1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44
45 #ifdef CONFIG_PREEMPT_RCU
46
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49
50 /*
51 * Defined as a macro as it is a very low level header included from
52 * areas that don't even know about current. This gives the rcu_read_lock()
53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55 */
56 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
57
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 preempt_disable();
69 }
70
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 preempt_enable();
74 rcu_read_unlock_strict();
75 }
76
rcu_preempt_depth(void)77 static inline int rcu_preempt_depth(void)
78 {
79 return 0;
80 }
81
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
83
84 /* Internal to kernel */
85 void rcu_init(void);
86 extern int rcu_scheduler_active __read_mostly;
87 void rcu_sched_clock_irq(int user);
88 void rcu_report_dead(unsigned int cpu);
89 void rcutree_migrate_callbacks(int cpu);
90
91 #ifdef CONFIG_TASKS_RCU_GENERIC
92 void rcu_init_tasks_generic(void);
93 #else
rcu_init_tasks_generic(void)94 static inline void rcu_init_tasks_generic(void) { }
95 #endif
96
97 #ifdef CONFIG_RCU_STALL_COMMON
98 void rcu_sysrq_start(void);
99 void rcu_sysrq_end(void);
100 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)101 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)102 static inline void rcu_sysrq_end(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
104
105 #ifdef CONFIG_NO_HZ_FULL
106 void rcu_user_enter(void);
107 void rcu_user_exit(void);
108 #else
rcu_user_enter(void)109 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)110 static inline void rcu_user_exit(void) { }
111 #endif /* CONFIG_NO_HZ_FULL */
112
113 #ifdef CONFIG_RCU_NOCB_CPU
114 void rcu_init_nohz(void);
115 void rcu_nocb_flush_deferred_wakeup(void);
116 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)117 static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)118 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
119 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
120
121 /**
122 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
123 * @a: Code that RCU needs to pay attention to.
124 *
125 * RCU read-side critical sections are forbidden in the inner idle loop,
126 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
127 * will happily ignore any such read-side critical sections. However,
128 * things like powertop need tracepoints in the inner idle loop.
129 *
130 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
131 * will tell RCU that it needs to pay attention, invoke its argument
132 * (in this example, calling the do_something_with_RCU() function),
133 * and then tell RCU to go back to ignoring this CPU. It is permissible
134 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
135 * on the order of a million or so, even on 32-bit systems). It is
136 * not legal to block within RCU_NONIDLE(), nor is it permissible to
137 * transfer control either into or out of RCU_NONIDLE()'s statement.
138 */
139 #define RCU_NONIDLE(a) \
140 do { \
141 rcu_irq_enter_irqson(); \
142 do { a; } while (0); \
143 rcu_irq_exit_irqson(); \
144 } while (0)
145
146 /*
147 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
148 * This is a macro rather than an inline function to avoid #include hell.
149 */
150 #ifdef CONFIG_TASKS_RCU_GENERIC
151
152 # ifdef CONFIG_TASKS_RCU
153 # define rcu_tasks_classic_qs(t, preempt) \
154 do { \
155 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
156 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
157 } while (0)
158 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
159 void synchronize_rcu_tasks(void);
160 # else
161 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
162 # define call_rcu_tasks call_rcu
163 # define synchronize_rcu_tasks synchronize_rcu
164 # endif
165
166 # ifdef CONFIG_TASKS_TRACE_RCU
167 # define rcu_tasks_trace_qs(t) \
168 do { \
169 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
170 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
171 smp_store_release(&(t)->trc_reader_checked, true); \
172 smp_mb(); /* Readers partitioned by store. */ \
173 } \
174 } while (0)
175 # else
176 # define rcu_tasks_trace_qs(t) do { } while (0)
177 # endif
178
179 #define rcu_tasks_qs(t, preempt) \
180 do { \
181 rcu_tasks_classic_qs((t), (preempt)); \
182 rcu_tasks_trace_qs((t)); \
183 } while (0)
184
185 # ifdef CONFIG_TASKS_RUDE_RCU
186 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
187 void synchronize_rcu_tasks_rude(void);
188 # endif
189
190 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
191 void exit_tasks_rcu_start(void);
192 void exit_tasks_rcu_stop(void);
193 void exit_tasks_rcu_finish(void);
194 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
195 #define rcu_tasks_qs(t, preempt) do { } while (0)
196 #define rcu_note_voluntary_context_switch(t) do { } while (0)
197 #define call_rcu_tasks call_rcu
198 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)199 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)200 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)201 static inline void exit_tasks_rcu_finish(void) { }
202 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
203
204 /**
205 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
206 *
207 * This macro resembles cond_resched(), except that it is defined to
208 * report potential quiescent states to RCU-tasks even if the cond_resched()
209 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
210 */
211 #define cond_resched_tasks_rcu_qs() \
212 do { \
213 rcu_tasks_qs(current, false); \
214 cond_resched(); \
215 } while (0)
216
217 /*
218 * Infrastructure to implement the synchronize_() primitives in
219 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
220 */
221
222 #if defined(CONFIG_TREE_RCU)
223 #include <linux/rcutree.h>
224 #elif defined(CONFIG_TINY_RCU)
225 #include <linux/rcutiny.h>
226 #else
227 #error "Unknown RCU implementation specified to kernel configuration"
228 #endif
229
230 /*
231 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
232 * are needed for dynamic initialization and destruction of rcu_head
233 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
234 * dynamic initialization and destruction of statically allocated rcu_head
235 * structures. However, rcu_head structures allocated dynamically in the
236 * heap don't need any initialization.
237 */
238 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
239 void init_rcu_head(struct rcu_head *head);
240 void destroy_rcu_head(struct rcu_head *head);
241 void init_rcu_head_on_stack(struct rcu_head *head);
242 void destroy_rcu_head_on_stack(struct rcu_head *head);
243 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)244 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)245 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)246 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)247 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
248 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
249
250 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
251 bool rcu_lockdep_current_cpu_online(void);
252 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)253 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
254 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
255
256 #ifdef CONFIG_DEBUG_LOCK_ALLOC
257
rcu_lock_acquire(struct lockdep_map * map)258 static inline void rcu_lock_acquire(struct lockdep_map *map)
259 {
260 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
261 }
262
rcu_lock_release(struct lockdep_map * map)263 static inline void rcu_lock_release(struct lockdep_map *map)
264 {
265 lock_release(map, _THIS_IP_);
266 }
267
268 extern struct lockdep_map rcu_lock_map;
269 extern struct lockdep_map rcu_bh_lock_map;
270 extern struct lockdep_map rcu_sched_lock_map;
271 extern struct lockdep_map rcu_callback_map;
272 int debug_lockdep_rcu_enabled(void);
273 int rcu_read_lock_held(void);
274 int rcu_read_lock_bh_held(void);
275 int rcu_read_lock_sched_held(void);
276 int rcu_read_lock_any_held(void);
277
278 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
279
280 # define rcu_lock_acquire(a) do { } while (0)
281 # define rcu_lock_release(a) do { } while (0)
282
rcu_read_lock_held(void)283 static inline int rcu_read_lock_held(void)
284 {
285 return 1;
286 }
287
rcu_read_lock_bh_held(void)288 static inline int rcu_read_lock_bh_held(void)
289 {
290 return 1;
291 }
292
rcu_read_lock_sched_held(void)293 static inline int rcu_read_lock_sched_held(void)
294 {
295 return !preemptible();
296 }
297
rcu_read_lock_any_held(void)298 static inline int rcu_read_lock_any_held(void)
299 {
300 return !preemptible();
301 }
302
303 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
304
305 #ifdef CONFIG_PROVE_RCU
306
307 /**
308 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
309 * @c: condition to check
310 * @s: informative message
311 *
312 * This checks debug_lockdep_rcu_enabled() before checking (c) to
313 * prevent early boot splats due to lockdep not yet being initialized,
314 * and rechecks it after checking (c) to prevent false-positive splats
315 * due to races with lockdep being disabled. See commit 3066820034b5dd
316 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
317 */
318 #define RCU_LOCKDEP_WARN(c, s) \
319 do { \
320 static bool __section(".data.unlikely") __warned; \
321 if (debug_lockdep_rcu_enabled() && (c) && \
322 debug_lockdep_rcu_enabled() && !__warned) { \
323 __warned = true; \
324 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
325 } \
326 } while (0)
327
328 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)329 static inline void rcu_preempt_sleep_check(void)
330 {
331 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
332 "Illegal context switch in RCU read-side critical section");
333 }
334 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)335 static inline void rcu_preempt_sleep_check(void) { }
336 #endif /* #else #ifdef CONFIG_PROVE_RCU */
337
338 #define rcu_sleep_check() \
339 do { \
340 rcu_preempt_sleep_check(); \
341 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
342 "Illegal context switch in RCU-bh read-side critical section"); \
343 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
344 "Illegal context switch in RCU-sched read-side critical section"); \
345 } while (0)
346
347 #else /* #ifdef CONFIG_PROVE_RCU */
348
349 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
350 #define rcu_sleep_check() do { } while (0)
351
352 #endif /* #else #ifdef CONFIG_PROVE_RCU */
353
354 /*
355 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
356 * and rcu_assign_pointer(). Some of these could be folded into their
357 * callers, but they are left separate in order to ease introduction of
358 * multiple pointers markings to match different RCU implementations
359 * (e.g., __srcu), should this make sense in the future.
360 */
361
362 #ifdef __CHECKER__
363 #define rcu_check_sparse(p, space) \
364 ((void)(((typeof(*p) space *)p) == p))
365 #else /* #ifdef __CHECKER__ */
366 #define rcu_check_sparse(p, space)
367 #endif /* #else #ifdef __CHECKER__ */
368
369 #define __rcu_access_pointer(p, space) \
370 ({ \
371 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
372 rcu_check_sparse(p, space); \
373 ((typeof(*p) __force __kernel *)(_________p1)); \
374 })
375 #define __rcu_dereference_check(p, c, space) \
376 ({ \
377 /* Dependency order vs. p above. */ \
378 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
379 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
380 rcu_check_sparse(p, space); \
381 ((typeof(*p) __force __kernel *)(________p1)); \
382 })
383 #define __rcu_dereference_protected(p, c, space) \
384 ({ \
385 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
386 rcu_check_sparse(p, space); \
387 ((typeof(*p) __force __kernel *)(p)); \
388 })
389 #define rcu_dereference_raw(p) \
390 ({ \
391 /* Dependency order vs. p above. */ \
392 typeof(p) ________p1 = READ_ONCE(p); \
393 ((typeof(*p) __force __kernel *)(________p1)); \
394 })
395
396 /**
397 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
398 * @v: The value to statically initialize with.
399 */
400 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
401
402 /**
403 * rcu_assign_pointer() - assign to RCU-protected pointer
404 * @p: pointer to assign to
405 * @v: value to assign (publish)
406 *
407 * Assigns the specified value to the specified RCU-protected
408 * pointer, ensuring that any concurrent RCU readers will see
409 * any prior initialization.
410 *
411 * Inserts memory barriers on architectures that require them
412 * (which is most of them), and also prevents the compiler from
413 * reordering the code that initializes the structure after the pointer
414 * assignment. More importantly, this call documents which pointers
415 * will be dereferenced by RCU read-side code.
416 *
417 * In some special cases, you may use RCU_INIT_POINTER() instead
418 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
419 * to the fact that it does not constrain either the CPU or the compiler.
420 * That said, using RCU_INIT_POINTER() when you should have used
421 * rcu_assign_pointer() is a very bad thing that results in
422 * impossible-to-diagnose memory corruption. So please be careful.
423 * See the RCU_INIT_POINTER() comment header for details.
424 *
425 * Note that rcu_assign_pointer() evaluates each of its arguments only
426 * once, appearances notwithstanding. One of the "extra" evaluations
427 * is in typeof() and the other visible only to sparse (__CHECKER__),
428 * neither of which actually execute the argument. As with most cpp
429 * macros, this execute-arguments-only-once property is important, so
430 * please be careful when making changes to rcu_assign_pointer() and the
431 * other macros that it invokes.
432 */
433 #define rcu_assign_pointer(p, v) \
434 do { \
435 uintptr_t _r_a_p__v = (uintptr_t)(v); \
436 rcu_check_sparse(p, __rcu); \
437 \
438 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
439 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
440 else \
441 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
442 } while (0)
443
444 /**
445 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
446 * @rcu_ptr: RCU pointer, whose old value is returned
447 * @ptr: regular pointer
448 * @c: the lockdep conditions under which the dereference will take place
449 *
450 * Perform a replacement, where @rcu_ptr is an RCU-annotated
451 * pointer and @c is the lockdep argument that is passed to the
452 * rcu_dereference_protected() call used to read that pointer. The old
453 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
454 */
455 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
456 ({ \
457 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
458 rcu_assign_pointer((rcu_ptr), (ptr)); \
459 __tmp; \
460 })
461
462 /**
463 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
464 * @p: The pointer to read
465 *
466 * Return the value of the specified RCU-protected pointer, but omit the
467 * lockdep checks for being in an RCU read-side critical section. This is
468 * useful when the value of this pointer is accessed, but the pointer is
469 * not dereferenced, for example, when testing an RCU-protected pointer
470 * against NULL. Although rcu_access_pointer() may also be used in cases
471 * where update-side locks prevent the value of the pointer from changing,
472 * you should instead use rcu_dereference_protected() for this use case.
473 *
474 * It is also permissible to use rcu_access_pointer() when read-side
475 * access to the pointer was removed at least one grace period ago, as
476 * is the case in the context of the RCU callback that is freeing up
477 * the data, or after a synchronize_rcu() returns. This can be useful
478 * when tearing down multi-linked structures after a grace period
479 * has elapsed.
480 */
481 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
482
483 /**
484 * rcu_dereference_check() - rcu_dereference with debug checking
485 * @p: The pointer to read, prior to dereferencing
486 * @c: The conditions under which the dereference will take place
487 *
488 * Do an rcu_dereference(), but check that the conditions under which the
489 * dereference will take place are correct. Typically the conditions
490 * indicate the various locking conditions that should be held at that
491 * point. The check should return true if the conditions are satisfied.
492 * An implicit check for being in an RCU read-side critical section
493 * (rcu_read_lock()) is included.
494 *
495 * For example:
496 *
497 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
498 *
499 * could be used to indicate to lockdep that foo->bar may only be dereferenced
500 * if either rcu_read_lock() is held, or that the lock required to replace
501 * the bar struct at foo->bar is held.
502 *
503 * Note that the list of conditions may also include indications of when a lock
504 * need not be held, for example during initialisation or destruction of the
505 * target struct:
506 *
507 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
508 * atomic_read(&foo->usage) == 0);
509 *
510 * Inserts memory barriers on architectures that require them
511 * (currently only the Alpha), prevents the compiler from refetching
512 * (and from merging fetches), and, more importantly, documents exactly
513 * which pointers are protected by RCU and checks that the pointer is
514 * annotated as __rcu.
515 */
516 #define rcu_dereference_check(p, c) \
517 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
518
519 /**
520 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
521 * @p: The pointer to read, prior to dereferencing
522 * @c: The conditions under which the dereference will take place
523 *
524 * This is the RCU-bh counterpart to rcu_dereference_check().
525 */
526 #define rcu_dereference_bh_check(p, c) \
527 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
528
529 /**
530 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
531 * @p: The pointer to read, prior to dereferencing
532 * @c: The conditions under which the dereference will take place
533 *
534 * This is the RCU-sched counterpart to rcu_dereference_check().
535 */
536 #define rcu_dereference_sched_check(p, c) \
537 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
538 __rcu)
539
540 /*
541 * The tracing infrastructure traces RCU (we want that), but unfortunately
542 * some of the RCU checks causes tracing to lock up the system.
543 *
544 * The no-tracing version of rcu_dereference_raw() must not call
545 * rcu_read_lock_held().
546 */
547 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
548
549 /**
550 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
551 * @p: The pointer to read, prior to dereferencing
552 * @c: The conditions under which the dereference will take place
553 *
554 * Return the value of the specified RCU-protected pointer, but omit
555 * the READ_ONCE(). This is useful in cases where update-side locks
556 * prevent the value of the pointer from changing. Please note that this
557 * primitive does *not* prevent the compiler from repeating this reference
558 * or combining it with other references, so it should not be used without
559 * protection of appropriate locks.
560 *
561 * This function is only for update-side use. Using this function
562 * when protected only by rcu_read_lock() will result in infrequent
563 * but very ugly failures.
564 */
565 #define rcu_dereference_protected(p, c) \
566 __rcu_dereference_protected((p), (c), __rcu)
567
568
569 /**
570 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
571 * @p: The pointer to read, prior to dereferencing
572 *
573 * This is a simple wrapper around rcu_dereference_check().
574 */
575 #define rcu_dereference(p) rcu_dereference_check(p, 0)
576
577 /**
578 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
579 * @p: The pointer to read, prior to dereferencing
580 *
581 * Makes rcu_dereference_check() do the dirty work.
582 */
583 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
584
585 /**
586 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
587 * @p: The pointer to read, prior to dereferencing
588 *
589 * Makes rcu_dereference_check() do the dirty work.
590 */
591 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
592
593 /**
594 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
595 * @p: The pointer to hand off
596 *
597 * This is simply an identity function, but it documents where a pointer
598 * is handed off from RCU to some other synchronization mechanism, for
599 * example, reference counting or locking. In C11, it would map to
600 * kill_dependency(). It could be used as follows::
601 *
602 * rcu_read_lock();
603 * p = rcu_dereference(gp);
604 * long_lived = is_long_lived(p);
605 * if (long_lived) {
606 * if (!atomic_inc_not_zero(p->refcnt))
607 * long_lived = false;
608 * else
609 * p = rcu_pointer_handoff(p);
610 * }
611 * rcu_read_unlock();
612 */
613 #define rcu_pointer_handoff(p) (p)
614
615 /**
616 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
617 *
618 * When synchronize_rcu() is invoked on one CPU while other CPUs
619 * are within RCU read-side critical sections, then the
620 * synchronize_rcu() is guaranteed to block until after all the other
621 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
622 * on one CPU while other CPUs are within RCU read-side critical
623 * sections, invocation of the corresponding RCU callback is deferred
624 * until after the all the other CPUs exit their critical sections.
625 *
626 * Note, however, that RCU callbacks are permitted to run concurrently
627 * with new RCU read-side critical sections. One way that this can happen
628 * is via the following sequence of events: (1) CPU 0 enters an RCU
629 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
630 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
631 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
632 * callback is invoked. This is legal, because the RCU read-side critical
633 * section that was running concurrently with the call_rcu() (and which
634 * therefore might be referencing something that the corresponding RCU
635 * callback would free up) has completed before the corresponding
636 * RCU callback is invoked.
637 *
638 * RCU read-side critical sections may be nested. Any deferred actions
639 * will be deferred until the outermost RCU read-side critical section
640 * completes.
641 *
642 * You can avoid reading and understanding the next paragraph by
643 * following this rule: don't put anything in an rcu_read_lock() RCU
644 * read-side critical section that would block in a !PREEMPTION kernel.
645 * But if you want the full story, read on!
646 *
647 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
648 * it is illegal to block while in an RCU read-side critical section.
649 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
650 * kernel builds, RCU read-side critical sections may be preempted,
651 * but explicit blocking is illegal. Finally, in preemptible RCU
652 * implementations in real-time (with -rt patchset) kernel builds, RCU
653 * read-side critical sections may be preempted and they may also block, but
654 * only when acquiring spinlocks that are subject to priority inheritance.
655 */
rcu_read_lock(void)656 static __always_inline void rcu_read_lock(void)
657 {
658 __rcu_read_lock();
659 __acquire(RCU);
660 rcu_lock_acquire(&rcu_lock_map);
661 RCU_LOCKDEP_WARN(!rcu_is_watching(),
662 "rcu_read_lock() used illegally while idle");
663 }
664
665 /*
666 * So where is rcu_write_lock()? It does not exist, as there is no
667 * way for writers to lock out RCU readers. This is a feature, not
668 * a bug -- this property is what provides RCU's performance benefits.
669 * Of course, writers must coordinate with each other. The normal
670 * spinlock primitives work well for this, but any other technique may be
671 * used as well. RCU does not care how the writers keep out of each
672 * others' way, as long as they do so.
673 */
674
675 /**
676 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
677 *
678 * In most situations, rcu_read_unlock() is immune from deadlock.
679 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
680 * is responsible for deboosting, which it does via rt_mutex_unlock().
681 * Unfortunately, this function acquires the scheduler's runqueue and
682 * priority-inheritance spinlocks. This means that deadlock could result
683 * if the caller of rcu_read_unlock() already holds one of these locks or
684 * any lock that is ever acquired while holding them.
685 *
686 * That said, RCU readers are never priority boosted unless they were
687 * preempted. Therefore, one way to avoid deadlock is to make sure
688 * that preemption never happens within any RCU read-side critical
689 * section whose outermost rcu_read_unlock() is called with one of
690 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
691 * a number of ways, for example, by invoking preempt_disable() before
692 * critical section's outermost rcu_read_lock().
693 *
694 * Given that the set of locks acquired by rt_mutex_unlock() might change
695 * at any time, a somewhat more future-proofed approach is to make sure
696 * that that preemption never happens within any RCU read-side critical
697 * section whose outermost rcu_read_unlock() is called with irqs disabled.
698 * This approach relies on the fact that rt_mutex_unlock() currently only
699 * acquires irq-disabled locks.
700 *
701 * The second of these two approaches is best in most situations,
702 * however, the first approach can also be useful, at least to those
703 * developers willing to keep abreast of the set of locks acquired by
704 * rt_mutex_unlock().
705 *
706 * See rcu_read_lock() for more information.
707 */
rcu_read_unlock(void)708 static inline void rcu_read_unlock(void)
709 {
710 RCU_LOCKDEP_WARN(!rcu_is_watching(),
711 "rcu_read_unlock() used illegally while idle");
712 __release(RCU);
713 __rcu_read_unlock();
714 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
715 }
716
717 /**
718 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
719 *
720 * This is equivalent of rcu_read_lock(), but also disables softirqs.
721 * Note that anything else that disables softirqs can also serve as
722 * an RCU read-side critical section.
723 *
724 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
725 * must occur in the same context, for example, it is illegal to invoke
726 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
727 * was invoked from some other task.
728 */
rcu_read_lock_bh(void)729 static inline void rcu_read_lock_bh(void)
730 {
731 local_bh_disable();
732 __acquire(RCU_BH);
733 rcu_lock_acquire(&rcu_bh_lock_map);
734 RCU_LOCKDEP_WARN(!rcu_is_watching(),
735 "rcu_read_lock_bh() used illegally while idle");
736 }
737
738 /**
739 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
740 *
741 * See rcu_read_lock_bh() for more information.
742 */
rcu_read_unlock_bh(void)743 static inline void rcu_read_unlock_bh(void)
744 {
745 RCU_LOCKDEP_WARN(!rcu_is_watching(),
746 "rcu_read_unlock_bh() used illegally while idle");
747 rcu_lock_release(&rcu_bh_lock_map);
748 __release(RCU_BH);
749 local_bh_enable();
750 }
751
752 /**
753 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
754 *
755 * This is equivalent of rcu_read_lock(), but disables preemption.
756 * Read-side critical sections can also be introduced by anything else
757 * that disables preemption, including local_irq_disable() and friends.
758 *
759 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
760 * must occur in the same context, for example, it is illegal to invoke
761 * rcu_read_unlock_sched() from process context if the matching
762 * rcu_read_lock_sched() was invoked from an NMI handler.
763 */
rcu_read_lock_sched(void)764 static inline void rcu_read_lock_sched(void)
765 {
766 preempt_disable();
767 __acquire(RCU_SCHED);
768 rcu_lock_acquire(&rcu_sched_lock_map);
769 RCU_LOCKDEP_WARN(!rcu_is_watching(),
770 "rcu_read_lock_sched() used illegally while idle");
771 }
772
773 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)774 static inline notrace void rcu_read_lock_sched_notrace(void)
775 {
776 preempt_disable_notrace();
777 __acquire(RCU_SCHED);
778 }
779
780 /**
781 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
782 *
783 * See rcu_read_lock_sched() for more information.
784 */
rcu_read_unlock_sched(void)785 static inline void rcu_read_unlock_sched(void)
786 {
787 RCU_LOCKDEP_WARN(!rcu_is_watching(),
788 "rcu_read_unlock_sched() used illegally while idle");
789 rcu_lock_release(&rcu_sched_lock_map);
790 __release(RCU_SCHED);
791 preempt_enable();
792 }
793
794 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)795 static inline notrace void rcu_read_unlock_sched_notrace(void)
796 {
797 __release(RCU_SCHED);
798 preempt_enable_notrace();
799 }
800
801 /**
802 * RCU_INIT_POINTER() - initialize an RCU protected pointer
803 * @p: The pointer to be initialized.
804 * @v: The value to initialized the pointer to.
805 *
806 * Initialize an RCU-protected pointer in special cases where readers
807 * do not need ordering constraints on the CPU or the compiler. These
808 * special cases are:
809 *
810 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
811 * 2. The caller has taken whatever steps are required to prevent
812 * RCU readers from concurrently accessing this pointer *or*
813 * 3. The referenced data structure has already been exposed to
814 * readers either at compile time or via rcu_assign_pointer() *and*
815 *
816 * a. You have not made *any* reader-visible changes to
817 * this structure since then *or*
818 * b. It is OK for readers accessing this structure from its
819 * new location to see the old state of the structure. (For
820 * example, the changes were to statistical counters or to
821 * other state where exact synchronization is not required.)
822 *
823 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
824 * result in impossible-to-diagnose memory corruption. As in the structures
825 * will look OK in crash dumps, but any concurrent RCU readers might
826 * see pre-initialized values of the referenced data structure. So
827 * please be very careful how you use RCU_INIT_POINTER()!!!
828 *
829 * If you are creating an RCU-protected linked structure that is accessed
830 * by a single external-to-structure RCU-protected pointer, then you may
831 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
832 * pointers, but you must use rcu_assign_pointer() to initialize the
833 * external-to-structure pointer *after* you have completely initialized
834 * the reader-accessible portions of the linked structure.
835 *
836 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
837 * ordering guarantees for either the CPU or the compiler.
838 */
839 #define RCU_INIT_POINTER(p, v) \
840 do { \
841 rcu_check_sparse(p, __rcu); \
842 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
843 } while (0)
844
845 /**
846 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
847 * @p: The pointer to be initialized.
848 * @v: The value to initialized the pointer to.
849 *
850 * GCC-style initialization for an RCU-protected pointer in a structure field.
851 */
852 #define RCU_POINTER_INITIALIZER(p, v) \
853 .p = RCU_INITIALIZER(v)
854
855 /*
856 * Does the specified offset indicate that the corresponding rcu_head
857 * structure can be handled by kvfree_rcu()?
858 */
859 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
860
861 /*
862 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
863 */
864 #define __kvfree_rcu(head, offset) \
865 do { \
866 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
867 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
868 } while (0)
869
870 /**
871 * kfree_rcu() - kfree an object after a grace period.
872 * @ptr: pointer to kfree
873 * @rhf: the name of the struct rcu_head within the type of @ptr.
874 *
875 * Many rcu callbacks functions just call kfree() on the base structure.
876 * These functions are trivial, but their size adds up, and furthermore
877 * when they are used in a kernel module, that module must invoke the
878 * high-latency rcu_barrier() function at module-unload time.
879 *
880 * The kfree_rcu() function handles this issue. Rather than encoding a
881 * function address in the embedded rcu_head structure, kfree_rcu() instead
882 * encodes the offset of the rcu_head structure within the base structure.
883 * Because the functions are not allowed in the low-order 4096 bytes of
884 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
885 * If the offset is larger than 4095 bytes, a compile-time error will
886 * be generated in __kvfree_rcu(). If this error is triggered, you can
887 * either fall back to use of call_rcu() or rearrange the structure to
888 * position the rcu_head structure into the first 4096 bytes.
889 *
890 * Note that the allowable offset might decrease in the future, for example,
891 * to allow something like kmem_cache_free_rcu().
892 *
893 * The BUILD_BUG_ON check must not involve any function calls, hence the
894 * checks are done in macros here.
895 */
896 #define kfree_rcu(ptr, rhf) \
897 do { \
898 typeof (ptr) ___p = (ptr); \
899 \
900 if (___p) \
901 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
902 } while (0)
903
904 /**
905 * kvfree_rcu() - kvfree an object after a grace period.
906 *
907 * This macro consists of one or two arguments and it is
908 * based on whether an object is head-less or not. If it
909 * has a head then a semantic stays the same as it used
910 * to be before:
911 *
912 * kvfree_rcu(ptr, rhf);
913 *
914 * where @ptr is a pointer to kvfree(), @rhf is the name
915 * of the rcu_head structure within the type of @ptr.
916 *
917 * When it comes to head-less variant, only one argument
918 * is passed and that is just a pointer which has to be
919 * freed after a grace period. Therefore the semantic is
920 *
921 * kvfree_rcu(ptr);
922 *
923 * where @ptr is a pointer to kvfree().
924 *
925 * Please note, head-less way of freeing is permitted to
926 * use from a context that has to follow might_sleep()
927 * annotation. Otherwise, please switch and embed the
928 * rcu_head structure within the type of @ptr.
929 */
930 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
931 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
932
933 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
934 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
935 #define kvfree_rcu_arg_1(ptr) \
936 do { \
937 typeof(ptr) ___p = (ptr); \
938 \
939 if (___p) \
940 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
941 } while (0)
942
943 /*
944 * Place this after a lock-acquisition primitive to guarantee that
945 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
946 * if the UNLOCK and LOCK are executed by the same CPU or if the
947 * UNLOCK and LOCK operate on the same lock variable.
948 */
949 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
950 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
951 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
952 #define smp_mb__after_unlock_lock() do { } while (0)
953 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
954
955
956 /* Has the specified rcu_head structure been handed to call_rcu()? */
957
958 /**
959 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
960 * @rhp: The rcu_head structure to initialize.
961 *
962 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
963 * given rcu_head structure has already been passed to call_rcu(), then
964 * you must also invoke this rcu_head_init() function on it just after
965 * allocating that structure. Calls to this function must not race with
966 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
967 */
rcu_head_init(struct rcu_head * rhp)968 static inline void rcu_head_init(struct rcu_head *rhp)
969 {
970 rhp->func = (rcu_callback_t)~0L;
971 }
972
973 /**
974 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
975 * @rhp: The rcu_head structure to test.
976 * @f: The function passed to call_rcu() along with @rhp.
977 *
978 * Returns @true if the @rhp has been passed to call_rcu() with @func,
979 * and @false otherwise. Emits a warning in any other case, including
980 * the case where @rhp has already been invoked after a grace period.
981 * Calls to this function must not race with callback invocation. One way
982 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
983 * in an RCU read-side critical section that includes a read-side fetch
984 * of the pointer to the structure containing @rhp.
985 */
986 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)987 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
988 {
989 rcu_callback_t func = READ_ONCE(rhp->func);
990
991 if (func == f)
992 return true;
993 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
994 return false;
995 }
996
997 /* kernel/ksysfs.c definitions */
998 extern int rcu_expedited;
999 extern int rcu_normal;
1000
1001 #endif /* __LINUX_RCUPDATE_H */
1002