1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 #ifdef CONFIG_LOWPOWER_PROTOCOL
48 #include <net/lowpower_protocol.h>
49 #endif /* CONFIG_LOWPOWER_PROTOCOL */
50 #include <trace/events/tcp.h>
51
52 /* Refresh clocks of a TCP socket,
53 * ensuring monotically increasing values.
54 */
tcp_mstamp_refresh(struct tcp_sock * tp)55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 u64 val = tcp_clock_ns();
58
59 tp->tcp_clock_cache = val;
60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 int push_one, gfp_t gfp);
65
66 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 struct inet_connection_sock *icsk = inet_csk(sk);
70 struct tcp_sock *tp = tcp_sk(sk);
71 unsigned int prior_packets = tp->packets_out;
72
73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74
75 __skb_unlink(skb, &sk->sk_write_queue);
76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77
78 if (tp->highest_sack == NULL)
79 tp->highest_sack = skb;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 tcp_rearm_rto(sk);
84
85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 tcp_skb_pcount(skb));
87 tcp_check_space(sk);
88 }
89
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91 * window scaling factor due to loss of precision.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
tcp_acceptable_seq(const struct sock * sk)97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 (tp->rx_opt.wscale_ok &&
103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 return tp->snd_nxt;
105 else
106 return tcp_wnd_end(tp);
107 }
108
109 /* Calculate mss to advertise in SYN segment.
110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111 *
112 * 1. It is independent of path mtu.
113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115 * attached devices, because some buggy hosts are confused by
116 * large MSS.
117 * 4. We do not make 3, we advertise MSS, calculated from first
118 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
119 * This may be overridden via information stored in routing table.
120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121 * probably even Jumbo".
122 */
tcp_advertise_mss(struct sock * sk)123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 struct tcp_sock *tp = tcp_sk(sk);
126 const struct dst_entry *dst = __sk_dst_get(sk);
127 int mss = tp->advmss;
128
129 if (dst) {
130 unsigned int metric = dst_metric_advmss(dst);
131
132 if (metric < mss) {
133 mss = metric;
134 tp->advmss = mss;
135 }
136 }
137
138 return (__u16)mss;
139 }
140
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142 * This is the first part of cwnd validation mechanism.
143 */
tcp_cwnd_restart(struct sock * sk,s32 delta)144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 u32 cwnd = tp->snd_cwnd;
149
150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151
152 tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 restart_cwnd = min(restart_cwnd, cwnd);
154
155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 cwnd >>= 1;
157 tp->snd_cwnd = max(cwnd, restart_cwnd);
158 tp->snd_cwnd_stamp = tcp_jiffies32;
159 tp->snd_cwnd_used = 0;
160 }
161
162 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 struct sock *sk)
165 {
166 struct inet_connection_sock *icsk = inet_csk(sk);
167 const u32 now = tcp_jiffies32;
168
169 if (tcp_packets_in_flight(tp) == 0)
170 tcp_ca_event(sk, CA_EVENT_TX_START);
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 inet_csk_enter_pingpong_mode(sk);
179 }
180
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 u32 rcv_nxt)
184 {
185 struct tcp_sock *tp = tcp_sk(sk);
186
187 if (unlikely(tp->compressed_ack)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 tp->compressed_ack);
190 tp->compressed_ack = 0;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 __sock_put(sk);
193 }
194
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk, pkts);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = rounddown(space, mss);
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = min_t(u32, space, U16_MAX);
236
237 if (init_rcv_wnd)
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239
240 *rcv_wscale = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 space = min_t(u32, space, *window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 0, TCP_MAX_WSCALE);
248 }
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
257 * frame.
258 */
tcp_select_window(struct sock * sk)259 static u16 tcp_select_window(struct sock *sk)
260 {
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
265
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
272 *
273 * Relax Will Robinson.
274 */
275 if (new_win == 0)
276 NET_INC_STATS(sock_net(sk),
277 LINUX_MIB_TCPWANTZEROWINDOWADV);
278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 }
280 tp->rcv_wnd = new_win;
281 tp->rcv_wup = tp->rcv_nxt;
282
283 /* Make sure we do not exceed the maximum possible
284 * scaled window.
285 */
286 if (!tp->rx_opt.rcv_wscale &&
287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
289 else
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
294
295 /* If we advertise zero window, disable fast path. */
296 if (new_win == 0) {
297 tp->pred_flags = 0;
298 if (old_win)
299 NET_INC_STATS(sock_net(sk),
300 LINUX_MIB_TCPTOZEROWINDOWADV);
301 } else if (old_win == 0) {
302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 }
304
305 return new_win;
306 }
307
308 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 const struct tcp_sock *tp = tcp_sk(sk);
312
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 if (!(tp->ecn_flags & TCP_ECN_OK))
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 else if (tcp_ca_needs_ecn(sk) ||
317 tcp_bpf_ca_needs_ecn(sk))
318 INET_ECN_xmit(sk);
319 }
320
321 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328
329 if (!use_ecn) {
330 const struct dst_entry *dst = __sk_dst_get(sk);
331
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 use_ecn = true;
334 }
335
336 tp->ecn_flags = 0;
337
338 if (use_ecn) {
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 INET_ECN_xmit(sk);
343 }
344 }
345
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
351 */
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354
355 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 if (inet_rsk(req)->ecn_ok)
359 th->ece = 1;
360 }
361
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363 * be sent.
364 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 INET_ECN_xmit(sk);
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 th->cwr = 1;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 }
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
383 }
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 th->ece = 1;
386 }
387 }
388
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
391 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 skb->ip_summed = CHECKSUM_PARTIAL;
395
396 TCP_SKB_CB(skb)->tcp_flags = flags;
397 TCP_SKB_CB(skb)->sacked = 0;
398
399 tcp_skb_pcount_set(skb, 1);
400
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 seq++;
404 TCP_SKB_CB(skb)->end_seq = seq;
405 }
406
tcp_urg_mode(const struct tcp_sock * tp)407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 return tp->snd_una != tp->snd_up;
410 }
411
412 #define OPTION_SACK_ADVERTISE (1 << 0)
413 #define OPTION_TS (1 << 1)
414 #define OPTION_MD5 (1 << 2)
415 #define OPTION_WSCALE (1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
417 #define OPTION_SMC (1 << 9)
418 #define OPTION_MPTCP (1 << 10)
419
smc_options_write(__be32 * ptr,u16 * options)420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
426 (TCPOPT_NOP << 16) |
427 (TCPOPT_EXP << 8) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 }
431 }
432 #endif
433 }
434
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 u8 bpf_opt_len; /* length of BPF hdr option */
442 __u8 *hash_location; /* temporary pointer, overloaded */
443 __u32 tsval, tsecr; /* need to include OPTION_TS */
444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
445 struct mptcp_out_options mptcp;
446 };
447
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)448 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 {
450 #if IS_ENABLED(CONFIG_MPTCP)
451 if (unlikely(OPTION_MPTCP & opts->options))
452 mptcp_write_options(ptr, &opts->mptcp);
453 #endif
454 }
455
456 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 enum tcp_synack_type synack_type)
459 {
460 if (unlikely(!skb))
461 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462
463 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465
466 return 0;
467 }
468
469 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 struct request_sock *req,
472 struct sk_buff *syn_skb,
473 enum tcp_synack_type synack_type,
474 struct tcp_out_options *opts,
475 unsigned int *remaining)
476 {
477 struct bpf_sock_ops_kern sock_ops;
478 int err;
479
480 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482 !*remaining)
483 return;
484
485 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486
487 /* init sock_ops */
488 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489
490 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491
492 if (req) {
493 /* The listen "sk" cannot be passed here because
494 * it is not locked. It would not make too much
495 * sense to do bpf_setsockopt(listen_sk) based
496 * on individual connection request also.
497 *
498 * Thus, "req" is passed here and the cgroup-bpf-progs
499 * of the listen "sk" will be run.
500 *
501 * "req" is also used here for fastopen even the "sk" here is
502 * a fullsock "child" sk. It is to keep the behavior
503 * consistent between fastopen and non-fastopen on
504 * the bpf programming side.
505 */
506 sock_ops.sk = (struct sock *)req;
507 sock_ops.syn_skb = syn_skb;
508 } else {
509 sock_owned_by_me(sk);
510
511 sock_ops.is_fullsock = 1;
512 sock_ops.sk = sk;
513 }
514
515 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 sock_ops.remaining_opt_len = *remaining;
517 /* tcp_current_mss() does not pass a skb */
518 if (skb)
519 bpf_skops_init_skb(&sock_ops, skb, 0);
520
521 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522
523 if (err || sock_ops.remaining_opt_len == *remaining)
524 return;
525
526 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 /* round up to 4 bytes */
528 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529
530 *remaining -= opts->bpf_opt_len;
531 }
532
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 struct request_sock *req,
535 struct sk_buff *syn_skb,
536 enum tcp_synack_type synack_type,
537 struct tcp_out_options *opts)
538 {
539 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 struct bpf_sock_ops_kern sock_ops;
541 int err;
542
543 if (likely(!max_opt_len))
544 return;
545
546 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547
548 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549
550 if (req) {
551 sock_ops.sk = (struct sock *)req;
552 sock_ops.syn_skb = syn_skb;
553 } else {
554 sock_owned_by_me(sk);
555
556 sock_ops.is_fullsock = 1;
557 sock_ops.sk = sk;
558 }
559
560 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 sock_ops.remaining_opt_len = max_opt_len;
562 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564
565 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566
567 if (err)
568 nr_written = 0;
569 else
570 nr_written = max_opt_len - sock_ops.remaining_opt_len;
571
572 if (nr_written < max_opt_len)
573 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 max_opt_len - nr_written);
575 }
576 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 struct request_sock *req,
579 struct sk_buff *syn_skb,
580 enum tcp_synack_type synack_type,
581 struct tcp_out_options *opts,
582 unsigned int *remaining)
583 {
584 }
585
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 struct request_sock *req,
588 struct sk_buff *syn_skb,
589 enum tcp_synack_type synack_type,
590 struct tcp_out_options *opts)
591 {
592 }
593 #endif
594
595 /* Write previously computed TCP options to the packet.
596 *
597 * Beware: Something in the Internet is very sensitive to the ordering of
598 * TCP options, we learned this through the hard way, so be careful here.
599 * Luckily we can at least blame others for their non-compliance but from
600 * inter-operability perspective it seems that we're somewhat stuck with
601 * the ordering which we have been using if we want to keep working with
602 * those broken things (not that it currently hurts anybody as there isn't
603 * particular reason why the ordering would need to be changed).
604 *
605 * At least SACK_PERM as the first option is known to lead to a disaster
606 * (but it may well be that other scenarios fail similarly).
607 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 struct tcp_out_options *opts)
610 {
611 u16 options = opts->options; /* mungable copy */
612
613 if (unlikely(OPTION_MD5 & options)) {
614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 /* overload cookie hash location */
617 opts->hash_location = (__u8 *)ptr;
618 ptr += 4;
619 }
620
621 if (unlikely(opts->mss)) {
622 *ptr++ = htonl((TCPOPT_MSS << 24) |
623 (TCPOLEN_MSS << 16) |
624 opts->mss);
625 }
626
627 if (likely(OPTION_TS & options)) {
628 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 (TCPOLEN_SACK_PERM << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
632 TCPOLEN_TIMESTAMP);
633 options &= ~OPTION_SACK_ADVERTISE;
634 } else {
635 *ptr++ = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_TIMESTAMP << 8) |
638 TCPOLEN_TIMESTAMP);
639 }
640 *ptr++ = htonl(opts->tsval);
641 *ptr++ = htonl(opts->tsecr);
642 }
643
644 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 *ptr++ = htonl((TCPOPT_NOP << 24) |
646 (TCPOPT_NOP << 16) |
647 (TCPOPT_SACK_PERM << 8) |
648 TCPOLEN_SACK_PERM);
649 }
650
651 if (unlikely(OPTION_WSCALE & options)) {
652 *ptr++ = htonl((TCPOPT_NOP << 24) |
653 (TCPOPT_WINDOW << 16) |
654 (TCPOLEN_WINDOW << 8) |
655 opts->ws);
656 }
657
658 if (unlikely(opts->num_sack_blocks)) {
659 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 tp->duplicate_sack : tp->selective_acks;
661 int this_sack;
662
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
664 (TCPOPT_NOP << 16) |
665 (TCPOPT_SACK << 8) |
666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 TCPOLEN_SACK_PERBLOCK)));
668
669 for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 ++this_sack) {
671 *ptr++ = htonl(sp[this_sack].start_seq);
672 *ptr++ = htonl(sp[this_sack].end_seq);
673 }
674
675 tp->rx_opt.dsack = 0;
676 }
677
678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 u8 *p = (u8 *)ptr;
681 u32 len; /* Fast Open option length */
682
683 if (foc->exp) {
684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 TCPOPT_FASTOPEN_MAGIC);
687 p += TCPOLEN_EXP_FASTOPEN_BASE;
688 } else {
689 len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 *p++ = TCPOPT_FASTOPEN;
691 *p++ = len;
692 }
693
694 memcpy(p, foc->val, foc->len);
695 if ((len & 3) == 2) {
696 p[foc->len] = TCPOPT_NOP;
697 p[foc->len + 1] = TCPOPT_NOP;
698 }
699 ptr += (len + 3) >> 2;
700 }
701
702 smc_options_write(ptr, &options);
703
704 mptcp_options_write(ptr, opts);
705 }
706
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)707 static void smc_set_option(const struct tcp_sock *tp,
708 struct tcp_out_options *opts,
709 unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 if (static_branch_unlikely(&tcp_have_smc)) {
713 if (tp->syn_smc) {
714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 opts->options |= OPTION_SMC;
716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 }
718 }
719 }
720 #endif
721 }
722
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 const struct inet_request_sock *ireq,
725 struct tcp_out_options *opts,
726 unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 if (static_branch_unlikely(&tcp_have_smc)) {
730 if (tp->syn_smc && ireq->smc_ok) {
731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 opts->options |= OPTION_SMC;
733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 }
735 }
736 }
737 #endif
738 }
739
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)740 static void mptcp_set_option_cond(const struct request_sock *req,
741 struct tcp_out_options *opts,
742 unsigned int *remaining)
743 {
744 if (rsk_is_mptcp(req)) {
745 unsigned int size;
746
747 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 if (*remaining >= size) {
749 opts->options |= OPTION_MPTCP;
750 *remaining -= size;
751 }
752 }
753 }
754 }
755
756 /* Compute TCP options for SYN packets. This is not the final
757 * network wire format yet.
758 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 struct tcp_out_options *opts,
761 struct tcp_md5sig_key **md5)
762 {
763 struct tcp_sock *tp = tcp_sk(sk);
764 unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766
767 *md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 if (static_branch_unlikely(&tcp_md5_needed) &&
770 rcu_access_pointer(tp->md5sig_info)) {
771 *md5 = tp->af_specific->md5_lookup(sk, sk);
772 if (*md5) {
773 opts->options |= OPTION_MD5;
774 remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 }
776 }
777 #endif
778
779 /* We always get an MSS option. The option bytes which will be seen in
780 * normal data packets should timestamps be used, must be in the MSS
781 * advertised. But we subtract them from tp->mss_cache so that
782 * calculations in tcp_sendmsg are simpler etc. So account for this
783 * fact here if necessary. If we don't do this correctly, as a
784 * receiver we won't recognize data packets as being full sized when we
785 * should, and thus we won't abide by the delayed ACK rules correctly.
786 * SACKs don't matter, we never delay an ACK when we have any of those
787 * going out. */
788 opts->mss = tcp_advertise_mss(sk);
789 remaining -= TCPOLEN_MSS_ALIGNED;
790
791 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
792 opts->options |= OPTION_TS;
793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 opts->tsecr = tp->rx_opt.ts_recent;
795 remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 }
797 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
798 opts->ws = tp->rx_opt.rcv_wscale;
799 opts->options |= OPTION_WSCALE;
800 remaining -= TCPOLEN_WSCALE_ALIGNED;
801 }
802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
803 opts->options |= OPTION_SACK_ADVERTISE;
804 if (unlikely(!(OPTION_TS & opts->options)))
805 remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 }
807
808 if (fastopen && fastopen->cookie.len >= 0) {
809 u32 need = fastopen->cookie.len;
810
811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 TCPOLEN_FASTOPEN_BASE;
813 need = (need + 3) & ~3U; /* Align to 32 bits */
814 if (remaining >= need) {
815 opts->options |= OPTION_FAST_OPEN_COOKIE;
816 opts->fastopen_cookie = &fastopen->cookie;
817 remaining -= need;
818 tp->syn_fastopen = 1;
819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 }
821 }
822
823 smc_set_option(tp, opts, &remaining);
824
825 if (sk_is_mptcp(sk)) {
826 unsigned int size;
827
828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 opts->options |= OPTION_MPTCP;
830 remaining -= size;
831 }
832 }
833
834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835
836 return MAX_TCP_OPTION_SPACE - remaining;
837 }
838
839 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)840 static unsigned int tcp_synack_options(const struct sock *sk,
841 struct request_sock *req,
842 unsigned int mss, struct sk_buff *skb,
843 struct tcp_out_options *opts,
844 const struct tcp_md5sig_key *md5,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type,
847 struct sk_buff *syn_skb)
848 {
849 struct inet_request_sock *ireq = inet_rsk(req);
850 unsigned int remaining = MAX_TCP_OPTION_SPACE;
851
852 #ifdef CONFIG_TCP_MD5SIG
853 if (md5) {
854 opts->options |= OPTION_MD5;
855 remaining -= TCPOLEN_MD5SIG_ALIGNED;
856
857 /* We can't fit any SACK blocks in a packet with MD5 + TS
858 * options. There was discussion about disabling SACK
859 * rather than TS in order to fit in better with old,
860 * buggy kernels, but that was deemed to be unnecessary.
861 */
862 if (synack_type != TCP_SYNACK_COOKIE)
863 ireq->tstamp_ok &= !ireq->sack_ok;
864 }
865 #endif
866
867 /* We always send an MSS option. */
868 opts->mss = mss;
869 remaining -= TCPOLEN_MSS_ALIGNED;
870
871 if (likely(ireq->wscale_ok)) {
872 opts->ws = ireq->rcv_wscale;
873 opts->options |= OPTION_WSCALE;
874 remaining -= TCPOLEN_WSCALE_ALIGNED;
875 }
876 if (likely(ireq->tstamp_ok)) {
877 opts->options |= OPTION_TS;
878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 opts->tsecr = READ_ONCE(req->ts_recent);
880 remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 }
882 if (likely(ireq->sack_ok)) {
883 opts->options |= OPTION_SACK_ADVERTISE;
884 if (unlikely(!ireq->tstamp_ok))
885 remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 }
887 if (foc != NULL && foc->len >= 0) {
888 u32 need = foc->len;
889
890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 TCPOLEN_FASTOPEN_BASE;
892 need = (need + 3) & ~3U; /* Align to 32 bits */
893 if (remaining >= need) {
894 opts->options |= OPTION_FAST_OPEN_COOKIE;
895 opts->fastopen_cookie = foc;
896 remaining -= need;
897 }
898 }
899
900 mptcp_set_option_cond(req, opts, &remaining);
901
902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903
904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 synack_type, opts, &remaining);
906
907 return MAX_TCP_OPTION_SPACE - remaining;
908 }
909
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911 * final wire format yet.
912 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 struct tcp_out_options *opts,
915 struct tcp_md5sig_key **md5)
916 {
917 struct tcp_sock *tp = tcp_sk(sk);
918 unsigned int size = 0;
919 unsigned int eff_sacks;
920
921 opts->options = 0;
922
923 *md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 if (static_branch_unlikely(&tcp_md5_needed) &&
926 rcu_access_pointer(tp->md5sig_info)) {
927 *md5 = tp->af_specific->md5_lookup(sk, sk);
928 if (*md5) {
929 opts->options |= OPTION_MD5;
930 size += TCPOLEN_MD5SIG_ALIGNED;
931 }
932 }
933 #endif
934
935 if (likely(tp->rx_opt.tstamp_ok)) {
936 opts->options |= OPTION_TS;
937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 opts->tsecr = tp->rx_opt.ts_recent;
939 size += TCPOLEN_TSTAMP_ALIGNED;
940 }
941
942 /* MPTCP options have precedence over SACK for the limited TCP
943 * option space because a MPTCP connection would be forced to
944 * fall back to regular TCP if a required multipath option is
945 * missing. SACK still gets a chance to use whatever space is
946 * left.
947 */
948 if (sk_is_mptcp(sk)) {
949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 unsigned int opt_size = 0;
951
952 if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 &opts->mptcp)) {
954 opts->options |= OPTION_MPTCP;
955 size += opt_size;
956 }
957 }
958
959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 if (unlikely(eff_sacks)) {
961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 TCPOLEN_SACK_PERBLOCK))
964 return size;
965
966 opts->num_sack_blocks =
967 min_t(unsigned int, eff_sacks,
968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 TCPOLEN_SACK_PERBLOCK);
970
971 size += TCPOLEN_SACK_BASE_ALIGNED +
972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 }
974
975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978
979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980
981 size = MAX_TCP_OPTION_SPACE - remaining;
982 }
983
984 return size;
985 }
986
987
988 /* TCP SMALL QUEUES (TSQ)
989 *
990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991 * to reduce RTT and bufferbloat.
992 * We do this using a special skb destructor (tcp_wfree).
993 *
994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995 * needs to be reallocated in a driver.
996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997 *
998 * Since transmit from skb destructor is forbidden, we use a tasklet
999 * to process all sockets that eventually need to send more skbs.
1000 * We use one tasklet per cpu, with its own queue of sockets.
1001 */
1002 struct tsq_tasklet {
1003 struct tasklet_struct tasklet;
1004 struct list_head head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007
tcp_tsq_write(struct sock * sk)1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 if ((1 << sk->sk_state) &
1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1014
1015 if (tp->lost_out > tp->retrans_out &&
1016 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 tcp_mstamp_refresh(tp);
1018 tcp_xmit_retransmit_queue(sk);
1019 }
1020
1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 0, GFP_ATOMIC);
1023 }
1024 }
1025
tcp_tsq_handler(struct sock * sk)1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 bh_lock_sock(sk);
1029 if (!sock_owned_by_user(sk))
1030 tcp_tsq_write(sk);
1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 sock_hold(sk);
1033 bh_unlock_sock(sk);
1034 }
1035 /*
1036 * One tasklet per cpu tries to send more skbs.
1037 * We run in tasklet context but need to disable irqs when
1038 * transferring tsq->head because tcp_wfree() might
1039 * interrupt us (non NAPI drivers)
1040 */
tcp_tasklet_func(unsigned long data)1041 static void tcp_tasklet_func(unsigned long data)
1042 {
1043 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1044 LIST_HEAD(list);
1045 unsigned long flags;
1046 struct list_head *q, *n;
1047 struct tcp_sock *tp;
1048 struct sock *sk;
1049
1050 local_irq_save(flags);
1051 list_splice_init(&tsq->head, &list);
1052 local_irq_restore(flags);
1053
1054 list_for_each_safe(q, n, &list) {
1055 tp = list_entry(q, struct tcp_sock, tsq_node);
1056 list_del(&tp->tsq_node);
1057
1058 sk = (struct sock *)tp;
1059 smp_mb__before_atomic();
1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061
1062 tcp_tsq_handler(sk);
1063 sk_free(sk);
1064 }
1065 }
1066
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1068 TCPF_WRITE_TIMER_DEFERRED | \
1069 TCPF_DELACK_TIMER_DEFERRED | \
1070 TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072 * tcp_release_cb - tcp release_sock() callback
1073 * @sk: socket
1074 *
1075 * called from release_sock() to perform protocol dependent
1076 * actions before socket release.
1077 */
tcp_release_cb(struct sock * sk)1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 unsigned long flags, nflags;
1081
1082 /* perform an atomic operation only if at least one flag is set */
1083 do {
1084 flags = sk->sk_tsq_flags;
1085 if (!(flags & TCP_DEFERRED_ALL))
1086 return;
1087 nflags = flags & ~TCP_DEFERRED_ALL;
1088 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089
1090 if (flags & TCPF_TSQ_DEFERRED) {
1091 tcp_tsq_write(sk);
1092 __sock_put(sk);
1093 }
1094 /* Here begins the tricky part :
1095 * We are called from release_sock() with :
1096 * 1) BH disabled
1097 * 2) sk_lock.slock spinlock held
1098 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 *
1100 * But following code is meant to be called from BH handlers,
1101 * so we should keep BH disabled, but early release socket ownership
1102 */
1103 sock_release_ownership(sk);
1104
1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 tcp_write_timer_handler(sk);
1107 __sock_put(sk);
1108 }
1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 tcp_delack_timer_handler(sk);
1111 __sock_put(sk);
1112 }
1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 __sock_put(sk);
1116 }
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119
tcp_tasklet_init(void)1120 void __init tcp_tasklet_init(void)
1121 {
1122 int i;
1123
1124 for_each_possible_cpu(i) {
1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126
1127 INIT_LIST_HEAD(&tsq->head);
1128 tasklet_init(&tsq->tasklet,
1129 tcp_tasklet_func,
1130 (unsigned long)tsq);
1131 }
1132 }
1133
1134 /*
1135 * Write buffer destructor automatically called from kfree_skb.
1136 * We can't xmit new skbs from this context, as we might already
1137 * hold qdisc lock.
1138 */
tcp_wfree(struct sk_buff * skb)1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 struct sock *sk = skb->sk;
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 unsigned long flags, nval, oval;
1144
1145 /* Keep one reference on sk_wmem_alloc.
1146 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 */
1148 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149
1150 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 * Wait until our queues (qdisc + devices) are drained.
1152 * This gives :
1153 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 * - chance for incoming ACK (processed by another cpu maybe)
1155 * to migrate this flow (skb->ooo_okay will be eventually set)
1156 */
1157 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 goto out;
1159
1160 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1161 struct tsq_tasklet *tsq;
1162 bool empty;
1163
1164 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 goto out;
1166
1167 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1169 if (nval != oval)
1170 continue;
1171
1172 /* queue this socket to tasklet queue */
1173 local_irq_save(flags);
1174 tsq = this_cpu_ptr(&tsq_tasklet);
1175 empty = list_empty(&tsq->head);
1176 list_add(&tp->tsq_node, &tsq->head);
1177 if (empty)
1178 tasklet_schedule(&tsq->tasklet);
1179 local_irq_restore(flags);
1180 return;
1181 }
1182 out:
1183 sk_free(sk);
1184 }
1185
1186 /* Note: Called under soft irq.
1187 * We can call TCP stack right away, unless socket is owned by user.
1188 */
tcp_pace_kick(struct hrtimer * timer)1189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190 {
1191 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1192 struct sock *sk = (struct sock *)tp;
1193
1194 tcp_tsq_handler(sk);
1195 sock_put(sk);
1196
1197 return HRTIMER_NORESTART;
1198 }
1199
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1200 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201 u64 prior_wstamp)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204
1205 if (sk->sk_pacing_status != SK_PACING_NONE) {
1206 unsigned long rate = sk->sk_pacing_rate;
1207
1208 /* Original sch_fq does not pace first 10 MSS
1209 * Note that tp->data_segs_out overflows after 2^32 packets,
1210 * this is a minor annoyance.
1211 */
1212 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1213 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1214 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215
1216 /* take into account OS jitter */
1217 len_ns -= min_t(u64, len_ns / 2, credit);
1218 tp->tcp_wstamp_ns += len_ns;
1219 }
1220 }
1221 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222 }
1223
1224 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227
1228 /* This routine actually transmits TCP packets queued in by
1229 * tcp_do_sendmsg(). This is used by both the initial
1230 * transmission and possible later retransmissions.
1231 * All SKB's seen here are completely headerless. It is our
1232 * job to build the TCP header, and pass the packet down to
1233 * IP so it can do the same plus pass the packet off to the
1234 * device.
1235 *
1236 * We are working here with either a clone of the original
1237 * SKB, or a fresh unique copy made by the retransmit engine.
1238 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1239 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1240 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241 {
1242 const struct inet_connection_sock *icsk = inet_csk(sk);
1243 struct inet_sock *inet;
1244 struct tcp_sock *tp;
1245 struct tcp_skb_cb *tcb;
1246 struct tcp_out_options opts;
1247 unsigned int tcp_options_size, tcp_header_size;
1248 struct sk_buff *oskb = NULL;
1249 struct tcp_md5sig_key *md5;
1250 struct tcphdr *th;
1251 u64 prior_wstamp;
1252 int err;
1253
1254 BUG_ON(!skb || !tcp_skb_pcount(skb));
1255 tp = tcp_sk(sk);
1256 prior_wstamp = tp->tcp_wstamp_ns;
1257 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1258 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1259 if (clone_it) {
1260 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1261 - tp->snd_una;
1262 oskb = skb;
1263
1264 tcp_skb_tsorted_save(oskb) {
1265 if (unlikely(skb_cloned(oskb)))
1266 skb = pskb_copy(oskb, gfp_mask);
1267 else
1268 skb = skb_clone(oskb, gfp_mask);
1269 } tcp_skb_tsorted_restore(oskb);
1270
1271 if (unlikely(!skb))
1272 return -ENOBUFS;
1273 /* retransmit skbs might have a non zero value in skb->dev
1274 * because skb->dev is aliased with skb->rbnode.rb_left
1275 */
1276 skb->dev = NULL;
1277 }
1278
1279 inet = inet_sk(sk);
1280 tcb = TCP_SKB_CB(skb);
1281 memset(&opts, 0, sizeof(opts));
1282
1283 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1284 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1285 } else {
1286 tcp_options_size = tcp_established_options(sk, skb, &opts,
1287 &md5);
1288 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1289 * at receiver : This slightly improve GRO performance.
1290 * Note that we do not force the PSH flag for non GSO packets,
1291 * because they might be sent under high congestion events,
1292 * and in this case it is better to delay the delivery of 1-MSS
1293 * packets and thus the corresponding ACK packet that would
1294 * release the following packet.
1295 */
1296 if (tcp_skb_pcount(skb) > 1)
1297 tcb->tcp_flags |= TCPHDR_PSH;
1298 }
1299 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1300
1301 /* if no packet is in qdisc/device queue, then allow XPS to select
1302 * another queue. We can be called from tcp_tsq_handler()
1303 * which holds one reference to sk.
1304 *
1305 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1306 * One way to get this would be to set skb->truesize = 2 on them.
1307 */
1308 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1309
1310 /* If we had to use memory reserve to allocate this skb,
1311 * this might cause drops if packet is looped back :
1312 * Other socket might not have SOCK_MEMALLOC.
1313 * Packets not looped back do not care about pfmemalloc.
1314 */
1315 skb->pfmemalloc = 0;
1316
1317 skb_push(skb, tcp_header_size);
1318 skb_reset_transport_header(skb);
1319
1320 skb_orphan(skb);
1321 skb->sk = sk;
1322 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1323 skb_set_hash_from_sk(skb, sk);
1324 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1325
1326 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1327
1328 /* Build TCP header and checksum it. */
1329 th = (struct tcphdr *)skb->data;
1330 th->source = inet->inet_sport;
1331 th->dest = inet->inet_dport;
1332 th->seq = htonl(tcb->seq);
1333 th->ack_seq = htonl(rcv_nxt);
1334 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1335 tcb->tcp_flags);
1336
1337 th->check = 0;
1338 th->urg_ptr = 0;
1339
1340 /* The urg_mode check is necessary during a below snd_una win probe */
1341 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1342 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1343 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1344 th->urg = 1;
1345 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1346 th->urg_ptr = htons(0xFFFF);
1347 th->urg = 1;
1348 }
1349 }
1350
1351 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1352 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354 th->window = htons(tcp_select_window(sk));
1355 tcp_ecn_send(sk, skb, th, tcp_header_size);
1356 } else {
1357 /* RFC1323: The window in SYN & SYN/ACK segments
1358 * is never scaled.
1359 */
1360 th->window = htons(min(tp->rcv_wnd, 65535U));
1361 }
1362 #ifdef CONFIG_TCP_MD5SIG
1363 /* Calculate the MD5 hash, as we have all we need now */
1364 if (md5) {
1365 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366 tp->af_specific->calc_md5_hash(opts.hash_location,
1367 md5, sk, skb);
1368 }
1369 #endif
1370
1371 /* BPF prog is the last one writing header option */
1372 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373
1374 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375 tcp_v6_send_check, tcp_v4_send_check,
1376 sk, skb);
1377
1378 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380
1381 if (skb->len != tcp_header_size) {
1382 tcp_event_data_sent(tp, sk);
1383 tp->data_segs_out += tcp_skb_pcount(skb);
1384 tp->bytes_sent += skb->len - tcp_header_size;
1385 }
1386
1387 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389 tcp_skb_pcount(skb));
1390
1391 tp->segs_out += tcp_skb_pcount(skb);
1392 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1393 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1394 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395
1396 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397
1398 /* Cleanup our debris for IP stacks */
1399 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1400 sizeof(struct inet6_skb_parm)));
1401
1402 tcp_add_tx_delay(skb, tp);
1403
1404 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1405 inet6_csk_xmit, ip_queue_xmit,
1406 sk, skb, &inet->cork.fl);
1407
1408 if (unlikely(err > 0)) {
1409 tcp_enter_cwr(sk);
1410 err = net_xmit_eval(err);
1411 }
1412 if (!err && oskb) {
1413 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1414 tcp_rate_skb_sent(sk, oskb);
1415 }
1416 return err;
1417 }
1418
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1419 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420 gfp_t gfp_mask)
1421 {
1422 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1423 tcp_sk(sk)->rcv_nxt);
1424 }
1425
1426 /* This routine just queues the buffer for sending.
1427 *
1428 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1429 * otherwise socket can stall.
1430 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1431 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432 {
1433 struct tcp_sock *tp = tcp_sk(sk);
1434
1435 /* Advance write_seq and place onto the write_queue. */
1436 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1437 __skb_header_release(skb);
1438 tcp_add_write_queue_tail(sk, skb);
1439 sk_wmem_queued_add(sk, skb->truesize);
1440 sk_mem_charge(sk, skb->truesize);
1441 }
1442
1443 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1444 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445 {
1446 if (skb->len <= mss_now) {
1447 /* Avoid the costly divide in the normal
1448 * non-TSO case.
1449 */
1450 tcp_skb_pcount_set(skb, 1);
1451 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452 } else {
1453 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1454 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1455 }
1456 }
1457
1458 /* Pcount in the middle of the write queue got changed, we need to do various
1459 * tweaks to fix counters
1460 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1461 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462 {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 tp->packets_out -= decr;
1466
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1468 tp->sacked_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1470 tp->retrans_out -= decr;
1471 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1472 tp->lost_out -= decr;
1473
1474 /* Reno case is special. Sigh... */
1475 if (tcp_is_reno(tp) && decr > 0)
1476 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477
1478 if (tp->lost_skb_hint &&
1479 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1480 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1481 tp->lost_cnt_hint -= decr;
1482
1483 tcp_verify_left_out(tp);
1484 }
1485
tcp_has_tx_tstamp(const struct sk_buff * skb)1486 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487 {
1488 return TCP_SKB_CB(skb)->txstamp_ack ||
1489 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490 }
1491
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1492 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493 {
1494 struct skb_shared_info *shinfo = skb_shinfo(skb);
1495
1496 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1497 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1498 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1499 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500
1501 shinfo->tx_flags &= ~tsflags;
1502 shinfo2->tx_flags |= tsflags;
1503 swap(shinfo->tskey, shinfo2->tskey);
1504 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1505 TCP_SKB_CB(skb)->txstamp_ack = 0;
1506 }
1507 }
1508
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1509 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510 {
1511 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1512 TCP_SKB_CB(skb)->eor = 0;
1513 }
1514
1515 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1516 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1517 struct sk_buff *buff,
1518 struct sock *sk,
1519 enum tcp_queue tcp_queue)
1520 {
1521 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1522 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1523 else
1524 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525 }
1526
1527 /* Function to create two new TCP segments. Shrinks the given segment
1528 * to the specified size and appends a new segment with the rest of the
1529 * packet to the list. This won't be called frequently, I hope.
1530 * Remember, these are still headerless SKBs at this point.
1531 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1533 struct sk_buff *skb, u32 len,
1534 unsigned int mss_now, gfp_t gfp)
1535 {
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 struct sk_buff *buff;
1538 int nsize, old_factor;
1539 long limit;
1540 int nlen;
1541 u8 flags;
1542
1543 if (WARN_ON(len > skb->len))
1544 return -EINVAL;
1545
1546 nsize = skb_headlen(skb) - len;
1547 if (nsize < 0)
1548 nsize = 0;
1549
1550 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1551 * We need some allowance to not penalize applications setting small
1552 * SO_SNDBUF values.
1553 * Also allow first and last skb in retransmit queue to be split.
1554 */
1555 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1556 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1557 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1558 skb != tcp_rtx_queue_head(sk) &&
1559 skb != tcp_rtx_queue_tail(sk))) {
1560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1561 return -ENOMEM;
1562 }
1563
1564 if (skb_unclone(skb, gfp))
1565 return -ENOMEM;
1566
1567 /* Get a new skb... force flag on. */
1568 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1569 if (!buff)
1570 return -ENOMEM; /* We'll just try again later. */
1571 skb_copy_decrypted(buff, skb);
1572
1573 sk_wmem_queued_add(sk, buff->truesize);
1574 sk_mem_charge(sk, buff->truesize);
1575 nlen = skb->len - len - nsize;
1576 buff->truesize += nlen;
1577 skb->truesize -= nlen;
1578
1579 /* Correct the sequence numbers. */
1580 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583
1584 /* PSH and FIN should only be set in the second packet. */
1585 flags = TCP_SKB_CB(skb)->tcp_flags;
1586 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587 TCP_SKB_CB(buff)->tcp_flags = flags;
1588 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589 tcp_skb_fragment_eor(skb, buff);
1590
1591 skb_split(skb, buff, len);
1592
1593 buff->ip_summed = CHECKSUM_PARTIAL;
1594
1595 buff->tstamp = skb->tstamp;
1596 tcp_fragment_tstamp(skb, buff);
1597
1598 old_factor = tcp_skb_pcount(skb);
1599
1600 /* Fix up tso_factor for both original and new SKB. */
1601 tcp_set_skb_tso_segs(skb, mss_now);
1602 tcp_set_skb_tso_segs(buff, mss_now);
1603
1604 /* Update delivered info for the new segment */
1605 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606
1607 /* If this packet has been sent out already, we must
1608 * adjust the various packet counters.
1609 */
1610 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611 int diff = old_factor - tcp_skb_pcount(skb) -
1612 tcp_skb_pcount(buff);
1613
1614 if (diff)
1615 tcp_adjust_pcount(sk, skb, diff);
1616 }
1617
1618 /* Link BUFF into the send queue. */
1619 __skb_header_release(buff);
1620 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623
1624 return 0;
1625 }
1626
1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628 * data is not copied, but immediately discarded.
1629 */
__pskb_trim_head(struct sk_buff * skb,int len)1630 static int __pskb_trim_head(struct sk_buff *skb, int len)
1631 {
1632 struct skb_shared_info *shinfo;
1633 int i, k, eat;
1634
1635 eat = min_t(int, len, skb_headlen(skb));
1636 if (eat) {
1637 __skb_pull(skb, eat);
1638 len -= eat;
1639 if (!len)
1640 return 0;
1641 }
1642 eat = len;
1643 k = 0;
1644 shinfo = skb_shinfo(skb);
1645 for (i = 0; i < shinfo->nr_frags; i++) {
1646 int size = skb_frag_size(&shinfo->frags[i]);
1647
1648 if (size <= eat) {
1649 skb_frag_unref(skb, i);
1650 eat -= size;
1651 } else {
1652 shinfo->frags[k] = shinfo->frags[i];
1653 if (eat) {
1654 skb_frag_off_add(&shinfo->frags[k], eat);
1655 skb_frag_size_sub(&shinfo->frags[k], eat);
1656 eat = 0;
1657 }
1658 k++;
1659 }
1660 }
1661 shinfo->nr_frags = k;
1662
1663 skb->data_len -= len;
1664 skb->len = skb->data_len;
1665 return len;
1666 }
1667
1668 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 {
1671 u32 delta_truesize;
1672
1673 if (skb_unclone(skb, GFP_ATOMIC))
1674 return -ENOMEM;
1675
1676 delta_truesize = __pskb_trim_head(skb, len);
1677
1678 TCP_SKB_CB(skb)->seq += len;
1679 skb->ip_summed = CHECKSUM_PARTIAL;
1680
1681 if (delta_truesize) {
1682 skb->truesize -= delta_truesize;
1683 sk_wmem_queued_add(sk, -delta_truesize);
1684 sk_mem_uncharge(sk, delta_truesize);
1685 }
1686
1687 /* Any change of skb->len requires recalculation of tso factor. */
1688 if (tcp_skb_pcount(skb) > 1)
1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690
1691 return 0;
1692 }
1693
1694 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 int mss_now;
1700
1701 /* Calculate base mss without TCP options:
1702 It is MMS_S - sizeof(tcphdr) of rfc1122
1703 */
1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705
1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 if (icsk->icsk_af_ops->net_frag_header_len) {
1708 const struct dst_entry *dst = __sk_dst_get(sk);
1709
1710 if (dst && dst_allfrag(dst))
1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 }
1713
1714 /* Clamp it (mss_clamp does not include tcp options) */
1715 if (mss_now > tp->rx_opt.mss_clamp)
1716 mss_now = tp->rx_opt.mss_clamp;
1717
1718 /* Now subtract optional transport overhead */
1719 mss_now -= icsk->icsk_ext_hdr_len;
1720
1721 /* Then reserve room for full set of TCP options and 8 bytes of data */
1722 mss_now = max(mss_now,
1723 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1724 return mss_now;
1725 }
1726
1727 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1728 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1729 {
1730 /* Subtract TCP options size, not including SACKs */
1731 return __tcp_mtu_to_mss(sk, pmtu) -
1732 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1733 }
1734 EXPORT_SYMBOL(tcp_mtu_to_mss);
1735
1736 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1737 int tcp_mss_to_mtu(struct sock *sk, int mss)
1738 {
1739 const struct tcp_sock *tp = tcp_sk(sk);
1740 const struct inet_connection_sock *icsk = inet_csk(sk);
1741 int mtu;
1742
1743 mtu = mss +
1744 tp->tcp_header_len +
1745 icsk->icsk_ext_hdr_len +
1746 icsk->icsk_af_ops->net_header_len;
1747
1748 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1749 if (icsk->icsk_af_ops->net_frag_header_len) {
1750 const struct dst_entry *dst = __sk_dst_get(sk);
1751
1752 if (dst && dst_allfrag(dst))
1753 mtu += icsk->icsk_af_ops->net_frag_header_len;
1754 }
1755 return mtu;
1756 }
1757 EXPORT_SYMBOL(tcp_mss_to_mtu);
1758
1759 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1760 void tcp_mtup_init(struct sock *sk)
1761 {
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 struct inet_connection_sock *icsk = inet_csk(sk);
1764 struct net *net = sock_net(sk);
1765
1766 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1767 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1768 icsk->icsk_af_ops->net_header_len;
1769 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1770 icsk->icsk_mtup.probe_size = 0;
1771 if (icsk->icsk_mtup.enabled)
1772 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1773 }
1774 EXPORT_SYMBOL(tcp_mtup_init);
1775
1776 /* This function synchronize snd mss to current pmtu/exthdr set.
1777
1778 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1779 for TCP options, but includes only bare TCP header.
1780
1781 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1782 It is minimum of user_mss and mss received with SYN.
1783 It also does not include TCP options.
1784
1785 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1786
1787 tp->mss_cache is current effective sending mss, including
1788 all tcp options except for SACKs. It is evaluated,
1789 taking into account current pmtu, but never exceeds
1790 tp->rx_opt.mss_clamp.
1791
1792 NOTE1. rfc1122 clearly states that advertised MSS
1793 DOES NOT include either tcp or ip options.
1794
1795 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1796 are READ ONLY outside this function. --ANK (980731)
1797 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1798 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1799 {
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 struct inet_connection_sock *icsk = inet_csk(sk);
1802 int mss_now;
1803
1804 if (icsk->icsk_mtup.search_high > pmtu)
1805 icsk->icsk_mtup.search_high = pmtu;
1806
1807 mss_now = tcp_mtu_to_mss(sk, pmtu);
1808 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1809
1810 /* And store cached results */
1811 icsk->icsk_pmtu_cookie = pmtu;
1812 if (icsk->icsk_mtup.enabled)
1813 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1814 tp->mss_cache = mss_now;
1815
1816 return mss_now;
1817 }
1818 EXPORT_SYMBOL(tcp_sync_mss);
1819
1820 /* Compute the current effective MSS, taking SACKs and IP options,
1821 * and even PMTU discovery events into account.
1822 */
tcp_current_mss(struct sock * sk)1823 unsigned int tcp_current_mss(struct sock *sk)
1824 {
1825 const struct tcp_sock *tp = tcp_sk(sk);
1826 const struct dst_entry *dst = __sk_dst_get(sk);
1827 u32 mss_now;
1828 unsigned int header_len;
1829 struct tcp_out_options opts;
1830 struct tcp_md5sig_key *md5;
1831
1832 mss_now = tp->mss_cache;
1833
1834 if (dst) {
1835 u32 mtu = dst_mtu(dst);
1836 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1837 mss_now = tcp_sync_mss(sk, mtu);
1838 }
1839
1840 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1841 sizeof(struct tcphdr);
1842 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1843 * some common options. If this is an odd packet (because we have SACK
1844 * blocks etc) then our calculated header_len will be different, and
1845 * we have to adjust mss_now correspondingly */
1846 if (header_len != tp->tcp_header_len) {
1847 int delta = (int) header_len - tp->tcp_header_len;
1848 mss_now -= delta;
1849 }
1850
1851 return mss_now;
1852 }
1853
1854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1855 * As additional protections, we do not touch cwnd in retransmission phases,
1856 * and if application hit its sndbuf limit recently.
1857 */
tcp_cwnd_application_limited(struct sock * sk)1858 static void tcp_cwnd_application_limited(struct sock *sk)
1859 {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1863 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1864 /* Limited by application or receiver window. */
1865 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1866 u32 win_used = max(tp->snd_cwnd_used, init_win);
1867 if (win_used < tp->snd_cwnd) {
1868 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1869 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1870 }
1871 tp->snd_cwnd_used = 0;
1872 }
1873 tp->snd_cwnd_stamp = tcp_jiffies32;
1874 }
1875
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1876 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1877 {
1878 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1879 struct tcp_sock *tp = tcp_sk(sk);
1880
1881 /* Track the strongest available signal of the degree to which the cwnd
1882 * is fully utilized. If cwnd-limited then remember that fact for the
1883 * current window. If not cwnd-limited then track the maximum number of
1884 * outstanding packets in the current window. (If cwnd-limited then we
1885 * chose to not update tp->max_packets_out to avoid an extra else
1886 * clause with no functional impact.)
1887 */
1888 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1889 is_cwnd_limited ||
1890 (!tp->is_cwnd_limited &&
1891 tp->packets_out > tp->max_packets_out)) {
1892 tp->is_cwnd_limited = is_cwnd_limited;
1893 tp->max_packets_out = tp->packets_out;
1894 tp->cwnd_usage_seq = tp->snd_nxt;
1895 }
1896
1897 if (tcp_is_cwnd_limited(sk)) {
1898 /* Network is feed fully. */
1899 tp->snd_cwnd_used = 0;
1900 tp->snd_cwnd_stamp = tcp_jiffies32;
1901 } else {
1902 /* Network starves. */
1903 if (tp->packets_out > tp->snd_cwnd_used)
1904 tp->snd_cwnd_used = tp->packets_out;
1905
1906 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1907 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1908 !ca_ops->cong_control)
1909 tcp_cwnd_application_limited(sk);
1910
1911 /* The following conditions together indicate the starvation
1912 * is caused by insufficient sender buffer:
1913 * 1) just sent some data (see tcp_write_xmit)
1914 * 2) not cwnd limited (this else condition)
1915 * 3) no more data to send (tcp_write_queue_empty())
1916 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1917 */
1918 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1919 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1920 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1921 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1922 }
1923 }
1924
1925 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1926 static bool tcp_minshall_check(const struct tcp_sock *tp)
1927 {
1928 return after(tp->snd_sml, tp->snd_una) &&
1929 !after(tp->snd_sml, tp->snd_nxt);
1930 }
1931
1932 /* Update snd_sml if this skb is under mss
1933 * Note that a TSO packet might end with a sub-mss segment
1934 * The test is really :
1935 * if ((skb->len % mss) != 0)
1936 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 * But we can avoid doing the divide again given we already have
1938 * skb_pcount = skb->len / mss_now
1939 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1940 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1941 const struct sk_buff *skb)
1942 {
1943 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1944 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1945 }
1946
1947 /* Return false, if packet can be sent now without violation Nagle's rules:
1948 * 1. It is full sized. (provided by caller in %partial bool)
1949 * 2. Or it contains FIN. (already checked by caller)
1950 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1951 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1952 * With Minshall's modification: all sent small packets are ACKed.
1953 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1954 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1955 int nonagle)
1956 {
1957 return partial &&
1958 ((nonagle & TCP_NAGLE_CORK) ||
1959 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1960 }
1961
1962 /* Return how many segs we'd like on a TSO packet,
1963 * to send one TSO packet per ms
1964 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1965 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1966 int min_tso_segs)
1967 {
1968 u32 bytes, segs;
1969
1970 bytes = min_t(unsigned long,
1971 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1972 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1973
1974 /* Goal is to send at least one packet per ms,
1975 * not one big TSO packet every 100 ms.
1976 * This preserves ACK clocking and is consistent
1977 * with tcp_tso_should_defer() heuristic.
1978 */
1979 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1980
1981 return segs;
1982 }
1983
1984 /* Return the number of segments we want in the skb we are transmitting.
1985 * See if congestion control module wants to decide; otherwise, autosize.
1986 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1987 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1988 {
1989 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1990 u32 min_tso, tso_segs;
1991
1992 min_tso = ca_ops->min_tso_segs ?
1993 ca_ops->min_tso_segs(sk) :
1994 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1995
1996 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1997 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1998 }
1999
2000 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2001 static unsigned int tcp_mss_split_point(const struct sock *sk,
2002 const struct sk_buff *skb,
2003 unsigned int mss_now,
2004 unsigned int max_segs,
2005 int nonagle)
2006 {
2007 const struct tcp_sock *tp = tcp_sk(sk);
2008 u32 partial, needed, window, max_len;
2009
2010 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2011 max_len = mss_now * max_segs;
2012
2013 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2014 return max_len;
2015
2016 needed = min(skb->len, window);
2017
2018 if (max_len <= needed)
2019 return max_len;
2020
2021 partial = needed % mss_now;
2022 /* If last segment is not a full MSS, check if Nagle rules allow us
2023 * to include this last segment in this skb.
2024 * Otherwise, we'll split the skb at last MSS boundary
2025 */
2026 if (tcp_nagle_check(partial != 0, tp, nonagle))
2027 return needed - partial;
2028
2029 return needed;
2030 }
2031
2032 /* Can at least one segment of SKB be sent right now, according to the
2033 * congestion window rules? If so, return how many segments are allowed.
2034 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2035 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2036 const struct sk_buff *skb)
2037 {
2038 u32 in_flight, cwnd, halfcwnd;
2039
2040 /* Don't be strict about the congestion window for the final FIN. */
2041 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2042 tcp_skb_pcount(skb) == 1)
2043 return 1;
2044
2045 in_flight = tcp_packets_in_flight(tp);
2046 cwnd = tp->snd_cwnd;
2047 if (in_flight >= cwnd)
2048 return 0;
2049
2050 /* For better scheduling, ensure we have at least
2051 * 2 GSO packets in flight.
2052 */
2053 halfcwnd = max(cwnd >> 1, 1U);
2054 return min(halfcwnd, cwnd - in_flight);
2055 }
2056
2057 /* Initialize TSO state of a skb.
2058 * This must be invoked the first time we consider transmitting
2059 * SKB onto the wire.
2060 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2061 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2062 {
2063 int tso_segs = tcp_skb_pcount(skb);
2064
2065 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2066 tcp_set_skb_tso_segs(skb, mss_now);
2067 tso_segs = tcp_skb_pcount(skb);
2068 }
2069 return tso_segs;
2070 }
2071
2072
2073 /* Return true if the Nagle test allows this packet to be
2074 * sent now.
2075 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2076 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2077 unsigned int cur_mss, int nonagle)
2078 {
2079 /* Nagle rule does not apply to frames, which sit in the middle of the
2080 * write_queue (they have no chances to get new data).
2081 *
2082 * This is implemented in the callers, where they modify the 'nonagle'
2083 * argument based upon the location of SKB in the send queue.
2084 */
2085 if (nonagle & TCP_NAGLE_PUSH)
2086 return true;
2087
2088 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2089 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2090 return true;
2091
2092 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2093 return true;
2094
2095 return false;
2096 }
2097
2098 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2099 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2100 const struct sk_buff *skb,
2101 unsigned int cur_mss)
2102 {
2103 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2104
2105 if (skb->len > cur_mss)
2106 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2107
2108 return !after(end_seq, tcp_wnd_end(tp));
2109 }
2110
2111 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2112 * which is put after SKB on the list. It is very much like
2113 * tcp_fragment() except that it may make several kinds of assumptions
2114 * in order to speed up the splitting operation. In particular, we
2115 * know that all the data is in scatter-gather pages, and that the
2116 * packet has never been sent out before (and thus is not cloned).
2117 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2118 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2119 unsigned int mss_now, gfp_t gfp)
2120 {
2121 int nlen = skb->len - len;
2122 struct sk_buff *buff;
2123 u8 flags;
2124
2125 /* All of a TSO frame must be composed of paged data. */
2126 if (skb->len != skb->data_len)
2127 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2128 skb, len, mss_now, gfp);
2129
2130 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2131 if (unlikely(!buff))
2132 return -ENOMEM;
2133 skb_copy_decrypted(buff, skb);
2134
2135 sk_wmem_queued_add(sk, buff->truesize);
2136 sk_mem_charge(sk, buff->truesize);
2137 buff->truesize += nlen;
2138 skb->truesize -= nlen;
2139
2140 /* Correct the sequence numbers. */
2141 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2142 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2143 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2144
2145 /* PSH and FIN should only be set in the second packet. */
2146 flags = TCP_SKB_CB(skb)->tcp_flags;
2147 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2148 TCP_SKB_CB(buff)->tcp_flags = flags;
2149
2150 /* This packet was never sent out yet, so no SACK bits. */
2151 TCP_SKB_CB(buff)->sacked = 0;
2152
2153 tcp_skb_fragment_eor(skb, buff);
2154
2155 buff->ip_summed = CHECKSUM_PARTIAL;
2156 skb_split(skb, buff, len);
2157 tcp_fragment_tstamp(skb, buff);
2158
2159 /* Fix up tso_factor for both original and new SKB. */
2160 tcp_set_skb_tso_segs(skb, mss_now);
2161 tcp_set_skb_tso_segs(buff, mss_now);
2162
2163 /* Link BUFF into the send queue. */
2164 __skb_header_release(buff);
2165 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2166
2167 return 0;
2168 }
2169
2170 /* Try to defer sending, if possible, in order to minimize the amount
2171 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2172 *
2173 * This algorithm is from John Heffner.
2174 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2176 bool *is_cwnd_limited,
2177 bool *is_rwnd_limited,
2178 u32 max_segs)
2179 {
2180 const struct inet_connection_sock *icsk = inet_csk(sk);
2181 u32 send_win, cong_win, limit, in_flight;
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *head;
2184 int win_divisor;
2185 s64 delta;
2186
2187 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2188 goto send_now;
2189
2190 /* Avoid bursty behavior by allowing defer
2191 * only if the last write was recent (1 ms).
2192 * Note that tp->tcp_wstamp_ns can be in the future if we have
2193 * packets waiting in a qdisc or device for EDT delivery.
2194 */
2195 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2196 if (delta > 0)
2197 goto send_now;
2198
2199 in_flight = tcp_packets_in_flight(tp);
2200
2201 BUG_ON(tcp_skb_pcount(skb) <= 1);
2202 BUG_ON(tp->snd_cwnd <= in_flight);
2203
2204 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2205
2206 /* From in_flight test above, we know that cwnd > in_flight. */
2207 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2208
2209 limit = min(send_win, cong_win);
2210
2211 /* If a full-sized TSO skb can be sent, do it. */
2212 if (limit >= max_segs * tp->mss_cache)
2213 goto send_now;
2214
2215 /* Middle in queue won't get any more data, full sendable already? */
2216 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2217 goto send_now;
2218
2219 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2220 if (win_divisor) {
2221 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2222
2223 /* If at least some fraction of a window is available,
2224 * just use it.
2225 */
2226 chunk /= win_divisor;
2227 if (limit >= chunk)
2228 goto send_now;
2229 } else {
2230 /* Different approach, try not to defer past a single
2231 * ACK. Receiver should ACK every other full sized
2232 * frame, so if we have space for more than 3 frames
2233 * then send now.
2234 */
2235 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2236 goto send_now;
2237 }
2238
2239 /* TODO : use tsorted_sent_queue ? */
2240 head = tcp_rtx_queue_head(sk);
2241 if (!head)
2242 goto send_now;
2243 delta = tp->tcp_clock_cache - head->tstamp;
2244 /* If next ACK is likely to come too late (half srtt), do not defer */
2245 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2246 goto send_now;
2247
2248 /* Ok, it looks like it is advisable to defer.
2249 * Three cases are tracked :
2250 * 1) We are cwnd-limited
2251 * 2) We are rwnd-limited
2252 * 3) We are application limited.
2253 */
2254 if (cong_win < send_win) {
2255 if (cong_win <= skb->len) {
2256 *is_cwnd_limited = true;
2257 return true;
2258 }
2259 } else {
2260 if (send_win <= skb->len) {
2261 *is_rwnd_limited = true;
2262 return true;
2263 }
2264 }
2265
2266 /* If this packet won't get more data, do not wait. */
2267 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2268 TCP_SKB_CB(skb)->eor)
2269 goto send_now;
2270
2271 return true;
2272
2273 send_now:
2274 return false;
2275 }
2276
tcp_mtu_check_reprobe(struct sock * sk)2277 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2278 {
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 struct net *net = sock_net(sk);
2282 u32 interval;
2283 s32 delta;
2284
2285 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2286 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2287 if (unlikely(delta >= interval * HZ)) {
2288 int mss = tcp_current_mss(sk);
2289
2290 /* Update current search range */
2291 icsk->icsk_mtup.probe_size = 0;
2292 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2293 sizeof(struct tcphdr) +
2294 icsk->icsk_af_ops->net_header_len;
2295 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2296
2297 /* Update probe time stamp */
2298 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2299 }
2300 }
2301
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2303 {
2304 struct sk_buff *skb, *next;
2305
2306 skb = tcp_send_head(sk);
2307 tcp_for_write_queue_from_safe(skb, next, sk) {
2308 if (len <= skb->len)
2309 break;
2310
2311 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2312 return false;
2313
2314 len -= skb->len;
2315 }
2316
2317 return true;
2318 }
2319
2320 /* Create a new MTU probe if we are ready.
2321 * MTU probe is regularly attempting to increase the path MTU by
2322 * deliberately sending larger packets. This discovers routing
2323 * changes resulting in larger path MTUs.
2324 *
2325 * Returns 0 if we should wait to probe (no cwnd available),
2326 * 1 if a probe was sent,
2327 * -1 otherwise
2328 */
tcp_mtu_probe(struct sock * sk)2329 static int tcp_mtu_probe(struct sock *sk)
2330 {
2331 struct inet_connection_sock *icsk = inet_csk(sk);
2332 struct tcp_sock *tp = tcp_sk(sk);
2333 struct sk_buff *skb, *nskb, *next;
2334 struct net *net = sock_net(sk);
2335 int probe_size;
2336 int size_needed;
2337 int copy, len;
2338 int mss_now;
2339 int interval;
2340
2341 /* Not currently probing/verifying,
2342 * not in recovery,
2343 * have enough cwnd, and
2344 * not SACKing (the variable headers throw things off)
2345 */
2346 if (likely(!icsk->icsk_mtup.enabled ||
2347 icsk->icsk_mtup.probe_size ||
2348 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349 tp->snd_cwnd < 11 ||
2350 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2351 return -1;
2352
2353 /* Use binary search for probe_size between tcp_mss_base,
2354 * and current mss_clamp. if (search_high - search_low)
2355 * smaller than a threshold, backoff from probing.
2356 */
2357 mss_now = tcp_current_mss(sk);
2358 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359 icsk->icsk_mtup.search_low) >> 1);
2360 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362 /* When misfortune happens, we are reprobing actively,
2363 * and then reprobe timer has expired. We stick with current
2364 * probing process by not resetting search range to its orignal.
2365 */
2366 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2368 /* Check whether enough time has elaplased for
2369 * another round of probing.
2370 */
2371 tcp_mtu_check_reprobe(sk);
2372 return -1;
2373 }
2374
2375 /* Have enough data in the send queue to probe? */
2376 if (tp->write_seq - tp->snd_nxt < size_needed)
2377 return -1;
2378
2379 if (tp->snd_wnd < size_needed)
2380 return -1;
2381 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2382 return 0;
2383
2384 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2386 if (!tcp_packets_in_flight(tp))
2387 return -1;
2388 else
2389 return 0;
2390 }
2391
2392 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2393 return -1;
2394
2395 /* We're allowed to probe. Build it now. */
2396 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2397 if (!nskb)
2398 return -1;
2399 sk_wmem_queued_add(sk, nskb->truesize);
2400 sk_mem_charge(sk, nskb->truesize);
2401
2402 skb = tcp_send_head(sk);
2403 skb_copy_decrypted(nskb, skb);
2404
2405 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2406 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2407 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2408 TCP_SKB_CB(nskb)->sacked = 0;
2409 nskb->csum = 0;
2410 nskb->ip_summed = CHECKSUM_PARTIAL;
2411
2412 tcp_insert_write_queue_before(nskb, skb, sk);
2413 tcp_highest_sack_replace(sk, skb, nskb);
2414
2415 len = 0;
2416 tcp_for_write_queue_from_safe(skb, next, sk) {
2417 copy = min_t(int, skb->len, probe_size - len);
2418 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2419
2420 if (skb->len <= copy) {
2421 /* We've eaten all the data from this skb.
2422 * Throw it away. */
2423 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2424 /* If this is the last SKB we copy and eor is set
2425 * we need to propagate it to the new skb.
2426 */
2427 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2428 tcp_skb_collapse_tstamp(nskb, skb);
2429 tcp_unlink_write_queue(skb, sk);
2430 sk_wmem_free_skb(sk, skb);
2431 } else {
2432 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2433 ~(TCPHDR_FIN|TCPHDR_PSH);
2434 if (!skb_shinfo(skb)->nr_frags) {
2435 skb_pull(skb, copy);
2436 } else {
2437 __pskb_trim_head(skb, copy);
2438 tcp_set_skb_tso_segs(skb, mss_now);
2439 }
2440 TCP_SKB_CB(skb)->seq += copy;
2441 }
2442
2443 len += copy;
2444
2445 if (len >= probe_size)
2446 break;
2447 }
2448 tcp_init_tso_segs(nskb, nskb->len);
2449
2450 /* We're ready to send. If this fails, the probe will
2451 * be resegmented into mss-sized pieces by tcp_write_xmit().
2452 */
2453 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2454 /* Decrement cwnd here because we are sending
2455 * effectively two packets. */
2456 tp->snd_cwnd--;
2457 tcp_event_new_data_sent(sk, nskb);
2458
2459 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2460 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2461 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2462
2463 return 1;
2464 }
2465
2466 return -1;
2467 }
2468
tcp_pacing_check(struct sock * sk)2469 static bool tcp_pacing_check(struct sock *sk)
2470 {
2471 struct tcp_sock *tp = tcp_sk(sk);
2472
2473 if (!tcp_needs_internal_pacing(sk))
2474 return false;
2475
2476 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2477 return false;
2478
2479 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2480 hrtimer_start(&tp->pacing_timer,
2481 ns_to_ktime(tp->tcp_wstamp_ns),
2482 HRTIMER_MODE_ABS_PINNED_SOFT);
2483 sock_hold(sk);
2484 }
2485 return true;
2486 }
2487
2488 /* TCP Small Queues :
2489 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2490 * (These limits are doubled for retransmits)
2491 * This allows for :
2492 * - better RTT estimation and ACK scheduling
2493 * - faster recovery
2494 * - high rates
2495 * Alas, some drivers / subsystems require a fair amount
2496 * of queued bytes to ensure line rate.
2497 * One example is wifi aggregation (802.11 AMPDU)
2498 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2499 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2500 unsigned int factor)
2501 {
2502 unsigned long limit;
2503
2504 limit = max_t(unsigned long,
2505 2 * skb->truesize,
2506 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2507 if (sk->sk_pacing_status == SK_PACING_NONE)
2508 limit = min_t(unsigned long, limit,
2509 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2510 limit <<= factor;
2511
2512 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2513 tcp_sk(sk)->tcp_tx_delay) {
2514 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2515
2516 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2517 * approximate our needs assuming an ~100% skb->truesize overhead.
2518 * USEC_PER_SEC is approximated by 2^20.
2519 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2520 */
2521 extra_bytes >>= (20 - 1);
2522 limit += extra_bytes;
2523 }
2524 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2525 /* Always send skb if rtx queue is empty.
2526 * No need to wait for TX completion to call us back,
2527 * after softirq/tasklet schedule.
2528 * This helps when TX completions are delayed too much.
2529 */
2530 if (tcp_rtx_queue_empty(sk))
2531 return false;
2532
2533 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2534 /* It is possible TX completion already happened
2535 * before we set TSQ_THROTTLED, so we must
2536 * test again the condition.
2537 */
2538 smp_mb__after_atomic();
2539 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2540 return true;
2541 }
2542 return false;
2543 }
2544
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2545 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2546 {
2547 const u32 now = tcp_jiffies32;
2548 enum tcp_chrono old = tp->chrono_type;
2549
2550 if (old > TCP_CHRONO_UNSPEC)
2551 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2552 tp->chrono_start = now;
2553 tp->chrono_type = new;
2554 }
2555
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2556 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 /* If there are multiple conditions worthy of tracking in a
2561 * chronograph then the highest priority enum takes precedence
2562 * over the other conditions. So that if something "more interesting"
2563 * starts happening, stop the previous chrono and start a new one.
2564 */
2565 if (type > tp->chrono_type)
2566 tcp_chrono_set(tp, type);
2567 }
2568
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572
2573
2574 /* There are multiple conditions worthy of tracking in a
2575 * chronograph, so that the highest priority enum takes
2576 * precedence over the other conditions (see tcp_chrono_start).
2577 * If a condition stops, we only stop chrono tracking if
2578 * it's the "most interesting" or current chrono we are
2579 * tracking and starts busy chrono if we have pending data.
2580 */
2581 if (tcp_rtx_and_write_queues_empty(sk))
2582 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2583 else if (type == tp->chrono_type)
2584 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2585 }
2586
2587 /* This routine writes packets to the network. It advances the
2588 * send_head. This happens as incoming acks open up the remote
2589 * window for us.
2590 *
2591 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2592 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2593 * account rare use of URG, this is not a big flaw.
2594 *
2595 * Send at most one packet when push_one > 0. Temporarily ignore
2596 * cwnd limit to force at most one packet out when push_one == 2.
2597
2598 * Returns true, if no segments are in flight and we have queued segments,
2599 * but cannot send anything now because of SWS or another problem.
2600 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2601 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2602 int push_one, gfp_t gfp)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct sk_buff *skb;
2606 unsigned int tso_segs, sent_pkts;
2607 int cwnd_quota;
2608 int result;
2609 bool is_cwnd_limited = false, is_rwnd_limited = false;
2610 u32 max_segs;
2611
2612 sent_pkts = 0;
2613
2614 tcp_mstamp_refresh(tp);
2615 if (!push_one) {
2616 /* Do MTU probing. */
2617 result = tcp_mtu_probe(sk);
2618 if (!result) {
2619 return false;
2620 } else if (result > 0) {
2621 sent_pkts = 1;
2622 }
2623 }
2624
2625 max_segs = tcp_tso_segs(sk, mss_now);
2626 while ((skb = tcp_send_head(sk))) {
2627 unsigned int limit;
2628
2629 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2630 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2631 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2632 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2633 tcp_init_tso_segs(skb, mss_now);
2634 goto repair; /* Skip network transmission */
2635 }
2636
2637 if (tcp_pacing_check(sk))
2638 break;
2639
2640 tso_segs = tcp_init_tso_segs(skb, mss_now);
2641 BUG_ON(!tso_segs);
2642
2643 cwnd_quota = tcp_cwnd_test(tp, skb);
2644 if (!cwnd_quota) {
2645 if (push_one == 2)
2646 /* Force out a loss probe pkt. */
2647 cwnd_quota = 1;
2648 else
2649 break;
2650 }
2651
2652 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2653 is_rwnd_limited = true;
2654 break;
2655 }
2656
2657 if (tso_segs == 1) {
2658 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2659 (tcp_skb_is_last(sk, skb) ?
2660 nonagle : TCP_NAGLE_PUSH))))
2661 break;
2662 } else {
2663 if (!push_one &&
2664 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2665 &is_rwnd_limited, max_segs))
2666 break;
2667 }
2668
2669 limit = mss_now;
2670 if (tso_segs > 1 && !tcp_urg_mode(tp))
2671 limit = tcp_mss_split_point(sk, skb, mss_now,
2672 min_t(unsigned int,
2673 cwnd_quota,
2674 max_segs),
2675 nonagle);
2676
2677 if (skb->len > limit &&
2678 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2679 break;
2680
2681 if (tcp_small_queue_check(sk, skb, 0))
2682 break;
2683
2684 /* Argh, we hit an empty skb(), presumably a thread
2685 * is sleeping in sendmsg()/sk_stream_wait_memory().
2686 * We do not want to send a pure-ack packet and have
2687 * a strange looking rtx queue with empty packet(s).
2688 */
2689 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2690 break;
2691
2692 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2693 break;
2694
2695 repair:
2696 /* Advance the send_head. This one is sent out.
2697 * This call will increment packets_out.
2698 */
2699 tcp_event_new_data_sent(sk, skb);
2700
2701 tcp_minshall_update(tp, mss_now, skb);
2702 sent_pkts += tcp_skb_pcount(skb);
2703
2704 if (push_one)
2705 break;
2706 }
2707
2708 if (is_rwnd_limited)
2709 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2710 else
2711 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2712
2713 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2714 if (likely(sent_pkts || is_cwnd_limited))
2715 tcp_cwnd_validate(sk, is_cwnd_limited);
2716
2717 if (likely(sent_pkts)) {
2718 if (tcp_in_cwnd_reduction(sk))
2719 tp->prr_out += sent_pkts;
2720
2721 /* Send one loss probe per tail loss episode. */
2722 if (push_one != 2)
2723 tcp_schedule_loss_probe(sk, false);
2724 return false;
2725 }
2726 return !tp->packets_out && !tcp_write_queue_empty(sk);
2727 }
2728
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2729 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2730 {
2731 struct inet_connection_sock *icsk = inet_csk(sk);
2732 struct tcp_sock *tp = tcp_sk(sk);
2733 u32 timeout, rto_delta_us;
2734 int early_retrans;
2735
2736 /* Don't do any loss probe on a Fast Open connection before 3WHS
2737 * finishes.
2738 */
2739 if (rcu_access_pointer(tp->fastopen_rsk))
2740 return false;
2741
2742 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2743 /* Schedule a loss probe in 2*RTT for SACK capable connections
2744 * not in loss recovery, that are either limited by cwnd or application.
2745 */
2746 if ((early_retrans != 3 && early_retrans != 4) ||
2747 !tp->packets_out || !tcp_is_sack(tp) ||
2748 (icsk->icsk_ca_state != TCP_CA_Open &&
2749 icsk->icsk_ca_state != TCP_CA_CWR))
2750 return false;
2751
2752 /* Probe timeout is 2*rtt. Add minimum RTO to account
2753 * for delayed ack when there's one outstanding packet. If no RTT
2754 * sample is available then probe after TCP_TIMEOUT_INIT.
2755 */
2756 if (tp->srtt_us) {
2757 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2758 if (tp->packets_out == 1)
2759 timeout += TCP_RTO_MIN;
2760 else
2761 timeout += TCP_TIMEOUT_MIN;
2762 } else {
2763 timeout = TCP_TIMEOUT_INIT;
2764 }
2765
2766 /* If the RTO formula yields an earlier time, then use that time. */
2767 rto_delta_us = advancing_rto ?
2768 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2769 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2770 if (rto_delta_us > 0)
2771 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2772
2773 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2774 return true;
2775 }
2776
2777 /* Thanks to skb fast clones, we can detect if a prior transmit of
2778 * a packet is still in a qdisc or driver queue.
2779 * In this case, there is very little point doing a retransmit !
2780 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2781 static bool skb_still_in_host_queue(const struct sock *sk,
2782 const struct sk_buff *skb)
2783 {
2784 if (unlikely(skb_fclone_busy(sk, skb))) {
2785 NET_INC_STATS(sock_net(sk),
2786 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2787 return true;
2788 }
2789 return false;
2790 }
2791
2792 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2793 * retransmit the last segment.
2794 */
tcp_send_loss_probe(struct sock * sk)2795 void tcp_send_loss_probe(struct sock *sk)
2796 {
2797 struct tcp_sock *tp = tcp_sk(sk);
2798 struct sk_buff *skb;
2799 int pcount;
2800 int mss = tcp_current_mss(sk);
2801
2802 /* At most one outstanding TLP */
2803 if (tp->tlp_high_seq)
2804 goto rearm_timer;
2805
2806 tp->tlp_retrans = 0;
2807 skb = tcp_send_head(sk);
2808 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2809 pcount = tp->packets_out;
2810 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2811 if (tp->packets_out > pcount)
2812 goto probe_sent;
2813 goto rearm_timer;
2814 }
2815 skb = skb_rb_last(&sk->tcp_rtx_queue);
2816 if (unlikely(!skb)) {
2817 WARN_ONCE(tp->packets_out,
2818 "invalid inflight: %u state %u cwnd %u mss %d\n",
2819 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2820 inet_csk(sk)->icsk_pending = 0;
2821 return;
2822 }
2823
2824 if (skb_still_in_host_queue(sk, skb))
2825 goto rearm_timer;
2826
2827 pcount = tcp_skb_pcount(skb);
2828 if (WARN_ON(!pcount))
2829 goto rearm_timer;
2830
2831 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2832 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2833 (pcount - 1) * mss, mss,
2834 GFP_ATOMIC)))
2835 goto rearm_timer;
2836 skb = skb_rb_next(skb);
2837 }
2838
2839 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2840 goto rearm_timer;
2841
2842 if (__tcp_retransmit_skb(sk, skb, 1))
2843 goto rearm_timer;
2844
2845 tp->tlp_retrans = 1;
2846
2847 probe_sent:
2848 /* Record snd_nxt for loss detection. */
2849 tp->tlp_high_seq = tp->snd_nxt;
2850
2851 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2852 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2853 inet_csk(sk)->icsk_pending = 0;
2854 rearm_timer:
2855 tcp_rearm_rto(sk);
2856 }
2857
2858 /* Push out any pending frames which were held back due to
2859 * TCP_CORK or attempt at coalescing tiny packets.
2860 * The socket must be locked by the caller.
2861 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2862 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2863 int nonagle)
2864 {
2865 /* If we are closed, the bytes will have to remain here.
2866 * In time closedown will finish, we empty the write queue and
2867 * all will be happy.
2868 */
2869 if (unlikely(sk->sk_state == TCP_CLOSE))
2870 return;
2871
2872 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2873 sk_gfp_mask(sk, GFP_ATOMIC)))
2874 tcp_check_probe_timer(sk);
2875 }
2876
2877 /* Send _single_ skb sitting at the send head. This function requires
2878 * true push pending frames to setup probe timer etc.
2879 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2880 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2881 {
2882 struct sk_buff *skb = tcp_send_head(sk);
2883
2884 BUG_ON(!skb || skb->len < mss_now);
2885
2886 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2887 }
2888
2889 /* This function returns the amount that we can raise the
2890 * usable window based on the following constraints
2891 *
2892 * 1. The window can never be shrunk once it is offered (RFC 793)
2893 * 2. We limit memory per socket
2894 *
2895 * RFC 1122:
2896 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2897 * RECV.NEXT + RCV.WIN fixed until:
2898 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2899 *
2900 * i.e. don't raise the right edge of the window until you can raise
2901 * it at least MSS bytes.
2902 *
2903 * Unfortunately, the recommended algorithm breaks header prediction,
2904 * since header prediction assumes th->window stays fixed.
2905 *
2906 * Strictly speaking, keeping th->window fixed violates the receiver
2907 * side SWS prevention criteria. The problem is that under this rule
2908 * a stream of single byte packets will cause the right side of the
2909 * window to always advance by a single byte.
2910 *
2911 * Of course, if the sender implements sender side SWS prevention
2912 * then this will not be a problem.
2913 *
2914 * BSD seems to make the following compromise:
2915 *
2916 * If the free space is less than the 1/4 of the maximum
2917 * space available and the free space is less than 1/2 mss,
2918 * then set the window to 0.
2919 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2920 * Otherwise, just prevent the window from shrinking
2921 * and from being larger than the largest representable value.
2922 *
2923 * This prevents incremental opening of the window in the regime
2924 * where TCP is limited by the speed of the reader side taking
2925 * data out of the TCP receive queue. It does nothing about
2926 * those cases where the window is constrained on the sender side
2927 * because the pipeline is full.
2928 *
2929 * BSD also seems to "accidentally" limit itself to windows that are a
2930 * multiple of MSS, at least until the free space gets quite small.
2931 * This would appear to be a side effect of the mbuf implementation.
2932 * Combining these two algorithms results in the observed behavior
2933 * of having a fixed window size at almost all times.
2934 *
2935 * Below we obtain similar behavior by forcing the offered window to
2936 * a multiple of the mss when it is feasible to do so.
2937 *
2938 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2939 * Regular options like TIMESTAMP are taken into account.
2940 */
__tcp_select_window(struct sock * sk)2941 u32 __tcp_select_window(struct sock *sk)
2942 {
2943 struct inet_connection_sock *icsk = inet_csk(sk);
2944 struct tcp_sock *tp = tcp_sk(sk);
2945 /* MSS for the peer's data. Previous versions used mss_clamp
2946 * here. I don't know if the value based on our guesses
2947 * of peer's MSS is better for the performance. It's more correct
2948 * but may be worse for the performance because of rcv_mss
2949 * fluctuations. --SAW 1998/11/1
2950 */
2951 int mss = icsk->icsk_ack.rcv_mss;
2952 int free_space = tcp_space(sk);
2953 int allowed_space = tcp_full_space(sk);
2954 int full_space, window;
2955
2956 if (sk_is_mptcp(sk))
2957 mptcp_space(sk, &free_space, &allowed_space);
2958
2959 full_space = min_t(int, tp->window_clamp, allowed_space);
2960
2961 if (unlikely(mss > full_space)) {
2962 mss = full_space;
2963 if (mss <= 0)
2964 return 0;
2965 }
2966 if (free_space < (full_space >> 1)) {
2967 icsk->icsk_ack.quick = 0;
2968
2969 if (tcp_under_memory_pressure(sk))
2970 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2971 4U * tp->advmss);
2972
2973 /* free_space might become our new window, make sure we don't
2974 * increase it due to wscale.
2975 */
2976 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2977
2978 /* if free space is less than mss estimate, or is below 1/16th
2979 * of the maximum allowed, try to move to zero-window, else
2980 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2981 * new incoming data is dropped due to memory limits.
2982 * With large window, mss test triggers way too late in order
2983 * to announce zero window in time before rmem limit kicks in.
2984 */
2985 if (free_space < (allowed_space >> 4) || free_space < mss)
2986 return 0;
2987 }
2988
2989 if (free_space > tp->rcv_ssthresh)
2990 free_space = tp->rcv_ssthresh;
2991
2992 /* Don't do rounding if we are using window scaling, since the
2993 * scaled window will not line up with the MSS boundary anyway.
2994 */
2995 if (tp->rx_opt.rcv_wscale) {
2996 window = free_space;
2997
2998 /* Advertise enough space so that it won't get scaled away.
2999 * Import case: prevent zero window announcement if
3000 * 1<<rcv_wscale > mss.
3001 */
3002 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3003 } else {
3004 window = tp->rcv_wnd;
3005 /* Get the largest window that is a nice multiple of mss.
3006 * Window clamp already applied above.
3007 * If our current window offering is within 1 mss of the
3008 * free space we just keep it. This prevents the divide
3009 * and multiply from happening most of the time.
3010 * We also don't do any window rounding when the free space
3011 * is too small.
3012 */
3013 if (window <= free_space - mss || window > free_space)
3014 window = rounddown(free_space, mss);
3015 else if (mss == full_space &&
3016 free_space > window + (full_space >> 1))
3017 window = free_space;
3018 }
3019
3020 return window;
3021 }
3022
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3023 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3024 const struct sk_buff *next_skb)
3025 {
3026 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3027 const struct skb_shared_info *next_shinfo =
3028 skb_shinfo(next_skb);
3029 struct skb_shared_info *shinfo = skb_shinfo(skb);
3030
3031 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3032 shinfo->tskey = next_shinfo->tskey;
3033 TCP_SKB_CB(skb)->txstamp_ack |=
3034 TCP_SKB_CB(next_skb)->txstamp_ack;
3035 }
3036 }
3037
3038 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3039 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3040 {
3041 struct tcp_sock *tp = tcp_sk(sk);
3042 struct sk_buff *next_skb = skb_rb_next(skb);
3043 int next_skb_size;
3044
3045 next_skb_size = next_skb->len;
3046
3047 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3048
3049 if (next_skb_size) {
3050 if (next_skb_size <= skb_availroom(skb))
3051 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3052 next_skb_size);
3053 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3054 return false;
3055 }
3056 tcp_highest_sack_replace(sk, next_skb, skb);
3057
3058 /* Update sequence range on original skb. */
3059 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3060
3061 /* Merge over control information. This moves PSH/FIN etc. over */
3062 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3063
3064 /* All done, get rid of second SKB and account for it so
3065 * packet counting does not break.
3066 */
3067 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3068 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3069
3070 /* changed transmit queue under us so clear hints */
3071 tcp_clear_retrans_hints_partial(tp);
3072 if (next_skb == tp->retransmit_skb_hint)
3073 tp->retransmit_skb_hint = skb;
3074
3075 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3076
3077 tcp_skb_collapse_tstamp(skb, next_skb);
3078
3079 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3080 return true;
3081 }
3082
3083 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3084 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3085 {
3086 if (tcp_skb_pcount(skb) > 1)
3087 return false;
3088 if (skb_cloned(skb))
3089 return false;
3090 /* Some heuristics for collapsing over SACK'd could be invented */
3091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3092 return false;
3093
3094 return true;
3095 }
3096
3097 /* Collapse packets in the retransmit queue to make to create
3098 * less packets on the wire. This is only done on retransmission.
3099 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3100 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3101 int space)
3102 {
3103 struct tcp_sock *tp = tcp_sk(sk);
3104 struct sk_buff *skb = to, *tmp;
3105 bool first = true;
3106
3107 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3108 return;
3109 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3110 return;
3111
3112 skb_rbtree_walk_from_safe(skb, tmp) {
3113 if (!tcp_can_collapse(sk, skb))
3114 break;
3115
3116 if (!tcp_skb_can_collapse(to, skb))
3117 break;
3118
3119 space -= skb->len;
3120
3121 if (first) {
3122 first = false;
3123 continue;
3124 }
3125
3126 if (space < 0)
3127 break;
3128
3129 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3130 break;
3131
3132 if (!tcp_collapse_retrans(sk, to))
3133 break;
3134 }
3135 }
3136
3137 /* This retransmits one SKB. Policy decisions and retransmit queue
3138 * state updates are done by the caller. Returns non-zero if an
3139 * error occurred which prevented the send.
3140 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3141 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3142 {
3143 struct inet_connection_sock *icsk = inet_csk(sk);
3144 struct tcp_sock *tp = tcp_sk(sk);
3145 unsigned int cur_mss;
3146 int diff, len, err;
3147 int avail_wnd;
3148
3149 /* Inconclusive MTU probe */
3150 if (icsk->icsk_mtup.probe_size)
3151 icsk->icsk_mtup.probe_size = 0;
3152
3153 /* Do not sent more than we queued. 1/4 is reserved for possible
3154 * copying overhead: fragmentation, tunneling, mangling etc.
3155 */
3156 if (refcount_read(&sk->sk_wmem_alloc) >
3157 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3158 sk->sk_sndbuf))
3159 return -EAGAIN;
3160
3161 if (skb_still_in_host_queue(sk, skb))
3162 return -EBUSY;
3163
3164 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3165 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3166 WARN_ON_ONCE(1);
3167 return -EINVAL;
3168 }
3169 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3170 return -ENOMEM;
3171 }
3172
3173 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3174 return -EHOSTUNREACH; /* Routing failure or similar. */
3175
3176 cur_mss = tcp_current_mss(sk);
3177 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3178
3179 /* If receiver has shrunk his window, and skb is out of
3180 * new window, do not retransmit it. The exception is the
3181 * case, when window is shrunk to zero. In this case
3182 * our retransmit of one segment serves as a zero window probe.
3183 */
3184 if (avail_wnd <= 0) {
3185 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3186 return -EAGAIN;
3187 avail_wnd = cur_mss;
3188 }
3189
3190 len = cur_mss * segs;
3191 if (len > avail_wnd) {
3192 len = rounddown(avail_wnd, cur_mss);
3193 if (!len)
3194 len = avail_wnd;
3195 }
3196 if (skb->len > len) {
3197 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3198 cur_mss, GFP_ATOMIC))
3199 return -ENOMEM; /* We'll try again later. */
3200 } else {
3201 if (skb_unclone(skb, GFP_ATOMIC))
3202 return -ENOMEM;
3203
3204 diff = tcp_skb_pcount(skb);
3205 tcp_set_skb_tso_segs(skb, cur_mss);
3206 diff -= tcp_skb_pcount(skb);
3207 if (diff)
3208 tcp_adjust_pcount(sk, skb, diff);
3209 avail_wnd = min_t(int, avail_wnd, cur_mss);
3210 if (skb->len < avail_wnd)
3211 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3212 }
3213
3214 /* RFC3168, section 6.1.1.1. ECN fallback */
3215 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3216 tcp_ecn_clear_syn(sk, skb);
3217
3218 /* Update global and local TCP statistics. */
3219 segs = tcp_skb_pcount(skb);
3220 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3221 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3222 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3223 tp->total_retrans += segs;
3224 tp->bytes_retrans += skb->len;
3225
3226 /* make sure skb->data is aligned on arches that require it
3227 * and check if ack-trimming & collapsing extended the headroom
3228 * beyond what csum_start can cover.
3229 */
3230 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3231 skb_headroom(skb) >= 0xFFFF)) {
3232 struct sk_buff *nskb;
3233
3234 tcp_skb_tsorted_save(skb) {
3235 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3236 if (nskb) {
3237 nskb->dev = NULL;
3238 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3239 } else {
3240 err = -ENOBUFS;
3241 }
3242 } tcp_skb_tsorted_restore(skb);
3243
3244 if (!err) {
3245 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3246 tcp_rate_skb_sent(sk, skb);
3247 }
3248 } else {
3249 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3250 }
3251
3252 /* To avoid taking spuriously low RTT samples based on a timestamp
3253 * for a transmit that never happened, always mark EVER_RETRANS
3254 */
3255 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3256
3257 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3258 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3259 TCP_SKB_CB(skb)->seq, segs, err);
3260
3261 if (likely(!err)) {
3262 trace_tcp_retransmit_skb(sk, skb);
3263 } else if (err != -EBUSY) {
3264 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3265 }
3266 return err;
3267 }
3268
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3269 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3270 {
3271 struct tcp_sock *tp = tcp_sk(sk);
3272 int err = __tcp_retransmit_skb(sk, skb, segs);
3273
3274 if (err == 0) {
3275 #if FASTRETRANS_DEBUG > 0
3276 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3277 net_dbg_ratelimited("retrans_out leaked\n");
3278 }
3279 #endif
3280 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3281 tp->retrans_out += tcp_skb_pcount(skb);
3282 }
3283
3284 /* Save stamp of the first (attempted) retransmit. */
3285 if (!tp->retrans_stamp)
3286 tp->retrans_stamp = tcp_skb_timestamp(skb);
3287
3288 if (tp->undo_retrans < 0)
3289 tp->undo_retrans = 0;
3290 tp->undo_retrans += tcp_skb_pcount(skb);
3291 return err;
3292 }
3293
3294 /* This gets called after a retransmit timeout, and the initially
3295 * retransmitted data is acknowledged. It tries to continue
3296 * resending the rest of the retransmit queue, until either
3297 * we've sent it all or the congestion window limit is reached.
3298 */
tcp_xmit_retransmit_queue(struct sock * sk)3299 void tcp_xmit_retransmit_queue(struct sock *sk)
3300 {
3301 const struct inet_connection_sock *icsk = inet_csk(sk);
3302 struct sk_buff *skb, *rtx_head, *hole = NULL;
3303 struct tcp_sock *tp = tcp_sk(sk);
3304 bool rearm_timer = false;
3305 u32 max_segs;
3306 int mib_idx;
3307
3308 if (!tp->packets_out)
3309 return;
3310
3311 rtx_head = tcp_rtx_queue_head(sk);
3312 skb = tp->retransmit_skb_hint ?: rtx_head;
3313 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3314 skb_rbtree_walk_from(skb) {
3315 __u8 sacked;
3316 int segs;
3317
3318 if (tcp_pacing_check(sk))
3319 break;
3320
3321 /* we could do better than to assign each time */
3322 if (!hole)
3323 tp->retransmit_skb_hint = skb;
3324
3325 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3326 if (segs <= 0)
3327 break;
3328 sacked = TCP_SKB_CB(skb)->sacked;
3329 /* In case tcp_shift_skb_data() have aggregated large skbs,
3330 * we need to make sure not sending too bigs TSO packets
3331 */
3332 segs = min_t(int, segs, max_segs);
3333
3334 if (tp->retrans_out >= tp->lost_out) {
3335 break;
3336 } else if (!(sacked & TCPCB_LOST)) {
3337 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3338 hole = skb;
3339 continue;
3340
3341 } else {
3342 if (icsk->icsk_ca_state != TCP_CA_Loss)
3343 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3344 else
3345 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3346 }
3347
3348 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3349 continue;
3350
3351 if (tcp_small_queue_check(sk, skb, 1))
3352 break;
3353
3354 if (tcp_retransmit_skb(sk, skb, segs))
3355 break;
3356
3357 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3358
3359 if (tcp_in_cwnd_reduction(sk))
3360 tp->prr_out += tcp_skb_pcount(skb);
3361
3362 if (skb == rtx_head &&
3363 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3364 rearm_timer = true;
3365
3366 }
3367 if (rearm_timer)
3368 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3369 inet_csk(sk)->icsk_rto,
3370 TCP_RTO_MAX);
3371 }
3372
3373 /* We allow to exceed memory limits for FIN packets to expedite
3374 * connection tear down and (memory) recovery.
3375 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3376 * or even be forced to close flow without any FIN.
3377 * In general, we want to allow one skb per socket to avoid hangs
3378 * with edge trigger epoll()
3379 */
sk_forced_mem_schedule(struct sock * sk,int size)3380 void sk_forced_mem_schedule(struct sock *sk, int size)
3381 {
3382 int delta, amt;
3383
3384 delta = size - sk->sk_forward_alloc;
3385 if (delta <= 0)
3386 return;
3387 amt = sk_mem_pages(delta);
3388 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3389 sk_memory_allocated_add(sk, amt);
3390
3391 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3392 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3393 }
3394
3395 /* Send a FIN. The caller locks the socket for us.
3396 * We should try to send a FIN packet really hard, but eventually give up.
3397 */
tcp_send_fin(struct sock * sk)3398 void tcp_send_fin(struct sock *sk)
3399 {
3400 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3401 struct tcp_sock *tp = tcp_sk(sk);
3402
3403 /* Optimization, tack on the FIN if we have one skb in write queue and
3404 * this skb was not yet sent, or we are under memory pressure.
3405 * Note: in the latter case, FIN packet will be sent after a timeout,
3406 * as TCP stack thinks it has already been transmitted.
3407 */
3408 tskb = tail;
3409 if (!tskb && tcp_under_memory_pressure(sk))
3410 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3411
3412 if (tskb) {
3413 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3414 TCP_SKB_CB(tskb)->end_seq++;
3415 tp->write_seq++;
3416 if (!tail) {
3417 /* This means tskb was already sent.
3418 * Pretend we included the FIN on previous transmit.
3419 * We need to set tp->snd_nxt to the value it would have
3420 * if FIN had been sent. This is because retransmit path
3421 * does not change tp->snd_nxt.
3422 */
3423 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3424 return;
3425 }
3426 } else {
3427 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3428 if (unlikely(!skb))
3429 return;
3430
3431 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3432 skb_reserve(skb, MAX_TCP_HEADER);
3433 sk_forced_mem_schedule(sk, skb->truesize);
3434 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3435 tcp_init_nondata_skb(skb, tp->write_seq,
3436 TCPHDR_ACK | TCPHDR_FIN);
3437 tcp_queue_skb(sk, skb);
3438 }
3439 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3440 }
3441
3442 /* We get here when a process closes a file descriptor (either due to
3443 * an explicit close() or as a byproduct of exit()'ing) and there
3444 * was unread data in the receive queue. This behavior is recommended
3445 * by RFC 2525, section 2.17. -DaveM
3446 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3447 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3448 {
3449 struct sk_buff *skb;
3450
3451 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3452
3453 /* NOTE: No TCP options attached and we never retransmit this. */
3454 skb = alloc_skb(MAX_TCP_HEADER, priority);
3455 if (!skb) {
3456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3457 return;
3458 }
3459
3460 /* Reserve space for headers and prepare control bits. */
3461 skb_reserve(skb, MAX_TCP_HEADER);
3462 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3463 TCPHDR_ACK | TCPHDR_RST);
3464 tcp_mstamp_refresh(tcp_sk(sk));
3465 /* Send it off. */
3466 if (tcp_transmit_skb(sk, skb, 0, priority))
3467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3468
3469 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3470 * skb here is different to the troublesome skb, so use NULL
3471 */
3472 trace_tcp_send_reset(sk, NULL);
3473 }
3474
3475 /* Send a crossed SYN-ACK during socket establishment.
3476 * WARNING: This routine must only be called when we have already sent
3477 * a SYN packet that crossed the incoming SYN that caused this routine
3478 * to get called. If this assumption fails then the initial rcv_wnd
3479 * and rcv_wscale values will not be correct.
3480 */
tcp_send_synack(struct sock * sk)3481 int tcp_send_synack(struct sock *sk)
3482 {
3483 struct sk_buff *skb;
3484
3485 skb = tcp_rtx_queue_head(sk);
3486 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3487 pr_err("%s: wrong queue state\n", __func__);
3488 return -EFAULT;
3489 }
3490 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3491 if (skb_cloned(skb)) {
3492 struct sk_buff *nskb;
3493
3494 tcp_skb_tsorted_save(skb) {
3495 nskb = skb_copy(skb, GFP_ATOMIC);
3496 } tcp_skb_tsorted_restore(skb);
3497 if (!nskb)
3498 return -ENOMEM;
3499 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3500 tcp_highest_sack_replace(sk, skb, nskb);
3501 tcp_rtx_queue_unlink_and_free(skb, sk);
3502 __skb_header_release(nskb);
3503 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3504 sk_wmem_queued_add(sk, nskb->truesize);
3505 sk_mem_charge(sk, nskb->truesize);
3506 skb = nskb;
3507 }
3508
3509 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3510 tcp_ecn_send_synack(sk, skb);
3511 }
3512 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3513 }
3514
3515 /**
3516 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3517 * @sk: listener socket
3518 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3519 * should not use it again.
3520 * @req: request_sock pointer
3521 * @foc: cookie for tcp fast open
3522 * @synack_type: Type of synack to prepare
3523 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3524 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3525 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3526 struct request_sock *req,
3527 struct tcp_fastopen_cookie *foc,
3528 enum tcp_synack_type synack_type,
3529 struct sk_buff *syn_skb)
3530 {
3531 struct inet_request_sock *ireq = inet_rsk(req);
3532 const struct tcp_sock *tp = tcp_sk(sk);
3533 struct tcp_md5sig_key *md5 = NULL;
3534 struct tcp_out_options opts;
3535 struct sk_buff *skb;
3536 int tcp_header_size;
3537 struct tcphdr *th;
3538 int mss;
3539 u64 now;
3540
3541 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3542 if (unlikely(!skb)) {
3543 dst_release(dst);
3544 return NULL;
3545 }
3546 /* Reserve space for headers. */
3547 skb_reserve(skb, MAX_TCP_HEADER);
3548
3549 switch (synack_type) {
3550 case TCP_SYNACK_NORMAL:
3551 skb_set_owner_w(skb, req_to_sk(req));
3552 break;
3553 case TCP_SYNACK_COOKIE:
3554 /* Under synflood, we do not attach skb to a socket,
3555 * to avoid false sharing.
3556 */
3557 break;
3558 case TCP_SYNACK_FASTOPEN:
3559 /* sk is a const pointer, because we want to express multiple
3560 * cpu might call us concurrently.
3561 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3562 */
3563 skb_set_owner_w(skb, (struct sock *)sk);
3564 break;
3565 }
3566 skb_dst_set(skb, dst);
3567
3568 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3569
3570 memset(&opts, 0, sizeof(opts));
3571 now = tcp_clock_ns();
3572 #ifdef CONFIG_SYN_COOKIES
3573 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3574 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3575 else
3576 #endif
3577 {
3578 skb->skb_mstamp_ns = now;
3579 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3580 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3581 }
3582
3583 #ifdef CONFIG_TCP_MD5SIG
3584 rcu_read_lock();
3585 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3586 #endif
3587 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3588 /* bpf program will be interested in the tcp_flags */
3589 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3590 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3591 foc, synack_type,
3592 syn_skb) + sizeof(*th);
3593
3594 skb_push(skb, tcp_header_size);
3595 skb_reset_transport_header(skb);
3596
3597 th = (struct tcphdr *)skb->data;
3598 memset(th, 0, sizeof(struct tcphdr));
3599 th->syn = 1;
3600 th->ack = 1;
3601 tcp_ecn_make_synack(req, th);
3602 th->source = htons(ireq->ir_num);
3603 th->dest = ireq->ir_rmt_port;
3604 skb->mark = ireq->ir_mark;
3605 skb->ip_summed = CHECKSUM_PARTIAL;
3606 th->seq = htonl(tcp_rsk(req)->snt_isn);
3607 /* XXX data is queued and acked as is. No buffer/window check */
3608 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3609
3610 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3611 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3612 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3613 th->doff = (tcp_header_size >> 2);
3614 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3615
3616 #ifdef CONFIG_TCP_MD5SIG
3617 /* Okay, we have all we need - do the md5 hash if needed */
3618 if (md5)
3619 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3620 md5, req_to_sk(req), skb);
3621 rcu_read_unlock();
3622 #endif
3623
3624 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3625 synack_type, &opts);
3626
3627 skb->skb_mstamp_ns = now;
3628 tcp_add_tx_delay(skb, tp);
3629
3630 return skb;
3631 }
3632 EXPORT_SYMBOL(tcp_make_synack);
3633
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3634 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3635 {
3636 struct inet_connection_sock *icsk = inet_csk(sk);
3637 const struct tcp_congestion_ops *ca;
3638 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3639
3640 if (ca_key == TCP_CA_UNSPEC)
3641 return;
3642
3643 rcu_read_lock();
3644 ca = tcp_ca_find_key(ca_key);
3645 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3646 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3647 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3648 icsk->icsk_ca_ops = ca;
3649 }
3650 rcu_read_unlock();
3651 }
3652
3653 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3654 static void tcp_connect_init(struct sock *sk)
3655 {
3656 const struct dst_entry *dst = __sk_dst_get(sk);
3657 struct tcp_sock *tp = tcp_sk(sk);
3658 __u8 rcv_wscale;
3659 u32 rcv_wnd;
3660
3661 /* We'll fix this up when we get a response from the other end.
3662 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3663 */
3664 tp->tcp_header_len = sizeof(struct tcphdr);
3665 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3666 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3667
3668 #ifdef CONFIG_TCP_MD5SIG
3669 if (tp->af_specific->md5_lookup(sk, sk))
3670 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3671 #endif
3672
3673 /* If user gave his TCP_MAXSEG, record it to clamp */
3674 if (tp->rx_opt.user_mss)
3675 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3676 tp->max_window = 0;
3677 tcp_mtup_init(sk);
3678 tcp_sync_mss(sk, dst_mtu(dst));
3679
3680 tcp_ca_dst_init(sk, dst);
3681
3682 if (!tp->window_clamp)
3683 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3684 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3685
3686 tcp_initialize_rcv_mss(sk);
3687
3688 /* limit the window selection if the user enforce a smaller rx buffer */
3689 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3690 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3691 tp->window_clamp = tcp_full_space(sk);
3692
3693 rcv_wnd = tcp_rwnd_init_bpf(sk);
3694 if (rcv_wnd == 0)
3695 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3696
3697 tcp_select_initial_window(sk, tcp_full_space(sk),
3698 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3699 &tp->rcv_wnd,
3700 &tp->window_clamp,
3701 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3702 &rcv_wscale,
3703 rcv_wnd);
3704
3705 #ifdef CONFIG_LOWPOWER_PROTOCOL
3706 tp->rcv_wnd = TCP_RCV_WND_INIT;
3707 #endif /* CONFIG_LOWPOWER_PROTOCOL */
3708 tp->rx_opt.rcv_wscale = rcv_wscale;
3709 tp->rcv_ssthresh = tp->rcv_wnd;
3710
3711 sk->sk_err = 0;
3712 sock_reset_flag(sk, SOCK_DONE);
3713 tp->snd_wnd = 0;
3714 tcp_init_wl(tp, 0);
3715 tcp_write_queue_purge(sk);
3716 tp->snd_una = tp->write_seq;
3717 tp->snd_sml = tp->write_seq;
3718 tp->snd_up = tp->write_seq;
3719 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3720
3721 if (likely(!tp->repair))
3722 tp->rcv_nxt = 0;
3723 else
3724 tp->rcv_tstamp = tcp_jiffies32;
3725 tp->rcv_wup = tp->rcv_nxt;
3726 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3727
3728 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3729 inet_csk(sk)->icsk_retransmits = 0;
3730 tcp_clear_retrans(tp);
3731 }
3732
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3733 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3734 {
3735 struct tcp_sock *tp = tcp_sk(sk);
3736 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3737
3738 tcb->end_seq += skb->len;
3739 __skb_header_release(skb);
3740 sk_wmem_queued_add(sk, skb->truesize);
3741 sk_mem_charge(sk, skb->truesize);
3742 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3743 tp->packets_out += tcp_skb_pcount(skb);
3744 }
3745
3746 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3747 * queue a data-only packet after the regular SYN, such that regular SYNs
3748 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3749 * only the SYN sequence, the data are retransmitted in the first ACK.
3750 * If cookie is not cached or other error occurs, falls back to send a
3751 * regular SYN with Fast Open cookie request option.
3752 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3753 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3754 {
3755 struct inet_connection_sock *icsk = inet_csk(sk);
3756 struct tcp_sock *tp = tcp_sk(sk);
3757 struct tcp_fastopen_request *fo = tp->fastopen_req;
3758 int space, err = 0;
3759 struct sk_buff *syn_data;
3760
3761 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3762 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3763 goto fallback;
3764
3765 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3766 * user-MSS. Reserve maximum option space for middleboxes that add
3767 * private TCP options. The cost is reduced data space in SYN :(
3768 */
3769 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3770 /* Sync mss_cache after updating the mss_clamp */
3771 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3772
3773 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3774 MAX_TCP_OPTION_SPACE;
3775
3776 space = min_t(size_t, space, fo->size);
3777
3778 /* limit to order-0 allocations */
3779 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3780
3781 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3782 if (!syn_data)
3783 goto fallback;
3784 syn_data->ip_summed = CHECKSUM_PARTIAL;
3785 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3786 if (space) {
3787 int copied = copy_from_iter(skb_put(syn_data, space), space,
3788 &fo->data->msg_iter);
3789 if (unlikely(!copied)) {
3790 tcp_skb_tsorted_anchor_cleanup(syn_data);
3791 kfree_skb(syn_data);
3792 goto fallback;
3793 }
3794 if (copied != space) {
3795 skb_trim(syn_data, copied);
3796 space = copied;
3797 }
3798 skb_zcopy_set(syn_data, fo->uarg, NULL);
3799 }
3800 /* No more data pending in inet_wait_for_connect() */
3801 if (space == fo->size)
3802 fo->data = NULL;
3803 fo->copied = space;
3804
3805 tcp_connect_queue_skb(sk, syn_data);
3806 if (syn_data->len)
3807 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3808
3809 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3810
3811 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3812
3813 /* Now full SYN+DATA was cloned and sent (or not),
3814 * remove the SYN from the original skb (syn_data)
3815 * we keep in write queue in case of a retransmit, as we
3816 * also have the SYN packet (with no data) in the same queue.
3817 */
3818 TCP_SKB_CB(syn_data)->seq++;
3819 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3820 if (!err) {
3821 tp->syn_data = (fo->copied > 0);
3822 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3823 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3824 goto done;
3825 }
3826
3827 /* data was not sent, put it in write_queue */
3828 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3829 tp->packets_out -= tcp_skb_pcount(syn_data);
3830
3831 fallback:
3832 /* Send a regular SYN with Fast Open cookie request option */
3833 if (fo->cookie.len > 0)
3834 fo->cookie.len = 0;
3835 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3836 if (err)
3837 tp->syn_fastopen = 0;
3838 done:
3839 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3840 return err;
3841 }
3842
3843 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3844 int tcp_connect(struct sock *sk)
3845 {
3846 struct tcp_sock *tp = tcp_sk(sk);
3847 struct sk_buff *buff;
3848 int err;
3849
3850 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3851
3852 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3853 return -EHOSTUNREACH; /* Routing failure or similar. */
3854
3855 tcp_connect_init(sk);
3856
3857 if (unlikely(tp->repair)) {
3858 tcp_finish_connect(sk, NULL);
3859 return 0;
3860 }
3861
3862 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3863 if (unlikely(!buff))
3864 return -ENOBUFS;
3865
3866 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3867 tcp_mstamp_refresh(tp);
3868 tp->retrans_stamp = tcp_time_stamp(tp);
3869 tcp_connect_queue_skb(sk, buff);
3870 tcp_ecn_send_syn(sk, buff);
3871 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3872
3873 /* Send off SYN; include data in Fast Open. */
3874 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3875 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3876 if (err == -ECONNREFUSED)
3877 return err;
3878
3879 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3880 * in order to make this packet get counted in tcpOutSegs.
3881 */
3882 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3883 tp->pushed_seq = tp->write_seq;
3884 buff = tcp_send_head(sk);
3885 if (unlikely(buff)) {
3886 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3887 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3888 }
3889 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3890
3891 /* Timer for repeating the SYN until an answer. */
3892 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3893 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3894 return 0;
3895 }
3896 EXPORT_SYMBOL(tcp_connect);
3897
3898 /* Send out a delayed ack, the caller does the policy checking
3899 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3900 * for details.
3901 */
tcp_send_delayed_ack(struct sock * sk)3902 void tcp_send_delayed_ack(struct sock *sk)
3903 {
3904 struct inet_connection_sock *icsk = inet_csk(sk);
3905 int ato = icsk->icsk_ack.ato;
3906 unsigned long timeout;
3907
3908 if (ato > TCP_DELACK_MIN) {
3909 const struct tcp_sock *tp = tcp_sk(sk);
3910 int max_ato = HZ / 2;
3911
3912 if (inet_csk_in_pingpong_mode(sk) ||
3913 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3914 max_ato = TCP_DELACK_MAX;
3915
3916 /* Slow path, intersegment interval is "high". */
3917
3918 /* If some rtt estimate is known, use it to bound delayed ack.
3919 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3920 * directly.
3921 */
3922 if (tp->srtt_us) {
3923 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3924 TCP_DELACK_MIN);
3925
3926 if (rtt < max_ato)
3927 max_ato = rtt;
3928 }
3929
3930 ato = min(ato, max_ato);
3931 }
3932
3933 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3934
3935 /* Stay within the limit we were given */
3936 timeout = jiffies + ato;
3937
3938 /* Use new timeout only if there wasn't a older one earlier. */
3939 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3940 /* If delack timer is about to expire, send ACK now. */
3941 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3942 tcp_send_ack(sk);
3943 return;
3944 }
3945
3946 if (!time_before(timeout, icsk->icsk_ack.timeout))
3947 timeout = icsk->icsk_ack.timeout;
3948 }
3949 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3950 icsk->icsk_ack.timeout = timeout;
3951 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3952 }
3953
3954 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3955 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3956 {
3957 struct sk_buff *buff;
3958
3959 /* If we have been reset, we may not send again. */
3960 if (sk->sk_state == TCP_CLOSE)
3961 return;
3962
3963 /* We are not putting this on the write queue, so
3964 * tcp_transmit_skb() will set the ownership to this
3965 * sock.
3966 */
3967 buff = alloc_skb(MAX_TCP_HEADER,
3968 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3969 if (unlikely(!buff)) {
3970 struct inet_connection_sock *icsk = inet_csk(sk);
3971 unsigned long delay;
3972
3973 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3974 if (delay < TCP_RTO_MAX)
3975 icsk->icsk_ack.retry++;
3976 inet_csk_schedule_ack(sk);
3977 icsk->icsk_ack.ato = TCP_ATO_MIN;
3978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3979 return;
3980 }
3981
3982 /* Reserve space for headers and prepare control bits. */
3983 skb_reserve(buff, MAX_TCP_HEADER);
3984 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3985
3986 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3987 * too much.
3988 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3989 */
3990 skb_set_tcp_pure_ack(buff);
3991
3992 /* Send it off, this clears delayed acks for us. */
3993 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3994 }
3995 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3996
tcp_send_ack(struct sock * sk)3997 void tcp_send_ack(struct sock *sk)
3998 {
3999 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4000 }
4001
4002 /* This routine sends a packet with an out of date sequence
4003 * number. It assumes the other end will try to ack it.
4004 *
4005 * Question: what should we make while urgent mode?
4006 * 4.4BSD forces sending single byte of data. We cannot send
4007 * out of window data, because we have SND.NXT==SND.MAX...
4008 *
4009 * Current solution: to send TWO zero-length segments in urgent mode:
4010 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4011 * out-of-date with SND.UNA-1 to probe window.
4012 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4013 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4014 {
4015 struct tcp_sock *tp = tcp_sk(sk);
4016 struct sk_buff *skb;
4017
4018 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4019 skb = alloc_skb(MAX_TCP_HEADER,
4020 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4021 if (!skb)
4022 return -1;
4023
4024 /* Reserve space for headers and set control bits. */
4025 skb_reserve(skb, MAX_TCP_HEADER);
4026 /* Use a previous sequence. This should cause the other
4027 * end to send an ack. Don't queue or clone SKB, just
4028 * send it.
4029 */
4030 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4031 NET_INC_STATS(sock_net(sk), mib);
4032 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4033 }
4034
4035 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4036 void tcp_send_window_probe(struct sock *sk)
4037 {
4038 if (sk->sk_state == TCP_ESTABLISHED) {
4039 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4040 tcp_mstamp_refresh(tcp_sk(sk));
4041 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4042 }
4043 }
4044
4045 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4046 int tcp_write_wakeup(struct sock *sk, int mib)
4047 {
4048 struct tcp_sock *tp = tcp_sk(sk);
4049 struct sk_buff *skb;
4050
4051 if (sk->sk_state == TCP_CLOSE)
4052 return -1;
4053
4054 skb = tcp_send_head(sk);
4055 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4056 int err;
4057 unsigned int mss = tcp_current_mss(sk);
4058 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4059
4060 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4061 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4062
4063 /* We are probing the opening of a window
4064 * but the window size is != 0
4065 * must have been a result SWS avoidance ( sender )
4066 */
4067 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4068 skb->len > mss) {
4069 seg_size = min(seg_size, mss);
4070 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4071 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4072 skb, seg_size, mss, GFP_ATOMIC))
4073 return -1;
4074 } else if (!tcp_skb_pcount(skb))
4075 tcp_set_skb_tso_segs(skb, mss);
4076
4077 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4078 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4079 if (!err)
4080 tcp_event_new_data_sent(sk, skb);
4081 return err;
4082 } else {
4083 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4084 tcp_xmit_probe_skb(sk, 1, mib);
4085 return tcp_xmit_probe_skb(sk, 0, mib);
4086 }
4087 }
4088
4089 /* A window probe timeout has occurred. If window is not closed send
4090 * a partial packet else a zero probe.
4091 */
tcp_send_probe0(struct sock * sk)4092 void tcp_send_probe0(struct sock *sk)
4093 {
4094 struct inet_connection_sock *icsk = inet_csk(sk);
4095 struct tcp_sock *tp = tcp_sk(sk);
4096 unsigned long timeout;
4097 int err;
4098
4099 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4100
4101 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4102 /* Cancel probe timer, if it is not required. */
4103 icsk->icsk_probes_out = 0;
4104 icsk->icsk_backoff = 0;
4105 icsk->icsk_probes_tstamp = 0;
4106 return;
4107 }
4108
4109 icsk->icsk_probes_out++;
4110 if (err <= 0) {
4111 #ifdef CONFIG_TCP_NB_URC
4112 if (icsk->icsk_backoff < tcp_get_retries_limit(sk))
4113 #else
4114 if (icsk->icsk_backoff < READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2))
4115 #endif /* CONFIG_TCP_NB_URC */
4116 icsk->icsk_backoff++;
4117 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4118 } else {
4119 /* If packet was not sent due to local congestion,
4120 * Let senders fight for local resources conservatively.
4121 */
4122 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4123 }
4124
4125 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4126 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4127 }
4128
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4129 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4130 {
4131 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4132 struct flowi fl;
4133 int res;
4134
4135 tcp_rsk(req)->txhash = net_tx_rndhash();
4136 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4137 NULL);
4138 if (!res) {
4139 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4140 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4141 if (unlikely(tcp_passive_fastopen(sk)))
4142 tcp_sk(sk)->total_retrans++;
4143 trace_tcp_retransmit_synack(sk, req);
4144 }
4145 return res;
4146 }
4147 EXPORT_SYMBOL(tcp_rtx_synack);
4148