1 /*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include "si_build_pm4.h"
27 #include "util/os_time.h"
28 #include "util/u_memory.h"
29 #include "util/u_queue.h"
30 #include "util/u_upload_mgr.h"
31
32 #include <libsync.h>
33
34 struct si_fine_fence {
35 struct si_resource *buf;
36 unsigned offset;
37 };
38
39 struct si_fence {
40 struct pipe_reference reference;
41 struct pipe_fence_handle *gfx;
42 struct tc_unflushed_batch_token *tc_token;
43 struct util_queue_fence ready;
44
45 /* If the context wasn't flushed at fence creation, this is non-NULL. */
46 struct {
47 struct si_context *ctx;
48 unsigned ib_index;
49 } gfx_unflushed;
50
51 struct si_fine_fence fine;
52 };
53
54 /**
55 * Write an EOP event.
56 *
57 * \param event EVENT_TYPE_*
58 * \param event_flags Optional cache flush flags (TC)
59 * \param dst_sel MEM or TC_L2
60 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
61 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
62 * \param buf Buffer
63 * \param va GPU address
64 * \param old_value Previous fence value (for a bug workaround)
65 * \param new_value Fence value to write for this event.
66 */
si_cp_release_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,unsigned event,unsigned event_flags,unsigned dst_sel,unsigned int_sel,unsigned data_sel,struct si_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)67 void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
68 unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
69 struct si_resource *buf, uint64_t va, uint32_t new_fence,
70 unsigned query_type)
71 {
72 unsigned op = EVENT_TYPE(event) |
73 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
74 event_flags;
75 unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
76 bool compute_ib = !ctx->has_graphics;
77
78 radeon_begin(cs);
79
80 if (ctx->gfx_level >= GFX9 || (compute_ib && ctx->gfx_level >= GFX7)) {
81 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
82 * counters) must immediately precede every timestamp event to
83 * prevent a GPU hang on GFX9.
84 *
85 * Occlusion queries don't need to do it here, because they
86 * always do ZPASS_DONE before the timestamp.
87 */
88 if (ctx->gfx_level == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
89 query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
90 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
91 struct si_screen *sscreen = ctx->screen;
92 struct si_resource *scratch;
93
94 if (!ctx->ws->cs_is_secure(&ctx->gfx_cs)) {
95 scratch = ctx->eop_bug_scratch;
96 } else {
97 assert(ctx->screen->info.has_tmz_support);
98 if (!ctx->eop_bug_scratch_tmz)
99 ctx->eop_bug_scratch_tmz =
100 si_aligned_buffer_create(&sscreen->b,
101 PIPE_RESOURCE_FLAG_ENCRYPTED |
102 PIPE_RESOURCE_FLAG_UNMAPPABLE |
103 SI_RESOURCE_FLAG_DRIVER_INTERNAL,
104 PIPE_USAGE_DEFAULT,
105 16 * sscreen->info.max_render_backends, 256);
106
107 scratch = ctx->eop_bug_scratch_tmz;
108 }
109
110 assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0);
111 radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0));
112 radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
113 radeon_emit(scratch->gpu_address);
114 radeon_emit(scratch->gpu_address >> 32);
115
116 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch,
117 RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
118 }
119
120 radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->gfx_level >= GFX9 ? 6 : 5, 0));
121 radeon_emit(op);
122 radeon_emit(sel);
123 radeon_emit(va); /* address lo */
124 radeon_emit(va >> 32); /* address hi */
125 radeon_emit(new_fence); /* immediate data lo */
126 radeon_emit(0); /* immediate data hi */
127 if (ctx->gfx_level >= GFX9)
128 radeon_emit(0); /* unused */
129 } else {
130 if (ctx->gfx_level == GFX7 || ctx->gfx_level == GFX8) {
131 struct si_resource *scratch = ctx->eop_bug_scratch;
132 uint64_t va = scratch->gpu_address;
133
134 /* Two EOP events are required to make all engines go idle
135 * (and optional cache flushes executed) before the timestamp
136 * is written.
137 */
138 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
139 radeon_emit(op);
140 radeon_emit(va);
141 radeon_emit(((va >> 32) & 0xffff) | sel);
142 radeon_emit(0); /* immediate data */
143 radeon_emit(0); /* unused */
144
145 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch,
146 RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
147 }
148
149 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
150 radeon_emit(op);
151 radeon_emit(va);
152 radeon_emit(((va >> 32) & 0xffff) | sel);
153 radeon_emit(new_fence); /* immediate data */
154 radeon_emit(0); /* unused */
155 }
156
157 radeon_end();
158
159 if (buf) {
160 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
161 }
162 }
163
si_cp_write_fence_dwords(struct si_screen * screen)164 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
165 {
166 unsigned dwords = 6;
167
168 if (screen->info.gfx_level == GFX7 || screen->info.gfx_level == GFX8)
169 dwords *= 2;
170
171 return dwords;
172 }
173
si_cp_wait_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,uint64_t va,uint32_t ref,uint32_t mask,unsigned flags)174 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
175 uint32_t mask, unsigned flags)
176 {
177 radeon_begin(cs);
178 radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0));
179 radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags);
180 radeon_emit(va);
181 radeon_emit(va >> 32);
182 radeon_emit(ref); /* reference value */
183 radeon_emit(mask); /* mask */
184 radeon_emit(4); /* poll interval */
185 radeon_end();
186 }
187
si_add_fence_dependency(struct si_context * sctx,struct pipe_fence_handle * fence)188 static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
189 {
190 struct radeon_winsys *ws = sctx->ws;
191
192 ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0);
193 }
194
si_add_syncobj_signal(struct si_context * sctx,struct pipe_fence_handle * fence)195 static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
196 {
197 sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence);
198 }
199
si_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)200 static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
201 struct pipe_fence_handle *src)
202 {
203 struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
204 struct si_fence **sdst = (struct si_fence **)dst;
205 struct si_fence *ssrc = (struct si_fence *)src;
206
207 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
208 ws->fence_reference(&(*sdst)->gfx, NULL);
209 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
210 si_resource_reference(&(*sdst)->fine.buf, NULL);
211 FREE(*sdst);
212 }
213 *sdst = ssrc;
214 }
215
si_create_multi_fence()216 static struct si_fence *si_create_multi_fence()
217 {
218 struct si_fence *fence = CALLOC_STRUCT(si_fence);
219 if (!fence)
220 return NULL;
221
222 pipe_reference_init(&fence->reference, 1);
223 util_queue_fence_init(&fence->ready);
224
225 return fence;
226 }
227
si_create_fence(struct pipe_context * ctx,struct tc_unflushed_batch_token * tc_token)228 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
229 struct tc_unflushed_batch_token *tc_token)
230 {
231 struct si_fence *fence = si_create_multi_fence();
232 if (!fence)
233 return NULL;
234
235 util_queue_fence_reset(&fence->ready);
236 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
237
238 return (struct pipe_fence_handle *)fence;
239 }
240
si_fine_fence_signaled(struct radeon_winsys * rws,const struct si_fine_fence * fine)241 static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
242 {
243 char *map =
244 rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
245 if (!map)
246 return false;
247
248 uint32_t *fence = (uint32_t *)(map + fine->offset);
249 return *fence != 0;
250 }
251
si_fine_fence_set(struct si_context * ctx,struct si_fine_fence * fine,unsigned flags)252 static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
253 {
254 uint32_t *fence_ptr;
255
256 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
257
258 /* Use cached system memory for the fence. */
259 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
260 (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
261 if (!fine->buf)
262 return;
263
264 *fence_ptr = 0;
265
266 if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
267 uint32_t value = 0x80000000;
268
269 si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
270 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
271 uint64_t fence_va = fine->buf->gpu_address + fine->offset;
272
273 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE | RADEON_PRIO_QUERY);
274 si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
275 EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
276 PIPE_QUERY_GPU_FINISHED);
277 } else {
278 assert(false);
279 }
280 }
281
si_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)282 static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
283 struct pipe_fence_handle *fence, uint64_t timeout)
284 {
285 struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
286 struct si_fence *sfence = (struct si_fence *)fence;
287 struct si_context *sctx;
288 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
289
290 ctx = threaded_context_unwrap_sync(ctx);
291 sctx = (struct si_context *)(ctx ? ctx : NULL);
292
293 if (!util_queue_fence_is_signalled(&sfence->ready)) {
294 if (sfence->tc_token) {
295 /* Ensure that si_flush_from_st will be called for
296 * this fence, but only if we're in the API thread
297 * where the context is current.
298 *
299 * Note that the batch containing the flush may already
300 * be in flight in the driver thread, so the fence
301 * may not be ready yet when this call returns.
302 */
303 threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
304 }
305
306 if (!timeout)
307 return false;
308
309 if (timeout == PIPE_TIMEOUT_INFINITE) {
310 util_queue_fence_wait(&sfence->ready);
311 } else {
312 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
313 return false;
314 }
315
316 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
317 int64_t time = os_time_get_nano();
318 timeout = abs_timeout > time ? abs_timeout - time : 0;
319 }
320 }
321
322 if (!sfence->gfx)
323 return true;
324
325 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
326 rws->fence_reference(&sfence->gfx, NULL);
327 si_resource_reference(&sfence->fine.buf, NULL);
328 return true;
329 }
330
331 /* Flush the gfx IB if it hasn't been flushed yet. */
332 if (sctx && sfence->gfx_unflushed.ctx == sctx &&
333 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
334 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
335 * spec says:
336 *
337 * "If the sync object being blocked upon will not be
338 * signaled in finite time (for example, by an associated
339 * fence command issued previously, but not yet flushed to
340 * the graphics pipeline), then ClientWaitSync may hang
341 * forever. To help prevent this behavior, if
342 * ClientWaitSync is called and all of the following are
343 * true:
344 *
345 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
346 * * sync is unsignaled when ClientWaitSync is called,
347 * * and the calls to ClientWaitSync and FenceSync were
348 * issued from the same context,
349 *
350 * then the GL will behave as if the equivalent of Flush
351 * were inserted immediately after the creation of sync."
352 *
353 * This means we need to flush for such fences even when we're
354 * not going to wait.
355 */
356 si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
357 NULL);
358 sfence->gfx_unflushed.ctx = NULL;
359
360 if (!timeout)
361 return false;
362
363 /* Recompute the timeout after all that. */
364 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
365 int64_t time = os_time_get_nano();
366 timeout = abs_timeout > time ? abs_timeout - time : 0;
367 }
368 }
369
370 if (rws->fence_wait(rws, sfence->gfx, timeout))
371 return true;
372
373 /* Re-check in case the GPU is slow or hangs, but the commands before
374 * the fine-grained fence have completed. */
375 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
376 return true;
377
378 return false;
379 }
380
si_create_fence_fd(struct pipe_context * ctx,struct pipe_fence_handle ** pfence,int fd,enum pipe_fd_type type)381 static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
382 enum pipe_fd_type type)
383 {
384 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
385 struct radeon_winsys *ws = sscreen->ws;
386 struct si_fence *sfence;
387
388 *pfence = NULL;
389
390 sfence = si_create_multi_fence();
391 if (!sfence)
392 return;
393
394 switch (type) {
395 case PIPE_FD_TYPE_NATIVE_SYNC:
396 if (!sscreen->info.has_fence_to_handle)
397 goto finish;
398
399 sfence->gfx = ws->fence_import_sync_file(ws, fd);
400 break;
401
402 case PIPE_FD_TYPE_SYNCOBJ:
403 if (!sscreen->info.has_syncobj)
404 goto finish;
405
406 sfence->gfx = ws->fence_import_syncobj(ws, fd);
407 break;
408
409 default:
410 unreachable("bad fence fd type when importing");
411 }
412
413 finish:
414 if (!sfence->gfx) {
415 FREE(sfence);
416 return;
417 }
418
419 *pfence = (struct pipe_fence_handle *)sfence;
420 }
421
si_fence_get_fd(struct pipe_screen * screen,struct pipe_fence_handle * fence)422 static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
423 {
424 struct si_screen *sscreen = (struct si_screen *)screen;
425 struct radeon_winsys *ws = sscreen->ws;
426 struct si_fence *sfence = (struct si_fence *)fence;
427 int gfx_fd = -1;
428
429 if (!sscreen->info.has_fence_to_handle)
430 return -1;
431
432 util_queue_fence_wait(&sfence->ready);
433
434 /* Deferred fences aren't supported. */
435 assert(!sfence->gfx_unflushed.ctx);
436 if (sfence->gfx_unflushed.ctx)
437 return -1;
438
439 if (sfence->gfx) {
440 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
441 if (gfx_fd == -1) {
442 return -1;
443 }
444 }
445
446 /* If we don't have FDs at this point, it means we don't have fences
447 * either. */
448 if (gfx_fd == -1)
449 return ws->export_signalled_sync_file(ws);
450
451 return gfx_fd;
452 }
453
si_flush_all_queues(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags,bool force_flush)454 static void si_flush_all_queues(struct pipe_context *ctx,
455 struct pipe_fence_handle **fence,
456 unsigned flags, bool force_flush)
457 {
458 struct pipe_screen *screen = ctx->screen;
459 struct si_context *sctx = (struct si_context *)ctx;
460 struct radeon_winsys *ws = sctx->ws;
461 struct pipe_fence_handle *gfx_fence = NULL;
462 bool deferred_fence = false;
463 struct si_fine_fence fine = {};
464 unsigned rflags = PIPE_FLUSH_ASYNC;
465
466 if (!(flags & PIPE_FLUSH_DEFERRED)) {
467 si_flush_implicit_resources(sctx);
468 }
469
470 if (flags & PIPE_FLUSH_END_OF_FRAME)
471 rflags |= PIPE_FLUSH_END_OF_FRAME;
472
473 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
474 assert(flags & PIPE_FLUSH_DEFERRED);
475 assert(fence);
476
477 si_fine_fence_set(sctx, &fine, flags);
478 }
479
480 if (force_flush) {
481 sctx->initial_gfx_cs_size = 0;
482 }
483
484 if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
485 if (fence)
486 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
487 if (!(flags & PIPE_FLUSH_DEFERRED))
488 ws->cs_sync_flush(&sctx->gfx_cs);
489
490 tc_driver_internal_flush_notify(sctx->tc);
491 } else {
492 /* Instead of flushing, create a deferred fence. Constraints:
493 * - the gallium frontend must allow a deferred flush.
494 * - the gallium frontend must request a fence.
495 * - fence_get_fd is not allowed.
496 * Thread safety in fence_finish must be ensured by the gallium frontend.
497 */
498 if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
499 gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs);
500 deferred_fence = true;
501 } else {
502 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
503 }
504 }
505
506 /* Both engines can signal out of order, so we need to keep both fences. */
507 if (fence) {
508 struct si_fence *new_fence;
509
510 if (flags & TC_FLUSH_ASYNC) {
511 new_fence = (struct si_fence *)*fence;
512 assert(new_fence);
513 } else {
514 new_fence = si_create_multi_fence();
515 if (!new_fence) {
516 ws->fence_reference(&gfx_fence, NULL);
517 goto finish;
518 }
519
520 screen->fence_reference(screen, fence, NULL);
521 *fence = (struct pipe_fence_handle *)new_fence;
522 }
523
524 /* If both fences are NULL, fence_finish will always return true. */
525 new_fence->gfx = gfx_fence;
526
527 if (deferred_fence) {
528 new_fence->gfx_unflushed.ctx = sctx;
529 new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
530 }
531
532 new_fence->fine = fine;
533 fine.buf = NULL;
534
535 if (flags & TC_FLUSH_ASYNC) {
536 util_queue_fence_signal(&new_fence->ready);
537 tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL);
538 }
539 }
540 assert(!fine.buf);
541 finish:
542 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
543 ws->cs_sync_flush(&sctx->gfx_cs);
544 }
545 }
546
si_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)547 static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
548 unsigned flags)
549 {
550 return si_flush_all_queues(ctx, fence, flags, false);
551 }
552
si_fence_server_signal(struct pipe_context * ctx,struct pipe_fence_handle * fence)553 static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
554 {
555 struct si_context *sctx = (struct si_context *)ctx;
556 struct si_fence *sfence = (struct si_fence *)fence;
557
558 assert(sfence->gfx);
559
560 if (sfence->gfx)
561 si_add_syncobj_signal(sctx, sfence->gfx);
562
563 /**
564 * The spec requires a flush here. We insert a flush
565 * because syncobj based signals are not directly placed into
566 * the command stream. Instead the signal happens when the
567 * submission associated with the syncobj finishes execution.
568 *
569 * Therefore, we must make sure that we flush the pipe to avoid
570 * new work being emitted and getting executed before the signal
571 * operation.
572 *
573 * Forces a flush even if the GFX CS is empty.
574 *
575 * The flush must not be asynchronous because the kernel must receive
576 * the scheduled "signal" operation before any wait.
577 */
578 si_flush_all_queues(ctx, NULL, 0, true);
579 }
580
si_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)581 static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
582 {
583 struct si_context *sctx = (struct si_context *)ctx;
584 struct si_fence *sfence = (struct si_fence *)fence;
585
586 util_queue_fence_wait(&sfence->ready);
587
588 /* Unflushed fences from the same context are no-ops. */
589 if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
590 return;
591
592 /* All unflushed commands will not start execution before this fence
593 * dependency is signalled. That's fine. Flushing is very expensive
594 * if we get fence_server_sync after every draw call. (which happens
595 * with Android/SurfaceFlinger)
596 *
597 * In a nutshell, when CPU overhead is greater than GPU overhead,
598 * or when the time it takes to execute an IB on the GPU is less than
599 * the time it takes to create and submit that IB, flushing decreases
600 * performance. Therefore, DO NOT FLUSH.
601 */
602 if (sfence->gfx)
603 si_add_fence_dependency(sctx, sfence->gfx);
604 }
605
si_init_fence_functions(struct si_context * ctx)606 void si_init_fence_functions(struct si_context *ctx)
607 {
608 ctx->b.flush = si_flush_from_st;
609 ctx->b.create_fence_fd = si_create_fence_fd;
610 ctx->b.fence_server_sync = si_fence_server_sync;
611 ctx->b.fence_server_signal = si_fence_server_signal;
612 }
613
si_init_screen_fence_functions(struct si_screen * screen)614 void si_init_screen_fence_functions(struct si_screen *screen)
615 {
616 screen->b.fence_finish = si_fence_finish;
617 screen->b.fence_reference = si_fence_reference;
618 screen->b.fence_get_fd = si_fence_get_fd;
619 }
620