1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2020 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2020 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68
iwl_mvm_skb_get_hdr(struct sk_buff * skb)69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 u8 *data = skb->data;
73
74 /* Alignment concerns */
75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 data += sizeof(struct ieee80211_radiotap_he);
82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 data += sizeof(struct ieee80211_radiotap_he_mu);
84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 data += sizeof(struct ieee80211_radiotap_lsig);
86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 }
91
92 return data;
93 }
94
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 int queue, struct ieee80211_sta *sta)
97 {
98 struct iwl_mvm_sta *mvmsta;
99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 struct iwl_mvm_key_pn *ptk_pn;
102 int res;
103 u8 tid, keyidx;
104 u8 pn[IEEE80211_CCMP_PN_LEN];
105 u8 *extiv;
106
107 /* do PN checking */
108
109 /* multicast and non-data only arrives on default queue */
110 if (!ieee80211_is_data(hdr->frame_control) ||
111 is_multicast_ether_addr(hdr->addr1))
112 return 0;
113
114 /* do not check PN for open AP */
115 if (!(stats->flag & RX_FLAG_DECRYPTED))
116 return 0;
117
118 /*
119 * avoid checking for default queue - we don't want to replicate
120 * all the logic that's necessary for checking the PN on fragmented
121 * frames, leave that to mac80211
122 */
123 if (queue == 0)
124 return 0;
125
126 /* if we are here - this for sure is either CCMP or GCMP */
127 if (IS_ERR_OR_NULL(sta)) {
128 IWL_ERR(mvm,
129 "expected hw-decrypted unicast frame for station\n");
130 return -1;
131 }
132
133 mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 keyidx = extiv[3] >> 6;
137
138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 if (!ptk_pn)
140 return -1;
141
142 if (ieee80211_is_data_qos(hdr->frame_control))
143 tid = ieee80211_get_tid(hdr);
144 else
145 tid = 0;
146
147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 if (tid >= IWL_MAX_TID_COUNT)
149 return -1;
150
151 /* load pn */
152 pn[0] = extiv[7];
153 pn[1] = extiv[6];
154 pn[2] = extiv[5];
155 pn[3] = extiv[4];
156 pn[4] = extiv[1];
157 pn[5] = extiv[0];
158
159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 if (res < 0)
161 return -1;
162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 return -1;
164
165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 stats->flag |= RX_FLAG_PN_VALIDATED;
167
168 return 0;
169 }
170
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 struct iwl_rx_cmd_buffer *rxb)
175 {
176 struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 unsigned int headlen, fraglen, pad_len = 0;
179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
181 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
182
183 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
184 len -= 2;
185 pad_len = 2;
186 }
187
188 /*
189 * For non monitor interface strip the bytes the RADA might not have
190 * removed. As monitor interface cannot exist with other interfaces
191 * this removal is safe.
192 */
193 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
194 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
195
196 /*
197 * If RADA was not enabled then decryption was not performed so
198 * the MIC cannot be removed.
199 */
200 if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
201 if (WARN_ON(crypt_len > mic_crc_len))
202 return -EINVAL;
203
204 mic_crc_len -= crypt_len;
205 }
206
207 if (WARN_ON(mic_crc_len > len))
208 return -EINVAL;
209
210 len -= mic_crc_len;
211 }
212
213 /* If frame is small enough to fit in skb->head, pull it completely.
214 * If not, only pull ieee80211_hdr (including crypto if present, and
215 * an additional 8 bytes for SNAP/ethertype, see below) so that
216 * splice() or TCP coalesce are more efficient.
217 *
218 * Since, in addition, ieee80211_data_to_8023() always pull in at
219 * least 8 bytes (possibly more for mesh) we can do the same here
220 * to save the cost of doing it later. That still doesn't pull in
221 * the actual IP header since the typical case has a SNAP header.
222 * If the latter changes (there are efforts in the standards group
223 * to do so) we should revisit this and ieee80211_data_to_8023().
224 */
225 headlen = (len <= skb_tailroom(skb)) ? len :
226 hdrlen + crypt_len + 8;
227
228 /* The firmware may align the packet to DWORD.
229 * The padding is inserted after the IV.
230 * After copying the header + IV skip the padding if
231 * present before copying packet data.
232 */
233 hdrlen += crypt_len;
234
235 if (WARN_ONCE(headlen < hdrlen,
236 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
237 hdrlen, len, crypt_len)) {
238 /*
239 * We warn and trace because we want to be able to see
240 * it in trace-cmd as well.
241 */
242 IWL_DEBUG_RX(mvm,
243 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
244 hdrlen, len, crypt_len);
245 return -EINVAL;
246 }
247
248 skb_put_data(skb, hdr, hdrlen);
249 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
250
251 /*
252 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
253 * certain cases and starts the checksum after the SNAP. Check if
254 * this is the case - it's easier to just bail out to CHECKSUM_NONE
255 * in the cases the hardware didn't handle, since it's rare to see
256 * such packets, even though the hardware did calculate the checksum
257 * in this case, just starting after the MAC header instead.
258 */
259 if (skb->ip_summed == CHECKSUM_COMPLETE) {
260 struct {
261 u8 hdr[6];
262 __be16 type;
263 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
264
265 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
266 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
267 (shdr->type != htons(ETH_P_IP) &&
268 shdr->type != htons(ETH_P_ARP) &&
269 shdr->type != htons(ETH_P_IPV6) &&
270 shdr->type != htons(ETH_P_8021Q) &&
271 shdr->type != htons(ETH_P_PAE) &&
272 shdr->type != htons(ETH_P_TDLS))))
273 skb->ip_summed = CHECKSUM_NONE;
274 }
275
276 fraglen = len - headlen;
277
278 if (fraglen) {
279 int offset = (void *)hdr + headlen + pad_len -
280 rxb_addr(rxb) + rxb_offset(rxb);
281
282 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
283 fraglen, rxb->truesize);
284 }
285
286 return 0;
287 }
288
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)289 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
290 struct sk_buff *skb)
291 {
292 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
293 struct ieee80211_vendor_radiotap *radiotap;
294 const int size = sizeof(*radiotap) + sizeof(__le16);
295
296 if (!mvm->cur_aid)
297 return;
298
299 /* ensure alignment */
300 BUILD_BUG_ON((size + 2) % 4);
301
302 radiotap = skb_put(skb, size + 2);
303 radiotap->align = 1;
304 /* Intel OUI */
305 radiotap->oui[0] = 0xf6;
306 radiotap->oui[1] = 0x54;
307 radiotap->oui[2] = 0x25;
308 /* radiotap sniffer config sub-namespace */
309 radiotap->subns = 1;
310 radiotap->present = 0x1;
311 radiotap->len = size - sizeof(*radiotap);
312 radiotap->pad = 2;
313
314 /* fill the data now */
315 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
316 /* and clear the padding */
317 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
318
319 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
320 }
321
322 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,bool csi)323 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
324 struct napi_struct *napi,
325 struct sk_buff *skb, int queue,
326 struct ieee80211_sta *sta,
327 bool csi)
328 {
329 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
330 kfree_skb(skb);
331 else
332 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
333 }
334
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)335 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
336 struct ieee80211_rx_status *rx_status,
337 u32 rate_n_flags, int energy_a,
338 int energy_b)
339 {
340 int max_energy;
341 u32 rate_flags = rate_n_flags;
342
343 energy_a = energy_a ? -energy_a : S8_MIN;
344 energy_b = energy_b ? -energy_b : S8_MIN;
345 max_energy = max(energy_a, energy_b);
346
347 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
348 energy_a, energy_b, max_energy);
349
350 rx_status->signal = max_energy;
351 rx_status->chains =
352 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
353 rx_status->chain_signal[0] = energy_a;
354 rx_status->chain_signal[1] = energy_b;
355 rx_status->chain_signal[2] = S8_MIN;
356 }
357
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)358 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
359 struct ieee80211_rx_status *stats, u16 phy_info,
360 struct iwl_rx_mpdu_desc *desc,
361 u32 pkt_flags, int queue, u8 *crypt_len)
362 {
363 u32 status = le32_to_cpu(desc->status);
364
365 /*
366 * Drop UNKNOWN frames in aggregation, unless in monitor mode
367 * (where we don't have the keys).
368 * We limit this to aggregation because in TKIP this is a valid
369 * scenario, since we may not have the (correct) TTAK (phase 1
370 * key) in the firmware.
371 */
372 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
373 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
374 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
375 return -1;
376
377 if (!ieee80211_has_protected(hdr->frame_control) ||
378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 IWL_RX_MPDU_STATUS_SEC_NONE)
380 return 0;
381
382 /* TODO: handle packets encrypted with unknown alg */
383
384 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
385 case IWL_RX_MPDU_STATUS_SEC_CCM:
386 case IWL_RX_MPDU_STATUS_SEC_GCM:
387 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
388 /* alg is CCM: check MIC only */
389 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
390 return -1;
391
392 stats->flag |= RX_FLAG_DECRYPTED;
393 if (pkt_flags & FH_RSCSR_RADA_EN)
394 stats->flag |= RX_FLAG_MIC_STRIPPED;
395 *crypt_len = IEEE80211_CCMP_HDR_LEN;
396 return 0;
397 case IWL_RX_MPDU_STATUS_SEC_TKIP:
398 /* Don't drop the frame and decrypt it in SW */
399 if (!fw_has_api(&mvm->fw->ucode_capa,
400 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
401 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
402 return 0;
403
404 if (mvm->trans->trans_cfg->gen2 &&
405 !(status & RX_MPDU_RES_STATUS_MIC_OK))
406 stats->flag |= RX_FLAG_MMIC_ERROR;
407
408 *crypt_len = IEEE80211_TKIP_IV_LEN;
409 /* fall through */
410 case IWL_RX_MPDU_STATUS_SEC_WEP:
411 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
412 return -1;
413
414 stats->flag |= RX_FLAG_DECRYPTED;
415 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
416 IWL_RX_MPDU_STATUS_SEC_WEP)
417 *crypt_len = IEEE80211_WEP_IV_LEN;
418
419 if (pkt_flags & FH_RSCSR_RADA_EN) {
420 stats->flag |= RX_FLAG_ICV_STRIPPED;
421 if (mvm->trans->trans_cfg->gen2)
422 stats->flag |= RX_FLAG_MMIC_STRIPPED;
423 }
424
425 return 0;
426 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
427 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
428 return -1;
429 stats->flag |= RX_FLAG_DECRYPTED;
430 return 0;
431 default:
432 /*
433 * Sometimes we can get frames that were not decrypted
434 * because the firmware didn't have the keys yet. This can
435 * happen after connection where we can get multicast frames
436 * before the GTK is installed.
437 * Silently drop those frames.
438 * Also drop un-decrypted frames in monitor mode.
439 */
440 if (!is_multicast_ether_addr(hdr->addr1) &&
441 !mvm->monitor_on && net_ratelimit())
442 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
443 }
444
445 return 0;
446 }
447
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)448 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
449 struct ieee80211_sta *sta,
450 struct sk_buff *skb,
451 struct iwl_rx_packet *pkt)
452 {
453 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
454
455 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
456 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
457 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
458
459 skb->ip_summed = CHECKSUM_COMPLETE;
460 skb->csum = csum_unfold(~(__force __sum16)hwsum);
461 }
462 } else {
463 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
464 struct iwl_mvm_vif *mvmvif;
465 u16 flags = le16_to_cpu(desc->l3l4_flags);
466 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
467 IWL_RX_L3_PROTO_POS);
468
469 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
470
471 if (mvmvif->features & NETIF_F_RXCSUM &&
472 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
473 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
474 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
475 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
476 skb->ip_summed = CHECKSUM_UNNECESSARY;
477 }
478 }
479
480 /*
481 * returns true if a packet is a duplicate and should be dropped.
482 * Updates AMSDU PN tracking info
483 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)484 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
485 struct ieee80211_rx_status *rx_status,
486 struct ieee80211_hdr *hdr,
487 struct iwl_rx_mpdu_desc *desc)
488 {
489 struct iwl_mvm_sta *mvm_sta;
490 struct iwl_mvm_rxq_dup_data *dup_data;
491 u8 tid, sub_frame_idx;
492
493 if (WARN_ON(IS_ERR_OR_NULL(sta)))
494 return false;
495
496 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
497 dup_data = &mvm_sta->dup_data[queue];
498
499 /*
500 * Drop duplicate 802.11 retransmissions
501 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
502 */
503 if (ieee80211_is_ctl(hdr->frame_control) ||
504 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
505 is_multicast_ether_addr(hdr->addr1)) {
506 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
507 return false;
508 }
509
510 if (ieee80211_is_data_qos(hdr->frame_control))
511 /* frame has qos control */
512 tid = ieee80211_get_tid(hdr);
513 else
514 tid = IWL_MAX_TID_COUNT;
515
516 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
517 sub_frame_idx = desc->amsdu_info &
518 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
519
520 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
521 dup_data->last_seq[tid] == hdr->seq_ctrl &&
522 dup_data->last_sub_frame[tid] >= sub_frame_idx))
523 return true;
524
525 /* Allow same PN as the first subframe for following sub frames */
526 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
527 sub_frame_idx > dup_data->last_sub_frame[tid] &&
528 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
529 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
530
531 dup_data->last_seq[tid] = hdr->seq_ctrl;
532 dup_data->last_sub_frame[tid] = sub_frame_idx;
533
534 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
535
536 return false;
537 }
538
iwl_mvm_notify_rx_queue(struct iwl_mvm * mvm,u32 rxq_mask,const u8 * data,u32 count,bool async)539 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
540 const u8 *data, u32 count, bool async)
541 {
542 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
543 sizeof(struct iwl_mvm_rss_sync_notif)];
544 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
545 u32 data_size = sizeof(*cmd) + count;
546 int ret;
547
548 /*
549 * size must be a multiple of DWORD
550 * Ensure we don't overflow buf
551 */
552 if (WARN_ON(count & 3 ||
553 count > sizeof(struct iwl_mvm_rss_sync_notif)))
554 return -EINVAL;
555
556 cmd->rxq_mask = cpu_to_le32(rxq_mask);
557 cmd->count = cpu_to_le32(count);
558 cmd->flags = 0;
559 memcpy(cmd->payload, data, count);
560
561 ret = iwl_mvm_send_cmd_pdu(mvm,
562 WIDE_ID(DATA_PATH_GROUP,
563 TRIGGER_RX_QUEUES_NOTIF_CMD),
564 async ? CMD_ASYNC : 0, data_size, cmd);
565
566 return ret;
567 }
568
569 /*
570 * Returns true if sn2 - buffer_size < sn1 < sn2.
571 * To be used only in order to compare reorder buffer head with NSSN.
572 * We fully trust NSSN unless it is behind us due to reorder timeout.
573 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
574 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)575 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
576 {
577 return ieee80211_sn_less(sn1, sn2) &&
578 !ieee80211_sn_less(sn1, sn2 - buffer_size);
579 }
580
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)581 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
582 {
583 if (IWL_MVM_USE_NSSN_SYNC) {
584 struct iwl_mvm_rss_sync_notif notif = {
585 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
586 .metadata.sync = 0,
587 .nssn_sync.baid = baid,
588 .nssn_sync.nssn = nssn,
589 };
590
591 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if,
592 sizeof(notif));
593 }
594 }
595
596 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
597
598 enum iwl_mvm_release_flags {
599 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
600 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
601 };
602
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)603 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
604 struct ieee80211_sta *sta,
605 struct napi_struct *napi,
606 struct iwl_mvm_baid_data *baid_data,
607 struct iwl_mvm_reorder_buffer *reorder_buf,
608 u16 nssn, u32 flags)
609 {
610 struct iwl_mvm_reorder_buf_entry *entries =
611 &baid_data->entries[reorder_buf->queue *
612 baid_data->entries_per_queue];
613 u16 ssn = reorder_buf->head_sn;
614
615 lockdep_assert_held(&reorder_buf->lock);
616
617 /*
618 * We keep the NSSN not too far behind, if we are sync'ing it and it
619 * is more than 2048 ahead of us, it must be behind us. Discard it.
620 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
621 * behind and this queue already processed packets. The next if
622 * would have caught cases where this queue would have processed less
623 * than 64 packets, but it may have processed more than 64 packets.
624 */
625 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
626 ieee80211_sn_less(nssn, ssn))
627 goto set_timer;
628
629 /* ignore nssn smaller than head sn - this can happen due to timeout */
630 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
631 goto set_timer;
632
633 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
634 int index = ssn % reorder_buf->buf_size;
635 struct sk_buff_head *skb_list = &entries[index].e.frames;
636 struct sk_buff *skb;
637
638 ssn = ieee80211_sn_inc(ssn);
639 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
640 (ssn == 2048 || ssn == 0))
641 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
642
643 /*
644 * Empty the list. Will have more than one frame for A-MSDU.
645 * Empty list is valid as well since nssn indicates frames were
646 * received.
647 */
648 while ((skb = __skb_dequeue(skb_list))) {
649 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
650 reorder_buf->queue,
651 sta, false);
652 reorder_buf->num_stored--;
653 }
654 }
655 reorder_buf->head_sn = nssn;
656
657 set_timer:
658 if (reorder_buf->num_stored && !reorder_buf->removed) {
659 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
660
661 while (skb_queue_empty(&entries[index].e.frames))
662 index = (index + 1) % reorder_buf->buf_size;
663 /* modify timer to match next frame's expiration time */
664 mod_timer(&reorder_buf->reorder_timer,
665 entries[index].e.reorder_time + 1 +
666 RX_REORDER_BUF_TIMEOUT_MQ);
667 } else {
668 del_timer(&reorder_buf->reorder_timer);
669 }
670 }
671
iwl_mvm_reorder_timer_expired(struct timer_list * t)672 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
673 {
674 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
675 struct iwl_mvm_baid_data *baid_data =
676 iwl_mvm_baid_data_from_reorder_buf(buf);
677 struct iwl_mvm_reorder_buf_entry *entries =
678 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
679 int i;
680 u16 sn = 0, index = 0;
681 bool expired = false;
682 bool cont = false;
683
684 spin_lock(&buf->lock);
685
686 if (!buf->num_stored || buf->removed) {
687 spin_unlock(&buf->lock);
688 return;
689 }
690
691 for (i = 0; i < buf->buf_size ; i++) {
692 index = (buf->head_sn + i) % buf->buf_size;
693
694 if (skb_queue_empty(&entries[index].e.frames)) {
695 /*
696 * If there is a hole and the next frame didn't expire
697 * we want to break and not advance SN
698 */
699 cont = false;
700 continue;
701 }
702 if (!cont &&
703 !time_after(jiffies, entries[index].e.reorder_time +
704 RX_REORDER_BUF_TIMEOUT_MQ))
705 break;
706
707 expired = true;
708 /* continue until next hole after this expired frames */
709 cont = true;
710 sn = ieee80211_sn_add(buf->head_sn, i + 1);
711 }
712
713 if (expired) {
714 struct ieee80211_sta *sta;
715 struct iwl_mvm_sta *mvmsta;
716 u8 sta_id = baid_data->sta_id;
717
718 rcu_read_lock();
719 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
720 mvmsta = iwl_mvm_sta_from_mac80211(sta);
721
722 /* SN is set to the last expired frame + 1 */
723 IWL_DEBUG_HT(buf->mvm,
724 "Releasing expired frames for sta %u, sn %d\n",
725 sta_id, sn);
726 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
727 sta, baid_data->tid);
728 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
729 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
730 rcu_read_unlock();
731 } else {
732 /*
733 * If no frame expired and there are stored frames, index is now
734 * pointing to the first unexpired frame - modify timer
735 * accordingly to this frame.
736 */
737 mod_timer(&buf->reorder_timer,
738 entries[index].e.reorder_time +
739 1 + RX_REORDER_BUF_TIMEOUT_MQ);
740 }
741 spin_unlock(&buf->lock);
742 }
743
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)744 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
745 struct iwl_mvm_delba_data *data)
746 {
747 struct iwl_mvm_baid_data *ba_data;
748 struct ieee80211_sta *sta;
749 struct iwl_mvm_reorder_buffer *reorder_buf;
750 u8 baid = data->baid;
751
752 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
753 return;
754
755 rcu_read_lock();
756
757 ba_data = rcu_dereference(mvm->baid_map[baid]);
758 if (WARN_ON_ONCE(!ba_data))
759 goto out;
760
761 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
762 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
763 goto out;
764
765 reorder_buf = &ba_data->reorder_buf[queue];
766
767 /* release all frames that are in the reorder buffer to the stack */
768 spin_lock_bh(&reorder_buf->lock);
769 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
770 ieee80211_sn_add(reorder_buf->head_sn,
771 reorder_buf->buf_size),
772 0);
773 spin_unlock_bh(&reorder_buf->lock);
774 del_timer_sync(&reorder_buf->reorder_timer);
775
776 out:
777 rcu_read_unlock();
778 }
779
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)780 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
781 struct napi_struct *napi,
782 u8 baid, u16 nssn, int queue,
783 u32 flags)
784 {
785 struct ieee80211_sta *sta;
786 struct iwl_mvm_reorder_buffer *reorder_buf;
787 struct iwl_mvm_baid_data *ba_data;
788
789 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
790 baid, nssn);
791
792 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
793 baid >= ARRAY_SIZE(mvm->baid_map)))
794 return;
795
796 rcu_read_lock();
797
798 ba_data = rcu_dereference(mvm->baid_map[baid]);
799 if (WARN_ON_ONCE(!ba_data))
800 goto out;
801
802 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
803 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
804 goto out;
805
806 reorder_buf = &ba_data->reorder_buf[queue];
807
808 spin_lock_bh(&reorder_buf->lock);
809 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
810 reorder_buf, nssn, flags);
811 spin_unlock_bh(&reorder_buf->lock);
812
813 out:
814 rcu_read_unlock();
815 }
816
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)817 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
818 struct napi_struct *napi, int queue,
819 const struct iwl_mvm_nssn_sync_data *data)
820 {
821 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
822 data->nssn, queue,
823 IWL_MVM_RELEASE_FROM_RSS_SYNC);
824 }
825
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)826 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
827 struct iwl_rx_cmd_buffer *rxb, int queue)
828 {
829 struct iwl_rx_packet *pkt = rxb_addr(rxb);
830 struct iwl_rxq_sync_notification *notif;
831 struct iwl_mvm_internal_rxq_notif *internal_notif;
832
833 notif = (void *)pkt->data;
834 internal_notif = (void *)notif->payload;
835
836 if (internal_notif->sync &&
837 mvm->queue_sync_cookie != internal_notif->cookie) {
838 WARN_ONCE(1, "Received expired RX queue sync message\n");
839 return;
840 }
841
842 switch (internal_notif->type) {
843 case IWL_MVM_RXQ_EMPTY:
844 break;
845 case IWL_MVM_RXQ_NOTIF_DEL_BA:
846 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
847 break;
848 case IWL_MVM_RXQ_NSSN_SYNC:
849 iwl_mvm_nssn_sync(mvm, napi, queue,
850 (void *)internal_notif->data);
851 break;
852 default:
853 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
854 }
855
856 if (internal_notif->sync &&
857 !atomic_dec_return(&mvm->queue_sync_counter))
858 wake_up(&mvm->rx_sync_waitq);
859 }
860
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)861 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
862 struct ieee80211_sta *sta, int tid,
863 struct iwl_mvm_reorder_buffer *buffer,
864 u32 reorder, u32 gp2, int queue)
865 {
866 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
867
868 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
869 /* we have a new (A-)MPDU ... */
870
871 /*
872 * reset counter to 0 if we didn't have any oldsn in
873 * the last A-MPDU (as detected by GP2 being identical)
874 */
875 if (!buffer->consec_oldsn_prev_drop)
876 buffer->consec_oldsn_drops = 0;
877
878 /* either way, update our tracking state */
879 buffer->consec_oldsn_ampdu_gp2 = gp2;
880 } else if (buffer->consec_oldsn_prev_drop) {
881 /*
882 * tracking state didn't change, and we had an old SN
883 * indication before - do nothing in this case, we
884 * already noted this one down and are waiting for the
885 * next A-MPDU (by GP2)
886 */
887 return;
888 }
889
890 /* return unless this MPDU has old SN */
891 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
892 return;
893
894 /* update state */
895 buffer->consec_oldsn_prev_drop = 1;
896 buffer->consec_oldsn_drops++;
897
898 /* if limit is reached, send del BA and reset state */
899 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
900 IWL_WARN(mvm,
901 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
902 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
903 sta->addr, queue, tid);
904 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
905 buffer->consec_oldsn_prev_drop = 0;
906 buffer->consec_oldsn_drops = 0;
907 }
908 }
909
910 /*
911 * Returns true if the MPDU was buffered\dropped, false if it should be passed
912 * to upper layer.
913 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)914 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
915 struct napi_struct *napi,
916 int queue,
917 struct ieee80211_sta *sta,
918 struct sk_buff *skb,
919 struct iwl_rx_mpdu_desc *desc)
920 {
921 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
922 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
923 struct iwl_mvm_sta *mvm_sta;
924 struct iwl_mvm_baid_data *baid_data;
925 struct iwl_mvm_reorder_buffer *buffer;
926 struct sk_buff *tail;
927 u32 reorder = le32_to_cpu(desc->reorder_data);
928 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
929 bool last_subframe =
930 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
931 u8 tid = ieee80211_get_tid(hdr);
932 u8 sub_frame_idx = desc->amsdu_info &
933 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
934 struct iwl_mvm_reorder_buf_entry *entries;
935 int index;
936 u16 nssn, sn;
937 u8 baid;
938
939 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
940 IWL_RX_MPDU_REORDER_BAID_SHIFT;
941
942 /*
943 * This also covers the case of receiving a Block Ack Request
944 * outside a BA session; we'll pass it to mac80211 and that
945 * then sends a delBA action frame.
946 * This also covers pure monitor mode, in which case we won't
947 * have any BA sessions.
948 */
949 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
950 return false;
951
952 /* no sta yet */
953 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
954 "Got valid BAID without a valid station assigned\n"))
955 return false;
956
957 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
958
959 /* not a data packet or a bar */
960 if (!ieee80211_is_back_req(hdr->frame_control) &&
961 (!ieee80211_is_data_qos(hdr->frame_control) ||
962 is_multicast_ether_addr(hdr->addr1)))
963 return false;
964
965 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
966 return false;
967
968 baid_data = rcu_dereference(mvm->baid_map[baid]);
969 if (!baid_data) {
970 IWL_DEBUG_RX(mvm,
971 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
972 baid, reorder);
973 return false;
974 }
975
976 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
977 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
978 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
979 tid))
980 return false;
981
982 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
983 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
984 IWL_RX_MPDU_REORDER_SN_SHIFT;
985
986 buffer = &baid_data->reorder_buf[queue];
987 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
988
989 spin_lock_bh(&buffer->lock);
990
991 if (!buffer->valid) {
992 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
993 spin_unlock_bh(&buffer->lock);
994 return false;
995 }
996 buffer->valid = true;
997 }
998
999 if (ieee80211_is_back_req(hdr->frame_control)) {
1000 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1001 buffer, nssn, 0);
1002 goto drop;
1003 }
1004
1005 /*
1006 * If there was a significant jump in the nssn - adjust.
1007 * If the SN is smaller than the NSSN it might need to first go into
1008 * the reorder buffer, in which case we just release up to it and the
1009 * rest of the function will take care of storing it and releasing up to
1010 * the nssn.
1011 * This should not happen. This queue has been lagging and it should
1012 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1013 * and update the other queues.
1014 */
1015 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1016 buffer->buf_size) ||
1017 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1018 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1019
1020 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1021 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1022 }
1023
1024 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1025 rx_status->device_timestamp, queue);
1026
1027 /* drop any oudated packets */
1028 if (ieee80211_sn_less(sn, buffer->head_sn))
1029 goto drop;
1030
1031 /* release immediately if allowed by nssn and no stored frames */
1032 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1033 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1034 buffer->buf_size) &&
1035 (!amsdu || last_subframe)) {
1036 /*
1037 * If we crossed the 2048 or 0 SN, notify all the
1038 * queues. This is done in order to avoid having a
1039 * head_sn that lags behind for too long. When that
1040 * happens, we can get to a situation where the head_sn
1041 * is within the interval [nssn - buf_size : nssn]
1042 * which will make us think that the nssn is a packet
1043 * that we already freed because of the reordering
1044 * buffer and we will ignore it. So maintain the
1045 * head_sn somewhat updated across all the queues:
1046 * when it crosses 0 and 2048.
1047 */
1048 if (sn == 2048 || sn == 0)
1049 iwl_mvm_sync_nssn(mvm, baid, sn);
1050 buffer->head_sn = nssn;
1051 }
1052 /* No need to update AMSDU last SN - we are moving the head */
1053 spin_unlock_bh(&buffer->lock);
1054 return false;
1055 }
1056
1057 /*
1058 * release immediately if there are no stored frames, and the sn is
1059 * equal to the head.
1060 * This can happen due to reorder timer, where NSSN is behind head_sn.
1061 * When we released everything, and we got the next frame in the
1062 * sequence, according to the NSSN we can't release immediately,
1063 * while technically there is no hole and we can move forward.
1064 */
1065 if (!buffer->num_stored && sn == buffer->head_sn) {
1066 if (!amsdu || last_subframe) {
1067 if (sn == 2048 || sn == 0)
1068 iwl_mvm_sync_nssn(mvm, baid, sn);
1069 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1070 }
1071 /* No need to update AMSDU last SN - we are moving the head */
1072 spin_unlock_bh(&buffer->lock);
1073 return false;
1074 }
1075
1076 index = sn % buffer->buf_size;
1077
1078 /*
1079 * Check if we already stored this frame
1080 * As AMSDU is either received or not as whole, logic is simple:
1081 * If we have frames in that position in the buffer and the last frame
1082 * originated from AMSDU had a different SN then it is a retransmission.
1083 * If it is the same SN then if the subframe index is incrementing it
1084 * is the same AMSDU - otherwise it is a retransmission.
1085 */
1086 tail = skb_peek_tail(&entries[index].e.frames);
1087 if (tail && !amsdu)
1088 goto drop;
1089 else if (tail && (sn != buffer->last_amsdu ||
1090 buffer->last_sub_index >= sub_frame_idx))
1091 goto drop;
1092
1093 /* put in reorder buffer */
1094 __skb_queue_tail(&entries[index].e.frames, skb);
1095 buffer->num_stored++;
1096 entries[index].e.reorder_time = jiffies;
1097
1098 if (amsdu) {
1099 buffer->last_amsdu = sn;
1100 buffer->last_sub_index = sub_frame_idx;
1101 }
1102
1103 /*
1104 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1105 * The reason is that NSSN advances on the first sub-frame, and may
1106 * cause the reorder buffer to advance before all the sub-frames arrive.
1107 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1108 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1109 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1110 * already ahead and it will be dropped.
1111 * If the last sub-frame is not on this queue - we will get frame
1112 * release notification with up to date NSSN.
1113 */
1114 if (!amsdu || last_subframe)
1115 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1116 buffer, nssn,
1117 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1118
1119 spin_unlock_bh(&buffer->lock);
1120 return true;
1121
1122 drop:
1123 kfree_skb(skb);
1124 spin_unlock_bh(&buffer->lock);
1125 return true;
1126 }
1127
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1128 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1129 u32 reorder_data, u8 baid)
1130 {
1131 unsigned long now = jiffies;
1132 unsigned long timeout;
1133 struct iwl_mvm_baid_data *data;
1134
1135 rcu_read_lock();
1136
1137 data = rcu_dereference(mvm->baid_map[baid]);
1138 if (!data) {
1139 IWL_DEBUG_RX(mvm,
1140 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1141 baid, reorder_data);
1142 goto out;
1143 }
1144
1145 if (!data->timeout)
1146 goto out;
1147
1148 timeout = data->timeout;
1149 /*
1150 * Do not update last rx all the time to avoid cache bouncing
1151 * between the rx queues.
1152 * Update it every timeout. Worst case is the session will
1153 * expire after ~ 2 * timeout, which doesn't matter that much.
1154 */
1155 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1156 /* Update is atomic */
1157 data->last_rx = now;
1158
1159 out:
1160 rcu_read_unlock();
1161 }
1162
iwl_mvm_flip_address(u8 * addr)1163 static void iwl_mvm_flip_address(u8 *addr)
1164 {
1165 int i;
1166 u8 mac_addr[ETH_ALEN];
1167
1168 for (i = 0; i < ETH_ALEN; i++)
1169 mac_addr[i] = addr[ETH_ALEN - i - 1];
1170 ether_addr_copy(addr, mac_addr);
1171 }
1172
1173 struct iwl_mvm_rx_phy_data {
1174 enum iwl_rx_phy_info_type info_type;
1175 __le32 d0, d1, d2, d3;
1176 __le16 d4;
1177 };
1178
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he_mu * he_mu)1179 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1180 struct iwl_mvm_rx_phy_data *phy_data,
1181 u32 rate_n_flags,
1182 struct ieee80211_radiotap_he_mu *he_mu)
1183 {
1184 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1185 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1186 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1187
1188 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1189 he_mu->flags1 |=
1190 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1191 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1192
1193 he_mu->flags1 |=
1194 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1195 phy_data4),
1196 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1197
1198 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1199 phy_data2);
1200 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1201 phy_data3);
1202 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1203 phy_data2);
1204 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1205 phy_data3);
1206 }
1207
1208 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1209 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1210 he_mu->flags1 |=
1211 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1212 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1213
1214 he_mu->flags2 |=
1215 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1216 phy_data4),
1217 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1218
1219 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1220 phy_data2);
1221 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1222 phy_data3);
1223 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1224 phy_data2);
1225 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1226 phy_data3);
1227 }
1228 }
1229
1230 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1231 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1232 u32 rate_n_flags,
1233 struct ieee80211_radiotap_he *he,
1234 struct ieee80211_radiotap_he_mu *he_mu,
1235 struct ieee80211_rx_status *rx_status)
1236 {
1237 /*
1238 * Unfortunately, we have to leave the mac80211 data
1239 * incorrect for the case that we receive an HE-MU
1240 * transmission and *don't* have the HE phy data (due
1241 * to the bits being used for TSF). This shouldn't
1242 * happen though as management frames where we need
1243 * the TSF/timers are not be transmitted in HE-MU.
1244 */
1245 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1246 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1247 u8 offs = 0;
1248
1249 rx_status->bw = RATE_INFO_BW_HE_RU;
1250
1251 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1252
1253 switch (ru) {
1254 case 0 ... 36:
1255 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1256 offs = ru;
1257 break;
1258 case 37 ... 52:
1259 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1260 offs = ru - 37;
1261 break;
1262 case 53 ... 60:
1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1264 offs = ru - 53;
1265 break;
1266 case 61 ... 64:
1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1268 offs = ru - 61;
1269 break;
1270 case 65 ... 66:
1271 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1272 offs = ru - 65;
1273 break;
1274 case 67:
1275 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1276 break;
1277 case 68:
1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1279 break;
1280 }
1281 he->data2 |= le16_encode_bits(offs,
1282 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1283 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1284 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1285 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1286 he->data2 |=
1287 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1288
1289 #define CHECK_BW(bw) \
1290 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1291 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1292 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1293 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1294 CHECK_BW(20);
1295 CHECK_BW(40);
1296 CHECK_BW(80);
1297 CHECK_BW(160);
1298
1299 if (he_mu)
1300 he_mu->flags2 |=
1301 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1302 rate_n_flags),
1303 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1304 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1305 he->data6 |=
1306 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1307 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1308 rate_n_flags),
1309 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1310 }
1311
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int queue)1312 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1313 struct iwl_mvm_rx_phy_data *phy_data,
1314 struct ieee80211_radiotap_he *he,
1315 struct ieee80211_radiotap_he_mu *he_mu,
1316 struct ieee80211_rx_status *rx_status,
1317 u32 rate_n_flags, int queue)
1318 {
1319 switch (phy_data->info_type) {
1320 case IWL_RX_PHY_INFO_TYPE_NONE:
1321 case IWL_RX_PHY_INFO_TYPE_CCK:
1322 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1323 case IWL_RX_PHY_INFO_TYPE_HT:
1324 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1325 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1326 return;
1327 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1328 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1329 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1330 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1331 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1332 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1333 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1334 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1335 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1336 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1337 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1338 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1339 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1340 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1341 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1342 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1343 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1344 /* fall through */
1345 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1346 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1347 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1348 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1349 /* HE common */
1350 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1351 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1352 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1353 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1354 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1355 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1356 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1357 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1358 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1359 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1360 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1361 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1362 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1363 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1364 IWL_RX_PHY_DATA0_HE_UPLINK),
1365 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1366 }
1367 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1368 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1369 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1370 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1371 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1372 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1373 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1374 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1375 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1376 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1377 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1378 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1379 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1380 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1381 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1382 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1383 IWL_RX_PHY_DATA0_HE_DOPPLER),
1384 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1385 break;
1386 }
1387
1388 switch (phy_data->info_type) {
1389 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1390 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1391 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1392 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1393 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1394 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1395 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1396 break;
1397 default:
1398 /* nothing here */
1399 break;
1400 }
1401
1402 switch (phy_data->info_type) {
1403 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1404 he_mu->flags1 |=
1405 le16_encode_bits(le16_get_bits(phy_data->d4,
1406 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1407 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1408 he_mu->flags1 |=
1409 le16_encode_bits(le16_get_bits(phy_data->d4,
1410 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1411 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1412 he_mu->flags2 |=
1413 le16_encode_bits(le16_get_bits(phy_data->d4,
1414 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1415 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1416 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1417 /* fall through */
1418 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1419 he_mu->flags2 |=
1420 le16_encode_bits(le32_get_bits(phy_data->d1,
1421 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1422 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1423 he_mu->flags2 |=
1424 le16_encode_bits(le32_get_bits(phy_data->d1,
1425 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1426 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1427 /* fall through */
1428 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1429 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1430 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1431 he, he_mu, rx_status);
1432 break;
1433 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1434 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1435 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1436 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1437 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1438 break;
1439 default:
1440 /* nothing */
1441 break;
1442 }
1443 }
1444
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,u16 phy_info,int queue)1445 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1446 struct iwl_mvm_rx_phy_data *phy_data,
1447 u32 rate_n_flags, u16 phy_info, int queue)
1448 {
1449 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1450 struct ieee80211_radiotap_he *he = NULL;
1451 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1452 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1453 u8 stbc, ltf;
1454 static const struct ieee80211_radiotap_he known = {
1455 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1456 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1457 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1458 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1459 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1460 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1461 };
1462 static const struct ieee80211_radiotap_he_mu mu_known = {
1463 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1464 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1465 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1466 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1467 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1468 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1469 };
1470
1471 he = skb_put_data(skb, &known, sizeof(known));
1472 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1473
1474 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1475 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1476 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1477 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1478 }
1479
1480 /* report the AMPDU-EOF bit on single frames */
1481 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1482 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1483 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1484 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1485 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1486 }
1487
1488 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1489 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1490 rate_n_flags, queue);
1491
1492 /* update aggregation data for monitor sake on default queue */
1493 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1494 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1495 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1496
1497 /* toggle is switched whenever new aggregation starts */
1498 if (toggle_bit != mvm->ampdu_toggle) {
1499 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1500 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1501 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1502 }
1503 }
1504
1505 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1506 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1507 rx_status->bw = RATE_INFO_BW_HE_RU;
1508 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1509 }
1510
1511 /* actually data is filled in mac80211 */
1512 if (he_type == RATE_MCS_HE_TYPE_SU ||
1513 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1514 he->data1 |=
1515 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1516
1517 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1518 rx_status->nss =
1519 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1520 RATE_VHT_MCS_NSS_POS) + 1;
1521 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1522 rx_status->encoding = RX_ENC_HE;
1523 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1524 if (rate_n_flags & RATE_MCS_BF_MSK)
1525 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1526
1527 rx_status->he_dcm =
1528 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1529
1530 #define CHECK_TYPE(F) \
1531 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1532 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1533
1534 CHECK_TYPE(SU);
1535 CHECK_TYPE(EXT_SU);
1536 CHECK_TYPE(MU);
1537 CHECK_TYPE(TRIG);
1538
1539 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1540
1541 if (rate_n_flags & RATE_MCS_BF_MSK)
1542 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1543
1544 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1545 RATE_MCS_HE_GI_LTF_POS) {
1546 case 0:
1547 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1548 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1549 else
1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1551 if (he_type == RATE_MCS_HE_TYPE_MU)
1552 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1553 else
1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1555 break;
1556 case 1:
1557 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1559 else
1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1561 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1562 break;
1563 case 2:
1564 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1565 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1566 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1567 } else {
1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1570 }
1571 break;
1572 case 3:
1573 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1574 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1575 rate_n_flags & RATE_MCS_SGI_MSK)
1576 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1577 else
1578 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1579 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1580 break;
1581 }
1582
1583 he->data5 |= le16_encode_bits(ltf,
1584 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1585 }
1586
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1587 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1588 struct iwl_mvm_rx_phy_data *phy_data)
1589 {
1590 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1591 struct ieee80211_radiotap_lsig *lsig;
1592
1593 switch (phy_data->info_type) {
1594 case IWL_RX_PHY_INFO_TYPE_HT:
1595 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1596 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1597 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1598 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1599 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1600 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1601 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1602 lsig = skb_put(skb, sizeof(*lsig));
1603 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1604 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1605 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1606 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1607 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1608 break;
1609 default:
1610 break;
1611 }
1612 }
1613
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1614 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1615 {
1616 switch (phy_band) {
1617 case PHY_BAND_24:
1618 return NL80211_BAND_2GHZ;
1619 case PHY_BAND_5:
1620 return NL80211_BAND_5GHZ;
1621 default:
1622 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1623 return NL80211_BAND_5GHZ;
1624 }
1625 }
1626
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1627 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1628 struct iwl_rx_cmd_buffer *rxb, int queue)
1629 {
1630 struct ieee80211_rx_status *rx_status;
1631 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1632 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1633 struct ieee80211_hdr *hdr;
1634 u32 len = le16_to_cpu(desc->mpdu_len);
1635 u32 rate_n_flags, gp2_on_air_rise;
1636 u16 phy_info = le16_to_cpu(desc->phy_info);
1637 struct ieee80211_sta *sta = NULL;
1638 struct sk_buff *skb;
1639 u8 crypt_len = 0, channel, energy_a, energy_b;
1640 size_t desc_size;
1641 struct iwl_mvm_rx_phy_data phy_data = {
1642 .d4 = desc->phy_data4,
1643 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1644 };
1645 bool csi = false;
1646
1647 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1648 return;
1649
1650 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1651 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1652 channel = desc->v3.channel;
1653 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1654 energy_a = desc->v3.energy_a;
1655 energy_b = desc->v3.energy_b;
1656 desc_size = sizeof(*desc);
1657
1658 phy_data.d0 = desc->v3.phy_data0;
1659 phy_data.d1 = desc->v3.phy_data1;
1660 phy_data.d2 = desc->v3.phy_data2;
1661 phy_data.d3 = desc->v3.phy_data3;
1662 } else {
1663 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1664 channel = desc->v1.channel;
1665 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1666 energy_a = desc->v1.energy_a;
1667 energy_b = desc->v1.energy_b;
1668 desc_size = IWL_RX_DESC_SIZE_V1;
1669
1670 phy_data.d0 = desc->v1.phy_data0;
1671 phy_data.d1 = desc->v1.phy_data1;
1672 phy_data.d2 = desc->v1.phy_data2;
1673 phy_data.d3 = desc->v1.phy_data3;
1674 }
1675
1676 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1677 phy_data.info_type =
1678 le32_get_bits(phy_data.d1,
1679 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1680
1681 hdr = (void *)(pkt->data + desc_size);
1682 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1683 * ieee80211_hdr pulled.
1684 */
1685 skb = alloc_skb(128, GFP_ATOMIC);
1686 if (!skb) {
1687 IWL_ERR(mvm, "alloc_skb failed\n");
1688 return;
1689 }
1690
1691 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1692 /*
1693 * If the device inserted padding it means that (it thought)
1694 * the 802.11 header wasn't a multiple of 4 bytes long. In
1695 * this case, reserve two bytes at the start of the SKB to
1696 * align the payload properly in case we end up copying it.
1697 */
1698 skb_reserve(skb, 2);
1699 }
1700
1701 rx_status = IEEE80211_SKB_RXCB(skb);
1702
1703 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1704 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1705 case RATE_MCS_CHAN_WIDTH_20:
1706 break;
1707 case RATE_MCS_CHAN_WIDTH_40:
1708 rx_status->bw = RATE_INFO_BW_40;
1709 break;
1710 case RATE_MCS_CHAN_WIDTH_80:
1711 rx_status->bw = RATE_INFO_BW_80;
1712 break;
1713 case RATE_MCS_CHAN_WIDTH_160:
1714 rx_status->bw = RATE_INFO_BW_160;
1715 break;
1716 }
1717
1718 if (rate_n_flags & RATE_MCS_HE_MSK)
1719 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1720 phy_info, queue);
1721
1722 iwl_mvm_decode_lsig(skb, &phy_data);
1723
1724 rx_status = IEEE80211_SKB_RXCB(skb);
1725
1726 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1727 le32_to_cpu(pkt->len_n_flags), queue,
1728 &crypt_len)) {
1729 kfree_skb(skb);
1730 return;
1731 }
1732
1733 /*
1734 * Keep packets with CRC errors (and with overrun) for monitor mode
1735 * (otherwise the firmware discards them) but mark them as bad.
1736 */
1737 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1738 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1739 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1740 le32_to_cpu(desc->status));
1741 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1742 }
1743 /* set the preamble flag if appropriate */
1744 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1745 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1746 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1747
1748 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1749 u64 tsf_on_air_rise;
1750
1751 if (mvm->trans->trans_cfg->device_family >=
1752 IWL_DEVICE_FAMILY_AX210)
1753 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1754 else
1755 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1756
1757 rx_status->mactime = tsf_on_air_rise;
1758 /* TSF as indicated by the firmware is at INA time */
1759 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1760 }
1761
1762 rx_status->device_timestamp = gp2_on_air_rise;
1763 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1764 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1765
1766 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1767 } else {
1768 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1769 NL80211_BAND_2GHZ;
1770 }
1771 rx_status->freq = ieee80211_channel_to_frequency(channel,
1772 rx_status->band);
1773 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1774 energy_b);
1775
1776 /* update aggregation data for monitor sake on default queue */
1777 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1778 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1779
1780 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1781 /*
1782 * Toggle is switched whenever new aggregation starts. Make
1783 * sure ampdu_reference is never 0 so we can later use it to
1784 * see if the frame was really part of an A-MPDU or not.
1785 */
1786 if (toggle_bit != mvm->ampdu_toggle) {
1787 mvm->ampdu_ref++;
1788 if (mvm->ampdu_ref == 0)
1789 mvm->ampdu_ref++;
1790 mvm->ampdu_toggle = toggle_bit;
1791 }
1792 rx_status->ampdu_reference = mvm->ampdu_ref;
1793 }
1794
1795 if (unlikely(mvm->monitor_on))
1796 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1797
1798 rcu_read_lock();
1799
1800 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1801 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1802
1803 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1804 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1805 if (IS_ERR(sta))
1806 sta = NULL;
1807 }
1808 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1809 /*
1810 * This is fine since we prevent two stations with the same
1811 * address from being added.
1812 */
1813 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1814 }
1815
1816 if (sta) {
1817 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1818 struct ieee80211_vif *tx_blocked_vif =
1819 rcu_dereference(mvm->csa_tx_blocked_vif);
1820 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1821 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1822 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1823 struct iwl_fw_dbg_trigger_tlv *trig;
1824 struct ieee80211_vif *vif = mvmsta->vif;
1825
1826 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1827 !is_multicast_ether_addr(hdr->addr1) &&
1828 ieee80211_is_data(hdr->frame_control) &&
1829 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1830 schedule_delayed_work(&mvm->tcm.work, 0);
1831
1832 /*
1833 * We have tx blocked stations (with CS bit). If we heard
1834 * frames from a blocked station on a new channel we can
1835 * TX to it again.
1836 */
1837 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1838 struct iwl_mvm_vif *mvmvif =
1839 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1840
1841 if (mvmvif->csa_target_freq == rx_status->freq)
1842 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1843 false);
1844 }
1845
1846 rs_update_last_rssi(mvm, mvmsta, rx_status);
1847
1848 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1849 ieee80211_vif_to_wdev(vif),
1850 FW_DBG_TRIGGER_RSSI);
1851
1852 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1853 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1854 s32 rssi;
1855
1856 rssi_trig = (void *)trig->data;
1857 rssi = le32_to_cpu(rssi_trig->rssi);
1858
1859 if (rx_status->signal < rssi)
1860 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1861 NULL);
1862 }
1863
1864 if (ieee80211_is_data(hdr->frame_control))
1865 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1866
1867 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1868 kfree_skb(skb);
1869 goto out;
1870 }
1871
1872 /*
1873 * Our hardware de-aggregates AMSDUs but copies the mac header
1874 * as it to the de-aggregated MPDUs. We need to turn off the
1875 * AMSDU bit in the QoS control ourselves.
1876 * In addition, HW reverses addr3 and addr4 - reverse it back.
1877 */
1878 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1879 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1880 u8 *qc = ieee80211_get_qos_ctl(hdr);
1881
1882 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1883
1884 if (mvm->trans->trans_cfg->device_family ==
1885 IWL_DEVICE_FAMILY_9000) {
1886 iwl_mvm_flip_address(hdr->addr3);
1887
1888 if (ieee80211_has_a4(hdr->frame_control))
1889 iwl_mvm_flip_address(hdr->addr4);
1890 }
1891 }
1892 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1893 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1894
1895 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1896 }
1897 }
1898
1899 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1900 rate_n_flags & RATE_MCS_SGI_MSK)
1901 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1902 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1903 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1904 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1905 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1906 if (rate_n_flags & RATE_MCS_HT_MSK) {
1907 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1908 RATE_MCS_STBC_POS;
1909 rx_status->encoding = RX_ENC_HT;
1910 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1911 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1912 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1913 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1914 RATE_MCS_STBC_POS;
1915 rx_status->nss =
1916 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1917 RATE_VHT_MCS_NSS_POS) + 1;
1918 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1919 rx_status->encoding = RX_ENC_VHT;
1920 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1921 if (rate_n_flags & RATE_MCS_BF_MSK)
1922 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1923 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1924 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1925 rx_status->band);
1926
1927 if (WARN(rate < 0 || rate > 0xFF,
1928 "Invalid rate flags 0x%x, band %d,\n",
1929 rate_n_flags, rx_status->band)) {
1930 kfree_skb(skb);
1931 goto out;
1932 }
1933 rx_status->rate_idx = rate;
1934 }
1935
1936 /* management stuff on default queue */
1937 if (!queue) {
1938 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1939 ieee80211_is_probe_resp(hdr->frame_control)) &&
1940 mvm->sched_scan_pass_all ==
1941 SCHED_SCAN_PASS_ALL_ENABLED))
1942 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1943
1944 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1945 ieee80211_is_probe_resp(hdr->frame_control)))
1946 rx_status->boottime_ns = ktime_get_boottime_ns();
1947 }
1948
1949 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1950 kfree_skb(skb);
1951 goto out;
1952 }
1953
1954 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1955 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1956 sta, csi);
1957 out:
1958 rcu_read_unlock();
1959 }
1960
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1961 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1962 struct iwl_rx_cmd_buffer *rxb, int queue)
1963 {
1964 struct ieee80211_rx_status *rx_status;
1965 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1966 struct iwl_rx_no_data *desc = (void *)pkt->data;
1967 u32 rate_n_flags = le32_to_cpu(desc->rate);
1968 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1969 u32 rssi = le32_to_cpu(desc->rssi);
1970 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1971 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1972 struct ieee80211_sta *sta = NULL;
1973 struct sk_buff *skb;
1974 u8 channel, energy_a, energy_b;
1975 struct iwl_mvm_rx_phy_data phy_data = {
1976 .d0 = desc->phy_info[0],
1977 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1978 };
1979
1980 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1981 return;
1982
1983 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1984 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1985 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1986
1987 phy_data.info_type =
1988 le32_get_bits(desc->phy_info[1],
1989 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1990
1991 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1992 * ieee80211_hdr pulled.
1993 */
1994 skb = alloc_skb(128, GFP_ATOMIC);
1995 if (!skb) {
1996 IWL_ERR(mvm, "alloc_skb failed\n");
1997 return;
1998 }
1999
2000 rx_status = IEEE80211_SKB_RXCB(skb);
2001
2002 /* 0-length PSDU */
2003 rx_status->flag |= RX_FLAG_NO_PSDU;
2004
2005 switch (info_type) {
2006 case RX_NO_DATA_INFO_TYPE_NDP:
2007 rx_status->zero_length_psdu_type =
2008 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2009 break;
2010 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2011 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2012 rx_status->zero_length_psdu_type =
2013 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2014 break;
2015 default:
2016 rx_status->zero_length_psdu_type =
2017 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2018 break;
2019 }
2020
2021 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2022 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2023 case RATE_MCS_CHAN_WIDTH_20:
2024 break;
2025 case RATE_MCS_CHAN_WIDTH_40:
2026 rx_status->bw = RATE_INFO_BW_40;
2027 break;
2028 case RATE_MCS_CHAN_WIDTH_80:
2029 rx_status->bw = RATE_INFO_BW_80;
2030 break;
2031 case RATE_MCS_CHAN_WIDTH_160:
2032 rx_status->bw = RATE_INFO_BW_160;
2033 break;
2034 }
2035
2036 if (rate_n_flags & RATE_MCS_HE_MSK)
2037 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2038 phy_info, queue);
2039
2040 iwl_mvm_decode_lsig(skb, &phy_data);
2041
2042 rx_status->device_timestamp = gp2_on_air_rise;
2043 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2044 NL80211_BAND_2GHZ;
2045 rx_status->freq = ieee80211_channel_to_frequency(channel,
2046 rx_status->band);
2047 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2048 energy_b);
2049
2050 rcu_read_lock();
2051
2052 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2053 rate_n_flags & RATE_MCS_SGI_MSK)
2054 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2055 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2056 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2057 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2058 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2059 if (rate_n_flags & RATE_MCS_HT_MSK) {
2060 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2061 RATE_MCS_STBC_POS;
2062 rx_status->encoding = RX_ENC_HT;
2063 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2064 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2065 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2066 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2067 RATE_MCS_STBC_POS;
2068 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2069 rx_status->encoding = RX_ENC_VHT;
2070 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2071 if (rate_n_flags & RATE_MCS_BF_MSK)
2072 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2073 /*
2074 * take the nss from the rx_vec since the rate_n_flags has
2075 * only 2 bits for the nss which gives a max of 4 ss but
2076 * there may be up to 8 spatial streams
2077 */
2078 rx_status->nss =
2079 le32_get_bits(desc->rx_vec[0],
2080 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2081 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2082 rx_status->nss =
2083 le32_get_bits(desc->rx_vec[0],
2084 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2085 } else {
2086 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2087 rx_status->band);
2088
2089 if (WARN(rate < 0 || rate > 0xFF,
2090 "Invalid rate flags 0x%x, band %d,\n",
2091 rate_n_flags, rx_status->band)) {
2092 kfree_skb(skb);
2093 goto out;
2094 }
2095 rx_status->rate_idx = rate;
2096 }
2097
2098 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2099 out:
2100 rcu_read_unlock();
2101 }
2102
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2103 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2104 struct iwl_rx_cmd_buffer *rxb, int queue)
2105 {
2106 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2107 struct iwl_frame_release *release = (void *)pkt->data;
2108
2109 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2110 le16_to_cpu(release->nssn),
2111 queue, 0);
2112 }
2113
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2114 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2115 struct iwl_rx_cmd_buffer *rxb, int queue)
2116 {
2117 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2118 struct iwl_bar_frame_release *release = (void *)pkt->data;
2119 unsigned int baid = le32_get_bits(release->ba_info,
2120 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2121 unsigned int nssn = le32_get_bits(release->ba_info,
2122 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2123 unsigned int sta_id = le32_get_bits(release->sta_tid,
2124 IWL_BAR_FRAME_RELEASE_STA_MASK);
2125 unsigned int tid = le32_get_bits(release->sta_tid,
2126 IWL_BAR_FRAME_RELEASE_TID_MASK);
2127 struct iwl_mvm_baid_data *baid_data;
2128
2129 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2130 baid >= ARRAY_SIZE(mvm->baid_map)))
2131 return;
2132
2133 rcu_read_lock();
2134 baid_data = rcu_dereference(mvm->baid_map[baid]);
2135 if (!baid_data) {
2136 IWL_DEBUG_RX(mvm,
2137 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2138 baid);
2139 goto out;
2140 }
2141
2142 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2143 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2144 baid, baid_data->sta_id, baid_data->tid, sta_id,
2145 tid))
2146 goto out;
2147
2148 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2149 out:
2150 rcu_read_unlock();
2151 }
2152