575 return (pte_t *)pud;
5576 if (!pud_present(*pud))
5577 return NULL;
5578 /* must have a valid entry and size to go further */
5579
5580 pmd = pmd_offset(pud, addr);
5581 /* must be pmd huge, non-present or none */
5582 return (pte_t *)pmd;
5583 }
5584
5585 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5586
5587 /*
5588 * These functions are overwritable if your architecture needs its own
5589 * behavior.
5590 */
5591 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5592 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5593 int write)
5594 {
5595 return ERR_PTR(-EINVAL);
5596 }
5597
5598 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5599 follow_huge_pd(struct vm_area_struct *vma,
5600 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5601 {
5602 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5603 return NULL;
5604 }
5605
5606 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)5607 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5608 {
5609 struct hstate *h = hstate_vma(vma);
5610 struct mm_struct *mm = vma->vm_mm;
5611 struct page *page = NULL;
5612 spinlock_t *ptl;
5613 pte_t *ptep, pte;
5614
5615 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5616 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5617 (FOLL_PIN | FOLL_GET)))
5618 return NULL;
5619
5620 retry:
5621 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5622 if (!ptep)
5623 return NULL;
5624
5625 ptl = huge_pte_lock(h, mm, ptep);
5626 pte = huge_ptep_get(ptep);
5627 if (pte_present(pte)) {
5628 page = pte_page(pte) +
5629 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5630 /*
5631 * try_grab_page() should always succeed here, because: a) we
5632 * hold the pmd (ptl) lock, and b) we've just checked that the
5633 * huge pmd (head) page is present in the page tables. The ptl
5634 * prevents the head page and tail pages from being rearranged
5635 * in any way. So this page must be available at this point,
5636 * unless the page refcount overflowed:
5637 */
5638 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5639 page = NULL;
5640 goto out;
5641 }
5642 } else {
5643 if (is_hugetlb_entry_migration(pte)) {
5644 spin_unlock(ptl);
5645 __migration_entry_wait(mm, ptep, ptl);
5646 goto retry;
5647 }
5648 /*
5649 * hwpoisoned entry is treated as no_page_table in
5650 * follow_page_mask().
5651 */
5652 }
5653 out:
5654 spin_unlock(ptl);
5655 return page;
5656 }
5657
5658 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5659 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5660 pud_t *pud, int flags)
5661 {
5662 if (flags & (FOLL_GET | FOLL_PIN))
5663 return NULL;
5664
5665 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5666 }
5667
5668 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5669 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5670 {
5671 if (flags & (FOLL_GET | FOLL_PIN))
5672 return NULL;
5673
5674 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5675 }
5676
isolate_hugetlb(struct page * page,struct list_head * list)5677 int isolate_hugetlb(struct page *page, struct list_head *list)
5678 {
5679 int ret = 0;
5680
5681 spin_lock(&hugetlb_lock);
5682 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5683 !get_page_unless_zero(page)) {
5684 ret = -EBUSY;
5685 goto unlock;
5686 }
5687 clear_page_huge_active(page);
5688 list_move_tail(&page->lru, list);
5689 unlock:
5690 spin_unlock(&hugetlb_lock);
5691 return ret;
5692 }
5693
putback_active_hugepage(struct page * page)5694 void putback_active_hugepage(struct page *page)
5695 {
5696 VM_BUG_ON_PAGE(!PageHead(page), page);
5697 spin_lock(&hugetlb_lock);
5698 set_page_huge_active(page);
5699 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5700 spin_unlock(&hugetlb_lock);
5701 put_page(page);
5702 }
5703
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5704 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5705 {
5706 struct hstate *h = page_hstate(oldpage);
5707
5708 hugetlb_cgroup_migrate(oldpage, newpage);
5709 set_page_owner_migrate_reason(newpage, reason);
5710
5711 /*
5712 * transfer temporary state of the new huge page. This is
5713 * reverse to other transitions because the newpage is going to
5714 * be final while the old one will be freed so it takes over
5715 * the temporary status.
5716 *
5717 * Also note that we have to transfer the per-node surplus state
5718 * here as well otherwise the global surplus count will not match
5719 * the per-node's.
5720 */
5721 if (PageHugeTemporary(newpage)) {
5722 int old_nid = page_to_nid(oldpage);
5723 int new_nid = page_to_nid(newpage);
5724
5725 SetPageHugeTemporary(oldpage);
5726 ClearPageHugeTemporary(newpage);
5727
5728 spin_lock(&hugetlb_lock);
5729 if (h->surplus_huge_pages_node[old_nid]) {
5730 h->surplus_huge_pages_node[old_nid]--;
5731 h->surplus_huge_pages_node[new_nid]++;
5732 }
5733 spin_unlock(&hugetlb_lock);
5734 }
5735 }
5736
5737 #ifdef CONFIG_CMA
5738 static bool cma_reserve_called __initdata;
5739
cmdline_parse_hugetlb_cma(char * p)5740 static int __init cmdline_parse_hugetlb_cma(char *p)
5741 {
5742 hugetlb_cma_size = memparse(p, &p);
5743 return 0;
5744 }
5745
5746 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5747
hugetlb_cma_reserve(int order)5748 void __init hugetlb_cma_reserve(int order)
5749 {
5750 unsigned long size, reserved, per_node;
5751 int nid;
5752
5753 cma_reserve_called = true;
5754
5755 if (!hugetlb_cma_size)
5756 return;
5757
5758 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5759 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5760 (PAGE_SIZE << order) / SZ_1M);
5761 return;
5762 }
5763
5764 /*
5765 * If 3 GB area is requested on a machine with 4 numa nodes,
5766 * let's allocate 1 GB on first three nodes and ignore the last one.
5767 */
5768 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5769 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5770 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5771
5772 reserved = 0;
5773 for_each_node_state(nid, N_ONLINE) {
5774 int res;
5775 char name[CMA_MAX_NAME];
5776
5777 size = min(per_node, hugetlb_cma_size - reserved);
5778 size = round_up(size, PAGE_SIZE << order);
5779
5780 snprintf(name, sizeof(name), "hugetlb%d", nid);
5781 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5782 0, false, name,
5783 &hugetlb_cma[nid], nid);
5784 if (res) {
5785 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5786 res, nid);
5787 continue;
5788 }
5789
5790 reserved += size;
5791 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5792 size / SZ_1M, nid);
5793
5794 if (reserved >= hugetlb_cma_size)
5795 break;
5796 }
5797 }
5798
hugetlb_cma_check(void)5799 void __init hugetlb_cma_check(void)
5800 {
5801 if (!hugetlb_cma_size || cma_reserve_called)
5802 return;
5803
5804 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5805 }
5806
5807 #endif /* CONFIG_CMA */
5808