• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
PageHugeFreed(struct page * head)82 static inline bool PageHugeFreed(struct page *head)
83 {
84 	return page_private(head + 4) == -1UL;
85 }
86 
SetPageHugeFreed(struct page * head)87 static inline void SetPageHugeFreed(struct page *head)
88 {
89 	set_page_private(head + 4, -1UL);
90 }
91 
ClearPageHugeFreed(struct page * head)92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94 	set_page_private(head + 4, 0);
95 }
96 
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99 
unlock_or_release_subpool(struct hugepage_subpool * spool)100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
103 
104 	spin_unlock(&spool->lock);
105 
106 	/* If no pages are used, and no other handles to the subpool
107 	 * remain, give up any reservations based on minimum size and
108 	 * free the subpool */
109 	if (free) {
110 		if (spool->min_hpages != -1)
111 			hugetlb_acct_memory(spool->hstate,
112 						-spool->min_hpages);
113 		kfree(spool);
114 	}
115 }
116 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 						long min_hpages)
119 {
120 	struct hugepage_subpool *spool;
121 
122 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 	if (!spool)
124 		return NULL;
125 
126 	spin_lock_init(&spool->lock);
127 	spool->count = 1;
128 	spool->max_hpages = max_hpages;
129 	spool->hstate = h;
130 	spool->min_hpages = min_hpages;
131 
132 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 		kfree(spool);
134 		return NULL;
135 	}
136 	spool->rsv_hpages = min_hpages;
137 
138 	return spool;
139 }
140 
hugepage_put_subpool(struct hugepage_subpool * spool)141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143 	spin_lock(&spool->lock);
144 	BUG_ON(!spool->count);
145 	spool->count--;
146 	unlock_or_release_subpool(spool);
147 }
148 
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 				      long delta)
159 {
160 	long ret = delta;
161 
162 	if (!spool)
163 		return ret;
164 
165 	spin_lock(&spool->lock);
166 
167 	if (spool->max_hpages != -1) {		/* maximum size accounting */
168 		if ((spool->used_hpages + delta) <= spool->max_hpages)
169 			spool->used_hpages += delta;
170 		else {
171 			ret = -ENOMEM;
172 			goto unlock_ret;
173 		}
174 	}
175 
176 	/* minimum size accounting */
177 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 		if (delta > spool->rsv_hpages) {
179 			/*
180 			 * Asking for more reserves than those already taken on
181 			 * behalf of subpool.  Return difference.
182 			 */
183 			ret = delta - spool->rsv_hpages;
184 			spool->rsv_hpages = 0;
185 		} else {
186 			ret = 0;	/* reserves already accounted for */
187 			spool->rsv_hpages -= delta;
188 		}
189 	}
190 
191 unlock_ret:
192 	spin_unlock(&spool->lock);
193 	return ret;
194 }
195 
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 				       long delta)
204 {
205 	long ret = delta;
206 
207 	if (!spool)
208 		return delta;
209 
210 	spin_lock(&spool->lock);
211 
212 	if (spool->max_hpages != -1)		/* maximum size accounting */
213 		spool->used_hpages -= delta;
214 
215 	 /* minimum size accounting */
216 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 		if (spool->rsv_hpages + delta <= spool->min_hpages)
218 			ret = 0;
219 		else
220 			ret = spool->rsv_hpages + delta - spool->min_hpages;
221 
222 		spool->rsv_hpages += delta;
223 		if (spool->rsv_hpages > spool->min_hpages)
224 			spool->rsv_hpages = spool->min_hpages;
225 	}
226 
227 	/*
228 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 	 * quota reference, free it now.
230 	 */
231 	unlock_or_release_subpool(spool);
232 
233 	return ret;
234 }
235 
subpool_inode(struct inode * inode)236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 	return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240 
subpool_vma(struct vm_area_struct * vma)241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 	return subpool_inode(file_inode(vma->vm_file));
244 }
245 
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 	struct file_region *nrg = NULL;
253 
254 	VM_BUG_ON(resv->region_cache_count <= 0);
255 
256 	resv->region_cache_count--;
257 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 	list_del(&nrg->link);
259 
260 	nrg->from = from;
261 	nrg->to = to;
262 
263 	return nrg;
264 }
265 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 					      struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 	nrg->reservation_counter = rg->reservation_counter;
271 	nrg->css = rg->css;
272 	if (rg->css)
273 		css_get(rg->css);
274 #endif
275 }
276 
277 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 						struct hstate *h,
280 						struct resv_map *resv,
281 						struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 	if (h_cg) {
285 		nrg->reservation_counter =
286 			&h_cg->rsvd_hugepage[hstate_index(h)];
287 		nrg->css = &h_cg->css;
288 		/*
289 		 * The caller will hold exactly one h_cg->css reference for the
290 		 * whole contiguous reservation region. But this area might be
291 		 * scattered when there are already some file_regions reside in
292 		 * it. As a result, many file_regions may share only one css
293 		 * reference. In order to ensure that one file_region must hold
294 		 * exactly one h_cg->css reference, we should do css_get for
295 		 * each file_region and leave the reference held by caller
296 		 * untouched.
297 		 */
298 		css_get(&h_cg->css);
299 		if (!resv->pages_per_hpage)
300 			resv->pages_per_hpage = pages_per_huge_page(h);
301 		/* pages_per_hpage should be the same for all entries in
302 		 * a resv_map.
303 		 */
304 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 	} else {
306 		nrg->reservation_counter = NULL;
307 		nrg->css = NULL;
308 	}
309 #endif
310 }
311 
put_uncharge_info(struct file_region * rg)312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 	if (rg->css)
316 		css_put(rg->css);
317 #endif
318 }
319 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)320 static bool has_same_uncharge_info(struct file_region *rg,
321 				   struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 	return rg && org &&
325 	       rg->reservation_counter == org->reservation_counter &&
326 	       rg->css == org->css;
327 
328 #else
329 	return true;
330 #endif
331 }
332 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 	struct file_region *nrg = NULL, *prg = NULL;
336 
337 	prg = list_prev_entry(rg, link);
338 	if (&prg->link != &resv->regions && prg->to == rg->from &&
339 	    has_same_uncharge_info(prg, rg)) {
340 		prg->to = rg->to;
341 
342 		list_del(&rg->link);
343 		put_uncharge_info(rg);
344 		kfree(rg);
345 
346 		rg = prg;
347 	}
348 
349 	nrg = list_next_entry(rg, link);
350 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 	    has_same_uncharge_info(nrg, rg)) {
352 		nrg->from = rg->from;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 	}
358 }
359 
360 /*
361  * Must be called with resv->lock held.
362  *
363  * Calling this with regions_needed != NULL will count the number of pages
364  * to be added but will not modify the linked list. And regions_needed will
365  * indicate the number of file_regions needed in the cache to carry out to add
366  * the regions for this range.
367  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369 				     struct hugetlb_cgroup *h_cg,
370 				     struct hstate *h, long *regions_needed)
371 {
372 	long add = 0;
373 	struct list_head *head = &resv->regions;
374 	long last_accounted_offset = f;
375 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376 
377 	if (regions_needed)
378 		*regions_needed = 0;
379 
380 	/* In this loop, we essentially handle an entry for the range
381 	 * [last_accounted_offset, rg->from), at every iteration, with some
382 	 * bounds checking.
383 	 */
384 	list_for_each_entry_safe(rg, trg, head, link) {
385 		/* Skip irrelevant regions that start before our range. */
386 		if (rg->from < f) {
387 			/* If this region ends after the last accounted offset,
388 			 * then we need to update last_accounted_offset.
389 			 */
390 			if (rg->to > last_accounted_offset)
391 				last_accounted_offset = rg->to;
392 			continue;
393 		}
394 
395 		/* When we find a region that starts beyond our range, we've
396 		 * finished.
397 		 */
398 		if (rg->from > t)
399 			break;
400 
401 		/* Add an entry for last_accounted_offset -> rg->from, and
402 		 * update last_accounted_offset.
403 		 */
404 		if (rg->from > last_accounted_offset) {
405 			add += rg->from - last_accounted_offset;
406 			if (!regions_needed) {
407 				nrg = get_file_region_entry_from_cache(
408 					resv, last_accounted_offset, rg->from);
409 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
410 								    resv, nrg);
411 				list_add(&nrg->link, rg->link.prev);
412 				coalesce_file_region(resv, nrg);
413 			} else
414 				*regions_needed += 1;
415 		}
416 
417 		last_accounted_offset = rg->to;
418 	}
419 
420 	/* Handle the case where our range extends beyond
421 	 * last_accounted_offset.
422 	 */
423 	if (last_accounted_offset < t) {
424 		add += t - last_accounted_offset;
425 		if (!regions_needed) {
426 			nrg = get_file_region_entry_from_cache(
427 				resv, last_accounted_offset, t);
428 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429 			list_add(&nrg->link, rg->link.prev);
430 			coalesce_file_region(resv, nrg);
431 		} else
432 			*regions_needed += 1;
433 	}
434 
435 	VM_BUG_ON(add < 0);
436 	return add;
437 }
438 
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)441 static int allocate_file_region_entries(struct resv_map *resv,
442 					int regions_needed)
443 	__must_hold(&resv->lock)
444 {
445 	struct list_head allocated_regions;
446 	int to_allocate = 0, i = 0;
447 	struct file_region *trg = NULL, *rg = NULL;
448 
449 	VM_BUG_ON(regions_needed < 0);
450 
451 	INIT_LIST_HEAD(&allocated_regions);
452 
453 	/*
454 	 * Check for sufficient descriptors in the cache to accommodate
455 	 * the number of in progress add operations plus regions_needed.
456 	 *
457 	 * This is a while loop because when we drop the lock, some other call
458 	 * to region_add or region_del may have consumed some region_entries,
459 	 * so we keep looping here until we finally have enough entries for
460 	 * (adds_in_progress + regions_needed).
461 	 */
462 	while (resv->region_cache_count <
463 	       (resv->adds_in_progress + regions_needed)) {
464 		to_allocate = resv->adds_in_progress + regions_needed -
465 			      resv->region_cache_count;
466 
467 		/* At this point, we should have enough entries in the cache
468 		 * for all the existings adds_in_progress. We should only be
469 		 * needing to allocate for regions_needed.
470 		 */
471 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472 
473 		spin_unlock(&resv->lock);
474 		for (i = 0; i < to_allocate; i++) {
475 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476 			if (!trg)
477 				goto out_of_memory;
478 			list_add(&trg->link, &allocated_regions);
479 		}
480 
481 		spin_lock(&resv->lock);
482 
483 		list_splice(&allocated_regions, &resv->region_cache);
484 		resv->region_cache_count += to_allocate;
485 	}
486 
487 	return 0;
488 
489 out_of_memory:
490 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491 		list_del(&rg->link);
492 		kfree(rg);
493 	}
494 	return -ENOMEM;
495 }
496 
497 /*
498  * Add the huge page range represented by [f, t) to the reserve
499  * map.  Regions will be taken from the cache to fill in this range.
500  * Sufficient regions should exist in the cache due to the previous
501  * call to region_chg with the same range, but in some cases the cache will not
502  * have sufficient entries due to races with other code doing region_add or
503  * region_del.  The extra needed entries will be allocated.
504  *
505  * regions_needed is the out value provided by a previous call to region_chg.
506  *
507  * Return the number of new huge pages added to the map.  This number is greater
508  * than or equal to zero.  If file_region entries needed to be allocated for
509  * this operation and we were not able to allocate, it returns -ENOMEM.
510  * region_add of regions of length 1 never allocate file_regions and cannot
511  * fail; region_chg will always allocate at least 1 entry and a region_add for
512  * 1 page will only require at most 1 entry.
513  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)514 static long region_add(struct resv_map *resv, long f, long t,
515 		       long in_regions_needed, struct hstate *h,
516 		       struct hugetlb_cgroup *h_cg)
517 {
518 	long add = 0, actual_regions_needed = 0;
519 
520 	spin_lock(&resv->lock);
521 retry:
522 
523 	/* Count how many regions are actually needed to execute this add. */
524 	add_reservation_in_range(resv, f, t, NULL, NULL,
525 				 &actual_regions_needed);
526 
527 	/*
528 	 * Check for sufficient descriptors in the cache to accommodate
529 	 * this add operation. Note that actual_regions_needed may be greater
530 	 * than in_regions_needed, as the resv_map may have been modified since
531 	 * the region_chg call. In this case, we need to make sure that we
532 	 * allocate extra entries, such that we have enough for all the
533 	 * existing adds_in_progress, plus the excess needed for this
534 	 * operation.
535 	 */
536 	if (actual_regions_needed > in_regions_needed &&
537 	    resv->region_cache_count <
538 		    resv->adds_in_progress +
539 			    (actual_regions_needed - in_regions_needed)) {
540 		/* region_add operation of range 1 should never need to
541 		 * allocate file_region entries.
542 		 */
543 		VM_BUG_ON(t - f <= 1);
544 
545 		if (allocate_file_region_entries(
546 			    resv, actual_regions_needed - in_regions_needed)) {
547 			return -ENOMEM;
548 		}
549 
550 		goto retry;
551 	}
552 
553 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554 
555 	resv->adds_in_progress -= in_regions_needed;
556 
557 	spin_unlock(&resv->lock);
558 	VM_BUG_ON(add < 0);
559 	return add;
560 }
561 
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)582 static long region_chg(struct resv_map *resv, long f, long t,
583 		       long *out_regions_needed)
584 {
585 	long chg = 0;
586 
587 	spin_lock(&resv->lock);
588 
589 	/* Count how many hugepages in this range are NOT represented. */
590 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 				       out_regions_needed);
592 
593 	if (*out_regions_needed == 0)
594 		*out_regions_needed = 1;
595 
596 	if (allocate_file_region_entries(resv, *out_regions_needed))
597 		return -ENOMEM;
598 
599 	resv->adds_in_progress += *out_regions_needed;
600 
601 	spin_unlock(&resv->lock);
602 	return chg;
603 }
604 
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)618 static void region_abort(struct resv_map *resv, long f, long t,
619 			 long regions_needed)
620 {
621 	spin_lock(&resv->lock);
622 	VM_BUG_ON(!resv->region_cache_count);
623 	resv->adds_in_progress -= regions_needed;
624 	spin_unlock(&resv->lock);
625 }
626 
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
region_del(struct resv_map * resv,long f,long t)641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 	struct list_head *head = &resv->regions;
644 	struct file_region *rg, *trg;
645 	struct file_region *nrg = NULL;
646 	long del = 0;
647 
648 retry:
649 	spin_lock(&resv->lock);
650 	list_for_each_entry_safe(rg, trg, head, link) {
651 		/*
652 		 * Skip regions before the range to be deleted.  file_region
653 		 * ranges are normally of the form [from, to).  However, there
654 		 * may be a "placeholder" entry in the map which is of the form
655 		 * (from, to) with from == to.  Check for placeholder entries
656 		 * at the beginning of the range to be deleted.
657 		 */
658 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 			continue;
660 
661 		if (rg->from >= t)
662 			break;
663 
664 		if (f > rg->from && t < rg->to) { /* Must split region */
665 			/*
666 			 * Check for an entry in the cache before dropping
667 			 * lock and attempting allocation.
668 			 */
669 			if (!nrg &&
670 			    resv->region_cache_count > resv->adds_in_progress) {
671 				nrg = list_first_entry(&resv->region_cache,
672 							struct file_region,
673 							link);
674 				list_del(&nrg->link);
675 				resv->region_cache_count--;
676 			}
677 
678 			if (!nrg) {
679 				spin_unlock(&resv->lock);
680 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 				if (!nrg)
682 					return -ENOMEM;
683 				goto retry;
684 			}
685 
686 			del += t - f;
687 			hugetlb_cgroup_uncharge_file_region(
688 				resv, rg, t - f, false);
689 
690 			/* New entry for end of split region */
691 			nrg->from = t;
692 			nrg->to = rg->to;
693 
694 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695 
696 			INIT_LIST_HEAD(&nrg->link);
697 
698 			/* Original entry is trimmed */
699 			rg->to = f;
700 
701 			list_add(&nrg->link, &rg->link);
702 			nrg = NULL;
703 			break;
704 		}
705 
706 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 			del += rg->to - rg->from;
708 			hugetlb_cgroup_uncharge_file_region(resv, rg,
709 							    rg->to - rg->from, true);
710 			list_del(&rg->link);
711 			kfree(rg);
712 			continue;
713 		}
714 
715 		if (f <= rg->from) {	/* Trim beginning of region */
716 			hugetlb_cgroup_uncharge_file_region(resv, rg,
717 							    t - rg->from, false);
718 
719 			del += t - rg->from;
720 			rg->from = t;
721 		} else {		/* Trim end of region */
722 			hugetlb_cgroup_uncharge_file_region(resv, rg,
723 							    rg->to - f, false);
724 
725 			del += rg->to - f;
726 			rg->to = f;
727 		}
728 	}
729 
730 	spin_unlock(&resv->lock);
731 	kfree(nrg);
732 	return del;
733 }
734 
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
hugetlb_fix_reserve_counts(struct inode * inode)744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 	struct hugepage_subpool *spool = subpool_inode(inode);
747 	long rsv_adjust;
748 	bool reserved = false;
749 
750 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 	if (rsv_adjust > 0) {
752 		struct hstate *h = hstate_inode(inode);
753 
754 		if (!hugetlb_acct_memory(h, 1))
755 			reserved = true;
756 	} else if (!rsv_adjust) {
757 		reserved = true;
758 	}
759 
760 	if (!reserved)
761 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763 
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
region_count(struct resv_map * resv,long f,long t)768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770 	struct list_head *head = &resv->regions;
771 	struct file_region *rg;
772 	long chg = 0;
773 
774 	spin_lock(&resv->lock);
775 	/* Locate each segment we overlap with, and count that overlap. */
776 	list_for_each_entry(rg, head, link) {
777 		long seg_from;
778 		long seg_to;
779 
780 		if (rg->to <= f)
781 			continue;
782 		if (rg->from >= t)
783 			break;
784 
785 		seg_from = max(rg->from, f);
786 		seg_to = min(rg->to, t);
787 
788 		chg += seg_to - seg_from;
789 	}
790 	spin_unlock(&resv->lock);
791 
792 	return chg;
793 }
794 
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800 			struct vm_area_struct *vma, unsigned long address)
801 {
802 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 			(vma->vm_pgoff >> huge_page_order(h));
804 }
805 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 				     unsigned long address)
808 {
809 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812 
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
vma_kernel_pagesize(struct vm_area_struct * vma)817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819 	if (vma->vm_ops && vma->vm_ops->pagesize)
820 		return vma->vm_ops->pagesize(vma);
821 	return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824 
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
vma_mmu_pagesize(struct vm_area_struct * vma)831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833 	return vma_kernel_pagesize(vma);
834 }
835 
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844 
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
get_vma_private_data(struct vm_area_struct * vma)864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866 	return (unsigned long)vma->vm_private_data;
867 }
868 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)869 static void set_vma_private_data(struct vm_area_struct *vma,
870 							unsigned long value)
871 {
872 	vma->vm_private_data = (void *)value;
873 }
874 
875 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 					  struct hugetlb_cgroup *h_cg,
878 					  struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881 	if (!h_cg || !h) {
882 		resv_map->reservation_counter = NULL;
883 		resv_map->pages_per_hpage = 0;
884 		resv_map->css = NULL;
885 	} else {
886 		resv_map->reservation_counter =
887 			&h_cg->rsvd_hugepage[hstate_index(h)];
888 		resv_map->pages_per_hpage = pages_per_huge_page(h);
889 		resv_map->css = &h_cg->css;
890 	}
891 #endif
892 }
893 
resv_map_alloc(void)894 struct resv_map *resv_map_alloc(void)
895 {
896 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898 
899 	if (!resv_map || !rg) {
900 		kfree(resv_map);
901 		kfree(rg);
902 		return NULL;
903 	}
904 
905 	kref_init(&resv_map->refs);
906 	spin_lock_init(&resv_map->lock);
907 	INIT_LIST_HEAD(&resv_map->regions);
908 
909 	resv_map->adds_in_progress = 0;
910 	/*
911 	 * Initialize these to 0. On shared mappings, 0's here indicate these
912 	 * fields don't do cgroup accounting. On private mappings, these will be
913 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 	 * reservations are to be un-charged from here.
915 	 */
916 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917 
918 	INIT_LIST_HEAD(&resv_map->region_cache);
919 	list_add(&rg->link, &resv_map->region_cache);
920 	resv_map->region_cache_count = 1;
921 
922 	return resv_map;
923 }
924 
resv_map_release(struct kref * ref)925 void resv_map_release(struct kref *ref)
926 {
927 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 	struct list_head *head = &resv_map->region_cache;
929 	struct file_region *rg, *trg;
930 
931 	/* Clear out any active regions before we release the map. */
932 	region_del(resv_map, 0, LONG_MAX);
933 
934 	/* ... and any entries left in the cache */
935 	list_for_each_entry_safe(rg, trg, head, link) {
936 		list_del(&rg->link);
937 		kfree(rg);
938 	}
939 
940 	VM_BUG_ON(resv_map->adds_in_progress);
941 
942 	kfree(resv_map);
943 }
944 
inode_resv_map(struct inode * inode)945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947 	/*
948 	 * At inode evict time, i_mapping may not point to the original
949 	 * address space within the inode.  This original address space
950 	 * contains the pointer to the resv_map.  So, always use the
951 	 * address space embedded within the inode.
952 	 * The VERY common case is inode->mapping == &inode->i_data but,
953 	 * this may not be true for device special inodes.
954 	 */
955 	return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957 
vma_resv_map(struct vm_area_struct * vma)958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 	if (vma->vm_flags & VM_MAYSHARE) {
962 		struct address_space *mapping = vma->vm_file->f_mapping;
963 		struct inode *inode = mapping->host;
964 
965 		return inode_resv_map(inode);
966 
967 	} else {
968 		return (struct resv_map *)(get_vma_private_data(vma) &
969 							~HPAGE_RESV_MASK);
970 	}
971 }
972 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977 
978 	set_vma_private_data(vma, (get_vma_private_data(vma) &
979 				HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986 
987 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993 
994 	return (get_vma_private_data(vma) & flag) != 0;
995 }
996 
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 	if (!(vma->vm_flags & VM_MAYSHARE))
1002 		vma->vm_private_data = (void *)0;
1003 }
1004 
1005 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008 	if (vma->vm_flags & VM_NORESERVE) {
1009 		/*
1010 		 * This address is already reserved by other process(chg == 0),
1011 		 * so, we should decrement reserved count. Without decrementing,
1012 		 * reserve count remains after releasing inode, because this
1013 		 * allocated page will go into page cache and is regarded as
1014 		 * coming from reserved pool in releasing step.  Currently, we
1015 		 * don't have any other solution to deal with this situation
1016 		 * properly, so add work-around here.
1017 		 */
1018 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 			return true;
1020 		else
1021 			return false;
1022 	}
1023 
1024 	/* Shared mappings always use reserves */
1025 	if (vma->vm_flags & VM_MAYSHARE) {
1026 		/*
1027 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028 		 * be a region map for all pages.  The only situation where
1029 		 * there is no region map is if a hole was punched via
1030 		 * fallocate.  In this case, there really are no reserves to
1031 		 * use.  This situation is indicated if chg != 0.
1032 		 */
1033 		if (chg)
1034 			return false;
1035 		else
1036 			return true;
1037 	}
1038 
1039 	/*
1040 	 * Only the process that called mmap() has reserves for
1041 	 * private mappings.
1042 	 */
1043 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 		/*
1045 		 * Like the shared case above, a hole punch or truncate
1046 		 * could have been performed on the private mapping.
1047 		 * Examine the value of chg to determine if reserves
1048 		 * actually exist or were previously consumed.
1049 		 * Very Subtle - The value of chg comes from a previous
1050 		 * call to vma_needs_reserves().  The reserve map for
1051 		 * private mappings has different (opposite) semantics
1052 		 * than that of shared mappings.  vma_needs_reserves()
1053 		 * has already taken this difference in semantics into
1054 		 * account.  Therefore, the meaning of chg is the same
1055 		 * as in the shared case above.  Code could easily be
1056 		 * combined, but keeping it separate draws attention to
1057 		 * subtle differences.
1058 		 */
1059 		if (chg)
1060 			return false;
1061 		else
1062 			return true;
1063 	}
1064 
1065 	return false;
1066 }
1067 
enqueue_huge_page(struct hstate * h,struct page * page)1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070 	int nid = page_to_nid(page);
1071 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1072 	h->free_huge_pages++;
1073 	h->free_huge_pages_node[nid]++;
1074 	SetPageHugeFreed(page);
1075 }
1076 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1077 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078 {
1079 	struct page *page;
1080 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081 
1082 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083 		if (nocma && is_migrate_cma_page(page))
1084 			continue;
1085 
1086 		if (PageHWPoison(page))
1087 			continue;
1088 
1089 		list_move(&page->lru, &h->hugepage_activelist);
1090 		set_page_refcounted(page);
1091 		ClearPageHugeFreed(page);
1092 		h->free_huge_pages--;
1093 		h->free_huge_pages_node[nid]--;
1094 		return page;
1095 	}
1096 
1097 	return NULL;
1098 }
1099 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1100 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101 		nodemask_t *nmask)
1102 {
1103 	unsigned int cpuset_mems_cookie;
1104 	struct zonelist *zonelist;
1105 	struct zone *zone;
1106 	struct zoneref *z;
1107 	int node = NUMA_NO_NODE;
1108 
1109 	zonelist = node_zonelist(nid, gfp_mask);
1110 
1111 retry_cpuset:
1112 	cpuset_mems_cookie = read_mems_allowed_begin();
1113 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114 		struct page *page;
1115 
1116 		if (!cpuset_zone_allowed(zone, gfp_mask))
1117 			continue;
1118 		/*
1119 		 * no need to ask again on the same node. Pool is node rather than
1120 		 * zone aware
1121 		 */
1122 		if (zone_to_nid(zone) == node)
1123 			continue;
1124 		node = zone_to_nid(zone);
1125 
1126 		page = dequeue_huge_page_node_exact(h, node);
1127 		if (page)
1128 			return page;
1129 	}
1130 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131 		goto retry_cpuset;
1132 
1133 	return NULL;
1134 }
1135 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1136 static struct page *dequeue_huge_page_vma(struct hstate *h,
1137 				struct vm_area_struct *vma,
1138 				unsigned long address, int avoid_reserve,
1139 				long chg)
1140 {
1141 	struct page *page;
1142 	struct mempolicy *mpol;
1143 	gfp_t gfp_mask;
1144 	nodemask_t *nodemask;
1145 	int nid;
1146 
1147 	/*
1148 	 * A child process with MAP_PRIVATE mappings created by their parent
1149 	 * have no page reserves. This check ensures that reservations are
1150 	 * not "stolen". The child may still get SIGKILLed
1151 	 */
1152 	if (!vma_has_reserves(vma, chg) &&
1153 			h->free_huge_pages - h->resv_huge_pages == 0)
1154 		goto err;
1155 
1156 	/* If reserves cannot be used, ensure enough pages are in the pool */
1157 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158 		goto err;
1159 
1160 	gfp_mask = htlb_alloc_mask(h);
1161 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164 		SetPagePrivate(page);
1165 		h->resv_huge_pages--;
1166 	}
1167 
1168 	mpol_cond_put(mpol);
1169 	return page;
1170 
1171 err:
1172 	return NULL;
1173 }
1174 
1175 /*
1176  * common helper functions for hstate_next_node_to_{alloc|free}.
1177  * We may have allocated or freed a huge page based on a different
1178  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179  * be outside of *nodes_allowed.  Ensure that we use an allowed
1180  * node for alloc or free.
1181  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1182 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183 {
1184 	nid = next_node_in(nid, *nodes_allowed);
1185 	VM_BUG_ON(nid >= MAX_NUMNODES);
1186 
1187 	return nid;
1188 }
1189 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1190 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191 {
1192 	if (!node_isset(nid, *nodes_allowed))
1193 		nid = next_node_allowed(nid, nodes_allowed);
1194 	return nid;
1195 }
1196 
1197 /*
1198  * returns the previously saved node ["this node"] from which to
1199  * allocate a persistent huge page for the pool and advance the
1200  * next node from which to allocate, handling wrap at end of node
1201  * mask.
1202  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1203 static int hstate_next_node_to_alloc(struct hstate *h,
1204 					nodemask_t *nodes_allowed)
1205 {
1206 	int nid;
1207 
1208 	VM_BUG_ON(!nodes_allowed);
1209 
1210 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212 
1213 	return nid;
1214 }
1215 
1216 /*
1217  * helper for free_pool_huge_page() - return the previously saved
1218  * node ["this node"] from which to free a huge page.  Advance the
1219  * next node id whether or not we find a free huge page to free so
1220  * that the next attempt to free addresses the next node.
1221  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1222 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223 {
1224 	int nid;
1225 
1226 	VM_BUG_ON(!nodes_allowed);
1227 
1228 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230 
1231 	return nid;
1232 }
1233 
1234 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1235 	for (nr_nodes = nodes_weight(*mask);				\
1236 		nr_nodes > 0 &&						\
1237 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1238 		nr_nodes--)
1239 
1240 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1241 	for (nr_nodes = nodes_weight(*mask);				\
1242 		nr_nodes > 0 &&						\
1243 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1244 		nr_nodes--)
1245 
1246 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1247 static void destroy_compound_gigantic_page(struct page *page,
1248 					unsigned int order)
1249 {
1250 	int i;
1251 	int nr_pages = 1 << order;
1252 	struct page *p = page + 1;
1253 
1254 	atomic_set(compound_mapcount_ptr(page), 0);
1255 	atomic_set(compound_pincount_ptr(page), 0);
1256 
1257 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1258 		clear_compound_head(p);
1259 		set_page_refcounted(p);
1260 	}
1261 
1262 	set_compound_order(page, 0);
1263 	page[1].compound_nr = 0;
1264 	__ClearPageHead(page);
1265 }
1266 
free_gigantic_page(struct page * page,unsigned int order)1267 static void free_gigantic_page(struct page *page, unsigned int order)
1268 {
1269 	/*
1270 	 * If the page isn't allocated using the cma allocator,
1271 	 * cma_release() returns false.
1272 	 */
1273 #ifdef CONFIG_CMA
1274 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1275 		return;
1276 #endif
1277 
1278 	free_contig_range(page_to_pfn(page), 1 << order);
1279 }
1280 
1281 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1282 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1283 		int nid, nodemask_t *nodemask)
1284 {
1285 	unsigned long nr_pages = 1UL << huge_page_order(h);
1286 	if (nid == NUMA_NO_NODE)
1287 		nid = numa_mem_id();
1288 
1289 #ifdef CONFIG_CMA
1290 	{
1291 		struct page *page;
1292 		int node;
1293 
1294 		if (hugetlb_cma[nid]) {
1295 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1296 					huge_page_order(h), true);
1297 			if (page)
1298 				return page;
1299 		}
1300 
1301 		if (!(gfp_mask & __GFP_THISNODE)) {
1302 			for_each_node_mask(node, *nodemask) {
1303 				if (node == nid || !hugetlb_cma[node])
1304 					continue;
1305 
1306 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1307 						huge_page_order(h), true);
1308 				if (page)
1309 					return page;
1310 			}
1311 		}
1312 	}
1313 #endif
1314 
1315 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1316 }
1317 
1318 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1319 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1320 					int nid, nodemask_t *nodemask)
1321 {
1322 	return NULL;
1323 }
1324 #endif /* CONFIG_CONTIG_ALLOC */
1325 
1326 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1327 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1328 					int nid, nodemask_t *nodemask)
1329 {
1330 	return NULL;
1331 }
free_gigantic_page(struct page * page,unsigned int order)1332 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1333 static inline void destroy_compound_gigantic_page(struct page *page,
1334 						unsigned int order) { }
1335 #endif
1336 
update_and_free_page(struct hstate * h,struct page * page)1337 static void update_and_free_page(struct hstate *h, struct page *page)
1338 {
1339 	int i;
1340 	struct page *subpage = page;
1341 
1342 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1343 		return;
1344 
1345 	h->nr_huge_pages--;
1346 	h->nr_huge_pages_node[page_to_nid(page)]--;
1347 	for (i = 0; i < pages_per_huge_page(h);
1348 	     i++, subpage = mem_map_next(subpage, page, i)) {
1349 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1350 				1 << PG_referenced | 1 << PG_dirty |
1351 				1 << PG_active | 1 << PG_private |
1352 				1 << PG_writeback);
1353 	}
1354 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356 	/*
1357 	 * Very subtle
1358 	 *
1359 	 * For non-gigantic pages set the destructor to the normal compound
1360 	 * page dtor.  This is needed in case someone takes an additional
1361 	 * temporary ref to the page, and freeing is delayed until they drop
1362 	 * their reference.
1363 	 *
1364 	 * For gigantic pages set the destructor to the null dtor.  This
1365 	 * destructor will never be called.  Before freeing the gigantic
1366 	 * page destroy_compound_gigantic_page will turn the compound page
1367 	 * into a simple group of pages.  After this the destructor does not
1368 	 * apply.
1369 	 *
1370 	 * This handles the case where more than one ref is held when and
1371 	 * after update_and_free_page is called.
1372 	 */
1373 	set_page_refcounted(page);
1374 	if (hstate_is_gigantic(h)) {
1375 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1376 		/*
1377 		 * Temporarily drop the hugetlb_lock, because
1378 		 * we might block in free_gigantic_page().
1379 		 */
1380 		spin_unlock(&hugetlb_lock);
1381 		destroy_compound_gigantic_page(page, huge_page_order(h));
1382 		free_gigantic_page(page, huge_page_order(h));
1383 		spin_lock(&hugetlb_lock);
1384 	} else {
1385 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1386 		__free_pages(page, huge_page_order(h));
1387 	}
1388 }
1389 
size_to_hstate(unsigned long size)1390 struct hstate *size_to_hstate(unsigned long size)
1391 {
1392 	struct hstate *h;
1393 
1394 	for_each_hstate(h) {
1395 		if (huge_page_size(h) == size)
1396 			return h;
1397 	}
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1403  * to hstate->hugepage_activelist.)
1404  *
1405  * This function can be called for tail pages, but never returns true for them.
1406  */
page_huge_active(struct page * page)1407 bool page_huge_active(struct page *page)
1408 {
1409 	return PageHeadHuge(page) && PagePrivate(&page[1]);
1410 }
1411 
1412 /* never called for tail page */
set_page_huge_active(struct page * page)1413 void set_page_huge_active(struct page *page)
1414 {
1415 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1416 	SetPagePrivate(&page[1]);
1417 }
1418 
clear_page_huge_active(struct page * page)1419 static void clear_page_huge_active(struct page *page)
1420 {
1421 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1422 	ClearPagePrivate(&page[1]);
1423 }
1424 
1425 /*
1426  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1427  * code
1428  */
PageHugeTemporary(struct page * page)1429 static inline bool PageHugeTemporary(struct page *page)
1430 {
1431 	if (!PageHuge(page))
1432 		return false;
1433 
1434 	return (unsigned long)page[2].mapping == -1U;
1435 }
1436 
SetPageHugeTemporary(struct page * page)1437 static inline void SetPageHugeTemporary(struct page *page)
1438 {
1439 	page[2].mapping = (void *)-1U;
1440 }
1441 
ClearPageHugeTemporary(struct page * page)1442 static inline void ClearPageHugeTemporary(struct page *page)
1443 {
1444 	page[2].mapping = NULL;
1445 }
1446 
__free_huge_page(struct page * page)1447 static void __free_huge_page(struct page *page)
1448 {
1449 	/*
1450 	 * Can't pass hstate in here because it is called from the
1451 	 * compound page destructor.
1452 	 */
1453 	struct hstate *h = page_hstate(page);
1454 	int nid = page_to_nid(page);
1455 	struct hugepage_subpool *spool =
1456 		(struct hugepage_subpool *)page_private(page);
1457 	bool restore_reserve;
1458 
1459 	VM_BUG_ON_PAGE(page_count(page), page);
1460 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1461 
1462 	set_page_private(page, 0);
1463 	page->mapping = NULL;
1464 	restore_reserve = PagePrivate(page);
1465 	ClearPagePrivate(page);
1466 
1467 	/*
1468 	 * If PagePrivate() was set on page, page allocation consumed a
1469 	 * reservation.  If the page was associated with a subpool, there
1470 	 * would have been a page reserved in the subpool before allocation
1471 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1472 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1473 	 * remove the reserved page from the subpool.
1474 	 */
1475 	if (!restore_reserve) {
1476 		/*
1477 		 * A return code of zero implies that the subpool will be
1478 		 * under its minimum size if the reservation is not restored
1479 		 * after page is free.  Therefore, force restore_reserve
1480 		 * operation.
1481 		 */
1482 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1483 			restore_reserve = true;
1484 	}
1485 
1486 	spin_lock(&hugetlb_lock);
1487 	clear_page_huge_active(page);
1488 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1489 				     pages_per_huge_page(h), page);
1490 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1491 					  pages_per_huge_page(h), page);
1492 	if (restore_reserve)
1493 		h->resv_huge_pages++;
1494 
1495 	if (PageHugeTemporary(page)) {
1496 		list_del(&page->lru);
1497 		ClearPageHugeTemporary(page);
1498 		update_and_free_page(h, page);
1499 	} else if (h->surplus_huge_pages_node[nid]) {
1500 		/* remove the page from active list */
1501 		list_del(&page->lru);
1502 		update_and_free_page(h, page);
1503 		h->surplus_huge_pages--;
1504 		h->surplus_huge_pages_node[nid]--;
1505 	} else {
1506 		arch_clear_hugepage_flags(page);
1507 		enqueue_huge_page(h, page);
1508 	}
1509 	spin_unlock(&hugetlb_lock);
1510 }
1511 
1512 /*
1513  * As free_huge_page() can be called from a non-task context, we have
1514  * to defer the actual freeing in a workqueue to prevent potential
1515  * hugetlb_lock deadlock.
1516  *
1517  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1518  * be freed and frees them one-by-one. As the page->mapping pointer is
1519  * going to be cleared in __free_huge_page() anyway, it is reused as the
1520  * llist_node structure of a lockless linked list of huge pages to be freed.
1521  */
1522 static LLIST_HEAD(hpage_freelist);
1523 
free_hpage_workfn(struct work_struct * work)1524 static void free_hpage_workfn(struct work_struct *work)
1525 {
1526 	struct llist_node *node;
1527 	struct page *page;
1528 
1529 	node = llist_del_all(&hpage_freelist);
1530 
1531 	while (node) {
1532 		page = container_of((struct address_space **)node,
1533 				     struct page, mapping);
1534 		node = node->next;
1535 		__free_huge_page(page);
1536 	}
1537 }
1538 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1539 
free_huge_page(struct page * page)1540 void free_huge_page(struct page *page)
1541 {
1542 	/*
1543 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1544 	 */
1545 	if (!in_task()) {
1546 		/*
1547 		 * Only call schedule_work() if hpage_freelist is previously
1548 		 * empty. Otherwise, schedule_work() had been called but the
1549 		 * workfn hasn't retrieved the list yet.
1550 		 */
1551 		if (llist_add((struct llist_node *)&page->mapping,
1552 			      &hpage_freelist))
1553 			schedule_work(&free_hpage_work);
1554 		return;
1555 	}
1556 
1557 	__free_huge_page(page);
1558 }
1559 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1560 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1561 {
1562 	INIT_LIST_HEAD(&page->lru);
1563 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1564 	set_hugetlb_cgroup(page, NULL);
1565 	set_hugetlb_cgroup_rsvd(page, NULL);
1566 	spin_lock(&hugetlb_lock);
1567 	h->nr_huge_pages++;
1568 	h->nr_huge_pages_node[nid]++;
1569 	ClearPageHugeFreed(page);
1570 	spin_unlock(&hugetlb_lock);
1571 }
1572 
prep_compound_gigantic_page(struct page * page,unsigned int order)1573 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1574 {
1575 	int i;
1576 	int nr_pages = 1 << order;
1577 	struct page *p = page + 1;
1578 
1579 	/* we rely on prep_new_huge_page to set the destructor */
1580 	set_compound_order(page, order);
1581 	__ClearPageReserved(page);
1582 	__SetPageHead(page);
1583 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1584 		/*
1585 		 * For gigantic hugepages allocated through bootmem at
1586 		 * boot, it's safer to be consistent with the not-gigantic
1587 		 * hugepages and clear the PG_reserved bit from all tail pages
1588 		 * too.  Otherwise drivers using get_user_pages() to access tail
1589 		 * pages may get the reference counting wrong if they see
1590 		 * PG_reserved set on a tail page (despite the head page not
1591 		 * having PG_reserved set).  Enforcing this consistency between
1592 		 * head and tail pages allows drivers to optimize away a check
1593 		 * on the head page when they need know if put_page() is needed
1594 		 * after get_user_pages().
1595 		 */
1596 		__ClearPageReserved(p);
1597 		set_page_count(p, 0);
1598 		set_compound_head(p, page);
1599 	}
1600 	atomic_set(compound_mapcount_ptr(page), -1);
1601 	atomic_set(compound_pincount_ptr(page), 0);
1602 }
1603 
1604 /*
1605  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1606  * transparent huge pages.  See the PageTransHuge() documentation for more
1607  * details.
1608  */
PageHuge(struct page * page)1609 int PageHuge(struct page *page)
1610 {
1611 	if (!PageCompound(page))
1612 		return 0;
1613 
1614 	page = compound_head(page);
1615 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1616 }
1617 EXPORT_SYMBOL_GPL(PageHuge);
1618 
1619 /*
1620  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1621  * normal or transparent huge pages.
1622  */
PageHeadHuge(struct page * page_head)1623 int PageHeadHuge(struct page *page_head)
1624 {
1625 	if (!PageHead(page_head))
1626 		return 0;
1627 
1628 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1629 }
1630 
1631 /*
1632  * Find and lock address space (mapping) in write mode.
1633  *
1634  * Upon entry, the page is locked which means that page_mapping() is
1635  * stable.  Due to locking order, we can only trylock_write.  If we can
1636  * not get the lock, simply return NULL to caller.
1637  */
hugetlb_page_mapping_lock_write(struct page * hpage)1638 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1639 {
1640 	struct address_space *mapping = page_mapping(hpage);
1641 
1642 	if (!mapping)
1643 		return mapping;
1644 
1645 	if (i_mmap_trylock_write(mapping))
1646 		return mapping;
1647 
1648 	return NULL;
1649 }
1650 
hugetlb_basepage_index(struct page * page)1651 pgoff_t hugetlb_basepage_index(struct page *page)
1652 {
1653 	struct page *page_head = compound_head(page);
1654 	pgoff_t index = page_index(page_head);
1655 	unsigned long compound_idx;
1656 
1657 	if (compound_order(page_head) >= MAX_ORDER)
1658 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1659 	else
1660 		compound_idx = page - page_head;
1661 
1662 	return (index << compound_order(page_head)) + compound_idx;
1663 }
1664 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1665 static struct page *alloc_buddy_huge_page(struct hstate *h,
1666 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1667 		nodemask_t *node_alloc_noretry)
1668 {
1669 	int order = huge_page_order(h);
1670 	struct page *page;
1671 	bool alloc_try_hard = true;
1672 
1673 	/*
1674 	 * By default we always try hard to allocate the page with
1675 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1676 	 * a loop (to adjust global huge page counts) and previous allocation
1677 	 * failed, do not continue to try hard on the same node.  Use the
1678 	 * node_alloc_noretry bitmap to manage this state information.
1679 	 */
1680 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1681 		alloc_try_hard = false;
1682 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1683 	if (alloc_try_hard)
1684 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1685 	if (nid == NUMA_NO_NODE)
1686 		nid = numa_mem_id();
1687 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1688 	if (page)
1689 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1690 	else
1691 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1692 
1693 	/*
1694 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1695 	 * indicates an overall state change.  Clear bit so that we resume
1696 	 * normal 'try hard' allocations.
1697 	 */
1698 	if (node_alloc_noretry && page && !alloc_try_hard)
1699 		node_clear(nid, *node_alloc_noretry);
1700 
1701 	/*
1702 	 * If we tried hard to get a page but failed, set bit so that
1703 	 * subsequent attempts will not try as hard until there is an
1704 	 * overall state change.
1705 	 */
1706 	if (node_alloc_noretry && !page && alloc_try_hard)
1707 		node_set(nid, *node_alloc_noretry);
1708 
1709 	return page;
1710 }
1711 
1712 /*
1713  * Common helper to allocate a fresh hugetlb page. All specific allocators
1714  * should use this function to get new hugetlb pages
1715  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1716 static struct page *alloc_fresh_huge_page(struct hstate *h,
1717 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1718 		nodemask_t *node_alloc_noretry)
1719 {
1720 	struct page *page;
1721 
1722 	if (hstate_is_gigantic(h))
1723 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1724 	else
1725 		page = alloc_buddy_huge_page(h, gfp_mask,
1726 				nid, nmask, node_alloc_noretry);
1727 	if (!page)
1728 		return NULL;
1729 
1730 	if (hstate_is_gigantic(h))
1731 		prep_compound_gigantic_page(page, huge_page_order(h));
1732 	prep_new_huge_page(h, page, page_to_nid(page));
1733 
1734 	return page;
1735 }
1736 
1737 /*
1738  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1739  * manner.
1740  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1741 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1742 				nodemask_t *node_alloc_noretry)
1743 {
1744 	struct page *page;
1745 	int nr_nodes, node;
1746 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1747 
1748 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1749 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1750 						node_alloc_noretry);
1751 		if (page)
1752 			break;
1753 	}
1754 
1755 	if (!page)
1756 		return 0;
1757 
1758 	put_page(page); /* free it into the hugepage allocator */
1759 
1760 	return 1;
1761 }
1762 
1763 /*
1764  * Free huge page from pool from next node to free.
1765  * Attempt to keep persistent huge pages more or less
1766  * balanced over allowed nodes.
1767  * Called with hugetlb_lock locked.
1768  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1769 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1770 							 bool acct_surplus)
1771 {
1772 	int nr_nodes, node;
1773 	int ret = 0;
1774 
1775 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1776 		/*
1777 		 * If we're returning unused surplus pages, only examine
1778 		 * nodes with surplus pages.
1779 		 */
1780 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1781 		    !list_empty(&h->hugepage_freelists[node])) {
1782 			struct page *page =
1783 				list_entry(h->hugepage_freelists[node].next,
1784 					  struct page, lru);
1785 			list_del(&page->lru);
1786 			h->free_huge_pages--;
1787 			h->free_huge_pages_node[node]--;
1788 			if (acct_surplus) {
1789 				h->surplus_huge_pages--;
1790 				h->surplus_huge_pages_node[node]--;
1791 			}
1792 			update_and_free_page(h, page);
1793 			ret = 1;
1794 			break;
1795 		}
1796 	}
1797 
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Dissolve a given free hugepage into free buddy pages. This function does
1803  * nothing for in-use hugepages and non-hugepages.
1804  * This function returns values like below:
1805  *
1806  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1807  *          (allocated or reserved.)
1808  *       0: successfully dissolved free hugepages or the page is not a
1809  *          hugepage (considered as already dissolved)
1810  */
dissolve_free_huge_page(struct page * page)1811 int dissolve_free_huge_page(struct page *page)
1812 {
1813 	int rc = -EBUSY;
1814 
1815 retry:
1816 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1817 	if (!PageHuge(page))
1818 		return 0;
1819 
1820 	spin_lock(&hugetlb_lock);
1821 	if (!PageHuge(page)) {
1822 		rc = 0;
1823 		goto out;
1824 	}
1825 
1826 	if (!page_count(page)) {
1827 		struct page *head = compound_head(page);
1828 		struct hstate *h = page_hstate(head);
1829 		int nid = page_to_nid(head);
1830 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1831 			goto out;
1832 
1833 		/*
1834 		 * We should make sure that the page is already on the free list
1835 		 * when it is dissolved.
1836 		 */
1837 		if (unlikely(!PageHugeFreed(head))) {
1838 			spin_unlock(&hugetlb_lock);
1839 			cond_resched();
1840 
1841 			/*
1842 			 * Theoretically, we should return -EBUSY when we
1843 			 * encounter this race. In fact, we have a chance
1844 			 * to successfully dissolve the page if we do a
1845 			 * retry. Because the race window is quite small.
1846 			 * If we seize this opportunity, it is an optimization
1847 			 * for increasing the success rate of dissolving page.
1848 			 */
1849 			goto retry;
1850 		}
1851 
1852 		/*
1853 		 * Move PageHWPoison flag from head page to the raw error page,
1854 		 * which makes any subpages rather than the error page reusable.
1855 		 */
1856 		if (PageHWPoison(head) && page != head) {
1857 			SetPageHWPoison(page);
1858 			ClearPageHWPoison(head);
1859 		}
1860 		list_del(&head->lru);
1861 		h->free_huge_pages--;
1862 		h->free_huge_pages_node[nid]--;
1863 		h->max_huge_pages--;
1864 		update_and_free_page(h, head);
1865 		rc = 0;
1866 	}
1867 out:
1868 	spin_unlock(&hugetlb_lock);
1869 	return rc;
1870 }
1871 
1872 /*
1873  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1874  * make specified memory blocks removable from the system.
1875  * Note that this will dissolve a free gigantic hugepage completely, if any
1876  * part of it lies within the given range.
1877  * Also note that if dissolve_free_huge_page() returns with an error, all
1878  * free hugepages that were dissolved before that error are lost.
1879  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1880 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1881 {
1882 	unsigned long pfn;
1883 	struct page *page;
1884 	int rc = 0;
1885 
1886 	if (!hugepages_supported())
1887 		return rc;
1888 
1889 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1890 		page = pfn_to_page(pfn);
1891 		rc = dissolve_free_huge_page(page);
1892 		if (rc)
1893 			break;
1894 	}
1895 
1896 	return rc;
1897 }
1898 
1899 /*
1900  * Allocates a fresh surplus page from the page allocator.
1901  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1902 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1903 		int nid, nodemask_t *nmask)
1904 {
1905 	struct page *page = NULL;
1906 
1907 	if (hstate_is_gigantic(h))
1908 		return NULL;
1909 
1910 	spin_lock(&hugetlb_lock);
1911 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1912 		goto out_unlock;
1913 	spin_unlock(&hugetlb_lock);
1914 
1915 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1916 	if (!page)
1917 		return NULL;
1918 
1919 	spin_lock(&hugetlb_lock);
1920 	/*
1921 	 * We could have raced with the pool size change.
1922 	 * Double check that and simply deallocate the new page
1923 	 * if we would end up overcommiting the surpluses. Abuse
1924 	 * temporary page to workaround the nasty free_huge_page
1925 	 * codeflow
1926 	 */
1927 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1928 		SetPageHugeTemporary(page);
1929 		spin_unlock(&hugetlb_lock);
1930 		put_page(page);
1931 		return NULL;
1932 	} else {
1933 		h->surplus_huge_pages++;
1934 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1935 	}
1936 
1937 out_unlock:
1938 	spin_unlock(&hugetlb_lock);
1939 
1940 	return page;
1941 }
1942 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1943 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1944 				     int nid, nodemask_t *nmask)
1945 {
1946 	struct page *page;
1947 
1948 	if (hstate_is_gigantic(h))
1949 		return NULL;
1950 
1951 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1952 	if (!page)
1953 		return NULL;
1954 
1955 	/*
1956 	 * We do not account these pages as surplus because they are only
1957 	 * temporary and will be released properly on the last reference
1958 	 */
1959 	SetPageHugeTemporary(page);
1960 
1961 	return page;
1962 }
1963 
1964 /*
1965  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1966  */
1967 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1968 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1969 		struct vm_area_struct *vma, unsigned long addr)
1970 {
1971 	struct page *page;
1972 	struct mempolicy *mpol;
1973 	gfp_t gfp_mask = htlb_alloc_mask(h);
1974 	int nid;
1975 	nodemask_t *nodemask;
1976 
1977 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1978 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1979 	mpol_cond_put(mpol);
1980 
1981 	return page;
1982 }
1983 
1984 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)1985 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1986 		nodemask_t *nmask, gfp_t gfp_mask)
1987 {
1988 	spin_lock(&hugetlb_lock);
1989 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1990 		struct page *page;
1991 
1992 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1993 		if (page) {
1994 			spin_unlock(&hugetlb_lock);
1995 			return page;
1996 		}
1997 	}
1998 	spin_unlock(&hugetlb_lock);
1999 
2000 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2001 }
2002 
2003 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2004 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2005 		unsigned long address)
2006 {
2007 	struct mempolicy *mpol;
2008 	nodemask_t *nodemask;
2009 	struct page *page;
2010 	gfp_t gfp_mask;
2011 	int node;
2012 
2013 	gfp_mask = htlb_alloc_mask(h);
2014 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2015 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2016 	mpol_cond_put(mpol);
2017 
2018 	return page;
2019 }
2020 
2021 /*
2022  * Increase the hugetlb pool such that it can accommodate a reservation
2023  * of size 'delta'.
2024  */
gather_surplus_pages(struct hstate * h,long delta)2025 static int gather_surplus_pages(struct hstate *h, long delta)
2026 	__must_hold(&hugetlb_lock)
2027 {
2028 	struct list_head surplus_list;
2029 	struct page *page, *tmp;
2030 	int ret;
2031 	long i;
2032 	long needed, allocated;
2033 	bool alloc_ok = true;
2034 
2035 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2036 	if (needed <= 0) {
2037 		h->resv_huge_pages += delta;
2038 		return 0;
2039 	}
2040 
2041 	allocated = 0;
2042 	INIT_LIST_HEAD(&surplus_list);
2043 
2044 	ret = -ENOMEM;
2045 retry:
2046 	spin_unlock(&hugetlb_lock);
2047 	for (i = 0; i < needed; i++) {
2048 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2049 				NUMA_NO_NODE, NULL);
2050 		if (!page) {
2051 			alloc_ok = false;
2052 			break;
2053 		}
2054 		list_add(&page->lru, &surplus_list);
2055 		cond_resched();
2056 	}
2057 	allocated += i;
2058 
2059 	/*
2060 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2061 	 * because either resv_huge_pages or free_huge_pages may have changed.
2062 	 */
2063 	spin_lock(&hugetlb_lock);
2064 	needed = (h->resv_huge_pages + delta) -
2065 			(h->free_huge_pages + allocated);
2066 	if (needed > 0) {
2067 		if (alloc_ok)
2068 			goto retry;
2069 		/*
2070 		 * We were not able to allocate enough pages to
2071 		 * satisfy the entire reservation so we free what
2072 		 * we've allocated so far.
2073 		 */
2074 		goto free;
2075 	}
2076 	/*
2077 	 * The surplus_list now contains _at_least_ the number of extra pages
2078 	 * needed to accommodate the reservation.  Add the appropriate number
2079 	 * of pages to the hugetlb pool and free the extras back to the buddy
2080 	 * allocator.  Commit the entire reservation here to prevent another
2081 	 * process from stealing the pages as they are added to the pool but
2082 	 * before they are reserved.
2083 	 */
2084 	needed += allocated;
2085 	h->resv_huge_pages += delta;
2086 	ret = 0;
2087 
2088 	/* Free the needed pages to the hugetlb pool */
2089 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2090 		if ((--needed) < 0)
2091 			break;
2092 		/*
2093 		 * This page is now managed by the hugetlb allocator and has
2094 		 * no users -- drop the buddy allocator's reference.
2095 		 */
2096 		put_page_testzero(page);
2097 		VM_BUG_ON_PAGE(page_count(page), page);
2098 		enqueue_huge_page(h, page);
2099 	}
2100 free:
2101 	spin_unlock(&hugetlb_lock);
2102 
2103 	/* Free unnecessary surplus pages to the buddy allocator */
2104 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2105 		put_page(page);
2106 	spin_lock(&hugetlb_lock);
2107 
2108 	return ret;
2109 }
2110 
2111 /*
2112  * This routine has two main purposes:
2113  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2114  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2115  *    to the associated reservation map.
2116  * 2) Free any unused surplus pages that may have been allocated to satisfy
2117  *    the reservation.  As many as unused_resv_pages may be freed.
2118  *
2119  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2120  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2121  * we must make sure nobody else can claim pages we are in the process of
2122  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2123  * number of huge pages we plan to free when dropping the lock.
2124  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2125 static void return_unused_surplus_pages(struct hstate *h,
2126 					unsigned long unused_resv_pages)
2127 {
2128 	unsigned long nr_pages;
2129 
2130 	/* Cannot return gigantic pages currently */
2131 	if (hstate_is_gigantic(h))
2132 		goto out;
2133 
2134 	/*
2135 	 * Part (or even all) of the reservation could have been backed
2136 	 * by pre-allocated pages. Only free surplus pages.
2137 	 */
2138 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2139 
2140 	/*
2141 	 * We want to release as many surplus pages as possible, spread
2142 	 * evenly across all nodes with memory. Iterate across these nodes
2143 	 * until we can no longer free unreserved surplus pages. This occurs
2144 	 * when the nodes with surplus pages have no free pages.
2145 	 * free_pool_huge_page() will balance the freed pages across the
2146 	 * on-line nodes with memory and will handle the hstate accounting.
2147 	 *
2148 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2149 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2150 	 * to cover subsequent pages we may free.
2151 	 */
2152 	while (nr_pages--) {
2153 		h->resv_huge_pages--;
2154 		unused_resv_pages--;
2155 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2156 			goto out;
2157 		cond_resched_lock(&hugetlb_lock);
2158 	}
2159 
2160 out:
2161 	/* Fully uncommit the reservation */
2162 	h->resv_huge_pages -= unused_resv_pages;
2163 }
2164 
2165 
2166 /*
2167  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2168  * are used by the huge page allocation routines to manage reservations.
2169  *
2170  * vma_needs_reservation is called to determine if the huge page at addr
2171  * within the vma has an associated reservation.  If a reservation is
2172  * needed, the value 1 is returned.  The caller is then responsible for
2173  * managing the global reservation and subpool usage counts.  After
2174  * the huge page has been allocated, vma_commit_reservation is called
2175  * to add the page to the reservation map.  If the page allocation fails,
2176  * the reservation must be ended instead of committed.  vma_end_reservation
2177  * is called in such cases.
2178  *
2179  * In the normal case, vma_commit_reservation returns the same value
2180  * as the preceding vma_needs_reservation call.  The only time this
2181  * is not the case is if a reserve map was changed between calls.  It
2182  * is the responsibility of the caller to notice the difference and
2183  * take appropriate action.
2184  *
2185  * vma_add_reservation is used in error paths where a reservation must
2186  * be restored when a newly allocated huge page must be freed.  It is
2187  * to be called after calling vma_needs_reservation to determine if a
2188  * reservation exists.
2189  */
2190 enum vma_resv_mode {
2191 	VMA_NEEDS_RESV,
2192 	VMA_COMMIT_RESV,
2193 	VMA_END_RESV,
2194 	VMA_ADD_RESV,
2195 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2196 static long __vma_reservation_common(struct hstate *h,
2197 				struct vm_area_struct *vma, unsigned long addr,
2198 				enum vma_resv_mode mode)
2199 {
2200 	struct resv_map *resv;
2201 	pgoff_t idx;
2202 	long ret;
2203 	long dummy_out_regions_needed;
2204 
2205 	resv = vma_resv_map(vma);
2206 	if (!resv)
2207 		return 1;
2208 
2209 	idx = vma_hugecache_offset(h, vma, addr);
2210 	switch (mode) {
2211 	case VMA_NEEDS_RESV:
2212 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2213 		/* We assume that vma_reservation_* routines always operate on
2214 		 * 1 page, and that adding to resv map a 1 page entry can only
2215 		 * ever require 1 region.
2216 		 */
2217 		VM_BUG_ON(dummy_out_regions_needed != 1);
2218 		break;
2219 	case VMA_COMMIT_RESV:
2220 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2221 		/* region_add calls of range 1 should never fail. */
2222 		VM_BUG_ON(ret < 0);
2223 		break;
2224 	case VMA_END_RESV:
2225 		region_abort(resv, idx, idx + 1, 1);
2226 		ret = 0;
2227 		break;
2228 	case VMA_ADD_RESV:
2229 		if (vma->vm_flags & VM_MAYSHARE) {
2230 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2231 			/* region_add calls of range 1 should never fail. */
2232 			VM_BUG_ON(ret < 0);
2233 		} else {
2234 			region_abort(resv, idx, idx + 1, 1);
2235 			ret = region_del(resv, idx, idx + 1);
2236 		}
2237 		break;
2238 	default:
2239 		BUG();
2240 	}
2241 
2242 	if (vma->vm_flags & VM_MAYSHARE)
2243 		return ret;
2244 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2245 		/*
2246 		 * In most cases, reserves always exist for private mappings.
2247 		 * However, a file associated with mapping could have been
2248 		 * hole punched or truncated after reserves were consumed.
2249 		 * As subsequent fault on such a range will not use reserves.
2250 		 * Subtle - The reserve map for private mappings has the
2251 		 * opposite meaning than that of shared mappings.  If NO
2252 		 * entry is in the reserve map, it means a reservation exists.
2253 		 * If an entry exists in the reserve map, it means the
2254 		 * reservation has already been consumed.  As a result, the
2255 		 * return value of this routine is the opposite of the
2256 		 * value returned from reserve map manipulation routines above.
2257 		 */
2258 		if (ret)
2259 			return 0;
2260 		else
2261 			return 1;
2262 	}
2263 	else
2264 		return ret < 0 ? ret : 0;
2265 }
2266 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2267 static long vma_needs_reservation(struct hstate *h,
2268 			struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2271 }
2272 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2273 static long vma_commit_reservation(struct hstate *h,
2274 			struct vm_area_struct *vma, unsigned long addr)
2275 {
2276 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2277 }
2278 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2279 static void vma_end_reservation(struct hstate *h,
2280 			struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2283 }
2284 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2285 static long vma_add_reservation(struct hstate *h,
2286 			struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2289 }
2290 
2291 /*
2292  * This routine is called to restore a reservation on error paths.  In the
2293  * specific error paths, a huge page was allocated (via alloc_huge_page)
2294  * and is about to be freed.  If a reservation for the page existed,
2295  * alloc_huge_page would have consumed the reservation and set PagePrivate
2296  * in the newly allocated page.  When the page is freed via free_huge_page,
2297  * the global reservation count will be incremented if PagePrivate is set.
2298  * However, free_huge_page can not adjust the reserve map.  Adjust the
2299  * reserve map here to be consistent with global reserve count adjustments
2300  * to be made by free_huge_page.
2301  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2302 static void restore_reserve_on_error(struct hstate *h,
2303 			struct vm_area_struct *vma, unsigned long address,
2304 			struct page *page)
2305 {
2306 	if (unlikely(PagePrivate(page))) {
2307 		long rc = vma_needs_reservation(h, vma, address);
2308 
2309 		if (unlikely(rc < 0)) {
2310 			/*
2311 			 * Rare out of memory condition in reserve map
2312 			 * manipulation.  Clear PagePrivate so that
2313 			 * global reserve count will not be incremented
2314 			 * by free_huge_page.  This will make it appear
2315 			 * as though the reservation for this page was
2316 			 * consumed.  This may prevent the task from
2317 			 * faulting in the page at a later time.  This
2318 			 * is better than inconsistent global huge page
2319 			 * accounting of reserve counts.
2320 			 */
2321 			ClearPagePrivate(page);
2322 		} else if (rc) {
2323 			rc = vma_add_reservation(h, vma, address);
2324 			if (unlikely(rc < 0))
2325 				/*
2326 				 * See above comment about rare out of
2327 				 * memory condition.
2328 				 */
2329 				ClearPagePrivate(page);
2330 		} else
2331 			vma_end_reservation(h, vma, address);
2332 	}
2333 }
2334 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2335 struct page *alloc_huge_page(struct vm_area_struct *vma,
2336 				    unsigned long addr, int avoid_reserve)
2337 {
2338 	struct hugepage_subpool *spool = subpool_vma(vma);
2339 	struct hstate *h = hstate_vma(vma);
2340 	struct page *page;
2341 	long map_chg, map_commit;
2342 	long gbl_chg;
2343 	int ret, idx;
2344 	struct hugetlb_cgroup *h_cg;
2345 	bool deferred_reserve;
2346 
2347 	idx = hstate_index(h);
2348 	/*
2349 	 * Examine the region/reserve map to determine if the process
2350 	 * has a reservation for the page to be allocated.  A return
2351 	 * code of zero indicates a reservation exists (no change).
2352 	 */
2353 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2354 	if (map_chg < 0)
2355 		return ERR_PTR(-ENOMEM);
2356 
2357 	/*
2358 	 * Processes that did not create the mapping will have no
2359 	 * reserves as indicated by the region/reserve map. Check
2360 	 * that the allocation will not exceed the subpool limit.
2361 	 * Allocations for MAP_NORESERVE mappings also need to be
2362 	 * checked against any subpool limit.
2363 	 */
2364 	if (map_chg || avoid_reserve) {
2365 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2366 		if (gbl_chg < 0) {
2367 			vma_end_reservation(h, vma, addr);
2368 			return ERR_PTR(-ENOSPC);
2369 		}
2370 
2371 		/*
2372 		 * Even though there was no reservation in the region/reserve
2373 		 * map, there could be reservations associated with the
2374 		 * subpool that can be used.  This would be indicated if the
2375 		 * return value of hugepage_subpool_get_pages() is zero.
2376 		 * However, if avoid_reserve is specified we still avoid even
2377 		 * the subpool reservations.
2378 		 */
2379 		if (avoid_reserve)
2380 			gbl_chg = 1;
2381 	}
2382 
2383 	/* If this allocation is not consuming a reservation, charge it now.
2384 	 */
2385 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2386 	if (deferred_reserve) {
2387 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2388 			idx, pages_per_huge_page(h), &h_cg);
2389 		if (ret)
2390 			goto out_subpool_put;
2391 	}
2392 
2393 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2394 	if (ret)
2395 		goto out_uncharge_cgroup_reservation;
2396 
2397 	spin_lock(&hugetlb_lock);
2398 	/*
2399 	 * glb_chg is passed to indicate whether or not a page must be taken
2400 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2401 	 * a reservation exists for the allocation.
2402 	 */
2403 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2404 	if (!page) {
2405 		spin_unlock(&hugetlb_lock);
2406 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2407 		if (!page)
2408 			goto out_uncharge_cgroup;
2409 		spin_lock(&hugetlb_lock);
2410 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411 			SetPagePrivate(page);
2412 			h->resv_huge_pages--;
2413 		}
2414 		list_add(&page->lru, &h->hugepage_activelist);
2415 		/* Fall through */
2416 	}
2417 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2418 	/* If allocation is not consuming a reservation, also store the
2419 	 * hugetlb_cgroup pointer on the page.
2420 	 */
2421 	if (deferred_reserve) {
2422 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2423 						  h_cg, page);
2424 	}
2425 
2426 	spin_unlock(&hugetlb_lock);
2427 
2428 	set_page_private(page, (unsigned long)spool);
2429 
2430 	map_commit = vma_commit_reservation(h, vma, addr);
2431 	if (unlikely(map_chg > map_commit)) {
2432 		/*
2433 		 * The page was added to the reservation map between
2434 		 * vma_needs_reservation and vma_commit_reservation.
2435 		 * This indicates a race with hugetlb_reserve_pages.
2436 		 * Adjust for the subpool count incremented above AND
2437 		 * in hugetlb_reserve_pages for the same page.  Also,
2438 		 * the reservation count added in hugetlb_reserve_pages
2439 		 * no longer applies.
2440 		 */
2441 		long rsv_adjust;
2442 
2443 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2444 		hugetlb_acct_memory(h, -rsv_adjust);
2445 		if (deferred_reserve)
2446 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2447 					pages_per_huge_page(h), page);
2448 	}
2449 	return page;
2450 
2451 out_uncharge_cgroup:
2452 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2453 out_uncharge_cgroup_reservation:
2454 	if (deferred_reserve)
2455 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2456 						    h_cg);
2457 out_subpool_put:
2458 	if (map_chg || avoid_reserve)
2459 		hugepage_subpool_put_pages(spool, 1);
2460 	vma_end_reservation(h, vma, addr);
2461 	return ERR_PTR(-ENOSPC);
2462 }
2463 
2464 int alloc_bootmem_huge_page(struct hstate *h)
2465 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2466 int __alloc_bootmem_huge_page(struct hstate *h)
2467 {
2468 	struct huge_bootmem_page *m;
2469 	int nr_nodes, node;
2470 
2471 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2472 		void *addr;
2473 
2474 		addr = memblock_alloc_try_nid_raw(
2475 				huge_page_size(h), huge_page_size(h),
2476 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2477 		if (addr) {
2478 			/*
2479 			 * Use the beginning of the huge page to store the
2480 			 * huge_bootmem_page struct (until gather_bootmem
2481 			 * puts them into the mem_map).
2482 			 */
2483 			m = addr;
2484 			goto found;
2485 		}
2486 	}
2487 	return 0;
2488 
2489 found:
2490 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2491 	/* Put them into a private list first because mem_map is not up yet */
2492 	INIT_LIST_HEAD(&m->list);
2493 	list_add(&m->list, &huge_boot_pages);
2494 	m->hstate = h;
2495 	return 1;
2496 }
2497 
2498 /*
2499  * Put bootmem huge pages into the standard lists after mem_map is up.
2500  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2501  */
gather_bootmem_prealloc(void)2502 static void __init gather_bootmem_prealloc(void)
2503 {
2504 	struct huge_bootmem_page *m;
2505 
2506 	list_for_each_entry(m, &huge_boot_pages, list) {
2507 		struct page *page = virt_to_page(m);
2508 		struct hstate *h = m->hstate;
2509 
2510 		VM_BUG_ON(!hstate_is_gigantic(h));
2511 		WARN_ON(page_count(page) != 1);
2512 		prep_compound_gigantic_page(page, huge_page_order(h));
2513 		WARN_ON(PageReserved(page));
2514 		prep_new_huge_page(h, page, page_to_nid(page));
2515 		put_page(page); /* free it into the hugepage allocator */
2516 
2517 		/*
2518 		 * We need to restore the 'stolen' pages to totalram_pages
2519 		 * in order to fix confusing memory reports from free(1) and
2520 		 * other side-effects, like CommitLimit going negative.
2521 		 */
2522 		adjust_managed_page_count(page, pages_per_huge_page(h));
2523 		cond_resched();
2524 	}
2525 }
2526 
hugetlb_hstate_alloc_pages(struct hstate * h)2527 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2528 {
2529 	unsigned long i;
2530 	nodemask_t *node_alloc_noretry;
2531 
2532 	if (!hstate_is_gigantic(h)) {
2533 		/*
2534 		 * Bit mask controlling how hard we retry per-node allocations.
2535 		 * Ignore errors as lower level routines can deal with
2536 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2537 		 * time, we are likely in bigger trouble.
2538 		 */
2539 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2540 						GFP_KERNEL);
2541 	} else {
2542 		/* allocations done at boot time */
2543 		node_alloc_noretry = NULL;
2544 	}
2545 
2546 	/* bit mask controlling how hard we retry per-node allocations */
2547 	if (node_alloc_noretry)
2548 		nodes_clear(*node_alloc_noretry);
2549 
2550 	for (i = 0; i < h->max_huge_pages; ++i) {
2551 		if (hstate_is_gigantic(h)) {
2552 			if (hugetlb_cma_size) {
2553 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2554 				goto free;
2555 			}
2556 			if (!alloc_bootmem_huge_page(h))
2557 				break;
2558 		} else if (!alloc_pool_huge_page(h,
2559 					 &node_states[N_MEMORY],
2560 					 node_alloc_noretry))
2561 			break;
2562 		cond_resched();
2563 	}
2564 	if (i < h->max_huge_pages) {
2565 		char buf[32];
2566 
2567 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2569 			h->max_huge_pages, buf, i);
2570 		h->max_huge_pages = i;
2571 	}
2572 free:
2573 	kfree(node_alloc_noretry);
2574 }
2575 
hugetlb_init_hstates(void)2576 static void __init hugetlb_init_hstates(void)
2577 {
2578 	struct hstate *h;
2579 
2580 	for_each_hstate(h) {
2581 		if (minimum_order > huge_page_order(h))
2582 			minimum_order = huge_page_order(h);
2583 
2584 		/* oversize hugepages were init'ed in early boot */
2585 		if (!hstate_is_gigantic(h))
2586 			hugetlb_hstate_alloc_pages(h);
2587 	}
2588 	VM_BUG_ON(minimum_order == UINT_MAX);
2589 }
2590 
report_hugepages(void)2591 static void __init report_hugepages(void)
2592 {
2593 	struct hstate *h;
2594 
2595 	for_each_hstate(h) {
2596 		char buf[32];
2597 
2598 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2599 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2600 			buf, h->free_huge_pages);
2601 	}
2602 }
2603 
2604 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2605 static void try_to_free_low(struct hstate *h, unsigned long count,
2606 						nodemask_t *nodes_allowed)
2607 {
2608 	int i;
2609 
2610 	if (hstate_is_gigantic(h))
2611 		return;
2612 
2613 	for_each_node_mask(i, *nodes_allowed) {
2614 		struct page *page, *next;
2615 		struct list_head *freel = &h->hugepage_freelists[i];
2616 		list_for_each_entry_safe(page, next, freel, lru) {
2617 			if (count >= h->nr_huge_pages)
2618 				return;
2619 			if (PageHighMem(page))
2620 				continue;
2621 			list_del(&page->lru);
2622 			update_and_free_page(h, page);
2623 			h->free_huge_pages--;
2624 			h->free_huge_pages_node[page_to_nid(page)]--;
2625 		}
2626 	}
2627 }
2628 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2629 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2630 						nodemask_t *nodes_allowed)
2631 {
2632 }
2633 #endif
2634 
2635 /*
2636  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2637  * balanced by operating on them in a round-robin fashion.
2638  * Returns 1 if an adjustment was made.
2639  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2640 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2641 				int delta)
2642 {
2643 	int nr_nodes, node;
2644 
2645 	VM_BUG_ON(delta != -1 && delta != 1);
2646 
2647 	if (delta < 0) {
2648 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2649 			if (h->surplus_huge_pages_node[node])
2650 				goto found;
2651 		}
2652 	} else {
2653 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2654 			if (h->surplus_huge_pages_node[node] <
2655 					h->nr_huge_pages_node[node])
2656 				goto found;
2657 		}
2658 	}
2659 	return 0;
2660 
2661 found:
2662 	h->surplus_huge_pages += delta;
2663 	h->surplus_huge_pages_node[node] += delta;
2664 	return 1;
2665 }
2666 
2667 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2668 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2669 			      nodemask_t *nodes_allowed)
2670 {
2671 	unsigned long min_count, ret;
2672 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2673 
2674 	/*
2675 	 * Bit mask controlling how hard we retry per-node allocations.
2676 	 * If we can not allocate the bit mask, do not attempt to allocate
2677 	 * the requested huge pages.
2678 	 */
2679 	if (node_alloc_noretry)
2680 		nodes_clear(*node_alloc_noretry);
2681 	else
2682 		return -ENOMEM;
2683 
2684 	spin_lock(&hugetlb_lock);
2685 
2686 	/*
2687 	 * Check for a node specific request.
2688 	 * Changing node specific huge page count may require a corresponding
2689 	 * change to the global count.  In any case, the passed node mask
2690 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2691 	 */
2692 	if (nid != NUMA_NO_NODE) {
2693 		unsigned long old_count = count;
2694 
2695 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2696 		/*
2697 		 * User may have specified a large count value which caused the
2698 		 * above calculation to overflow.  In this case, they wanted
2699 		 * to allocate as many huge pages as possible.  Set count to
2700 		 * largest possible value to align with their intention.
2701 		 */
2702 		if (count < old_count)
2703 			count = ULONG_MAX;
2704 	}
2705 
2706 	/*
2707 	 * Gigantic pages runtime allocation depend on the capability for large
2708 	 * page range allocation.
2709 	 * If the system does not provide this feature, return an error when
2710 	 * the user tries to allocate gigantic pages but let the user free the
2711 	 * boottime allocated gigantic pages.
2712 	 */
2713 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2714 		if (count > persistent_huge_pages(h)) {
2715 			spin_unlock(&hugetlb_lock);
2716 			NODEMASK_FREE(node_alloc_noretry);
2717 			return -EINVAL;
2718 		}
2719 		/* Fall through to decrease pool */
2720 	}
2721 
2722 	/*
2723 	 * Increase the pool size
2724 	 * First take pages out of surplus state.  Then make up the
2725 	 * remaining difference by allocating fresh huge pages.
2726 	 *
2727 	 * We might race with alloc_surplus_huge_page() here and be unable
2728 	 * to convert a surplus huge page to a normal huge page. That is
2729 	 * not critical, though, it just means the overall size of the
2730 	 * pool might be one hugepage larger than it needs to be, but
2731 	 * within all the constraints specified by the sysctls.
2732 	 */
2733 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2734 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2735 			break;
2736 	}
2737 
2738 	while (count > persistent_huge_pages(h)) {
2739 		/*
2740 		 * If this allocation races such that we no longer need the
2741 		 * page, free_huge_page will handle it by freeing the page
2742 		 * and reducing the surplus.
2743 		 */
2744 		spin_unlock(&hugetlb_lock);
2745 
2746 		/* yield cpu to avoid soft lockup */
2747 		cond_resched();
2748 
2749 		ret = alloc_pool_huge_page(h, nodes_allowed,
2750 						node_alloc_noretry);
2751 		spin_lock(&hugetlb_lock);
2752 		if (!ret)
2753 			goto out;
2754 
2755 		/* Bail for signals. Probably ctrl-c from user */
2756 		if (signal_pending(current))
2757 			goto out;
2758 	}
2759 
2760 	/*
2761 	 * Decrease the pool size
2762 	 * First return free pages to the buddy allocator (being careful
2763 	 * to keep enough around to satisfy reservations).  Then place
2764 	 * pages into surplus state as needed so the pool will shrink
2765 	 * to the desired size as pages become free.
2766 	 *
2767 	 * By placing pages into the surplus state independent of the
2768 	 * overcommit value, we are allowing the surplus pool size to
2769 	 * exceed overcommit. There are few sane options here. Since
2770 	 * alloc_surplus_huge_page() is checking the global counter,
2771 	 * though, we'll note that we're not allowed to exceed surplus
2772 	 * and won't grow the pool anywhere else. Not until one of the
2773 	 * sysctls are changed, or the surplus pages go out of use.
2774 	 */
2775 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2776 	min_count = max(count, min_count);
2777 	try_to_free_low(h, min_count, nodes_allowed);
2778 	while (min_count < persistent_huge_pages(h)) {
2779 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2780 			break;
2781 		cond_resched_lock(&hugetlb_lock);
2782 	}
2783 	while (count < persistent_huge_pages(h)) {
2784 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2785 			break;
2786 	}
2787 out:
2788 	h->max_huge_pages = persistent_huge_pages(h);
2789 	spin_unlock(&hugetlb_lock);
2790 
2791 	NODEMASK_FREE(node_alloc_noretry);
2792 
2793 	return 0;
2794 }
2795 
2796 #define HSTATE_ATTR_RO(_name) \
2797 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2798 
2799 #define HSTATE_ATTR(_name) \
2800 	static struct kobj_attribute _name##_attr = \
2801 		__ATTR(_name, 0644, _name##_show, _name##_store)
2802 
2803 static struct kobject *hugepages_kobj;
2804 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2805 
2806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2807 
kobj_to_hstate(struct kobject * kobj,int * nidp)2808 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2809 {
2810 	int i;
2811 
2812 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2813 		if (hstate_kobjs[i] == kobj) {
2814 			if (nidp)
2815 				*nidp = NUMA_NO_NODE;
2816 			return &hstates[i];
2817 		}
2818 
2819 	return kobj_to_node_hstate(kobj, nidp);
2820 }
2821 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2822 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2823 					struct kobj_attribute *attr, char *buf)
2824 {
2825 	struct hstate *h;
2826 	unsigned long nr_huge_pages;
2827 	int nid;
2828 
2829 	h = kobj_to_hstate(kobj, &nid);
2830 	if (nid == NUMA_NO_NODE)
2831 		nr_huge_pages = h->nr_huge_pages;
2832 	else
2833 		nr_huge_pages = h->nr_huge_pages_node[nid];
2834 
2835 	return sprintf(buf, "%lu\n", nr_huge_pages);
2836 }
2837 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2838 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2839 					   struct hstate *h, int nid,
2840 					   unsigned long count, size_t len)
2841 {
2842 	int err;
2843 	nodemask_t nodes_allowed, *n_mask;
2844 
2845 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2846 		return -EINVAL;
2847 
2848 	if (nid == NUMA_NO_NODE) {
2849 		/*
2850 		 * global hstate attribute
2851 		 */
2852 		if (!(obey_mempolicy &&
2853 				init_nodemask_of_mempolicy(&nodes_allowed)))
2854 			n_mask = &node_states[N_MEMORY];
2855 		else
2856 			n_mask = &nodes_allowed;
2857 	} else {
2858 		/*
2859 		 * Node specific request.  count adjustment happens in
2860 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2861 		 */
2862 		init_nodemask_of_node(&nodes_allowed, nid);
2863 		n_mask = &nodes_allowed;
2864 	}
2865 
2866 	err = set_max_huge_pages(h, count, nid, n_mask);
2867 
2868 	return err ? err : len;
2869 }
2870 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2871 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2872 					 struct kobject *kobj, const char *buf,
2873 					 size_t len)
2874 {
2875 	struct hstate *h;
2876 	unsigned long count;
2877 	int nid;
2878 	int err;
2879 
2880 	err = kstrtoul(buf, 10, &count);
2881 	if (err)
2882 		return err;
2883 
2884 	h = kobj_to_hstate(kobj, &nid);
2885 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2886 }
2887 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2888 static ssize_t nr_hugepages_show(struct kobject *kobj,
2889 				       struct kobj_attribute *attr, char *buf)
2890 {
2891 	return nr_hugepages_show_common(kobj, attr, buf);
2892 }
2893 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2894 static ssize_t nr_hugepages_store(struct kobject *kobj,
2895 	       struct kobj_attribute *attr, const char *buf, size_t len)
2896 {
2897 	return nr_hugepages_store_common(false, kobj, buf, len);
2898 }
2899 HSTATE_ATTR(nr_hugepages);
2900 
2901 #ifdef CONFIG_NUMA
2902 
2903 /*
2904  * hstate attribute for optionally mempolicy-based constraint on persistent
2905  * huge page alloc/free.
2906  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2907 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2908 				       struct kobj_attribute *attr, char *buf)
2909 {
2910 	return nr_hugepages_show_common(kobj, attr, buf);
2911 }
2912 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2913 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2914 	       struct kobj_attribute *attr, const char *buf, size_t len)
2915 {
2916 	return nr_hugepages_store_common(true, kobj, buf, len);
2917 }
2918 HSTATE_ATTR(nr_hugepages_mempolicy);
2919 #endif
2920 
2921 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2922 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2923 					struct kobj_attribute *attr, char *buf)
2924 {
2925 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2926 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2927 }
2928 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2929 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2930 		struct kobj_attribute *attr, const char *buf, size_t count)
2931 {
2932 	int err;
2933 	unsigned long input;
2934 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2935 
2936 	if (hstate_is_gigantic(h))
2937 		return -EINVAL;
2938 
2939 	err = kstrtoul(buf, 10, &input);
2940 	if (err)
2941 		return err;
2942 
2943 	spin_lock(&hugetlb_lock);
2944 	h->nr_overcommit_huge_pages = input;
2945 	spin_unlock(&hugetlb_lock);
2946 
2947 	return count;
2948 }
2949 HSTATE_ATTR(nr_overcommit_hugepages);
2950 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2951 static ssize_t free_hugepages_show(struct kobject *kobj,
2952 					struct kobj_attribute *attr, char *buf)
2953 {
2954 	struct hstate *h;
2955 	unsigned long free_huge_pages;
2956 	int nid;
2957 
2958 	h = kobj_to_hstate(kobj, &nid);
2959 	if (nid == NUMA_NO_NODE)
2960 		free_huge_pages = h->free_huge_pages;
2961 	else
2962 		free_huge_pages = h->free_huge_pages_node[nid];
2963 
2964 	return sprintf(buf, "%lu\n", free_huge_pages);
2965 }
2966 HSTATE_ATTR_RO(free_hugepages);
2967 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2968 static ssize_t resv_hugepages_show(struct kobject *kobj,
2969 					struct kobj_attribute *attr, char *buf)
2970 {
2971 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2972 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2973 }
2974 HSTATE_ATTR_RO(resv_hugepages);
2975 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2976 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2977 					struct kobj_attribute *attr, char *buf)
2978 {
2979 	struct hstate *h;
2980 	unsigned long surplus_huge_pages;
2981 	int nid;
2982 
2983 	h = kobj_to_hstate(kobj, &nid);
2984 	if (nid == NUMA_NO_NODE)
2985 		surplus_huge_pages = h->surplus_huge_pages;
2986 	else
2987 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2988 
2989 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2990 }
2991 HSTATE_ATTR_RO(surplus_hugepages);
2992 
2993 static struct attribute *hstate_attrs[] = {
2994 	&nr_hugepages_attr.attr,
2995 	&nr_overcommit_hugepages_attr.attr,
2996 	&free_hugepages_attr.attr,
2997 	&resv_hugepages_attr.attr,
2998 	&surplus_hugepages_attr.attr,
2999 #ifdef CONFIG_NUMA
3000 	&nr_hugepages_mempolicy_attr.attr,
3001 #endif
3002 	NULL,
3003 };
3004 
3005 static const struct attribute_group hstate_attr_group = {
3006 	.attrs = hstate_attrs,
3007 };
3008 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3009 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3010 				    struct kobject **hstate_kobjs,
3011 				    const struct attribute_group *hstate_attr_group)
3012 {
3013 	int retval;
3014 	int hi = hstate_index(h);
3015 
3016 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3017 	if (!hstate_kobjs[hi])
3018 		return -ENOMEM;
3019 
3020 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3021 	if (retval) {
3022 		kobject_put(hstate_kobjs[hi]);
3023 		hstate_kobjs[hi] = NULL;
3024 	}
3025 
3026 	return retval;
3027 }
3028 
hugetlb_sysfs_init(void)3029 static void __init hugetlb_sysfs_init(void)
3030 {
3031 	struct hstate *h;
3032 	int err;
3033 
3034 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3035 	if (!hugepages_kobj)
3036 		return;
3037 
3038 	for_each_hstate(h) {
3039 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3040 					 hstate_kobjs, &hstate_attr_group);
3041 		if (err)
3042 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3043 	}
3044 }
3045 
3046 #ifdef CONFIG_NUMA
3047 
3048 /*
3049  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3050  * with node devices in node_devices[] using a parallel array.  The array
3051  * index of a node device or _hstate == node id.
3052  * This is here to avoid any static dependency of the node device driver, in
3053  * the base kernel, on the hugetlb module.
3054  */
3055 struct node_hstate {
3056 	struct kobject		*hugepages_kobj;
3057 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3058 };
3059 static struct node_hstate node_hstates[MAX_NUMNODES];
3060 
3061 /*
3062  * A subset of global hstate attributes for node devices
3063  */
3064 static struct attribute *per_node_hstate_attrs[] = {
3065 	&nr_hugepages_attr.attr,
3066 	&free_hugepages_attr.attr,
3067 	&surplus_hugepages_attr.attr,
3068 	NULL,
3069 };
3070 
3071 static const struct attribute_group per_node_hstate_attr_group = {
3072 	.attrs = per_node_hstate_attrs,
3073 };
3074 
3075 /*
3076  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3077  * Returns node id via non-NULL nidp.
3078  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3079 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3080 {
3081 	int nid;
3082 
3083 	for (nid = 0; nid < nr_node_ids; nid++) {
3084 		struct node_hstate *nhs = &node_hstates[nid];
3085 		int i;
3086 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3087 			if (nhs->hstate_kobjs[i] == kobj) {
3088 				if (nidp)
3089 					*nidp = nid;
3090 				return &hstates[i];
3091 			}
3092 	}
3093 
3094 	BUG();
3095 	return NULL;
3096 }
3097 
3098 /*
3099  * Unregister hstate attributes from a single node device.
3100  * No-op if no hstate attributes attached.
3101  */
hugetlb_unregister_node(struct node * node)3102 static void hugetlb_unregister_node(struct node *node)
3103 {
3104 	struct hstate *h;
3105 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3106 
3107 	if (!nhs->hugepages_kobj)
3108 		return;		/* no hstate attributes */
3109 
3110 	for_each_hstate(h) {
3111 		int idx = hstate_index(h);
3112 		if (nhs->hstate_kobjs[idx]) {
3113 			kobject_put(nhs->hstate_kobjs[idx]);
3114 			nhs->hstate_kobjs[idx] = NULL;
3115 		}
3116 	}
3117 
3118 	kobject_put(nhs->hugepages_kobj);
3119 	nhs->hugepages_kobj = NULL;
3120 }
3121 
3122 
3123 /*
3124  * Register hstate attributes for a single node device.
3125  * No-op if attributes already registered.
3126  */
hugetlb_register_node(struct node * node)3127 static void hugetlb_register_node(struct node *node)
3128 {
3129 	struct hstate *h;
3130 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3131 	int err;
3132 
3133 	if (nhs->hugepages_kobj)
3134 		return;		/* already allocated */
3135 
3136 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3137 							&node->dev.kobj);
3138 	if (!nhs->hugepages_kobj)
3139 		return;
3140 
3141 	for_each_hstate(h) {
3142 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3143 						nhs->hstate_kobjs,
3144 						&per_node_hstate_attr_group);
3145 		if (err) {
3146 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3147 				h->name, node->dev.id);
3148 			hugetlb_unregister_node(node);
3149 			break;
3150 		}
3151 	}
3152 }
3153 
3154 /*
3155  * hugetlb init time:  register hstate attributes for all registered node
3156  * devices of nodes that have memory.  All on-line nodes should have
3157  * registered their associated device by this time.
3158  */
hugetlb_register_all_nodes(void)3159 static void __init hugetlb_register_all_nodes(void)
3160 {
3161 	int nid;
3162 
3163 	for_each_node_state(nid, N_MEMORY) {
3164 		struct node *node = node_devices[nid];
3165 		if (node->dev.id == nid)
3166 			hugetlb_register_node(node);
3167 	}
3168 
3169 	/*
3170 	 * Let the node device driver know we're here so it can
3171 	 * [un]register hstate attributes on node hotplug.
3172 	 */
3173 	register_hugetlbfs_with_node(hugetlb_register_node,
3174 				     hugetlb_unregister_node);
3175 }
3176 #else	/* !CONFIG_NUMA */
3177 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3178 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179 {
3180 	BUG();
3181 	if (nidp)
3182 		*nidp = -1;
3183 	return NULL;
3184 }
3185 
hugetlb_register_all_nodes(void)3186 static void hugetlb_register_all_nodes(void) { }
3187 
3188 #endif
3189 
hugetlb_init(void)3190 static int __init hugetlb_init(void)
3191 {
3192 	int i;
3193 
3194 	if (!hugepages_supported()) {
3195 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3196 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3197 		return 0;
3198 	}
3199 
3200 	/*
3201 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3202 	 * architectures depend on setup being done here.
3203 	 */
3204 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3205 	if (!parsed_default_hugepagesz) {
3206 		/*
3207 		 * If we did not parse a default huge page size, set
3208 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3209 		 * number of huge pages for this default size was implicitly
3210 		 * specified, set that here as well.
3211 		 * Note that the implicit setting will overwrite an explicit
3212 		 * setting.  A warning will be printed in this case.
3213 		 */
3214 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3215 		if (default_hstate_max_huge_pages) {
3216 			if (default_hstate.max_huge_pages) {
3217 				char buf[32];
3218 
3219 				string_get_size(huge_page_size(&default_hstate),
3220 					1, STRING_UNITS_2, buf, 32);
3221 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3222 					default_hstate.max_huge_pages, buf);
3223 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3224 					default_hstate_max_huge_pages);
3225 			}
3226 			default_hstate.max_huge_pages =
3227 				default_hstate_max_huge_pages;
3228 		}
3229 	}
3230 
3231 	hugetlb_cma_check();
3232 	hugetlb_init_hstates();
3233 	gather_bootmem_prealloc();
3234 	report_hugepages();
3235 
3236 	hugetlb_sysfs_init();
3237 	hugetlb_register_all_nodes();
3238 	hugetlb_cgroup_file_init();
3239 
3240 #ifdef CONFIG_SMP
3241 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3242 #else
3243 	num_fault_mutexes = 1;
3244 #endif
3245 	hugetlb_fault_mutex_table =
3246 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3247 			      GFP_KERNEL);
3248 	BUG_ON(!hugetlb_fault_mutex_table);
3249 
3250 	for (i = 0; i < num_fault_mutexes; i++)
3251 		mutex_init(&hugetlb_fault_mutex_table[i]);
3252 	return 0;
3253 }
3254 subsys_initcall(hugetlb_init);
3255 
3256 /* Overwritten by architectures with more huge page sizes */
__init(weak)3257 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3258 {
3259 	return size == HPAGE_SIZE;
3260 }
3261 
hugetlb_add_hstate(unsigned int order)3262 void __init hugetlb_add_hstate(unsigned int order)
3263 {
3264 	struct hstate *h;
3265 	unsigned long i;
3266 
3267 	if (size_to_hstate(PAGE_SIZE << order)) {
3268 		return;
3269 	}
3270 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3271 	BUG_ON(order == 0);
3272 	h = &hstates[hugetlb_max_hstate++];
3273 	h->order = order;
3274 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3275 	h->nr_huge_pages = 0;
3276 	h->free_huge_pages = 0;
3277 	for (i = 0; i < MAX_NUMNODES; ++i)
3278 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3279 	INIT_LIST_HEAD(&h->hugepage_activelist);
3280 	h->next_nid_to_alloc = first_memory_node;
3281 	h->next_nid_to_free = first_memory_node;
3282 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3283 					huge_page_size(h)/1024);
3284 
3285 	parsed_hstate = h;
3286 }
3287 
3288 /*
3289  * hugepages command line processing
3290  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3291  * specification.  If not, ignore the hugepages value.  hugepages can also
3292  * be the first huge page command line  option in which case it implicitly
3293  * specifies the number of huge pages for the default size.
3294  */
hugepages_setup(char * s)3295 static int __init hugepages_setup(char *s)
3296 {
3297 	unsigned long *mhp;
3298 	static unsigned long *last_mhp;
3299 
3300 	if (!parsed_valid_hugepagesz) {
3301 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3302 		parsed_valid_hugepagesz = true;
3303 		return 0;
3304 	}
3305 
3306 	/*
3307 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3308 	 * yet, so this hugepages= parameter goes to the "default hstate".
3309 	 * Otherwise, it goes with the previously parsed hugepagesz or
3310 	 * default_hugepagesz.
3311 	 */
3312 	else if (!hugetlb_max_hstate)
3313 		mhp = &default_hstate_max_huge_pages;
3314 	else
3315 		mhp = &parsed_hstate->max_huge_pages;
3316 
3317 	if (mhp == last_mhp) {
3318 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3319 		return 0;
3320 	}
3321 
3322 	if (sscanf(s, "%lu", mhp) <= 0)
3323 		*mhp = 0;
3324 
3325 	/*
3326 	 * Global state is always initialized later in hugetlb_init.
3327 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3328 	 * use the bootmem allocator.
3329 	 */
3330 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3331 		hugetlb_hstate_alloc_pages(parsed_hstate);
3332 
3333 	last_mhp = mhp;
3334 
3335 	return 1;
3336 }
3337 __setup("hugepages=", hugepages_setup);
3338 
3339 /*
3340  * hugepagesz command line processing
3341  * A specific huge page size can only be specified once with hugepagesz.
3342  * hugepagesz is followed by hugepages on the command line.  The global
3343  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3344  * hugepagesz argument was valid.
3345  */
hugepagesz_setup(char * s)3346 static int __init hugepagesz_setup(char *s)
3347 {
3348 	unsigned long size;
3349 	struct hstate *h;
3350 
3351 	parsed_valid_hugepagesz = false;
3352 	size = (unsigned long)memparse(s, NULL);
3353 
3354 	if (!arch_hugetlb_valid_size(size)) {
3355 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3356 		return 0;
3357 	}
3358 
3359 	h = size_to_hstate(size);
3360 	if (h) {
3361 		/*
3362 		 * hstate for this size already exists.  This is normally
3363 		 * an error, but is allowed if the existing hstate is the
3364 		 * default hstate.  More specifically, it is only allowed if
3365 		 * the number of huge pages for the default hstate was not
3366 		 * previously specified.
3367 		 */
3368 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3369 		    default_hstate.max_huge_pages) {
3370 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3371 			return 0;
3372 		}
3373 
3374 		/*
3375 		 * No need to call hugetlb_add_hstate() as hstate already
3376 		 * exists.  But, do set parsed_hstate so that a following
3377 		 * hugepages= parameter will be applied to this hstate.
3378 		 */
3379 		parsed_hstate = h;
3380 		parsed_valid_hugepagesz = true;
3381 		return 1;
3382 	}
3383 
3384 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3385 	parsed_valid_hugepagesz = true;
3386 	return 1;
3387 }
3388 __setup("hugepagesz=", hugepagesz_setup);
3389 
3390 /*
3391  * default_hugepagesz command line input
3392  * Only one instance of default_hugepagesz allowed on command line.
3393  */
default_hugepagesz_setup(char * s)3394 static int __init default_hugepagesz_setup(char *s)
3395 {
3396 	unsigned long size;
3397 
3398 	parsed_valid_hugepagesz = false;
3399 	if (parsed_default_hugepagesz) {
3400 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3401 		return 0;
3402 	}
3403 
3404 	size = (unsigned long)memparse(s, NULL);
3405 
3406 	if (!arch_hugetlb_valid_size(size)) {
3407 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3408 		return 0;
3409 	}
3410 
3411 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3412 	parsed_valid_hugepagesz = true;
3413 	parsed_default_hugepagesz = true;
3414 	default_hstate_idx = hstate_index(size_to_hstate(size));
3415 
3416 	/*
3417 	 * The number of default huge pages (for this size) could have been
3418 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3419 	 * then default_hstate_max_huge_pages is set.  If the default huge
3420 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3421 	 * allocated here from bootmem allocator.
3422 	 */
3423 	if (default_hstate_max_huge_pages) {
3424 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3425 		if (hstate_is_gigantic(&default_hstate))
3426 			hugetlb_hstate_alloc_pages(&default_hstate);
3427 		default_hstate_max_huge_pages = 0;
3428 	}
3429 
3430 	return 1;
3431 }
3432 __setup("default_hugepagesz=", default_hugepagesz_setup);
3433 
allowed_mems_nr(struct hstate * h)3434 static unsigned int allowed_mems_nr(struct hstate *h)
3435 {
3436 	int node;
3437 	unsigned int nr = 0;
3438 	nodemask_t *mpol_allowed;
3439 	unsigned int *array = h->free_huge_pages_node;
3440 	gfp_t gfp_mask = htlb_alloc_mask(h);
3441 
3442 	mpol_allowed = policy_nodemask_current(gfp_mask);
3443 
3444 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3445 		if (!mpol_allowed ||
3446 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3447 			nr += array[node];
3448 	}
3449 
3450 	return nr;
3451 }
3452 
3453 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3454 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3455 					  void *buffer, size_t *length,
3456 					  loff_t *ppos, unsigned long *out)
3457 {
3458 	struct ctl_table dup_table;
3459 
3460 	/*
3461 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3462 	 * can duplicate the @table and alter the duplicate of it.
3463 	 */
3464 	dup_table = *table;
3465 	dup_table.data = out;
3466 
3467 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3468 }
3469 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3470 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3471 			 struct ctl_table *table, int write,
3472 			 void *buffer, size_t *length, loff_t *ppos)
3473 {
3474 	struct hstate *h = &default_hstate;
3475 	unsigned long tmp = h->max_huge_pages;
3476 	int ret;
3477 
3478 	if (!hugepages_supported())
3479 		return -EOPNOTSUPP;
3480 
3481 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3482 					     &tmp);
3483 	if (ret)
3484 		goto out;
3485 
3486 	if (write)
3487 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3488 						  NUMA_NO_NODE, tmp, *length);
3489 out:
3490 	return ret;
3491 }
3492 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3493 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3494 			  void *buffer, size_t *length, loff_t *ppos)
3495 {
3496 
3497 	return hugetlb_sysctl_handler_common(false, table, write,
3498 							buffer, length, ppos);
3499 }
3500 
3501 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3502 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3503 			  void *buffer, size_t *length, loff_t *ppos)
3504 {
3505 	return hugetlb_sysctl_handler_common(true, table, write,
3506 							buffer, length, ppos);
3507 }
3508 #endif /* CONFIG_NUMA */
3509 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3510 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3511 		void *buffer, size_t *length, loff_t *ppos)
3512 {
3513 	struct hstate *h = &default_hstate;
3514 	unsigned long tmp;
3515 	int ret;
3516 
3517 	if (!hugepages_supported())
3518 		return -EOPNOTSUPP;
3519 
3520 	tmp = h->nr_overcommit_huge_pages;
3521 
3522 	if (write && hstate_is_gigantic(h))
3523 		return -EINVAL;
3524 
3525 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3526 					     &tmp);
3527 	if (ret)
3528 		goto out;
3529 
3530 	if (write) {
3531 		spin_lock(&hugetlb_lock);
3532 		h->nr_overcommit_huge_pages = tmp;
3533 		spin_unlock(&hugetlb_lock);
3534 	}
3535 out:
3536 	return ret;
3537 }
3538 
3539 #endif /* CONFIG_SYSCTL */
3540 
hugetlb_report_meminfo(struct seq_file * m)3541 void hugetlb_report_meminfo(struct seq_file *m)
3542 {
3543 	struct hstate *h;
3544 	unsigned long total = 0;
3545 
3546 	if (!hugepages_supported())
3547 		return;
3548 
3549 	for_each_hstate(h) {
3550 		unsigned long count = h->nr_huge_pages;
3551 
3552 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3553 
3554 		if (h == &default_hstate)
3555 			seq_printf(m,
3556 				   "HugePages_Total:   %5lu\n"
3557 				   "HugePages_Free:    %5lu\n"
3558 				   "HugePages_Rsvd:    %5lu\n"
3559 				   "HugePages_Surp:    %5lu\n"
3560 				   "Hugepagesize:   %8lu kB\n",
3561 				   count,
3562 				   h->free_huge_pages,
3563 				   h->resv_huge_pages,
3564 				   h->surplus_huge_pages,
3565 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3566 	}
3567 
3568 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3569 }
3570 
hugetlb_report_node_meminfo(char * buf,int len,int nid)3571 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3572 {
3573 	struct hstate *h = &default_hstate;
3574 
3575 	if (!hugepages_supported())
3576 		return 0;
3577 
3578 	return sysfs_emit_at(buf, len,
3579 			     "Node %d HugePages_Total: %5u\n"
3580 			     "Node %d HugePages_Free:  %5u\n"
3581 			     "Node %d HugePages_Surp:  %5u\n",
3582 			     nid, h->nr_huge_pages_node[nid],
3583 			     nid, h->free_huge_pages_node[nid],
3584 			     nid, h->surplus_huge_pages_node[nid]);
3585 }
3586 
hugetlb_show_meminfo(void)3587 void hugetlb_show_meminfo(void)
3588 {
3589 	struct hstate *h;
3590 	int nid;
3591 
3592 	if (!hugepages_supported())
3593 		return;
3594 
3595 	for_each_node_state(nid, N_MEMORY)
3596 		for_each_hstate(h)
3597 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3598 				nid,
3599 				h->nr_huge_pages_node[nid],
3600 				h->free_huge_pages_node[nid],
3601 				h->surplus_huge_pages_node[nid],
3602 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3603 }
3604 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3605 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3606 {
3607 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3608 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3609 }
3610 
3611 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3612 unsigned long hugetlb_total_pages(void)
3613 {
3614 	struct hstate *h;
3615 	unsigned long nr_total_pages = 0;
3616 
3617 	for_each_hstate(h)
3618 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3619 	return nr_total_pages;
3620 }
3621 
hugetlb_acct_memory(struct hstate * h,long delta)3622 static int hugetlb_acct_memory(struct hstate *h, long delta)
3623 {
3624 	int ret = -ENOMEM;
3625 
3626 	spin_lock(&hugetlb_lock);
3627 	/*
3628 	 * When cpuset is configured, it breaks the strict hugetlb page
3629 	 * reservation as the accounting is done on a global variable. Such
3630 	 * reservation is completely rubbish in the presence of cpuset because
3631 	 * the reservation is not checked against page availability for the
3632 	 * current cpuset. Application can still potentially OOM'ed by kernel
3633 	 * with lack of free htlb page in cpuset that the task is in.
3634 	 * Attempt to enforce strict accounting with cpuset is almost
3635 	 * impossible (or too ugly) because cpuset is too fluid that
3636 	 * task or memory node can be dynamically moved between cpusets.
3637 	 *
3638 	 * The change of semantics for shared hugetlb mapping with cpuset is
3639 	 * undesirable. However, in order to preserve some of the semantics,
3640 	 * we fall back to check against current free page availability as
3641 	 * a best attempt and hopefully to minimize the impact of changing
3642 	 * semantics that cpuset has.
3643 	 *
3644 	 * Apart from cpuset, we also have memory policy mechanism that
3645 	 * also determines from which node the kernel will allocate memory
3646 	 * in a NUMA system. So similar to cpuset, we also should consider
3647 	 * the memory policy of the current task. Similar to the description
3648 	 * above.
3649 	 */
3650 	if (delta > 0) {
3651 		if (gather_surplus_pages(h, delta) < 0)
3652 			goto out;
3653 
3654 		if (delta > allowed_mems_nr(h)) {
3655 			return_unused_surplus_pages(h, delta);
3656 			goto out;
3657 		}
3658 	}
3659 
3660 	ret = 0;
3661 	if (delta < 0)
3662 		return_unused_surplus_pages(h, (unsigned long) -delta);
3663 
3664 out:
3665 	spin_unlock(&hugetlb_lock);
3666 	return ret;
3667 }
3668 
hugetlb_vm_op_open(struct vm_area_struct * vma)3669 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3670 {
3671 	struct resv_map *resv = vma_resv_map(vma);
3672 
3673 	/*
3674 	 * This new VMA should share its siblings reservation map if present.
3675 	 * The VMA will only ever have a valid reservation map pointer where
3676 	 * it is being copied for another still existing VMA.  As that VMA
3677 	 * has a reference to the reservation map it cannot disappear until
3678 	 * after this open call completes.  It is therefore safe to take a
3679 	 * new reference here without additional locking.
3680 	 */
3681 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3682 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3683 		kref_get(&resv->refs);
3684 	}
3685 }
3686 
hugetlb_vm_op_close(struct vm_area_struct * vma)3687 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3688 {
3689 	struct hstate *h = hstate_vma(vma);
3690 	struct resv_map *resv = vma_resv_map(vma);
3691 	struct hugepage_subpool *spool = subpool_vma(vma);
3692 	unsigned long reserve, start, end;
3693 	long gbl_reserve;
3694 
3695 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3696 		return;
3697 
3698 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3699 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3700 
3701 	reserve = (end - start) - region_count(resv, start, end);
3702 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3703 	if (reserve) {
3704 		/*
3705 		 * Decrement reserve counts.  The global reserve count may be
3706 		 * adjusted if the subpool has a minimum size.
3707 		 */
3708 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3709 		hugetlb_acct_memory(h, -gbl_reserve);
3710 	}
3711 
3712 	kref_put(&resv->refs, resv_map_release);
3713 }
3714 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3715 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3716 {
3717 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3718 		return -EINVAL;
3719 	return 0;
3720 }
3721 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3722 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3723 {
3724 	struct hstate *hstate = hstate_vma(vma);
3725 
3726 	return 1UL << huge_page_shift(hstate);
3727 }
3728 
3729 /*
3730  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3731  * handle_mm_fault() to try to instantiate regular-sized pages in the
3732  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3733  * this far.
3734  */
hugetlb_vm_op_fault(struct vm_fault * vmf)3735 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3736 {
3737 	BUG();
3738 	return 0;
3739 }
3740 
3741 /*
3742  * When a new function is introduced to vm_operations_struct and added
3743  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3744  * This is because under System V memory model, mappings created via
3745  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3746  * their original vm_ops are overwritten with shm_vm_ops.
3747  */
3748 const struct vm_operations_struct hugetlb_vm_ops = {
3749 	.fault = hugetlb_vm_op_fault,
3750 	.open = hugetlb_vm_op_open,
3751 	.close = hugetlb_vm_op_close,
3752 	.split = hugetlb_vm_op_split,
3753 	.pagesize = hugetlb_vm_op_pagesize,
3754 };
3755 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3756 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3757 				int writable)
3758 {
3759 	pte_t entry;
3760 
3761 	if (writable) {
3762 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3763 					 vma->vm_page_prot)));
3764 	} else {
3765 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3766 					   vma->vm_page_prot));
3767 	}
3768 	entry = pte_mkyoung(entry);
3769 	entry = pte_mkhuge(entry);
3770 	entry = arch_make_huge_pte(entry, vma, page, writable);
3771 
3772 	return entry;
3773 }
3774 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3775 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3776 				   unsigned long address, pte_t *ptep)
3777 {
3778 	pte_t entry;
3779 
3780 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3781 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3782 		update_mmu_cache(vma, address, ptep);
3783 }
3784 
is_hugetlb_entry_migration(pte_t pte)3785 bool is_hugetlb_entry_migration(pte_t pte)
3786 {
3787 	swp_entry_t swp;
3788 
3789 	if (huge_pte_none(pte) || pte_present(pte))
3790 		return false;
3791 	swp = pte_to_swp_entry(pte);
3792 	if (is_migration_entry(swp))
3793 		return true;
3794 	else
3795 		return false;
3796 }
3797 
is_hugetlb_entry_hwpoisoned(pte_t pte)3798 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3799 {
3800 	swp_entry_t swp;
3801 
3802 	if (huge_pte_none(pte) || pte_present(pte))
3803 		return false;
3804 	swp = pte_to_swp_entry(pte);
3805 	if (is_hwpoison_entry(swp))
3806 		return true;
3807 	else
3808 		return false;
3809 }
3810 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3811 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3812 			    struct vm_area_struct *vma)
3813 {
3814 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3815 	struct page *ptepage;
3816 	unsigned long addr;
3817 	int cow;
3818 	struct hstate *h = hstate_vma(vma);
3819 	unsigned long sz = huge_page_size(h);
3820 	struct address_space *mapping = vma->vm_file->f_mapping;
3821 	struct mmu_notifier_range range;
3822 	int ret = 0;
3823 
3824 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3825 
3826 	if (cow) {
3827 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3828 					vma->vm_start,
3829 					vma->vm_end);
3830 		mmu_notifier_invalidate_range_start(&range);
3831 	} else {
3832 		/*
3833 		 * For shared mappings i_mmap_rwsem must be held to call
3834 		 * huge_pte_alloc, otherwise the returned ptep could go
3835 		 * away if part of a shared pmd and another thread calls
3836 		 * huge_pmd_unshare.
3837 		 */
3838 		i_mmap_lock_read(mapping);
3839 	}
3840 
3841 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3842 		spinlock_t *src_ptl, *dst_ptl;
3843 		src_pte = huge_pte_offset(src, addr, sz);
3844 		if (!src_pte)
3845 			continue;
3846 		dst_pte = huge_pte_alloc(dst, addr, sz);
3847 		if (!dst_pte) {
3848 			ret = -ENOMEM;
3849 			break;
3850 		}
3851 
3852 		/*
3853 		 * If the pagetables are shared don't copy or take references.
3854 		 * dst_pte == src_pte is the common case of src/dest sharing.
3855 		 *
3856 		 * However, src could have 'unshared' and dst shares with
3857 		 * another vma.  If dst_pte !none, this implies sharing.
3858 		 * Check here before taking page table lock, and once again
3859 		 * after taking the lock below.
3860 		 */
3861 		dst_entry = huge_ptep_get(dst_pte);
3862 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3863 			continue;
3864 
3865 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3866 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3867 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3868 		entry = huge_ptep_get(src_pte);
3869 		dst_entry = huge_ptep_get(dst_pte);
3870 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3871 			/*
3872 			 * Skip if src entry none.  Also, skip in the
3873 			 * unlikely case dst entry !none as this implies
3874 			 * sharing with another vma.
3875 			 */
3876 			;
3877 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3878 				    is_hugetlb_entry_hwpoisoned(entry))) {
3879 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3880 
3881 			if (is_write_migration_entry(swp_entry) && cow) {
3882 				/*
3883 				 * COW mappings require pages in both
3884 				 * parent and child to be set to read.
3885 				 */
3886 				make_migration_entry_read(&swp_entry);
3887 				entry = swp_entry_to_pte(swp_entry);
3888 				set_huge_swap_pte_at(src, addr, src_pte,
3889 						     entry, sz);
3890 			}
3891 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3892 		} else {
3893 			if (cow) {
3894 				/*
3895 				 * No need to notify as we are downgrading page
3896 				 * table protection not changing it to point
3897 				 * to a new page.
3898 				 *
3899 				 * See Documentation/vm/mmu_notifier.rst
3900 				 */
3901 				huge_ptep_set_wrprotect(src, addr, src_pte);
3902 			}
3903 			entry = huge_ptep_get(src_pte);
3904 			ptepage = pte_page(entry);
3905 			get_page(ptepage);
3906 			page_dup_rmap(ptepage, true);
3907 			set_huge_pte_at(dst, addr, dst_pte, entry);
3908 			hugetlb_count_add(pages_per_huge_page(h), dst);
3909 		}
3910 		spin_unlock(src_ptl);
3911 		spin_unlock(dst_ptl);
3912 	}
3913 
3914 	if (cow)
3915 		mmu_notifier_invalidate_range_end(&range);
3916 	else
3917 		i_mmap_unlock_read(mapping);
3918 
3919 	return ret;
3920 }
3921 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3922 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3923 			    unsigned long start, unsigned long end,
3924 			    struct page *ref_page)
3925 {
3926 	struct mm_struct *mm = vma->vm_mm;
3927 	unsigned long address;
3928 	pte_t *ptep;
3929 	pte_t pte;
3930 	spinlock_t *ptl;
3931 	struct page *page;
3932 	struct hstate *h = hstate_vma(vma);
3933 	unsigned long sz = huge_page_size(h);
3934 	struct mmu_notifier_range range;
3935 	bool force_flush = false;
3936 
3937 	WARN_ON(!is_vm_hugetlb_page(vma));
3938 	BUG_ON(start & ~huge_page_mask(h));
3939 	BUG_ON(end & ~huge_page_mask(h));
3940 
3941 	/*
3942 	 * This is a hugetlb vma, all the pte entries should point
3943 	 * to huge page.
3944 	 */
3945 	tlb_change_page_size(tlb, sz);
3946 	tlb_start_vma(tlb, vma);
3947 
3948 	/*
3949 	 * If sharing possible, alert mmu notifiers of worst case.
3950 	 */
3951 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3952 				end);
3953 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3954 	mmu_notifier_invalidate_range_start(&range);
3955 	address = start;
3956 	for (; address < end; address += sz) {
3957 		ptep = huge_pte_offset(mm, address, sz);
3958 		if (!ptep)
3959 			continue;
3960 
3961 		ptl = huge_pte_lock(h, mm, ptep);
3962 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3963 			spin_unlock(ptl);
3964 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3965 			force_flush = true;
3966 			continue;
3967 		}
3968 
3969 		pte = huge_ptep_get(ptep);
3970 		if (huge_pte_none(pte)) {
3971 			spin_unlock(ptl);
3972 			continue;
3973 		}
3974 
3975 		/*
3976 		 * Migrating hugepage or HWPoisoned hugepage is already
3977 		 * unmapped and its refcount is dropped, so just clear pte here.
3978 		 */
3979 		if (unlikely(!pte_present(pte))) {
3980 			huge_pte_clear(mm, address, ptep, sz);
3981 			spin_unlock(ptl);
3982 			continue;
3983 		}
3984 
3985 		page = pte_page(pte);
3986 		/*
3987 		 * If a reference page is supplied, it is because a specific
3988 		 * page is being unmapped, not a range. Ensure the page we
3989 		 * are about to unmap is the actual page of interest.
3990 		 */
3991 		if (ref_page) {
3992 			if (page != ref_page) {
3993 				spin_unlock(ptl);
3994 				continue;
3995 			}
3996 			/*
3997 			 * Mark the VMA as having unmapped its page so that
3998 			 * future faults in this VMA will fail rather than
3999 			 * looking like data was lost
4000 			 */
4001 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4002 		}
4003 
4004 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4005 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4006 		if (huge_pte_dirty(pte))
4007 			set_page_dirty(page);
4008 
4009 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4010 		page_remove_rmap(page, true);
4011 
4012 		spin_unlock(ptl);
4013 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4014 		/*
4015 		 * Bail out after unmapping reference page if supplied
4016 		 */
4017 		if (ref_page)
4018 			break;
4019 	}
4020 	mmu_notifier_invalidate_range_end(&range);
4021 	tlb_end_vma(tlb, vma);
4022 
4023 	/*
4024 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4025 	 * could defer the flush until now, since by holding i_mmap_rwsem we
4026 	 * guaranteed that the last refernece would not be dropped. But we must
4027 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4028 	 * dropped and the last reference to the shared PMDs page might be
4029 	 * dropped as well.
4030 	 *
4031 	 * In theory we could defer the freeing of the PMD pages as well, but
4032 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4033 	 * detect sharing, so we cannot defer the release of the page either.
4034 	 * Instead, do flush now.
4035 	 */
4036 	if (force_flush)
4037 		tlb_flush_mmu_tlbonly(tlb);
4038 }
4039 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4040 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4041 			  struct vm_area_struct *vma, unsigned long start,
4042 			  unsigned long end, struct page *ref_page)
4043 {
4044 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4045 
4046 	/*
4047 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4048 	 * test will fail on a vma being torn down, and not grab a page table
4049 	 * on its way out.  We're lucky that the flag has such an appropriate
4050 	 * name, and can in fact be safely cleared here. We could clear it
4051 	 * before the __unmap_hugepage_range above, but all that's necessary
4052 	 * is to clear it before releasing the i_mmap_rwsem. This works
4053 	 * because in the context this is called, the VMA is about to be
4054 	 * destroyed and the i_mmap_rwsem is held.
4055 	 */
4056 	vma->vm_flags &= ~VM_MAYSHARE;
4057 }
4058 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4059 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4060 			  unsigned long end, struct page *ref_page)
4061 {
4062 	struct mm_struct *mm;
4063 	struct mmu_gather tlb;
4064 	unsigned long tlb_start = start;
4065 	unsigned long tlb_end = end;
4066 
4067 	/*
4068 	 * If shared PMDs were possibly used within this vma range, adjust
4069 	 * start/end for worst case tlb flushing.
4070 	 * Note that we can not be sure if PMDs are shared until we try to
4071 	 * unmap pages.  However, we want to make sure TLB flushing covers
4072 	 * the largest possible range.
4073 	 */
4074 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4075 
4076 	mm = vma->vm_mm;
4077 
4078 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4079 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4080 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4081 }
4082 
4083 /*
4084  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4085  * mappping it owns the reserve page for. The intention is to unmap the page
4086  * from other VMAs and let the children be SIGKILLed if they are faulting the
4087  * same region.
4088  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4089 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4090 			      struct page *page, unsigned long address)
4091 {
4092 	struct hstate *h = hstate_vma(vma);
4093 	struct vm_area_struct *iter_vma;
4094 	struct address_space *mapping;
4095 	pgoff_t pgoff;
4096 
4097 	/*
4098 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4099 	 * from page cache lookup which is in HPAGE_SIZE units.
4100 	 */
4101 	address = address & huge_page_mask(h);
4102 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4103 			vma->vm_pgoff;
4104 	mapping = vma->vm_file->f_mapping;
4105 
4106 	/*
4107 	 * Take the mapping lock for the duration of the table walk. As
4108 	 * this mapping should be shared between all the VMAs,
4109 	 * __unmap_hugepage_range() is called as the lock is already held
4110 	 */
4111 	i_mmap_lock_write(mapping);
4112 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4113 		/* Do not unmap the current VMA */
4114 		if (iter_vma == vma)
4115 			continue;
4116 
4117 		/*
4118 		 * Shared VMAs have their own reserves and do not affect
4119 		 * MAP_PRIVATE accounting but it is possible that a shared
4120 		 * VMA is using the same page so check and skip such VMAs.
4121 		 */
4122 		if (iter_vma->vm_flags & VM_MAYSHARE)
4123 			continue;
4124 
4125 		/*
4126 		 * Unmap the page from other VMAs without their own reserves.
4127 		 * They get marked to be SIGKILLed if they fault in these
4128 		 * areas. This is because a future no-page fault on this VMA
4129 		 * could insert a zeroed page instead of the data existing
4130 		 * from the time of fork. This would look like data corruption
4131 		 */
4132 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4133 			unmap_hugepage_range(iter_vma, address,
4134 					     address + huge_page_size(h), page);
4135 	}
4136 	i_mmap_unlock_write(mapping);
4137 }
4138 
4139 /*
4140  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4141  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4142  * cannot race with other handlers or page migration.
4143  * Keep the pte_same checks anyway to make transition from the mutex easier.
4144  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4145 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4146 		       unsigned long address, pte_t *ptep,
4147 		       struct page *pagecache_page, spinlock_t *ptl)
4148 {
4149 	pte_t pte;
4150 	struct hstate *h = hstate_vma(vma);
4151 	struct page *old_page, *new_page;
4152 	int outside_reserve = 0;
4153 	vm_fault_t ret = 0;
4154 	unsigned long haddr = address & huge_page_mask(h);
4155 	struct mmu_notifier_range range;
4156 
4157 	pte = huge_ptep_get(ptep);
4158 	old_page = pte_page(pte);
4159 
4160 retry_avoidcopy:
4161 	/* If no-one else is actually using this page, avoid the copy
4162 	 * and just make the page writable */
4163 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4164 		page_move_anon_rmap(old_page, vma);
4165 		set_huge_ptep_writable(vma, haddr, ptep);
4166 		return 0;
4167 	}
4168 
4169 	/*
4170 	 * If the process that created a MAP_PRIVATE mapping is about to
4171 	 * perform a COW due to a shared page count, attempt to satisfy
4172 	 * the allocation without using the existing reserves. The pagecache
4173 	 * page is used to determine if the reserve at this address was
4174 	 * consumed or not. If reserves were used, a partial faulted mapping
4175 	 * at the time of fork() could consume its reserves on COW instead
4176 	 * of the full address range.
4177 	 */
4178 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4179 			old_page != pagecache_page)
4180 		outside_reserve = 1;
4181 
4182 	get_page(old_page);
4183 
4184 	/*
4185 	 * Drop page table lock as buddy allocator may be called. It will
4186 	 * be acquired again before returning to the caller, as expected.
4187 	 */
4188 	spin_unlock(ptl);
4189 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4190 
4191 	if (IS_ERR(new_page)) {
4192 		/*
4193 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4194 		 * it is due to references held by a child and an insufficient
4195 		 * huge page pool. To guarantee the original mappers
4196 		 * reliability, unmap the page from child processes. The child
4197 		 * may get SIGKILLed if it later faults.
4198 		 */
4199 		if (outside_reserve) {
4200 			struct address_space *mapping = vma->vm_file->f_mapping;
4201 			pgoff_t idx;
4202 			u32 hash;
4203 
4204 			put_page(old_page);
4205 			BUG_ON(huge_pte_none(pte));
4206 			/*
4207 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4208 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4209 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4210 			 * here is OK as COW mappings do not interact with
4211 			 * PMD sharing.
4212 			 *
4213 			 * Reacquire both after unmap operation.
4214 			 */
4215 			idx = vma_hugecache_offset(h, vma, haddr);
4216 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4217 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4218 			i_mmap_unlock_read(mapping);
4219 
4220 			unmap_ref_private(mm, vma, old_page, haddr);
4221 
4222 			i_mmap_lock_read(mapping);
4223 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4224 			spin_lock(ptl);
4225 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4226 			if (likely(ptep &&
4227 				   pte_same(huge_ptep_get(ptep), pte)))
4228 				goto retry_avoidcopy;
4229 			/*
4230 			 * race occurs while re-acquiring page table
4231 			 * lock, and our job is done.
4232 			 */
4233 			return 0;
4234 		}
4235 
4236 		ret = vmf_error(PTR_ERR(new_page));
4237 		goto out_release_old;
4238 	}
4239 
4240 	/*
4241 	 * When the original hugepage is shared one, it does not have
4242 	 * anon_vma prepared.
4243 	 */
4244 	if (unlikely(anon_vma_prepare(vma))) {
4245 		ret = VM_FAULT_OOM;
4246 		goto out_release_all;
4247 	}
4248 
4249 	copy_user_huge_page(new_page, old_page, address, vma,
4250 			    pages_per_huge_page(h));
4251 	__SetPageUptodate(new_page);
4252 
4253 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4254 				haddr + huge_page_size(h));
4255 	mmu_notifier_invalidate_range_start(&range);
4256 
4257 	/*
4258 	 * Retake the page table lock to check for racing updates
4259 	 * before the page tables are altered
4260 	 */
4261 	spin_lock(ptl);
4262 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4263 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4264 		ClearPagePrivate(new_page);
4265 
4266 		/* Break COW */
4267 		huge_ptep_clear_flush(vma, haddr, ptep);
4268 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4269 		set_huge_pte_at(mm, haddr, ptep,
4270 				make_huge_pte(vma, new_page, 1));
4271 		page_remove_rmap(old_page, true);
4272 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4273 		set_page_huge_active(new_page);
4274 		/* Make the old page be freed below */
4275 		new_page = old_page;
4276 	}
4277 	spin_unlock(ptl);
4278 	mmu_notifier_invalidate_range_end(&range);
4279 out_release_all:
4280 	restore_reserve_on_error(h, vma, haddr, new_page);
4281 	put_page(new_page);
4282 out_release_old:
4283 	put_page(old_page);
4284 
4285 	spin_lock(ptl); /* Caller expects lock to be held */
4286 	return ret;
4287 }
4288 
4289 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4290 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4291 			struct vm_area_struct *vma, unsigned long address)
4292 {
4293 	struct address_space *mapping;
4294 	pgoff_t idx;
4295 
4296 	mapping = vma->vm_file->f_mapping;
4297 	idx = vma_hugecache_offset(h, vma, address);
4298 
4299 	return find_lock_page(mapping, idx);
4300 }
4301 
4302 /*
4303  * Return whether there is a pagecache page to back given address within VMA.
4304  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4305  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4306 static bool hugetlbfs_pagecache_present(struct hstate *h,
4307 			struct vm_area_struct *vma, unsigned long address)
4308 {
4309 	struct address_space *mapping;
4310 	pgoff_t idx;
4311 	struct page *page;
4312 
4313 	mapping = vma->vm_file->f_mapping;
4314 	idx = vma_hugecache_offset(h, vma, address);
4315 
4316 	page = find_get_page(mapping, idx);
4317 	if (page)
4318 		put_page(page);
4319 	return page != NULL;
4320 }
4321 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4322 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4323 			   pgoff_t idx)
4324 {
4325 	struct inode *inode = mapping->host;
4326 	struct hstate *h = hstate_inode(inode);
4327 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4328 
4329 	if (err)
4330 		return err;
4331 	ClearPagePrivate(page);
4332 
4333 	/*
4334 	 * set page dirty so that it will not be removed from cache/file
4335 	 * by non-hugetlbfs specific code paths.
4336 	 */
4337 	set_page_dirty(page);
4338 
4339 	spin_lock(&inode->i_lock);
4340 	inode->i_blocks += blocks_per_huge_page(h);
4341 	spin_unlock(&inode->i_lock);
4342 	return 0;
4343 }
4344 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4345 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4346 			struct vm_area_struct *vma,
4347 			struct address_space *mapping, pgoff_t idx,
4348 			unsigned long address, pte_t *ptep, unsigned int flags)
4349 {
4350 	struct hstate *h = hstate_vma(vma);
4351 	vm_fault_t ret = VM_FAULT_SIGBUS;
4352 	int anon_rmap = 0;
4353 	unsigned long size;
4354 	struct page *page;
4355 	pte_t new_pte;
4356 	spinlock_t *ptl;
4357 	unsigned long haddr = address & huge_page_mask(h);
4358 	bool new_page = false;
4359 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4360 
4361 	/*
4362 	 * Currently, we are forced to kill the process in the event the
4363 	 * original mapper has unmapped pages from the child due to a failed
4364 	 * COW. Warn that such a situation has occurred as it may not be obvious
4365 	 */
4366 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4367 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4368 			   current->pid);
4369 		goto out;
4370 	}
4371 
4372 	/*
4373 	 * We can not race with truncation due to holding i_mmap_rwsem.
4374 	 * i_size is modified when holding i_mmap_rwsem, so check here
4375 	 * once for faults beyond end of file.
4376 	 */
4377 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4378 	if (idx >= size)
4379 		goto out;
4380 
4381 retry:
4382 	page = find_lock_page(mapping, idx);
4383 	if (!page) {
4384 		/*
4385 		 * Check for page in userfault range
4386 		 */
4387 		if (userfaultfd_missing(vma)) {
4388 			struct vm_fault vmf = {
4389 				.vma = vma,
4390 				.address = haddr,
4391 				.flags = flags,
4392 				/*
4393 				 * Hard to debug if it ends up being
4394 				 * used by a callee that assumes
4395 				 * something about the other
4396 				 * uninitialized fields... same as in
4397 				 * memory.c
4398 				 */
4399 			};
4400 
4401 			/*
4402 			 * vma_lock and hugetlb_fault_mutex must be dropped
4403 			 * before handling userfault. Also mmap_lock will
4404 			 * be dropped during handling userfault, any vma
4405 			 * operation should be careful from here.
4406 			 */
4407 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4408 			i_mmap_unlock_read(mapping);
4409 			return handle_userfault(&vmf, VM_UFFD_MISSING);
4410 		}
4411 
4412 		page = alloc_huge_page(vma, haddr, 0);
4413 		if (IS_ERR(page)) {
4414 			/*
4415 			 * Returning error will result in faulting task being
4416 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4417 			 * tasks from racing to fault in the same page which
4418 			 * could result in false unable to allocate errors.
4419 			 * Page migration does not take the fault mutex, but
4420 			 * does a clear then write of pte's under page table
4421 			 * lock.  Page fault code could race with migration,
4422 			 * notice the clear pte and try to allocate a page
4423 			 * here.  Before returning error, get ptl and make
4424 			 * sure there really is no pte entry.
4425 			 */
4426 			ptl = huge_pte_lock(h, mm, ptep);
4427 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4428 				ret = 0;
4429 				spin_unlock(ptl);
4430 				goto out;
4431 			}
4432 			spin_unlock(ptl);
4433 			ret = vmf_error(PTR_ERR(page));
4434 			goto out;
4435 		}
4436 		clear_huge_page(page, address, pages_per_huge_page(h));
4437 		__SetPageUptodate(page);
4438 		new_page = true;
4439 
4440 		if (vma->vm_flags & VM_MAYSHARE) {
4441 			int err = huge_add_to_page_cache(page, mapping, idx);
4442 			if (err) {
4443 				put_page(page);
4444 				if (err == -EEXIST)
4445 					goto retry;
4446 				goto out;
4447 			}
4448 		} else {
4449 			lock_page(page);
4450 			if (unlikely(anon_vma_prepare(vma))) {
4451 				ret = VM_FAULT_OOM;
4452 				goto backout_unlocked;
4453 			}
4454 			anon_rmap = 1;
4455 		}
4456 	} else {
4457 		/*
4458 		 * If memory error occurs between mmap() and fault, some process
4459 		 * don't have hwpoisoned swap entry for errored virtual address.
4460 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4461 		 */
4462 		if (unlikely(PageHWPoison(page))) {
4463 			ret = VM_FAULT_HWPOISON_LARGE |
4464 				VM_FAULT_SET_HINDEX(hstate_index(h));
4465 			goto backout_unlocked;
4466 		}
4467 	}
4468 
4469 	/*
4470 	 * If we are going to COW a private mapping later, we examine the
4471 	 * pending reservations for this page now. This will ensure that
4472 	 * any allocations necessary to record that reservation occur outside
4473 	 * the spinlock.
4474 	 */
4475 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4476 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4477 			ret = VM_FAULT_OOM;
4478 			goto backout_unlocked;
4479 		}
4480 		/* Just decrements count, does not deallocate */
4481 		vma_end_reservation(h, vma, haddr);
4482 	}
4483 
4484 	ptl = huge_pte_lock(h, mm, ptep);
4485 	ret = 0;
4486 	if (!huge_pte_none(huge_ptep_get(ptep)))
4487 		goto backout;
4488 
4489 	if (anon_rmap) {
4490 		ClearPagePrivate(page);
4491 		hugepage_add_new_anon_rmap(page, vma, haddr);
4492 	} else
4493 		page_dup_rmap(page, true);
4494 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4495 				&& (vma->vm_flags & VM_SHARED)));
4496 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4497 
4498 	hugetlb_count_add(pages_per_huge_page(h), mm);
4499 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4500 		/* Optimization, do the COW without a second fault */
4501 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4502 	}
4503 
4504 	spin_unlock(ptl);
4505 
4506 	/*
4507 	 * Only make newly allocated pages active.  Existing pages found
4508 	 * in the pagecache could be !page_huge_active() if they have been
4509 	 * isolated for migration.
4510 	 */
4511 	if (new_page)
4512 		set_page_huge_active(page);
4513 
4514 	unlock_page(page);
4515 out:
4516 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4517 	i_mmap_unlock_read(mapping);
4518 	return ret;
4519 
4520 backout:
4521 	spin_unlock(ptl);
4522 backout_unlocked:
4523 	unlock_page(page);
4524 	restore_reserve_on_error(h, vma, haddr, page);
4525 	put_page(page);
4526 	goto out;
4527 }
4528 
4529 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4530 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4531 {
4532 	unsigned long key[2];
4533 	u32 hash;
4534 
4535 	key[0] = (unsigned long) mapping;
4536 	key[1] = idx;
4537 
4538 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4539 
4540 	return hash & (num_fault_mutexes - 1);
4541 }
4542 #else
4543 /*
4544  * For uniprocesor systems we always use a single mutex, so just
4545  * return 0 and avoid the hashing overhead.
4546  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4547 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4548 {
4549 	return 0;
4550 }
4551 #endif
4552 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4553 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4554 			unsigned long address, unsigned int flags)
4555 {
4556 	pte_t *ptep, entry;
4557 	spinlock_t *ptl;
4558 	vm_fault_t ret;
4559 	u32 hash;
4560 	pgoff_t idx;
4561 	struct page *page = NULL;
4562 	struct page *pagecache_page = NULL;
4563 	struct hstate *h = hstate_vma(vma);
4564 	struct address_space *mapping;
4565 	int need_wait_lock = 0;
4566 	unsigned long haddr = address & huge_page_mask(h);
4567 
4568 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4569 	if (ptep) {
4570 		/*
4571 		 * Since we hold no locks, ptep could be stale.  That is
4572 		 * OK as we are only making decisions based on content and
4573 		 * not actually modifying content here.
4574 		 */
4575 		entry = huge_ptep_get(ptep);
4576 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4577 			migration_entry_wait_huge(vma, mm, ptep);
4578 			return 0;
4579 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4580 			return VM_FAULT_HWPOISON_LARGE |
4581 				VM_FAULT_SET_HINDEX(hstate_index(h));
4582 	}
4583 
4584 	/*
4585 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4586 	 * until finished with ptep.  This serves two purposes:
4587 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4588 	 *    and making the ptep no longer valid.
4589 	 * 2) It synchronizes us with i_size modifications during truncation.
4590 	 *
4591 	 * ptep could have already be assigned via huge_pte_offset.  That
4592 	 * is OK, as huge_pte_alloc will return the same value unless
4593 	 * something has changed.
4594 	 */
4595 	mapping = vma->vm_file->f_mapping;
4596 	i_mmap_lock_read(mapping);
4597 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4598 	if (!ptep) {
4599 		i_mmap_unlock_read(mapping);
4600 		return VM_FAULT_OOM;
4601 	}
4602 
4603 	/*
4604 	 * Serialize hugepage allocation and instantiation, so that we don't
4605 	 * get spurious allocation failures if two CPUs race to instantiate
4606 	 * the same page in the page cache.
4607 	 */
4608 	idx = vma_hugecache_offset(h, vma, haddr);
4609 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4610 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4611 
4612 	entry = huge_ptep_get(ptep);
4613 	if (huge_pte_none(entry))
4614 		/*
4615 		 * hugetlb_no_page will drop vma lock and hugetlb fault
4616 		 * mutex internally, which make us return immediately.
4617 		 */
4618 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4619 
4620 	ret = 0;
4621 
4622 	/*
4623 	 * entry could be a migration/hwpoison entry at this point, so this
4624 	 * check prevents the kernel from going below assuming that we have
4625 	 * an active hugepage in pagecache. This goto expects the 2nd page
4626 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4627 	 * properly handle it.
4628 	 */
4629 	if (!pte_present(entry))
4630 		goto out_mutex;
4631 
4632 	/*
4633 	 * If we are going to COW the mapping later, we examine the pending
4634 	 * reservations for this page now. This will ensure that any
4635 	 * allocations necessary to record that reservation occur outside the
4636 	 * spinlock. For private mappings, we also lookup the pagecache
4637 	 * page now as it is used to determine if a reservation has been
4638 	 * consumed.
4639 	 */
4640 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4641 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4642 			ret = VM_FAULT_OOM;
4643 			goto out_mutex;
4644 		}
4645 		/* Just decrements count, does not deallocate */
4646 		vma_end_reservation(h, vma, haddr);
4647 
4648 		if (!(vma->vm_flags & VM_MAYSHARE))
4649 			pagecache_page = hugetlbfs_pagecache_page(h,
4650 								vma, haddr);
4651 	}
4652 
4653 	ptl = huge_pte_lock(h, mm, ptep);
4654 
4655 	/* Check for a racing update before calling hugetlb_cow */
4656 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4657 		goto out_ptl;
4658 
4659 	/*
4660 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4661 	 * pagecache_page, so here we need take the former one
4662 	 * when page != pagecache_page or !pagecache_page.
4663 	 */
4664 	page = pte_page(entry);
4665 	if (page != pagecache_page)
4666 		if (!trylock_page(page)) {
4667 			need_wait_lock = 1;
4668 			goto out_ptl;
4669 		}
4670 
4671 	get_page(page);
4672 
4673 	if (flags & FAULT_FLAG_WRITE) {
4674 		if (!huge_pte_write(entry)) {
4675 			ret = hugetlb_cow(mm, vma, address, ptep,
4676 					  pagecache_page, ptl);
4677 			goto out_put_page;
4678 		}
4679 		entry = huge_pte_mkdirty(entry);
4680 	}
4681 	entry = pte_mkyoung(entry);
4682 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4683 						flags & FAULT_FLAG_WRITE))
4684 		update_mmu_cache(vma, haddr, ptep);
4685 out_put_page:
4686 	if (page != pagecache_page)
4687 		unlock_page(page);
4688 	put_page(page);
4689 out_ptl:
4690 	spin_unlock(ptl);
4691 
4692 	if (pagecache_page) {
4693 		unlock_page(pagecache_page);
4694 		put_page(pagecache_page);
4695 	}
4696 out_mutex:
4697 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4698 	i_mmap_unlock_read(mapping);
4699 	/*
4700 	 * Generally it's safe to hold refcount during waiting page lock. But
4701 	 * here we just wait to defer the next page fault to avoid busy loop and
4702 	 * the page is not used after unlocked before returning from the current
4703 	 * page fault. So we are safe from accessing freed page, even if we wait
4704 	 * here without taking refcount.
4705 	 */
4706 	if (need_wait_lock)
4707 		wait_on_page_locked(page);
4708 	return ret;
4709 }
4710 
4711 /*
4712  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4713  * modifications for huge pages.
4714  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)4715 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4716 			    pte_t *dst_pte,
4717 			    struct vm_area_struct *dst_vma,
4718 			    unsigned long dst_addr,
4719 			    unsigned long src_addr,
4720 			    struct page **pagep)
4721 {
4722 	struct address_space *mapping;
4723 	pgoff_t idx;
4724 	unsigned long size;
4725 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4726 	struct hstate *h = hstate_vma(dst_vma);
4727 	pte_t _dst_pte;
4728 	spinlock_t *ptl;
4729 	int ret;
4730 	struct page *page;
4731 
4732 	if (!*pagep) {
4733 		/* If a page already exists, then it's UFFDIO_COPY for
4734 		 * a non-missing case. Return -EEXIST.
4735 		 */
4736 		if (vm_shared &&
4737 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4738 			ret = -EEXIST;
4739 			goto out;
4740 		}
4741 
4742 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4743 		if (IS_ERR(page)) {
4744 			ret = -ENOMEM;
4745 			goto out;
4746 		}
4747 
4748 		ret = copy_huge_page_from_user(page,
4749 						(const void __user *) src_addr,
4750 						pages_per_huge_page(h), false);
4751 
4752 		/* fallback to copy_from_user outside mmap_lock */
4753 		if (unlikely(ret)) {
4754 			ret = -ENOENT;
4755 			*pagep = page;
4756 			/* don't free the page */
4757 			goto out;
4758 		}
4759 	} else {
4760 		page = *pagep;
4761 		*pagep = NULL;
4762 	}
4763 
4764 	/*
4765 	 * The memory barrier inside __SetPageUptodate makes sure that
4766 	 * preceding stores to the page contents become visible before
4767 	 * the set_pte_at() write.
4768 	 */
4769 	__SetPageUptodate(page);
4770 
4771 	mapping = dst_vma->vm_file->f_mapping;
4772 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4773 
4774 	/*
4775 	 * If shared, add to page cache
4776 	 */
4777 	if (vm_shared) {
4778 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4779 		ret = -EFAULT;
4780 		if (idx >= size)
4781 			goto out_release_nounlock;
4782 
4783 		/*
4784 		 * Serialization between remove_inode_hugepages() and
4785 		 * huge_add_to_page_cache() below happens through the
4786 		 * hugetlb_fault_mutex_table that here must be hold by
4787 		 * the caller.
4788 		 */
4789 		ret = huge_add_to_page_cache(page, mapping, idx);
4790 		if (ret)
4791 			goto out_release_nounlock;
4792 	}
4793 
4794 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4795 	spin_lock(ptl);
4796 
4797 	/*
4798 	 * Recheck the i_size after holding PT lock to make sure not
4799 	 * to leave any page mapped (as page_mapped()) beyond the end
4800 	 * of the i_size (remove_inode_hugepages() is strict about
4801 	 * enforcing that). If we bail out here, we'll also leave a
4802 	 * page in the radix tree in the vm_shared case beyond the end
4803 	 * of the i_size, but remove_inode_hugepages() will take care
4804 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4805 	 */
4806 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4807 	ret = -EFAULT;
4808 	if (idx >= size)
4809 		goto out_release_unlock;
4810 
4811 	ret = -EEXIST;
4812 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4813 		goto out_release_unlock;
4814 
4815 	if (vm_shared) {
4816 		page_dup_rmap(page, true);
4817 	} else {
4818 		ClearPagePrivate(page);
4819 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4820 	}
4821 
4822 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4823 	if (dst_vma->vm_flags & VM_WRITE)
4824 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4825 	_dst_pte = pte_mkyoung(_dst_pte);
4826 
4827 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4828 
4829 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4830 					dst_vma->vm_flags & VM_WRITE);
4831 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4832 
4833 	/* No need to invalidate - it was non-present before */
4834 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4835 
4836 	spin_unlock(ptl);
4837 	set_page_huge_active(page);
4838 	if (vm_shared)
4839 		unlock_page(page);
4840 	ret = 0;
4841 out:
4842 	return ret;
4843 out_release_unlock:
4844 	spin_unlock(ptl);
4845 	if (vm_shared)
4846 		unlock_page(page);
4847 out_release_nounlock:
4848 	put_page(page);
4849 	goto out;
4850 }
4851 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)4852 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4853 			 struct page **pages, struct vm_area_struct **vmas,
4854 			 unsigned long *position, unsigned long *nr_pages,
4855 			 long i, unsigned int flags, int *locked)
4856 {
4857 	unsigned long pfn_offset;
4858 	unsigned long vaddr = *position;
4859 	unsigned long remainder = *nr_pages;
4860 	struct hstate *h = hstate_vma(vma);
4861 	int err = -EFAULT;
4862 
4863 	while (vaddr < vma->vm_end && remainder) {
4864 		pte_t *pte;
4865 		spinlock_t *ptl = NULL;
4866 		int absent;
4867 		struct page *page;
4868 
4869 		/*
4870 		 * If we have a pending SIGKILL, don't keep faulting pages and
4871 		 * potentially allocating memory.
4872 		 */
4873 		if (fatal_signal_pending(current)) {
4874 			remainder = 0;
4875 			break;
4876 		}
4877 
4878 		/*
4879 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4880 		 * each hugepage.  We have to make sure we get the
4881 		 * first, for the page indexing below to work.
4882 		 *
4883 		 * Note that page table lock is not held when pte is null.
4884 		 */
4885 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4886 				      huge_page_size(h));
4887 		if (pte)
4888 			ptl = huge_pte_lock(h, mm, pte);
4889 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4890 
4891 		/*
4892 		 * When coredumping, it suits get_dump_page if we just return
4893 		 * an error where there's an empty slot with no huge pagecache
4894 		 * to back it.  This way, we avoid allocating a hugepage, and
4895 		 * the sparse dumpfile avoids allocating disk blocks, but its
4896 		 * huge holes still show up with zeroes where they need to be.
4897 		 */
4898 		if (absent && (flags & FOLL_DUMP) &&
4899 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4900 			if (pte)
4901 				spin_unlock(ptl);
4902 			remainder = 0;
4903 			break;
4904 		}
4905 
4906 		/*
4907 		 * We need call hugetlb_fault for both hugepages under migration
4908 		 * (in which case hugetlb_fault waits for the migration,) and
4909 		 * hwpoisoned hugepages (in which case we need to prevent the
4910 		 * caller from accessing to them.) In order to do this, we use
4911 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4912 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4913 		 * both cases, and because we can't follow correct pages
4914 		 * directly from any kind of swap entries.
4915 		 */
4916 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4917 		    ((flags & FOLL_WRITE) &&
4918 		      !huge_pte_write(huge_ptep_get(pte)))) {
4919 			vm_fault_t ret;
4920 			unsigned int fault_flags = 0;
4921 
4922 			if (pte)
4923 				spin_unlock(ptl);
4924 			if (flags & FOLL_WRITE)
4925 				fault_flags |= FAULT_FLAG_WRITE;
4926 			if (locked)
4927 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4928 					FAULT_FLAG_KILLABLE;
4929 			if (flags & FOLL_NOWAIT)
4930 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4931 					FAULT_FLAG_RETRY_NOWAIT;
4932 			if (flags & FOLL_TRIED) {
4933 				/*
4934 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4935 				 * FAULT_FLAG_TRIED can co-exist
4936 				 */
4937 				fault_flags |= FAULT_FLAG_TRIED;
4938 			}
4939 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4940 			if (ret & VM_FAULT_ERROR) {
4941 				err = vm_fault_to_errno(ret, flags);
4942 				remainder = 0;
4943 				break;
4944 			}
4945 			if (ret & VM_FAULT_RETRY) {
4946 				if (locked &&
4947 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4948 					*locked = 0;
4949 				*nr_pages = 0;
4950 				/*
4951 				 * VM_FAULT_RETRY must not return an
4952 				 * error, it will return zero
4953 				 * instead.
4954 				 *
4955 				 * No need to update "position" as the
4956 				 * caller will not check it after
4957 				 * *nr_pages is set to 0.
4958 				 */
4959 				return i;
4960 			}
4961 			continue;
4962 		}
4963 
4964 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4965 		page = pte_page(huge_ptep_get(pte));
4966 
4967 		/*
4968 		 * If subpage information not requested, update counters
4969 		 * and skip the same_page loop below.
4970 		 */
4971 		if (!pages && !vmas && !pfn_offset &&
4972 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4973 		    (remainder >= pages_per_huge_page(h))) {
4974 			vaddr += huge_page_size(h);
4975 			remainder -= pages_per_huge_page(h);
4976 			i += pages_per_huge_page(h);
4977 			spin_unlock(ptl);
4978 			continue;
4979 		}
4980 
4981 same_page:
4982 		if (pages) {
4983 			pages[i] = mem_map_offset(page, pfn_offset);
4984 			/*
4985 			 * try_grab_page() should always succeed here, because:
4986 			 * a) we hold the ptl lock, and b) we've just checked
4987 			 * that the huge page is present in the page tables. If
4988 			 * the huge page is present, then the tail pages must
4989 			 * also be present. The ptl prevents the head page and
4990 			 * tail pages from being rearranged in any way. So this
4991 			 * page must be available at this point, unless the page
4992 			 * refcount overflowed:
4993 			 */
4994 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4995 				spin_unlock(ptl);
4996 				remainder = 0;
4997 				err = -ENOMEM;
4998 				break;
4999 			}
5000 		}
5001 
5002 		if (vmas)
5003 			vmas[i] = vma;
5004 
5005 		vaddr += PAGE_SIZE;
5006 		++pfn_offset;
5007 		--remainder;
5008 		++i;
5009 		if (vaddr < vma->vm_end && remainder &&
5010 				pfn_offset < pages_per_huge_page(h)) {
5011 			/*
5012 			 * We use pfn_offset to avoid touching the pageframes
5013 			 * of this compound page.
5014 			 */
5015 			goto same_page;
5016 		}
5017 		spin_unlock(ptl);
5018 	}
5019 	*nr_pages = remainder;
5020 	/*
5021 	 * setting position is actually required only if remainder is
5022 	 * not zero but it's faster not to add a "if (remainder)"
5023 	 * branch.
5024 	 */
5025 	*position = vaddr;
5026 
5027 	return i ? i : err;
5028 }
5029 
5030 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5031 /*
5032  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5033  * implement this.
5034  */
5035 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5036 #endif
5037 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5038 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5039 		unsigned long address, unsigned long end, pgprot_t newprot)
5040 {
5041 	struct mm_struct *mm = vma->vm_mm;
5042 	unsigned long start = address;
5043 	pte_t *ptep;
5044 	pte_t pte;
5045 	struct hstate *h = hstate_vma(vma);
5046 	unsigned long pages = 0;
5047 	bool shared_pmd = false;
5048 	struct mmu_notifier_range range;
5049 
5050 	/*
5051 	 * In the case of shared PMDs, the area to flush could be beyond
5052 	 * start/end.  Set range.start/range.end to cover the maximum possible
5053 	 * range if PMD sharing is possible.
5054 	 */
5055 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5056 				0, vma, mm, start, end);
5057 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5058 
5059 	BUG_ON(address >= end);
5060 	flush_cache_range(vma, range.start, range.end);
5061 
5062 	mmu_notifier_invalidate_range_start(&range);
5063 	i_mmap_lock_write(vma->vm_file->f_mapping);
5064 	for (; address < end; address += huge_page_size(h)) {
5065 		spinlock_t *ptl;
5066 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5067 		if (!ptep)
5068 			continue;
5069 		ptl = huge_pte_lock(h, mm, ptep);
5070 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5071 			pages++;
5072 			spin_unlock(ptl);
5073 			shared_pmd = true;
5074 			continue;
5075 		}
5076 		pte = huge_ptep_get(ptep);
5077 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5078 			spin_unlock(ptl);
5079 			continue;
5080 		}
5081 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5082 			swp_entry_t entry = pte_to_swp_entry(pte);
5083 
5084 			if (is_write_migration_entry(entry)) {
5085 				pte_t newpte;
5086 
5087 				make_migration_entry_read(&entry);
5088 				newpte = swp_entry_to_pte(entry);
5089 				set_huge_swap_pte_at(mm, address, ptep,
5090 						     newpte, huge_page_size(h));
5091 				pages++;
5092 			}
5093 			spin_unlock(ptl);
5094 			continue;
5095 		}
5096 		if (!huge_pte_none(pte)) {
5097 			pte_t old_pte;
5098 
5099 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5100 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5101 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5102 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5103 			pages++;
5104 		}
5105 		spin_unlock(ptl);
5106 	}
5107 	/*
5108 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5109 	 * may have cleared our pud entry and done put_page on the page table:
5110 	 * once we release i_mmap_rwsem, another task can do the final put_page
5111 	 * and that page table be reused and filled with junk.  If we actually
5112 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5113 	 */
5114 	if (shared_pmd)
5115 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5116 	else
5117 		flush_hugetlb_tlb_range(vma, start, end);
5118 	/*
5119 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5120 	 * page table protection not changing it to point to a new page.
5121 	 *
5122 	 * See Documentation/vm/mmu_notifier.rst
5123 	 */
5124 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5125 	mmu_notifier_invalidate_range_end(&range);
5126 
5127 	return pages << h->order;
5128 }
5129 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5130 int hugetlb_reserve_pages(struct inode *inode,
5131 					long from, long to,
5132 					struct vm_area_struct *vma,
5133 					vm_flags_t vm_flags)
5134 {
5135 	long ret, chg, add = -1;
5136 	struct hstate *h = hstate_inode(inode);
5137 	struct hugepage_subpool *spool = subpool_inode(inode);
5138 	struct resv_map *resv_map;
5139 	struct hugetlb_cgroup *h_cg = NULL;
5140 	long gbl_reserve, regions_needed = 0;
5141 
5142 	/* This should never happen */
5143 	if (from > to) {
5144 		VM_WARN(1, "%s called with a negative range\n", __func__);
5145 		return -EINVAL;
5146 	}
5147 
5148 	/*
5149 	 * Only apply hugepage reservation if asked. At fault time, an
5150 	 * attempt will be made for VM_NORESERVE to allocate a page
5151 	 * without using reserves
5152 	 */
5153 	if (vm_flags & VM_NORESERVE)
5154 		return 0;
5155 
5156 	/*
5157 	 * Shared mappings base their reservation on the number of pages that
5158 	 * are already allocated on behalf of the file. Private mappings need
5159 	 * to reserve the full area even if read-only as mprotect() may be
5160 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5161 	 */
5162 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5163 		/*
5164 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5165 		 * called for inodes for which resv_maps were created (see
5166 		 * hugetlbfs_get_inode).
5167 		 */
5168 		resv_map = inode_resv_map(inode);
5169 
5170 		chg = region_chg(resv_map, from, to, &regions_needed);
5171 
5172 	} else {
5173 		/* Private mapping. */
5174 		resv_map = resv_map_alloc();
5175 		if (!resv_map)
5176 			return -ENOMEM;
5177 
5178 		chg = to - from;
5179 
5180 		set_vma_resv_map(vma, resv_map);
5181 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5182 	}
5183 
5184 	if (chg < 0) {
5185 		ret = chg;
5186 		goto out_err;
5187 	}
5188 
5189 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5190 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5191 
5192 	if (ret < 0) {
5193 		ret = -ENOMEM;
5194 		goto out_err;
5195 	}
5196 
5197 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5198 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5199 		 * of the resv_map.
5200 		 */
5201 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5202 	}
5203 
5204 	/*
5205 	 * There must be enough pages in the subpool for the mapping. If
5206 	 * the subpool has a minimum size, there may be some global
5207 	 * reservations already in place (gbl_reserve).
5208 	 */
5209 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5210 	if (gbl_reserve < 0) {
5211 		ret = -ENOSPC;
5212 		goto out_uncharge_cgroup;
5213 	}
5214 
5215 	/*
5216 	 * Check enough hugepages are available for the reservation.
5217 	 * Hand the pages back to the subpool if there are not
5218 	 */
5219 	ret = hugetlb_acct_memory(h, gbl_reserve);
5220 	if (ret < 0) {
5221 		goto out_put_pages;
5222 	}
5223 
5224 	/*
5225 	 * Account for the reservations made. Shared mappings record regions
5226 	 * that have reservations as they are shared by multiple VMAs.
5227 	 * When the last VMA disappears, the region map says how much
5228 	 * the reservation was and the page cache tells how much of
5229 	 * the reservation was consumed. Private mappings are per-VMA and
5230 	 * only the consumed reservations are tracked. When the VMA
5231 	 * disappears, the original reservation is the VMA size and the
5232 	 * consumed reservations are stored in the map. Hence, nothing
5233 	 * else has to be done for private mappings here
5234 	 */
5235 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5236 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5237 
5238 		if (unlikely(add < 0)) {
5239 			hugetlb_acct_memory(h, -gbl_reserve);
5240 			ret = add;
5241 			goto out_put_pages;
5242 		} else if (unlikely(chg > add)) {
5243 			/*
5244 			 * pages in this range were added to the reserve
5245 			 * map between region_chg and region_add.  This
5246 			 * indicates a race with alloc_huge_page.  Adjust
5247 			 * the subpool and reserve counts modified above
5248 			 * based on the difference.
5249 			 */
5250 			long rsv_adjust;
5251 
5252 			/*
5253 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5254 			 * reference to h_cg->css. See comment below for detail.
5255 			 */
5256 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5257 				hstate_index(h),
5258 				(chg - add) * pages_per_huge_page(h), h_cg);
5259 
5260 			rsv_adjust = hugepage_subpool_put_pages(spool,
5261 								chg - add);
5262 			hugetlb_acct_memory(h, -rsv_adjust);
5263 		} else if (h_cg) {
5264 			/*
5265 			 * The file_regions will hold their own reference to
5266 			 * h_cg->css. So we should release the reference held
5267 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5268 			 * done.
5269 			 */
5270 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5271 		}
5272 	}
5273 	return 0;
5274 out_put_pages:
5275 	/* put back original number of pages, chg */
5276 	(void)hugepage_subpool_put_pages(spool, chg);
5277 out_uncharge_cgroup:
5278 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5279 					    chg * pages_per_huge_page(h), h_cg);
5280 out_err:
5281 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5282 		/* Only call region_abort if the region_chg succeeded but the
5283 		 * region_add failed or didn't run.
5284 		 */
5285 		if (chg >= 0 && add < 0)
5286 			region_abort(resv_map, from, to, regions_needed);
5287 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5288 		kref_put(&resv_map->refs, resv_map_release);
5289 	return ret;
5290 }
5291 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5292 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5293 								long freed)
5294 {
5295 	struct hstate *h = hstate_inode(inode);
5296 	struct resv_map *resv_map = inode_resv_map(inode);
5297 	long chg = 0;
5298 	struct hugepage_subpool *spool = subpool_inode(inode);
5299 	long gbl_reserve;
5300 
5301 	/*
5302 	 * Since this routine can be called in the evict inode path for all
5303 	 * hugetlbfs inodes, resv_map could be NULL.
5304 	 */
5305 	if (resv_map) {
5306 		chg = region_del(resv_map, start, end);
5307 		/*
5308 		 * region_del() can fail in the rare case where a region
5309 		 * must be split and another region descriptor can not be
5310 		 * allocated.  If end == LONG_MAX, it will not fail.
5311 		 */
5312 		if (chg < 0)
5313 			return chg;
5314 	}
5315 
5316 	spin_lock(&inode->i_lock);
5317 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5318 	spin_unlock(&inode->i_lock);
5319 
5320 	/*
5321 	 * If the subpool has a minimum size, the number of global
5322 	 * reservations to be released may be adjusted.
5323 	 */
5324 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5325 	hugetlb_acct_memory(h, -gbl_reserve);
5326 
5327 	return 0;
5328 }
5329 
5330 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5331 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5332 				struct vm_area_struct *vma,
5333 				unsigned long addr, pgoff_t idx)
5334 {
5335 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5336 				svma->vm_start;
5337 	unsigned long sbase = saddr & PUD_MASK;
5338 	unsigned long s_end = sbase + PUD_SIZE;
5339 
5340 	/* Allow segments to share if only one is marked locked */
5341 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5342 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5343 
5344 	/*
5345 	 * match the virtual addresses, permission and the alignment of the
5346 	 * page table page.
5347 	 */
5348 	if (pmd_index(addr) != pmd_index(saddr) ||
5349 	    vm_flags != svm_flags ||
5350 	    sbase < svma->vm_start || svma->vm_end < s_end)
5351 		return 0;
5352 
5353 	return saddr;
5354 }
5355 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5356 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5357 {
5358 	unsigned long base = addr & PUD_MASK;
5359 	unsigned long end = base + PUD_SIZE;
5360 
5361 	/*
5362 	 * check on proper vm_flags and page table alignment
5363 	 */
5364 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5365 		return true;
5366 	return false;
5367 }
5368 
5369 /*
5370  * Determine if start,end range within vma could be mapped by shared pmd.
5371  * If yes, adjust start and end to cover range associated with possible
5372  * shared pmd mappings.
5373  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5374 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5375 				unsigned long *start, unsigned long *end)
5376 {
5377 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5378 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5379 
5380 	/*
5381 	 * vma need span at least one aligned PUD size and the start,end range
5382 	 * must at least partialy within it.
5383 	 */
5384 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5385 		(*end <= v_start) || (*start >= v_end))
5386 		return;
5387 
5388 	/* Extend the range to be PUD aligned for a worst case scenario */
5389 	if (*start > v_start)
5390 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5391 
5392 	if (*end < v_end)
5393 		*end = ALIGN(*end, PUD_SIZE);
5394 }
5395 
5396 /*
5397  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5398  * and returns the corresponding pte. While this is not necessary for the
5399  * !shared pmd case because we can allocate the pmd later as well, it makes the
5400  * code much cleaner.
5401  *
5402  * This routine must be called with i_mmap_rwsem held in at least read mode if
5403  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5404  * table entries associated with the address space.  This is important as we
5405  * are setting up sharing based on existing page table entries (mappings).
5406  *
5407  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5408  * huge_pte_alloc know that sharing is not possible and do not take
5409  * i_mmap_rwsem as a performance optimization.  This is handled by the
5410  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5411  * only required for subsequent processing.
5412  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)5413 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5414 {
5415 	struct vm_area_struct *vma = find_vma(mm, addr);
5416 	struct address_space *mapping = vma->vm_file->f_mapping;
5417 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5418 			vma->vm_pgoff;
5419 	struct vm_area_struct *svma;
5420 	unsigned long saddr;
5421 	pte_t *spte = NULL;
5422 	pte_t *pte;
5423 	spinlock_t *ptl;
5424 
5425 	if (!vma_shareable(vma, addr))
5426 		return (pte_t *)pmd_alloc(mm, pud, addr);
5427 
5428 	i_mmap_assert_locked(mapping);
5429 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5430 		if (svma == vma)
5431 			continue;
5432 
5433 		saddr = page_table_shareable(svma, vma, addr, idx);
5434 		if (saddr) {
5435 			spte = huge_pte_offset(svma->vm_mm, saddr,
5436 					       vma_mmu_pagesize(svma));
5437 			if (spte) {
5438 				get_page(virt_to_page(spte));
5439 				break;
5440 			}
5441 		}
5442 	}
5443 
5444 	if (!spte)
5445 		goto out;
5446 
5447 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5448 	if (pud_none(*pud)) {
5449 		pud_populate(mm, pud,
5450 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5451 		mm_inc_nr_pmds(mm);
5452 	} else {
5453 		put_page(virt_to_page(spte));
5454 	}
5455 	spin_unlock(ptl);
5456 out:
5457 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5458 	return pte;
5459 }
5460 
5461 /*
5462  * unmap huge page backed by shared pte.
5463  *
5464  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5465  * indicated by page_count > 1, unmap is achieved by clearing pud and
5466  * decrementing the ref count. If count == 1, the pte page is not shared.
5467  *
5468  * Called with page table lock held and i_mmap_rwsem held in write mode.
5469  *
5470  * returns: 1 successfully unmapped a shared pte page
5471  *	    0 the underlying pte page is not shared, or it is the last user
5472  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5473 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5474 					unsigned long *addr, pte_t *ptep)
5475 {
5476 	pgd_t *pgd = pgd_offset(mm, *addr);
5477 	p4d_t *p4d = p4d_offset(pgd, *addr);
5478 	pud_t *pud = pud_offset(p4d, *addr);
5479 
5480 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5481 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5482 	if (page_count(virt_to_page(ptep)) == 1)
5483 		return 0;
5484 
5485 	pud_clear(pud);
5486 	put_page(virt_to_page(ptep));
5487 	mm_dec_nr_pmds(mm);
5488 	/*
5489 	 * This update of passed address optimizes loops sequentially
5490 	 * processing addresses in increments of huge page size (PMD_SIZE
5491 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
5492 	 * Update address to the 'last page' in the cleared area so that
5493 	 * calling loop can move to first page past this area.
5494 	 */
5495 	*addr |= PUD_SIZE - PMD_SIZE;
5496 	return 1;
5497 }
5498 #define want_pmd_share()	(1)
5499 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)5500 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5501 {
5502 	return NULL;
5503 }
5504 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5505 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5506 				unsigned long *addr, pte_t *ptep)
5507 {
5508 	return 0;
5509 }
5510 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5511 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5512 				unsigned long *start, unsigned long *end)
5513 {
5514 }
5515 #define want_pmd_share()	(0)
5516 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5517 
5518 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)5519 pte_t *huge_pte_alloc(struct mm_struct *mm,
5520 			unsigned long addr, unsigned long sz)
5521 {
5522 	pgd_t *pgd;
5523 	p4d_t *p4d;
5524 	pud_t *pud;
5525 	pte_t *pte = NULL;
5526 
5527 	pgd = pgd_offset(mm, addr);
5528 	p4d = p4d_alloc(mm, pgd, addr);
5529 	if (!p4d)
5530 		return NULL;
5531 	pud = pud_alloc(mm, p4d, addr);
5532 	if (pud) {
5533 		if (sz == PUD_SIZE) {
5534 			pte = (pte_t *)pud;
5535 		} else {
5536 			BUG_ON(sz != PMD_SIZE);
5537 			if (want_pmd_share() && pud_none(*pud))
5538 				pte = huge_pmd_share(mm, addr, pud);
5539 			else
5540 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5541 		}
5542 	}
5543 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5544 
5545 	return pte;
5546 }
5547 
5548 /*
5549  * huge_pte_offset() - Walk the page table to resolve the hugepage
5550  * entry at address @addr
5551  *
5552  * Return: Pointer to page table entry (PUD or PMD) for
5553  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5554  * size @sz doesn't match the hugepage size at this level of the page
5555  * table.
5556  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5557 pte_t *huge_pte_offset(struct mm_struct *mm,
5558 		       unsigned long addr, unsigned long sz)
5559 {
5560 	pgd_t *pgd;
5561 	p4d_t *p4d;
5562 	pud_t *pud;
5563 	pmd_t *pmd;
5564 
5565 	pgd = pgd_offset(mm, addr);
5566 	if (!pgd_present(*pgd))
5567 		return NULL;
5568 	p4d = p4d_offset(pgd, addr);
5569 	if (!p4d_present(*p4d))
5570 		return NULL;
5571 
5572 	pud = pud_offset(p4d, addr);
5573 	if (sz == PUD_SIZE)
5574 		/* must be pud huge, non-present or none */
5575 		return (pte_t *)pud;
5576 	if (!pud_present(*pud))
5577 		return NULL;
5578 	/* must have a valid entry and size to go further */
5579 
5580 	pmd = pmd_offset(pud, addr);
5581 	/* must be pmd huge, non-present or none */
5582 	return (pte_t *)pmd;
5583 }
5584 
5585 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5586 
5587 /*
5588  * These functions are overwritable if your architecture needs its own
5589  * behavior.
5590  */
5591 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5592 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5593 			      int write)
5594 {
5595 	return ERR_PTR(-EINVAL);
5596 }
5597 
5598 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5599 follow_huge_pd(struct vm_area_struct *vma,
5600 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5601 {
5602 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5603 	return NULL;
5604 }
5605 
5606 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)5607 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5608 {
5609 	struct hstate *h = hstate_vma(vma);
5610 	struct mm_struct *mm = vma->vm_mm;
5611 	struct page *page = NULL;
5612 	spinlock_t *ptl;
5613 	pte_t *ptep, pte;
5614 
5615 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5616 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5617 			 (FOLL_PIN | FOLL_GET)))
5618 		return NULL;
5619 
5620 retry:
5621 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
5622 	if (!ptep)
5623 		return NULL;
5624 
5625 	ptl = huge_pte_lock(h, mm, ptep);
5626 	pte = huge_ptep_get(ptep);
5627 	if (pte_present(pte)) {
5628 		page = pte_page(pte) +
5629 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5630 		/*
5631 		 * try_grab_page() should always succeed here, because: a) we
5632 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5633 		 * huge pmd (head) page is present in the page tables. The ptl
5634 		 * prevents the head page and tail pages from being rearranged
5635 		 * in any way. So this page must be available at this point,
5636 		 * unless the page refcount overflowed:
5637 		 */
5638 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5639 			page = NULL;
5640 			goto out;
5641 		}
5642 	} else {
5643 		if (is_hugetlb_entry_migration(pte)) {
5644 			spin_unlock(ptl);
5645 			__migration_entry_wait(mm, ptep, ptl);
5646 			goto retry;
5647 		}
5648 		/*
5649 		 * hwpoisoned entry is treated as no_page_table in
5650 		 * follow_page_mask().
5651 		 */
5652 	}
5653 out:
5654 	spin_unlock(ptl);
5655 	return page;
5656 }
5657 
5658 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5659 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5660 		pud_t *pud, int flags)
5661 {
5662 	if (flags & (FOLL_GET | FOLL_PIN))
5663 		return NULL;
5664 
5665 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5666 }
5667 
5668 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5669 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5670 {
5671 	if (flags & (FOLL_GET | FOLL_PIN))
5672 		return NULL;
5673 
5674 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5675 }
5676 
isolate_hugetlb(struct page * page,struct list_head * list)5677 int isolate_hugetlb(struct page *page, struct list_head *list)
5678 {
5679 	int ret = 0;
5680 
5681 	spin_lock(&hugetlb_lock);
5682 	if (!PageHeadHuge(page) || !page_huge_active(page) ||
5683 	    !get_page_unless_zero(page)) {
5684 		ret = -EBUSY;
5685 		goto unlock;
5686 	}
5687 	clear_page_huge_active(page);
5688 	list_move_tail(&page->lru, list);
5689 unlock:
5690 	spin_unlock(&hugetlb_lock);
5691 	return ret;
5692 }
5693 
putback_active_hugepage(struct page * page)5694 void putback_active_hugepage(struct page *page)
5695 {
5696 	VM_BUG_ON_PAGE(!PageHead(page), page);
5697 	spin_lock(&hugetlb_lock);
5698 	set_page_huge_active(page);
5699 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5700 	spin_unlock(&hugetlb_lock);
5701 	put_page(page);
5702 }
5703 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5704 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5705 {
5706 	struct hstate *h = page_hstate(oldpage);
5707 
5708 	hugetlb_cgroup_migrate(oldpage, newpage);
5709 	set_page_owner_migrate_reason(newpage, reason);
5710 
5711 	/*
5712 	 * transfer temporary state of the new huge page. This is
5713 	 * reverse to other transitions because the newpage is going to
5714 	 * be final while the old one will be freed so it takes over
5715 	 * the temporary status.
5716 	 *
5717 	 * Also note that we have to transfer the per-node surplus state
5718 	 * here as well otherwise the global surplus count will not match
5719 	 * the per-node's.
5720 	 */
5721 	if (PageHugeTemporary(newpage)) {
5722 		int old_nid = page_to_nid(oldpage);
5723 		int new_nid = page_to_nid(newpage);
5724 
5725 		SetPageHugeTemporary(oldpage);
5726 		ClearPageHugeTemporary(newpage);
5727 
5728 		spin_lock(&hugetlb_lock);
5729 		if (h->surplus_huge_pages_node[old_nid]) {
5730 			h->surplus_huge_pages_node[old_nid]--;
5731 			h->surplus_huge_pages_node[new_nid]++;
5732 		}
5733 		spin_unlock(&hugetlb_lock);
5734 	}
5735 }
5736 
5737 #ifdef CONFIG_CMA
5738 static bool cma_reserve_called __initdata;
5739 
cmdline_parse_hugetlb_cma(char * p)5740 static int __init cmdline_parse_hugetlb_cma(char *p)
5741 {
5742 	hugetlb_cma_size = memparse(p, &p);
5743 	return 0;
5744 }
5745 
5746 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5747 
hugetlb_cma_reserve(int order)5748 void __init hugetlb_cma_reserve(int order)
5749 {
5750 	unsigned long size, reserved, per_node;
5751 	int nid;
5752 
5753 	cma_reserve_called = true;
5754 
5755 	if (!hugetlb_cma_size)
5756 		return;
5757 
5758 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5759 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5760 			(PAGE_SIZE << order) / SZ_1M);
5761 		return;
5762 	}
5763 
5764 	/*
5765 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5766 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5767 	 */
5768 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5769 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5770 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5771 
5772 	reserved = 0;
5773 	for_each_node_state(nid, N_ONLINE) {
5774 		int res;
5775 		char name[CMA_MAX_NAME];
5776 
5777 		size = min(per_node, hugetlb_cma_size - reserved);
5778 		size = round_up(size, PAGE_SIZE << order);
5779 
5780 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5781 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5782 						 0, false, name,
5783 						 &hugetlb_cma[nid], nid);
5784 		if (res) {
5785 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5786 				res, nid);
5787 			continue;
5788 		}
5789 
5790 		reserved += size;
5791 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5792 			size / SZ_1M, nid);
5793 
5794 		if (reserved >= hugetlb_cma_size)
5795 			break;
5796 	}
5797 }
5798 
hugetlb_cma_check(void)5799 void __init hugetlb_cma_check(void)
5800 {
5801 	if (!hugetlb_cma_size || cma_reserve_called)
5802 		return;
5803 
5804 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5805 }
5806 
5807 #endif /* CONFIG_CMA */
5808