1 /**
2 * @file
3 *
4 * IPv6 fragmentation and reassembly.
5 */
6
7 /*
8 * Copyright (c) 2010 Inico Technologies Ltd.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 *
33 * This file is part of the lwIP TCP/IP stack.
34 *
35 * Author: Ivan Delamer <delamer@inicotech.com>
36 *
37 *
38 * Please coordinate changes and requests with Ivan Delamer
39 * <delamer@inicotech.com>
40 */
41
42 #include "lwip/opt.h"
43 #include "lwip/ip6_frag.h"
44 #include "lwip/ip6.h"
45 #include "lwip/icmp6.h"
46 #include "lwip/nd6.h"
47 #include "lwip/ip.h"
48
49 #include "lwip/pbuf.h"
50 #include "lwip/memp.h"
51 #include "lwip/stats.h"
52
53 #include <string.h>
54
55 #if LWIP_IPV6 && LWIP_IPV6_REASS /* don't build if not configured for use in lwipopts.h */
56
57
58 /** Setting this to 0, you can turn off checking the fragments for overlapping
59 * regions. The code gets a little smaller. Only use this if you know that
60 * overlapping won't occur on your network! */
61 #ifndef IP_REASS_CHECK_OVERLAP
62 #define IP_REASS_CHECK_OVERLAP 1
63 #endif /* IP_REASS_CHECK_OVERLAP */
64
65 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
66 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
67 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
68 * is set to 1, so one datagram can be reassembled at a time, only. */
69 #ifndef IP_REASS_FREE_OLDEST
70 #define IP_REASS_FREE_OLDEST 1
71 #endif /* IP_REASS_FREE_OLDEST */
72
73 #if IPV6_FRAG_COPYHEADER
74 /* The number of bytes we need to "borrow" from (i.e., overwrite in) the header
75 * that precedes the fragment header for reassembly pruposes. */
76 #define IPV6_FRAG_REQROOM ((s16_t)(sizeof(struct ip6_reass_helper) - IP6_FRAG_HLEN))
77 #endif
78
79 #define IP_REASS_FLAG_LASTFRAG 0x01
80
81 /** This is a helper struct which holds the starting
82 * offset and the ending offset of this fragment to
83 * easily chain the fragments.
84 * It has the same packing requirements as the IPv6 header, since it replaces
85 * the Fragment Header in memory in incoming fragments to keep
86 * track of the various fragments.
87 */
88 #ifdef PACK_STRUCT_USE_INCLUDES
89 # include "arch/bpstruct.h"
90 #endif
91 PACK_STRUCT_BEGIN
92 struct ip6_reass_helper {
93 PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
94 PACK_STRUCT_FIELD(u16_t start);
95 PACK_STRUCT_FIELD(u16_t end);
96 } PACK_STRUCT_STRUCT;
97 PACK_STRUCT_END
98 #ifdef PACK_STRUCT_USE_INCLUDES
99 # include "arch/epstruct.h"
100 #endif
101
102 /* static variables */
103 static struct ip6_reassdata *reassdatagrams;
104 static u16_t ip6_reass_pbufcount;
105
106 /* Forward declarations. */
107 static void ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr);
108 #if IP_REASS_FREE_OLDEST
109 static void ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed);
110 #endif /* IP_REASS_FREE_OLDEST */
111
112 void
ip6_reass_tmr(void)113 ip6_reass_tmr(void)
114 {
115 struct ip6_reassdata *r, *tmp;
116
117 #if !IPV6_FRAG_COPYHEADER
118 LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1",
119 sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN);
120 #endif /* !IPV6_FRAG_COPYHEADER */
121
122 r = reassdatagrams;
123 while (r != NULL) {
124 /* Decrement the timer. Once it reaches 0,
125 * clean up the incomplete fragment assembly */
126 if (r->timer > 0) {
127 r->timer--;
128 r = r->next;
129 } else {
130 /* reassembly timed out */
131 tmp = r;
132 /* get the next pointer before freeing */
133 r = r->next;
134 /* free the helper struct and all enqueued pbufs */
135 ip6_reass_free_complete_datagram(tmp);
136 }
137 }
138 }
139
140 #if LWIP_LOWPOWER
141 #include "lwip/lowpower.h"
142 u32_t
ip6_reass_tmr_tick(void)143 ip6_reass_tmr_tick(void)
144 {
145 u32_t tick = 0;
146 u32_t val = 0;
147 struct ip6_reassdata *r = NULL;
148
149 r = reassdatagrams;
150 while (r != NULL) {
151 val = r->timer + 1;
152 SET_TMR_TICK(tick, val);
153 r = r->next;
154 }
155 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "ip6_reass_tmr_tick", tick));
156 return tick;
157 }
158 #endif /* LWIP_LOWPOWER */
159
160 /**
161 * Free a datagram (struct ip6_reassdata) and all its pbufs.
162 * Updates the total count of enqueued pbufs (ip6_reass_pbufcount),
163 * sends an ICMP time exceeded packet.
164 *
165 * @param ipr datagram to free
166 */
167 static void
ip6_reass_free_complete_datagram(struct ip6_reassdata * ipr)168 ip6_reass_free_complete_datagram(struct ip6_reassdata *ipr)
169 {
170 struct ip6_reassdata *prev;
171 u16_t pbufs_freed = 0;
172 u16_t clen;
173 struct pbuf *p;
174 struct ip6_reass_helper *iprh;
175
176 #if LWIP_ICMP6
177 iprh = (struct ip6_reass_helper *)ipr->p->payload;
178 if (iprh->start == 0) {
179 /* The first fragment was received, send ICMP time exceeded. */
180 /* First, de-queue the first pbuf from r->p. */
181 p = ipr->p;
182 ipr->p = iprh->next_pbuf;
183 /* Restore the part that we've overwritten with our helper structure, or we
184 * might send garbage (and disclose a pointer) in the ICMPv6 reply. */
185 MEMCPY(p->payload, ipr->orig_hdr, sizeof(iprh));
186 /* Then, move back to the original ipv6 header (we are now pointing to Fragment header).
187 This cannot fail since we already checked when receiving this fragment. */
188 if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)ipr->iphdr))) {
189 LWIP_ASSERT("ip6_reass_free: moving p->payload to ip6 header failed\n", 0);
190 }
191 else {
192 /* Reconstruct the zoned source and destination addresses, so that we do
193 * not end up sending the ICMP response over the wrong link. */
194 ip6_addr_t src_addr, dest_addr;
195 ip6_addr_copy_from_packed(src_addr, IPV6_FRAG_SRC(ipr));
196 ip6_addr_set_zone(&src_addr, ipr->src_zone);
197 ip6_addr_copy_from_packed(dest_addr, IPV6_FRAG_DEST(ipr));
198 ip6_addr_set_zone(&dest_addr, ipr->dest_zone);
199 /* Send the actual ICMP response. */
200 icmp6_time_exceeded_with_addrs(p, ICMP6_TE_FRAG, &src_addr, &dest_addr);
201 }
202 clen = pbuf_clen(p);
203 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
204 pbufs_freed = (u16_t)(pbufs_freed + clen);
205 pbuf_free(p);
206 }
207 #endif /* LWIP_ICMP6 */
208
209 /* First, free all received pbufs. The individual pbufs need to be released
210 separately as they have not yet been chained */
211 p = ipr->p;
212 while (p != NULL) {
213 struct pbuf *pcur;
214 iprh = (struct ip6_reass_helper *)p->payload;
215 pcur = p;
216 /* get the next pointer before freeing */
217 p = iprh->next_pbuf;
218 clen = pbuf_clen(pcur);
219 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
220 pbufs_freed = (u16_t)(pbufs_freed + clen);
221 pbuf_free(pcur);
222 }
223
224 /* Then, unchain the struct ip6_reassdata from the list and free it. */
225 if (ipr == reassdatagrams) {
226 reassdatagrams = ipr->next;
227 } else {
228 prev = reassdatagrams;
229 while (prev != NULL) {
230 if (prev->next == ipr) {
231 break;
232 }
233 prev = prev->next;
234 }
235 if (prev != NULL) {
236 prev->next = ipr->next;
237 }
238 }
239 memp_free(MEMP_IP6_REASSDATA, ipr);
240
241 /* Finally, update number of pbufs in reassembly queue */
242 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip6_reass_pbufcount >= pbufs_freed);
243 ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount - pbufs_freed);
244 }
245
246 #if IP_REASS_FREE_OLDEST
247 /**
248 * Free the oldest datagram to make room for enqueueing new fragments.
249 * The datagram ipr is not freed!
250 *
251 * @param ipr ip6_reassdata for the current fragment
252 * @param pbufs_needed number of pbufs needed to enqueue
253 * (used for freeing other datagrams if not enough space)
254 */
255 static void
ip6_reass_remove_oldest_datagram(struct ip6_reassdata * ipr,int pbufs_needed)256 ip6_reass_remove_oldest_datagram(struct ip6_reassdata *ipr, int pbufs_needed)
257 {
258 struct ip6_reassdata *r, *oldest;
259
260 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
261 * but don't free the current datagram! */
262 do {
263 r = oldest = reassdatagrams;
264 while (r != NULL) {
265 if (r != ipr) {
266 if (r->timer <= oldest->timer) {
267 /* older than the previous oldest */
268 oldest = r;
269 }
270 }
271 r = r->next;
272 }
273 if (oldest == ipr) {
274 /* nothing to free, ipr is the only element on the list */
275 return;
276 }
277 if (oldest != NULL) {
278 ip6_reass_free_complete_datagram(oldest);
279 }
280 } while (((ip6_reass_pbufcount + pbufs_needed) > IP_REASS_MAX_PBUFS) && (reassdatagrams != NULL));
281 }
282 #endif /* IP_REASS_FREE_OLDEST */
283
284 /**
285 * Reassembles incoming IPv6 fragments into an IPv6 datagram.
286 *
287 * @param p points to the IPv6 Fragment Header
288 * @return NULL if reassembly is incomplete, pbuf pointing to
289 * IPv6 Header if reassembly is complete
290 */
291 struct pbuf *
ip6_reass(struct pbuf * p)292 ip6_reass(struct pbuf *p)
293 {
294 struct ip6_reassdata *ipr, *ipr_prev;
295 struct ip6_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
296 struct ip6_frag_hdr *frag_hdr;
297 u16_t offset, len, start, end;
298 ptrdiff_t hdrdiff;
299 u16_t clen;
300 u8_t valid = 1;
301 struct pbuf *q, *next_pbuf;
302
303 IP6_FRAG_STATS_INC(ip6_frag.recv);
304
305 /* ip6_frag_hdr must be in the first pbuf, not chained. Checked by caller. */
306 LWIP_ASSERT("IPv6 fragment header does not fit in first pbuf",
307 p->len >= sizeof(struct ip6_frag_hdr));
308
309 frag_hdr = (struct ip6_frag_hdr *) p->payload;
310
311 clen = pbuf_clen(p);
312
313 offset = lwip_ntohs(frag_hdr->_fragment_offset);
314
315 /* Calculate fragment length from IPv6 payload length.
316 * Adjust for headers before Fragment Header.
317 * And finally adjust by Fragment Header length. */
318 len = lwip_ntohs(ip6_current_header()->_plen);
319 hdrdiff = (u8_t*)p->payload - (const u8_t*)ip6_current_header();
320 LWIP_ASSERT("not a valid pbuf (ip6_input check missing?)", hdrdiff <= 0xFFFF);
321 LWIP_ASSERT("not a valid pbuf (ip6_input check missing?)", hdrdiff >= IP6_HLEN);
322 hdrdiff -= IP6_HLEN;
323 hdrdiff += IP6_FRAG_HLEN;
324 if (hdrdiff > len) {
325 IP6_FRAG_STATS_INC(ip6_frag.proterr);
326 goto nullreturn;
327 }
328 len = (u16_t)(len - hdrdiff);
329 start = (offset & IP6_FRAG_OFFSET_MASK);
330 if (start > (0xFFFF - len)) {
331 /* u16_t overflow, cannot handle this */
332 IP6_FRAG_STATS_INC(ip6_frag.proterr);
333 goto nullreturn;
334 }
335
336 /* Look for the datagram the fragment belongs to in the current datagram queue,
337 * remembering the previous in the queue for later dequeueing. */
338 for (ipr = reassdatagrams, ipr_prev = NULL; ipr != NULL; ipr = ipr->next) {
339 /* Check if the incoming fragment matches the one currently present
340 in the reassembly buffer. If so, we proceed with copying the
341 fragment into the buffer. */
342 if ((frag_hdr->_identification == ipr->identification) &&
343 ip6_addr_cmp_packed(ip6_current_src_addr(), &(IPV6_FRAG_SRC(ipr)), ipr->src_zone) &&
344 ip6_addr_cmp_packed(ip6_current_dest_addr(), &(IPV6_FRAG_DEST(ipr)), ipr->dest_zone)) {
345 IP6_FRAG_STATS_INC(ip6_frag.cachehit);
346 break;
347 }
348 ipr_prev = ipr;
349 }
350
351 if (ipr == NULL) {
352 /* Enqueue a new datagram into the datagram queue */
353 ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA);
354 if (ipr == NULL) {
355 #if IP_REASS_FREE_OLDEST
356 /* Make room and try again. */
357 ip6_reass_remove_oldest_datagram(ipr, clen);
358 ipr = (struct ip6_reassdata *)memp_malloc(MEMP_IP6_REASSDATA);
359 if (ipr != NULL) {
360 /* re-search ipr_prev since it might have been removed */
361 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
362 if (ipr_prev->next == ipr) {
363 break;
364 }
365 }
366 } else
367 #endif /* IP_REASS_FREE_OLDEST */
368 {
369 IP6_FRAG_STATS_INC(ip6_frag.memerr);
370 goto nullreturn;
371 }
372 }
373
374 memset(ipr, 0, sizeof(struct ip6_reassdata));
375 ipr->timer = IPV6_REASS_MAXAGE;
376
377 /* enqueue the new structure to the front of the list */
378 ipr->next = reassdatagrams;
379 reassdatagrams = ipr;
380
381 /* Use the current IPv6 header for src/dest address reference.
382 * Eventually, we will replace it when we get the first fragment
383 * (it might be this one, in any case, it is done later). */
384 /* need to use the none-const pointer here: */
385 ipr->iphdr = ip_data.current_ip6_header;
386 #if IPV6_FRAG_COPYHEADER
387 MEMCPY(&ipr->src, &ip6_current_header()->src, sizeof(ipr->src));
388 MEMCPY(&ipr->dest, &ip6_current_header()->dest, sizeof(ipr->dest));
389 #endif /* IPV6_FRAG_COPYHEADER */
390 #if LWIP_IPV6_SCOPES
391 /* Also store the address zone information.
392 * @todo It is possible that due to netif destruction and recreation, the
393 * stored zones end up resolving to a different interface. In that case, we
394 * risk sending a "time exceeded" ICMP response over the wrong link.
395 * Ideally, netif destruction would clean up matching pending reassembly
396 * structures, but custom zone mappings would make that non-trivial. */
397 ipr->src_zone = ip6_addr_zone(ip6_current_src_addr());
398 ipr->dest_zone = ip6_addr_zone(ip6_current_dest_addr());
399 #endif /* LWIP_IPV6_SCOPES */
400 /* copy the fragmented packet id. */
401 ipr->identification = frag_hdr->_identification;
402
403 /* copy the nexth field */
404 ipr->nexth = frag_hdr->_nexth;
405 }
406
407 /* Check if we are allowed to enqueue more datagrams. */
408 if ((ip6_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
409 #if IP_REASS_FREE_OLDEST
410 ip6_reass_remove_oldest_datagram(ipr, clen);
411 if ((ip6_reass_pbufcount + clen) <= IP_REASS_MAX_PBUFS) {
412 /* re-search ipr_prev since it might have been removed */
413 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
414 if (ipr_prev->next == ipr) {
415 break;
416 }
417 }
418 } else
419 #endif /* IP_REASS_FREE_OLDEST */
420 {
421 /* @todo: send ICMPv6 time exceeded here? */
422 /* drop this pbuf */
423 IP6_FRAG_STATS_INC(ip6_frag.memerr);
424 goto nullreturn;
425 }
426 }
427
428 /* Overwrite Fragment Header with our own helper struct. */
429 #if IPV6_FRAG_COPYHEADER
430 if (IPV6_FRAG_REQROOM > 0) {
431 /* Make room for struct ip6_reass_helper (only required if sizeof(void*) > 4).
432 This cannot fail since we already checked when receiving this fragment. */
433 u8_t hdrerr = pbuf_header_force(p, IPV6_FRAG_REQROOM);
434 LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
435 LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
436 }
437 #else /* IPV6_FRAG_COPYHEADER */
438 LWIP_ASSERT("sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN, set IPV6_FRAG_COPYHEADER to 1",
439 sizeof(struct ip6_reass_helper) <= IP6_FRAG_HLEN);
440 #endif /* IPV6_FRAG_COPYHEADER */
441
442 /* Prepare the pointer to the helper structure, and its initial values.
443 * Do not yet write to the structure itself, as we still have to make a
444 * backup of the original data, and we should not do that until we know for
445 * sure that we are going to add this packet to the list. */
446 iprh = (struct ip6_reass_helper *)p->payload;
447 next_pbuf = NULL;
448 end = (u16_t)(start + len);
449
450 /* find the right place to insert this pbuf */
451 /* Iterate through until we either get to the end of the list (append),
452 * or we find on with a larger offset (insert). */
453 for (q = ipr->p; q != NULL;) {
454 iprh_tmp = (struct ip6_reass_helper*)q->payload;
455 if (start < iprh_tmp->start) {
456 #if IP_REASS_CHECK_OVERLAP
457 if (end > iprh_tmp->start) {
458 /* fragment overlaps with following, throw away */
459 IP6_FRAG_STATS_INC(ip6_frag.proterr);
460 goto nullreturn;
461 }
462 if (iprh_prev != NULL) {
463 if (start < iprh_prev->end) {
464 /* fragment overlaps with previous, throw away */
465 IP6_FRAG_STATS_INC(ip6_frag.proterr);
466 goto nullreturn;
467 }
468 }
469 #endif /* IP_REASS_CHECK_OVERLAP */
470 /* the new pbuf should be inserted before this */
471 next_pbuf = q;
472 if (iprh_prev != NULL) {
473 /* not the fragment with the lowest offset */
474 iprh_prev->next_pbuf = p;
475 } else {
476 /* fragment with the lowest offset */
477 ipr->p = p;
478 }
479 break;
480 } else if (start == iprh_tmp->start) {
481 /* received the same datagram twice: no need to keep the datagram */
482 goto nullreturn;
483 #if IP_REASS_CHECK_OVERLAP
484 } else if (start < iprh_tmp->end) {
485 /* overlap: no need to keep the new datagram */
486 IP6_FRAG_STATS_INC(ip6_frag.proterr);
487 goto nullreturn;
488 #endif /* IP_REASS_CHECK_OVERLAP */
489 } else {
490 /* Check if the fragments received so far have no gaps. */
491 if (iprh_prev != NULL) {
492 if (iprh_prev->end != iprh_tmp->start) {
493 /* There is a fragment missing between the current
494 * and the previous fragment */
495 valid = 0;
496 }
497 }
498 }
499 q = iprh_tmp->next_pbuf;
500 iprh_prev = iprh_tmp;
501 }
502
503 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
504 if (q == NULL) {
505 if (iprh_prev != NULL) {
506 /* this is (for now), the fragment with the highest offset:
507 * chain it to the last fragment */
508 #if IP_REASS_CHECK_OVERLAP
509 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= start);
510 #endif /* IP_REASS_CHECK_OVERLAP */
511 iprh_prev->next_pbuf = p;
512 if (iprh_prev->end != start) {
513 valid = 0;
514 }
515 } else {
516 #if IP_REASS_CHECK_OVERLAP
517 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
518 ipr->p == NULL);
519 #endif /* IP_REASS_CHECK_OVERLAP */
520 /* this is the first fragment we ever received for this ip datagram */
521 ipr->p = p;
522 }
523 }
524
525 /* Track the current number of pbufs current 'in-flight', in order to limit
526 the number of fragments that may be enqueued at any one time */
527 ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount + clen);
528
529 /* Remember IPv6 header if this is the first fragment. */
530 if (start == 0) {
531 /* need to use the none-const pointer here: */
532 ipr->iphdr = ip_data.current_ip6_header;
533 /* Make a backup of the part of the packet data that we are about to
534 * overwrite, so that we can restore the original later. */
535 MEMCPY(ipr->orig_hdr, p->payload, sizeof(*iprh));
536 /* For IPV6_FRAG_COPYHEADER there is no need to copy src/dst again, as they
537 * will be the same as they were. With LWIP_IPV6_SCOPES, the same applies
538 * to the source/destination zones. */
539 }
540 /* Only after the backup do we get to fill in the actual helper structure. */
541 iprh->next_pbuf = next_pbuf;
542 iprh->start = start;
543 iprh->end = end;
544
545 /* If this is the last fragment, calculate total packet length. */
546 if ((offset & IP6_FRAG_MORE_FLAG) == 0) {
547 ipr->datagram_len = iprh->end;
548 }
549
550 /* Additional validity tests: we have received first and last fragment. */
551 iprh_tmp = (struct ip6_reass_helper*)ipr->p->payload;
552 if (iprh_tmp->start != 0) {
553 valid = 0;
554 }
555 if (ipr->datagram_len == 0) {
556 valid = 0;
557 }
558
559 /* Final validity test: no gaps between current and last fragment. */
560 iprh_prev = iprh;
561 q = iprh->next_pbuf;
562 while ((q != NULL) && valid) {
563 iprh = (struct ip6_reass_helper*)q->payload;
564 if (iprh_prev->end != iprh->start) {
565 valid = 0;
566 break;
567 }
568 iprh_prev = iprh;
569 q = iprh->next_pbuf;
570 }
571
572 if (valid) {
573 /* All fragments have been received */
574 struct ip6_hdr* iphdr_ptr;
575
576 /* chain together the pbufs contained within the ip6_reassdata list. */
577 iprh = (struct ip6_reass_helper*) ipr->p->payload;
578 while (iprh != NULL) {
579 next_pbuf = iprh->next_pbuf;
580 if (next_pbuf != NULL) {
581 /* Save next helper struct (will be hidden in next step). */
582 iprh_tmp = (struct ip6_reass_helper*)next_pbuf->payload;
583
584 /* hide the fragment header for every succeeding fragment */
585 pbuf_remove_header(next_pbuf, IP6_FRAG_HLEN);
586 #if IPV6_FRAG_COPYHEADER
587 if (IPV6_FRAG_REQROOM > 0) {
588 /* hide the extra bytes borrowed from ip6_hdr for struct ip6_reass_helper */
589 u8_t hdrerr = pbuf_remove_header(next_pbuf, IPV6_FRAG_REQROOM);
590 LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
591 LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
592 }
593 #endif
594 pbuf_cat(ipr->p, next_pbuf);
595 }
596 else {
597 iprh_tmp = NULL;
598 }
599
600 iprh = iprh_tmp;
601 }
602
603 /* Get the first pbuf. */
604 p = ipr->p;
605
606 #if IPV6_FRAG_COPYHEADER
607 if (IPV6_FRAG_REQROOM > 0) {
608 u8_t hdrerr;
609 /* Restore (only) the bytes that we overwrote beyond the fragment header.
610 * Those bytes may belong to either the IPv6 header or an extension
611 * header placed before the fragment header. */
612 MEMCPY(p->payload, ipr->orig_hdr, IPV6_FRAG_REQROOM);
613 /* get back room for struct ip6_reass_helper (only required if sizeof(void*) > 4) */
614 hdrerr = pbuf_remove_header(p, IPV6_FRAG_REQROOM);
615 LWIP_UNUSED_ARG(hdrerr); /* in case of LWIP_NOASSERT */
616 LWIP_ASSERT("no room for struct ip6_reass_helper", hdrerr == 0);
617 }
618 #endif
619
620 /* We need to get rid of the fragment header itself, which is somewhere in
621 * the middle of the packet (but still in the first pbuf of the chain).
622 * Getting rid of the header is required by RFC 2460 Sec. 4.5 and necessary
623 * in order to be able to reassemble packets that are close to full size
624 * (i.e., around 65535 bytes). We simply move up all the headers before the
625 * fragment header, including the IPv6 header, and adjust the payload start
626 * accordingly. This works because all these headers are in the first pbuf
627 * of the chain, and because the caller adjusts all its pointers on
628 * successful reassembly. */
629 MEMMOVE((u8_t*)ipr->iphdr + sizeof(struct ip6_frag_hdr), ipr->iphdr,
630 (size_t)((u8_t*)p->payload - (u8_t*)ipr->iphdr));
631
632 /* This is where the IPv6 header is now. */
633 iphdr_ptr = (struct ip6_hdr*)((u8_t*)ipr->iphdr +
634 sizeof(struct ip6_frag_hdr));
635
636 /* Adjust datagram length by adding header lengths. */
637 ipr->datagram_len = (u16_t)(ipr->datagram_len + ((u8_t*)p->payload - (u8_t*)iphdr_ptr)
638 - IP6_HLEN);
639
640 /* Set payload length in ip header. */
641 iphdr_ptr->_plen = lwip_htons(ipr->datagram_len);
642
643 /* With the fragment header gone, we now need to adjust the next-header
644 * field of whatever header was originally before it. Since the packet made
645 * it through the original header processing routines at least up to the
646 * fragment header, we do not need any further sanity checks here. */
647 if (IP6H_NEXTH(iphdr_ptr) == IP6_NEXTH_FRAGMENT) {
648 iphdr_ptr->_nexth = ipr->nexth;
649 } else {
650 u8_t *ptr = (u8_t *)iphdr_ptr + IP6_HLEN;
651 while (*ptr != IP6_NEXTH_FRAGMENT) {
652 ptr += 8 * (1 + ptr[1]);
653 }
654 *ptr = ipr->nexth;
655 }
656
657 /* release the resources allocated for the fragment queue entry */
658 if (reassdatagrams == ipr) {
659 /* it was the first in the list */
660 reassdatagrams = ipr->next;
661 } else {
662 /* it wasn't the first, so it must have a valid 'prev' */
663 LWIP_ASSERT("sanity check linked list", ipr_prev != NULL);
664 ipr_prev->next = ipr->next;
665 }
666 memp_free(MEMP_IP6_REASSDATA, ipr);
667
668 /* adjust the number of pbufs currently queued for reassembly. */
669 clen = pbuf_clen(p);
670 LWIP_ASSERT("ip6_reass_pbufcount >= clen", ip6_reass_pbufcount >= clen);
671 ip6_reass_pbufcount = (u16_t)(ip6_reass_pbufcount - clen);
672
673 /* Move pbuf back to IPv6 header. This should never fail. */
674 if (pbuf_header_force(p, (s16_t)((u8_t*)p->payload - (u8_t*)iphdr_ptr))) {
675 LWIP_ASSERT("ip6_reass: moving p->payload to ip6 header failed\n", 0);
676 pbuf_free(p);
677 return NULL;
678 }
679
680 /* Return the pbuf chain */
681 return p;
682 }
683 /* the datagram is not (yet?) reassembled completely */
684 return NULL;
685
686 nullreturn:
687 IP6_FRAG_STATS_INC(ip6_frag.drop);
688 pbuf_free(p);
689 return NULL;
690 }
691
692 #endif /* LWIP_IPV6 && LWIP_IPV6_REASS */
693
694 #if LWIP_IPV6 && LWIP_IPV6_FRAG
695
696 #if !LWIP_NETIF_TX_SINGLE_PBUF
697 /** Allocate a new struct pbuf_custom_ref */
698 static struct pbuf_custom_ref*
ip6_frag_alloc_pbuf_custom_ref(void)699 ip6_frag_alloc_pbuf_custom_ref(void)
700 {
701 return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
702 }
703
704 /** Free a struct pbuf_custom_ref */
705 static void
ip6_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)706 ip6_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
707 {
708 LWIP_ASSERT("p != NULL", p != NULL);
709 memp_free(MEMP_FRAG_PBUF, p);
710 }
711
712 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
713 * pbuf_free. */
714 static void
ip6_frag_free_pbuf_custom(struct pbuf * p)715 ip6_frag_free_pbuf_custom(struct pbuf *p)
716 {
717 struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
718 LWIP_ASSERT("pcr != NULL", pcr != NULL);
719 LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
720 if (pcr->original != NULL) {
721 pbuf_free(pcr->original);
722 }
723 ip6_frag_free_pbuf_custom_ref(pcr);
724 }
725 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
726
727 /**
728 * Fragment an IPv6 datagram if too large for the netif or path MTU.
729 *
730 * Chop the datagram in MTU sized chunks and send them in order
731 * by pointing PBUF_REFs into p
732 *
733 * @param p ipv6 packet to send
734 * @param netif the netif on which to send
735 * @param dest destination ipv6 address to which to send
736 *
737 * @return ERR_OK if sent successfully, err_t otherwise
738 */
739 err_t
ip6_frag(struct pbuf * p,struct netif * netif,const ip6_addr_t * dest)740 ip6_frag(struct pbuf *p, struct netif *netif, const ip6_addr_t *dest)
741 {
742 struct ip6_hdr *original_ip6hdr;
743 struct ip6_hdr *ip6hdr;
744 struct ip6_frag_hdr *frag_hdr;
745 struct pbuf *rambuf;
746 #if !LWIP_NETIF_TX_SINGLE_PBUF
747 struct pbuf *newpbuf;
748 u16_t newpbuflen = 0;
749 u16_t left_to_copy;
750 #endif
751 static u32_t identification;
752 u16_t left, cop;
753 const u16_t mtu = nd6_get_destination_mtu(dest, netif);
754 const u16_t nfb = (u16_t)((mtu - (IP6_HLEN + IP6_FRAG_HLEN)) & IP6_FRAG_OFFSET_MASK);
755 u16_t fragment_offset = 0;
756 u16_t last;
757 u16_t poff = IP6_HLEN;
758
759 identification++;
760
761 original_ip6hdr = (struct ip6_hdr *)p->payload;
762
763 /* @todo we assume there are no options in the unfragmentable part (IPv6 header). */
764 LWIP_ASSERT("p->tot_len >= IP6_HLEN", p->tot_len >= IP6_HLEN);
765 left = (u16_t)(p->tot_len - IP6_HLEN);
766
767 while (left) {
768 last = (left <= nfb);
769
770 /* Fill this fragment */
771 cop = last ? left : nfb;
772
773 #if LWIP_NETIF_TX_SINGLE_PBUF
774 rambuf = pbuf_alloc(PBUF_IP, cop + IP6_FRAG_HLEN, PBUF_RAM);
775 if (rambuf == NULL) {
776 IP6_FRAG_STATS_INC(ip6_frag.memerr);
777 return ERR_MEM;
778 }
779 LWIP_ASSERT("this needs a pbuf in one piece!",
780 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
781 poff += pbuf_copy_partial(p, (u8_t*)rambuf->payload + IP6_FRAG_HLEN, cop, poff);
782 /* make room for the IP header */
783 if (pbuf_add_header(rambuf, IP6_HLEN)) {
784 pbuf_free(rambuf);
785 IP6_FRAG_STATS_INC(ip6_frag.memerr);
786 return ERR_MEM;
787 }
788 /* fill in the IP header */
789 SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN);
790 ip6hdr = (struct ip6_hdr *)rambuf->payload;
791 frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN);
792 #else
793 /* When not using a static buffer, create a chain of pbufs.
794 * The first will be a PBUF_RAM holding the link, IPv6, and Fragment header.
795 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
796 * but limited to the size of an mtu.
797 */
798 rambuf = pbuf_alloc(PBUF_LINK, IP6_HLEN + IP6_FRAG_HLEN, PBUF_RAM);
799 if (rambuf == NULL) {
800 IP6_FRAG_STATS_INC(ip6_frag.memerr);
801 return ERR_MEM;
802 }
803 LWIP_ASSERT("this needs a pbuf in one piece!",
804 (rambuf->len >= (IP6_HLEN)));
805 SMEMCPY(rambuf->payload, original_ip6hdr, IP6_HLEN);
806 ip6hdr = (struct ip6_hdr *)rambuf->payload;
807 frag_hdr = (struct ip6_frag_hdr *)((u8_t*)rambuf->payload + IP6_HLEN);
808
809 /* Can just adjust p directly for needed offset. */
810 p->payload = (u8_t *)p->payload + poff;
811 p->len = (u16_t)(p->len - poff);
812 p->tot_len = (u16_t)(p->tot_len - poff);
813
814 left_to_copy = cop;
815 while (left_to_copy) {
816 struct pbuf_custom_ref *pcr;
817 newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
818 /* Is this pbuf already empty? */
819 if (!newpbuflen) {
820 p = p->next;
821 continue;
822 }
823 pcr = ip6_frag_alloc_pbuf_custom_ref();
824 if (pcr == NULL) {
825 pbuf_free(rambuf);
826 IP6_FRAG_STATS_INC(ip6_frag.memerr);
827 return ERR_MEM;
828 }
829 /* Mirror this pbuf, although we might not need all of it. */
830 newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen);
831 if (newpbuf == NULL) {
832 ip6_frag_free_pbuf_custom_ref(pcr);
833 pbuf_free(rambuf);
834 IP6_FRAG_STATS_INC(ip6_frag.memerr);
835 return ERR_MEM;
836 }
837 pbuf_ref(p);
838 pcr->original = p;
839 pcr->pc.custom_free_function = ip6_frag_free_pbuf_custom;
840
841 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
842 * so that it is removed when pbuf_dechain is later called on rambuf.
843 */
844 pbuf_cat(rambuf, newpbuf);
845 left_to_copy = (u16_t)(left_to_copy - newpbuflen);
846 if (left_to_copy) {
847 p = p->next;
848 }
849 }
850 poff = newpbuflen;
851 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
852
853 /* Set headers */
854 frag_hdr->_nexth = original_ip6hdr->_nexth;
855 frag_hdr->reserved = 0;
856 frag_hdr->_fragment_offset = lwip_htons((u16_t)((fragment_offset & IP6_FRAG_OFFSET_MASK) | (last ? 0 : IP6_FRAG_MORE_FLAG)));
857 frag_hdr->_identification = lwip_htonl(identification);
858
859 IP6H_NEXTH_SET(ip6hdr, IP6_NEXTH_FRAGMENT);
860 IP6H_PLEN_SET(ip6hdr, (u16_t)(cop + IP6_FRAG_HLEN));
861
862 /* No need for separate header pbuf - we allowed room for it in rambuf
863 * when allocated.
864 */
865 IP6_FRAG_STATS_INC(ip6_frag.xmit);
866 netif->output_ip6(netif, rambuf, dest);
867
868 /* Unfortunately we can't reuse rambuf - the hardware may still be
869 * using the buffer. Instead we free it (and the ensuing chain) and
870 * recreate it next time round the loop. If we're lucky the hardware
871 * will have already sent the packet, the free will really free, and
872 * there will be zero memory penalty.
873 */
874
875 pbuf_free(rambuf);
876 left = (u16_t)(left - cop);
877 fragment_offset = (u16_t)(fragment_offset + cop);
878 }
879 return ERR_OK;
880 }
881
882 #endif /* LWIP_IPV6 && LWIP_IPV6_FRAG */
883