• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 	struct cred		*creds;
179 };
180 
181 struct poll_iocb {
182 	struct file		*file;
183 	struct wait_queue_head	*head;
184 	__poll_t		events;
185 	bool			cancelled;
186 	bool			work_scheduled;
187 	bool			work_need_resched;
188 	struct wait_queue_entry	wait;
189 	struct work_struct	work;
190 };
191 
192 /*
193  * NOTE! Each of the iocb union members has the file pointer
194  * as the first entry in their struct definition. So you can
195  * access the file pointer through any of the sub-structs,
196  * or directly as just 'ki_filp' in this struct.
197  */
198 struct aio_kiocb {
199 	union {
200 		struct file		*ki_filp;
201 		struct kiocb		rw;
202 		struct fsync_iocb	fsync;
203 		struct poll_iocb	poll;
204 	};
205 
206 	struct kioctx		*ki_ctx;
207 	kiocb_cancel_fn		*ki_cancel;
208 
209 	struct io_event		ki_res;
210 
211 	struct list_head	ki_list;	/* the aio core uses this
212 						 * for cancellation */
213 	refcount_t		ki_refcnt;
214 
215 	/*
216 	 * If the aio_resfd field of the userspace iocb is not zero,
217 	 * this is the underlying eventfd context to deliver events to.
218 	 */
219 	struct eventfd_ctx	*ki_eventfd;
220 };
221 
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr;		/* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227 
228 static struct kmem_cache	*kiocb_cachep;
229 static struct kmem_cache	*kioctx_cachep;
230 
231 static struct vfsmount *aio_mnt;
232 
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 	struct file *file;
239 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 	if (IS_ERR(inode))
241 		return ERR_CAST(inode);
242 
243 	inode->i_mapping->a_ops = &aio_ctx_aops;
244 	inode->i_mapping->private_data = ctx;
245 	inode->i_size = PAGE_SIZE * nr_pages;
246 
247 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 				O_RDWR, &aio_ring_fops);
249 	if (IS_ERR(file))
250 		iput(inode);
251 	return file;
252 }
253 
aio_init_fs_context(struct fs_context * fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 	if (!init_pseudo(fc, AIO_RING_MAGIC))
257 		return -ENOMEM;
258 	fc->s_iflags |= SB_I_NOEXEC;
259 	return 0;
260 }
261 
262 /* aio_setup
263  *	Creates the slab caches used by the aio routines, panic on
264  *	failure as this is done early during the boot sequence.
265  */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 	static struct file_system_type aio_fs = {
269 		.name		= "aio",
270 		.init_fs_context = aio_init_fs_context,
271 		.kill_sb	= kill_anon_super,
272 	};
273 	aio_mnt = kern_mount(&aio_fs);
274 	if (IS_ERR(aio_mnt))
275 		panic("Failed to create aio fs mount.");
276 
277 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 	return 0;
280 }
281 __initcall(aio_setup);
282 
put_aio_ring_file(struct kioctx * ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 	struct file *aio_ring_file = ctx->aio_ring_file;
286 	struct address_space *i_mapping;
287 
288 	if (aio_ring_file) {
289 		truncate_setsize(file_inode(aio_ring_file), 0);
290 
291 		/* Prevent further access to the kioctx from migratepages */
292 		i_mapping = aio_ring_file->f_mapping;
293 		spin_lock(&i_mapping->private_lock);
294 		i_mapping->private_data = NULL;
295 		ctx->aio_ring_file = NULL;
296 		spin_unlock(&i_mapping->private_lock);
297 
298 		fput(aio_ring_file);
299 	}
300 }
301 
aio_free_ring(struct kioctx * ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 	int i;
305 
306 	/* Disconnect the kiotx from the ring file.  This prevents future
307 	 * accesses to the kioctx from page migration.
308 	 */
309 	put_aio_ring_file(ctx);
310 
311 	for (i = 0; i < ctx->nr_pages; i++) {
312 		struct page *page;
313 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 				page_count(ctx->ring_pages[i]));
315 		page = ctx->ring_pages[i];
316 		if (!page)
317 			continue;
318 		ctx->ring_pages[i] = NULL;
319 		put_page(page);
320 	}
321 
322 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 		kfree(ctx->ring_pages);
324 		ctx->ring_pages = NULL;
325 	}
326 }
327 
aio_ring_mremap(struct vm_area_struct * vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 	struct file *file = vma->vm_file;
331 	struct mm_struct *mm = vma->vm_mm;
332 	struct kioctx_table *table;
333 	int i, res = -EINVAL;
334 
335 	spin_lock(&mm->ioctx_lock);
336 	rcu_read_lock();
337 	table = rcu_dereference(mm->ioctx_table);
338 	if (!table)
339 		goto out_unlock;
340 
341 	for (i = 0; i < table->nr; i++) {
342 		struct kioctx *ctx;
343 
344 		ctx = rcu_dereference(table->table[i]);
345 		if (ctx && ctx->aio_ring_file == file) {
346 			if (!atomic_read(&ctx->dead)) {
347 				ctx->user_id = ctx->mmap_base = vma->vm_start;
348 				res = 0;
349 			}
350 			break;
351 		}
352 	}
353 
354 out_unlock:
355 	rcu_read_unlock();
356 	spin_unlock(&mm->ioctx_lock);
357 	return res;
358 }
359 
360 static const struct vm_operations_struct aio_ring_vm_ops = {
361 	.mremap		= aio_ring_mremap,
362 #if IS_ENABLED(CONFIG_MMU)
363 	.fault		= filemap_fault,
364 	.map_pages	= filemap_map_pages,
365 	.page_mkwrite	= filemap_page_mkwrite,
366 #endif
367 };
368 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)369 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
370 {
371 	vma->vm_flags |= VM_DONTEXPAND;
372 	vma->vm_ops = &aio_ring_vm_ops;
373 	return 0;
374 }
375 
376 static const struct file_operations aio_ring_fops = {
377 	.mmap = aio_ring_mmap,
378 };
379 
380 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)381 static int aio_migratepage(struct address_space *mapping, struct page *new,
382 			struct page *old, enum migrate_mode mode)
383 {
384 	struct kioctx *ctx;
385 	unsigned long flags;
386 	pgoff_t idx;
387 	int rc;
388 
389 	/*
390 	 * We cannot support the _NO_COPY case here, because copy needs to
391 	 * happen under the ctx->completion_lock. That does not work with the
392 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
393 	 */
394 	if (mode == MIGRATE_SYNC_NO_COPY)
395 		return -EINVAL;
396 
397 	rc = 0;
398 
399 	/* mapping->private_lock here protects against the kioctx teardown.  */
400 	spin_lock(&mapping->private_lock);
401 	ctx = mapping->private_data;
402 	if (!ctx) {
403 		rc = -EINVAL;
404 		goto out;
405 	}
406 
407 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
408 	 * to the ring's head, and prevents page migration from mucking in
409 	 * a partially initialized kiotx.
410 	 */
411 	if (!mutex_trylock(&ctx->ring_lock)) {
412 		rc = -EAGAIN;
413 		goto out;
414 	}
415 
416 	idx = old->index;
417 	if (idx < (pgoff_t)ctx->nr_pages) {
418 		/* Make sure the old page hasn't already been changed */
419 		if (ctx->ring_pages[idx] != old)
420 			rc = -EAGAIN;
421 	} else
422 		rc = -EINVAL;
423 
424 	if (rc != 0)
425 		goto out_unlock;
426 
427 	/* Writeback must be complete */
428 	BUG_ON(PageWriteback(old));
429 	get_page(new);
430 
431 	rc = migrate_page_move_mapping(mapping, new, old, 1);
432 	if (rc != MIGRATEPAGE_SUCCESS) {
433 		put_page(new);
434 		goto out_unlock;
435 	}
436 
437 	/* Take completion_lock to prevent other writes to the ring buffer
438 	 * while the old page is copied to the new.  This prevents new
439 	 * events from being lost.
440 	 */
441 	spin_lock_irqsave(&ctx->completion_lock, flags);
442 	migrate_page_copy(new, old);
443 	BUG_ON(ctx->ring_pages[idx] != old);
444 	ctx->ring_pages[idx] = new;
445 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
446 
447 	/* The old page is no longer accessible. */
448 	put_page(old);
449 
450 out_unlock:
451 	mutex_unlock(&ctx->ring_lock);
452 out:
453 	spin_unlock(&mapping->private_lock);
454 	return rc;
455 }
456 #endif
457 
458 static const struct address_space_operations aio_ctx_aops = {
459 	.set_page_dirty = __set_page_dirty_no_writeback,
460 #if IS_ENABLED(CONFIG_MIGRATION)
461 	.migratepage	= aio_migratepage,
462 #endif
463 };
464 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)465 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
466 {
467 	struct aio_ring *ring;
468 	struct mm_struct *mm = current->mm;
469 	unsigned long size, unused;
470 	int nr_pages;
471 	int i;
472 	struct file *file;
473 
474 	/* Compensate for the ring buffer's head/tail overlap entry */
475 	nr_events += 2;	/* 1 is required, 2 for good luck */
476 
477 	size = sizeof(struct aio_ring);
478 	size += sizeof(struct io_event) * nr_events;
479 
480 	nr_pages = PFN_UP(size);
481 	if (nr_pages < 0)
482 		return -EINVAL;
483 
484 	file = aio_private_file(ctx, nr_pages);
485 	if (IS_ERR(file)) {
486 		ctx->aio_ring_file = NULL;
487 		return -ENOMEM;
488 	}
489 
490 	ctx->aio_ring_file = file;
491 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
492 			/ sizeof(struct io_event);
493 
494 	ctx->ring_pages = ctx->internal_pages;
495 	if (nr_pages > AIO_RING_PAGES) {
496 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
497 					  GFP_KERNEL);
498 		if (!ctx->ring_pages) {
499 			put_aio_ring_file(ctx);
500 			return -ENOMEM;
501 		}
502 	}
503 
504 	for (i = 0; i < nr_pages; i++) {
505 		struct page *page;
506 		page = find_or_create_page(file->f_mapping,
507 					   i, GFP_HIGHUSER | __GFP_ZERO);
508 		if (!page)
509 			break;
510 		pr_debug("pid(%d) page[%d]->count=%d\n",
511 			 current->pid, i, page_count(page));
512 		SetPageUptodate(page);
513 		unlock_page(page);
514 
515 		ctx->ring_pages[i] = page;
516 	}
517 	ctx->nr_pages = i;
518 
519 	if (unlikely(i != nr_pages)) {
520 		aio_free_ring(ctx);
521 		return -ENOMEM;
522 	}
523 
524 	ctx->mmap_size = nr_pages * PAGE_SIZE;
525 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
526 
527 	if (mmap_write_lock_killable(mm)) {
528 		ctx->mmap_size = 0;
529 		aio_free_ring(ctx);
530 		return -EINTR;
531 	}
532 
533 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
534 				 PROT_READ | PROT_WRITE,
535 				 MAP_SHARED, 0, &unused, NULL);
536 	mmap_write_unlock(mm);
537 	if (IS_ERR((void *)ctx->mmap_base)) {
538 		ctx->mmap_size = 0;
539 		aio_free_ring(ctx);
540 		return -ENOMEM;
541 	}
542 
543 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
544 
545 	ctx->user_id = ctx->mmap_base;
546 	ctx->nr_events = nr_events; /* trusted copy */
547 
548 	ring = kmap_atomic(ctx->ring_pages[0]);
549 	ring->nr = nr_events;	/* user copy */
550 	ring->id = ~0U;
551 	ring->head = ring->tail = 0;
552 	ring->magic = AIO_RING_MAGIC;
553 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
554 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
555 	ring->header_length = sizeof(struct aio_ring);
556 	kunmap_atomic(ring);
557 	flush_dcache_page(ctx->ring_pages[0]);
558 
559 	return 0;
560 }
561 
562 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
563 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
564 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
565 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)566 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
567 {
568 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
569 	struct kioctx *ctx = req->ki_ctx;
570 	unsigned long flags;
571 
572 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
573 		return;
574 
575 	spin_lock_irqsave(&ctx->ctx_lock, flags);
576 	list_add_tail(&req->ki_list, &ctx->active_reqs);
577 	req->ki_cancel = cancel;
578 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
579 }
580 EXPORT_SYMBOL(kiocb_set_cancel_fn);
581 
582 /*
583  * free_ioctx() should be RCU delayed to synchronize against the RCU
584  * protected lookup_ioctx() and also needs process context to call
585  * aio_free_ring().  Use rcu_work.
586  */
free_ioctx(struct work_struct * work)587 static void free_ioctx(struct work_struct *work)
588 {
589 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
590 					  free_rwork);
591 	pr_debug("freeing %p\n", ctx);
592 
593 	aio_free_ring(ctx);
594 	free_percpu(ctx->cpu);
595 	percpu_ref_exit(&ctx->reqs);
596 	percpu_ref_exit(&ctx->users);
597 	kmem_cache_free(kioctx_cachep, ctx);
598 }
599 
free_ioctx_reqs(struct percpu_ref * ref)600 static void free_ioctx_reqs(struct percpu_ref *ref)
601 {
602 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
603 
604 	/* At this point we know that there are no any in-flight requests */
605 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
606 		complete(&ctx->rq_wait->comp);
607 
608 	/* Synchronize against RCU protected table->table[] dereferences */
609 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
610 	queue_rcu_work(system_wq, &ctx->free_rwork);
611 }
612 
613 /*
614  * When this function runs, the kioctx has been removed from the "hash table"
615  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
616  * now it's safe to cancel any that need to be.
617  */
free_ioctx_users(struct percpu_ref * ref)618 static void free_ioctx_users(struct percpu_ref *ref)
619 {
620 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
621 	struct aio_kiocb *req;
622 
623 	spin_lock_irq(&ctx->ctx_lock);
624 
625 	while (!list_empty(&ctx->active_reqs)) {
626 		req = list_first_entry(&ctx->active_reqs,
627 				       struct aio_kiocb, ki_list);
628 		req->ki_cancel(&req->rw);
629 		list_del_init(&req->ki_list);
630 	}
631 
632 	spin_unlock_irq(&ctx->ctx_lock);
633 
634 	percpu_ref_kill(&ctx->reqs);
635 	percpu_ref_put(&ctx->reqs);
636 }
637 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)638 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
639 {
640 	unsigned i, new_nr;
641 	struct kioctx_table *table, *old;
642 	struct aio_ring *ring;
643 
644 	spin_lock(&mm->ioctx_lock);
645 	table = rcu_dereference_raw(mm->ioctx_table);
646 
647 	while (1) {
648 		if (table)
649 			for (i = 0; i < table->nr; i++)
650 				if (!rcu_access_pointer(table->table[i])) {
651 					ctx->id = i;
652 					rcu_assign_pointer(table->table[i], ctx);
653 					spin_unlock(&mm->ioctx_lock);
654 
655 					/* While kioctx setup is in progress,
656 					 * we are protected from page migration
657 					 * changes ring_pages by ->ring_lock.
658 					 */
659 					ring = kmap_atomic(ctx->ring_pages[0]);
660 					ring->id = ctx->id;
661 					kunmap_atomic(ring);
662 					return 0;
663 				}
664 
665 		new_nr = (table ? table->nr : 1) * 4;
666 		spin_unlock(&mm->ioctx_lock);
667 
668 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
669 				new_nr, GFP_KERNEL);
670 		if (!table)
671 			return -ENOMEM;
672 
673 		table->nr = new_nr;
674 
675 		spin_lock(&mm->ioctx_lock);
676 		old = rcu_dereference_raw(mm->ioctx_table);
677 
678 		if (!old) {
679 			rcu_assign_pointer(mm->ioctx_table, table);
680 		} else if (table->nr > old->nr) {
681 			memcpy(table->table, old->table,
682 			       old->nr * sizeof(struct kioctx *));
683 
684 			rcu_assign_pointer(mm->ioctx_table, table);
685 			kfree_rcu(old, rcu);
686 		} else {
687 			kfree(table);
688 			table = old;
689 		}
690 	}
691 }
692 
aio_nr_sub(unsigned nr)693 static void aio_nr_sub(unsigned nr)
694 {
695 	spin_lock(&aio_nr_lock);
696 	if (WARN_ON(aio_nr - nr > aio_nr))
697 		aio_nr = 0;
698 	else
699 		aio_nr -= nr;
700 	spin_unlock(&aio_nr_lock);
701 }
702 
703 /* ioctx_alloc
704  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
705  */
ioctx_alloc(unsigned nr_events)706 static struct kioctx *ioctx_alloc(unsigned nr_events)
707 {
708 	struct mm_struct *mm = current->mm;
709 	struct kioctx *ctx;
710 	int err = -ENOMEM;
711 
712 	/*
713 	 * Store the original nr_events -- what userspace passed to io_setup(),
714 	 * for counting against the global limit -- before it changes.
715 	 */
716 	unsigned int max_reqs = nr_events;
717 
718 	/*
719 	 * We keep track of the number of available ringbuffer slots, to prevent
720 	 * overflow (reqs_available), and we also use percpu counters for this.
721 	 *
722 	 * So since up to half the slots might be on other cpu's percpu counters
723 	 * and unavailable, double nr_events so userspace sees what they
724 	 * expected: additionally, we move req_batch slots to/from percpu
725 	 * counters at a time, so make sure that isn't 0:
726 	 */
727 	nr_events = max(nr_events, num_possible_cpus() * 4);
728 	nr_events *= 2;
729 
730 	/* Prevent overflows */
731 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
732 		pr_debug("ENOMEM: nr_events too high\n");
733 		return ERR_PTR(-EINVAL);
734 	}
735 
736 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
737 		return ERR_PTR(-EAGAIN);
738 
739 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
740 	if (!ctx)
741 		return ERR_PTR(-ENOMEM);
742 
743 	ctx->max_reqs = max_reqs;
744 
745 	spin_lock_init(&ctx->ctx_lock);
746 	spin_lock_init(&ctx->completion_lock);
747 	mutex_init(&ctx->ring_lock);
748 	/* Protect against page migration throughout kiotx setup by keeping
749 	 * the ring_lock mutex held until setup is complete. */
750 	mutex_lock(&ctx->ring_lock);
751 	init_waitqueue_head(&ctx->wait);
752 
753 	INIT_LIST_HEAD(&ctx->active_reqs);
754 
755 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
756 		goto err;
757 
758 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
759 		goto err;
760 
761 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
762 	if (!ctx->cpu)
763 		goto err;
764 
765 	err = aio_setup_ring(ctx, nr_events);
766 	if (err < 0)
767 		goto err;
768 
769 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
770 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
771 	if (ctx->req_batch < 1)
772 		ctx->req_batch = 1;
773 
774 	/* limit the number of system wide aios */
775 	spin_lock(&aio_nr_lock);
776 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
777 	    aio_nr + ctx->max_reqs < aio_nr) {
778 		spin_unlock(&aio_nr_lock);
779 		err = -EAGAIN;
780 		goto err_ctx;
781 	}
782 	aio_nr += ctx->max_reqs;
783 	spin_unlock(&aio_nr_lock);
784 
785 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
786 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
787 
788 	err = ioctx_add_table(ctx, mm);
789 	if (err)
790 		goto err_cleanup;
791 
792 	/* Release the ring_lock mutex now that all setup is complete. */
793 	mutex_unlock(&ctx->ring_lock);
794 
795 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
796 		 ctx, ctx->user_id, mm, ctx->nr_events);
797 	return ctx;
798 
799 err_cleanup:
800 	aio_nr_sub(ctx->max_reqs);
801 err_ctx:
802 	atomic_set(&ctx->dead, 1);
803 	if (ctx->mmap_size)
804 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
805 	aio_free_ring(ctx);
806 err:
807 	mutex_unlock(&ctx->ring_lock);
808 	free_percpu(ctx->cpu);
809 	percpu_ref_exit(&ctx->reqs);
810 	percpu_ref_exit(&ctx->users);
811 	kmem_cache_free(kioctx_cachep, ctx);
812 	pr_debug("error allocating ioctx %d\n", err);
813 	return ERR_PTR(err);
814 }
815 
816 /* kill_ioctx
817  *	Cancels all outstanding aio requests on an aio context.  Used
818  *	when the processes owning a context have all exited to encourage
819  *	the rapid destruction of the kioctx.
820  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)821 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
822 		      struct ctx_rq_wait *wait)
823 {
824 	struct kioctx_table *table;
825 
826 	spin_lock(&mm->ioctx_lock);
827 	if (atomic_xchg(&ctx->dead, 1)) {
828 		spin_unlock(&mm->ioctx_lock);
829 		return -EINVAL;
830 	}
831 
832 	table = rcu_dereference_raw(mm->ioctx_table);
833 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
834 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
835 	spin_unlock(&mm->ioctx_lock);
836 
837 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
838 	wake_up_all(&ctx->wait);
839 
840 	/*
841 	 * It'd be more correct to do this in free_ioctx(), after all
842 	 * the outstanding kiocbs have finished - but by then io_destroy
843 	 * has already returned, so io_setup() could potentially return
844 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
845 	 *  could tell).
846 	 */
847 	aio_nr_sub(ctx->max_reqs);
848 
849 	if (ctx->mmap_size)
850 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
851 
852 	ctx->rq_wait = wait;
853 	percpu_ref_kill(&ctx->users);
854 	return 0;
855 }
856 
857 /*
858  * exit_aio: called when the last user of mm goes away.  At this point, there is
859  * no way for any new requests to be submited or any of the io_* syscalls to be
860  * called on the context.
861  *
862  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
863  * them.
864  */
exit_aio(struct mm_struct * mm)865 void exit_aio(struct mm_struct *mm)
866 {
867 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
868 	struct ctx_rq_wait wait;
869 	int i, skipped;
870 
871 	if (!table)
872 		return;
873 
874 	atomic_set(&wait.count, table->nr);
875 	init_completion(&wait.comp);
876 
877 	skipped = 0;
878 	for (i = 0; i < table->nr; ++i) {
879 		struct kioctx *ctx =
880 			rcu_dereference_protected(table->table[i], true);
881 
882 		if (!ctx) {
883 			skipped++;
884 			continue;
885 		}
886 
887 		/*
888 		 * We don't need to bother with munmap() here - exit_mmap(mm)
889 		 * is coming and it'll unmap everything. And we simply can't,
890 		 * this is not necessarily our ->mm.
891 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
892 		 * that it needs to unmap the area, just set it to 0.
893 		 */
894 		ctx->mmap_size = 0;
895 		kill_ioctx(mm, ctx, &wait);
896 	}
897 
898 	if (!atomic_sub_and_test(skipped, &wait.count)) {
899 		/* Wait until all IO for the context are done. */
900 		wait_for_completion(&wait.comp);
901 	}
902 
903 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
904 	kfree(table);
905 }
906 
put_reqs_available(struct kioctx * ctx,unsigned nr)907 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
908 {
909 	struct kioctx_cpu *kcpu;
910 	unsigned long flags;
911 
912 	local_irq_save(flags);
913 	kcpu = this_cpu_ptr(ctx->cpu);
914 	kcpu->reqs_available += nr;
915 
916 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
917 		kcpu->reqs_available -= ctx->req_batch;
918 		atomic_add(ctx->req_batch, &ctx->reqs_available);
919 	}
920 
921 	local_irq_restore(flags);
922 }
923 
__get_reqs_available(struct kioctx * ctx)924 static bool __get_reqs_available(struct kioctx *ctx)
925 {
926 	struct kioctx_cpu *kcpu;
927 	bool ret = false;
928 	unsigned long flags;
929 
930 	local_irq_save(flags);
931 	kcpu = this_cpu_ptr(ctx->cpu);
932 	if (!kcpu->reqs_available) {
933 		int old, avail = atomic_read(&ctx->reqs_available);
934 
935 		do {
936 			if (avail < ctx->req_batch)
937 				goto out;
938 
939 			old = avail;
940 			avail = atomic_cmpxchg(&ctx->reqs_available,
941 					       avail, avail - ctx->req_batch);
942 		} while (avail != old);
943 
944 		kcpu->reqs_available += ctx->req_batch;
945 	}
946 
947 	ret = true;
948 	kcpu->reqs_available--;
949 out:
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 /* refill_reqs_available
955  *	Updates the reqs_available reference counts used for tracking the
956  *	number of free slots in the completion ring.  This can be called
957  *	from aio_complete() (to optimistically update reqs_available) or
958  *	from aio_get_req() (the we're out of events case).  It must be
959  *	called holding ctx->completion_lock.
960  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)961 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
962                                   unsigned tail)
963 {
964 	unsigned events_in_ring, completed;
965 
966 	/* Clamp head since userland can write to it. */
967 	head %= ctx->nr_events;
968 	if (head <= tail)
969 		events_in_ring = tail - head;
970 	else
971 		events_in_ring = ctx->nr_events - (head - tail);
972 
973 	completed = ctx->completed_events;
974 	if (events_in_ring < completed)
975 		completed -= events_in_ring;
976 	else
977 		completed = 0;
978 
979 	if (!completed)
980 		return;
981 
982 	ctx->completed_events -= completed;
983 	put_reqs_available(ctx, completed);
984 }
985 
986 /* user_refill_reqs_available
987  *	Called to refill reqs_available when aio_get_req() encounters an
988  *	out of space in the completion ring.
989  */
user_refill_reqs_available(struct kioctx * ctx)990 static void user_refill_reqs_available(struct kioctx *ctx)
991 {
992 	spin_lock_irq(&ctx->completion_lock);
993 	if (ctx->completed_events) {
994 		struct aio_ring *ring;
995 		unsigned head;
996 
997 		/* Access of ring->head may race with aio_read_events_ring()
998 		 * here, but that's okay since whether we read the old version
999 		 * or the new version, and either will be valid.  The important
1000 		 * part is that head cannot pass tail since we prevent
1001 		 * aio_complete() from updating tail by holding
1002 		 * ctx->completion_lock.  Even if head is invalid, the check
1003 		 * against ctx->completed_events below will make sure we do the
1004 		 * safe/right thing.
1005 		 */
1006 		ring = kmap_atomic(ctx->ring_pages[0]);
1007 		head = ring->head;
1008 		kunmap_atomic(ring);
1009 
1010 		refill_reqs_available(ctx, head, ctx->tail);
1011 	}
1012 
1013 	spin_unlock_irq(&ctx->completion_lock);
1014 }
1015 
get_reqs_available(struct kioctx * ctx)1016 static bool get_reqs_available(struct kioctx *ctx)
1017 {
1018 	if (__get_reqs_available(ctx))
1019 		return true;
1020 	user_refill_reqs_available(ctx);
1021 	return __get_reqs_available(ctx);
1022 }
1023 
1024 /* aio_get_req
1025  *	Allocate a slot for an aio request.
1026  * Returns NULL if no requests are free.
1027  *
1028  * The refcount is initialized to 2 - one for the async op completion,
1029  * one for the synchronous code that does this.
1030  */
aio_get_req(struct kioctx * ctx)1031 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1032 {
1033 	struct aio_kiocb *req;
1034 
1035 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1036 	if (unlikely(!req))
1037 		return NULL;
1038 
1039 	if (unlikely(!get_reqs_available(ctx))) {
1040 		kmem_cache_free(kiocb_cachep, req);
1041 		return NULL;
1042 	}
1043 
1044 	percpu_ref_get(&ctx->reqs);
1045 	req->ki_ctx = ctx;
1046 	INIT_LIST_HEAD(&req->ki_list);
1047 	refcount_set(&req->ki_refcnt, 2);
1048 	req->ki_eventfd = NULL;
1049 	return req;
1050 }
1051 
lookup_ioctx(unsigned long ctx_id)1052 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1053 {
1054 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1055 	struct mm_struct *mm = current->mm;
1056 	struct kioctx *ctx, *ret = NULL;
1057 	struct kioctx_table *table;
1058 	unsigned id;
1059 
1060 	if (get_user(id, &ring->id))
1061 		return NULL;
1062 
1063 	rcu_read_lock();
1064 	table = rcu_dereference(mm->ioctx_table);
1065 
1066 	if (!table || id >= table->nr)
1067 		goto out;
1068 
1069 	id = array_index_nospec(id, table->nr);
1070 	ctx = rcu_dereference(table->table[id]);
1071 	if (ctx && ctx->user_id == ctx_id) {
1072 		if (percpu_ref_tryget_live(&ctx->users))
1073 			ret = ctx;
1074 	}
1075 out:
1076 	rcu_read_unlock();
1077 	return ret;
1078 }
1079 
iocb_destroy(struct aio_kiocb * iocb)1080 static inline void iocb_destroy(struct aio_kiocb *iocb)
1081 {
1082 	if (iocb->ki_eventfd)
1083 		eventfd_ctx_put(iocb->ki_eventfd);
1084 	if (iocb->ki_filp)
1085 		fput(iocb->ki_filp);
1086 	percpu_ref_put(&iocb->ki_ctx->reqs);
1087 	kmem_cache_free(kiocb_cachep, iocb);
1088 }
1089 
1090 /* aio_complete
1091  *	Called when the io request on the given iocb is complete.
1092  */
aio_complete(struct aio_kiocb * iocb)1093 static void aio_complete(struct aio_kiocb *iocb)
1094 {
1095 	struct kioctx	*ctx = iocb->ki_ctx;
1096 	struct aio_ring	*ring;
1097 	struct io_event	*ev_page, *event;
1098 	unsigned tail, pos, head;
1099 	unsigned long	flags;
1100 
1101 	/*
1102 	 * Add a completion event to the ring buffer. Must be done holding
1103 	 * ctx->completion_lock to prevent other code from messing with the tail
1104 	 * pointer since we might be called from irq context.
1105 	 */
1106 	spin_lock_irqsave(&ctx->completion_lock, flags);
1107 
1108 	tail = ctx->tail;
1109 	pos = tail + AIO_EVENTS_OFFSET;
1110 
1111 	if (++tail >= ctx->nr_events)
1112 		tail = 0;
1113 
1114 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1116 
1117 	*event = iocb->ki_res;
1118 
1119 	kunmap_atomic(ev_page);
1120 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1121 
1122 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1123 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1124 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1125 
1126 	/* after flagging the request as done, we
1127 	 * must never even look at it again
1128 	 */
1129 	smp_wmb();	/* make event visible before updating tail */
1130 
1131 	ctx->tail = tail;
1132 
1133 	ring = kmap_atomic(ctx->ring_pages[0]);
1134 	head = ring->head;
1135 	ring->tail = tail;
1136 	kunmap_atomic(ring);
1137 	flush_dcache_page(ctx->ring_pages[0]);
1138 
1139 	ctx->completed_events++;
1140 	if (ctx->completed_events > 1)
1141 		refill_reqs_available(ctx, head, tail);
1142 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1143 
1144 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1145 
1146 	/*
1147 	 * Check if the user asked us to deliver the result through an
1148 	 * eventfd. The eventfd_signal() function is safe to be called
1149 	 * from IRQ context.
1150 	 */
1151 	if (iocb->ki_eventfd)
1152 		eventfd_signal(iocb->ki_eventfd, 1);
1153 
1154 	/*
1155 	 * We have to order our ring_info tail store above and test
1156 	 * of the wait list below outside the wait lock.  This is
1157 	 * like in wake_up_bit() where clearing a bit has to be
1158 	 * ordered with the unlocked test.
1159 	 */
1160 	smp_mb();
1161 
1162 	if (waitqueue_active(&ctx->wait))
1163 		wake_up(&ctx->wait);
1164 }
1165 
iocb_put(struct aio_kiocb * iocb)1166 static inline void iocb_put(struct aio_kiocb *iocb)
1167 {
1168 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1169 		aio_complete(iocb);
1170 		iocb_destroy(iocb);
1171 	}
1172 }
1173 
1174 /* aio_read_events_ring
1175  *	Pull an event off of the ioctx's event ring.  Returns the number of
1176  *	events fetched
1177  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1178 static long aio_read_events_ring(struct kioctx *ctx,
1179 				 struct io_event __user *event, long nr)
1180 {
1181 	struct aio_ring *ring;
1182 	unsigned head, tail, pos;
1183 	long ret = 0;
1184 	int copy_ret;
1185 
1186 	/*
1187 	 * The mutex can block and wake us up and that will cause
1188 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1189 	 * and repeat. This should be rare enough that it doesn't cause
1190 	 * peformance issues. See the comment in read_events() for more detail.
1191 	 */
1192 	sched_annotate_sleep();
1193 	mutex_lock(&ctx->ring_lock);
1194 
1195 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1196 	ring = kmap_atomic(ctx->ring_pages[0]);
1197 	head = ring->head;
1198 	tail = ring->tail;
1199 	kunmap_atomic(ring);
1200 
1201 	/*
1202 	 * Ensure that once we've read the current tail pointer, that
1203 	 * we also see the events that were stored up to the tail.
1204 	 */
1205 	smp_rmb();
1206 
1207 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1208 
1209 	if (head == tail)
1210 		goto out;
1211 
1212 	head %= ctx->nr_events;
1213 	tail %= ctx->nr_events;
1214 
1215 	while (ret < nr) {
1216 		long avail;
1217 		struct io_event *ev;
1218 		struct page *page;
1219 
1220 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1221 		if (head == tail)
1222 			break;
1223 
1224 		pos = head + AIO_EVENTS_OFFSET;
1225 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1226 		pos %= AIO_EVENTS_PER_PAGE;
1227 
1228 		avail = min(avail, nr - ret);
1229 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1230 
1231 		ev = kmap(page);
1232 		copy_ret = copy_to_user(event + ret, ev + pos,
1233 					sizeof(*ev) * avail);
1234 		kunmap(page);
1235 
1236 		if (unlikely(copy_ret)) {
1237 			ret = -EFAULT;
1238 			goto out;
1239 		}
1240 
1241 		ret += avail;
1242 		head += avail;
1243 		head %= ctx->nr_events;
1244 	}
1245 
1246 	ring = kmap_atomic(ctx->ring_pages[0]);
1247 	ring->head = head;
1248 	kunmap_atomic(ring);
1249 	flush_dcache_page(ctx->ring_pages[0]);
1250 
1251 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1252 out:
1253 	mutex_unlock(&ctx->ring_lock);
1254 
1255 	return ret;
1256 }
1257 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1258 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1259 			    struct io_event __user *event, long *i)
1260 {
1261 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1262 
1263 	if (ret > 0)
1264 		*i += ret;
1265 
1266 	if (unlikely(atomic_read(&ctx->dead)))
1267 		ret = -EINVAL;
1268 
1269 	if (!*i)
1270 		*i = ret;
1271 
1272 	return ret < 0 || *i >= min_nr;
1273 }
1274 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1275 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1276 			struct io_event __user *event,
1277 			ktime_t until)
1278 {
1279 	long ret = 0;
1280 
1281 	/*
1282 	 * Note that aio_read_events() is being called as the conditional - i.e.
1283 	 * we're calling it after prepare_to_wait() has set task state to
1284 	 * TASK_INTERRUPTIBLE.
1285 	 *
1286 	 * But aio_read_events() can block, and if it blocks it's going to flip
1287 	 * the task state back to TASK_RUNNING.
1288 	 *
1289 	 * This should be ok, provided it doesn't flip the state back to
1290 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1291 	 * will only happen if the mutex_lock() call blocks, and we then find
1292 	 * the ringbuffer empty. So in practice we should be ok, but it's
1293 	 * something to be aware of when touching this code.
1294 	 */
1295 	if (until == 0)
1296 		aio_read_events(ctx, min_nr, nr, event, &ret);
1297 	else
1298 		wait_event_interruptible_hrtimeout(ctx->wait,
1299 				aio_read_events(ctx, min_nr, nr, event, &ret),
1300 				until);
1301 	return ret;
1302 }
1303 
1304 /* sys_io_setup:
1305  *	Create an aio_context capable of receiving at least nr_events.
1306  *	ctxp must not point to an aio_context that already exists, and
1307  *	must be initialized to 0 prior to the call.  On successful
1308  *	creation of the aio_context, *ctxp is filled in with the resulting
1309  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1310  *	if the specified nr_events exceeds internal limits.  May fail
1311  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1312  *	of available events.  May fail with -ENOMEM if insufficient kernel
1313  *	resources are available.  May fail with -EFAULT if an invalid
1314  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1315  *	implemented.
1316  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1317 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1318 {
1319 	struct kioctx *ioctx = NULL;
1320 	unsigned long ctx;
1321 	long ret;
1322 
1323 	ret = get_user(ctx, ctxp);
1324 	if (unlikely(ret))
1325 		goto out;
1326 
1327 	ret = -EINVAL;
1328 	if (unlikely(ctx || nr_events == 0)) {
1329 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1330 		         ctx, nr_events);
1331 		goto out;
1332 	}
1333 
1334 	ioctx = ioctx_alloc(nr_events);
1335 	ret = PTR_ERR(ioctx);
1336 	if (!IS_ERR(ioctx)) {
1337 		ret = put_user(ioctx->user_id, ctxp);
1338 		if (ret)
1339 			kill_ioctx(current->mm, ioctx, NULL);
1340 		percpu_ref_put(&ioctx->users);
1341 	}
1342 
1343 out:
1344 	return ret;
1345 }
1346 
1347 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1348 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1349 {
1350 	struct kioctx *ioctx = NULL;
1351 	unsigned long ctx;
1352 	long ret;
1353 
1354 	ret = get_user(ctx, ctx32p);
1355 	if (unlikely(ret))
1356 		goto out;
1357 
1358 	ret = -EINVAL;
1359 	if (unlikely(ctx || nr_events == 0)) {
1360 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1361 		         ctx, nr_events);
1362 		goto out;
1363 	}
1364 
1365 	ioctx = ioctx_alloc(nr_events);
1366 	ret = PTR_ERR(ioctx);
1367 	if (!IS_ERR(ioctx)) {
1368 		/* truncating is ok because it's a user address */
1369 		ret = put_user((u32)ioctx->user_id, ctx32p);
1370 		if (ret)
1371 			kill_ioctx(current->mm, ioctx, NULL);
1372 		percpu_ref_put(&ioctx->users);
1373 	}
1374 
1375 out:
1376 	return ret;
1377 }
1378 #endif
1379 
1380 /* sys_io_destroy:
1381  *	Destroy the aio_context specified.  May cancel any outstanding
1382  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1383  *	implemented.  May fail with -EINVAL if the context pointed to
1384  *	is invalid.
1385  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1386 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1387 {
1388 	struct kioctx *ioctx = lookup_ioctx(ctx);
1389 	if (likely(NULL != ioctx)) {
1390 		struct ctx_rq_wait wait;
1391 		int ret;
1392 
1393 		init_completion(&wait.comp);
1394 		atomic_set(&wait.count, 1);
1395 
1396 		/* Pass requests_done to kill_ioctx() where it can be set
1397 		 * in a thread-safe way. If we try to set it here then we have
1398 		 * a race condition if two io_destroy() called simultaneously.
1399 		 */
1400 		ret = kill_ioctx(current->mm, ioctx, &wait);
1401 		percpu_ref_put(&ioctx->users);
1402 
1403 		/* Wait until all IO for the context are done. Otherwise kernel
1404 		 * keep using user-space buffers even if user thinks the context
1405 		 * is destroyed.
1406 		 */
1407 		if (!ret)
1408 			wait_for_completion(&wait.comp);
1409 
1410 		return ret;
1411 	}
1412 	pr_debug("EINVAL: invalid context id\n");
1413 	return -EINVAL;
1414 }
1415 
aio_remove_iocb(struct aio_kiocb * iocb)1416 static void aio_remove_iocb(struct aio_kiocb *iocb)
1417 {
1418 	struct kioctx *ctx = iocb->ki_ctx;
1419 	unsigned long flags;
1420 
1421 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1422 	list_del(&iocb->ki_list);
1423 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1424 }
1425 
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1426 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1427 {
1428 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1429 
1430 	if (!list_empty_careful(&iocb->ki_list))
1431 		aio_remove_iocb(iocb);
1432 
1433 	if (kiocb->ki_flags & IOCB_WRITE) {
1434 		struct inode *inode = file_inode(kiocb->ki_filp);
1435 
1436 		/*
1437 		 * Tell lockdep we inherited freeze protection from submission
1438 		 * thread.
1439 		 */
1440 		if (S_ISREG(inode->i_mode))
1441 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1442 		file_end_write(kiocb->ki_filp);
1443 	}
1444 
1445 	iocb->ki_res.res = res;
1446 	iocb->ki_res.res2 = res2;
1447 	iocb_put(iocb);
1448 }
1449 
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1450 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1451 {
1452 	int ret;
1453 
1454 	req->ki_complete = aio_complete_rw;
1455 	req->private = NULL;
1456 	req->ki_pos = iocb->aio_offset;
1457 	req->ki_flags = iocb_flags(req->ki_filp);
1458 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1459 		req->ki_flags |= IOCB_EVENTFD;
1460 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1461 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1462 		/*
1463 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1464 		 * aio_reqprio is interpreted as an I/O scheduling
1465 		 * class and priority.
1466 		 */
1467 		ret = ioprio_check_cap(iocb->aio_reqprio);
1468 		if (ret) {
1469 			pr_debug("aio ioprio check cap error: %d\n", ret);
1470 			return ret;
1471 		}
1472 
1473 		req->ki_ioprio = iocb->aio_reqprio;
1474 	} else
1475 		req->ki_ioprio = get_current_ioprio();
1476 
1477 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1478 	if (unlikely(ret))
1479 		return ret;
1480 
1481 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1482 	return 0;
1483 }
1484 
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1485 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1486 		struct iovec **iovec, bool vectored, bool compat,
1487 		struct iov_iter *iter)
1488 {
1489 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1490 	size_t len = iocb->aio_nbytes;
1491 
1492 	if (!vectored) {
1493 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1494 		*iovec = NULL;
1495 		return ret;
1496 	}
1497 
1498 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1499 }
1500 
aio_rw_done(struct kiocb * req,ssize_t ret)1501 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1502 {
1503 	switch (ret) {
1504 	case -EIOCBQUEUED:
1505 		break;
1506 	case -ERESTARTSYS:
1507 	case -ERESTARTNOINTR:
1508 	case -ERESTARTNOHAND:
1509 	case -ERESTART_RESTARTBLOCK:
1510 		/*
1511 		 * There's no easy way to restart the syscall since other AIO's
1512 		 * may be already running. Just fail this IO with EINTR.
1513 		 */
1514 		ret = -EINTR;
1515 		fallthrough;
1516 	default:
1517 		req->ki_complete(req, ret, 0);
1518 	}
1519 }
1520 
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1521 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1522 			bool vectored, bool compat)
1523 {
1524 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1525 	struct iov_iter iter;
1526 	struct file *file;
1527 	int ret;
1528 
1529 	ret = aio_prep_rw(req, iocb);
1530 	if (ret)
1531 		return ret;
1532 	file = req->ki_filp;
1533 	if (unlikely(!(file->f_mode & FMODE_READ)))
1534 		return -EBADF;
1535 	ret = -EINVAL;
1536 	if (unlikely(!file->f_op->read_iter))
1537 		return -EINVAL;
1538 
1539 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1540 	if (ret < 0)
1541 		return ret;
1542 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1543 	if (!ret)
1544 		aio_rw_done(req, call_read_iter(file, req, &iter));
1545 	kfree(iovec);
1546 	return ret;
1547 }
1548 
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1549 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1550 			 bool vectored, bool compat)
1551 {
1552 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1553 	struct iov_iter iter;
1554 	struct file *file;
1555 	int ret;
1556 
1557 	ret = aio_prep_rw(req, iocb);
1558 	if (ret)
1559 		return ret;
1560 	file = req->ki_filp;
1561 
1562 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1563 		return -EBADF;
1564 	if (unlikely(!file->f_op->write_iter))
1565 		return -EINVAL;
1566 
1567 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1568 	if (ret < 0)
1569 		return ret;
1570 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1571 	if (!ret) {
1572 		/*
1573 		 * Open-code file_start_write here to grab freeze protection,
1574 		 * which will be released by another thread in
1575 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1576 		 * released so that it doesn't complain about the held lock when
1577 		 * we return to userspace.
1578 		 */
1579 		if (S_ISREG(file_inode(file)->i_mode)) {
1580 			sb_start_write(file_inode(file)->i_sb);
1581 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1582 		}
1583 		req->ki_flags |= IOCB_WRITE;
1584 		aio_rw_done(req, call_write_iter(file, req, &iter));
1585 	}
1586 	kfree(iovec);
1587 	return ret;
1588 }
1589 
aio_fsync_work(struct work_struct * work)1590 static void aio_fsync_work(struct work_struct *work)
1591 {
1592 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1593 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1594 
1595 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1596 	revert_creds(old_cred);
1597 	put_cred(iocb->fsync.creds);
1598 	iocb_put(iocb);
1599 }
1600 
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1601 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1602 		     bool datasync)
1603 {
1604 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1605 			iocb->aio_rw_flags))
1606 		return -EINVAL;
1607 
1608 	if (unlikely(!req->file->f_op->fsync))
1609 		return -EINVAL;
1610 
1611 	req->creds = prepare_creds();
1612 	if (!req->creds)
1613 		return -ENOMEM;
1614 
1615 	req->datasync = datasync;
1616 	INIT_WORK(&req->work, aio_fsync_work);
1617 	schedule_work(&req->work);
1618 	return 0;
1619 }
1620 
aio_poll_put_work(struct work_struct * work)1621 static void aio_poll_put_work(struct work_struct *work)
1622 {
1623 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1624 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1625 
1626 	iocb_put(iocb);
1627 }
1628 
1629 /*
1630  * Safely lock the waitqueue which the request is on, synchronizing with the
1631  * case where the ->poll() provider decides to free its waitqueue early.
1632  *
1633  * Returns true on success, meaning that req->head->lock was locked, req->wait
1634  * is on req->head, and an RCU read lock was taken.  Returns false if the
1635  * request was already removed from its waitqueue (which might no longer exist).
1636  */
poll_iocb_lock_wq(struct poll_iocb * req)1637 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1638 {
1639 	wait_queue_head_t *head;
1640 
1641 	/*
1642 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1643 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1644 	 * lock in the first place can race with the waitqueue being freed.
1645 	 *
1646 	 * We solve this as eventpoll does: by taking advantage of the fact that
1647 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1648 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1649 	 * non-NULL, we can then lock it without the memory being freed out from
1650 	 * under us, then check whether the request is still on the queue.
1651 	 *
1652 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1653 	 * case the caller deletes the entry from the queue, leaving it empty.
1654 	 * In that case, only RCU prevents the queue memory from being freed.
1655 	 */
1656 	rcu_read_lock();
1657 	head = smp_load_acquire(&req->head);
1658 	if (head) {
1659 		spin_lock(&head->lock);
1660 		if (!list_empty(&req->wait.entry))
1661 			return true;
1662 		spin_unlock(&head->lock);
1663 	}
1664 	rcu_read_unlock();
1665 	return false;
1666 }
1667 
poll_iocb_unlock_wq(struct poll_iocb * req)1668 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1669 {
1670 	spin_unlock(&req->head->lock);
1671 	rcu_read_unlock();
1672 }
1673 
aio_poll_complete_work(struct work_struct * work)1674 static void aio_poll_complete_work(struct work_struct *work)
1675 {
1676 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1677 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1678 	struct poll_table_struct pt = { ._key = req->events };
1679 	struct kioctx *ctx = iocb->ki_ctx;
1680 	__poll_t mask = 0;
1681 
1682 	if (!READ_ONCE(req->cancelled))
1683 		mask = vfs_poll(req->file, &pt) & req->events;
1684 
1685 	/*
1686 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1687 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1688 	 * synchronize with them.  In the cancellation case the list_del_init
1689 	 * itself is not actually needed, but harmless so we keep it in to
1690 	 * avoid further branches in the fast path.
1691 	 */
1692 	spin_lock_irq(&ctx->ctx_lock);
1693 	if (poll_iocb_lock_wq(req)) {
1694 		if (!mask && !READ_ONCE(req->cancelled)) {
1695 			/*
1696 			 * The request isn't actually ready to be completed yet.
1697 			 * Reschedule completion if another wakeup came in.
1698 			 */
1699 			if (req->work_need_resched) {
1700 				schedule_work(&req->work);
1701 				req->work_need_resched = false;
1702 			} else {
1703 				req->work_scheduled = false;
1704 			}
1705 			poll_iocb_unlock_wq(req);
1706 			spin_unlock_irq(&ctx->ctx_lock);
1707 			return;
1708 		}
1709 		list_del_init(&req->wait.entry);
1710 		poll_iocb_unlock_wq(req);
1711 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1712 	list_del_init(&iocb->ki_list);
1713 	iocb->ki_res.res = mangle_poll(mask);
1714 	spin_unlock_irq(&ctx->ctx_lock);
1715 
1716 	iocb_put(iocb);
1717 }
1718 
1719 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1720 static int aio_poll_cancel(struct kiocb *iocb)
1721 {
1722 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1723 	struct poll_iocb *req = &aiocb->poll;
1724 
1725 	if (poll_iocb_lock_wq(req)) {
1726 		WRITE_ONCE(req->cancelled, true);
1727 		if (!req->work_scheduled) {
1728 			schedule_work(&aiocb->poll.work);
1729 			req->work_scheduled = true;
1730 		}
1731 		poll_iocb_unlock_wq(req);
1732 	} /* else, the request was force-cancelled by POLLFREE already */
1733 
1734 	return 0;
1735 }
1736 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1737 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1738 		void *key)
1739 {
1740 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1741 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1742 	__poll_t mask = key_to_poll(key);
1743 	unsigned long flags;
1744 
1745 	/* for instances that support it check for an event match first: */
1746 	if (mask && !(mask & req->events))
1747 		return 0;
1748 
1749 	/*
1750 	 * Complete the request inline if possible.  This requires that three
1751 	 * conditions be met:
1752 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1753 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1754 	 *	the events, so inline completion isn't possible.
1755 	 *   2. The completion work must not have already been scheduled.
1756 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1757 	 *	already hold the waitqueue lock, so this inverts the normal
1758 	 *	locking order.  Use irqsave/irqrestore because not all
1759 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1760 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1761 	 */
1762 	if (mask && !req->work_scheduled &&
1763 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1764 		struct kioctx *ctx = iocb->ki_ctx;
1765 
1766 		list_del_init(&req->wait.entry);
1767 		list_del(&iocb->ki_list);
1768 		iocb->ki_res.res = mangle_poll(mask);
1769 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1770 			iocb = NULL;
1771 			INIT_WORK(&req->work, aio_poll_put_work);
1772 			schedule_work(&req->work);
1773 		}
1774 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1775 		if (iocb)
1776 			iocb_put(iocb);
1777 	} else {
1778 		/*
1779 		 * Schedule the completion work if needed.  If it was already
1780 		 * scheduled, record that another wakeup came in.
1781 		 *
1782 		 * Don't remove the request from the waitqueue here, as it might
1783 		 * not actually be complete yet (we won't know until vfs_poll()
1784 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1785 		 * exception to this; see below.
1786 		 */
1787 		if (req->work_scheduled) {
1788 			req->work_need_resched = true;
1789 		} else {
1790 			schedule_work(&req->work);
1791 			req->work_scheduled = true;
1792 		}
1793 
1794 		/*
1795 		 * If the waitqueue is being freed early but we can't complete
1796 		 * the request inline, we have to tear down the request as best
1797 		 * we can.  That means immediately removing the request from its
1798 		 * waitqueue and preventing all further accesses to the
1799 		 * waitqueue via the request.  We also need to schedule the
1800 		 * completion work (done above).  Also mark the request as
1801 		 * cancelled, to potentially skip an unneeded call to ->poll().
1802 		 */
1803 		if (mask & POLLFREE) {
1804 			WRITE_ONCE(req->cancelled, true);
1805 			list_del_init(&req->wait.entry);
1806 
1807 			/*
1808 			 * Careful: this *must* be the last step, since as soon
1809 			 * as req->head is NULL'ed out, the request can be
1810 			 * completed and freed, since aio_poll_complete_work()
1811 			 * will no longer need to take the waitqueue lock.
1812 			 */
1813 			smp_store_release(&req->head, NULL);
1814 		}
1815 	}
1816 	return 1;
1817 }
1818 
1819 struct aio_poll_table {
1820 	struct poll_table_struct	pt;
1821 	struct aio_kiocb		*iocb;
1822 	bool				queued;
1823 	int				error;
1824 };
1825 
1826 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1827 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1828 		struct poll_table_struct *p)
1829 {
1830 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1831 
1832 	/* multiple wait queues per file are not supported */
1833 	if (unlikely(pt->queued)) {
1834 		pt->error = -EINVAL;
1835 		return;
1836 	}
1837 
1838 	pt->queued = true;
1839 	pt->error = 0;
1840 	pt->iocb->poll.head = head;
1841 	add_wait_queue(head, &pt->iocb->poll.wait);
1842 }
1843 
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1844 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1845 {
1846 	struct kioctx *ctx = aiocb->ki_ctx;
1847 	struct poll_iocb *req = &aiocb->poll;
1848 	struct aio_poll_table apt;
1849 	bool cancel = false;
1850 	__poll_t mask;
1851 
1852 	/* reject any unknown events outside the normal event mask. */
1853 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1854 		return -EINVAL;
1855 	/* reject fields that are not defined for poll */
1856 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1857 		return -EINVAL;
1858 
1859 	INIT_WORK(&req->work, aio_poll_complete_work);
1860 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1861 
1862 	req->head = NULL;
1863 	req->cancelled = false;
1864 	req->work_scheduled = false;
1865 	req->work_need_resched = false;
1866 
1867 	apt.pt._qproc = aio_poll_queue_proc;
1868 	apt.pt._key = req->events;
1869 	apt.iocb = aiocb;
1870 	apt.queued = false;
1871 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1872 
1873 	/* initialized the list so that we can do list_empty checks */
1874 	INIT_LIST_HEAD(&req->wait.entry);
1875 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1876 
1877 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1878 	spin_lock_irq(&ctx->ctx_lock);
1879 	if (likely(apt.queued)) {
1880 		bool on_queue = poll_iocb_lock_wq(req);
1881 
1882 		if (!on_queue || req->work_scheduled) {
1883 			/*
1884 			 * aio_poll_wake() already either scheduled the async
1885 			 * completion work, or completed the request inline.
1886 			 */
1887 			if (apt.error) /* unsupported case: multiple queues */
1888 				cancel = true;
1889 			apt.error = 0;
1890 			mask = 0;
1891 		}
1892 		if (mask || apt.error) {
1893 			/* Steal to complete synchronously. */
1894 			list_del_init(&req->wait.entry);
1895 		} else if (cancel) {
1896 			/* Cancel if possible (may be too late though). */
1897 			WRITE_ONCE(req->cancelled, true);
1898 		} else if (on_queue) {
1899 			/*
1900 			 * Actually waiting for an event, so add the request to
1901 			 * active_reqs so that it can be cancelled if needed.
1902 			 */
1903 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1904 			aiocb->ki_cancel = aio_poll_cancel;
1905 		}
1906 		if (on_queue)
1907 			poll_iocb_unlock_wq(req);
1908 	}
1909 	if (mask) { /* no async, we'd stolen it */
1910 		aiocb->ki_res.res = mangle_poll(mask);
1911 		apt.error = 0;
1912 	}
1913 	spin_unlock_irq(&ctx->ctx_lock);
1914 	if (mask)
1915 		iocb_put(aiocb);
1916 	return apt.error;
1917 }
1918 
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1919 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1920 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1921 			   bool compat)
1922 {
1923 	req->ki_filp = fget(iocb->aio_fildes);
1924 	if (unlikely(!req->ki_filp))
1925 		return -EBADF;
1926 
1927 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1928 		struct eventfd_ctx *eventfd;
1929 		/*
1930 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1931 		 * instance of the file* now. The file descriptor must be
1932 		 * an eventfd() fd, and will be signaled for each completed
1933 		 * event using the eventfd_signal() function.
1934 		 */
1935 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1936 		if (IS_ERR(eventfd))
1937 			return PTR_ERR(eventfd);
1938 
1939 		req->ki_eventfd = eventfd;
1940 	}
1941 
1942 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1943 		pr_debug("EFAULT: aio_key\n");
1944 		return -EFAULT;
1945 	}
1946 
1947 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1948 	req->ki_res.data = iocb->aio_data;
1949 	req->ki_res.res = 0;
1950 	req->ki_res.res2 = 0;
1951 
1952 	switch (iocb->aio_lio_opcode) {
1953 	case IOCB_CMD_PREAD:
1954 		return aio_read(&req->rw, iocb, false, compat);
1955 	case IOCB_CMD_PWRITE:
1956 		return aio_write(&req->rw, iocb, false, compat);
1957 	case IOCB_CMD_PREADV:
1958 		return aio_read(&req->rw, iocb, true, compat);
1959 	case IOCB_CMD_PWRITEV:
1960 		return aio_write(&req->rw, iocb, true, compat);
1961 	case IOCB_CMD_FSYNC:
1962 		return aio_fsync(&req->fsync, iocb, false);
1963 	case IOCB_CMD_FDSYNC:
1964 		return aio_fsync(&req->fsync, iocb, true);
1965 	case IOCB_CMD_POLL:
1966 		return aio_poll(req, iocb);
1967 	default:
1968 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1969 		return -EINVAL;
1970 	}
1971 }
1972 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1973 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1974 			 bool compat)
1975 {
1976 	struct aio_kiocb *req;
1977 	struct iocb iocb;
1978 	int err;
1979 
1980 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1981 		return -EFAULT;
1982 
1983 	/* enforce forwards compatibility on users */
1984 	if (unlikely(iocb.aio_reserved2)) {
1985 		pr_debug("EINVAL: reserve field set\n");
1986 		return -EINVAL;
1987 	}
1988 
1989 	/* prevent overflows */
1990 	if (unlikely(
1991 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1992 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1993 	    ((ssize_t)iocb.aio_nbytes < 0)
1994 	   )) {
1995 		pr_debug("EINVAL: overflow check\n");
1996 		return -EINVAL;
1997 	}
1998 
1999 	req = aio_get_req(ctx);
2000 	if (unlikely(!req))
2001 		return -EAGAIN;
2002 
2003 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2004 
2005 	/* Done with the synchronous reference */
2006 	iocb_put(req);
2007 
2008 	/*
2009 	 * If err is 0, we'd either done aio_complete() ourselves or have
2010 	 * arranged for that to be done asynchronously.  Anything non-zero
2011 	 * means that we need to destroy req ourselves.
2012 	 */
2013 	if (unlikely(err)) {
2014 		iocb_destroy(req);
2015 		put_reqs_available(ctx, 1);
2016 	}
2017 	return err;
2018 }
2019 
2020 /* sys_io_submit:
2021  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2022  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2023  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2024  *	*iocbpp[0] is not properly initialized, if the operation specified
2025  *	is invalid for the file descriptor in the iocb.  May fail with
2026  *	-EFAULT if any of the data structures point to invalid data.  May
2027  *	fail with -EBADF if the file descriptor specified in the first
2028  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2029  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2030  *	fail with -ENOSYS if not implemented.
2031  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2032 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2033 		struct iocb __user * __user *, iocbpp)
2034 {
2035 	struct kioctx *ctx;
2036 	long ret = 0;
2037 	int i = 0;
2038 	struct blk_plug plug;
2039 
2040 	if (unlikely(nr < 0))
2041 		return -EINVAL;
2042 
2043 	ctx = lookup_ioctx(ctx_id);
2044 	if (unlikely(!ctx)) {
2045 		pr_debug("EINVAL: invalid context id\n");
2046 		return -EINVAL;
2047 	}
2048 
2049 	if (nr > ctx->nr_events)
2050 		nr = ctx->nr_events;
2051 
2052 	if (nr > AIO_PLUG_THRESHOLD)
2053 		blk_start_plug(&plug);
2054 	for (i = 0; i < nr; i++) {
2055 		struct iocb __user *user_iocb;
2056 
2057 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2058 			ret = -EFAULT;
2059 			break;
2060 		}
2061 
2062 		ret = io_submit_one(ctx, user_iocb, false);
2063 		if (ret)
2064 			break;
2065 	}
2066 	if (nr > AIO_PLUG_THRESHOLD)
2067 		blk_finish_plug(&plug);
2068 
2069 	percpu_ref_put(&ctx->users);
2070 	return i ? i : ret;
2071 }
2072 
2073 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2074 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2075 		       int, nr, compat_uptr_t __user *, iocbpp)
2076 {
2077 	struct kioctx *ctx;
2078 	long ret = 0;
2079 	int i = 0;
2080 	struct blk_plug plug;
2081 
2082 	if (unlikely(nr < 0))
2083 		return -EINVAL;
2084 
2085 	ctx = lookup_ioctx(ctx_id);
2086 	if (unlikely(!ctx)) {
2087 		pr_debug("EINVAL: invalid context id\n");
2088 		return -EINVAL;
2089 	}
2090 
2091 	if (nr > ctx->nr_events)
2092 		nr = ctx->nr_events;
2093 
2094 	if (nr > AIO_PLUG_THRESHOLD)
2095 		blk_start_plug(&plug);
2096 	for (i = 0; i < nr; i++) {
2097 		compat_uptr_t user_iocb;
2098 
2099 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2100 			ret = -EFAULT;
2101 			break;
2102 		}
2103 
2104 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2105 		if (ret)
2106 			break;
2107 	}
2108 	if (nr > AIO_PLUG_THRESHOLD)
2109 		blk_finish_plug(&plug);
2110 
2111 	percpu_ref_put(&ctx->users);
2112 	return i ? i : ret;
2113 }
2114 #endif
2115 
2116 /* sys_io_cancel:
2117  *	Attempts to cancel an iocb previously passed to io_submit.  If
2118  *	the operation is successfully cancelled, the resulting event is
2119  *	copied into the memory pointed to by result without being placed
2120  *	into the completion queue and 0 is returned.  May fail with
2121  *	-EFAULT if any of the data structures pointed to are invalid.
2122  *	May fail with -EINVAL if aio_context specified by ctx_id is
2123  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2124  *	cancelled.  Will fail with -ENOSYS if not implemented.
2125  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2126 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2127 		struct io_event __user *, result)
2128 {
2129 	struct kioctx *ctx;
2130 	struct aio_kiocb *kiocb;
2131 	int ret = -EINVAL;
2132 	u32 key;
2133 	u64 obj = (u64)(unsigned long)iocb;
2134 
2135 	if (unlikely(get_user(key, &iocb->aio_key)))
2136 		return -EFAULT;
2137 	if (unlikely(key != KIOCB_KEY))
2138 		return -EINVAL;
2139 
2140 	ctx = lookup_ioctx(ctx_id);
2141 	if (unlikely(!ctx))
2142 		return -EINVAL;
2143 
2144 	spin_lock_irq(&ctx->ctx_lock);
2145 	/* TODO: use a hash or array, this sucks. */
2146 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2147 		if (kiocb->ki_res.obj == obj) {
2148 			ret = kiocb->ki_cancel(&kiocb->rw);
2149 			list_del_init(&kiocb->ki_list);
2150 			break;
2151 		}
2152 	}
2153 	spin_unlock_irq(&ctx->ctx_lock);
2154 
2155 	if (!ret) {
2156 		/*
2157 		 * The result argument is no longer used - the io_event is
2158 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2159 		 * cancellation is progress:
2160 		 */
2161 		ret = -EINPROGRESS;
2162 	}
2163 
2164 	percpu_ref_put(&ctx->users);
2165 
2166 	return ret;
2167 }
2168 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2169 static long do_io_getevents(aio_context_t ctx_id,
2170 		long min_nr,
2171 		long nr,
2172 		struct io_event __user *events,
2173 		struct timespec64 *ts)
2174 {
2175 	ktime_t until = KTIME_MAX;
2176 	struct kioctx *ioctx = NULL;
2177 	long ret = -EINVAL;
2178 
2179 	if (ts) {
2180 		if (!timespec64_valid(ts))
2181 			return ret;
2182 		until = timespec64_to_ktime(*ts);
2183 	}
2184 
2185 	ioctx = lookup_ioctx(ctx_id);
2186 	if (likely(ioctx)) {
2187 		if (likely(min_nr <= nr && min_nr >= 0))
2188 			ret = read_events(ioctx, min_nr, nr, events, until);
2189 		percpu_ref_put(&ioctx->users);
2190 	}
2191 
2192 	return ret;
2193 }
2194 
2195 /* io_getevents:
2196  *	Attempts to read at least min_nr events and up to nr events from
2197  *	the completion queue for the aio_context specified by ctx_id. If
2198  *	it succeeds, the number of read events is returned. May fail with
2199  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2200  *	out of range, if timeout is out of range.  May fail with -EFAULT
2201  *	if any of the memory specified is invalid.  May return 0 or
2202  *	< min_nr if the timeout specified by timeout has elapsed
2203  *	before sufficient events are available, where timeout == NULL
2204  *	specifies an infinite timeout. Note that the timeout pointed to by
2205  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2206  */
2207 #ifdef CONFIG_64BIT
2208 
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2209 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2210 		long, min_nr,
2211 		long, nr,
2212 		struct io_event __user *, events,
2213 		struct __kernel_timespec __user *, timeout)
2214 {
2215 	struct timespec64	ts;
2216 	int			ret;
2217 
2218 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2219 		return -EFAULT;
2220 
2221 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2222 	if (!ret && signal_pending(current))
2223 		ret = -EINTR;
2224 	return ret;
2225 }
2226 
2227 #endif
2228 
2229 struct __aio_sigset {
2230 	const sigset_t __user	*sigmask;
2231 	size_t		sigsetsize;
2232 };
2233 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2234 SYSCALL_DEFINE6(io_pgetevents,
2235 		aio_context_t, ctx_id,
2236 		long, min_nr,
2237 		long, nr,
2238 		struct io_event __user *, events,
2239 		struct __kernel_timespec __user *, timeout,
2240 		const struct __aio_sigset __user *, usig)
2241 {
2242 	struct __aio_sigset	ksig = { NULL, };
2243 	struct timespec64	ts;
2244 	bool interrupted;
2245 	int ret;
2246 
2247 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2248 		return -EFAULT;
2249 
2250 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2251 		return -EFAULT;
2252 
2253 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2254 	if (ret)
2255 		return ret;
2256 
2257 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2258 
2259 	interrupted = signal_pending(current);
2260 	restore_saved_sigmask_unless(interrupted);
2261 	if (interrupted && !ret)
2262 		ret = -ERESTARTNOHAND;
2263 
2264 	return ret;
2265 }
2266 
2267 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2268 
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2269 SYSCALL_DEFINE6(io_pgetevents_time32,
2270 		aio_context_t, ctx_id,
2271 		long, min_nr,
2272 		long, nr,
2273 		struct io_event __user *, events,
2274 		struct old_timespec32 __user *, timeout,
2275 		const struct __aio_sigset __user *, usig)
2276 {
2277 	struct __aio_sigset	ksig = { NULL, };
2278 	struct timespec64	ts;
2279 	bool interrupted;
2280 	int ret;
2281 
2282 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2283 		return -EFAULT;
2284 
2285 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2286 		return -EFAULT;
2287 
2288 
2289 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2290 	if (ret)
2291 		return ret;
2292 
2293 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2294 
2295 	interrupted = signal_pending(current);
2296 	restore_saved_sigmask_unless(interrupted);
2297 	if (interrupted && !ret)
2298 		ret = -ERESTARTNOHAND;
2299 
2300 	return ret;
2301 }
2302 
2303 #endif
2304 
2305 #if defined(CONFIG_COMPAT_32BIT_TIME)
2306 
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2307 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2308 		__s32, min_nr,
2309 		__s32, nr,
2310 		struct io_event __user *, events,
2311 		struct old_timespec32 __user *, timeout)
2312 {
2313 	struct timespec64 t;
2314 	int ret;
2315 
2316 	if (timeout && get_old_timespec32(&t, timeout))
2317 		return -EFAULT;
2318 
2319 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2320 	if (!ret && signal_pending(current))
2321 		ret = -EINTR;
2322 	return ret;
2323 }
2324 
2325 #endif
2326 
2327 #ifdef CONFIG_COMPAT
2328 
2329 struct __compat_aio_sigset {
2330 	compat_uptr_t		sigmask;
2331 	compat_size_t		sigsetsize;
2332 };
2333 
2334 #if defined(CONFIG_COMPAT_32BIT_TIME)
2335 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2336 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2337 		compat_aio_context_t, ctx_id,
2338 		compat_long_t, min_nr,
2339 		compat_long_t, nr,
2340 		struct io_event __user *, events,
2341 		struct old_timespec32 __user *, timeout,
2342 		const struct __compat_aio_sigset __user *, usig)
2343 {
2344 	struct __compat_aio_sigset ksig = { 0, };
2345 	struct timespec64 t;
2346 	bool interrupted;
2347 	int ret;
2348 
2349 	if (timeout && get_old_timespec32(&t, timeout))
2350 		return -EFAULT;
2351 
2352 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2353 		return -EFAULT;
2354 
2355 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2356 	if (ret)
2357 		return ret;
2358 
2359 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2360 
2361 	interrupted = signal_pending(current);
2362 	restore_saved_sigmask_unless(interrupted);
2363 	if (interrupted && !ret)
2364 		ret = -ERESTARTNOHAND;
2365 
2366 	return ret;
2367 }
2368 
2369 #endif
2370 
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2371 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2372 		compat_aio_context_t, ctx_id,
2373 		compat_long_t, min_nr,
2374 		compat_long_t, nr,
2375 		struct io_event __user *, events,
2376 		struct __kernel_timespec __user *, timeout,
2377 		const struct __compat_aio_sigset __user *, usig)
2378 {
2379 	struct __compat_aio_sigset ksig = { 0, };
2380 	struct timespec64 t;
2381 	bool interrupted;
2382 	int ret;
2383 
2384 	if (timeout && get_timespec64(&t, timeout))
2385 		return -EFAULT;
2386 
2387 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2388 		return -EFAULT;
2389 
2390 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2391 	if (ret)
2392 		return ret;
2393 
2394 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2395 
2396 	interrupted = signal_pending(current);
2397 	restore_saved_sigmask_unless(interrupted);
2398 	if (interrupted && !ret)
2399 		ret = -ERESTARTNOHAND;
2400 
2401 	return ret;
2402 }
2403 #endif
2404