• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 static void sock_inuse_add(struct net *net, int val);
146 
147 /**
148  * sk_ns_capable - General socket capability test
149  * @sk: Socket to use a capability on or through
150  * @user_ns: The user namespace of the capability to use
151  * @cap: The capability to use
152  *
153  * Test to see if the opener of the socket had when the socket was
154  * created and the current process has the capability @cap in the user
155  * namespace @user_ns.
156  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)157 bool sk_ns_capable(const struct sock *sk,
158 		   struct user_namespace *user_ns, int cap)
159 {
160 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 		ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164 
165 /**
166  * sk_capable - Socket global capability test
167  * @sk: Socket to use a capability on or through
168  * @cap: The global capability to use
169  *
170  * Test to see if the opener of the socket had when the socket was
171  * created and the current process has the capability @cap in all user
172  * namespaces.
173  */
sk_capable(const struct sock * sk,int cap)174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 	return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179 
180 /**
181  * sk_net_capable - Network namespace socket capability test
182  * @sk: Socket to use a capability on or through
183  * @cap: The capability to use
184  *
185  * Test to see if the opener of the socket had when the socket was created
186  * and the current process has the capability @cap over the network namespace
187  * the socket is a member of.
188  */
sk_net_capable(const struct sock * sk,int cap)189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194 
195 /*
196  * Each address family might have different locking rules, so we have
197  * one slock key per address family and separate keys for internal and
198  * userspace sockets.
199  */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 
211 #define _sock_locks(x)						  \
212   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
213   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
214   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
215   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
216   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
217   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
218   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
219   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
220   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
221   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
222   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
223   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
224   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
225   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
226   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
227   x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 	_sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 	_sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 	_sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 	_sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 	_sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 	_sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 	_sock_locks("elock-")
256 };
257 
258 /*
259  * sk_callback_lock and sk queues locking rules are per-address-family,
260  * so split the lock classes by using a per-AF key:
261  */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267 
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279 
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281 
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284 
285 /**
286  * sk_set_memalloc - sets %SOCK_MEMALLOC
287  * @sk: socket to set it on
288  *
289  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290  * It's the responsibility of the admin to adjust min_free_kbytes
291  * to meet the requirements
292  */
sk_set_memalloc(struct sock * sk)293 void sk_set_memalloc(struct sock *sk)
294 {
295 	sock_set_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation |= __GFP_MEMALLOC;
297 	static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300 
sk_clear_memalloc(struct sock * sk)301 void sk_clear_memalloc(struct sock *sk)
302 {
303 	sock_reset_flag(sk, SOCK_MEMALLOC);
304 	sk->sk_allocation &= ~__GFP_MEMALLOC;
305 	static_branch_dec(&memalloc_socks_key);
306 
307 	/*
308 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 	 * it has rmem allocations due to the last swapfile being deactivated
311 	 * but there is a risk that the socket is unusable due to exceeding
312 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 	 */
314 	sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 	int ret;
321 	unsigned int noreclaim_flag;
322 
323 	/* these should have been dropped before queueing */
324 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325 
326 	noreclaim_flag = memalloc_noreclaim_save();
327 	ret = sk->sk_backlog_rcv(sk, skb);
328 	memalloc_noreclaim_restore(noreclaim_flag);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333 
sock_get_timeout(long timeo,void * optval,bool old_timeval)334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 	struct __kernel_sock_timeval tv;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		return sizeof(old_tv);
358 	}
359 
360 	*(struct __kernel_sock_timeval *)optval = tv;
361 	return sizeof(tv);
362 }
363 
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 			    bool old_timeval)
366 {
367 	struct __kernel_sock_timeval tv;
368 
369 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 		struct old_timeval32 tv32;
371 
372 		if (optlen < sizeof(tv32))
373 			return -EINVAL;
374 
375 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 			return -EFAULT;
377 		tv.tv_sec = tv32.tv_sec;
378 		tv.tv_usec = tv32.tv_usec;
379 	} else if (old_timeval) {
380 		struct __kernel_old_timeval old_tv;
381 
382 		if (optlen < sizeof(old_tv))
383 			return -EINVAL;
384 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 			return -EFAULT;
386 		tv.tv_sec = old_tv.tv_sec;
387 		tv.tv_usec = old_tv.tv_usec;
388 	} else {
389 		if (optlen < sizeof(tv))
390 			return -EINVAL;
391 		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 			return -EFAULT;
393 	}
394 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 		return -EDOM;
396 
397 	if (tv.tv_sec < 0) {
398 		static int warned __read_mostly;
399 
400 		*timeo_p = 0;
401 		if (warned < 10 && net_ratelimit()) {
402 			warned++;
403 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 				__func__, current->comm, task_pid_nr(current));
405 		}
406 		return 0;
407 	}
408 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
409 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 		return 0;
411 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 	return 0;
414 }
415 
sock_needs_netstamp(const struct sock * sk)416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 	switch (sk->sk_family) {
419 	case AF_UNSPEC:
420 	case AF_UNIX:
421 		return false;
422 	default:
423 		return true;
424 	}
425 }
426 
sock_disable_timestamp(struct sock * sk,unsigned long flags)427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (sock_needs_netstamp(sk) &&
432 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 			net_disable_timestamp();
434 	}
435 }
436 
437 
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 	unsigned long flags;
441 	struct sk_buff_head *list = &sk->sk_receive_queue;
442 
443 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 		atomic_inc(&sk->sk_drops);
445 		trace_sock_rcvqueue_full(sk, skb);
446 		return -ENOMEM;
447 	}
448 
449 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 		atomic_inc(&sk->sk_drops);
451 		return -ENOBUFS;
452 	}
453 
454 	skb->dev = NULL;
455 	skb_set_owner_r(skb, sk);
456 
457 	/* we escape from rcu protected region, make sure we dont leak
458 	 * a norefcounted dst
459 	 */
460 	skb_dst_force(skb);
461 
462 	spin_lock_irqsave(&list->lock, flags);
463 	sock_skb_set_dropcount(sk, skb);
464 	__skb_queue_tail(list, skb);
465 	spin_unlock_irqrestore(&list->lock, flags);
466 
467 	if (!sock_flag(sk, SOCK_DEAD))
468 		sk->sk_data_ready(sk);
469 	return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 	int err;
476 
477 	err = sk_filter(sk, skb);
478 	if (err)
479 		return err;
480 
481 	return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484 
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 		     const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 	int rc = NET_RX_SUCCESS;
489 
490 	if (sk_filter_trim_cap(sk, skb, trim_cap))
491 		goto discard_and_relse;
492 
493 	skb->dev = NULL;
494 
495 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 		atomic_inc(&sk->sk_drops);
497 		goto discard_and_relse;
498 	}
499 	if (nested)
500 		bh_lock_sock_nested(sk);
501 	else
502 		bh_lock_sock(sk);
503 	if (!sock_owned_by_user(sk)) {
504 		/*
505 		 * trylock + unlock semantics:
506 		 */
507 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508 
509 		rc = sk_backlog_rcv(sk, skb);
510 
511 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 		bh_unlock_sock(sk);
514 		atomic_inc(&sk->sk_drops);
515 		goto discard_and_relse;
516 	}
517 
518 	bh_unlock_sock(sk);
519 out:
520 	if (refcounted)
521 		sock_put(sk);
522 	return rc;
523 discard_and_relse:
524 	kfree_skb(skb);
525 	goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528 
__sk_dst_check(struct sock * sk,u32 cookie)529 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
530 {
531 	struct dst_entry *dst = __sk_dst_get(sk);
532 
533 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
534 		sk_tx_queue_clear(sk);
535 		sk->sk_dst_pending_confirm = 0;
536 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 		dst_release(dst);
538 		return NULL;
539 	}
540 
541 	return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544 
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 	struct dst_entry *dst = sk_dst_get(sk);
548 
549 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 		sk_dst_reset(sk);
551 		dst_release(dst);
552 		return NULL;
553 	}
554 
555 	return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558 
sock_bindtoindex_locked(struct sock * sk,int ifindex)559 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
560 {
561 	int ret = -ENOPROTOOPT;
562 #ifdef CONFIG_NETDEVICES
563 	struct net *net = sock_net(sk);
564 
565 	/* Sorry... */
566 	ret = -EPERM;
567 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
568 		goto out;
569 
570 	ret = -EINVAL;
571 	if (ifindex < 0)
572 		goto out;
573 
574 	sk->sk_bound_dev_if = ifindex;
575 	if (sk->sk_prot->rehash)
576 		sk->sk_prot->rehash(sk);
577 	sk_dst_reset(sk);
578 
579 	ret = 0;
580 
581 out:
582 #endif
583 
584 	return ret;
585 }
586 
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)587 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
588 {
589 	int ret;
590 
591 	if (lock_sk)
592 		lock_sock(sk);
593 	ret = sock_bindtoindex_locked(sk, ifindex);
594 	if (lock_sk)
595 		release_sock(sk);
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL(sock_bindtoindex);
600 
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)601 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
602 {
603 	int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 	struct net *net = sock_net(sk);
606 	char devname[IFNAMSIZ];
607 	int index;
608 
609 	ret = -EINVAL;
610 	if (optlen < 0)
611 		goto out;
612 
613 	/* Bind this socket to a particular device like "eth0",
614 	 * as specified in the passed interface name. If the
615 	 * name is "" or the option length is zero the socket
616 	 * is not bound.
617 	 */
618 	if (optlen > IFNAMSIZ - 1)
619 		optlen = IFNAMSIZ - 1;
620 	memset(devname, 0, sizeof(devname));
621 
622 	ret = -EFAULT;
623 	if (copy_from_sockptr(devname, optval, optlen))
624 		goto out;
625 
626 	index = 0;
627 	if (devname[0] != '\0') {
628 		struct net_device *dev;
629 
630 		rcu_read_lock();
631 		dev = dev_get_by_name_rcu(net, devname);
632 		if (dev)
633 			index = dev->ifindex;
634 		rcu_read_unlock();
635 		ret = -ENODEV;
636 		if (!dev)
637 			goto out;
638 	}
639 
640 	return sock_bindtoindex(sk, index, true);
641 out:
642 #endif
643 
644 	return ret;
645 }
646 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 				int __user *optlen, int len)
649 {
650 	int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 	struct net *net = sock_net(sk);
653 	char devname[IFNAMSIZ];
654 
655 	if (sk->sk_bound_dev_if == 0) {
656 		len = 0;
657 		goto zero;
658 	}
659 
660 	ret = -EINVAL;
661 	if (len < IFNAMSIZ)
662 		goto out;
663 
664 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
665 	if (ret)
666 		goto out;
667 
668 	len = strlen(devname) + 1;
669 
670 	ret = -EFAULT;
671 	if (copy_to_user(optval, devname, len))
672 		goto out;
673 
674 zero:
675 	ret = -EFAULT;
676 	if (put_user(len, optlen))
677 		goto out;
678 
679 	ret = 0;
680 
681 out:
682 #endif
683 
684 	return ret;
685 }
686 
sk_mc_loop(struct sock * sk)687 bool sk_mc_loop(struct sock *sk)
688 {
689 	if (dev_recursion_level())
690 		return false;
691 	if (!sk)
692 		return true;
693 	switch (sk->sk_family) {
694 	case AF_INET:
695 		return inet_sk(sk)->mc_loop;
696 #if IS_ENABLED(CONFIG_IPV6)
697 	case AF_INET6:
698 		return inet6_sk(sk)->mc_loop;
699 #endif
700 	}
701 	WARN_ON_ONCE(1);
702 	return true;
703 }
704 EXPORT_SYMBOL(sk_mc_loop);
705 
sock_set_reuseaddr(struct sock * sk)706 void sock_set_reuseaddr(struct sock *sk)
707 {
708 	lock_sock(sk);
709 	sk->sk_reuse = SK_CAN_REUSE;
710 	release_sock(sk);
711 }
712 EXPORT_SYMBOL(sock_set_reuseaddr);
713 
sock_set_reuseport(struct sock * sk)714 void sock_set_reuseport(struct sock *sk)
715 {
716 	lock_sock(sk);
717 	sk->sk_reuseport = true;
718 	release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseport);
721 
sock_no_linger(struct sock * sk)722 void sock_no_linger(struct sock *sk)
723 {
724 	lock_sock(sk);
725 	sk->sk_lingertime = 0;
726 	sock_set_flag(sk, SOCK_LINGER);
727 	release_sock(sk);
728 }
729 EXPORT_SYMBOL(sock_no_linger);
730 
sock_set_priority(struct sock * sk,u32 priority)731 void sock_set_priority(struct sock *sk, u32 priority)
732 {
733 	lock_sock(sk);
734 	sk->sk_priority = priority;
735 	release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_set_priority);
738 
sock_set_sndtimeo(struct sock * sk,s64 secs)739 void sock_set_sndtimeo(struct sock *sk, s64 secs)
740 {
741 	lock_sock(sk);
742 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
743 		sk->sk_sndtimeo = secs * HZ;
744 	else
745 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
746 	release_sock(sk);
747 }
748 EXPORT_SYMBOL(sock_set_sndtimeo);
749 
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)750 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
751 {
752 	if (val)  {
753 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
754 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
755 		sock_set_flag(sk, SOCK_RCVTSTAMP);
756 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 	} else {
758 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 	}
761 }
762 
sock_enable_timestamps(struct sock * sk)763 void sock_enable_timestamps(struct sock *sk)
764 {
765 	lock_sock(sk);
766 	__sock_set_timestamps(sk, true, false, true);
767 	release_sock(sk);
768 }
769 EXPORT_SYMBOL(sock_enable_timestamps);
770 
sock_set_keepalive(struct sock * sk)771 void sock_set_keepalive(struct sock *sk)
772 {
773 	lock_sock(sk);
774 	if (sk->sk_prot->keepalive)
775 		sk->sk_prot->keepalive(sk, true);
776 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
777 	release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_keepalive);
780 
__sock_set_rcvbuf(struct sock * sk,int val)781 static void __sock_set_rcvbuf(struct sock *sk, int val)
782 {
783 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
784 	 * as a negative value.
785 	 */
786 	val = min_t(int, val, INT_MAX / 2);
787 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
788 
789 	/* We double it on the way in to account for "struct sk_buff" etc.
790 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
791 	 * will allow that much actual data to be received on that socket.
792 	 *
793 	 * Applications are unaware that "struct sk_buff" and other overheads
794 	 * allocate from the receive buffer during socket buffer allocation.
795 	 *
796 	 * And after considering the possible alternatives, returning the value
797 	 * we actually used in getsockopt is the most desirable behavior.
798 	 */
799 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
800 }
801 
sock_set_rcvbuf(struct sock * sk,int val)802 void sock_set_rcvbuf(struct sock *sk, int val)
803 {
804 	lock_sock(sk);
805 	__sock_set_rcvbuf(sk, val);
806 	release_sock(sk);
807 }
808 EXPORT_SYMBOL(sock_set_rcvbuf);
809 
__sock_set_mark(struct sock * sk,u32 val)810 static void __sock_set_mark(struct sock *sk, u32 val)
811 {
812 	if (val != sk->sk_mark) {
813 		sk->sk_mark = val;
814 		sk_dst_reset(sk);
815 	}
816 }
817 
sock_set_mark(struct sock * sk,u32 val)818 void sock_set_mark(struct sock *sk, u32 val)
819 {
820 	lock_sock(sk);
821 	__sock_set_mark(sk, val);
822 	release_sock(sk);
823 }
824 EXPORT_SYMBOL(sock_set_mark);
825 
826 /*
827  *	This is meant for all protocols to use and covers goings on
828  *	at the socket level. Everything here is generic.
829  */
830 
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)831 int sock_setsockopt(struct socket *sock, int level, int optname,
832 		    sockptr_t optval, unsigned int optlen)
833 {
834 	struct sock_txtime sk_txtime;
835 	struct sock *sk = sock->sk;
836 	int val;
837 	int valbool;
838 	struct linger ling;
839 	int ret = 0;
840 
841 	/*
842 	 *	Options without arguments
843 	 */
844 
845 	if (optname == SO_BINDTODEVICE)
846 		return sock_setbindtodevice(sk, optval, optlen);
847 
848 	if (optlen < sizeof(int))
849 		return -EINVAL;
850 
851 	if (copy_from_sockptr(&val, optval, sizeof(val)))
852 		return -EFAULT;
853 
854 	valbool = val ? 1 : 0;
855 
856 	lock_sock(sk);
857 
858 	switch (optname) {
859 	case SO_DEBUG:
860 		if (val && !capable(CAP_NET_ADMIN))
861 			ret = -EACCES;
862 		else
863 			sock_valbool_flag(sk, SOCK_DBG, valbool);
864 		break;
865 	case SO_REUSEADDR:
866 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 		break;
868 	case SO_REUSEPORT:
869 		sk->sk_reuseport = valbool;
870 		break;
871 	case SO_TYPE:
872 	case SO_PROTOCOL:
873 	case SO_DOMAIN:
874 	case SO_ERROR:
875 		ret = -ENOPROTOOPT;
876 		break;
877 	case SO_DONTROUTE:
878 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 		sk_dst_reset(sk);
880 		break;
881 	case SO_BROADCAST:
882 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 		break;
884 	case SO_SNDBUF:
885 		/* Don't error on this BSD doesn't and if you think
886 		 * about it this is right. Otherwise apps have to
887 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 		 * are treated in BSD as hints
889 		 */
890 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
891 set_sndbuf:
892 		/* Ensure val * 2 fits into an int, to prevent max_t()
893 		 * from treating it as a negative value.
894 		 */
895 		val = min_t(int, val, INT_MAX / 2);
896 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 		WRITE_ONCE(sk->sk_sndbuf,
898 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 		/* Wake up sending tasks if we upped the value. */
900 		sk->sk_write_space(sk);
901 		break;
902 
903 	case SO_SNDBUFFORCE:
904 		if (!capable(CAP_NET_ADMIN)) {
905 			ret = -EPERM;
906 			break;
907 		}
908 
909 		/* No negative values (to prevent underflow, as val will be
910 		 * multiplied by 2).
911 		 */
912 		if (val < 0)
913 			val = 0;
914 		goto set_sndbuf;
915 
916 	case SO_RCVBUF:
917 		/* Don't error on this BSD doesn't and if you think
918 		 * about it this is right. Otherwise apps have to
919 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 		 * are treated in BSD as hints
921 		 */
922 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
923 		break;
924 
925 	case SO_RCVBUFFORCE:
926 		if (!capable(CAP_NET_ADMIN)) {
927 			ret = -EPERM;
928 			break;
929 		}
930 
931 		/* No negative values (to prevent underflow, as val will be
932 		 * multiplied by 2).
933 		 */
934 		__sock_set_rcvbuf(sk, max(val, 0));
935 		break;
936 
937 	case SO_KEEPALIVE:
938 		if (sk->sk_prot->keepalive)
939 			sk->sk_prot->keepalive(sk, valbool);
940 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 		break;
942 
943 	case SO_OOBINLINE:
944 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 		break;
946 
947 	case SO_NO_CHECK:
948 		sk->sk_no_check_tx = valbool;
949 		break;
950 
951 	case SO_PRIORITY:
952 		if ((val >= 0 && val <= 6) ||
953 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 			sk->sk_priority = val;
955 		else
956 			ret = -EPERM;
957 		break;
958 
959 	case SO_LINGER:
960 		if (optlen < sizeof(ling)) {
961 			ret = -EINVAL;	/* 1003.1g */
962 			break;
963 		}
964 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 			ret = -EFAULT;
966 			break;
967 		}
968 		if (!ling.l_onoff)
969 			sock_reset_flag(sk, SOCK_LINGER);
970 		else {
971 #if (BITS_PER_LONG == 32)
972 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 			else
975 #endif
976 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 			sock_set_flag(sk, SOCK_LINGER);
978 		}
979 		break;
980 
981 	case SO_BSDCOMPAT:
982 		break;
983 
984 	case SO_PASSCRED:
985 		if (valbool)
986 			set_bit(SOCK_PASSCRED, &sock->flags);
987 		else
988 			clear_bit(SOCK_PASSCRED, &sock->flags);
989 		break;
990 
991 	case SO_TIMESTAMP_OLD:
992 		__sock_set_timestamps(sk, valbool, false, false);
993 		break;
994 	case SO_TIMESTAMP_NEW:
995 		__sock_set_timestamps(sk, valbool, true, false);
996 		break;
997 	case SO_TIMESTAMPNS_OLD:
998 		__sock_set_timestamps(sk, valbool, false, true);
999 		break;
1000 	case SO_TIMESTAMPNS_NEW:
1001 		__sock_set_timestamps(sk, valbool, true, true);
1002 		break;
1003 	case SO_TIMESTAMPING_NEW:
1004 	case SO_TIMESTAMPING_OLD:
1005 		if (val & ~SOF_TIMESTAMPING_MASK) {
1006 			ret = -EINVAL;
1007 			break;
1008 		}
1009 
1010 		if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 			if (sk->sk_protocol == IPPROTO_TCP &&
1013 			    sk->sk_type == SOCK_STREAM) {
1014 				if ((1 << sk->sk_state) &
1015 				    (TCPF_CLOSE | TCPF_LISTEN)) {
1016 					ret = -EINVAL;
1017 					break;
1018 				}
1019 				sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 			} else {
1021 				sk->sk_tskey = 0;
1022 			}
1023 		}
1024 
1025 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 			ret = -EINVAL;
1028 			break;
1029 		}
1030 
1031 		sk->sk_tsflags = val;
1032 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033 
1034 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 			sock_enable_timestamp(sk,
1036 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 		else
1038 			sock_disable_timestamp(sk,
1039 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 		break;
1041 
1042 	case SO_RCVLOWAT:
1043 		if (val < 0)
1044 			val = INT_MAX;
1045 		if (sock->ops->set_rcvlowat)
1046 			ret = sock->ops->set_rcvlowat(sk, val);
1047 		else
1048 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 		break;
1050 
1051 	case SO_RCVTIMEO_OLD:
1052 	case SO_RCVTIMEO_NEW:
1053 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 				       optlen, optname == SO_RCVTIMEO_OLD);
1055 		break;
1056 
1057 	case SO_SNDTIMEO_OLD:
1058 	case SO_SNDTIMEO_NEW:
1059 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 				       optlen, optname == SO_SNDTIMEO_OLD);
1061 		break;
1062 
1063 	case SO_ATTACH_FILTER: {
1064 		struct sock_fprog fprog;
1065 
1066 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 		if (!ret)
1068 			ret = sk_attach_filter(&fprog, sk);
1069 		break;
1070 	}
1071 	case SO_ATTACH_BPF:
1072 		ret = -EINVAL;
1073 		if (optlen == sizeof(u32)) {
1074 			u32 ufd;
1075 
1076 			ret = -EFAULT;
1077 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 				break;
1079 
1080 			ret = sk_attach_bpf(ufd, sk);
1081 		}
1082 		break;
1083 
1084 	case SO_ATTACH_REUSEPORT_CBPF: {
1085 		struct sock_fprog fprog;
1086 
1087 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 		if (!ret)
1089 			ret = sk_reuseport_attach_filter(&fprog, sk);
1090 		break;
1091 	}
1092 	case SO_ATTACH_REUSEPORT_EBPF:
1093 		ret = -EINVAL;
1094 		if (optlen == sizeof(u32)) {
1095 			u32 ufd;
1096 
1097 			ret = -EFAULT;
1098 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 				break;
1100 
1101 			ret = sk_reuseport_attach_bpf(ufd, sk);
1102 		}
1103 		break;
1104 
1105 	case SO_DETACH_REUSEPORT_BPF:
1106 		ret = reuseport_detach_prog(sk);
1107 		break;
1108 
1109 	case SO_DETACH_FILTER:
1110 		ret = sk_detach_filter(sk);
1111 		break;
1112 
1113 	case SO_LOCK_FILTER:
1114 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 			ret = -EPERM;
1116 		else
1117 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 		break;
1119 
1120 	case SO_PASSSEC:
1121 		if (valbool)
1122 			set_bit(SOCK_PASSSEC, &sock->flags);
1123 		else
1124 			clear_bit(SOCK_PASSSEC, &sock->flags);
1125 		break;
1126 	case SO_MARK:
1127 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 			ret = -EPERM;
1129 			break;
1130 		}
1131 
1132 		__sock_set_mark(sk, val);
1133 		break;
1134 
1135 	case SO_RXQ_OVFL:
1136 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 		break;
1138 
1139 	case SO_WIFI_STATUS:
1140 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 		break;
1142 
1143 	case SO_PEEK_OFF:
1144 		if (sock->ops->set_peek_off)
1145 			ret = sock->ops->set_peek_off(sk, val);
1146 		else
1147 			ret = -EOPNOTSUPP;
1148 		break;
1149 
1150 	case SO_NOFCS:
1151 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 		break;
1153 
1154 	case SO_SELECT_ERR_QUEUE:
1155 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 		break;
1157 
1158 #ifdef CONFIG_NET_RX_BUSY_POLL
1159 	case SO_BUSY_POLL:
1160 		/* allow unprivileged users to decrease the value */
1161 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 			ret = -EPERM;
1163 		else {
1164 			if (val < 0)
1165 				ret = -EINVAL;
1166 			else
1167 				WRITE_ONCE(sk->sk_ll_usec, val);
1168 		}
1169 		break;
1170 #endif
1171 
1172 	case SO_MAX_PACING_RATE:
1173 		{
1174 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1175 
1176 		if (sizeof(ulval) != sizeof(val) &&
1177 		    optlen >= sizeof(ulval) &&
1178 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1179 			ret = -EFAULT;
1180 			break;
1181 		}
1182 		if (ulval != ~0UL)
1183 			cmpxchg(&sk->sk_pacing_status,
1184 				SK_PACING_NONE,
1185 				SK_PACING_NEEDED);
1186 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1187 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1188 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1189 		break;
1190 		}
1191 	case SO_INCOMING_CPU:
1192 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1193 		break;
1194 
1195 	case SO_CNX_ADVICE:
1196 		if (val == 1)
1197 			dst_negative_advice(sk);
1198 		break;
1199 
1200 	case SO_ZEROCOPY:
1201 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1202 			if (!((sk->sk_type == SOCK_STREAM &&
1203 			       sk->sk_protocol == IPPROTO_TCP) ||
1204 			      (sk->sk_type == SOCK_DGRAM &&
1205 			       sk->sk_protocol == IPPROTO_UDP)))
1206 				ret = -ENOTSUPP;
1207 		} else if (sk->sk_family != PF_RDS) {
1208 			ret = -ENOTSUPP;
1209 		}
1210 		if (!ret) {
1211 			if (val < 0 || val > 1)
1212 				ret = -EINVAL;
1213 			else
1214 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1215 		}
1216 		break;
1217 
1218 	case SO_TXTIME:
1219 		if (optlen != sizeof(struct sock_txtime)) {
1220 			ret = -EINVAL;
1221 			break;
1222 		} else if (copy_from_sockptr(&sk_txtime, optval,
1223 			   sizeof(struct sock_txtime))) {
1224 			ret = -EFAULT;
1225 			break;
1226 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1227 			ret = -EINVAL;
1228 			break;
1229 		}
1230 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1231 		 * scheduler has enough safe guards.
1232 		 */
1233 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1234 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1235 			ret = -EPERM;
1236 			break;
1237 		}
1238 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1239 		sk->sk_clockid = sk_txtime.clockid;
1240 		sk->sk_txtime_deadline_mode =
1241 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1242 		sk->sk_txtime_report_errors =
1243 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1244 		break;
1245 
1246 	case SO_BINDTOIFINDEX:
1247 		ret = sock_bindtoindex_locked(sk, val);
1248 		break;
1249 
1250 	default:
1251 		ret = -ENOPROTOOPT;
1252 		break;
1253 	}
1254 	release_sock(sk);
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(sock_setsockopt);
1258 
sk_get_peer_cred(struct sock * sk)1259 static const struct cred *sk_get_peer_cred(struct sock *sk)
1260 {
1261 	const struct cred *cred;
1262 
1263 	spin_lock(&sk->sk_peer_lock);
1264 	cred = get_cred(sk->sk_peer_cred);
1265 	spin_unlock(&sk->sk_peer_lock);
1266 
1267 	return cred;
1268 }
1269 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1270 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1271 			  struct ucred *ucred)
1272 {
1273 	ucred->pid = pid_vnr(pid);
1274 	ucred->uid = ucred->gid = -1;
1275 	if (cred) {
1276 		struct user_namespace *current_ns = current_user_ns();
1277 
1278 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1279 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1280 	}
1281 }
1282 
groups_to_user(gid_t __user * dst,const struct group_info * src)1283 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1284 {
1285 	struct user_namespace *user_ns = current_user_ns();
1286 	int i;
1287 
1288 	for (i = 0; i < src->ngroups; i++)
1289 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1290 			return -EFAULT;
1291 
1292 	return 0;
1293 }
1294 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1295 int sock_getsockopt(struct socket *sock, int level, int optname,
1296 		    char __user *optval, int __user *optlen)
1297 {
1298 	struct sock *sk = sock->sk;
1299 
1300 	union {
1301 		int val;
1302 		u64 val64;
1303 		unsigned long ulval;
1304 		struct linger ling;
1305 		struct old_timeval32 tm32;
1306 		struct __kernel_old_timeval tm;
1307 		struct  __kernel_sock_timeval stm;
1308 		struct sock_txtime txtime;
1309 	} v;
1310 
1311 	int lv = sizeof(int);
1312 	int len;
1313 
1314 	if (get_user(len, optlen))
1315 		return -EFAULT;
1316 	if (len < 0)
1317 		return -EINVAL;
1318 
1319 	memset(&v, 0, sizeof(v));
1320 
1321 	switch (optname) {
1322 	case SO_DEBUG:
1323 		v.val = sock_flag(sk, SOCK_DBG);
1324 		break;
1325 
1326 	case SO_DONTROUTE:
1327 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1328 		break;
1329 
1330 	case SO_BROADCAST:
1331 		v.val = sock_flag(sk, SOCK_BROADCAST);
1332 		break;
1333 
1334 	case SO_SNDBUF:
1335 		v.val = READ_ONCE(sk->sk_sndbuf);
1336 		break;
1337 
1338 	case SO_RCVBUF:
1339 		v.val = READ_ONCE(sk->sk_rcvbuf);
1340 		break;
1341 
1342 	case SO_REUSEADDR:
1343 		v.val = sk->sk_reuse;
1344 		break;
1345 
1346 	case SO_REUSEPORT:
1347 		v.val = sk->sk_reuseport;
1348 		break;
1349 
1350 	case SO_KEEPALIVE:
1351 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1352 		break;
1353 
1354 	case SO_TYPE:
1355 		v.val = sk->sk_type;
1356 		break;
1357 
1358 	case SO_PROTOCOL:
1359 		v.val = sk->sk_protocol;
1360 		break;
1361 
1362 	case SO_DOMAIN:
1363 		v.val = sk->sk_family;
1364 		break;
1365 
1366 	case SO_ERROR:
1367 		v.val = -sock_error(sk);
1368 		if (v.val == 0)
1369 			v.val = xchg(&sk->sk_err_soft, 0);
1370 		break;
1371 
1372 	case SO_OOBINLINE:
1373 		v.val = sock_flag(sk, SOCK_URGINLINE);
1374 		break;
1375 
1376 	case SO_NO_CHECK:
1377 		v.val = sk->sk_no_check_tx;
1378 		break;
1379 
1380 	case SO_PRIORITY:
1381 		v.val = sk->sk_priority;
1382 		break;
1383 
1384 	case SO_LINGER:
1385 		lv		= sizeof(v.ling);
1386 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1387 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1388 		break;
1389 
1390 	case SO_BSDCOMPAT:
1391 		break;
1392 
1393 	case SO_TIMESTAMP_OLD:
1394 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 		break;
1398 
1399 	case SO_TIMESTAMPNS_OLD:
1400 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 		break;
1402 
1403 	case SO_TIMESTAMP_NEW:
1404 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 		break;
1406 
1407 	case SO_TIMESTAMPNS_NEW:
1408 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 		break;
1410 
1411 	case SO_TIMESTAMPING_OLD:
1412 		v.val = sk->sk_tsflags;
1413 		break;
1414 
1415 	case SO_RCVTIMEO_OLD:
1416 	case SO_RCVTIMEO_NEW:
1417 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 		break;
1419 
1420 	case SO_SNDTIMEO_OLD:
1421 	case SO_SNDTIMEO_NEW:
1422 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 		break;
1424 
1425 	case SO_RCVLOWAT:
1426 		v.val = READ_ONCE(sk->sk_rcvlowat);
1427 		break;
1428 
1429 	case SO_SNDLOWAT:
1430 		v.val = 1;
1431 		break;
1432 
1433 	case SO_PASSCRED:
1434 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 		break;
1436 
1437 	case SO_PEERCRED:
1438 	{
1439 		struct ucred peercred;
1440 		if (len > sizeof(peercred))
1441 			len = sizeof(peercred);
1442 
1443 		spin_lock(&sk->sk_peer_lock);
1444 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1445 		spin_unlock(&sk->sk_peer_lock);
1446 
1447 		if (copy_to_user(optval, &peercred, len))
1448 			return -EFAULT;
1449 		goto lenout;
1450 	}
1451 
1452 	case SO_PEERGROUPS:
1453 	{
1454 		const struct cred *cred;
1455 		int ret, n;
1456 
1457 		cred = sk_get_peer_cred(sk);
1458 		if (!cred)
1459 			return -ENODATA;
1460 
1461 		n = cred->group_info->ngroups;
1462 		if (len < n * sizeof(gid_t)) {
1463 			len = n * sizeof(gid_t);
1464 			put_cred(cred);
1465 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1466 		}
1467 		len = n * sizeof(gid_t);
1468 
1469 		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1470 		put_cred(cred);
1471 		if (ret)
1472 			return ret;
1473 		goto lenout;
1474 	}
1475 
1476 	case SO_PEERNAME:
1477 	{
1478 		char address[128];
1479 
1480 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1481 		if (lv < 0)
1482 			return -ENOTCONN;
1483 		if (lv < len)
1484 			return -EINVAL;
1485 		if (copy_to_user(optval, address, len))
1486 			return -EFAULT;
1487 		goto lenout;
1488 	}
1489 
1490 	/* Dubious BSD thing... Probably nobody even uses it, but
1491 	 * the UNIX standard wants it for whatever reason... -DaveM
1492 	 */
1493 	case SO_ACCEPTCONN:
1494 		v.val = sk->sk_state == TCP_LISTEN;
1495 		break;
1496 
1497 	case SO_PASSSEC:
1498 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1499 		break;
1500 
1501 	case SO_PEERSEC:
1502 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1503 
1504 	case SO_MARK:
1505 		v.val = sk->sk_mark;
1506 		break;
1507 
1508 	case SO_RXQ_OVFL:
1509 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1510 		break;
1511 
1512 	case SO_WIFI_STATUS:
1513 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1514 		break;
1515 
1516 	case SO_PEEK_OFF:
1517 		if (!sock->ops->set_peek_off)
1518 			return -EOPNOTSUPP;
1519 
1520 		v.val = READ_ONCE(sk->sk_peek_off);
1521 		break;
1522 	case SO_NOFCS:
1523 		v.val = sock_flag(sk, SOCK_NOFCS);
1524 		break;
1525 
1526 	case SO_BINDTODEVICE:
1527 		return sock_getbindtodevice(sk, optval, optlen, len);
1528 
1529 	case SO_GET_FILTER:
1530 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1531 		if (len < 0)
1532 			return len;
1533 
1534 		goto lenout;
1535 
1536 	case SO_LOCK_FILTER:
1537 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1538 		break;
1539 
1540 	case SO_BPF_EXTENSIONS:
1541 		v.val = bpf_tell_extensions();
1542 		break;
1543 
1544 	case SO_SELECT_ERR_QUEUE:
1545 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1546 		break;
1547 
1548 #ifdef CONFIG_NET_RX_BUSY_POLL
1549 	case SO_BUSY_POLL:
1550 		v.val = READ_ONCE(sk->sk_ll_usec);
1551 		break;
1552 #endif
1553 
1554 	case SO_MAX_PACING_RATE:
1555 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1556 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1557 			lv = sizeof(v.ulval);
1558 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1559 		} else {
1560 			/* 32bit version */
1561 			v.val = min_t(unsigned long, ~0U,
1562 				      READ_ONCE(sk->sk_max_pacing_rate));
1563 		}
1564 		break;
1565 
1566 	case SO_INCOMING_CPU:
1567 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1568 		break;
1569 
1570 	case SO_MEMINFO:
1571 	{
1572 		u32 meminfo[SK_MEMINFO_VARS];
1573 
1574 		sk_get_meminfo(sk, meminfo);
1575 
1576 		len = min_t(unsigned int, len, sizeof(meminfo));
1577 		if (copy_to_user(optval, &meminfo, len))
1578 			return -EFAULT;
1579 
1580 		goto lenout;
1581 	}
1582 
1583 #ifdef CONFIG_NET_RX_BUSY_POLL
1584 	case SO_INCOMING_NAPI_ID:
1585 		v.val = READ_ONCE(sk->sk_napi_id);
1586 
1587 		/* aggregate non-NAPI IDs down to 0 */
1588 		if (v.val < MIN_NAPI_ID)
1589 			v.val = 0;
1590 
1591 		break;
1592 #endif
1593 
1594 	case SO_COOKIE:
1595 		lv = sizeof(u64);
1596 		if (len < lv)
1597 			return -EINVAL;
1598 		v.val64 = sock_gen_cookie(sk);
1599 		break;
1600 
1601 	case SO_ZEROCOPY:
1602 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1603 		break;
1604 
1605 	case SO_TXTIME:
1606 		lv = sizeof(v.txtime);
1607 		v.txtime.clockid = sk->sk_clockid;
1608 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1609 				  SOF_TXTIME_DEADLINE_MODE : 0;
1610 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1611 				  SOF_TXTIME_REPORT_ERRORS : 0;
1612 		break;
1613 
1614 	case SO_BINDTOIFINDEX:
1615 		v.val = sk->sk_bound_dev_if;
1616 		break;
1617 
1618 	default:
1619 		/* We implement the SO_SNDLOWAT etc to not be settable
1620 		 * (1003.1g 7).
1621 		 */
1622 		return -ENOPROTOOPT;
1623 	}
1624 
1625 	if (len > lv)
1626 		len = lv;
1627 	if (copy_to_user(optval, &v, len))
1628 		return -EFAULT;
1629 lenout:
1630 	if (put_user(len, optlen))
1631 		return -EFAULT;
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Initialize an sk_lock.
1637  *
1638  * (We also register the sk_lock with the lock validator.)
1639  */
sock_lock_init(struct sock * sk)1640 static inline void sock_lock_init(struct sock *sk)
1641 {
1642 	if (sk->sk_kern_sock)
1643 		sock_lock_init_class_and_name(
1644 			sk,
1645 			af_family_kern_slock_key_strings[sk->sk_family],
1646 			af_family_kern_slock_keys + sk->sk_family,
1647 			af_family_kern_key_strings[sk->sk_family],
1648 			af_family_kern_keys + sk->sk_family);
1649 	else
1650 		sock_lock_init_class_and_name(
1651 			sk,
1652 			af_family_slock_key_strings[sk->sk_family],
1653 			af_family_slock_keys + sk->sk_family,
1654 			af_family_key_strings[sk->sk_family],
1655 			af_family_keys + sk->sk_family);
1656 }
1657 
1658 /*
1659  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1660  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1661  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1662  */
sock_copy(struct sock * nsk,const struct sock * osk)1663 static void sock_copy(struct sock *nsk, const struct sock *osk)
1664 {
1665 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1666 #ifdef CONFIG_SECURITY_NETWORK
1667 	void *sptr = nsk->sk_security;
1668 #endif
1669 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1670 
1671 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1672 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1673 
1674 #ifdef CONFIG_SECURITY_NETWORK
1675 	nsk->sk_security = sptr;
1676 	security_sk_clone(osk, nsk);
1677 #endif
1678 }
1679 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1680 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1681 		int family)
1682 {
1683 	struct sock *sk;
1684 	struct kmem_cache *slab;
1685 
1686 	slab = prot->slab;
1687 	if (slab != NULL) {
1688 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1689 		if (!sk)
1690 			return sk;
1691 		if (want_init_on_alloc(priority))
1692 			sk_prot_clear_nulls(sk, prot->obj_size);
1693 	} else
1694 		sk = kmalloc(prot->obj_size, priority);
1695 
1696 	if (sk != NULL) {
1697 		if (security_sk_alloc(sk, family, priority))
1698 			goto out_free;
1699 
1700 		if (!try_module_get(prot->owner))
1701 			goto out_free_sec;
1702 		sk_tx_queue_clear(sk);
1703 	}
1704 
1705 	return sk;
1706 
1707 out_free_sec:
1708 	security_sk_free(sk);
1709 out_free:
1710 	if (slab != NULL)
1711 		kmem_cache_free(slab, sk);
1712 	else
1713 		kfree(sk);
1714 	return NULL;
1715 }
1716 
sk_prot_free(struct proto * prot,struct sock * sk)1717 static void sk_prot_free(struct proto *prot, struct sock *sk)
1718 {
1719 	struct kmem_cache *slab;
1720 	struct module *owner;
1721 
1722 	owner = prot->owner;
1723 	slab = prot->slab;
1724 
1725 	cgroup_sk_free(&sk->sk_cgrp_data);
1726 	mem_cgroup_sk_free(sk);
1727 	security_sk_free(sk);
1728 	if (slab != NULL)
1729 		kmem_cache_free(slab, sk);
1730 	else
1731 		kfree(sk);
1732 	module_put(owner);
1733 }
1734 
1735 /**
1736  *	sk_alloc - All socket objects are allocated here
1737  *	@net: the applicable net namespace
1738  *	@family: protocol family
1739  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1740  *	@prot: struct proto associated with this new sock instance
1741  *	@kern: is this to be a kernel socket?
1742  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1743 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1744 		      struct proto *prot, int kern)
1745 {
1746 	struct sock *sk;
1747 
1748 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1749 	if (sk) {
1750 		sk->sk_family = family;
1751 		/*
1752 		 * See comment in struct sock definition to understand
1753 		 * why we need sk_prot_creator -acme
1754 		 */
1755 		sk->sk_prot = sk->sk_prot_creator = prot;
1756 		sk->sk_kern_sock = kern;
1757 		sock_lock_init(sk);
1758 		sk->sk_net_refcnt = kern ? 0 : 1;
1759 		if (likely(sk->sk_net_refcnt)) {
1760 			get_net(net);
1761 			sock_inuse_add(net, 1);
1762 		}
1763 
1764 		sock_net_set(sk, net);
1765 		refcount_set(&sk->sk_wmem_alloc, 1);
1766 
1767 		mem_cgroup_sk_alloc(sk);
1768 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1769 		sock_update_classid(&sk->sk_cgrp_data);
1770 		sock_update_netprioidx(&sk->sk_cgrp_data);
1771 		sk_tx_queue_clear(sk);
1772 	}
1773 
1774 	return sk;
1775 }
1776 EXPORT_SYMBOL(sk_alloc);
1777 
1778 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1779  * grace period. This is the case for UDP sockets and TCP listeners.
1780  */
__sk_destruct(struct rcu_head * head)1781 static void __sk_destruct(struct rcu_head *head)
1782 {
1783 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1784 	struct sk_filter *filter;
1785 
1786 	if (sk->sk_destruct)
1787 		sk->sk_destruct(sk);
1788 
1789 	filter = rcu_dereference_check(sk->sk_filter,
1790 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1791 	if (filter) {
1792 		sk_filter_uncharge(sk, filter);
1793 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1794 	}
1795 
1796 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1797 
1798 #ifdef CONFIG_BPF_SYSCALL
1799 	bpf_sk_storage_free(sk);
1800 #endif
1801 
1802 	if (atomic_read(&sk->sk_omem_alloc))
1803 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1804 			 __func__, atomic_read(&sk->sk_omem_alloc));
1805 
1806 	if (sk->sk_frag.page) {
1807 		put_page(sk->sk_frag.page);
1808 		sk->sk_frag.page = NULL;
1809 	}
1810 
1811 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1812 	put_cred(sk->sk_peer_cred);
1813 	put_pid(sk->sk_peer_pid);
1814 
1815 	if (likely(sk->sk_net_refcnt))
1816 		put_net(sock_net(sk));
1817 	sk_prot_free(sk->sk_prot_creator, sk);
1818 }
1819 
sk_destruct(struct sock * sk)1820 void sk_destruct(struct sock *sk)
1821 {
1822 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1823 
1824 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1825 		reuseport_detach_sock(sk);
1826 		use_call_rcu = true;
1827 	}
1828 
1829 	if (use_call_rcu)
1830 		call_rcu(&sk->sk_rcu, __sk_destruct);
1831 	else
1832 		__sk_destruct(&sk->sk_rcu);
1833 }
1834 
__sk_free(struct sock * sk)1835 static void __sk_free(struct sock *sk)
1836 {
1837 	if (likely(sk->sk_net_refcnt))
1838 		sock_inuse_add(sock_net(sk), -1);
1839 
1840 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1841 		sock_diag_broadcast_destroy(sk);
1842 	else
1843 		sk_destruct(sk);
1844 }
1845 
sk_free(struct sock * sk)1846 void sk_free(struct sock *sk)
1847 {
1848 	/*
1849 	 * We subtract one from sk_wmem_alloc and can know if
1850 	 * some packets are still in some tx queue.
1851 	 * If not null, sock_wfree() will call __sk_free(sk) later
1852 	 */
1853 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1854 		__sk_free(sk);
1855 }
1856 EXPORT_SYMBOL(sk_free);
1857 
sk_init_common(struct sock * sk)1858 static void sk_init_common(struct sock *sk)
1859 {
1860 	skb_queue_head_init(&sk->sk_receive_queue);
1861 	skb_queue_head_init(&sk->sk_write_queue);
1862 	skb_queue_head_init(&sk->sk_error_queue);
1863 
1864 	rwlock_init(&sk->sk_callback_lock);
1865 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1866 			af_rlock_keys + sk->sk_family,
1867 			af_family_rlock_key_strings[sk->sk_family]);
1868 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1869 			af_wlock_keys + sk->sk_family,
1870 			af_family_wlock_key_strings[sk->sk_family]);
1871 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1872 			af_elock_keys + sk->sk_family,
1873 			af_family_elock_key_strings[sk->sk_family]);
1874 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1875 			af_callback_keys + sk->sk_family,
1876 			af_family_clock_key_strings[sk->sk_family]);
1877 }
1878 
1879 /**
1880  *	sk_clone_lock - clone a socket, and lock its clone
1881  *	@sk: the socket to clone
1882  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1883  *
1884  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1885  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1886 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1887 {
1888 	struct proto *prot = READ_ONCE(sk->sk_prot);
1889 	struct sk_filter *filter;
1890 	bool is_charged = true;
1891 	struct sock *newsk;
1892 
1893 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1894 	if (!newsk)
1895 		goto out;
1896 
1897 	sock_copy(newsk, sk);
1898 
1899 	newsk->sk_prot_creator = prot;
1900 
1901 	/* SANITY */
1902 	if (likely(newsk->sk_net_refcnt)) {
1903 		get_net(sock_net(newsk));
1904 		sock_inuse_add(sock_net(newsk), 1);
1905 	}
1906 	sk_node_init(&newsk->sk_node);
1907 	sock_lock_init(newsk);
1908 	bh_lock_sock(newsk);
1909 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1910 	newsk->sk_backlog.len = 0;
1911 
1912 	atomic_set(&newsk->sk_rmem_alloc, 0);
1913 
1914 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1915 	refcount_set(&newsk->sk_wmem_alloc, 1);
1916 
1917 	atomic_set(&newsk->sk_omem_alloc, 0);
1918 	sk_init_common(newsk);
1919 
1920 	newsk->sk_dst_cache	= NULL;
1921 	newsk->sk_dst_pending_confirm = 0;
1922 	newsk->sk_wmem_queued	= 0;
1923 	newsk->sk_forward_alloc = 0;
1924 	atomic_set(&newsk->sk_drops, 0);
1925 	newsk->sk_send_head	= NULL;
1926 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1927 	atomic_set(&newsk->sk_zckey, 0);
1928 
1929 	sock_reset_flag(newsk, SOCK_DONE);
1930 
1931 	/* sk->sk_memcg will be populated at accept() time */
1932 	newsk->sk_memcg = NULL;
1933 
1934 	cgroup_sk_clone(&newsk->sk_cgrp_data);
1935 
1936 	rcu_read_lock();
1937 	filter = rcu_dereference(sk->sk_filter);
1938 	if (filter != NULL)
1939 		/* though it's an empty new sock, the charging may fail
1940 		 * if sysctl_optmem_max was changed between creation of
1941 		 * original socket and cloning
1942 		 */
1943 		is_charged = sk_filter_charge(newsk, filter);
1944 	RCU_INIT_POINTER(newsk->sk_filter, filter);
1945 	rcu_read_unlock();
1946 
1947 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1948 		/* We need to make sure that we don't uncharge the new
1949 		 * socket if we couldn't charge it in the first place
1950 		 * as otherwise we uncharge the parent's filter.
1951 		 */
1952 		if (!is_charged)
1953 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
1954 		sk_free_unlock_clone(newsk);
1955 		newsk = NULL;
1956 		goto out;
1957 	}
1958 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1959 
1960 	if (bpf_sk_storage_clone(sk, newsk)) {
1961 		sk_free_unlock_clone(newsk);
1962 		newsk = NULL;
1963 		goto out;
1964 	}
1965 
1966 	/* Clear sk_user_data if parent had the pointer tagged
1967 	 * as not suitable for copying when cloning.
1968 	 */
1969 	if (sk_user_data_is_nocopy(newsk))
1970 		newsk->sk_user_data = NULL;
1971 
1972 	newsk->sk_err	   = 0;
1973 	newsk->sk_err_soft = 0;
1974 	newsk->sk_priority = 0;
1975 	newsk->sk_incoming_cpu = raw_smp_processor_id();
1976 
1977 	/* Before updating sk_refcnt, we must commit prior changes to memory
1978 	 * (Documentation/RCU/rculist_nulls.rst for details)
1979 	 */
1980 	smp_wmb();
1981 	refcount_set(&newsk->sk_refcnt, 2);
1982 
1983 	/* Increment the counter in the same struct proto as the master
1984 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1985 	 * is the same as sk->sk_prot->socks, as this field was copied
1986 	 * with memcpy).
1987 	 *
1988 	 * This _changes_ the previous behaviour, where
1989 	 * tcp_create_openreq_child always was incrementing the
1990 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1991 	 * to be taken into account in all callers. -acme
1992 	 */
1993 	sk_refcnt_debug_inc(newsk);
1994 	sk_set_socket(newsk, NULL);
1995 	sk_tx_queue_clear(newsk);
1996 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
1997 
1998 	if (newsk->sk_prot->sockets_allocated)
1999 		sk_sockets_allocated_inc(newsk);
2000 
2001 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2002 		net_enable_timestamp();
2003 out:
2004 	return newsk;
2005 }
2006 EXPORT_SYMBOL_GPL(sk_clone_lock);
2007 
sk_free_unlock_clone(struct sock * sk)2008 void sk_free_unlock_clone(struct sock *sk)
2009 {
2010 	/* It is still raw copy of parent, so invalidate
2011 	 * destructor and make plain sk_free() */
2012 	sk->sk_destruct = NULL;
2013 	bh_unlock_sock(sk);
2014 	sk_free(sk);
2015 }
2016 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2017 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2018 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2019 {
2020 	u32 max_segs = 1;
2021 
2022 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2023 	if (sk->sk_route_caps & NETIF_F_GSO)
2024 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2025 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2026 	if (sk_can_gso(sk)) {
2027 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2028 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2029 		} else {
2030 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2031 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2032 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2033 		}
2034 	}
2035 	sk->sk_gso_max_segs = max_segs;
2036 	sk_dst_set(sk, dst);
2037 }
2038 EXPORT_SYMBOL_GPL(sk_setup_caps);
2039 
2040 /*
2041  *	Simple resource managers for sockets.
2042  */
2043 
2044 
2045 /*
2046  * Write buffer destructor automatically called from kfree_skb.
2047  */
sock_wfree(struct sk_buff * skb)2048 void sock_wfree(struct sk_buff *skb)
2049 {
2050 	struct sock *sk = skb->sk;
2051 	unsigned int len = skb->truesize;
2052 
2053 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2054 		/*
2055 		 * Keep a reference on sk_wmem_alloc, this will be released
2056 		 * after sk_write_space() call
2057 		 */
2058 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2059 		sk->sk_write_space(sk);
2060 		len = 1;
2061 	}
2062 	/*
2063 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2064 	 * could not do because of in-flight packets
2065 	 */
2066 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2067 		__sk_free(sk);
2068 }
2069 EXPORT_SYMBOL(sock_wfree);
2070 
2071 /* This variant of sock_wfree() is used by TCP,
2072  * since it sets SOCK_USE_WRITE_QUEUE.
2073  */
__sock_wfree(struct sk_buff * skb)2074 void __sock_wfree(struct sk_buff *skb)
2075 {
2076 	struct sock *sk = skb->sk;
2077 
2078 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2079 		__sk_free(sk);
2080 }
2081 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2082 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2083 {
2084 	skb_orphan(skb);
2085 	skb->sk = sk;
2086 #ifdef CONFIG_INET
2087 	if (unlikely(!sk_fullsock(sk))) {
2088 		skb->destructor = sock_edemux;
2089 		sock_hold(sk);
2090 		return;
2091 	}
2092 #endif
2093 	skb->destructor = sock_wfree;
2094 	skb_set_hash_from_sk(skb, sk);
2095 	/*
2096 	 * We used to take a refcount on sk, but following operation
2097 	 * is enough to guarantee sk_free() wont free this sock until
2098 	 * all in-flight packets are completed
2099 	 */
2100 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2101 }
2102 EXPORT_SYMBOL(skb_set_owner_w);
2103 
can_skb_orphan_partial(const struct sk_buff * skb)2104 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2105 {
2106 #ifdef CONFIG_TLS_DEVICE
2107 	/* Drivers depend on in-order delivery for crypto offload,
2108 	 * partial orphan breaks out-of-order-OK logic.
2109 	 */
2110 	if (skb->decrypted)
2111 		return false;
2112 #endif
2113 	return (skb->destructor == sock_wfree ||
2114 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2115 }
2116 
2117 /* This helper is used by netem, as it can hold packets in its
2118  * delay queue. We want to allow the owner socket to send more
2119  * packets, as if they were already TX completed by a typical driver.
2120  * But we also want to keep skb->sk set because some packet schedulers
2121  * rely on it (sch_fq for example).
2122  */
skb_orphan_partial(struct sk_buff * skb)2123 void skb_orphan_partial(struct sk_buff *skb)
2124 {
2125 	if (skb_is_tcp_pure_ack(skb))
2126 		return;
2127 
2128 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2129 		return;
2130 
2131 	skb_orphan(skb);
2132 }
2133 EXPORT_SYMBOL(skb_orphan_partial);
2134 
2135 /*
2136  * Read buffer destructor automatically called from kfree_skb.
2137  */
sock_rfree(struct sk_buff * skb)2138 void sock_rfree(struct sk_buff *skb)
2139 {
2140 	struct sock *sk = skb->sk;
2141 	unsigned int len = skb->truesize;
2142 
2143 	atomic_sub(len, &sk->sk_rmem_alloc);
2144 	sk_mem_uncharge(sk, len);
2145 }
2146 EXPORT_SYMBOL(sock_rfree);
2147 
2148 /*
2149  * Buffer destructor for skbs that are not used directly in read or write
2150  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2151  */
sock_efree(struct sk_buff * skb)2152 void sock_efree(struct sk_buff *skb)
2153 {
2154 	sock_put(skb->sk);
2155 }
2156 EXPORT_SYMBOL(sock_efree);
2157 
2158 /* Buffer destructor for prefetch/receive path where reference count may
2159  * not be held, e.g. for listen sockets.
2160  */
2161 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2162 void sock_pfree(struct sk_buff *skb)
2163 {
2164 	if (sk_is_refcounted(skb->sk))
2165 		sock_gen_put(skb->sk);
2166 }
2167 EXPORT_SYMBOL(sock_pfree);
2168 #endif /* CONFIG_INET */
2169 
sock_i_uid(struct sock * sk)2170 kuid_t sock_i_uid(struct sock *sk)
2171 {
2172 	kuid_t uid;
2173 
2174 	read_lock_bh(&sk->sk_callback_lock);
2175 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2176 	read_unlock_bh(&sk->sk_callback_lock);
2177 	return uid;
2178 }
2179 EXPORT_SYMBOL(sock_i_uid);
2180 
__sock_i_ino(struct sock * sk)2181 unsigned long __sock_i_ino(struct sock *sk)
2182 {
2183 	unsigned long ino;
2184 
2185 	read_lock(&sk->sk_callback_lock);
2186 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2187 	read_unlock(&sk->sk_callback_lock);
2188 	return ino;
2189 }
2190 EXPORT_SYMBOL(__sock_i_ino);
2191 
sock_i_ino(struct sock * sk)2192 unsigned long sock_i_ino(struct sock *sk)
2193 {
2194 	unsigned long ino;
2195 
2196 	local_bh_disable();
2197 	ino = __sock_i_ino(sk);
2198 	local_bh_enable();
2199 	return ino;
2200 }
2201 EXPORT_SYMBOL(sock_i_ino);
2202 
2203 /*
2204  * Allocate a skb from the socket's send buffer.
2205  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2206 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2207 			     gfp_t priority)
2208 {
2209 	if (force ||
2210 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2211 		struct sk_buff *skb = alloc_skb(size, priority);
2212 
2213 		if (skb) {
2214 			skb_set_owner_w(skb, sk);
2215 			return skb;
2216 		}
2217 	}
2218 	return NULL;
2219 }
2220 EXPORT_SYMBOL(sock_wmalloc);
2221 
sock_ofree(struct sk_buff * skb)2222 static void sock_ofree(struct sk_buff *skb)
2223 {
2224 	struct sock *sk = skb->sk;
2225 
2226 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2227 }
2228 
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2229 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2230 			     gfp_t priority)
2231 {
2232 	struct sk_buff *skb;
2233 
2234 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2235 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2236 	    READ_ONCE(sysctl_optmem_max))
2237 		return NULL;
2238 
2239 	skb = alloc_skb(size, priority);
2240 	if (!skb)
2241 		return NULL;
2242 
2243 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2244 	skb->sk = sk;
2245 	skb->destructor = sock_ofree;
2246 	return skb;
2247 }
2248 
2249 /*
2250  * Allocate a memory block from the socket's option memory buffer.
2251  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2252 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2253 {
2254 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2255 
2256 	if ((unsigned int)size <= optmem_max &&
2257 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2258 		void *mem;
2259 		/* First do the add, to avoid the race if kmalloc
2260 		 * might sleep.
2261 		 */
2262 		atomic_add(size, &sk->sk_omem_alloc);
2263 		mem = kmalloc(size, priority);
2264 		if (mem)
2265 			return mem;
2266 		atomic_sub(size, &sk->sk_omem_alloc);
2267 	}
2268 	return NULL;
2269 }
2270 EXPORT_SYMBOL(sock_kmalloc);
2271 
2272 /* Free an option memory block. Note, we actually want the inline
2273  * here as this allows gcc to detect the nullify and fold away the
2274  * condition entirely.
2275  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2276 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2277 				  const bool nullify)
2278 {
2279 	if (WARN_ON_ONCE(!mem))
2280 		return;
2281 	if (nullify)
2282 		kfree_sensitive(mem);
2283 	else
2284 		kfree(mem);
2285 	atomic_sub(size, &sk->sk_omem_alloc);
2286 }
2287 
sock_kfree_s(struct sock * sk,void * mem,int size)2288 void sock_kfree_s(struct sock *sk, void *mem, int size)
2289 {
2290 	__sock_kfree_s(sk, mem, size, false);
2291 }
2292 EXPORT_SYMBOL(sock_kfree_s);
2293 
sock_kzfree_s(struct sock * sk,void * mem,int size)2294 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2295 {
2296 	__sock_kfree_s(sk, mem, size, true);
2297 }
2298 EXPORT_SYMBOL(sock_kzfree_s);
2299 
2300 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2301    I think, these locks should be removed for datagram sockets.
2302  */
sock_wait_for_wmem(struct sock * sk,long timeo)2303 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2304 {
2305 	DEFINE_WAIT(wait);
2306 
2307 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2308 	for (;;) {
2309 		if (!timeo)
2310 			break;
2311 		if (signal_pending(current))
2312 			break;
2313 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2314 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2315 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2316 			break;
2317 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2318 			break;
2319 		if (sk->sk_err)
2320 			break;
2321 		timeo = schedule_timeout(timeo);
2322 	}
2323 	finish_wait(sk_sleep(sk), &wait);
2324 	return timeo;
2325 }
2326 
2327 
2328 /*
2329  *	Generic send/receive buffer handlers
2330  */
2331 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2332 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2333 				     unsigned long data_len, int noblock,
2334 				     int *errcode, int max_page_order)
2335 {
2336 	struct sk_buff *skb;
2337 	long timeo;
2338 	int err;
2339 
2340 	timeo = sock_sndtimeo(sk, noblock);
2341 	for (;;) {
2342 		err = sock_error(sk);
2343 		if (err != 0)
2344 			goto failure;
2345 
2346 		err = -EPIPE;
2347 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2348 			goto failure;
2349 
2350 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2351 			break;
2352 
2353 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2354 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2355 		err = -EAGAIN;
2356 		if (!timeo)
2357 			goto failure;
2358 		if (signal_pending(current))
2359 			goto interrupted;
2360 		timeo = sock_wait_for_wmem(sk, timeo);
2361 	}
2362 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2363 				   errcode, sk->sk_allocation);
2364 	if (skb)
2365 		skb_set_owner_w(skb, sk);
2366 	return skb;
2367 
2368 interrupted:
2369 	err = sock_intr_errno(timeo);
2370 failure:
2371 	*errcode = err;
2372 	return NULL;
2373 }
2374 EXPORT_SYMBOL(sock_alloc_send_pskb);
2375 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2376 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2377 				    int noblock, int *errcode)
2378 {
2379 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2380 }
2381 EXPORT_SYMBOL(sock_alloc_send_skb);
2382 
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2383 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2384 		     struct sockcm_cookie *sockc)
2385 {
2386 	u32 tsflags;
2387 
2388 	switch (cmsg->cmsg_type) {
2389 	case SO_MARK:
2390 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2391 			return -EPERM;
2392 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2393 			return -EINVAL;
2394 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2395 		break;
2396 	case SO_TIMESTAMPING_OLD:
2397 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2398 			return -EINVAL;
2399 
2400 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2401 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2402 			return -EINVAL;
2403 
2404 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2405 		sockc->tsflags |= tsflags;
2406 		break;
2407 	case SCM_TXTIME:
2408 		if (!sock_flag(sk, SOCK_TXTIME))
2409 			return -EINVAL;
2410 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2411 			return -EINVAL;
2412 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2413 		break;
2414 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2415 	case SCM_RIGHTS:
2416 	case SCM_CREDENTIALS:
2417 		break;
2418 	default:
2419 		return -EINVAL;
2420 	}
2421 	return 0;
2422 }
2423 EXPORT_SYMBOL(__sock_cmsg_send);
2424 
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2425 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2426 		   struct sockcm_cookie *sockc)
2427 {
2428 	struct cmsghdr *cmsg;
2429 	int ret;
2430 
2431 	for_each_cmsghdr(cmsg, msg) {
2432 		if (!CMSG_OK(msg, cmsg))
2433 			return -EINVAL;
2434 		if (cmsg->cmsg_level != SOL_SOCKET)
2435 			continue;
2436 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2437 		if (ret)
2438 			return ret;
2439 	}
2440 	return 0;
2441 }
2442 EXPORT_SYMBOL(sock_cmsg_send);
2443 
sk_enter_memory_pressure(struct sock * sk)2444 static void sk_enter_memory_pressure(struct sock *sk)
2445 {
2446 	if (!sk->sk_prot->enter_memory_pressure)
2447 		return;
2448 
2449 	sk->sk_prot->enter_memory_pressure(sk);
2450 }
2451 
sk_leave_memory_pressure(struct sock * sk)2452 static void sk_leave_memory_pressure(struct sock *sk)
2453 {
2454 	if (sk->sk_prot->leave_memory_pressure) {
2455 		sk->sk_prot->leave_memory_pressure(sk);
2456 	} else {
2457 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2458 
2459 		if (memory_pressure && READ_ONCE(*memory_pressure))
2460 			WRITE_ONCE(*memory_pressure, 0);
2461 	}
2462 }
2463 
2464 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2465 
2466 /**
2467  * skb_page_frag_refill - check that a page_frag contains enough room
2468  * @sz: minimum size of the fragment we want to get
2469  * @pfrag: pointer to page_frag
2470  * @gfp: priority for memory allocation
2471  *
2472  * Note: While this allocator tries to use high order pages, there is
2473  * no guarantee that allocations succeed. Therefore, @sz MUST be
2474  * less or equal than PAGE_SIZE.
2475  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2476 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2477 {
2478 	if (pfrag->page) {
2479 		if (page_ref_count(pfrag->page) == 1) {
2480 			pfrag->offset = 0;
2481 			return true;
2482 		}
2483 		if (pfrag->offset + sz <= pfrag->size)
2484 			return true;
2485 		put_page(pfrag->page);
2486 	}
2487 
2488 	pfrag->offset = 0;
2489 	if (SKB_FRAG_PAGE_ORDER &&
2490 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2491 		/* Avoid direct reclaim but allow kswapd to wake */
2492 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2493 					  __GFP_COMP | __GFP_NOWARN |
2494 					  __GFP_NORETRY,
2495 					  SKB_FRAG_PAGE_ORDER);
2496 		if (likely(pfrag->page)) {
2497 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2498 			return true;
2499 		}
2500 	}
2501 	pfrag->page = alloc_page(gfp);
2502 	if (likely(pfrag->page)) {
2503 		pfrag->size = PAGE_SIZE;
2504 		return true;
2505 	}
2506 	return false;
2507 }
2508 EXPORT_SYMBOL(skb_page_frag_refill);
2509 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2510 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2511 {
2512 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2513 		return true;
2514 
2515 	sk_enter_memory_pressure(sk);
2516 	sk_stream_moderate_sndbuf(sk);
2517 	return false;
2518 }
2519 EXPORT_SYMBOL(sk_page_frag_refill);
2520 
__lock_sock(struct sock * sk)2521 static void __lock_sock(struct sock *sk)
2522 	__releases(&sk->sk_lock.slock)
2523 	__acquires(&sk->sk_lock.slock)
2524 {
2525 	DEFINE_WAIT(wait);
2526 
2527 	for (;;) {
2528 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2529 					TASK_UNINTERRUPTIBLE);
2530 		spin_unlock_bh(&sk->sk_lock.slock);
2531 		schedule();
2532 		spin_lock_bh(&sk->sk_lock.slock);
2533 		if (!sock_owned_by_user(sk))
2534 			break;
2535 	}
2536 	finish_wait(&sk->sk_lock.wq, &wait);
2537 }
2538 
__release_sock(struct sock * sk)2539 void __release_sock(struct sock *sk)
2540 	__releases(&sk->sk_lock.slock)
2541 	__acquires(&sk->sk_lock.slock)
2542 {
2543 	struct sk_buff *skb, *next;
2544 
2545 	while ((skb = sk->sk_backlog.head) != NULL) {
2546 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2547 
2548 		spin_unlock_bh(&sk->sk_lock.slock);
2549 
2550 		do {
2551 			next = skb->next;
2552 			prefetch(next);
2553 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2554 			skb_mark_not_on_list(skb);
2555 			sk_backlog_rcv(sk, skb);
2556 
2557 			cond_resched();
2558 
2559 			skb = next;
2560 		} while (skb != NULL);
2561 
2562 		spin_lock_bh(&sk->sk_lock.slock);
2563 	}
2564 
2565 	/*
2566 	 * Doing the zeroing here guarantee we can not loop forever
2567 	 * while a wild producer attempts to flood us.
2568 	 */
2569 	sk->sk_backlog.len = 0;
2570 }
2571 
__sk_flush_backlog(struct sock * sk)2572 void __sk_flush_backlog(struct sock *sk)
2573 {
2574 	spin_lock_bh(&sk->sk_lock.slock);
2575 	__release_sock(sk);
2576 	spin_unlock_bh(&sk->sk_lock.slock);
2577 }
2578 
2579 /**
2580  * sk_wait_data - wait for data to arrive at sk_receive_queue
2581  * @sk:    sock to wait on
2582  * @timeo: for how long
2583  * @skb:   last skb seen on sk_receive_queue
2584  *
2585  * Now socket state including sk->sk_err is changed only under lock,
2586  * hence we may omit checks after joining wait queue.
2587  * We check receive queue before schedule() only as optimization;
2588  * it is very likely that release_sock() added new data.
2589  */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2590 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2591 {
2592 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2593 	int rc;
2594 
2595 	add_wait_queue(sk_sleep(sk), &wait);
2596 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2597 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2598 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2599 	remove_wait_queue(sk_sleep(sk), &wait);
2600 	return rc;
2601 }
2602 EXPORT_SYMBOL(sk_wait_data);
2603 
2604 /**
2605  *	__sk_mem_raise_allocated - increase memory_allocated
2606  *	@sk: socket
2607  *	@size: memory size to allocate
2608  *	@amt: pages to allocate
2609  *	@kind: allocation type
2610  *
2611  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2612  */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2613 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2614 {
2615 	struct proto *prot = sk->sk_prot;
2616 	long allocated = sk_memory_allocated_add(sk, amt);
2617 	bool charged = true;
2618 
2619 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2620 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2621 		goto suppress_allocation;
2622 
2623 	/* Under limit. */
2624 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2625 		sk_leave_memory_pressure(sk);
2626 		return 1;
2627 	}
2628 
2629 	/* Under pressure. */
2630 	if (allocated > sk_prot_mem_limits(sk, 1))
2631 		sk_enter_memory_pressure(sk);
2632 
2633 	/* Over hard limit. */
2634 	if (allocated > sk_prot_mem_limits(sk, 2))
2635 		goto suppress_allocation;
2636 
2637 	/* guarantee minimum buffer size under pressure */
2638 	if (kind == SK_MEM_RECV) {
2639 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2640 			return 1;
2641 
2642 	} else { /* SK_MEM_SEND */
2643 		int wmem0 = sk_get_wmem0(sk, prot);
2644 
2645 		if (sk->sk_type == SOCK_STREAM) {
2646 			if (sk->sk_wmem_queued < wmem0)
2647 				return 1;
2648 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2649 				return 1;
2650 		}
2651 	}
2652 
2653 	if (sk_has_memory_pressure(sk)) {
2654 		u64 alloc;
2655 
2656 		if (!sk_under_memory_pressure(sk))
2657 			return 1;
2658 		alloc = sk_sockets_allocated_read_positive(sk);
2659 		if (sk_prot_mem_limits(sk, 2) > alloc *
2660 		    sk_mem_pages(sk->sk_wmem_queued +
2661 				 atomic_read(&sk->sk_rmem_alloc) +
2662 				 sk->sk_forward_alloc))
2663 			return 1;
2664 	}
2665 
2666 suppress_allocation:
2667 
2668 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2669 		sk_stream_moderate_sndbuf(sk);
2670 
2671 		/* Fail only if socket is _under_ its sndbuf.
2672 		 * In this case we cannot block, so that we have to fail.
2673 		 */
2674 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2675 			return 1;
2676 	}
2677 
2678 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2679 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2680 
2681 	sk_memory_allocated_sub(sk, amt);
2682 
2683 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2684 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2685 
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2689 
2690 /**
2691  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2692  *	@sk: socket
2693  *	@size: memory size to allocate
2694  *	@kind: allocation type
2695  *
2696  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2697  *	rmem allocation. This function assumes that protocols which have
2698  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2699  */
__sk_mem_schedule(struct sock * sk,int size,int kind)2700 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2701 {
2702 	int ret, amt = sk_mem_pages(size);
2703 
2704 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2705 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2706 	if (!ret)
2707 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2708 	return ret;
2709 }
2710 EXPORT_SYMBOL(__sk_mem_schedule);
2711 
2712 /**
2713  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2714  *	@sk: socket
2715  *	@amount: number of quanta
2716  *
2717  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2718  */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2719 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2720 {
2721 	sk_memory_allocated_sub(sk, amount);
2722 
2723 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2724 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2725 
2726 	if (sk_under_global_memory_pressure(sk) &&
2727 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2728 		sk_leave_memory_pressure(sk);
2729 }
2730 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2731 
2732 /**
2733  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2734  *	@sk: socket
2735  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2736  */
__sk_mem_reclaim(struct sock * sk,int amount)2737 void __sk_mem_reclaim(struct sock *sk, int amount)
2738 {
2739 	amount >>= SK_MEM_QUANTUM_SHIFT;
2740 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2741 	__sk_mem_reduce_allocated(sk, amount);
2742 }
2743 EXPORT_SYMBOL(__sk_mem_reclaim);
2744 
sk_set_peek_off(struct sock * sk,int val)2745 int sk_set_peek_off(struct sock *sk, int val)
2746 {
2747 	WRITE_ONCE(sk->sk_peek_off, val);
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2751 
2752 /*
2753  * Set of default routines for initialising struct proto_ops when
2754  * the protocol does not support a particular function. In certain
2755  * cases where it makes no sense for a protocol to have a "do nothing"
2756  * function, some default processing is provided.
2757  */
2758 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2759 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2760 {
2761 	return -EOPNOTSUPP;
2762 }
2763 EXPORT_SYMBOL(sock_no_bind);
2764 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2765 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2766 		    int len, int flags)
2767 {
2768 	return -EOPNOTSUPP;
2769 }
2770 EXPORT_SYMBOL(sock_no_connect);
2771 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2772 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2773 {
2774 	return -EOPNOTSUPP;
2775 }
2776 EXPORT_SYMBOL(sock_no_socketpair);
2777 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2778 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2779 		   bool kern)
2780 {
2781 	return -EOPNOTSUPP;
2782 }
2783 EXPORT_SYMBOL(sock_no_accept);
2784 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2785 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2786 		    int peer)
2787 {
2788 	return -EOPNOTSUPP;
2789 }
2790 EXPORT_SYMBOL(sock_no_getname);
2791 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2792 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2793 {
2794 	return -EOPNOTSUPP;
2795 }
2796 EXPORT_SYMBOL(sock_no_ioctl);
2797 
sock_no_listen(struct socket * sock,int backlog)2798 int sock_no_listen(struct socket *sock, int backlog)
2799 {
2800 	return -EOPNOTSUPP;
2801 }
2802 EXPORT_SYMBOL(sock_no_listen);
2803 
sock_no_shutdown(struct socket * sock,int how)2804 int sock_no_shutdown(struct socket *sock, int how)
2805 {
2806 	return -EOPNOTSUPP;
2807 }
2808 EXPORT_SYMBOL(sock_no_shutdown);
2809 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2810 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2811 {
2812 	return -EOPNOTSUPP;
2813 }
2814 EXPORT_SYMBOL(sock_no_sendmsg);
2815 
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2816 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2817 {
2818 	return -EOPNOTSUPP;
2819 }
2820 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2821 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2822 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2823 		    int flags)
2824 {
2825 	return -EOPNOTSUPP;
2826 }
2827 EXPORT_SYMBOL(sock_no_recvmsg);
2828 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2829 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2830 {
2831 	/* Mirror missing mmap method error code */
2832 	return -ENODEV;
2833 }
2834 EXPORT_SYMBOL(sock_no_mmap);
2835 
2836 /*
2837  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2838  * various sock-based usage counts.
2839  */
__receive_sock(struct file * file)2840 void __receive_sock(struct file *file)
2841 {
2842 	struct socket *sock;
2843 	int error;
2844 
2845 	/*
2846 	 * The resulting value of "error" is ignored here since we only
2847 	 * need to take action when the file is a socket and testing
2848 	 * "sock" for NULL is sufficient.
2849 	 */
2850 	sock = sock_from_file(file, &error);
2851 	if (sock) {
2852 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2853 		sock_update_classid(&sock->sk->sk_cgrp_data);
2854 	}
2855 }
2856 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2857 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2858 {
2859 	ssize_t res;
2860 	struct msghdr msg = {.msg_flags = flags};
2861 	struct kvec iov;
2862 	char *kaddr = kmap(page);
2863 	iov.iov_base = kaddr + offset;
2864 	iov.iov_len = size;
2865 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2866 	kunmap(page);
2867 	return res;
2868 }
2869 EXPORT_SYMBOL(sock_no_sendpage);
2870 
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2871 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2872 				int offset, size_t size, int flags)
2873 {
2874 	ssize_t res;
2875 	struct msghdr msg = {.msg_flags = flags};
2876 	struct kvec iov;
2877 	char *kaddr = kmap(page);
2878 
2879 	iov.iov_base = kaddr + offset;
2880 	iov.iov_len = size;
2881 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2882 	kunmap(page);
2883 	return res;
2884 }
2885 EXPORT_SYMBOL(sock_no_sendpage_locked);
2886 
2887 /*
2888  *	Default Socket Callbacks
2889  */
2890 
sock_def_wakeup(struct sock * sk)2891 static void sock_def_wakeup(struct sock *sk)
2892 {
2893 	struct socket_wq *wq;
2894 
2895 	rcu_read_lock();
2896 	wq = rcu_dereference(sk->sk_wq);
2897 	if (skwq_has_sleeper(wq))
2898 		wake_up_interruptible_all(&wq->wait);
2899 	rcu_read_unlock();
2900 }
2901 
sock_def_error_report(struct sock * sk)2902 static void sock_def_error_report(struct sock *sk)
2903 {
2904 	struct socket_wq *wq;
2905 
2906 	rcu_read_lock();
2907 	wq = rcu_dereference(sk->sk_wq);
2908 	if (skwq_has_sleeper(wq))
2909 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2910 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2911 	rcu_read_unlock();
2912 }
2913 
sock_def_readable(struct sock * sk)2914 void sock_def_readable(struct sock *sk)
2915 {
2916 	struct socket_wq *wq;
2917 
2918 	rcu_read_lock();
2919 	wq = rcu_dereference(sk->sk_wq);
2920 	if (skwq_has_sleeper(wq))
2921 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2922 						EPOLLRDNORM | EPOLLRDBAND);
2923 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2924 	rcu_read_unlock();
2925 }
2926 
sock_def_write_space(struct sock * sk)2927 static void sock_def_write_space(struct sock *sk)
2928 {
2929 	struct socket_wq *wq;
2930 
2931 	rcu_read_lock();
2932 
2933 	/* Do not wake up a writer until he can make "significant"
2934 	 * progress.  --DaveM
2935 	 */
2936 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2937 		wq = rcu_dereference(sk->sk_wq);
2938 		if (skwq_has_sleeper(wq))
2939 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2940 						EPOLLWRNORM | EPOLLWRBAND);
2941 
2942 		/* Should agree with poll, otherwise some programs break */
2943 		if (sock_writeable(sk))
2944 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2945 	}
2946 
2947 	rcu_read_unlock();
2948 }
2949 
sock_def_destruct(struct sock * sk)2950 static void sock_def_destruct(struct sock *sk)
2951 {
2952 }
2953 
sk_send_sigurg(struct sock * sk)2954 void sk_send_sigurg(struct sock *sk)
2955 {
2956 	if (sk->sk_socket && sk->sk_socket->file)
2957 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2958 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2959 }
2960 EXPORT_SYMBOL(sk_send_sigurg);
2961 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2962 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2963 		    unsigned long expires)
2964 {
2965 	if (!mod_timer(timer, expires))
2966 		sock_hold(sk);
2967 }
2968 EXPORT_SYMBOL(sk_reset_timer);
2969 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2970 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2971 {
2972 	if (del_timer(timer))
2973 		__sock_put(sk);
2974 }
2975 EXPORT_SYMBOL(sk_stop_timer);
2976 
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2977 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2978 {
2979 	if (del_timer_sync(timer))
2980 		__sock_put(sk);
2981 }
2982 EXPORT_SYMBOL(sk_stop_timer_sync);
2983 
sock_init_data_uid(struct socket * sock,struct sock * sk,kuid_t uid)2984 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
2985 {
2986 	sk_init_common(sk);
2987 	sk->sk_send_head	=	NULL;
2988 
2989 	timer_setup(&sk->sk_timer, NULL, 0);
2990 
2991 	sk->sk_allocation	=	GFP_KERNEL;
2992 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
2993 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
2994 	sk->sk_state		=	TCP_CLOSE;
2995 	sk_set_socket(sk, sock);
2996 
2997 	sock_set_flag(sk, SOCK_ZAPPED);
2998 
2999 	if (sock) {
3000 		sk->sk_type	=	sock->type;
3001 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3002 		sock->sk	=	sk;
3003 	} else {
3004 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3005 	}
3006 	sk->sk_uid	=	uid;
3007 
3008 	rwlock_init(&sk->sk_callback_lock);
3009 	if (sk->sk_kern_sock)
3010 		lockdep_set_class_and_name(
3011 			&sk->sk_callback_lock,
3012 			af_kern_callback_keys + sk->sk_family,
3013 			af_family_kern_clock_key_strings[sk->sk_family]);
3014 	else
3015 		lockdep_set_class_and_name(
3016 			&sk->sk_callback_lock,
3017 			af_callback_keys + sk->sk_family,
3018 			af_family_clock_key_strings[sk->sk_family]);
3019 
3020 	sk->sk_state_change	=	sock_def_wakeup;
3021 	sk->sk_data_ready	=	sock_def_readable;
3022 	sk->sk_write_space	=	sock_def_write_space;
3023 	sk->sk_error_report	=	sock_def_error_report;
3024 	sk->sk_destruct		=	sock_def_destruct;
3025 
3026 	sk->sk_frag.page	=	NULL;
3027 	sk->sk_frag.offset	=	0;
3028 	sk->sk_peek_off		=	-1;
3029 
3030 	sk->sk_peer_pid 	=	NULL;
3031 	sk->sk_peer_cred	=	NULL;
3032 	spin_lock_init(&sk->sk_peer_lock);
3033 
3034 	sk->sk_write_pending	=	0;
3035 	sk->sk_rcvlowat		=	1;
3036 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3037 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3038 
3039 	sk->sk_stamp = SK_DEFAULT_STAMP;
3040 #if BITS_PER_LONG==32
3041 	seqlock_init(&sk->sk_stamp_seq);
3042 #endif
3043 	atomic_set(&sk->sk_zckey, 0);
3044 
3045 #ifdef CONFIG_NET_RX_BUSY_POLL
3046 	sk->sk_napi_id		=	0;
3047 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3048 #endif
3049 
3050 	sk->sk_max_pacing_rate = ~0UL;
3051 	sk->sk_pacing_rate = ~0UL;
3052 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3053 	sk->sk_incoming_cpu = -1;
3054 
3055 	sk_rx_queue_clear(sk);
3056 	/*
3057 	 * Before updating sk_refcnt, we must commit prior changes to memory
3058 	 * (Documentation/RCU/rculist_nulls.rst for details)
3059 	 */
3060 	smp_wmb();
3061 	refcount_set(&sk->sk_refcnt, 1);
3062 	atomic_set(&sk->sk_drops, 0);
3063 }
3064 EXPORT_SYMBOL(sock_init_data_uid);
3065 
sock_init_data(struct socket * sock,struct sock * sk)3066 void sock_init_data(struct socket *sock, struct sock *sk)
3067 {
3068 	kuid_t uid = sock ?
3069 		SOCK_INODE(sock)->i_uid :
3070 		make_kuid(sock_net(sk)->user_ns, 0);
3071 
3072 	sock_init_data_uid(sock, sk, uid);
3073 }
3074 EXPORT_SYMBOL(sock_init_data);
3075 
lock_sock_nested(struct sock * sk,int subclass)3076 void lock_sock_nested(struct sock *sk, int subclass)
3077 {
3078 	might_sleep();
3079 	spin_lock_bh(&sk->sk_lock.slock);
3080 	if (sk->sk_lock.owned)
3081 		__lock_sock(sk);
3082 	sk->sk_lock.owned = 1;
3083 	spin_unlock(&sk->sk_lock.slock);
3084 	/*
3085 	 * The sk_lock has mutex_lock() semantics here:
3086 	 */
3087 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3088 	local_bh_enable();
3089 }
3090 EXPORT_SYMBOL(lock_sock_nested);
3091 
release_sock(struct sock * sk)3092 void release_sock(struct sock *sk)
3093 {
3094 	spin_lock_bh(&sk->sk_lock.slock);
3095 	if (sk->sk_backlog.tail)
3096 		__release_sock(sk);
3097 
3098 	/* Warning : release_cb() might need to release sk ownership,
3099 	 * ie call sock_release_ownership(sk) before us.
3100 	 */
3101 	if (sk->sk_prot->release_cb)
3102 		sk->sk_prot->release_cb(sk);
3103 
3104 	sock_release_ownership(sk);
3105 	if (waitqueue_active(&sk->sk_lock.wq))
3106 		wake_up(&sk->sk_lock.wq);
3107 	spin_unlock_bh(&sk->sk_lock.slock);
3108 }
3109 EXPORT_SYMBOL(release_sock);
3110 
3111 /**
3112  * lock_sock_fast - fast version of lock_sock
3113  * @sk: socket
3114  *
3115  * This version should be used for very small section, where process wont block
3116  * return false if fast path is taken:
3117  *
3118  *   sk_lock.slock locked, owned = 0, BH disabled
3119  *
3120  * return true if slow path is taken:
3121  *
3122  *   sk_lock.slock unlocked, owned = 1, BH enabled
3123  */
lock_sock_fast(struct sock * sk)3124 bool lock_sock_fast(struct sock *sk)
3125 {
3126 	might_sleep();
3127 	spin_lock_bh(&sk->sk_lock.slock);
3128 
3129 	if (!sk->sk_lock.owned)
3130 		/*
3131 		 * Note : We must disable BH
3132 		 */
3133 		return false;
3134 
3135 	__lock_sock(sk);
3136 	sk->sk_lock.owned = 1;
3137 	spin_unlock(&sk->sk_lock.slock);
3138 	/*
3139 	 * The sk_lock has mutex_lock() semantics here:
3140 	 */
3141 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3142 	local_bh_enable();
3143 	return true;
3144 }
3145 EXPORT_SYMBOL(lock_sock_fast);
3146 
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3147 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3148 		   bool timeval, bool time32)
3149 {
3150 	struct sock *sk = sock->sk;
3151 	struct timespec64 ts;
3152 
3153 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3154 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3155 	if (ts.tv_sec == -1)
3156 		return -ENOENT;
3157 	if (ts.tv_sec == 0) {
3158 		ktime_t kt = ktime_get_real();
3159 		sock_write_timestamp(sk, kt);
3160 		ts = ktime_to_timespec64(kt);
3161 	}
3162 
3163 	if (timeval)
3164 		ts.tv_nsec /= 1000;
3165 
3166 #ifdef CONFIG_COMPAT_32BIT_TIME
3167 	if (time32)
3168 		return put_old_timespec32(&ts, userstamp);
3169 #endif
3170 #ifdef CONFIG_SPARC64
3171 	/* beware of padding in sparc64 timeval */
3172 	if (timeval && !in_compat_syscall()) {
3173 		struct __kernel_old_timeval __user tv = {
3174 			.tv_sec = ts.tv_sec,
3175 			.tv_usec = ts.tv_nsec,
3176 		};
3177 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3178 			return -EFAULT;
3179 		return 0;
3180 	}
3181 #endif
3182 	return put_timespec64(&ts, userstamp);
3183 }
3184 EXPORT_SYMBOL(sock_gettstamp);
3185 
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3186 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3187 {
3188 	if (!sock_flag(sk, flag)) {
3189 		unsigned long previous_flags = sk->sk_flags;
3190 
3191 		sock_set_flag(sk, flag);
3192 		/*
3193 		 * we just set one of the two flags which require net
3194 		 * time stamping, but time stamping might have been on
3195 		 * already because of the other one
3196 		 */
3197 		if (sock_needs_netstamp(sk) &&
3198 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3199 			net_enable_timestamp();
3200 	}
3201 }
3202 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3203 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3204 		       int level, int type)
3205 {
3206 	struct sock_exterr_skb *serr;
3207 	struct sk_buff *skb;
3208 	int copied, err;
3209 
3210 	err = -EAGAIN;
3211 	skb = sock_dequeue_err_skb(sk);
3212 	if (skb == NULL)
3213 		goto out;
3214 
3215 	copied = skb->len;
3216 	if (copied > len) {
3217 		msg->msg_flags |= MSG_TRUNC;
3218 		copied = len;
3219 	}
3220 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3221 	if (err)
3222 		goto out_free_skb;
3223 
3224 	sock_recv_timestamp(msg, sk, skb);
3225 
3226 	serr = SKB_EXT_ERR(skb);
3227 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3228 
3229 	msg->msg_flags |= MSG_ERRQUEUE;
3230 	err = copied;
3231 
3232 out_free_skb:
3233 	kfree_skb(skb);
3234 out:
3235 	return err;
3236 }
3237 EXPORT_SYMBOL(sock_recv_errqueue);
3238 
3239 /*
3240  *	Get a socket option on an socket.
3241  *
3242  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3243  *	asynchronous errors should be reported by getsockopt. We assume
3244  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3245  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3246 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3247 			   char __user *optval, int __user *optlen)
3248 {
3249 	struct sock *sk = sock->sk;
3250 
3251 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3252 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3253 }
3254 EXPORT_SYMBOL(sock_common_getsockopt);
3255 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3256 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3257 			int flags)
3258 {
3259 	struct sock *sk = sock->sk;
3260 	int addr_len = 0;
3261 	int err;
3262 
3263 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3264 				   flags & ~MSG_DONTWAIT, &addr_len);
3265 	if (err >= 0)
3266 		msg->msg_namelen = addr_len;
3267 	return err;
3268 }
3269 EXPORT_SYMBOL(sock_common_recvmsg);
3270 
3271 /*
3272  *	Set socket options on an inet socket.
3273  */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3274 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3275 			   sockptr_t optval, unsigned int optlen)
3276 {
3277 	struct sock *sk = sock->sk;
3278 
3279 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3280 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3281 }
3282 EXPORT_SYMBOL(sock_common_setsockopt);
3283 
sk_common_release(struct sock * sk)3284 void sk_common_release(struct sock *sk)
3285 {
3286 	if (sk->sk_prot->destroy)
3287 		sk->sk_prot->destroy(sk);
3288 
3289 	/*
3290 	 * Observation: when sk_common_release is called, processes have
3291 	 * no access to socket. But net still has.
3292 	 * Step one, detach it from networking:
3293 	 *
3294 	 * A. Remove from hash tables.
3295 	 */
3296 
3297 	sk->sk_prot->unhash(sk);
3298 
3299 	/*
3300 	 * In this point socket cannot receive new packets, but it is possible
3301 	 * that some packets are in flight because some CPU runs receiver and
3302 	 * did hash table lookup before we unhashed socket. They will achieve
3303 	 * receive queue and will be purged by socket destructor.
3304 	 *
3305 	 * Also we still have packets pending on receive queue and probably,
3306 	 * our own packets waiting in device queues. sock_destroy will drain
3307 	 * receive queue, but transmitted packets will delay socket destruction
3308 	 * until the last reference will be released.
3309 	 */
3310 
3311 	sock_orphan(sk);
3312 
3313 	xfrm_sk_free_policy(sk);
3314 
3315 	sk_refcnt_debug_release(sk);
3316 
3317 	sock_put(sk);
3318 }
3319 EXPORT_SYMBOL(sk_common_release);
3320 
sk_get_meminfo(const struct sock * sk,u32 * mem)3321 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3322 {
3323 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3324 
3325 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3326 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3327 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3328 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3329 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3330 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3331 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3332 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3333 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3334 }
3335 
3336 #ifdef CONFIG_PROC_FS
3337 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3338 struct prot_inuse {
3339 	int val[PROTO_INUSE_NR];
3340 };
3341 
3342 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3343 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3344 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3345 {
3346 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3347 }
3348 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3349 
sock_prot_inuse_get(struct net * net,struct proto * prot)3350 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3351 {
3352 	int cpu, idx = prot->inuse_idx;
3353 	int res = 0;
3354 
3355 	for_each_possible_cpu(cpu)
3356 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3357 
3358 	return res >= 0 ? res : 0;
3359 }
3360 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3361 
sock_inuse_add(struct net * net,int val)3362 static void sock_inuse_add(struct net *net, int val)
3363 {
3364 	this_cpu_add(*net->core.sock_inuse, val);
3365 }
3366 
sock_inuse_get(struct net * net)3367 int sock_inuse_get(struct net *net)
3368 {
3369 	int cpu, res = 0;
3370 
3371 	for_each_possible_cpu(cpu)
3372 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3373 
3374 	return res;
3375 }
3376 
3377 EXPORT_SYMBOL_GPL(sock_inuse_get);
3378 
sock_inuse_init_net(struct net * net)3379 static int __net_init sock_inuse_init_net(struct net *net)
3380 {
3381 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3382 	if (net->core.prot_inuse == NULL)
3383 		return -ENOMEM;
3384 
3385 	net->core.sock_inuse = alloc_percpu(int);
3386 	if (net->core.sock_inuse == NULL)
3387 		goto out;
3388 
3389 	return 0;
3390 
3391 out:
3392 	free_percpu(net->core.prot_inuse);
3393 	return -ENOMEM;
3394 }
3395 
sock_inuse_exit_net(struct net * net)3396 static void __net_exit sock_inuse_exit_net(struct net *net)
3397 {
3398 	free_percpu(net->core.prot_inuse);
3399 	free_percpu(net->core.sock_inuse);
3400 }
3401 
3402 static struct pernet_operations net_inuse_ops = {
3403 	.init = sock_inuse_init_net,
3404 	.exit = sock_inuse_exit_net,
3405 };
3406 
net_inuse_init(void)3407 static __init int net_inuse_init(void)
3408 {
3409 	if (register_pernet_subsys(&net_inuse_ops))
3410 		panic("Cannot initialize net inuse counters");
3411 
3412 	return 0;
3413 }
3414 
3415 core_initcall(net_inuse_init);
3416 
assign_proto_idx(struct proto * prot)3417 static int assign_proto_idx(struct proto *prot)
3418 {
3419 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3420 
3421 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3422 		pr_err("PROTO_INUSE_NR exhausted\n");
3423 		return -ENOSPC;
3424 	}
3425 
3426 	set_bit(prot->inuse_idx, proto_inuse_idx);
3427 	return 0;
3428 }
3429 
release_proto_idx(struct proto * prot)3430 static void release_proto_idx(struct proto *prot)
3431 {
3432 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3433 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3434 }
3435 #else
assign_proto_idx(struct proto * prot)3436 static inline int assign_proto_idx(struct proto *prot)
3437 {
3438 	return 0;
3439 }
3440 
release_proto_idx(struct proto * prot)3441 static inline void release_proto_idx(struct proto *prot)
3442 {
3443 }
3444 
sock_inuse_add(struct net * net,int val)3445 static void sock_inuse_add(struct net *net, int val)
3446 {
3447 }
3448 #endif
3449 
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3450 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3451 {
3452 	if (!twsk_prot)
3453 		return;
3454 	kfree(twsk_prot->twsk_slab_name);
3455 	twsk_prot->twsk_slab_name = NULL;
3456 	kmem_cache_destroy(twsk_prot->twsk_slab);
3457 	twsk_prot->twsk_slab = NULL;
3458 }
3459 
req_prot_cleanup(struct request_sock_ops * rsk_prot)3460 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3461 {
3462 	if (!rsk_prot)
3463 		return;
3464 	kfree(rsk_prot->slab_name);
3465 	rsk_prot->slab_name = NULL;
3466 	kmem_cache_destroy(rsk_prot->slab);
3467 	rsk_prot->slab = NULL;
3468 }
3469 
req_prot_init(const struct proto * prot)3470 static int req_prot_init(const struct proto *prot)
3471 {
3472 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3473 
3474 	if (!rsk_prot)
3475 		return 0;
3476 
3477 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3478 					prot->name);
3479 	if (!rsk_prot->slab_name)
3480 		return -ENOMEM;
3481 
3482 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3483 					   rsk_prot->obj_size, 0,
3484 					   SLAB_ACCOUNT | prot->slab_flags,
3485 					   NULL);
3486 
3487 	if (!rsk_prot->slab) {
3488 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3489 			prot->name);
3490 		return -ENOMEM;
3491 	}
3492 	return 0;
3493 }
3494 
proto_register(struct proto * prot,int alloc_slab)3495 int proto_register(struct proto *prot, int alloc_slab)
3496 {
3497 	int ret = -ENOBUFS;
3498 
3499 	if (alloc_slab) {
3500 		prot->slab = kmem_cache_create_usercopy(prot->name,
3501 					prot->obj_size, 0,
3502 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3503 					prot->slab_flags,
3504 					prot->useroffset, prot->usersize,
3505 					NULL);
3506 
3507 		if (prot->slab == NULL) {
3508 			pr_crit("%s: Can't create sock SLAB cache!\n",
3509 				prot->name);
3510 			goto out;
3511 		}
3512 
3513 		if (req_prot_init(prot))
3514 			goto out_free_request_sock_slab;
3515 
3516 		if (prot->twsk_prot != NULL) {
3517 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3518 
3519 			if (prot->twsk_prot->twsk_slab_name == NULL)
3520 				goto out_free_request_sock_slab;
3521 
3522 			prot->twsk_prot->twsk_slab =
3523 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3524 						  prot->twsk_prot->twsk_obj_size,
3525 						  0,
3526 						  SLAB_ACCOUNT |
3527 						  prot->slab_flags,
3528 						  NULL);
3529 			if (prot->twsk_prot->twsk_slab == NULL)
3530 				goto out_free_timewait_sock_slab;
3531 		}
3532 	}
3533 
3534 	mutex_lock(&proto_list_mutex);
3535 	ret = assign_proto_idx(prot);
3536 	if (ret) {
3537 		mutex_unlock(&proto_list_mutex);
3538 		goto out_free_timewait_sock_slab;
3539 	}
3540 	list_add(&prot->node, &proto_list);
3541 	mutex_unlock(&proto_list_mutex);
3542 	return ret;
3543 
3544 out_free_timewait_sock_slab:
3545 	if (alloc_slab && prot->twsk_prot)
3546 		tw_prot_cleanup(prot->twsk_prot);
3547 out_free_request_sock_slab:
3548 	if (alloc_slab) {
3549 		req_prot_cleanup(prot->rsk_prot);
3550 
3551 		kmem_cache_destroy(prot->slab);
3552 		prot->slab = NULL;
3553 	}
3554 out:
3555 	return ret;
3556 }
3557 EXPORT_SYMBOL(proto_register);
3558 
proto_unregister(struct proto * prot)3559 void proto_unregister(struct proto *prot)
3560 {
3561 	mutex_lock(&proto_list_mutex);
3562 	release_proto_idx(prot);
3563 	list_del(&prot->node);
3564 	mutex_unlock(&proto_list_mutex);
3565 
3566 	kmem_cache_destroy(prot->slab);
3567 	prot->slab = NULL;
3568 
3569 	req_prot_cleanup(prot->rsk_prot);
3570 	tw_prot_cleanup(prot->twsk_prot);
3571 }
3572 EXPORT_SYMBOL(proto_unregister);
3573 
sock_load_diag_module(int family,int protocol)3574 int sock_load_diag_module(int family, int protocol)
3575 {
3576 	if (!protocol) {
3577 		if (!sock_is_registered(family))
3578 			return -ENOENT;
3579 
3580 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3581 				      NETLINK_SOCK_DIAG, family);
3582 	}
3583 
3584 #ifdef CONFIG_INET
3585 	if (family == AF_INET &&
3586 	    protocol != IPPROTO_RAW &&
3587 	    protocol < MAX_INET_PROTOS &&
3588 	    !rcu_access_pointer(inet_protos[protocol]))
3589 		return -ENOENT;
3590 #endif
3591 
3592 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3593 			      NETLINK_SOCK_DIAG, family, protocol);
3594 }
3595 EXPORT_SYMBOL(sock_load_diag_module);
3596 
3597 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3598 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3599 	__acquires(proto_list_mutex)
3600 {
3601 	mutex_lock(&proto_list_mutex);
3602 	return seq_list_start_head(&proto_list, *pos);
3603 }
3604 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3605 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3606 {
3607 	return seq_list_next(v, &proto_list, pos);
3608 }
3609 
proto_seq_stop(struct seq_file * seq,void * v)3610 static void proto_seq_stop(struct seq_file *seq, void *v)
3611 	__releases(proto_list_mutex)
3612 {
3613 	mutex_unlock(&proto_list_mutex);
3614 }
3615 
proto_method_implemented(const void * method)3616 static char proto_method_implemented(const void *method)
3617 {
3618 	return method == NULL ? 'n' : 'y';
3619 }
sock_prot_memory_allocated(struct proto * proto)3620 static long sock_prot_memory_allocated(struct proto *proto)
3621 {
3622 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3623 }
3624 
sock_prot_memory_pressure(struct proto * proto)3625 static const char *sock_prot_memory_pressure(struct proto *proto)
3626 {
3627 	return proto->memory_pressure != NULL ?
3628 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3629 }
3630 
proto_seq_printf(struct seq_file * seq,struct proto * proto)3631 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3632 {
3633 
3634 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3635 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3636 		   proto->name,
3637 		   proto->obj_size,
3638 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3639 		   sock_prot_memory_allocated(proto),
3640 		   sock_prot_memory_pressure(proto),
3641 		   proto->max_header,
3642 		   proto->slab == NULL ? "no" : "yes",
3643 		   module_name(proto->owner),
3644 		   proto_method_implemented(proto->close),
3645 		   proto_method_implemented(proto->connect),
3646 		   proto_method_implemented(proto->disconnect),
3647 		   proto_method_implemented(proto->accept),
3648 		   proto_method_implemented(proto->ioctl),
3649 		   proto_method_implemented(proto->init),
3650 		   proto_method_implemented(proto->destroy),
3651 		   proto_method_implemented(proto->shutdown),
3652 		   proto_method_implemented(proto->setsockopt),
3653 		   proto_method_implemented(proto->getsockopt),
3654 		   proto_method_implemented(proto->sendmsg),
3655 		   proto_method_implemented(proto->recvmsg),
3656 		   proto_method_implemented(proto->sendpage),
3657 		   proto_method_implemented(proto->bind),
3658 		   proto_method_implemented(proto->backlog_rcv),
3659 		   proto_method_implemented(proto->hash),
3660 		   proto_method_implemented(proto->unhash),
3661 		   proto_method_implemented(proto->get_port),
3662 		   proto_method_implemented(proto->enter_memory_pressure));
3663 }
3664 
proto_seq_show(struct seq_file * seq,void * v)3665 static int proto_seq_show(struct seq_file *seq, void *v)
3666 {
3667 	if (v == &proto_list)
3668 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3669 			   "protocol",
3670 			   "size",
3671 			   "sockets",
3672 			   "memory",
3673 			   "press",
3674 			   "maxhdr",
3675 			   "slab",
3676 			   "module",
3677 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3678 	else
3679 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3680 	return 0;
3681 }
3682 
3683 static const struct seq_operations proto_seq_ops = {
3684 	.start  = proto_seq_start,
3685 	.next   = proto_seq_next,
3686 	.stop   = proto_seq_stop,
3687 	.show   = proto_seq_show,
3688 };
3689 
proto_init_net(struct net * net)3690 static __net_init int proto_init_net(struct net *net)
3691 {
3692 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3693 			sizeof(struct seq_net_private)))
3694 		return -ENOMEM;
3695 
3696 	return 0;
3697 }
3698 
proto_exit_net(struct net * net)3699 static __net_exit void proto_exit_net(struct net *net)
3700 {
3701 	remove_proc_entry("protocols", net->proc_net);
3702 }
3703 
3704 
3705 static __net_initdata struct pernet_operations proto_net_ops = {
3706 	.init = proto_init_net,
3707 	.exit = proto_exit_net,
3708 };
3709 
proto_init(void)3710 static int __init proto_init(void)
3711 {
3712 	return register_pernet_subsys(&proto_net_ops);
3713 }
3714 
3715 subsys_initcall(proto_init);
3716 
3717 #endif /* PROC_FS */
3718 
3719 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3720 bool sk_busy_loop_end(void *p, unsigned long start_time)
3721 {
3722 	struct sock *sk = p;
3723 
3724 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3725 	       sk_busy_loop_timeout(sk, start_time);
3726 }
3727 EXPORT_SYMBOL(sk_busy_loop_end);
3728 #endif /* CONFIG_NET_RX_BUSY_POLL */
3729 
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3730 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3731 {
3732 	if (!sk->sk_prot->bind_add)
3733 		return -EOPNOTSUPP;
3734 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3735 }
3736 EXPORT_SYMBOL(sock_bind_add);
3737