• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/core/SkTSort.h"
8 #include "src/pathops/SkOpSegment.h"
9 #include "src/pathops/SkOpSpan.h"
10 #include "src/pathops/SkPathOpsPoint.h"
11 #include "src/pathops/SkPathWriter.h"
12 
13 // wrap path to keep track of whether the contour is initialized and non-empty
SkPathWriter(SkPath & path)14 SkPathWriter::SkPathWriter(SkPath& path)
15     : fPathPtr(&path)
16 {
17     init();
18 }
19 
close()20 void SkPathWriter::close() {
21     if (fCurrent.isEmpty()) {
22         return;
23     }
24     SkASSERT(this->isClosed());
25 #if DEBUG_PATH_CONSTRUCTION
26     SkDebugf("path.close();\n");
27 #endif
28     fCurrent.close();
29     fPathPtr->addPath(fCurrent);
30     fCurrent.reset();
31     init();
32 }
33 
conicTo(const SkPoint & pt1,const SkOpPtT * pt2,SkScalar weight)34 void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) {
35     SkPoint pt2pt = this->update(pt2);
36 #if DEBUG_PATH_CONSTRUCTION
37     SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n",
38             pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY, weight);
39 #endif
40     fCurrent.conicTo(pt1, pt2pt, weight);
41 }
42 
cubicTo(const SkPoint & pt1,const SkPoint & pt2,const SkOpPtT * pt3)43 void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) {
44     SkPoint pt3pt = this->update(pt3);
45 #if DEBUG_PATH_CONSTRUCTION
46     SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
47             pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3pt.fX, pt3pt.fY);
48 #endif
49     fCurrent.cubicTo(pt1, pt2, pt3pt);
50 }
51 
deferredLine(const SkOpPtT * pt)52 bool SkPathWriter::deferredLine(const SkOpPtT* pt) {
53     SkASSERT(fFirstPtT);
54     SkASSERT(fDefer[0]);
55     if (fDefer[0] == pt) {
56         // FIXME: why we're adding a degenerate line? Caller should have preflighted this.
57         return true;
58     }
59     if (pt->contains(fDefer[0])) {
60         // FIXME: why we're adding a degenerate line?
61         return true;
62     }
63     if (this->matchedLast(pt)) {
64         return false;
65     }
66     if (fDefer[1] && this->changedSlopes(pt)) {
67         this->lineTo();
68         fDefer[0] = fDefer[1];
69     }
70     fDefer[1] = pt;
71     return true;
72 }
73 
deferredMove(const SkOpPtT * pt)74 void SkPathWriter::deferredMove(const SkOpPtT* pt) {
75     if (!fDefer[1]) {
76         fFirstPtT = fDefer[0] = pt;
77         return;
78     }
79     SkASSERT(fDefer[0]);
80     if (!this->matchedLast(pt)) {
81         this->finishContour();
82         fFirstPtT = fDefer[0] = pt;
83     }
84 }
85 
finishContour()86 void SkPathWriter::finishContour() {
87     if (!this->matchedLast(fDefer[0])) {
88         if (!fDefer[1]) {
89           return;
90         }
91         this->lineTo();
92     }
93     if (fCurrent.isEmpty()) {
94         return;
95     }
96     if (this->isClosed()) {
97         this->close();
98     } else {
99         SkASSERT(fDefer[1]);
100         fEndPtTs.push_back(fFirstPtT);
101         fEndPtTs.push_back(fDefer[1]);
102         fPartials.push_back(fCurrent);
103         this->init();
104     }
105 }
106 
init()107 void SkPathWriter::init() {
108     fCurrent.reset();
109     fFirstPtT = fDefer[0] = fDefer[1] = nullptr;
110 }
111 
isClosed() const112 bool SkPathWriter::isClosed() const {
113     return this->matchedLast(fFirstPtT);
114 }
115 
lineTo()116 void SkPathWriter::lineTo() {
117     if (fCurrent.isEmpty()) {
118         this->moveTo();
119     }
120 #if DEBUG_PATH_CONSTRUCTION
121     SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY);
122 #endif
123     fCurrent.lineTo(fDefer[1]->fPt);
124 }
125 
matchedLast(const SkOpPtT * test) const126 bool SkPathWriter::matchedLast(const SkOpPtT* test) const {
127     if (test == fDefer[1]) {
128         return true;
129     }
130     if (!test) {
131         return false;
132     }
133     if (!fDefer[1]) {
134         return false;
135     }
136     return test->contains(fDefer[1]);
137 }
138 
moveTo()139 void SkPathWriter::moveTo() {
140 #if DEBUG_PATH_CONSTRUCTION
141     SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY);
142 #endif
143     fCurrent.moveTo(fFirstPtT->fPt);
144 }
145 
quadTo(const SkPoint & pt1,const SkOpPtT * pt2)146 void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) {
147     SkPoint pt2pt = this->update(pt2);
148 #if DEBUG_PATH_CONSTRUCTION
149     SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
150             pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY);
151 #endif
152     fCurrent.quadTo(pt1, pt2pt);
153 }
154 
155 // if last point to be written matches the current path's first point, alter the
156 // last to avoid writing a degenerate lineTo when the path is closed
update(const SkOpPtT * pt)157 SkPoint SkPathWriter::update(const SkOpPtT* pt) {
158     if (!fDefer[1]) {
159         this->moveTo();
160     } else if (!this->matchedLast(fDefer[0])) {
161         this->lineTo();
162     }
163     SkPoint result = pt->fPt;
164     if (fFirstPtT && result != fFirstPtT->fPt && fFirstPtT->contains(pt)) {
165         result = fFirstPtT->fPt;
166     }
167     fDefer[0] = fDefer[1] = pt;  // set both to know that there is not a pending deferred line
168     return result;
169 }
170 
someAssemblyRequired()171 bool SkPathWriter::someAssemblyRequired() {
172     this->finishContour();
173     return fEndPtTs.count() > 0;
174 }
175 
changedSlopes(const SkOpPtT * ptT) const176 bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const {
177     if (matchedLast(fDefer[0])) {
178         return false;
179     }
180     SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt;
181     SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt;
182     return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX;
183 }
184 
185 class DistanceLessThan {
186 public:
DistanceLessThan(double * distances)187     DistanceLessThan(double* distances) : fDistances(distances) { }
188     double* fDistances;
operator ()(const int one,const int two) const189     bool operator()(const int one, const int two) const {
190         return fDistances[one] < fDistances[two];
191     }
192 };
193 
194     /*
195         check start and end of each contour
196         if not the same, record them
197         match them up
198         connect closest
199         reassemble contour pieces into new path
200     */
assemble()201 void SkPathWriter::assemble() {
202     if (!this->someAssemblyRequired()) {
203         return;
204     }
205 #if DEBUG_PATH_CONSTRUCTION
206     SkDebugf("%s\n", __FUNCTION__);
207 #endif
208     SkOpPtT const* const* runs = fEndPtTs.begin();  // starts, ends of partial contours
209     int endCount = fEndPtTs.count(); // all starts and ends
210     SkASSERT(endCount > 0);
211     SkASSERT(endCount == fPartials.count() * 2);
212 #if DEBUG_ASSEMBLE
213     for (int index = 0; index < endCount; index += 2) {
214         const SkOpPtT* eStart = runs[index];
215         const SkOpPtT* eEnd = runs[index + 1];
216         SkASSERT(eStart != eEnd);
217         SkASSERT(!eStart->contains(eEnd));
218         SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__,
219                 eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY);
220     }
221 #endif
222     // lengthen any partial contour adjacent to a simple segment
223     for (int pIndex = 0; pIndex < endCount; pIndex++) {
224         SkOpPtT* opPtT = const_cast<SkOpPtT*>(runs[pIndex]);
225         SkPath p;
226         SkPathWriter partWriter(p);
227         do {
228             if (!zero_or_one(opPtT->fT)) {
229                 break;
230             }
231             SkOpSpanBase* opSpanBase = opPtT->span();
232             SkOpSpanBase* start = opPtT->fT ? opSpanBase->prev() : opSpanBase->upCast()->next();
233             int step = opPtT->fT ? 1 : -1;
234             const SkOpSegment* opSegment = opSpanBase->segment();
235             const SkOpSegment* nextSegment = opSegment->isSimple(&start, &step);
236             if (!nextSegment) {
237                 break;
238             }
239             SkOpSpanBase* opSpanEnd = start->t() ? start->prev() : start->upCast()->next();
240             if (start->starter(opSpanEnd)->alreadyAdded()) {
241                 break;
242             }
243             nextSegment->addCurveTo(start, opSpanEnd, &partWriter);
244             opPtT = opSpanEnd->ptT();
245             SkOpPtT** runsPtr = const_cast<SkOpPtT**>(&runs[pIndex]);
246             *runsPtr = opPtT;
247         } while (true);
248         partWriter.finishContour();
249         const SkTArray<SkPath>& partPartials = partWriter.partials();
250         if (!partPartials.count()) {
251             continue;
252         }
253         // if pIndex is even, reverse and prepend to fPartials; otherwise, append
254         SkPath& partial = const_cast<SkPath&>(fPartials[pIndex >> 1]);
255         const SkPath& part = partPartials[0];
256         if (pIndex & 1) {
257             partial.addPath(part, SkPath::kExtend_AddPathMode);
258         } else {
259             SkPath reverse;
260             reverse.reverseAddPath(part);
261             reverse.addPath(partial, SkPath::kExtend_AddPathMode);
262             partial = reverse;
263         }
264     }
265     SkTDArray<int> sLink, eLink;
266     int linkCount = endCount / 2; // number of partial contours
267     sLink.append(linkCount);
268     eLink.append(linkCount);
269     int rIndex, iIndex;
270     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
271         sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
272     }
273     const int entries = endCount * (endCount - 1) / 2;  // folded triangle
274     SkSTArray<8, double, true> distances(entries);
275     SkSTArray<8, int, true> sortedDist(entries);
276     SkSTArray<8, int, true> distLookup(entries);
277     int rRow = 0;
278     int dIndex = 0;
279     for (rIndex = 0; rIndex < endCount - 1; ++rIndex) {
280         const SkOpPtT* oPtT = runs[rIndex];
281         for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) {
282             const SkOpPtT* iPtT = runs[iIndex];
283             double dx = iPtT->fPt.fX - oPtT->fPt.fX;
284             double dy = iPtT->fPt.fY - oPtT->fPt.fY;
285             double dist = dx * dx + dy * dy;
286             distLookup.push_back(rRow + iIndex);
287             distances.push_back(dist);  // oStart distance from iStart
288             sortedDist.push_back(dIndex++);
289         }
290         rRow += endCount;
291     }
292     SkASSERT(dIndex == entries);
293     SkTQSort<int>(sortedDist.begin(), sortedDist.end(), DistanceLessThan(distances.begin()));
294     int remaining = linkCount;  // number of start/end pairs
295     for (rIndex = 0; rIndex < entries; ++rIndex) {
296         int pair = sortedDist[rIndex];
297         pair = distLookup[pair];
298         int row = pair / endCount;
299         int col = pair - row * endCount;
300         int ndxOne = row >> 1;
301         bool endOne = row & 1;
302         int* linkOne = endOne ? eLink.begin() : sLink.begin();
303         if (linkOne[ndxOne] != SK_MaxS32) {
304             continue;
305         }
306         int ndxTwo = col >> 1;
307         bool endTwo = col & 1;
308         int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
309         if (linkTwo[ndxTwo] != SK_MaxS32) {
310             continue;
311         }
312         SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
313         bool flip = endOne == endTwo;
314         linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
315         linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
316         if (!--remaining) {
317             break;
318         }
319     }
320     SkASSERT(!remaining);
321 #if DEBUG_ASSEMBLE
322     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
323         int s = sLink[rIndex];
324         int e = eLink[rIndex];
325         SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
326                 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
327     }
328 #endif
329     rIndex = 0;
330     do {
331         bool forward = true;
332         bool first = true;
333         int sIndex = sLink[rIndex];
334         SkASSERT(sIndex != SK_MaxS32);
335         sLink[rIndex] = SK_MaxS32;
336         int eIndex;
337         if (sIndex < 0) {
338             eIndex = sLink[~sIndex];
339             sLink[~sIndex] = SK_MaxS32;
340         } else {
341             eIndex = eLink[sIndex];
342             eLink[sIndex] = SK_MaxS32;
343         }
344         SkASSERT(eIndex != SK_MaxS32);
345 #if DEBUG_ASSEMBLE
346         SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
347                     sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
348                     eIndex < 0 ? ~eIndex : eIndex);
349 #endif
350         do {
351             const SkPath& contour = fPartials[rIndex];
352             if (!first) {
353                 SkPoint prior, next;
354                 if (!fPathPtr->getLastPt(&prior)) {
355                     return;
356                 }
357                 if (forward) {
358                     next = contour.getPoint(0);
359                 } else {
360                     SkAssertResult(contour.getLastPt(&next));
361                 }
362                 if (prior != next) {
363                     /* TODO: if there is a gap between open path written so far and path to come,
364                        connect by following segments from one to the other, rather than introducing
365                        a diagonal to connect the two.
366                      */
367                 }
368             }
369             if (forward) {
370                 fPathPtr->addPath(contour,
371                         first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode);
372             } else {
373                 SkASSERT(!first);
374                 fPathPtr->reversePathTo(contour);
375             }
376             if (first) {
377                 first = false;
378             }
379 #if DEBUG_ASSEMBLE
380             SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
381                 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
382                 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
383 #endif
384             if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
385                 fPathPtr->close();
386                 break;
387             }
388             if (forward) {
389                 eIndex = eLink[rIndex];
390                 SkASSERT(eIndex != SK_MaxS32);
391                 eLink[rIndex] = SK_MaxS32;
392                 if (eIndex >= 0) {
393                     SkASSERT(sLink[eIndex] == rIndex);
394                     sLink[eIndex] = SK_MaxS32;
395                 } else {
396                     SkASSERT(eLink[~eIndex] == ~rIndex);
397                     eLink[~eIndex] = SK_MaxS32;
398                 }
399             } else {
400                 eIndex = sLink[rIndex];
401                 SkASSERT(eIndex != SK_MaxS32);
402                 sLink[rIndex] = SK_MaxS32;
403                 if (eIndex >= 0) {
404                     SkASSERT(eLink[eIndex] == rIndex);
405                     eLink[eIndex] = SK_MaxS32;
406                 } else {
407                     SkASSERT(sLink[~eIndex] == ~rIndex);
408                     sLink[~eIndex] = SK_MaxS32;
409                 }
410             }
411             rIndex = eIndex;
412             if (rIndex < 0) {
413                 forward ^= 1;
414                 rIndex = ~rIndex;
415             }
416         } while (true);
417         for (rIndex = 0; rIndex < linkCount; ++rIndex) {
418             if (sLink[rIndex] != SK_MaxS32) {
419                 break;
420             }
421         }
422     } while (rIndex < linkCount);
423 #if DEBUG_ASSEMBLE
424     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
425        SkASSERT(sLink[rIndex] == SK_MaxS32);
426        SkASSERT(eLink[rIndex] == SK_MaxS32);
427     }
428 #endif
429     return;
430 }
431