1 /*
2 * Copyright (C) 2019 Google, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/dag.h"
28 #include "util/u_math.h"
29
30 #include "ir3.h"
31 #include "ir3_compiler.h"
32 #include "ir3_context.h"
33
34 #ifdef DEBUG
35 #define SCHED_DEBUG (ir3_shader_debug & IR3_DBG_SCHEDMSGS)
36 #else
37 #define SCHED_DEBUG 0
38 #endif
39 #define d(fmt, ...) \
40 do { \
41 if (SCHED_DEBUG) { \
42 mesa_logi("PSCHED: " fmt, ##__VA_ARGS__); \
43 } \
44 } while (0)
45
46 #define di(instr, fmt, ...) \
47 do { \
48 if (SCHED_DEBUG) { \
49 struct log_stream *stream = mesa_log_streami(); \
50 mesa_log_stream_printf(stream, "PSCHED: " fmt ": ", ##__VA_ARGS__); \
51 ir3_print_instr_stream(stream, instr); \
52 mesa_log_stream_destroy(stream); \
53 } \
54 } while (0)
55
56 /*
57 * Post RA Instruction Scheduling
58 */
59
60 struct ir3_postsched_ctx {
61 struct ir3 *ir;
62
63 struct ir3_shader_variant *v;
64
65 void *mem_ctx;
66 struct ir3_block *block; /* the current block */
67 struct dag *dag;
68
69 struct list_head unscheduled_list; /* unscheduled instructions */
70
71 unsigned ip;
72
73 int ss_delay;
74 int sy_delay;
75 };
76
77 struct ir3_postsched_node {
78 struct dag_node dag; /* must be first for util_dynarray_foreach */
79 struct ir3_instruction *instr;
80 bool partially_evaluated_path;
81
82 unsigned earliest_ip;
83
84 bool has_sy_src, has_ss_src;
85
86 unsigned delay;
87 unsigned max_delay;
88 };
89
90 #define foreach_sched_node(__n, __list) \
91 list_for_each_entry (struct ir3_postsched_node, __n, __list, dag.link)
92
93 static bool
has_sy_src(struct ir3_instruction * instr)94 has_sy_src(struct ir3_instruction *instr)
95 {
96 struct ir3_postsched_node *node = instr->data;
97 return node->has_sy_src;
98 }
99
100 static bool
has_ss_src(struct ir3_instruction * instr)101 has_ss_src(struct ir3_instruction *instr)
102 {
103 struct ir3_postsched_node *node = instr->data;
104 return node->has_ss_src;
105 }
106
107 static void
schedule(struct ir3_postsched_ctx * ctx,struct ir3_instruction * instr)108 schedule(struct ir3_postsched_ctx *ctx, struct ir3_instruction *instr)
109 {
110 assert(ctx->block == instr->block);
111
112 /* remove from unscheduled_list:
113 */
114 list_delinit(&instr->node);
115
116 di(instr, "schedule");
117
118 bool counts_for_delay = is_alu(instr) || is_flow(instr);
119
120 unsigned delay_cycles = counts_for_delay ? 1 + instr->repeat : 0;
121
122 struct ir3_postsched_node *n = instr->data;
123
124 /* We insert any nop's needed to get to earliest_ip, then advance
125 * delay_cycles by scheduling the instruction.
126 */
127 ctx->ip = MAX2(ctx->ip, n->earliest_ip) + delay_cycles;
128
129 util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
130 unsigned delay = (unsigned)(uintptr_t)edge->data;
131 struct ir3_postsched_node *child =
132 container_of(edge->child, struct ir3_postsched_node, dag);
133 child->earliest_ip = MAX2(child->earliest_ip, ctx->ip + delay);
134 }
135
136 list_addtail(&instr->node, &instr->block->instr_list);
137
138 dag_prune_head(ctx->dag, &n->dag);
139
140 if (is_meta(instr) && (instr->opc != OPC_META_TEX_PREFETCH))
141 return;
142
143 if (is_ss_producer(instr)) {
144 ctx->ss_delay = soft_ss_delay(instr);
145 } else if (has_ss_src(instr)) {
146 ctx->ss_delay = 0;
147 } else if (ctx->ss_delay > 0) {
148 ctx->ss_delay--;
149 }
150
151 if (is_sy_producer(instr)) {
152 ctx->sy_delay = soft_sy_delay(instr, ctx->block->shader);
153 } else if (has_sy_src(instr)) {
154 ctx->sy_delay = 0;
155 } else if (ctx->sy_delay > 0) {
156 ctx->sy_delay--;
157 }
158 }
159
160 static void
dump_state(struct ir3_postsched_ctx * ctx)161 dump_state(struct ir3_postsched_ctx *ctx)
162 {
163 if (!SCHED_DEBUG)
164 return;
165
166 foreach_sched_node (n, &ctx->dag->heads) {
167 di(n->instr, "maxdel=%3d ", n->max_delay);
168
169 util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
170 struct ir3_postsched_node *child =
171 (struct ir3_postsched_node *)edge->child;
172
173 di(child->instr, " -> (%d parents) ", child->dag.parent_count);
174 }
175 }
176 }
177
178 static unsigned
node_delay(struct ir3_postsched_ctx * ctx,struct ir3_postsched_node * n)179 node_delay(struct ir3_postsched_ctx *ctx, struct ir3_postsched_node *n)
180 {
181 return MAX2(n->earliest_ip, ctx->ip) - ctx->ip;
182 }
183
184 static unsigned
node_delay_soft(struct ir3_postsched_ctx * ctx,struct ir3_postsched_node * n)185 node_delay_soft(struct ir3_postsched_ctx *ctx, struct ir3_postsched_node *n)
186 {
187 unsigned delay = node_delay(ctx, n);
188
189 /* This takes into account that as when we schedule multiple tex or sfu, the
190 * first user has to wait for all of them to complete.
191 */
192 if (n->has_ss_src)
193 delay = MAX2(delay, ctx->ss_delay);
194 if (n->has_sy_src)
195 delay = MAX2(delay, ctx->sy_delay);
196
197 return delay;
198 }
199
200 /* find instruction to schedule: */
201 static struct ir3_instruction *
choose_instr(struct ir3_postsched_ctx * ctx)202 choose_instr(struct ir3_postsched_ctx *ctx)
203 {
204 struct ir3_postsched_node *chosen = NULL;
205
206 dump_state(ctx);
207
208 foreach_sched_node (n, &ctx->dag->heads) {
209 if (!is_meta(n->instr))
210 continue;
211
212 if (!chosen || (chosen->max_delay < n->max_delay))
213 chosen = n;
214 }
215
216 if (chosen) {
217 di(chosen->instr, "prio: chose (meta)");
218 return chosen->instr;
219 }
220
221 /* Try to schedule inputs with a higher priority, if possible, as
222 * the last bary.f unlocks varying storage to unblock more VS
223 * warps.
224 */
225 foreach_sched_node (n, &ctx->dag->heads) {
226 if (!is_input(n->instr))
227 continue;
228
229 if (!chosen || (chosen->max_delay < n->max_delay))
230 chosen = n;
231 }
232
233 if (chosen) {
234 di(chosen->instr, "prio: chose (input)");
235 return chosen->instr;
236 }
237
238 /* Next prioritize discards: */
239 foreach_sched_node (n, &ctx->dag->heads) {
240 unsigned d = node_delay(ctx, n);
241
242 if (d > 0)
243 continue;
244
245 if (!is_kill_or_demote(n->instr))
246 continue;
247
248 if (!chosen || (chosen->max_delay < n->max_delay))
249 chosen = n;
250 }
251
252 if (chosen) {
253 di(chosen->instr, "csp: chose (kill, hard ready)");
254 return chosen->instr;
255 }
256
257 /* Next prioritize expensive instructions: */
258 foreach_sched_node (n, &ctx->dag->heads) {
259 unsigned d = node_delay_soft(ctx, n);
260
261 if (d > 0)
262 continue;
263
264 if (!(is_ss_producer(n->instr) || is_sy_producer(n->instr)))
265 continue;
266
267 if (!chosen || (chosen->max_delay < n->max_delay))
268 chosen = n;
269 }
270
271 if (chosen) {
272 di(chosen->instr, "csp: chose (sfu/tex, soft ready)");
273 return chosen->instr;
274 }
275
276 /* Next try to find a ready leader w/ soft delay (ie. including extra
277 * delay for things like tex fetch which can be synchronized w/ sync
278 * bit (but we probably do want to schedule some other instructions
279 * while we wait). We also allow a small amount of nops, to prefer now-nops
280 * over future-nops up to a point, as that gives better results.
281 */
282 unsigned chosen_delay = 0;
283 foreach_sched_node (n, &ctx->dag->heads) {
284 unsigned d = node_delay_soft(ctx, n);
285
286 if (d > 3)
287 continue;
288
289 if (!chosen || d < chosen_delay) {
290 chosen = n;
291 chosen_delay = d;
292 continue;
293 }
294
295 if (d > chosen_delay)
296 continue;
297
298 if (chosen->max_delay < n->max_delay) {
299 chosen = n;
300 chosen_delay = d;
301 }
302 }
303
304 if (chosen) {
305 di(chosen->instr, "csp: chose (soft ready)");
306 return chosen->instr;
307 }
308
309 /* Next try to find a ready leader that can be scheduled without nop's,
310 * which in the case of things that need (sy)/(ss) could result in
311 * stalls.. but we've already decided there is not a better option.
312 */
313 foreach_sched_node (n, &ctx->dag->heads) {
314 unsigned d = node_delay(ctx, n);
315
316 if (d > 0)
317 continue;
318
319 if (!chosen || (chosen->max_delay < n->max_delay))
320 chosen = n;
321 }
322
323 if (chosen) {
324 di(chosen->instr, "csp: chose (hard ready)");
325 return chosen->instr;
326 }
327
328 /* Otherwise choose leader with maximum cost:
329 */
330 foreach_sched_node (n, &ctx->dag->heads) {
331 if (!chosen || chosen->max_delay < n->max_delay)
332 chosen = n;
333 }
334
335 if (chosen) {
336 di(chosen->instr, "csp: chose (leader)");
337 return chosen->instr;
338 }
339
340 return NULL;
341 }
342
343 struct ir3_postsched_deps_state {
344 struct ir3_postsched_ctx *ctx;
345
346 enum { F, R } direction;
347
348 bool merged;
349
350 /* Track the mapping between sched node (instruction) that last
351 * wrote a given register (in whichever direction we are iterating
352 * the block)
353 *
354 * Note, this table is twice as big as the # of regs, to deal with
355 * half-precision regs. The approach differs depending on whether
356 * the half and full precision register files are "merged" (conflict,
357 * ie. a6xx+) in which case we consider each full precision dep
358 * as two half-precision dependencies, vs older separate (non-
359 * conflicting) in which case the first half of the table is used
360 * for full precision and 2nd half for half-precision.
361 */
362 struct ir3_postsched_node *regs[2 * 256];
363 unsigned dst_n[2 * 256];
364 };
365
366 /* bounds checking read/write accessors, since OoB access to stuff on
367 * the stack is gonna cause a bad day.
368 */
369 #define dep_reg(state, idx) \
370 *({ \
371 assert((idx) < ARRAY_SIZE((state)->regs)); \
372 &(state)->regs[(idx)]; \
373 })
374
375 static void
add_dep(struct ir3_postsched_deps_state * state,struct ir3_postsched_node * before,struct ir3_postsched_node * after,unsigned d)376 add_dep(struct ir3_postsched_deps_state *state,
377 struct ir3_postsched_node *before, struct ir3_postsched_node *after,
378 unsigned d)
379 {
380 if (!before || !after)
381 return;
382
383 assert(before != after);
384
385 if (state->direction == F) {
386 dag_add_edge_max_data(&before->dag, &after->dag, (uintptr_t)d);
387 } else {
388 dag_add_edge_max_data(&after->dag, &before->dag, 0);
389 }
390 }
391
392 static void
add_single_reg_dep(struct ir3_postsched_deps_state * state,struct ir3_postsched_node * node,unsigned num,int src_n,int dst_n)393 add_single_reg_dep(struct ir3_postsched_deps_state *state,
394 struct ir3_postsched_node *node, unsigned num, int src_n,
395 int dst_n)
396 {
397 struct ir3_postsched_node *dep = dep_reg(state, num);
398
399 unsigned d = 0;
400 if (src_n >= 0 && dep && state->direction == F) {
401 /* get the dst_n this corresponds to */
402 unsigned dst_n = state->dst_n[num];
403 unsigned d_soft = ir3_delayslots(dep->instr, node->instr, src_n, true);
404 d = ir3_delayslots_with_repeat(dep->instr, node->instr, dst_n, src_n);
405 node->delay = MAX2(node->delay, d_soft);
406 if (is_sy_producer(dep->instr))
407 node->has_sy_src = true;
408 if (is_ss_producer(dep->instr))
409 node->has_ss_src = true;
410 }
411
412 add_dep(state, dep, node, d);
413 if (src_n < 0) {
414 dep_reg(state, num) = node;
415 state->dst_n[num] = dst_n;
416 }
417 }
418
419 /* This is where we handled full vs half-precision, and potential conflicts
420 * between half and full precision that result in additional dependencies.
421 * The 'reg' arg is really just to know half vs full precision.
422 *
423 * If src_n is positive, then this adds a dependency on a source register, and
424 * src_n is the index passed into ir3_delayslots() for calculating the delay:
425 * it corresponds to node->instr->srcs[src_n]. If src_n is negative, then
426 * this is for the destination register corresponding to dst_n.
427 */
428 static void
add_reg_dep(struct ir3_postsched_deps_state * state,struct ir3_postsched_node * node,const struct ir3_register * reg,unsigned num,int src_n,int dst_n)429 add_reg_dep(struct ir3_postsched_deps_state *state,
430 struct ir3_postsched_node *node, const struct ir3_register *reg,
431 unsigned num, int src_n, int dst_n)
432 {
433 if (state->merged) {
434 /* Make sure that special registers like a0.x that are written as
435 * half-registers don't alias random full registers by pretending that
436 * they're full registers:
437 */
438 if ((reg->flags & IR3_REG_HALF) && !is_reg_special(reg)) {
439 /* single conflict in half-reg space: */
440 add_single_reg_dep(state, node, num, src_n, dst_n);
441 } else {
442 /* two conflicts in half-reg space: */
443 add_single_reg_dep(state, node, 2 * num + 0, src_n, dst_n);
444 add_single_reg_dep(state, node, 2 * num + 1, src_n, dst_n);
445 }
446 } else {
447 if (reg->flags & IR3_REG_HALF)
448 num += ARRAY_SIZE(state->regs) / 2;
449 add_single_reg_dep(state, node, num, src_n, dst_n);
450 }
451 }
452
453 static void
calculate_deps(struct ir3_postsched_deps_state * state,struct ir3_postsched_node * node)454 calculate_deps(struct ir3_postsched_deps_state *state,
455 struct ir3_postsched_node *node)
456 {
457 /* Add dependencies on instructions that previously (or next,
458 * in the reverse direction) wrote any of our src registers:
459 */
460 foreach_src_n (reg, i, node->instr) {
461 if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED))
462 continue;
463
464 if (reg->flags & IR3_REG_RELATIV) {
465 /* mark entire array as read: */
466 for (unsigned j = 0; j < reg->size; j++) {
467 add_reg_dep(state, node, reg, reg->array.base + j, i, -1);
468 }
469 } else {
470 assert(reg->wrmask >= 1);
471 u_foreach_bit (b, reg->wrmask) {
472 add_reg_dep(state, node, reg, reg->num + b, i, -1);
473 }
474 }
475 }
476
477 /* And then after we update the state for what this instruction
478 * wrote:
479 */
480 foreach_dst_n (reg, i, node->instr) {
481 if (reg->wrmask == 0)
482 continue;
483 if (reg->flags & IR3_REG_RELATIV) {
484 /* mark the entire array as written: */
485 for (unsigned j = 0; j < reg->size; j++) {
486 add_reg_dep(state, node, reg, reg->array.base + j, -1, i);
487 }
488 } else {
489 assert(reg->wrmask >= 1);
490 u_foreach_bit (b, reg->wrmask) {
491 add_reg_dep(state, node, reg, reg->num + b, -1, i);
492 }
493 }
494 }
495 }
496
497 static void
calculate_forward_deps(struct ir3_postsched_ctx * ctx)498 calculate_forward_deps(struct ir3_postsched_ctx *ctx)
499 {
500 struct ir3_postsched_deps_state state = {
501 .ctx = ctx,
502 .direction = F,
503 .merged = ctx->v->mergedregs,
504 };
505
506 foreach_instr (instr, &ctx->unscheduled_list) {
507 calculate_deps(&state, instr->data);
508 }
509 }
510
511 static void
calculate_reverse_deps(struct ir3_postsched_ctx * ctx)512 calculate_reverse_deps(struct ir3_postsched_ctx *ctx)
513 {
514 struct ir3_postsched_deps_state state = {
515 .ctx = ctx,
516 .direction = R,
517 .merged = ctx->v->mergedregs,
518 };
519
520 foreach_instr_rev (instr, &ctx->unscheduled_list) {
521 calculate_deps(&state, instr->data);
522 }
523 }
524
525 static void
sched_node_init(struct ir3_postsched_ctx * ctx,struct ir3_instruction * instr)526 sched_node_init(struct ir3_postsched_ctx *ctx, struct ir3_instruction *instr)
527 {
528 struct ir3_postsched_node *n =
529 rzalloc(ctx->mem_ctx, struct ir3_postsched_node);
530
531 dag_init_node(ctx->dag, &n->dag);
532
533 n->instr = instr;
534 instr->data = n;
535 }
536
537 static void
sched_dag_max_delay_cb(struct dag_node * node,void * state)538 sched_dag_max_delay_cb(struct dag_node *node, void *state)
539 {
540 struct ir3_postsched_node *n = (struct ir3_postsched_node *)node;
541 uint32_t max_delay = 0;
542
543 util_dynarray_foreach (&n->dag.edges, struct dag_edge, edge) {
544 struct ir3_postsched_node *child =
545 (struct ir3_postsched_node *)edge->child;
546 max_delay = MAX2(child->max_delay, max_delay);
547 }
548
549 n->max_delay = MAX2(n->max_delay, max_delay + n->delay);
550 }
551
552 static void
sched_dag_init(struct ir3_postsched_ctx * ctx)553 sched_dag_init(struct ir3_postsched_ctx *ctx)
554 {
555 ctx->mem_ctx = ralloc_context(NULL);
556
557 ctx->dag = dag_create(ctx->mem_ctx);
558
559 foreach_instr (instr, &ctx->unscheduled_list)
560 sched_node_init(ctx, instr);
561
562 calculate_forward_deps(ctx);
563 calculate_reverse_deps(ctx);
564
565 /*
566 * To avoid expensive texture fetches, etc, from being moved ahead
567 * of kills, track the kills we've seen so far, so we can add an
568 * extra dependency on them for tex/mem instructions
569 */
570 struct util_dynarray kills;
571 util_dynarray_init(&kills, ctx->mem_ctx);
572
573 /* The last bary.f with the (ei) flag must be scheduled before any kills,
574 * or the hw gets angry. Keep track of inputs here so we can add the
575 * false dep on the kill instruction.
576 */
577 struct util_dynarray inputs;
578 util_dynarray_init(&inputs, ctx->mem_ctx);
579
580 /*
581 * Normal srcs won't be in SSA at this point, those are dealt with in
582 * calculate_forward_deps() and calculate_reverse_deps(). But we still
583 * have the false-dep information in SSA form, so go ahead and add
584 * dependencies for that here:
585 */
586 foreach_instr (instr, &ctx->unscheduled_list) {
587 struct ir3_postsched_node *n = instr->data;
588
589 foreach_ssa_src_n (src, i, instr) {
590 if (src->block != instr->block)
591 continue;
592
593 /* we can end up with unused false-deps.. just skip them: */
594 if (src->flags & IR3_INSTR_UNUSED)
595 continue;
596
597 struct ir3_postsched_node *sn = src->data;
598
599 /* don't consider dependencies in other blocks: */
600 if (src->block != instr->block)
601 continue;
602
603 dag_add_edge_max_data(&sn->dag, &n->dag, 0);
604 }
605
606 if (is_input(instr)) {
607 util_dynarray_append(&inputs, struct ir3_instruction *, instr);
608 } else if (is_kill_or_demote(instr)) {
609 util_dynarray_foreach (&inputs, struct ir3_instruction *, instrp) {
610 struct ir3_instruction *input = *instrp;
611 struct ir3_postsched_node *in = input->data;
612 dag_add_edge_max_data(&in->dag, &n->dag, 0);
613 }
614 util_dynarray_append(&kills, struct ir3_instruction *, instr);
615 } else if (is_tex(instr) || is_mem(instr)) {
616 util_dynarray_foreach (&kills, struct ir3_instruction *, instrp) {
617 struct ir3_instruction *kill = *instrp;
618 struct ir3_postsched_node *kn = kill->data;
619 dag_add_edge_max_data(&kn->dag, &n->dag, 0);
620 }
621 }
622 }
623
624 // TODO do we want to do this after reverse-dependencies?
625 dag_traverse_bottom_up(ctx->dag, sched_dag_max_delay_cb, NULL);
626 }
627
628 static void
sched_dag_destroy(struct ir3_postsched_ctx * ctx)629 sched_dag_destroy(struct ir3_postsched_ctx *ctx)
630 {
631 ralloc_free(ctx->mem_ctx);
632 ctx->mem_ctx = NULL;
633 ctx->dag = NULL;
634 }
635
636 static void
sched_block(struct ir3_postsched_ctx * ctx,struct ir3_block * block)637 sched_block(struct ir3_postsched_ctx *ctx, struct ir3_block *block)
638 {
639 ctx->block = block;
640 ctx->sy_delay = 0;
641 ctx->ss_delay = 0;
642
643 /* move all instructions to the unscheduled list, and
644 * empty the block's instruction list (to which we will
645 * be inserting).
646 */
647 list_replace(&block->instr_list, &ctx->unscheduled_list);
648 list_inithead(&block->instr_list);
649
650 // TODO once we are using post-sched for everything we can
651 // just not stick in NOP's prior to post-sched, and drop this.
652 // for now keep this, since it makes post-sched optional:
653 foreach_instr_safe (instr, &ctx->unscheduled_list) {
654 switch (instr->opc) {
655 case OPC_NOP:
656 case OPC_B:
657 case OPC_JUMP:
658 list_delinit(&instr->node);
659 break;
660 default:
661 break;
662 }
663 }
664
665 sched_dag_init(ctx);
666
667 /* First schedule all meta:input instructions, followed by
668 * tex-prefetch. We want all of the instructions that load
669 * values into registers before the shader starts to go
670 * before any other instructions. But in particular we
671 * want inputs to come before prefetches. This is because
672 * a FS's bary_ij input may not actually be live in the
673 * shader, but it should not be scheduled on top of any
674 * other input (but can be overwritten by a tex prefetch)
675 */
676 foreach_instr_safe (instr, &ctx->unscheduled_list)
677 if (instr->opc == OPC_META_INPUT)
678 schedule(ctx, instr);
679
680 foreach_instr_safe (instr, &ctx->unscheduled_list)
681 if (instr->opc == OPC_META_TEX_PREFETCH)
682 schedule(ctx, instr);
683
684 while (!list_is_empty(&ctx->unscheduled_list)) {
685 struct ir3_instruction *instr = choose_instr(ctx);
686
687 unsigned delay = node_delay(ctx, instr->data);
688 d("delay=%u", delay);
689
690 assert(delay <= 6);
691
692 schedule(ctx, instr);
693 }
694
695 sched_dag_destroy(ctx);
696 }
697
698 static bool
is_self_mov(struct ir3_instruction * instr)699 is_self_mov(struct ir3_instruction *instr)
700 {
701 if (!is_same_type_mov(instr))
702 return false;
703
704 if (instr->dsts[0]->num != instr->srcs[0]->num)
705 return false;
706
707 if (instr->dsts[0]->flags & IR3_REG_RELATIV)
708 return false;
709
710 if (instr->cat1.round != ROUND_ZERO)
711 return false;
712
713 if (instr->srcs[0]->flags &
714 (IR3_REG_CONST | IR3_REG_IMMED | IR3_REG_RELATIV | IR3_REG_FNEG |
715 IR3_REG_FABS | IR3_REG_SNEG | IR3_REG_SABS | IR3_REG_BNOT))
716 return false;
717
718 return true;
719 }
720
721 /* sometimes we end up w/ in-place mov's, ie. mov.u32u32 r1.y, r1.y
722 * as a result of places were before RA we are not sure that it is
723 * safe to eliminate. We could eliminate these earlier, but sometimes
724 * they are tangled up in false-dep's, etc, so it is easier just to
725 * let them exist until after RA
726 */
727 static void
cleanup_self_movs(struct ir3 * ir)728 cleanup_self_movs(struct ir3 *ir)
729 {
730 foreach_block (block, &ir->block_list) {
731 foreach_instr_safe (instr, &block->instr_list) {
732 for (unsigned i = 0; i < instr->deps_count; i++) {
733 if (instr->deps[i] && is_self_mov(instr->deps[i])) {
734 instr->deps[i] = NULL;
735 }
736 }
737
738 if (is_self_mov(instr))
739 list_delinit(&instr->node);
740 }
741 }
742 }
743
744 bool
ir3_postsched(struct ir3 * ir,struct ir3_shader_variant * v)745 ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v)
746 {
747 struct ir3_postsched_ctx ctx = {
748 .ir = ir,
749 .v = v,
750 };
751
752 cleanup_self_movs(ir);
753
754 foreach_block (block, &ir->block_list) {
755 sched_block(&ctx, block);
756 }
757
758 return true;
759 }
760