1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49
50 #include "internal.h"
51
52 #define KIOCB_KEY 0
53
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[];
71 }; /* 128 bytes + ring size */
72
73 /*
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
76 */
77 #define AIO_PLUG_THRESHOLD 2
78
79 #define AIO_RING_PAGES 8
80
81 struct kioctx_table {
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
85 };
86
87 struct kioctx_cpu {
88 unsigned reqs_available;
89 };
90
91 struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
94 };
95
96 struct kioctx {
97 struct percpu_ref users;
98 atomic_t dead;
99
100 struct percpu_ref reqs;
101
102 unsigned long user_id;
103
104 struct __percpu kioctx_cpu *cpu;
105
106 /*
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
109 */
110 unsigned req_batch;
111 /*
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
114 *
115 * The real limit is nr_events - 1, which will be larger (see
116 * aio_setup_ring())
117 */
118 unsigned max_reqs;
119
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
122
123 unsigned long mmap_base;
124 unsigned long mmap_size;
125
126 struct page **ring_pages;
127 long nr_pages;
128
129 struct rcu_work free_rwork; /* see free_ioctx() */
130
131 /*
132 * signals when all in-flight requests are done
133 */
134 struct ctx_rq_wait *rq_wait;
135
136 struct {
137 /*
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
142 *
143 * We batch accesses to it with a percpu version.
144 */
145 atomic_t reqs_available;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
152
153 struct {
154 struct mutex ring_lock;
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
157
158 struct {
159 unsigned tail;
160 unsigned completed_events;
161 spinlock_t completion_lock;
162 } ____cacheline_aligned_in_smp;
163
164 struct page *internal_pages[AIO_RING_PAGES];
165 struct file *aio_ring_file;
166
167 unsigned id;
168 };
169
170 /*
171 * First field must be the file pointer in all the
172 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 */
174 struct fsync_iocb {
175 struct file *file;
176 struct work_struct work;
177 bool datasync;
178 struct cred *creds;
179 };
180
181 struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
185 bool cancelled;
186 bool work_scheduled;
187 bool work_need_resched;
188 struct wait_queue_entry wait;
189 struct work_struct work;
190 };
191
192 /*
193 * NOTE! Each of the iocb union members has the file pointer
194 * as the first entry in their struct definition. So you can
195 * access the file pointer through any of the sub-structs,
196 * or directly as just 'ki_filp' in this struct.
197 */
198 struct aio_kiocb {
199 union {
200 struct file *ki_filp;
201 struct kiocb rw;
202 struct fsync_iocb fsync;
203 struct poll_iocb poll;
204 };
205
206 struct kioctx *ki_ctx;
207 kiocb_cancel_fn *ki_cancel;
208
209 struct io_event ki_res;
210
211 struct list_head ki_list; /* the aio core uses this
212 * for cancellation */
213 refcount_t ki_refcnt;
214
215 /*
216 * If the aio_resfd field of the userspace iocb is not zero,
217 * this is the underlying eventfd context to deliver events to.
218 */
219 struct eventfd_ctx *ki_eventfd;
220 };
221
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr; /* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227
228 static struct kmem_cache *kiocb_cachep;
229 static struct kmem_cache *kioctx_cachep;
230
231 static struct vfsmount *aio_mnt;
232
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235
aio_private_file(struct kioctx * ctx,loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 struct file *file;
239 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 if (IS_ERR(inode))
241 return ERR_CAST(inode);
242
243 inode->i_mapping->a_ops = &aio_ctx_aops;
244 inode->i_mapping->private_data = ctx;
245 inode->i_size = PAGE_SIZE * nr_pages;
246
247 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 O_RDWR, &aio_ring_fops);
249 if (IS_ERR(file))
250 iput(inode);
251 return file;
252 }
253
aio_init_fs_context(struct fs_context * fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 if (!init_pseudo(fc, AIO_RING_MAGIC))
257 return -ENOMEM;
258 fc->s_iflags |= SB_I_NOEXEC;
259 return 0;
260 }
261
262 /* aio_setup
263 * Creates the slab caches used by the aio routines, panic on
264 * failure as this is done early during the boot sequence.
265 */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 static struct file_system_type aio_fs = {
269 .name = "aio",
270 .init_fs_context = aio_init_fs_context,
271 .kill_sb = kill_anon_super,
272 };
273 aio_mnt = kern_mount(&aio_fs);
274 if (IS_ERR(aio_mnt))
275 panic("Failed to create aio fs mount.");
276
277 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 return 0;
280 }
281 __initcall(aio_setup);
282
put_aio_ring_file(struct kioctx * ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 struct file *aio_ring_file = ctx->aio_ring_file;
286 struct address_space *i_mapping;
287
288 if (aio_ring_file) {
289 truncate_setsize(file_inode(aio_ring_file), 0);
290
291 /* Prevent further access to the kioctx from migratepages */
292 i_mapping = aio_ring_file->f_mapping;
293 spin_lock(&i_mapping->private_lock);
294 i_mapping->private_data = NULL;
295 ctx->aio_ring_file = NULL;
296 spin_unlock(&i_mapping->private_lock);
297
298 fput(aio_ring_file);
299 }
300 }
301
aio_free_ring(struct kioctx * ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 int i;
305
306 /* Disconnect the kiotx from the ring file. This prevents future
307 * accesses to the kioctx from page migration.
308 */
309 put_aio_ring_file(ctx);
310
311 for (i = 0; i < ctx->nr_pages; i++) {
312 struct page *page;
313 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 page_count(ctx->ring_pages[i]));
315 page = ctx->ring_pages[i];
316 if (!page)
317 continue;
318 ctx->ring_pages[i] = NULL;
319 put_page(page);
320 }
321
322 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 kfree(ctx->ring_pages);
324 ctx->ring_pages = NULL;
325 }
326 }
327
aio_ring_mremap(struct vm_area_struct * vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 struct file *file = vma->vm_file;
331 struct mm_struct *mm = vma->vm_mm;
332 struct kioctx_table *table;
333 int i, res = -EINVAL;
334
335 spin_lock(&mm->ioctx_lock);
336 rcu_read_lock();
337 table = rcu_dereference(mm->ioctx_table);
338 if (!table)
339 goto out_unlock;
340
341 for (i = 0; i < table->nr; i++) {
342 struct kioctx *ctx;
343
344 ctx = rcu_dereference(table->table[i]);
345 if (ctx && ctx->aio_ring_file == file) {
346 if (!atomic_read(&ctx->dead)) {
347 ctx->user_id = ctx->mmap_base = vma->vm_start;
348 res = 0;
349 }
350 break;
351 }
352 }
353
354 out_unlock:
355 rcu_read_unlock();
356 spin_unlock(&mm->ioctx_lock);
357 return res;
358 }
359
360 static const struct vm_operations_struct aio_ring_vm_ops = {
361 .mremap = aio_ring_mremap,
362 #if IS_ENABLED(CONFIG_MMU)
363 .fault = filemap_fault,
364 .map_pages = filemap_map_pages,
365 .page_mkwrite = filemap_page_mkwrite,
366 #endif
367 };
368
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)369 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
370 {
371 vma->vm_flags |= VM_DONTEXPAND;
372 vma->vm_ops = &aio_ring_vm_ops;
373 return 0;
374 }
375
376 static const struct file_operations aio_ring_fops = {
377 .mmap = aio_ring_mmap,
378 };
379
380 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)381 static int aio_migratepage(struct address_space *mapping, struct page *new,
382 struct page *old, enum migrate_mode mode)
383 {
384 struct kioctx *ctx;
385 unsigned long flags;
386 pgoff_t idx;
387 int rc;
388
389 /*
390 * We cannot support the _NO_COPY case here, because copy needs to
391 * happen under the ctx->completion_lock. That does not work with the
392 * migration workflow of MIGRATE_SYNC_NO_COPY.
393 */
394 if (mode == MIGRATE_SYNC_NO_COPY)
395 return -EINVAL;
396
397 rc = 0;
398
399 /* mapping->private_lock here protects against the kioctx teardown. */
400 spin_lock(&mapping->private_lock);
401 ctx = mapping->private_data;
402 if (!ctx) {
403 rc = -EINVAL;
404 goto out;
405 }
406
407 /* The ring_lock mutex. The prevents aio_read_events() from writing
408 * to the ring's head, and prevents page migration from mucking in
409 * a partially initialized kiotx.
410 */
411 if (!mutex_trylock(&ctx->ring_lock)) {
412 rc = -EAGAIN;
413 goto out;
414 }
415
416 idx = old->index;
417 if (idx < (pgoff_t)ctx->nr_pages) {
418 /* Make sure the old page hasn't already been changed */
419 if (ctx->ring_pages[idx] != old)
420 rc = -EAGAIN;
421 } else
422 rc = -EINVAL;
423
424 if (rc != 0)
425 goto out_unlock;
426
427 /* Writeback must be complete */
428 BUG_ON(PageWriteback(old));
429 get_page(new);
430
431 rc = migrate_page_move_mapping(mapping, new, old, 1);
432 if (rc != MIGRATEPAGE_SUCCESS) {
433 put_page(new);
434 goto out_unlock;
435 }
436
437 /* Take completion_lock to prevent other writes to the ring buffer
438 * while the old page is copied to the new. This prevents new
439 * events from being lost.
440 */
441 spin_lock_irqsave(&ctx->completion_lock, flags);
442 migrate_page_copy(new, old);
443 BUG_ON(ctx->ring_pages[idx] != old);
444 ctx->ring_pages[idx] = new;
445 spin_unlock_irqrestore(&ctx->completion_lock, flags);
446
447 /* The old page is no longer accessible. */
448 put_page(old);
449
450 out_unlock:
451 mutex_unlock(&ctx->ring_lock);
452 out:
453 spin_unlock(&mapping->private_lock);
454 return rc;
455 }
456 #endif
457
458 static const struct address_space_operations aio_ctx_aops = {
459 .set_page_dirty = __set_page_dirty_no_writeback,
460 #if IS_ENABLED(CONFIG_MIGRATION)
461 .migratepage = aio_migratepage,
462 #endif
463 };
464
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)465 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
466 {
467 struct aio_ring *ring;
468 struct mm_struct *mm = current->mm;
469 unsigned long size, unused;
470 int nr_pages;
471 int i;
472 struct file *file;
473
474 /* Compensate for the ring buffer's head/tail overlap entry */
475 nr_events += 2; /* 1 is required, 2 for good luck */
476
477 size = sizeof(struct aio_ring);
478 size += sizeof(struct io_event) * nr_events;
479
480 nr_pages = PFN_UP(size);
481 if (nr_pages < 0)
482 return -EINVAL;
483
484 file = aio_private_file(ctx, nr_pages);
485 if (IS_ERR(file)) {
486 ctx->aio_ring_file = NULL;
487 return -ENOMEM;
488 }
489
490 ctx->aio_ring_file = file;
491 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
492 / sizeof(struct io_event);
493
494 ctx->ring_pages = ctx->internal_pages;
495 if (nr_pages > AIO_RING_PAGES) {
496 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
497 GFP_KERNEL);
498 if (!ctx->ring_pages) {
499 put_aio_ring_file(ctx);
500 return -ENOMEM;
501 }
502 }
503
504 for (i = 0; i < nr_pages; i++) {
505 struct page *page;
506 page = find_or_create_page(file->f_mapping,
507 i, GFP_HIGHUSER | __GFP_ZERO);
508 if (!page)
509 break;
510 pr_debug("pid(%d) page[%d]->count=%d\n",
511 current->pid, i, page_count(page));
512 SetPageUptodate(page);
513 unlock_page(page);
514
515 ctx->ring_pages[i] = page;
516 }
517 ctx->nr_pages = i;
518
519 if (unlikely(i != nr_pages)) {
520 aio_free_ring(ctx);
521 return -ENOMEM;
522 }
523
524 ctx->mmap_size = nr_pages * PAGE_SIZE;
525 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
526
527 if (mmap_write_lock_killable(mm)) {
528 ctx->mmap_size = 0;
529 aio_free_ring(ctx);
530 return -EINTR;
531 }
532
533 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
534 PROT_READ | PROT_WRITE,
535 MAP_SHARED, 0, &unused, NULL);
536 mmap_write_unlock(mm);
537 if (IS_ERR((void *)ctx->mmap_base)) {
538 ctx->mmap_size = 0;
539 aio_free_ring(ctx);
540 return -ENOMEM;
541 }
542
543 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
544
545 ctx->user_id = ctx->mmap_base;
546 ctx->nr_events = nr_events; /* trusted copy */
547
548 ring = kmap_atomic(ctx->ring_pages[0]);
549 ring->nr = nr_events; /* user copy */
550 ring->id = ~0U;
551 ring->head = ring->tail = 0;
552 ring->magic = AIO_RING_MAGIC;
553 ring->compat_features = AIO_RING_COMPAT_FEATURES;
554 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
555 ring->header_length = sizeof(struct aio_ring);
556 kunmap_atomic(ring);
557 flush_dcache_page(ctx->ring_pages[0]);
558
559 return 0;
560 }
561
562 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
563 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
564 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
565
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)566 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
567 {
568 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
569 struct kioctx *ctx = req->ki_ctx;
570 unsigned long flags;
571
572 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
573 return;
574
575 spin_lock_irqsave(&ctx->ctx_lock, flags);
576 list_add_tail(&req->ki_list, &ctx->active_reqs);
577 req->ki_cancel = cancel;
578 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
579 }
580 EXPORT_SYMBOL(kiocb_set_cancel_fn);
581
582 /*
583 * free_ioctx() should be RCU delayed to synchronize against the RCU
584 * protected lookup_ioctx() and also needs process context to call
585 * aio_free_ring(). Use rcu_work.
586 */
free_ioctx(struct work_struct * work)587 static void free_ioctx(struct work_struct *work)
588 {
589 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
590 free_rwork);
591 pr_debug("freeing %p\n", ctx);
592
593 aio_free_ring(ctx);
594 free_percpu(ctx->cpu);
595 percpu_ref_exit(&ctx->reqs);
596 percpu_ref_exit(&ctx->users);
597 kmem_cache_free(kioctx_cachep, ctx);
598 }
599
free_ioctx_reqs(struct percpu_ref * ref)600 static void free_ioctx_reqs(struct percpu_ref *ref)
601 {
602 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
603
604 /* At this point we know that there are no any in-flight requests */
605 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
606 complete(&ctx->rq_wait->comp);
607
608 /* Synchronize against RCU protected table->table[] dereferences */
609 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
610 queue_rcu_work(system_wq, &ctx->free_rwork);
611 }
612
613 /*
614 * When this function runs, the kioctx has been removed from the "hash table"
615 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
616 * now it's safe to cancel any that need to be.
617 */
free_ioctx_users(struct percpu_ref * ref)618 static void free_ioctx_users(struct percpu_ref *ref)
619 {
620 struct kioctx *ctx = container_of(ref, struct kioctx, users);
621 struct aio_kiocb *req;
622
623 spin_lock_irq(&ctx->ctx_lock);
624
625 while (!list_empty(&ctx->active_reqs)) {
626 req = list_first_entry(&ctx->active_reqs,
627 struct aio_kiocb, ki_list);
628 req->ki_cancel(&req->rw);
629 list_del_init(&req->ki_list);
630 }
631
632 spin_unlock_irq(&ctx->ctx_lock);
633
634 percpu_ref_kill(&ctx->reqs);
635 percpu_ref_put(&ctx->reqs);
636 }
637
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)638 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
639 {
640 unsigned i, new_nr;
641 struct kioctx_table *table, *old;
642 struct aio_ring *ring;
643
644 spin_lock(&mm->ioctx_lock);
645 table = rcu_dereference_raw(mm->ioctx_table);
646
647 while (1) {
648 if (table)
649 for (i = 0; i < table->nr; i++)
650 if (!rcu_access_pointer(table->table[i])) {
651 ctx->id = i;
652 rcu_assign_pointer(table->table[i], ctx);
653 spin_unlock(&mm->ioctx_lock);
654
655 /* While kioctx setup is in progress,
656 * we are protected from page migration
657 * changes ring_pages by ->ring_lock.
658 */
659 ring = kmap_atomic(ctx->ring_pages[0]);
660 ring->id = ctx->id;
661 kunmap_atomic(ring);
662 return 0;
663 }
664
665 new_nr = (table ? table->nr : 1) * 4;
666 spin_unlock(&mm->ioctx_lock);
667
668 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
669 new_nr, GFP_KERNEL);
670 if (!table)
671 return -ENOMEM;
672
673 table->nr = new_nr;
674
675 spin_lock(&mm->ioctx_lock);
676 old = rcu_dereference_raw(mm->ioctx_table);
677
678 if (!old) {
679 rcu_assign_pointer(mm->ioctx_table, table);
680 } else if (table->nr > old->nr) {
681 memcpy(table->table, old->table,
682 old->nr * sizeof(struct kioctx *));
683
684 rcu_assign_pointer(mm->ioctx_table, table);
685 kfree_rcu(old, rcu);
686 } else {
687 kfree(table);
688 table = old;
689 }
690 }
691 }
692
aio_nr_sub(unsigned nr)693 static void aio_nr_sub(unsigned nr)
694 {
695 spin_lock(&aio_nr_lock);
696 if (WARN_ON(aio_nr - nr > aio_nr))
697 aio_nr = 0;
698 else
699 aio_nr -= nr;
700 spin_unlock(&aio_nr_lock);
701 }
702
703 /* ioctx_alloc
704 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
705 */
ioctx_alloc(unsigned nr_events)706 static struct kioctx *ioctx_alloc(unsigned nr_events)
707 {
708 struct mm_struct *mm = current->mm;
709 struct kioctx *ctx;
710 int err = -ENOMEM;
711
712 /*
713 * Store the original nr_events -- what userspace passed to io_setup(),
714 * for counting against the global limit -- before it changes.
715 */
716 unsigned int max_reqs = nr_events;
717
718 /*
719 * We keep track of the number of available ringbuffer slots, to prevent
720 * overflow (reqs_available), and we also use percpu counters for this.
721 *
722 * So since up to half the slots might be on other cpu's percpu counters
723 * and unavailable, double nr_events so userspace sees what they
724 * expected: additionally, we move req_batch slots to/from percpu
725 * counters at a time, so make sure that isn't 0:
726 */
727 nr_events = max(nr_events, num_possible_cpus() * 4);
728 nr_events *= 2;
729
730 /* Prevent overflows */
731 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
732 pr_debug("ENOMEM: nr_events too high\n");
733 return ERR_PTR(-EINVAL);
734 }
735
736 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
737 return ERR_PTR(-EAGAIN);
738
739 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
740 if (!ctx)
741 return ERR_PTR(-ENOMEM);
742
743 ctx->max_reqs = max_reqs;
744
745 spin_lock_init(&ctx->ctx_lock);
746 spin_lock_init(&ctx->completion_lock);
747 mutex_init(&ctx->ring_lock);
748 /* Protect against page migration throughout kiotx setup by keeping
749 * the ring_lock mutex held until setup is complete. */
750 mutex_lock(&ctx->ring_lock);
751 init_waitqueue_head(&ctx->wait);
752
753 INIT_LIST_HEAD(&ctx->active_reqs);
754
755 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
756 goto err;
757
758 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
759 goto err;
760
761 ctx->cpu = alloc_percpu(struct kioctx_cpu);
762 if (!ctx->cpu)
763 goto err;
764
765 err = aio_setup_ring(ctx, nr_events);
766 if (err < 0)
767 goto err;
768
769 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
770 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
771 if (ctx->req_batch < 1)
772 ctx->req_batch = 1;
773
774 /* limit the number of system wide aios */
775 spin_lock(&aio_nr_lock);
776 if (aio_nr + ctx->max_reqs > aio_max_nr ||
777 aio_nr + ctx->max_reqs < aio_nr) {
778 spin_unlock(&aio_nr_lock);
779 err = -EAGAIN;
780 goto err_ctx;
781 }
782 aio_nr += ctx->max_reqs;
783 spin_unlock(&aio_nr_lock);
784
785 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
786 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
787
788 err = ioctx_add_table(ctx, mm);
789 if (err)
790 goto err_cleanup;
791
792 /* Release the ring_lock mutex now that all setup is complete. */
793 mutex_unlock(&ctx->ring_lock);
794
795 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
796 ctx, ctx->user_id, mm, ctx->nr_events);
797 return ctx;
798
799 err_cleanup:
800 aio_nr_sub(ctx->max_reqs);
801 err_ctx:
802 atomic_set(&ctx->dead, 1);
803 if (ctx->mmap_size)
804 vm_munmap(ctx->mmap_base, ctx->mmap_size);
805 aio_free_ring(ctx);
806 err:
807 mutex_unlock(&ctx->ring_lock);
808 free_percpu(ctx->cpu);
809 percpu_ref_exit(&ctx->reqs);
810 percpu_ref_exit(&ctx->users);
811 kmem_cache_free(kioctx_cachep, ctx);
812 pr_debug("error allocating ioctx %d\n", err);
813 return ERR_PTR(err);
814 }
815
816 /* kill_ioctx
817 * Cancels all outstanding aio requests on an aio context. Used
818 * when the processes owning a context have all exited to encourage
819 * the rapid destruction of the kioctx.
820 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)821 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
822 struct ctx_rq_wait *wait)
823 {
824 struct kioctx_table *table;
825
826 spin_lock(&mm->ioctx_lock);
827 if (atomic_xchg(&ctx->dead, 1)) {
828 spin_unlock(&mm->ioctx_lock);
829 return -EINVAL;
830 }
831
832 table = rcu_dereference_raw(mm->ioctx_table);
833 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
834 RCU_INIT_POINTER(table->table[ctx->id], NULL);
835 spin_unlock(&mm->ioctx_lock);
836
837 /* free_ioctx_reqs() will do the necessary RCU synchronization */
838 wake_up_all(&ctx->wait);
839
840 /*
841 * It'd be more correct to do this in free_ioctx(), after all
842 * the outstanding kiocbs have finished - but by then io_destroy
843 * has already returned, so io_setup() could potentially return
844 * -EAGAIN with no ioctxs actually in use (as far as userspace
845 * could tell).
846 */
847 aio_nr_sub(ctx->max_reqs);
848
849 if (ctx->mmap_size)
850 vm_munmap(ctx->mmap_base, ctx->mmap_size);
851
852 ctx->rq_wait = wait;
853 percpu_ref_kill(&ctx->users);
854 return 0;
855 }
856
857 /*
858 * exit_aio: called when the last user of mm goes away. At this point, there is
859 * no way for any new requests to be submited or any of the io_* syscalls to be
860 * called on the context.
861 *
862 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
863 * them.
864 */
exit_aio(struct mm_struct * mm)865 void exit_aio(struct mm_struct *mm)
866 {
867 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
868 struct ctx_rq_wait wait;
869 int i, skipped;
870
871 if (!table)
872 return;
873
874 atomic_set(&wait.count, table->nr);
875 init_completion(&wait.comp);
876
877 skipped = 0;
878 for (i = 0; i < table->nr; ++i) {
879 struct kioctx *ctx =
880 rcu_dereference_protected(table->table[i], true);
881
882 if (!ctx) {
883 skipped++;
884 continue;
885 }
886
887 /*
888 * We don't need to bother with munmap() here - exit_mmap(mm)
889 * is coming and it'll unmap everything. And we simply can't,
890 * this is not necessarily our ->mm.
891 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
892 * that it needs to unmap the area, just set it to 0.
893 */
894 ctx->mmap_size = 0;
895 kill_ioctx(mm, ctx, &wait);
896 }
897
898 if (!atomic_sub_and_test(skipped, &wait.count)) {
899 /* Wait until all IO for the context are done. */
900 wait_for_completion(&wait.comp);
901 }
902
903 RCU_INIT_POINTER(mm->ioctx_table, NULL);
904 kfree(table);
905 }
906
put_reqs_available(struct kioctx * ctx,unsigned nr)907 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
908 {
909 struct kioctx_cpu *kcpu;
910 unsigned long flags;
911
912 local_irq_save(flags);
913 kcpu = this_cpu_ptr(ctx->cpu);
914 kcpu->reqs_available += nr;
915
916 while (kcpu->reqs_available >= ctx->req_batch * 2) {
917 kcpu->reqs_available -= ctx->req_batch;
918 atomic_add(ctx->req_batch, &ctx->reqs_available);
919 }
920
921 local_irq_restore(flags);
922 }
923
__get_reqs_available(struct kioctx * ctx)924 static bool __get_reqs_available(struct kioctx *ctx)
925 {
926 struct kioctx_cpu *kcpu;
927 bool ret = false;
928 unsigned long flags;
929
930 local_irq_save(flags);
931 kcpu = this_cpu_ptr(ctx->cpu);
932 if (!kcpu->reqs_available) {
933 int old, avail = atomic_read(&ctx->reqs_available);
934
935 do {
936 if (avail < ctx->req_batch)
937 goto out;
938
939 old = avail;
940 avail = atomic_cmpxchg(&ctx->reqs_available,
941 avail, avail - ctx->req_batch);
942 } while (avail != old);
943
944 kcpu->reqs_available += ctx->req_batch;
945 }
946
947 ret = true;
948 kcpu->reqs_available--;
949 out:
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 /* refill_reqs_available
955 * Updates the reqs_available reference counts used for tracking the
956 * number of free slots in the completion ring. This can be called
957 * from aio_complete() (to optimistically update reqs_available) or
958 * from aio_get_req() (the we're out of events case). It must be
959 * called holding ctx->completion_lock.
960 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)961 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
962 unsigned tail)
963 {
964 unsigned events_in_ring, completed;
965
966 /* Clamp head since userland can write to it. */
967 head %= ctx->nr_events;
968 if (head <= tail)
969 events_in_ring = tail - head;
970 else
971 events_in_ring = ctx->nr_events - (head - tail);
972
973 completed = ctx->completed_events;
974 if (events_in_ring < completed)
975 completed -= events_in_ring;
976 else
977 completed = 0;
978
979 if (!completed)
980 return;
981
982 ctx->completed_events -= completed;
983 put_reqs_available(ctx, completed);
984 }
985
986 /* user_refill_reqs_available
987 * Called to refill reqs_available when aio_get_req() encounters an
988 * out of space in the completion ring.
989 */
user_refill_reqs_available(struct kioctx * ctx)990 static void user_refill_reqs_available(struct kioctx *ctx)
991 {
992 spin_lock_irq(&ctx->completion_lock);
993 if (ctx->completed_events) {
994 struct aio_ring *ring;
995 unsigned head;
996
997 /* Access of ring->head may race with aio_read_events_ring()
998 * here, but that's okay since whether we read the old version
999 * or the new version, and either will be valid. The important
1000 * part is that head cannot pass tail since we prevent
1001 * aio_complete() from updating tail by holding
1002 * ctx->completion_lock. Even if head is invalid, the check
1003 * against ctx->completed_events below will make sure we do the
1004 * safe/right thing.
1005 */
1006 ring = kmap_atomic(ctx->ring_pages[0]);
1007 head = ring->head;
1008 kunmap_atomic(ring);
1009
1010 refill_reqs_available(ctx, head, ctx->tail);
1011 }
1012
1013 spin_unlock_irq(&ctx->completion_lock);
1014 }
1015
get_reqs_available(struct kioctx * ctx)1016 static bool get_reqs_available(struct kioctx *ctx)
1017 {
1018 if (__get_reqs_available(ctx))
1019 return true;
1020 user_refill_reqs_available(ctx);
1021 return __get_reqs_available(ctx);
1022 }
1023
1024 /* aio_get_req
1025 * Allocate a slot for an aio request.
1026 * Returns NULL if no requests are free.
1027 *
1028 * The refcount is initialized to 2 - one for the async op completion,
1029 * one for the synchronous code that does this.
1030 */
aio_get_req(struct kioctx * ctx)1031 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1032 {
1033 struct aio_kiocb *req;
1034
1035 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1036 if (unlikely(!req))
1037 return NULL;
1038
1039 if (unlikely(!get_reqs_available(ctx))) {
1040 kmem_cache_free(kiocb_cachep, req);
1041 return NULL;
1042 }
1043
1044 percpu_ref_get(&ctx->reqs);
1045 req->ki_ctx = ctx;
1046 INIT_LIST_HEAD(&req->ki_list);
1047 refcount_set(&req->ki_refcnt, 2);
1048 req->ki_eventfd = NULL;
1049 return req;
1050 }
1051
lookup_ioctx(unsigned long ctx_id)1052 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1053 {
1054 struct aio_ring __user *ring = (void __user *)ctx_id;
1055 struct mm_struct *mm = current->mm;
1056 struct kioctx *ctx, *ret = NULL;
1057 struct kioctx_table *table;
1058 unsigned id;
1059
1060 if (get_user(id, &ring->id))
1061 return NULL;
1062
1063 rcu_read_lock();
1064 table = rcu_dereference(mm->ioctx_table);
1065
1066 if (!table || id >= table->nr)
1067 goto out;
1068
1069 id = array_index_nospec(id, table->nr);
1070 ctx = rcu_dereference(table->table[id]);
1071 if (ctx && ctx->user_id == ctx_id) {
1072 if (percpu_ref_tryget_live(&ctx->users))
1073 ret = ctx;
1074 }
1075 out:
1076 rcu_read_unlock();
1077 return ret;
1078 }
1079
iocb_destroy(struct aio_kiocb * iocb)1080 static inline void iocb_destroy(struct aio_kiocb *iocb)
1081 {
1082 if (iocb->ki_eventfd)
1083 eventfd_ctx_put(iocb->ki_eventfd);
1084 if (iocb->ki_filp)
1085 fput(iocb->ki_filp);
1086 percpu_ref_put(&iocb->ki_ctx->reqs);
1087 kmem_cache_free(kiocb_cachep, iocb);
1088 }
1089
1090 /* aio_complete
1091 * Called when the io request on the given iocb is complete.
1092 */
aio_complete(struct aio_kiocb * iocb)1093 static void aio_complete(struct aio_kiocb *iocb)
1094 {
1095 struct kioctx *ctx = iocb->ki_ctx;
1096 struct aio_ring *ring;
1097 struct io_event *ev_page, *event;
1098 unsigned tail, pos, head;
1099 unsigned long flags;
1100
1101 /*
1102 * Add a completion event to the ring buffer. Must be done holding
1103 * ctx->completion_lock to prevent other code from messing with the tail
1104 * pointer since we might be called from irq context.
1105 */
1106 spin_lock_irqsave(&ctx->completion_lock, flags);
1107
1108 tail = ctx->tail;
1109 pos = tail + AIO_EVENTS_OFFSET;
1110
1111 if (++tail >= ctx->nr_events)
1112 tail = 0;
1113
1114 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1116
1117 *event = iocb->ki_res;
1118
1119 kunmap_atomic(ev_page);
1120 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1121
1122 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1123 (void __user *)(unsigned long)iocb->ki_res.obj,
1124 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1125
1126 /* after flagging the request as done, we
1127 * must never even look at it again
1128 */
1129 smp_wmb(); /* make event visible before updating tail */
1130
1131 ctx->tail = tail;
1132
1133 ring = kmap_atomic(ctx->ring_pages[0]);
1134 head = ring->head;
1135 ring->tail = tail;
1136 kunmap_atomic(ring);
1137 flush_dcache_page(ctx->ring_pages[0]);
1138
1139 ctx->completed_events++;
1140 if (ctx->completed_events > 1)
1141 refill_reqs_available(ctx, head, tail);
1142 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1143
1144 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1145
1146 /*
1147 * Check if the user asked us to deliver the result through an
1148 * eventfd. The eventfd_signal() function is safe to be called
1149 * from IRQ context.
1150 */
1151 if (iocb->ki_eventfd)
1152 eventfd_signal(iocb->ki_eventfd, 1);
1153
1154 /*
1155 * We have to order our ring_info tail store above and test
1156 * of the wait list below outside the wait lock. This is
1157 * like in wake_up_bit() where clearing a bit has to be
1158 * ordered with the unlocked test.
1159 */
1160 smp_mb();
1161
1162 if (waitqueue_active(&ctx->wait))
1163 wake_up(&ctx->wait);
1164 }
1165
iocb_put(struct aio_kiocb * iocb)1166 static inline void iocb_put(struct aio_kiocb *iocb)
1167 {
1168 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1169 aio_complete(iocb);
1170 iocb_destroy(iocb);
1171 }
1172 }
1173
1174 /* aio_read_events_ring
1175 * Pull an event off of the ioctx's event ring. Returns the number of
1176 * events fetched
1177 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1178 static long aio_read_events_ring(struct kioctx *ctx,
1179 struct io_event __user *event, long nr)
1180 {
1181 struct aio_ring *ring;
1182 unsigned head, tail, pos;
1183 long ret = 0;
1184 int copy_ret;
1185
1186 /*
1187 * The mutex can block and wake us up and that will cause
1188 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1189 * and repeat. This should be rare enough that it doesn't cause
1190 * peformance issues. See the comment in read_events() for more detail.
1191 */
1192 sched_annotate_sleep();
1193 mutex_lock(&ctx->ring_lock);
1194
1195 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1196 ring = kmap_atomic(ctx->ring_pages[0]);
1197 head = ring->head;
1198 tail = ring->tail;
1199 kunmap_atomic(ring);
1200
1201 /*
1202 * Ensure that once we've read the current tail pointer, that
1203 * we also see the events that were stored up to the tail.
1204 */
1205 smp_rmb();
1206
1207 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1208
1209 if (head == tail)
1210 goto out;
1211
1212 head %= ctx->nr_events;
1213 tail %= ctx->nr_events;
1214
1215 while (ret < nr) {
1216 long avail;
1217 struct io_event *ev;
1218 struct page *page;
1219
1220 avail = (head <= tail ? tail : ctx->nr_events) - head;
1221 if (head == tail)
1222 break;
1223
1224 pos = head + AIO_EVENTS_OFFSET;
1225 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1226 pos %= AIO_EVENTS_PER_PAGE;
1227
1228 avail = min(avail, nr - ret);
1229 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1230
1231 ev = kmap(page);
1232 copy_ret = copy_to_user(event + ret, ev + pos,
1233 sizeof(*ev) * avail);
1234 kunmap(page);
1235
1236 if (unlikely(copy_ret)) {
1237 ret = -EFAULT;
1238 goto out;
1239 }
1240
1241 ret += avail;
1242 head += avail;
1243 head %= ctx->nr_events;
1244 }
1245
1246 ring = kmap_atomic(ctx->ring_pages[0]);
1247 ring->head = head;
1248 kunmap_atomic(ring);
1249 flush_dcache_page(ctx->ring_pages[0]);
1250
1251 pr_debug("%li h%u t%u\n", ret, head, tail);
1252 out:
1253 mutex_unlock(&ctx->ring_lock);
1254
1255 return ret;
1256 }
1257
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1258 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1259 struct io_event __user *event, long *i)
1260 {
1261 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1262
1263 if (ret > 0)
1264 *i += ret;
1265
1266 if (unlikely(atomic_read(&ctx->dead)))
1267 ret = -EINVAL;
1268
1269 if (!*i)
1270 *i = ret;
1271
1272 return ret < 0 || *i >= min_nr;
1273 }
1274
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1275 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1276 struct io_event __user *event,
1277 ktime_t until)
1278 {
1279 long ret = 0;
1280
1281 /*
1282 * Note that aio_read_events() is being called as the conditional - i.e.
1283 * we're calling it after prepare_to_wait() has set task state to
1284 * TASK_INTERRUPTIBLE.
1285 *
1286 * But aio_read_events() can block, and if it blocks it's going to flip
1287 * the task state back to TASK_RUNNING.
1288 *
1289 * This should be ok, provided it doesn't flip the state back to
1290 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1291 * will only happen if the mutex_lock() call blocks, and we then find
1292 * the ringbuffer empty. So in practice we should be ok, but it's
1293 * something to be aware of when touching this code.
1294 */
1295 if (until == 0)
1296 aio_read_events(ctx, min_nr, nr, event, &ret);
1297 else
1298 wait_event_interruptible_hrtimeout(ctx->wait,
1299 aio_read_events(ctx, min_nr, nr, event, &ret),
1300 until);
1301 return ret;
1302 }
1303
1304 /* sys_io_setup:
1305 * Create an aio_context capable of receiving at least nr_events.
1306 * ctxp must not point to an aio_context that already exists, and
1307 * must be initialized to 0 prior to the call. On successful
1308 * creation of the aio_context, *ctxp is filled in with the resulting
1309 * handle. May fail with -EINVAL if *ctxp is not initialized,
1310 * if the specified nr_events exceeds internal limits. May fail
1311 * with -EAGAIN if the specified nr_events exceeds the user's limit
1312 * of available events. May fail with -ENOMEM if insufficient kernel
1313 * resources are available. May fail with -EFAULT if an invalid
1314 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1315 * implemented.
1316 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1317 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1318 {
1319 struct kioctx *ioctx = NULL;
1320 unsigned long ctx;
1321 long ret;
1322
1323 ret = get_user(ctx, ctxp);
1324 if (unlikely(ret))
1325 goto out;
1326
1327 ret = -EINVAL;
1328 if (unlikely(ctx || nr_events == 0)) {
1329 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1330 ctx, nr_events);
1331 goto out;
1332 }
1333
1334 ioctx = ioctx_alloc(nr_events);
1335 ret = PTR_ERR(ioctx);
1336 if (!IS_ERR(ioctx)) {
1337 ret = put_user(ioctx->user_id, ctxp);
1338 if (ret)
1339 kill_ioctx(current->mm, ioctx, NULL);
1340 percpu_ref_put(&ioctx->users);
1341 }
1342
1343 out:
1344 return ret;
1345 }
1346
1347 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1348 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1349 {
1350 struct kioctx *ioctx = NULL;
1351 unsigned long ctx;
1352 long ret;
1353
1354 ret = get_user(ctx, ctx32p);
1355 if (unlikely(ret))
1356 goto out;
1357
1358 ret = -EINVAL;
1359 if (unlikely(ctx || nr_events == 0)) {
1360 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1361 ctx, nr_events);
1362 goto out;
1363 }
1364
1365 ioctx = ioctx_alloc(nr_events);
1366 ret = PTR_ERR(ioctx);
1367 if (!IS_ERR(ioctx)) {
1368 /* truncating is ok because it's a user address */
1369 ret = put_user((u32)ioctx->user_id, ctx32p);
1370 if (ret)
1371 kill_ioctx(current->mm, ioctx, NULL);
1372 percpu_ref_put(&ioctx->users);
1373 }
1374
1375 out:
1376 return ret;
1377 }
1378 #endif
1379
1380 /* sys_io_destroy:
1381 * Destroy the aio_context specified. May cancel any outstanding
1382 * AIOs and block on completion. Will fail with -ENOSYS if not
1383 * implemented. May fail with -EINVAL if the context pointed to
1384 * is invalid.
1385 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1386 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1387 {
1388 struct kioctx *ioctx = lookup_ioctx(ctx);
1389 if (likely(NULL != ioctx)) {
1390 struct ctx_rq_wait wait;
1391 int ret;
1392
1393 init_completion(&wait.comp);
1394 atomic_set(&wait.count, 1);
1395
1396 /* Pass requests_done to kill_ioctx() where it can be set
1397 * in a thread-safe way. If we try to set it here then we have
1398 * a race condition if two io_destroy() called simultaneously.
1399 */
1400 ret = kill_ioctx(current->mm, ioctx, &wait);
1401 percpu_ref_put(&ioctx->users);
1402
1403 /* Wait until all IO for the context are done. Otherwise kernel
1404 * keep using user-space buffers even if user thinks the context
1405 * is destroyed.
1406 */
1407 if (!ret)
1408 wait_for_completion(&wait.comp);
1409
1410 return ret;
1411 }
1412 pr_debug("EINVAL: invalid context id\n");
1413 return -EINVAL;
1414 }
1415
aio_remove_iocb(struct aio_kiocb * iocb)1416 static void aio_remove_iocb(struct aio_kiocb *iocb)
1417 {
1418 struct kioctx *ctx = iocb->ki_ctx;
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&ctx->ctx_lock, flags);
1422 list_del(&iocb->ki_list);
1423 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1424 }
1425
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1426 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1427 {
1428 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1429
1430 if (!list_empty_careful(&iocb->ki_list))
1431 aio_remove_iocb(iocb);
1432
1433 if (kiocb->ki_flags & IOCB_WRITE) {
1434 struct inode *inode = file_inode(kiocb->ki_filp);
1435
1436 /*
1437 * Tell lockdep we inherited freeze protection from submission
1438 * thread.
1439 */
1440 if (S_ISREG(inode->i_mode))
1441 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1442 file_end_write(kiocb->ki_filp);
1443 }
1444
1445 iocb->ki_res.res = res;
1446 iocb->ki_res.res2 = res2;
1447 iocb_put(iocb);
1448 }
1449
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1450 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1451 {
1452 int ret;
1453
1454 req->ki_complete = aio_complete_rw;
1455 req->private = NULL;
1456 req->ki_pos = iocb->aio_offset;
1457 req->ki_flags = iocb_flags(req->ki_filp);
1458 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1459 req->ki_flags |= IOCB_EVENTFD;
1460 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1461 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1462 /*
1463 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1464 * aio_reqprio is interpreted as an I/O scheduling
1465 * class and priority.
1466 */
1467 ret = ioprio_check_cap(iocb->aio_reqprio);
1468 if (ret) {
1469 pr_debug("aio ioprio check cap error: %d\n", ret);
1470 return ret;
1471 }
1472
1473 req->ki_ioprio = iocb->aio_reqprio;
1474 } else
1475 req->ki_ioprio = get_current_ioprio();
1476
1477 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1478 if (unlikely(ret))
1479 return ret;
1480
1481 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1482 return 0;
1483 }
1484
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1485 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1486 struct iovec **iovec, bool vectored, bool compat,
1487 struct iov_iter *iter)
1488 {
1489 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1490 size_t len = iocb->aio_nbytes;
1491
1492 if (!vectored) {
1493 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1494 *iovec = NULL;
1495 return ret;
1496 }
1497
1498 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1499 }
1500
aio_rw_done(struct kiocb * req,ssize_t ret)1501 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1502 {
1503 switch (ret) {
1504 case -EIOCBQUEUED:
1505 break;
1506 case -ERESTARTSYS:
1507 case -ERESTARTNOINTR:
1508 case -ERESTARTNOHAND:
1509 case -ERESTART_RESTARTBLOCK:
1510 /*
1511 * There's no easy way to restart the syscall since other AIO's
1512 * may be already running. Just fail this IO with EINTR.
1513 */
1514 ret = -EINTR;
1515 fallthrough;
1516 default:
1517 req->ki_complete(req, ret, 0);
1518 }
1519 }
1520
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1521 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1522 bool vectored, bool compat)
1523 {
1524 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1525 struct iov_iter iter;
1526 struct file *file;
1527 int ret;
1528
1529 ret = aio_prep_rw(req, iocb);
1530 if (ret)
1531 return ret;
1532 file = req->ki_filp;
1533 if (unlikely(!(file->f_mode & FMODE_READ)))
1534 return -EBADF;
1535 ret = -EINVAL;
1536 if (unlikely(!file->f_op->read_iter))
1537 return -EINVAL;
1538
1539 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1540 if (ret < 0)
1541 return ret;
1542 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1543 if (!ret)
1544 aio_rw_done(req, call_read_iter(file, req, &iter));
1545 kfree(iovec);
1546 return ret;
1547 }
1548
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1549 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1550 bool vectored, bool compat)
1551 {
1552 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1553 struct iov_iter iter;
1554 struct file *file;
1555 int ret;
1556
1557 ret = aio_prep_rw(req, iocb);
1558 if (ret)
1559 return ret;
1560 file = req->ki_filp;
1561
1562 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1563 return -EBADF;
1564 if (unlikely(!file->f_op->write_iter))
1565 return -EINVAL;
1566
1567 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1568 if (ret < 0)
1569 return ret;
1570 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1571 if (!ret) {
1572 /*
1573 * Open-code file_start_write here to grab freeze protection,
1574 * which will be released by another thread in
1575 * aio_complete_rw(). Fool lockdep by telling it the lock got
1576 * released so that it doesn't complain about the held lock when
1577 * we return to userspace.
1578 */
1579 if (S_ISREG(file_inode(file)->i_mode)) {
1580 sb_start_write(file_inode(file)->i_sb);
1581 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1582 }
1583 req->ki_flags |= IOCB_WRITE;
1584 aio_rw_done(req, call_write_iter(file, req, &iter));
1585 }
1586 kfree(iovec);
1587 return ret;
1588 }
1589
aio_fsync_work(struct work_struct * work)1590 static void aio_fsync_work(struct work_struct *work)
1591 {
1592 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1593 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1594
1595 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1596 revert_creds(old_cred);
1597 put_cred(iocb->fsync.creds);
1598 iocb_put(iocb);
1599 }
1600
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1601 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1602 bool datasync)
1603 {
1604 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1605 iocb->aio_rw_flags))
1606 return -EINVAL;
1607
1608 if (unlikely(!req->file->f_op->fsync))
1609 return -EINVAL;
1610
1611 req->creds = prepare_creds();
1612 if (!req->creds)
1613 return -ENOMEM;
1614
1615 req->datasync = datasync;
1616 INIT_WORK(&req->work, aio_fsync_work);
1617 schedule_work(&req->work);
1618 return 0;
1619 }
1620
aio_poll_put_work(struct work_struct * work)1621 static void aio_poll_put_work(struct work_struct *work)
1622 {
1623 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1624 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1625
1626 iocb_put(iocb);
1627 }
1628
1629 /*
1630 * Safely lock the waitqueue which the request is on, synchronizing with the
1631 * case where the ->poll() provider decides to free its waitqueue early.
1632 *
1633 * Returns true on success, meaning that req->head->lock was locked, req->wait
1634 * is on req->head, and an RCU read lock was taken. Returns false if the
1635 * request was already removed from its waitqueue (which might no longer exist).
1636 */
poll_iocb_lock_wq(struct poll_iocb * req)1637 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1638 {
1639 wait_queue_head_t *head;
1640
1641 /*
1642 * While we hold the waitqueue lock and the waitqueue is nonempty,
1643 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1644 * lock in the first place can race with the waitqueue being freed.
1645 *
1646 * We solve this as eventpoll does: by taking advantage of the fact that
1647 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1648 * we enter rcu_read_lock() and see that the pointer to the queue is
1649 * non-NULL, we can then lock it without the memory being freed out from
1650 * under us, then check whether the request is still on the queue.
1651 *
1652 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1653 * case the caller deletes the entry from the queue, leaving it empty.
1654 * In that case, only RCU prevents the queue memory from being freed.
1655 */
1656 rcu_read_lock();
1657 head = smp_load_acquire(&req->head);
1658 if (head) {
1659 spin_lock(&head->lock);
1660 if (!list_empty(&req->wait.entry))
1661 return true;
1662 spin_unlock(&head->lock);
1663 }
1664 rcu_read_unlock();
1665 return false;
1666 }
1667
poll_iocb_unlock_wq(struct poll_iocb * req)1668 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1669 {
1670 spin_unlock(&req->head->lock);
1671 rcu_read_unlock();
1672 }
1673
aio_poll_complete_work(struct work_struct * work)1674 static void aio_poll_complete_work(struct work_struct *work)
1675 {
1676 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1677 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1678 struct poll_table_struct pt = { ._key = req->events };
1679 struct kioctx *ctx = iocb->ki_ctx;
1680 __poll_t mask = 0;
1681
1682 if (!READ_ONCE(req->cancelled))
1683 mask = vfs_poll(req->file, &pt) & req->events;
1684
1685 /*
1686 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1687 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1688 * synchronize with them. In the cancellation case the list_del_init
1689 * itself is not actually needed, but harmless so we keep it in to
1690 * avoid further branches in the fast path.
1691 */
1692 spin_lock_irq(&ctx->ctx_lock);
1693 if (poll_iocb_lock_wq(req)) {
1694 if (!mask && !READ_ONCE(req->cancelled)) {
1695 /*
1696 * The request isn't actually ready to be completed yet.
1697 * Reschedule completion if another wakeup came in.
1698 */
1699 if (req->work_need_resched) {
1700 schedule_work(&req->work);
1701 req->work_need_resched = false;
1702 } else {
1703 req->work_scheduled = false;
1704 }
1705 poll_iocb_unlock_wq(req);
1706 spin_unlock_irq(&ctx->ctx_lock);
1707 return;
1708 }
1709 list_del_init(&req->wait.entry);
1710 poll_iocb_unlock_wq(req);
1711 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1712 list_del_init(&iocb->ki_list);
1713 iocb->ki_res.res = mangle_poll(mask);
1714 spin_unlock_irq(&ctx->ctx_lock);
1715
1716 iocb_put(iocb);
1717 }
1718
1719 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1720 static int aio_poll_cancel(struct kiocb *iocb)
1721 {
1722 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1723 struct poll_iocb *req = &aiocb->poll;
1724
1725 if (poll_iocb_lock_wq(req)) {
1726 WRITE_ONCE(req->cancelled, true);
1727 if (!req->work_scheduled) {
1728 schedule_work(&aiocb->poll.work);
1729 req->work_scheduled = true;
1730 }
1731 poll_iocb_unlock_wq(req);
1732 } /* else, the request was force-cancelled by POLLFREE already */
1733
1734 return 0;
1735 }
1736
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1737 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1738 void *key)
1739 {
1740 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1741 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1742 __poll_t mask = key_to_poll(key);
1743 unsigned long flags;
1744
1745 /* for instances that support it check for an event match first: */
1746 if (mask && !(mask & req->events))
1747 return 0;
1748
1749 /*
1750 * Complete the request inline if possible. This requires that three
1751 * conditions be met:
1752 * 1. An event mask must have been passed. If a plain wakeup was done
1753 * instead, then mask == 0 and we have to call vfs_poll() to get
1754 * the events, so inline completion isn't possible.
1755 * 2. The completion work must not have already been scheduled.
1756 * 3. ctx_lock must not be busy. We have to use trylock because we
1757 * already hold the waitqueue lock, so this inverts the normal
1758 * locking order. Use irqsave/irqrestore because not all
1759 * filesystems (e.g. fuse) call this function with IRQs disabled,
1760 * yet IRQs have to be disabled before ctx_lock is obtained.
1761 */
1762 if (mask && !req->work_scheduled &&
1763 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1764 struct kioctx *ctx = iocb->ki_ctx;
1765
1766 list_del_init(&req->wait.entry);
1767 list_del(&iocb->ki_list);
1768 iocb->ki_res.res = mangle_poll(mask);
1769 if (iocb->ki_eventfd && eventfd_signal_count()) {
1770 iocb = NULL;
1771 INIT_WORK(&req->work, aio_poll_put_work);
1772 schedule_work(&req->work);
1773 }
1774 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1775 if (iocb)
1776 iocb_put(iocb);
1777 } else {
1778 /*
1779 * Schedule the completion work if needed. If it was already
1780 * scheduled, record that another wakeup came in.
1781 *
1782 * Don't remove the request from the waitqueue here, as it might
1783 * not actually be complete yet (we won't know until vfs_poll()
1784 * is called), and we must not miss any wakeups. POLLFREE is an
1785 * exception to this; see below.
1786 */
1787 if (req->work_scheduled) {
1788 req->work_need_resched = true;
1789 } else {
1790 schedule_work(&req->work);
1791 req->work_scheduled = true;
1792 }
1793
1794 /*
1795 * If the waitqueue is being freed early but we can't complete
1796 * the request inline, we have to tear down the request as best
1797 * we can. That means immediately removing the request from its
1798 * waitqueue and preventing all further accesses to the
1799 * waitqueue via the request. We also need to schedule the
1800 * completion work (done above). Also mark the request as
1801 * cancelled, to potentially skip an unneeded call to ->poll().
1802 */
1803 if (mask & POLLFREE) {
1804 WRITE_ONCE(req->cancelled, true);
1805 list_del_init(&req->wait.entry);
1806
1807 /*
1808 * Careful: this *must* be the last step, since as soon
1809 * as req->head is NULL'ed out, the request can be
1810 * completed and freed, since aio_poll_complete_work()
1811 * will no longer need to take the waitqueue lock.
1812 */
1813 smp_store_release(&req->head, NULL);
1814 }
1815 }
1816 return 1;
1817 }
1818
1819 struct aio_poll_table {
1820 struct poll_table_struct pt;
1821 struct aio_kiocb *iocb;
1822 bool queued;
1823 int error;
1824 };
1825
1826 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1827 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1828 struct poll_table_struct *p)
1829 {
1830 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1831
1832 /* multiple wait queues per file are not supported */
1833 if (unlikely(pt->queued)) {
1834 pt->error = -EINVAL;
1835 return;
1836 }
1837
1838 pt->queued = true;
1839 pt->error = 0;
1840 pt->iocb->poll.head = head;
1841 add_wait_queue(head, &pt->iocb->poll.wait);
1842 }
1843
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1844 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1845 {
1846 struct kioctx *ctx = aiocb->ki_ctx;
1847 struct poll_iocb *req = &aiocb->poll;
1848 struct aio_poll_table apt;
1849 bool cancel = false;
1850 __poll_t mask;
1851
1852 /* reject any unknown events outside the normal event mask. */
1853 if ((u16)iocb->aio_buf != iocb->aio_buf)
1854 return -EINVAL;
1855 /* reject fields that are not defined for poll */
1856 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1857 return -EINVAL;
1858
1859 INIT_WORK(&req->work, aio_poll_complete_work);
1860 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1861
1862 req->head = NULL;
1863 req->cancelled = false;
1864 req->work_scheduled = false;
1865 req->work_need_resched = false;
1866
1867 apt.pt._qproc = aio_poll_queue_proc;
1868 apt.pt._key = req->events;
1869 apt.iocb = aiocb;
1870 apt.queued = false;
1871 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1872
1873 /* initialized the list so that we can do list_empty checks */
1874 INIT_LIST_HEAD(&req->wait.entry);
1875 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1876
1877 mask = vfs_poll(req->file, &apt.pt) & req->events;
1878 spin_lock_irq(&ctx->ctx_lock);
1879 if (likely(apt.queued)) {
1880 bool on_queue = poll_iocb_lock_wq(req);
1881
1882 if (!on_queue || req->work_scheduled) {
1883 /*
1884 * aio_poll_wake() already either scheduled the async
1885 * completion work, or completed the request inline.
1886 */
1887 if (apt.error) /* unsupported case: multiple queues */
1888 cancel = true;
1889 apt.error = 0;
1890 mask = 0;
1891 }
1892 if (mask || apt.error) {
1893 /* Steal to complete synchronously. */
1894 list_del_init(&req->wait.entry);
1895 } else if (cancel) {
1896 /* Cancel if possible (may be too late though). */
1897 WRITE_ONCE(req->cancelled, true);
1898 } else if (on_queue) {
1899 /*
1900 * Actually waiting for an event, so add the request to
1901 * active_reqs so that it can be cancelled if needed.
1902 */
1903 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1904 aiocb->ki_cancel = aio_poll_cancel;
1905 }
1906 if (on_queue)
1907 poll_iocb_unlock_wq(req);
1908 }
1909 if (mask) { /* no async, we'd stolen it */
1910 aiocb->ki_res.res = mangle_poll(mask);
1911 apt.error = 0;
1912 }
1913 spin_unlock_irq(&ctx->ctx_lock);
1914 if (mask)
1915 iocb_put(aiocb);
1916 return apt.error;
1917 }
1918
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1919 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1920 struct iocb __user *user_iocb, struct aio_kiocb *req,
1921 bool compat)
1922 {
1923 req->ki_filp = fget(iocb->aio_fildes);
1924 if (unlikely(!req->ki_filp))
1925 return -EBADF;
1926
1927 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1928 struct eventfd_ctx *eventfd;
1929 /*
1930 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1931 * instance of the file* now. The file descriptor must be
1932 * an eventfd() fd, and will be signaled for each completed
1933 * event using the eventfd_signal() function.
1934 */
1935 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1936 if (IS_ERR(eventfd))
1937 return PTR_ERR(eventfd);
1938
1939 req->ki_eventfd = eventfd;
1940 }
1941
1942 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1943 pr_debug("EFAULT: aio_key\n");
1944 return -EFAULT;
1945 }
1946
1947 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1948 req->ki_res.data = iocb->aio_data;
1949 req->ki_res.res = 0;
1950 req->ki_res.res2 = 0;
1951
1952 switch (iocb->aio_lio_opcode) {
1953 case IOCB_CMD_PREAD:
1954 return aio_read(&req->rw, iocb, false, compat);
1955 case IOCB_CMD_PWRITE:
1956 return aio_write(&req->rw, iocb, false, compat);
1957 case IOCB_CMD_PREADV:
1958 return aio_read(&req->rw, iocb, true, compat);
1959 case IOCB_CMD_PWRITEV:
1960 return aio_write(&req->rw, iocb, true, compat);
1961 case IOCB_CMD_FSYNC:
1962 return aio_fsync(&req->fsync, iocb, false);
1963 case IOCB_CMD_FDSYNC:
1964 return aio_fsync(&req->fsync, iocb, true);
1965 case IOCB_CMD_POLL:
1966 return aio_poll(req, iocb);
1967 default:
1968 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1969 return -EINVAL;
1970 }
1971 }
1972
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1973 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1974 bool compat)
1975 {
1976 struct aio_kiocb *req;
1977 struct iocb iocb;
1978 int err;
1979
1980 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1981 return -EFAULT;
1982
1983 /* enforce forwards compatibility on users */
1984 if (unlikely(iocb.aio_reserved2)) {
1985 pr_debug("EINVAL: reserve field set\n");
1986 return -EINVAL;
1987 }
1988
1989 /* prevent overflows */
1990 if (unlikely(
1991 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1992 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1993 ((ssize_t)iocb.aio_nbytes < 0)
1994 )) {
1995 pr_debug("EINVAL: overflow check\n");
1996 return -EINVAL;
1997 }
1998
1999 req = aio_get_req(ctx);
2000 if (unlikely(!req))
2001 return -EAGAIN;
2002
2003 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2004
2005 /* Done with the synchronous reference */
2006 iocb_put(req);
2007
2008 /*
2009 * If err is 0, we'd either done aio_complete() ourselves or have
2010 * arranged for that to be done asynchronously. Anything non-zero
2011 * means that we need to destroy req ourselves.
2012 */
2013 if (unlikely(err)) {
2014 iocb_destroy(req);
2015 put_reqs_available(ctx, 1);
2016 }
2017 return err;
2018 }
2019
2020 /* sys_io_submit:
2021 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2022 * the number of iocbs queued. May return -EINVAL if the aio_context
2023 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2024 * *iocbpp[0] is not properly initialized, if the operation specified
2025 * is invalid for the file descriptor in the iocb. May fail with
2026 * -EFAULT if any of the data structures point to invalid data. May
2027 * fail with -EBADF if the file descriptor specified in the first
2028 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2029 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2030 * fail with -ENOSYS if not implemented.
2031 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2032 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2033 struct iocb __user * __user *, iocbpp)
2034 {
2035 struct kioctx *ctx;
2036 long ret = 0;
2037 int i = 0;
2038 struct blk_plug plug;
2039
2040 if (unlikely(nr < 0))
2041 return -EINVAL;
2042
2043 ctx = lookup_ioctx(ctx_id);
2044 if (unlikely(!ctx)) {
2045 pr_debug("EINVAL: invalid context id\n");
2046 return -EINVAL;
2047 }
2048
2049 if (nr > ctx->nr_events)
2050 nr = ctx->nr_events;
2051
2052 if (nr > AIO_PLUG_THRESHOLD)
2053 blk_start_plug(&plug);
2054 for (i = 0; i < nr; i++) {
2055 struct iocb __user *user_iocb;
2056
2057 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2058 ret = -EFAULT;
2059 break;
2060 }
2061
2062 ret = io_submit_one(ctx, user_iocb, false);
2063 if (ret)
2064 break;
2065 }
2066 if (nr > AIO_PLUG_THRESHOLD)
2067 blk_finish_plug(&plug);
2068
2069 percpu_ref_put(&ctx->users);
2070 return i ? i : ret;
2071 }
2072
2073 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2074 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2075 int, nr, compat_uptr_t __user *, iocbpp)
2076 {
2077 struct kioctx *ctx;
2078 long ret = 0;
2079 int i = 0;
2080 struct blk_plug plug;
2081
2082 if (unlikely(nr < 0))
2083 return -EINVAL;
2084
2085 ctx = lookup_ioctx(ctx_id);
2086 if (unlikely(!ctx)) {
2087 pr_debug("EINVAL: invalid context id\n");
2088 return -EINVAL;
2089 }
2090
2091 if (nr > ctx->nr_events)
2092 nr = ctx->nr_events;
2093
2094 if (nr > AIO_PLUG_THRESHOLD)
2095 blk_start_plug(&plug);
2096 for (i = 0; i < nr; i++) {
2097 compat_uptr_t user_iocb;
2098
2099 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2100 ret = -EFAULT;
2101 break;
2102 }
2103
2104 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2105 if (ret)
2106 break;
2107 }
2108 if (nr > AIO_PLUG_THRESHOLD)
2109 blk_finish_plug(&plug);
2110
2111 percpu_ref_put(&ctx->users);
2112 return i ? i : ret;
2113 }
2114 #endif
2115
2116 /* sys_io_cancel:
2117 * Attempts to cancel an iocb previously passed to io_submit. If
2118 * the operation is successfully cancelled, the resulting event is
2119 * copied into the memory pointed to by result without being placed
2120 * into the completion queue and 0 is returned. May fail with
2121 * -EFAULT if any of the data structures pointed to are invalid.
2122 * May fail with -EINVAL if aio_context specified by ctx_id is
2123 * invalid. May fail with -EAGAIN if the iocb specified was not
2124 * cancelled. Will fail with -ENOSYS if not implemented.
2125 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2126 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2127 struct io_event __user *, result)
2128 {
2129 struct kioctx *ctx;
2130 struct aio_kiocb *kiocb;
2131 int ret = -EINVAL;
2132 u32 key;
2133 u64 obj = (u64)(unsigned long)iocb;
2134
2135 if (unlikely(get_user(key, &iocb->aio_key)))
2136 return -EFAULT;
2137 if (unlikely(key != KIOCB_KEY))
2138 return -EINVAL;
2139
2140 ctx = lookup_ioctx(ctx_id);
2141 if (unlikely(!ctx))
2142 return -EINVAL;
2143
2144 spin_lock_irq(&ctx->ctx_lock);
2145 /* TODO: use a hash or array, this sucks. */
2146 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2147 if (kiocb->ki_res.obj == obj) {
2148 ret = kiocb->ki_cancel(&kiocb->rw);
2149 list_del_init(&kiocb->ki_list);
2150 break;
2151 }
2152 }
2153 spin_unlock_irq(&ctx->ctx_lock);
2154
2155 if (!ret) {
2156 /*
2157 * The result argument is no longer used - the io_event is
2158 * always delivered via the ring buffer. -EINPROGRESS indicates
2159 * cancellation is progress:
2160 */
2161 ret = -EINPROGRESS;
2162 }
2163
2164 percpu_ref_put(&ctx->users);
2165
2166 return ret;
2167 }
2168
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2169 static long do_io_getevents(aio_context_t ctx_id,
2170 long min_nr,
2171 long nr,
2172 struct io_event __user *events,
2173 struct timespec64 *ts)
2174 {
2175 ktime_t until = KTIME_MAX;
2176 struct kioctx *ioctx = NULL;
2177 long ret = -EINVAL;
2178
2179 if (ts) {
2180 if (!timespec64_valid(ts))
2181 return ret;
2182 until = timespec64_to_ktime(*ts);
2183 }
2184
2185 ioctx = lookup_ioctx(ctx_id);
2186 if (likely(ioctx)) {
2187 if (likely(min_nr <= nr && min_nr >= 0))
2188 ret = read_events(ioctx, min_nr, nr, events, until);
2189 percpu_ref_put(&ioctx->users);
2190 }
2191
2192 return ret;
2193 }
2194
2195 /* io_getevents:
2196 * Attempts to read at least min_nr events and up to nr events from
2197 * the completion queue for the aio_context specified by ctx_id. If
2198 * it succeeds, the number of read events is returned. May fail with
2199 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2200 * out of range, if timeout is out of range. May fail with -EFAULT
2201 * if any of the memory specified is invalid. May return 0 or
2202 * < min_nr if the timeout specified by timeout has elapsed
2203 * before sufficient events are available, where timeout == NULL
2204 * specifies an infinite timeout. Note that the timeout pointed to by
2205 * timeout is relative. Will fail with -ENOSYS if not implemented.
2206 */
2207 #ifdef CONFIG_64BIT
2208
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2209 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2210 long, min_nr,
2211 long, nr,
2212 struct io_event __user *, events,
2213 struct __kernel_timespec __user *, timeout)
2214 {
2215 struct timespec64 ts;
2216 int ret;
2217
2218 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2219 return -EFAULT;
2220
2221 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2222 if (!ret && signal_pending(current))
2223 ret = -EINTR;
2224 return ret;
2225 }
2226
2227 #endif
2228
2229 struct __aio_sigset {
2230 const sigset_t __user *sigmask;
2231 size_t sigsetsize;
2232 };
2233
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2234 SYSCALL_DEFINE6(io_pgetevents,
2235 aio_context_t, ctx_id,
2236 long, min_nr,
2237 long, nr,
2238 struct io_event __user *, events,
2239 struct __kernel_timespec __user *, timeout,
2240 const struct __aio_sigset __user *, usig)
2241 {
2242 struct __aio_sigset ksig = { NULL, };
2243 struct timespec64 ts;
2244 bool interrupted;
2245 int ret;
2246
2247 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2248 return -EFAULT;
2249
2250 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2251 return -EFAULT;
2252
2253 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2254 if (ret)
2255 return ret;
2256
2257 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2258
2259 interrupted = signal_pending(current);
2260 restore_saved_sigmask_unless(interrupted);
2261 if (interrupted && !ret)
2262 ret = -ERESTARTNOHAND;
2263
2264 return ret;
2265 }
2266
2267 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2268
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2269 SYSCALL_DEFINE6(io_pgetevents_time32,
2270 aio_context_t, ctx_id,
2271 long, min_nr,
2272 long, nr,
2273 struct io_event __user *, events,
2274 struct old_timespec32 __user *, timeout,
2275 const struct __aio_sigset __user *, usig)
2276 {
2277 struct __aio_sigset ksig = { NULL, };
2278 struct timespec64 ts;
2279 bool interrupted;
2280 int ret;
2281
2282 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2283 return -EFAULT;
2284
2285 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2286 return -EFAULT;
2287
2288
2289 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2290 if (ret)
2291 return ret;
2292
2293 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2294
2295 interrupted = signal_pending(current);
2296 restore_saved_sigmask_unless(interrupted);
2297 if (interrupted && !ret)
2298 ret = -ERESTARTNOHAND;
2299
2300 return ret;
2301 }
2302
2303 #endif
2304
2305 #if defined(CONFIG_COMPAT_32BIT_TIME)
2306
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2307 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2308 __s32, min_nr,
2309 __s32, nr,
2310 struct io_event __user *, events,
2311 struct old_timespec32 __user *, timeout)
2312 {
2313 struct timespec64 t;
2314 int ret;
2315
2316 if (timeout && get_old_timespec32(&t, timeout))
2317 return -EFAULT;
2318
2319 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2320 if (!ret && signal_pending(current))
2321 ret = -EINTR;
2322 return ret;
2323 }
2324
2325 #endif
2326
2327 #ifdef CONFIG_COMPAT
2328
2329 struct __compat_aio_sigset {
2330 compat_uptr_t sigmask;
2331 compat_size_t sigsetsize;
2332 };
2333
2334 #if defined(CONFIG_COMPAT_32BIT_TIME)
2335
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2336 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2337 compat_aio_context_t, ctx_id,
2338 compat_long_t, min_nr,
2339 compat_long_t, nr,
2340 struct io_event __user *, events,
2341 struct old_timespec32 __user *, timeout,
2342 const struct __compat_aio_sigset __user *, usig)
2343 {
2344 struct __compat_aio_sigset ksig = { 0, };
2345 struct timespec64 t;
2346 bool interrupted;
2347 int ret;
2348
2349 if (timeout && get_old_timespec32(&t, timeout))
2350 return -EFAULT;
2351
2352 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2353 return -EFAULT;
2354
2355 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2356 if (ret)
2357 return ret;
2358
2359 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2360
2361 interrupted = signal_pending(current);
2362 restore_saved_sigmask_unless(interrupted);
2363 if (interrupted && !ret)
2364 ret = -ERESTARTNOHAND;
2365
2366 return ret;
2367 }
2368
2369 #endif
2370
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2371 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2372 compat_aio_context_t, ctx_id,
2373 compat_long_t, min_nr,
2374 compat_long_t, nr,
2375 struct io_event __user *, events,
2376 struct __kernel_timespec __user *, timeout,
2377 const struct __compat_aio_sigset __user *, usig)
2378 {
2379 struct __compat_aio_sigset ksig = { 0, };
2380 struct timespec64 t;
2381 bool interrupted;
2382 int ret;
2383
2384 if (timeout && get_timespec64(&t, timeout))
2385 return -EFAULT;
2386
2387 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2388 return -EFAULT;
2389
2390 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2391 if (ret)
2392 return ret;
2393
2394 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2395
2396 interrupted = signal_pending(current);
2397 restore_saved_sigmask_unless(interrupted);
2398 if (interrupted && !ret)
2399 ret = -ERESTARTNOHAND;
2400
2401 return ret;
2402 }
2403 #endif
2404