• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 
58 #ifdef CONFIG_QOS_CTRL
59 #include <linux/sched/qos_ctrl.h>
60 #endif
61 
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/init.h>
64 #include <linux/capability.h>
65 #include <linux/file.h>
66 #include <linux/fdtable.h>
67 #include <linux/generic-radix-tree.h>
68 #include <linux/string.h>
69 #include <linux/seq_file.h>
70 #include <linux/namei.h>
71 #include <linux/mnt_namespace.h>
72 #include <linux/mm.h>
73 #include <linux/swap.h>
74 #include <linux/rcupdate.h>
75 #include <linux/kallsyms.h>
76 #include <linux/stacktrace.h>
77 #include <linux/resource.h>
78 #include <linux/module.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/ptrace.h>
82 #include <linux/tracehook.h>
83 #include <linux/printk.h>
84 #include <linux/cache.h>
85 #include <linux/cgroup.h>
86 #include <linux/cpuset.h>
87 #include <linux/audit.h>
88 #include <linux/poll.h>
89 #include <linux/nsproxy.h>
90 #include <linux/oom.h>
91 #include <linux/elf.h>
92 #include <linux/pid_namespace.h>
93 #include <linux/user_namespace.h>
94 #include <linux/fs_struct.h>
95 #include <linux/slab.h>
96 #include <linux/sched.h>
97 #ifdef CONFIG_SCHED_RTG
98 #include <linux/sched/rtg_ctrl.h>
99 #endif
100 #include <linux/sched/autogroup.h>
101 #include <linux/sched/mm.h>
102 #include <linux/sched/coredump.h>
103 #include <linux/sched/debug.h>
104 #include <linux/sched/stat.h>
105 #include <linux/posix-timers.h>
106 #include <linux/time_namespace.h>
107 #include <linux/resctrl.h>
108 #include <trace/events/oom.h>
109 #include "internal.h"
110 #include "fd.h"
111 
112 #include "../../lib/kstrtox.h"
113 
114 /* NOTE:
115  *	Implementing inode permission operations in /proc is almost
116  *	certainly an error.  Permission checks need to happen during
117  *	each system call not at open time.  The reason is that most of
118  *	what we wish to check for permissions in /proc varies at runtime.
119  *
120  *	The classic example of a problem is opening file descriptors
121  *	in /proc for a task before it execs a suid executable.
122  */
123 
124 static u8 nlink_tid __ro_after_init;
125 static u8 nlink_tgid __ro_after_init;
126 
127 struct pid_entry {
128 	const char *name;
129 	unsigned int len;
130 	umode_t mode;
131 	const struct inode_operations *iop;
132 	const struct file_operations *fop;
133 	union proc_op op;
134 };
135 
136 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
137 	.name = (NAME),					\
138 	.len  = sizeof(NAME) - 1,			\
139 	.mode = MODE,					\
140 	.iop  = IOP,					\
141 	.fop  = FOP,					\
142 	.op   = OP,					\
143 }
144 
145 #define DIR(NAME, MODE, iops, fops)	\
146 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
147 #define LNK(NAME, get_link)					\
148 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
149 		&proc_pid_link_inode_operations, NULL,		\
150 		{ .proc_get_link = get_link } )
151 #define REG(NAME, MODE, fops)				\
152 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
153 #define ONE(NAME, MODE, show)				\
154 	NOD(NAME, (S_IFREG|(MODE)),			\
155 		NULL, &proc_single_file_operations,	\
156 		{ .proc_show = show } )
157 #define ATTR(LSM, NAME, MODE)				\
158 	NOD(NAME, (S_IFREG|(MODE)),			\
159 		NULL, &proc_pid_attr_operations,	\
160 		{ .lsm = LSM })
161 
162 /*
163  * Count the number of hardlinks for the pid_entry table, excluding the .
164  * and .. links.
165  */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)166 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
167 	unsigned int n)
168 {
169 	unsigned int i;
170 	unsigned int count;
171 
172 	count = 2;
173 	for (i = 0; i < n; ++i) {
174 		if (S_ISDIR(entries[i].mode))
175 			++count;
176 	}
177 
178 	return count;
179 }
180 
get_task_root(struct task_struct * task,struct path * root)181 static int get_task_root(struct task_struct *task, struct path *root)
182 {
183 	int result = -ENOENT;
184 
185 	task_lock(task);
186 	if (task->fs) {
187 		get_fs_root(task->fs, root);
188 		result = 0;
189 	}
190 	task_unlock(task);
191 	return result;
192 }
193 
proc_cwd_link(struct dentry * dentry,struct path * path)194 static int proc_cwd_link(struct dentry *dentry, struct path *path)
195 {
196 	struct task_struct *task = get_proc_task(d_inode(dentry));
197 	int result = -ENOENT;
198 
199 	if (task) {
200 		task_lock(task);
201 		if (task->fs) {
202 			get_fs_pwd(task->fs, path);
203 			result = 0;
204 		}
205 		task_unlock(task);
206 		put_task_struct(task);
207 	}
208 	return result;
209 }
210 
proc_root_link(struct dentry * dentry,struct path * path)211 static int proc_root_link(struct dentry *dentry, struct path *path)
212 {
213 	struct task_struct *task = get_proc_task(d_inode(dentry));
214 	int result = -ENOENT;
215 
216 	if (task) {
217 		result = get_task_root(task, path);
218 		put_task_struct(task);
219 	}
220 	return result;
221 }
222 
223 /*
224  * If the user used setproctitle(), we just get the string from
225  * user space at arg_start, and limit it to a maximum of one page.
226  */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)227 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
228 				size_t count, unsigned long pos,
229 				unsigned long arg_start)
230 {
231 	char *page;
232 	int ret, got;
233 
234 	if (pos >= PAGE_SIZE)
235 		return 0;
236 
237 	page = (char *)__get_free_page(GFP_KERNEL);
238 	if (!page)
239 		return -ENOMEM;
240 
241 	ret = 0;
242 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
243 	if (got > 0) {
244 		int len = strnlen(page, got);
245 
246 		/* Include the NUL character if it was found */
247 		if (len < got)
248 			len++;
249 
250 		if (len > pos) {
251 			len -= pos;
252 			if (len > count)
253 				len = count;
254 			len -= copy_to_user(buf, page+pos, len);
255 			if (!len)
256 				len = -EFAULT;
257 			ret = len;
258 		}
259 	}
260 	free_page((unsigned long)page);
261 	return ret;
262 }
263 
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)264 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
265 			      size_t count, loff_t *ppos)
266 {
267 	unsigned long arg_start, arg_end, env_start, env_end;
268 	unsigned long pos, len;
269 	char *page, c;
270 
271 	/* Check if process spawned far enough to have cmdline. */
272 	if (!mm->env_end)
273 		return 0;
274 
275 	spin_lock(&mm->arg_lock);
276 	arg_start = mm->arg_start;
277 	arg_end = mm->arg_end;
278 	env_start = mm->env_start;
279 	env_end = mm->env_end;
280 	spin_unlock(&mm->arg_lock);
281 
282 	if (arg_start >= arg_end)
283 		return 0;
284 
285 	/*
286 	 * We allow setproctitle() to overwrite the argument
287 	 * strings, and overflow past the original end. But
288 	 * only when it overflows into the environment area.
289 	 */
290 	if (env_start != arg_end || env_end < env_start)
291 		env_start = env_end = arg_end;
292 	len = env_end - arg_start;
293 
294 	/* We're not going to care if "*ppos" has high bits set */
295 	pos = *ppos;
296 	if (pos >= len)
297 		return 0;
298 	if (count > len - pos)
299 		count = len - pos;
300 	if (!count)
301 		return 0;
302 
303 	/*
304 	 * Magical special case: if the argv[] end byte is not
305 	 * zero, the user has overwritten it with setproctitle(3).
306 	 *
307 	 * Possible future enhancement: do this only once when
308 	 * pos is 0, and set a flag in the 'struct file'.
309 	 */
310 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
311 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
312 
313 	/*
314 	 * For the non-setproctitle() case we limit things strictly
315 	 * to the [arg_start, arg_end[ range.
316 	 */
317 	pos += arg_start;
318 	if (pos < arg_start || pos >= arg_end)
319 		return 0;
320 	if (count > arg_end - pos)
321 		count = arg_end - pos;
322 
323 	page = (char *)__get_free_page(GFP_KERNEL);
324 	if (!page)
325 		return -ENOMEM;
326 
327 	len = 0;
328 	while (count) {
329 		int got;
330 		size_t size = min_t(size_t, PAGE_SIZE, count);
331 
332 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
333 		if (got <= 0)
334 			break;
335 		got -= copy_to_user(buf, page, got);
336 		if (unlikely(!got)) {
337 			if (!len)
338 				len = -EFAULT;
339 			break;
340 		}
341 		pos += got;
342 		buf += got;
343 		len += got;
344 		count -= got;
345 	}
346 
347 	free_page((unsigned long)page);
348 	return len;
349 }
350 
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)351 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
352 				size_t count, loff_t *pos)
353 {
354 	struct mm_struct *mm;
355 	ssize_t ret;
356 
357 	mm = get_task_mm(tsk);
358 	if (!mm)
359 		return 0;
360 
361 	ret = get_mm_cmdline(mm, buf, count, pos);
362 	mmput(mm);
363 	return ret;
364 }
365 
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)366 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
367 				     size_t count, loff_t *pos)
368 {
369 	struct task_struct *tsk;
370 	ssize_t ret;
371 
372 	BUG_ON(*pos < 0);
373 
374 	tsk = get_proc_task(file_inode(file));
375 	if (!tsk)
376 		return -ESRCH;
377 	ret = get_task_cmdline(tsk, buf, count, pos);
378 	put_task_struct(tsk);
379 	if (ret > 0)
380 		*pos += ret;
381 	return ret;
382 }
383 
384 static const struct file_operations proc_pid_cmdline_ops = {
385 	.read	= proc_pid_cmdline_read,
386 	.llseek	= generic_file_llseek,
387 };
388 
389 #ifdef CONFIG_KALLSYMS
390 /*
391  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
392  * Returns the resolved symbol.  If that fails, simply return the address.
393  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)394 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
395 			  struct pid *pid, struct task_struct *task)
396 {
397 	unsigned long wchan;
398 	char symname[KSYM_NAME_LEN];
399 
400 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
401 		goto print0;
402 
403 	wchan = get_wchan(task);
404 	if (wchan && !lookup_symbol_name(wchan, symname)) {
405 		seq_puts(m, symname);
406 		return 0;
407 	}
408 
409 print0:
410 	seq_putc(m, '0');
411 	return 0;
412 }
413 #endif /* CONFIG_KALLSYMS */
414 
lock_trace(struct task_struct * task)415 static int lock_trace(struct task_struct *task)
416 {
417 	int err = down_read_killable(&task->signal->exec_update_lock);
418 	if (err)
419 		return err;
420 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
421 		up_read(&task->signal->exec_update_lock);
422 		return -EPERM;
423 	}
424 	return 0;
425 }
426 
unlock_trace(struct task_struct * task)427 static void unlock_trace(struct task_struct *task)
428 {
429 	up_read(&task->signal->exec_update_lock);
430 }
431 
432 #ifdef CONFIG_STACKTRACE
433 
434 #define MAX_STACK_TRACE_DEPTH	64
435 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)436 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
437 			  struct pid *pid, struct task_struct *task)
438 {
439 	unsigned long *entries;
440 	int err;
441 
442 	/*
443 	 * The ability to racily run the kernel stack unwinder on a running task
444 	 * and then observe the unwinder output is scary; while it is useful for
445 	 * debugging kernel issues, it can also allow an attacker to leak kernel
446 	 * stack contents.
447 	 * Doing this in a manner that is at least safe from races would require
448 	 * some work to ensure that the remote task can not be scheduled; and
449 	 * even then, this would still expose the unwinder as local attack
450 	 * surface.
451 	 * Therefore, this interface is restricted to root.
452 	 */
453 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
454 		return -EACCES;
455 
456 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
457 				GFP_KERNEL);
458 	if (!entries)
459 		return -ENOMEM;
460 
461 	err = lock_trace(task);
462 	if (!err) {
463 		unsigned int i, nr_entries;
464 
465 		nr_entries = stack_trace_save_tsk(task, entries,
466 						  MAX_STACK_TRACE_DEPTH, 0);
467 
468 		for (i = 0; i < nr_entries; i++) {
469 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
470 		}
471 
472 		unlock_trace(task);
473 	}
474 	kfree(entries);
475 
476 	return err;
477 }
478 #endif
479 
480 #ifdef CONFIG_SCHED_INFO
481 /*
482  * Provides /proc/PID/schedstat
483  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)484 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
485 			      struct pid *pid, struct task_struct *task)
486 {
487 	if (unlikely(!sched_info_on()))
488 		seq_puts(m, "0 0 0\n");
489 	else
490 		seq_printf(m, "%llu %llu %lu\n",
491 		   (unsigned long long)task->se.sum_exec_runtime,
492 		   (unsigned long long)task->sched_info.run_delay,
493 		   task->sched_info.pcount);
494 
495 	return 0;
496 }
497 #endif
498 
499 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)500 static int lstats_show_proc(struct seq_file *m, void *v)
501 {
502 	int i;
503 	struct inode *inode = m->private;
504 	struct task_struct *task = get_proc_task(inode);
505 
506 	if (!task)
507 		return -ESRCH;
508 	seq_puts(m, "Latency Top version : v0.1\n");
509 	for (i = 0; i < LT_SAVECOUNT; i++) {
510 		struct latency_record *lr = &task->latency_record[i];
511 		if (lr->backtrace[0]) {
512 			int q;
513 			seq_printf(m, "%i %li %li",
514 				   lr->count, lr->time, lr->max);
515 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
516 				unsigned long bt = lr->backtrace[q];
517 
518 				if (!bt)
519 					break;
520 				seq_printf(m, " %ps", (void *)bt);
521 			}
522 			seq_putc(m, '\n');
523 		}
524 
525 	}
526 	put_task_struct(task);
527 	return 0;
528 }
529 
lstats_open(struct inode * inode,struct file * file)530 static int lstats_open(struct inode *inode, struct file *file)
531 {
532 	return single_open(file, lstats_show_proc, inode);
533 }
534 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)535 static ssize_t lstats_write(struct file *file, const char __user *buf,
536 			    size_t count, loff_t *offs)
537 {
538 	struct task_struct *task = get_proc_task(file_inode(file));
539 
540 	if (!task)
541 		return -ESRCH;
542 	clear_tsk_latency_tracing(task);
543 	put_task_struct(task);
544 
545 	return count;
546 }
547 
548 static const struct file_operations proc_lstats_operations = {
549 	.open		= lstats_open,
550 	.read		= seq_read,
551 	.write		= lstats_write,
552 	.llseek		= seq_lseek,
553 	.release	= single_release,
554 };
555 
556 #endif
557 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)558 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
559 			  struct pid *pid, struct task_struct *task)
560 {
561 	unsigned long totalpages = totalram_pages() + total_swap_pages;
562 	unsigned long points = 0;
563 	long badness;
564 
565 	badness = oom_badness(task, totalpages);
566 	/*
567 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
568 	 * badness value into [0, 2000] range which we have been
569 	 * exporting for a long time so userspace might depend on it.
570 	 */
571 	if (badness != LONG_MIN)
572 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
573 
574 	seq_printf(m, "%lu\n", points);
575 
576 	return 0;
577 }
578 
579 struct limit_names {
580 	const char *name;
581 	const char *unit;
582 };
583 
584 static const struct limit_names lnames[RLIM_NLIMITS] = {
585 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
586 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
587 	[RLIMIT_DATA] = {"Max data size", "bytes"},
588 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
589 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
590 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
591 	[RLIMIT_NPROC] = {"Max processes", "processes"},
592 	[RLIMIT_NOFILE] = {"Max open files", "files"},
593 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
594 	[RLIMIT_AS] = {"Max address space", "bytes"},
595 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
596 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
597 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
598 	[RLIMIT_NICE] = {"Max nice priority", NULL},
599 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
600 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
601 };
602 
603 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)604 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
605 			   struct pid *pid, struct task_struct *task)
606 {
607 	unsigned int i;
608 	unsigned long flags;
609 
610 	struct rlimit rlim[RLIM_NLIMITS];
611 
612 	if (!lock_task_sighand(task, &flags))
613 		return 0;
614 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
615 	unlock_task_sighand(task, &flags);
616 
617 	/*
618 	 * print the file header
619 	 */
620 	seq_puts(m, "Limit                     "
621 		"Soft Limit           "
622 		"Hard Limit           "
623 		"Units     \n");
624 
625 	for (i = 0; i < RLIM_NLIMITS; i++) {
626 		if (rlim[i].rlim_cur == RLIM_INFINITY)
627 			seq_printf(m, "%-25s %-20s ",
628 				   lnames[i].name, "unlimited");
629 		else
630 			seq_printf(m, "%-25s %-20lu ",
631 				   lnames[i].name, rlim[i].rlim_cur);
632 
633 		if (rlim[i].rlim_max == RLIM_INFINITY)
634 			seq_printf(m, "%-20s ", "unlimited");
635 		else
636 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
637 
638 		if (lnames[i].unit)
639 			seq_printf(m, "%-10s\n", lnames[i].unit);
640 		else
641 			seq_putc(m, '\n');
642 	}
643 
644 	return 0;
645 }
646 
647 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)648 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
649 			    struct pid *pid, struct task_struct *task)
650 {
651 	struct syscall_info info;
652 	u64 *args = &info.data.args[0];
653 	int res;
654 
655 	res = lock_trace(task);
656 	if (res)
657 		return res;
658 
659 	if (task_current_syscall(task, &info))
660 		seq_puts(m, "running\n");
661 	else if (info.data.nr < 0)
662 		seq_printf(m, "%d 0x%llx 0x%llx\n",
663 			   info.data.nr, info.sp, info.data.instruction_pointer);
664 	else
665 		seq_printf(m,
666 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
667 		       info.data.nr,
668 		       args[0], args[1], args[2], args[3], args[4], args[5],
669 		       info.sp, info.data.instruction_pointer);
670 	unlock_trace(task);
671 
672 	return 0;
673 }
674 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
675 
676 /************************************************************************/
677 /*                       Here the fs part begins                        */
678 /************************************************************************/
679 
680 /* permission checks */
proc_fd_access_allowed(struct inode * inode)681 static int proc_fd_access_allowed(struct inode *inode)
682 {
683 	struct task_struct *task;
684 	int allowed = 0;
685 	/* Allow access to a task's file descriptors if it is us or we
686 	 * may use ptrace attach to the process and find out that
687 	 * information.
688 	 */
689 	task = get_proc_task(inode);
690 	if (task) {
691 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
692 		put_task_struct(task);
693 	}
694 	return allowed;
695 }
696 
proc_setattr(struct dentry * dentry,struct iattr * attr)697 int proc_setattr(struct dentry *dentry, struct iattr *attr)
698 {
699 	int error;
700 	struct inode *inode = d_inode(dentry);
701 
702 	if (attr->ia_valid & ATTR_MODE)
703 		return -EPERM;
704 
705 	error = setattr_prepare(dentry, attr);
706 	if (error)
707 		return error;
708 
709 	setattr_copy(inode, attr);
710 	mark_inode_dirty(inode);
711 	return 0;
712 }
713 
714 /*
715  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
716  * or euid/egid (for hide_pid_min=2)?
717  */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)718 static bool has_pid_permissions(struct proc_fs_info *fs_info,
719 				 struct task_struct *task,
720 				 enum proc_hidepid hide_pid_min)
721 {
722 	/*
723 	 * If 'hidpid' mount option is set force a ptrace check,
724 	 * we indicate that we are using a filesystem syscall
725 	 * by passing PTRACE_MODE_READ_FSCREDS
726 	 */
727 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
728 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
729 
730 	if (fs_info->hide_pid < hide_pid_min)
731 		return true;
732 	if (in_group_p(fs_info->pid_gid))
733 		return true;
734 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
735 }
736 
737 
proc_pid_permission(struct inode * inode,int mask)738 static int proc_pid_permission(struct inode *inode, int mask)
739 {
740 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
741 	struct task_struct *task;
742 	bool has_perms;
743 
744 	task = get_proc_task(inode);
745 	if (!task)
746 		return -ESRCH;
747 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
748 	put_task_struct(task);
749 
750 	if (!has_perms) {
751 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
752 			/*
753 			 * Let's make getdents(), stat(), and open()
754 			 * consistent with each other.  If a process
755 			 * may not stat() a file, it shouldn't be seen
756 			 * in procfs at all.
757 			 */
758 			return -ENOENT;
759 		}
760 
761 		return -EPERM;
762 	}
763 	return generic_permission(inode, mask);
764 }
765 
766 
767 
768 static const struct inode_operations proc_def_inode_operations = {
769 	.setattr	= proc_setattr,
770 };
771 
proc_single_show(struct seq_file * m,void * v)772 static int proc_single_show(struct seq_file *m, void *v)
773 {
774 	struct inode *inode = m->private;
775 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
776 	struct pid *pid = proc_pid(inode);
777 	struct task_struct *task;
778 	int ret;
779 
780 	task = get_pid_task(pid, PIDTYPE_PID);
781 	if (!task)
782 		return -ESRCH;
783 
784 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
785 
786 	put_task_struct(task);
787 	return ret;
788 }
789 
proc_single_open(struct inode * inode,struct file * filp)790 static int proc_single_open(struct inode *inode, struct file *filp)
791 {
792 	return single_open(filp, proc_single_show, inode);
793 }
794 
795 static const struct file_operations proc_single_file_operations = {
796 	.open		= proc_single_open,
797 	.read		= seq_read,
798 	.llseek		= seq_lseek,
799 	.release	= single_release,
800 };
801 
802 
proc_mem_open(struct inode * inode,unsigned int mode)803 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
804 {
805 	struct task_struct *task = get_proc_task(inode);
806 	struct mm_struct *mm = ERR_PTR(-ESRCH);
807 
808 	if (task) {
809 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
810 		put_task_struct(task);
811 
812 		if (!IS_ERR_OR_NULL(mm)) {
813 			/* ensure this mm_struct can't be freed */
814 			mmgrab(mm);
815 			/* but do not pin its memory */
816 			mmput(mm);
817 		}
818 	}
819 
820 	return mm;
821 }
822 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)823 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
824 {
825 	struct mm_struct *mm = proc_mem_open(inode, mode);
826 
827 	if (IS_ERR(mm))
828 		return PTR_ERR(mm);
829 
830 	file->private_data = mm;
831 	return 0;
832 }
833 
mem_open(struct inode * inode,struct file * file)834 static int mem_open(struct inode *inode, struct file *file)
835 {
836 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
837 
838 	/* OK to pass negative loff_t, we can catch out-of-range */
839 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
840 
841 	return ret;
842 }
843 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)844 static ssize_t mem_rw(struct file *file, char __user *buf,
845 			size_t count, loff_t *ppos, int write)
846 {
847 	struct mm_struct *mm = file->private_data;
848 	unsigned long addr = *ppos;
849 	ssize_t copied;
850 	char *page;
851 	unsigned int flags;
852 
853 	if (!mm)
854 		return 0;
855 
856 	page = (char *)__get_free_page(GFP_KERNEL);
857 	if (!page)
858 		return -ENOMEM;
859 
860 	copied = 0;
861 	if (!mmget_not_zero(mm))
862 		goto free;
863 
864 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
865 
866 	while (count > 0) {
867 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
868 
869 		if (write && copy_from_user(page, buf, this_len)) {
870 			copied = -EFAULT;
871 			break;
872 		}
873 
874 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
875 		if (!this_len) {
876 			if (!copied)
877 				copied = -EIO;
878 			break;
879 		}
880 
881 		if (!write && copy_to_user(buf, page, this_len)) {
882 			copied = -EFAULT;
883 			break;
884 		}
885 
886 		buf += this_len;
887 		addr += this_len;
888 		copied += this_len;
889 		count -= this_len;
890 	}
891 	*ppos = addr;
892 
893 	mmput(mm);
894 free:
895 	free_page((unsigned long) page);
896 	return copied;
897 }
898 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)899 static ssize_t mem_read(struct file *file, char __user *buf,
900 			size_t count, loff_t *ppos)
901 {
902 	return mem_rw(file, buf, count, ppos, 0);
903 }
904 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)905 static ssize_t mem_write(struct file *file, const char __user *buf,
906 			 size_t count, loff_t *ppos)
907 {
908 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
909 }
910 
mem_lseek(struct file * file,loff_t offset,int orig)911 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
912 {
913 	loff_t ret = 0;
914 
915 	spin_lock(&file->f_lock);
916 	switch (orig) {
917 	case SEEK_CUR:
918 		offset += file->f_pos;
919 		/* fall through */
920 	case SEEK_SET:
921 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
922 		if ((unsigned long long)offset >= -MAX_ERRNO)
923 			ret = -EOVERFLOW;
924 		break;
925 	default:
926 		ret = -EINVAL;
927 	}
928 
929 	if (!ret) {
930 		if (offset < 0 && !(unsigned_offsets(file))) {
931 			ret = -EINVAL;
932 		} else {
933 			file->f_pos = offset;
934 			ret = file->f_pos;
935 			force_successful_syscall_return();
936 		}
937 	}
938 
939 	spin_unlock(&file->f_lock);
940 	return ret;
941 }
942 
mem_release(struct inode * inode,struct file * file)943 static int mem_release(struct inode *inode, struct file *file)
944 {
945 	struct mm_struct *mm = file->private_data;
946 	if (mm)
947 		mmdrop(mm);
948 	return 0;
949 }
950 
951 static const struct file_operations proc_mem_operations = {
952 	.llseek		= mem_lseek,
953 	.read		= mem_read,
954 	.write		= mem_write,
955 	.open		= mem_open,
956 	.release	= mem_release,
957 };
958 
environ_open(struct inode * inode,struct file * file)959 static int environ_open(struct inode *inode, struct file *file)
960 {
961 	return __mem_open(inode, file, PTRACE_MODE_READ);
962 }
963 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)964 static ssize_t environ_read(struct file *file, char __user *buf,
965 			size_t count, loff_t *ppos)
966 {
967 	char *page;
968 	unsigned long src = *ppos;
969 	int ret = 0;
970 	struct mm_struct *mm = file->private_data;
971 	unsigned long env_start, env_end;
972 
973 	/* Ensure the process spawned far enough to have an environment. */
974 	if (!mm || !mm->env_end)
975 		return 0;
976 
977 	page = (char *)__get_free_page(GFP_KERNEL);
978 	if (!page)
979 		return -ENOMEM;
980 
981 	ret = 0;
982 	if (!mmget_not_zero(mm))
983 		goto free;
984 
985 	spin_lock(&mm->arg_lock);
986 	env_start = mm->env_start;
987 	env_end = mm->env_end;
988 	spin_unlock(&mm->arg_lock);
989 
990 	while (count > 0) {
991 		size_t this_len, max_len;
992 		int retval;
993 
994 		if (src >= (env_end - env_start))
995 			break;
996 
997 		this_len = env_end - (env_start + src);
998 
999 		max_len = min_t(size_t, PAGE_SIZE, count);
1000 		this_len = min(max_len, this_len);
1001 
1002 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1003 
1004 		if (retval <= 0) {
1005 			ret = retval;
1006 			break;
1007 		}
1008 
1009 		if (copy_to_user(buf, page, retval)) {
1010 			ret = -EFAULT;
1011 			break;
1012 		}
1013 
1014 		ret += retval;
1015 		src += retval;
1016 		buf += retval;
1017 		count -= retval;
1018 	}
1019 	*ppos = src;
1020 	mmput(mm);
1021 
1022 free:
1023 	free_page((unsigned long) page);
1024 	return ret;
1025 }
1026 
1027 static const struct file_operations proc_environ_operations = {
1028 	.open		= environ_open,
1029 	.read		= environ_read,
1030 	.llseek		= generic_file_llseek,
1031 	.release	= mem_release,
1032 };
1033 
auxv_open(struct inode * inode,struct file * file)1034 static int auxv_open(struct inode *inode, struct file *file)
1035 {
1036 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1037 }
1038 
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1039 static ssize_t auxv_read(struct file *file, char __user *buf,
1040 			size_t count, loff_t *ppos)
1041 {
1042 	struct mm_struct *mm = file->private_data;
1043 	unsigned int nwords = 0;
1044 
1045 	if (!mm)
1046 		return 0;
1047 	do {
1048 		nwords += 2;
1049 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1050 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1051 				       nwords * sizeof(mm->saved_auxv[0]));
1052 }
1053 
1054 static const struct file_operations proc_auxv_operations = {
1055 	.open		= auxv_open,
1056 	.read		= auxv_read,
1057 	.llseek		= generic_file_llseek,
1058 	.release	= mem_release,
1059 };
1060 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1061 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1062 			    loff_t *ppos)
1063 {
1064 	struct task_struct *task = get_proc_task(file_inode(file));
1065 	char buffer[PROC_NUMBUF];
1066 	int oom_adj = OOM_ADJUST_MIN;
1067 	size_t len;
1068 
1069 	if (!task)
1070 		return -ESRCH;
1071 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1072 		oom_adj = OOM_ADJUST_MAX;
1073 	else
1074 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1075 			  OOM_SCORE_ADJ_MAX;
1076 	put_task_struct(task);
1077 	if (oom_adj > OOM_ADJUST_MAX)
1078 		oom_adj = OOM_ADJUST_MAX;
1079 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1080 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1081 }
1082 
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1083 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1084 {
1085 	struct mm_struct *mm = NULL;
1086 	struct task_struct *task;
1087 	int err = 0;
1088 
1089 	task = get_proc_task(file_inode(file));
1090 	if (!task)
1091 		return -ESRCH;
1092 
1093 	mutex_lock(&oom_adj_mutex);
1094 	if (legacy) {
1095 		if (oom_adj < task->signal->oom_score_adj &&
1096 				!capable(CAP_SYS_RESOURCE)) {
1097 			err = -EACCES;
1098 			goto err_unlock;
1099 		}
1100 		/*
1101 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1102 		 * /proc/pid/oom_score_adj instead.
1103 		 */
1104 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1105 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1106 			  task_pid_nr(task));
1107 	} else {
1108 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1109 				!capable(CAP_SYS_RESOURCE)) {
1110 			err = -EACCES;
1111 			goto err_unlock;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Make sure we will check other processes sharing the mm if this is
1117 	 * not vfrok which wants its own oom_score_adj.
1118 	 * pin the mm so it doesn't go away and get reused after task_unlock
1119 	 */
1120 	if (!task->vfork_done) {
1121 		struct task_struct *p = find_lock_task_mm(task);
1122 
1123 		if (p) {
1124 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1125 				mm = p->mm;
1126 				mmgrab(mm);
1127 			}
1128 			task_unlock(p);
1129 		}
1130 	}
1131 
1132 	task->signal->oom_score_adj = oom_adj;
1133 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1134 		task->signal->oom_score_adj_min = (short)oom_adj;
1135 	trace_oom_score_adj_update(task);
1136 
1137 	if (mm) {
1138 		struct task_struct *p;
1139 
1140 		rcu_read_lock();
1141 		for_each_process(p) {
1142 			if (same_thread_group(task, p))
1143 				continue;
1144 
1145 			/* do not touch kernel threads or the global init */
1146 			if (p->flags & PF_KTHREAD || is_global_init(p))
1147 				continue;
1148 
1149 			task_lock(p);
1150 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1151 				p->signal->oom_score_adj = oom_adj;
1152 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1153 					p->signal->oom_score_adj_min = (short)oom_adj;
1154 			}
1155 			task_unlock(p);
1156 		}
1157 		rcu_read_unlock();
1158 		mmdrop(mm);
1159 	}
1160 err_unlock:
1161 	mutex_unlock(&oom_adj_mutex);
1162 	put_task_struct(task);
1163 	return err;
1164 }
1165 
1166 /*
1167  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1168  * kernels.  The effective policy is defined by oom_score_adj, which has a
1169  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1170  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1171  * Processes that become oom disabled via oom_adj will still be oom disabled
1172  * with this implementation.
1173  *
1174  * oom_adj cannot be removed since existing userspace binaries use it.
1175  */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1176 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1177 			     size_t count, loff_t *ppos)
1178 {
1179 	char buffer[PROC_NUMBUF];
1180 	int oom_adj;
1181 	int err;
1182 
1183 	memset(buffer, 0, sizeof(buffer));
1184 	if (count > sizeof(buffer) - 1)
1185 		count = sizeof(buffer) - 1;
1186 	if (copy_from_user(buffer, buf, count)) {
1187 		err = -EFAULT;
1188 		goto out;
1189 	}
1190 
1191 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1192 	if (err)
1193 		goto out;
1194 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1195 	     oom_adj != OOM_DISABLE) {
1196 		err = -EINVAL;
1197 		goto out;
1198 	}
1199 
1200 	/*
1201 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1202 	 * value is always attainable.
1203 	 */
1204 	if (oom_adj == OOM_ADJUST_MAX)
1205 		oom_adj = OOM_SCORE_ADJ_MAX;
1206 	else
1207 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1208 
1209 	err = __set_oom_adj(file, oom_adj, true);
1210 out:
1211 	return err < 0 ? err : count;
1212 }
1213 
1214 static const struct file_operations proc_oom_adj_operations = {
1215 	.read		= oom_adj_read,
1216 	.write		= oom_adj_write,
1217 	.llseek		= generic_file_llseek,
1218 };
1219 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1220 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1221 					size_t count, loff_t *ppos)
1222 {
1223 	struct task_struct *task = get_proc_task(file_inode(file));
1224 	char buffer[PROC_NUMBUF];
1225 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1226 	size_t len;
1227 
1228 	if (!task)
1229 		return -ESRCH;
1230 	oom_score_adj = task->signal->oom_score_adj;
1231 	put_task_struct(task);
1232 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1233 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1234 }
1235 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1236 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1237 					size_t count, loff_t *ppos)
1238 {
1239 	char buffer[PROC_NUMBUF];
1240 	int oom_score_adj;
1241 	int err;
1242 
1243 	memset(buffer, 0, sizeof(buffer));
1244 	if (count > sizeof(buffer) - 1)
1245 		count = sizeof(buffer) - 1;
1246 	if (copy_from_user(buffer, buf, count)) {
1247 		err = -EFAULT;
1248 		goto out;
1249 	}
1250 
1251 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1252 	if (err)
1253 		goto out;
1254 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1255 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1256 		err = -EINVAL;
1257 		goto out;
1258 	}
1259 
1260 	err = __set_oom_adj(file, oom_score_adj, false);
1261 out:
1262 	return err < 0 ? err : count;
1263 }
1264 
1265 static const struct file_operations proc_oom_score_adj_operations = {
1266 	.read		= oom_score_adj_read,
1267 	.write		= oom_score_adj_write,
1268 	.llseek		= default_llseek,
1269 };
1270 
1271 #ifdef CONFIG_AUDIT
1272 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1273 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1274 				  size_t count, loff_t *ppos)
1275 {
1276 	struct inode * inode = file_inode(file);
1277 	struct task_struct *task = get_proc_task(inode);
1278 	ssize_t length;
1279 	char tmpbuf[TMPBUFLEN];
1280 
1281 	if (!task)
1282 		return -ESRCH;
1283 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1284 			   from_kuid(file->f_cred->user_ns,
1285 				     audit_get_loginuid(task)));
1286 	put_task_struct(task);
1287 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1288 }
1289 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1290 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1291 				   size_t count, loff_t *ppos)
1292 {
1293 	struct inode * inode = file_inode(file);
1294 	uid_t loginuid;
1295 	kuid_t kloginuid;
1296 	int rv;
1297 
1298 	/* Don't let kthreads write their own loginuid */
1299 	if (current->flags & PF_KTHREAD)
1300 		return -EPERM;
1301 
1302 	rcu_read_lock();
1303 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1304 		rcu_read_unlock();
1305 		return -EPERM;
1306 	}
1307 	rcu_read_unlock();
1308 
1309 	if (*ppos != 0) {
1310 		/* No partial writes. */
1311 		return -EINVAL;
1312 	}
1313 
1314 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1315 	if (rv < 0)
1316 		return rv;
1317 
1318 	/* is userspace tring to explicitly UNSET the loginuid? */
1319 	if (loginuid == AUDIT_UID_UNSET) {
1320 		kloginuid = INVALID_UID;
1321 	} else {
1322 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1323 		if (!uid_valid(kloginuid))
1324 			return -EINVAL;
1325 	}
1326 
1327 	rv = audit_set_loginuid(kloginuid);
1328 	if (rv < 0)
1329 		return rv;
1330 	return count;
1331 }
1332 
1333 static const struct file_operations proc_loginuid_operations = {
1334 	.read		= proc_loginuid_read,
1335 	.write		= proc_loginuid_write,
1336 	.llseek		= generic_file_llseek,
1337 };
1338 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1339 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1340 				  size_t count, loff_t *ppos)
1341 {
1342 	struct inode * inode = file_inode(file);
1343 	struct task_struct *task = get_proc_task(inode);
1344 	ssize_t length;
1345 	char tmpbuf[TMPBUFLEN];
1346 
1347 	if (!task)
1348 		return -ESRCH;
1349 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1350 				audit_get_sessionid(task));
1351 	put_task_struct(task);
1352 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1353 }
1354 
1355 static const struct file_operations proc_sessionid_operations = {
1356 	.read		= proc_sessionid_read,
1357 	.llseek		= generic_file_llseek,
1358 };
1359 #endif
1360 
1361 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1362 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1363 				      size_t count, loff_t *ppos)
1364 {
1365 	struct task_struct *task = get_proc_task(file_inode(file));
1366 	char buffer[PROC_NUMBUF];
1367 	size_t len;
1368 	int make_it_fail;
1369 
1370 	if (!task)
1371 		return -ESRCH;
1372 	make_it_fail = task->make_it_fail;
1373 	put_task_struct(task);
1374 
1375 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1376 
1377 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1378 }
1379 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1380 static ssize_t proc_fault_inject_write(struct file * file,
1381 			const char __user * buf, size_t count, loff_t *ppos)
1382 {
1383 	struct task_struct *task;
1384 	char buffer[PROC_NUMBUF];
1385 	int make_it_fail;
1386 	int rv;
1387 
1388 	if (!capable(CAP_SYS_RESOURCE))
1389 		return -EPERM;
1390 	memset(buffer, 0, sizeof(buffer));
1391 	if (count > sizeof(buffer) - 1)
1392 		count = sizeof(buffer) - 1;
1393 	if (copy_from_user(buffer, buf, count))
1394 		return -EFAULT;
1395 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1396 	if (rv < 0)
1397 		return rv;
1398 	if (make_it_fail < 0 || make_it_fail > 1)
1399 		return -EINVAL;
1400 
1401 	task = get_proc_task(file_inode(file));
1402 	if (!task)
1403 		return -ESRCH;
1404 	task->make_it_fail = make_it_fail;
1405 	put_task_struct(task);
1406 
1407 	return count;
1408 }
1409 
1410 static const struct file_operations proc_fault_inject_operations = {
1411 	.read		= proc_fault_inject_read,
1412 	.write		= proc_fault_inject_write,
1413 	.llseek		= generic_file_llseek,
1414 };
1415 
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1416 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1417 				   size_t count, loff_t *ppos)
1418 {
1419 	struct task_struct *task;
1420 	int err;
1421 	unsigned int n;
1422 
1423 	err = kstrtouint_from_user(buf, count, 0, &n);
1424 	if (err)
1425 		return err;
1426 
1427 	task = get_proc_task(file_inode(file));
1428 	if (!task)
1429 		return -ESRCH;
1430 	task->fail_nth = n;
1431 	put_task_struct(task);
1432 
1433 	return count;
1434 }
1435 
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1436 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1437 				  size_t count, loff_t *ppos)
1438 {
1439 	struct task_struct *task;
1440 	char numbuf[PROC_NUMBUF];
1441 	ssize_t len;
1442 
1443 	task = get_proc_task(file_inode(file));
1444 	if (!task)
1445 		return -ESRCH;
1446 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1447 	put_task_struct(task);
1448 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1449 }
1450 
1451 static const struct file_operations proc_fail_nth_operations = {
1452 	.read		= proc_fail_nth_read,
1453 	.write		= proc_fail_nth_write,
1454 };
1455 #endif
1456 
1457 
1458 #ifdef CONFIG_SCHED_DEBUG
1459 /*
1460  * Print out various scheduling related per-task fields:
1461  */
sched_show(struct seq_file * m,void * v)1462 static int sched_show(struct seq_file *m, void *v)
1463 {
1464 	struct inode *inode = m->private;
1465 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1466 	struct task_struct *p;
1467 
1468 	p = get_proc_task(inode);
1469 	if (!p)
1470 		return -ESRCH;
1471 	proc_sched_show_task(p, ns, m);
1472 
1473 	put_task_struct(p);
1474 
1475 	return 0;
1476 }
1477 
1478 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1479 sched_write(struct file *file, const char __user *buf,
1480 	    size_t count, loff_t *offset)
1481 {
1482 	struct inode *inode = file_inode(file);
1483 	struct task_struct *p;
1484 
1485 	p = get_proc_task(inode);
1486 	if (!p)
1487 		return -ESRCH;
1488 	proc_sched_set_task(p);
1489 
1490 	put_task_struct(p);
1491 
1492 	return count;
1493 }
1494 
sched_open(struct inode * inode,struct file * filp)1495 static int sched_open(struct inode *inode, struct file *filp)
1496 {
1497 	return single_open(filp, sched_show, inode);
1498 }
1499 
1500 static const struct file_operations proc_pid_sched_operations = {
1501 	.open		= sched_open,
1502 	.read		= seq_read,
1503 	.write		= sched_write,
1504 	.llseek		= seq_lseek,
1505 	.release	= single_release,
1506 };
1507 
1508 #endif
1509 
1510 #ifdef CONFIG_QOS_CTRL
proc_qos_ctrl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1511 long proc_qos_ctrl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1512 {
1513 	return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_AARCH64, file, cmd, arg);
1514 }
1515 
1516 #ifdef CONFIG_COMPAT
proc_qos_ctrl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1517 long proc_qos_ctrl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1518 {
1519 	return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_ARM32, file, cmd,
1520 			(unsigned long)(compat_ptr((compat_uptr_t)arg)));
1521 }
1522 #endif
1523 
proc_qos_ctrl_open(struct inode * inode,struct file * filp)1524 int proc_qos_ctrl_open(struct inode *inode, struct file *filp)
1525 {
1526 	return 0;
1527 }
1528 
1529 static const struct file_operations proc_qos_ctrl_operations = {
1530 	.open   = proc_qos_ctrl_open,
1531 	.unlocked_ioctl = proc_qos_ctrl_ioctl,
1532 #ifdef CONFIG_COMPAT
1533 	.compat_ioctl = proc_qos_ctrl_compat_ioctl,
1534 #endif
1535 };
1536 #endif
1537 
1538 #ifdef CONFIG_SCHED_RTG
1539 static const struct file_operations proc_rtg_operations = {
1540 	.open		= proc_rtg_open,
1541 	.unlocked_ioctl	= proc_rtg_ioctl,
1542 #ifdef CONFIG_COMPAT
1543 	.compat_ioctl	= proc_rtg_compat_ioctl,
1544 #endif
1545 };
1546 #endif
1547 
1548 #ifdef CONFIG_SCHED_RTG_DEBUG
sched_group_id_show(struct seq_file * m,void * v)1549 static int sched_group_id_show(struct seq_file *m, void *v)
1550 {
1551 	struct inode *inode = m->private;
1552 	struct task_struct *p;
1553 
1554 	p = get_proc_task(inode);
1555 	if (!p)
1556 		return -ESRCH;
1557 
1558 	seq_printf(m, "%d\n", sched_get_group_id(p));
1559 
1560 	put_task_struct(p);
1561 
1562 	return 0;
1563 }
1564 
1565 static ssize_t
sched_group_id_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1566 sched_group_id_write(struct file *file, const char __user *buf,
1567 	    size_t count, loff_t *offset)
1568 {
1569 	struct inode *inode = file_inode(file);
1570 	struct task_struct *p;
1571 	char buffer[PROC_NUMBUF];
1572 	int group_id, err;
1573 
1574 	memset(buffer, 0, sizeof(buffer));
1575 	if (count > sizeof(buffer) - 1)
1576 		count = sizeof(buffer) - 1;
1577 	if (copy_from_user(buffer, buf, count)) {
1578 		err = -EFAULT;
1579 		goto out;
1580 	}
1581 
1582 	err = kstrtoint(strstrip(buffer), 0, &group_id);
1583 	if (err)
1584 		goto out;
1585 
1586 	p = get_proc_task(inode);
1587 	if (!p)
1588 		return -ESRCH;
1589 
1590 	err = sched_set_group_id(p, group_id);
1591 
1592 	put_task_struct(p);
1593 
1594 out:
1595 	return err < 0 ? err : count;
1596 }
1597 
sched_group_id_open(struct inode * inode,struct file * filp)1598 static int sched_group_id_open(struct inode *inode, struct file *filp)
1599 {
1600 	return single_open(filp, sched_group_id_show, inode);
1601 }
1602 
1603 static const struct file_operations proc_pid_sched_group_id_operations = {
1604 	.open		= sched_group_id_open,
1605 	.read		= seq_read,
1606 	.write		= sched_group_id_write,
1607 	.llseek		= seq_lseek,
1608 	.release	= single_release,
1609 };
1610 #endif	/* CONFIG_SCHED_RTG_DEBUG */
1611 
1612 #ifdef CONFIG_SCHED_AUTOGROUP
1613 /*
1614  * Print out autogroup related information:
1615  */
sched_autogroup_show(struct seq_file * m,void * v)1616 static int sched_autogroup_show(struct seq_file *m, void *v)
1617 {
1618 	struct inode *inode = m->private;
1619 	struct task_struct *p;
1620 
1621 	p = get_proc_task(inode);
1622 	if (!p)
1623 		return -ESRCH;
1624 	proc_sched_autogroup_show_task(p, m);
1625 
1626 	put_task_struct(p);
1627 
1628 	return 0;
1629 }
1630 
1631 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1632 sched_autogroup_write(struct file *file, const char __user *buf,
1633 	    size_t count, loff_t *offset)
1634 {
1635 	struct inode *inode = file_inode(file);
1636 	struct task_struct *p;
1637 	char buffer[PROC_NUMBUF];
1638 	int nice;
1639 	int err;
1640 
1641 	memset(buffer, 0, sizeof(buffer));
1642 	if (count > sizeof(buffer) - 1)
1643 		count = sizeof(buffer) - 1;
1644 	if (copy_from_user(buffer, buf, count))
1645 		return -EFAULT;
1646 
1647 	err = kstrtoint(strstrip(buffer), 0, &nice);
1648 	if (err < 0)
1649 		return err;
1650 
1651 	p = get_proc_task(inode);
1652 	if (!p)
1653 		return -ESRCH;
1654 
1655 	err = proc_sched_autogroup_set_nice(p, nice);
1656 	if (err)
1657 		count = err;
1658 
1659 	put_task_struct(p);
1660 
1661 	return count;
1662 }
1663 
sched_autogroup_open(struct inode * inode,struct file * filp)1664 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1665 {
1666 	int ret;
1667 
1668 	ret = single_open(filp, sched_autogroup_show, NULL);
1669 	if (!ret) {
1670 		struct seq_file *m = filp->private_data;
1671 
1672 		m->private = inode;
1673 	}
1674 	return ret;
1675 }
1676 
1677 static const struct file_operations proc_pid_sched_autogroup_operations = {
1678 	.open		= sched_autogroup_open,
1679 	.read		= seq_read,
1680 	.write		= sched_autogroup_write,
1681 	.llseek		= seq_lseek,
1682 	.release	= single_release,
1683 };
1684 
1685 #endif /* CONFIG_SCHED_AUTOGROUP */
1686 
1687 #ifdef CONFIG_SCHED_WALT
sched_init_task_load_show(struct seq_file * m,void * v)1688 static int sched_init_task_load_show(struct seq_file *m, void *v)
1689 {
1690 	struct inode *inode = m->private;
1691 	struct task_struct *p;
1692 
1693 	p = get_proc_task(inode);
1694 	if (!p)
1695 		return -ESRCH;
1696 
1697 	seq_printf(m, "%d\n", sched_get_init_task_load(p));
1698 
1699 	put_task_struct(p);
1700 
1701 	return 0;
1702 }
1703 
1704 static ssize_t
sched_init_task_load_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1705 sched_init_task_load_write(struct file *file, const char __user *buf,
1706 	    size_t count, loff_t *offset)
1707 {
1708 	struct inode *inode = file_inode(file);
1709 	struct task_struct *p;
1710 	char buffer[PROC_NUMBUF];
1711 	int init_task_load, err;
1712 
1713 	memset(buffer, 0, sizeof(buffer));
1714 	if (count > sizeof(buffer) - 1)
1715 		count = sizeof(buffer) - 1;
1716 	if (copy_from_user(buffer, buf, count)) {
1717 		err = -EFAULT;
1718 		goto out;
1719 	}
1720 
1721 	err = kstrtoint(strstrip(buffer), 0, &init_task_load);
1722 	if (err)
1723 		goto out;
1724 
1725 	p = get_proc_task(inode);
1726 	if (!p)
1727 		return -ESRCH;
1728 
1729 	err = sched_set_init_task_load(p, init_task_load);
1730 
1731 	put_task_struct(p);
1732 
1733 out:
1734 	return err < 0 ? err : count;
1735 }
1736 
sched_init_task_load_open(struct inode * inode,struct file * filp)1737 static int sched_init_task_load_open(struct inode *inode, struct file *filp)
1738 {
1739 	return single_open(filp, sched_init_task_load_show, inode);
1740 }
1741 
1742 static const struct file_operations proc_pid_sched_init_task_load_operations = {
1743 	.open		= sched_init_task_load_open,
1744 	.read		= seq_read,
1745 	.write		= sched_init_task_load_write,
1746 	.llseek		= seq_lseek,
1747 	.release	= single_release,
1748 };
1749 #endif	/* CONFIG_SCHED_WALT */
1750 
1751 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1752 static int timens_offsets_show(struct seq_file *m, void *v)
1753 {
1754 	struct task_struct *p;
1755 
1756 	p = get_proc_task(file_inode(m->file));
1757 	if (!p)
1758 		return -ESRCH;
1759 	proc_timens_show_offsets(p, m);
1760 
1761 	put_task_struct(p);
1762 
1763 	return 0;
1764 }
1765 
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1766 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1767 				    size_t count, loff_t *ppos)
1768 {
1769 	struct inode *inode = file_inode(file);
1770 	struct proc_timens_offset offsets[2];
1771 	char *kbuf = NULL, *pos, *next_line;
1772 	struct task_struct *p;
1773 	int ret, noffsets;
1774 
1775 	/* Only allow < page size writes at the beginning of the file */
1776 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1777 		return -EINVAL;
1778 
1779 	/* Slurp in the user data */
1780 	kbuf = memdup_user_nul(buf, count);
1781 	if (IS_ERR(kbuf))
1782 		return PTR_ERR(kbuf);
1783 
1784 	/* Parse the user data */
1785 	ret = -EINVAL;
1786 	noffsets = 0;
1787 	for (pos = kbuf; pos; pos = next_line) {
1788 		struct proc_timens_offset *off = &offsets[noffsets];
1789 		char clock[10];
1790 		int err;
1791 
1792 		/* Find the end of line and ensure we don't look past it */
1793 		next_line = strchr(pos, '\n');
1794 		if (next_line) {
1795 			*next_line = '\0';
1796 			next_line++;
1797 			if (*next_line == '\0')
1798 				next_line = NULL;
1799 		}
1800 
1801 		err = sscanf(pos, "%9s %lld %lu", clock,
1802 				&off->val.tv_sec, &off->val.tv_nsec);
1803 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1804 			goto out;
1805 
1806 		clock[sizeof(clock) - 1] = 0;
1807 		if (strcmp(clock, "monotonic") == 0 ||
1808 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1809 			off->clockid = CLOCK_MONOTONIC;
1810 		else if (strcmp(clock, "boottime") == 0 ||
1811 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1812 			off->clockid = CLOCK_BOOTTIME;
1813 		else
1814 			goto out;
1815 
1816 		noffsets++;
1817 		if (noffsets == ARRAY_SIZE(offsets)) {
1818 			if (next_line)
1819 				count = next_line - kbuf;
1820 			break;
1821 		}
1822 	}
1823 
1824 	ret = -ESRCH;
1825 	p = get_proc_task(inode);
1826 	if (!p)
1827 		goto out;
1828 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1829 	put_task_struct(p);
1830 	if (ret)
1831 		goto out;
1832 
1833 	ret = count;
1834 out:
1835 	kfree(kbuf);
1836 	return ret;
1837 }
1838 
timens_offsets_open(struct inode * inode,struct file * filp)1839 static int timens_offsets_open(struct inode *inode, struct file *filp)
1840 {
1841 	return single_open(filp, timens_offsets_show, inode);
1842 }
1843 
1844 static const struct file_operations proc_timens_offsets_operations = {
1845 	.open		= timens_offsets_open,
1846 	.read		= seq_read,
1847 	.write		= timens_offsets_write,
1848 	.llseek		= seq_lseek,
1849 	.release	= single_release,
1850 };
1851 #endif /* CONFIG_TIME_NS */
1852 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1853 static ssize_t comm_write(struct file *file, const char __user *buf,
1854 				size_t count, loff_t *offset)
1855 {
1856 	struct inode *inode = file_inode(file);
1857 	struct task_struct *p;
1858 	char buffer[TASK_COMM_LEN];
1859 	const size_t maxlen = sizeof(buffer) - 1;
1860 
1861 	memset(buffer, 0, sizeof(buffer));
1862 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1863 		return -EFAULT;
1864 
1865 	p = get_proc_task(inode);
1866 	if (!p)
1867 		return -ESRCH;
1868 
1869 	if (same_thread_group(current, p))
1870 		set_task_comm(p, buffer);
1871 	else
1872 		count = -EINVAL;
1873 
1874 	put_task_struct(p);
1875 
1876 	return count;
1877 }
1878 
comm_show(struct seq_file * m,void * v)1879 static int comm_show(struct seq_file *m, void *v)
1880 {
1881 	struct inode *inode = m->private;
1882 	struct task_struct *p;
1883 
1884 	p = get_proc_task(inode);
1885 	if (!p)
1886 		return -ESRCH;
1887 
1888 	proc_task_name(m, p, false);
1889 	seq_putc(m, '\n');
1890 
1891 	put_task_struct(p);
1892 
1893 	return 0;
1894 }
1895 
comm_open(struct inode * inode,struct file * filp)1896 static int comm_open(struct inode *inode, struct file *filp)
1897 {
1898 	return single_open(filp, comm_show, inode);
1899 }
1900 
1901 static const struct file_operations proc_pid_set_comm_operations = {
1902 	.open		= comm_open,
1903 	.read		= seq_read,
1904 	.write		= comm_write,
1905 	.llseek		= seq_lseek,
1906 	.release	= single_release,
1907 };
1908 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1909 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1910 {
1911 	struct task_struct *task;
1912 	struct file *exe_file;
1913 
1914 	task = get_proc_task(d_inode(dentry));
1915 	if (!task)
1916 		return -ENOENT;
1917 	exe_file = get_task_exe_file(task);
1918 	put_task_struct(task);
1919 	if (exe_file) {
1920 		*exe_path = exe_file->f_path;
1921 		path_get(&exe_file->f_path);
1922 		fput(exe_file);
1923 		return 0;
1924 	} else
1925 		return -ENOENT;
1926 }
1927 
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1928 static const char *proc_pid_get_link(struct dentry *dentry,
1929 				     struct inode *inode,
1930 				     struct delayed_call *done)
1931 {
1932 	struct path path;
1933 	int error = -EACCES;
1934 
1935 	if (!dentry)
1936 		return ERR_PTR(-ECHILD);
1937 
1938 	/* Are we allowed to snoop on the tasks file descriptors? */
1939 	if (!proc_fd_access_allowed(inode))
1940 		goto out;
1941 
1942 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1943 	if (error)
1944 		goto out;
1945 
1946 	error = nd_jump_link(&path);
1947 out:
1948 	return ERR_PTR(error);
1949 }
1950 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1951 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1952 {
1953 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1954 	char *pathname;
1955 	int len;
1956 
1957 	if (!tmp)
1958 		return -ENOMEM;
1959 
1960 	pathname = d_path(path, tmp, PAGE_SIZE);
1961 	len = PTR_ERR(pathname);
1962 	if (IS_ERR(pathname))
1963 		goto out;
1964 	len = tmp + PAGE_SIZE - 1 - pathname;
1965 
1966 	if (len > buflen)
1967 		len = buflen;
1968 	if (copy_to_user(buffer, pathname, len))
1969 		len = -EFAULT;
1970  out:
1971 	free_page((unsigned long)tmp);
1972 	return len;
1973 }
1974 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1975 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1976 {
1977 	int error = -EACCES;
1978 	struct inode *inode = d_inode(dentry);
1979 	struct path path;
1980 
1981 	/* Are we allowed to snoop on the tasks file descriptors? */
1982 	if (!proc_fd_access_allowed(inode))
1983 		goto out;
1984 
1985 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1986 	if (error)
1987 		goto out;
1988 
1989 	error = do_proc_readlink(&path, buffer, buflen);
1990 	path_put(&path);
1991 out:
1992 	return error;
1993 }
1994 
1995 const struct inode_operations proc_pid_link_inode_operations = {
1996 	.readlink	= proc_pid_readlink,
1997 	.get_link	= proc_pid_get_link,
1998 	.setattr	= proc_setattr,
1999 };
2000 
2001 
2002 /* building an inode */
2003 
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)2004 void task_dump_owner(struct task_struct *task, umode_t mode,
2005 		     kuid_t *ruid, kgid_t *rgid)
2006 {
2007 	/* Depending on the state of dumpable compute who should own a
2008 	 * proc file for a task.
2009 	 */
2010 	const struct cred *cred;
2011 	kuid_t uid;
2012 	kgid_t gid;
2013 
2014 	if (unlikely(task->flags & PF_KTHREAD)) {
2015 		*ruid = GLOBAL_ROOT_UID;
2016 		*rgid = GLOBAL_ROOT_GID;
2017 		return;
2018 	}
2019 
2020 	/* Default to the tasks effective ownership */
2021 	rcu_read_lock();
2022 	cred = __task_cred(task);
2023 	uid = cred->euid;
2024 	gid = cred->egid;
2025 	rcu_read_unlock();
2026 
2027 	/*
2028 	 * Before the /proc/pid/status file was created the only way to read
2029 	 * the effective uid of a /process was to stat /proc/pid.  Reading
2030 	 * /proc/pid/status is slow enough that procps and other packages
2031 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
2032 	 * made this apply to all per process world readable and executable
2033 	 * directories.
2034 	 */
2035 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
2036 		struct mm_struct *mm;
2037 		task_lock(task);
2038 		mm = task->mm;
2039 		/* Make non-dumpable tasks owned by some root */
2040 		if (mm) {
2041 			if (get_dumpable(mm) != SUID_DUMP_USER) {
2042 				struct user_namespace *user_ns = mm->user_ns;
2043 
2044 				uid = make_kuid(user_ns, 0);
2045 				if (!uid_valid(uid))
2046 					uid = GLOBAL_ROOT_UID;
2047 
2048 				gid = make_kgid(user_ns, 0);
2049 				if (!gid_valid(gid))
2050 					gid = GLOBAL_ROOT_GID;
2051 			}
2052 		} else {
2053 			uid = GLOBAL_ROOT_UID;
2054 			gid = GLOBAL_ROOT_GID;
2055 		}
2056 		task_unlock(task);
2057 	}
2058 	*ruid = uid;
2059 	*rgid = gid;
2060 }
2061 
proc_pid_evict_inode(struct proc_inode * ei)2062 void proc_pid_evict_inode(struct proc_inode *ei)
2063 {
2064 	struct pid *pid = ei->pid;
2065 
2066 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
2067 		spin_lock(&pid->lock);
2068 		hlist_del_init_rcu(&ei->sibling_inodes);
2069 		spin_unlock(&pid->lock);
2070 	}
2071 
2072 	put_pid(pid);
2073 }
2074 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2075 struct inode *proc_pid_make_inode(struct super_block * sb,
2076 				  struct task_struct *task, umode_t mode)
2077 {
2078 	struct inode * inode;
2079 	struct proc_inode *ei;
2080 	struct pid *pid;
2081 
2082 	/* We need a new inode */
2083 
2084 	inode = new_inode(sb);
2085 	if (!inode)
2086 		goto out;
2087 
2088 	/* Common stuff */
2089 	ei = PROC_I(inode);
2090 	inode->i_mode = mode;
2091 	inode->i_ino = get_next_ino();
2092 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2093 	inode->i_op = &proc_def_inode_operations;
2094 
2095 	/*
2096 	 * grab the reference to task.
2097 	 */
2098 	pid = get_task_pid(task, PIDTYPE_PID);
2099 	if (!pid)
2100 		goto out_unlock;
2101 
2102 	/* Let the pid remember us for quick removal */
2103 	ei->pid = pid;
2104 	if (S_ISDIR(mode)) {
2105 		spin_lock(&pid->lock);
2106 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2107 		spin_unlock(&pid->lock);
2108 	}
2109 
2110 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2111 	security_task_to_inode(task, inode);
2112 
2113 out:
2114 	return inode;
2115 
2116 out_unlock:
2117 	iput(inode);
2118 	return NULL;
2119 }
2120 
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2121 int pid_getattr(const struct path *path, struct kstat *stat,
2122 		u32 request_mask, unsigned int query_flags)
2123 {
2124 	struct inode *inode = d_inode(path->dentry);
2125 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2126 	struct task_struct *task;
2127 
2128 	generic_fillattr(inode, stat);
2129 
2130 	stat->uid = GLOBAL_ROOT_UID;
2131 	stat->gid = GLOBAL_ROOT_GID;
2132 	rcu_read_lock();
2133 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2134 	if (task) {
2135 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2136 			rcu_read_unlock();
2137 			/*
2138 			 * This doesn't prevent learning whether PID exists,
2139 			 * it only makes getattr() consistent with readdir().
2140 			 */
2141 			return -ENOENT;
2142 		}
2143 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2144 	}
2145 	rcu_read_unlock();
2146 	return 0;
2147 }
2148 
2149 /* dentry stuff */
2150 
2151 /*
2152  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2153  */
pid_update_inode(struct task_struct * task,struct inode * inode)2154 void pid_update_inode(struct task_struct *task, struct inode *inode)
2155 {
2156 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2157 
2158 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2159 	security_task_to_inode(task, inode);
2160 }
2161 
2162 /*
2163  * Rewrite the inode's ownerships here because the owning task may have
2164  * performed a setuid(), etc.
2165  *
2166  */
pid_revalidate(struct dentry * dentry,unsigned int flags)2167 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2168 {
2169 	struct inode *inode;
2170 	struct task_struct *task;
2171 
2172 	if (flags & LOOKUP_RCU)
2173 		return -ECHILD;
2174 
2175 	inode = d_inode(dentry);
2176 	task = get_proc_task(inode);
2177 
2178 	if (task) {
2179 		pid_update_inode(task, inode);
2180 		put_task_struct(task);
2181 		return 1;
2182 	}
2183 	return 0;
2184 }
2185 
proc_inode_is_dead(struct inode * inode)2186 static inline bool proc_inode_is_dead(struct inode *inode)
2187 {
2188 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2189 }
2190 
pid_delete_dentry(const struct dentry * dentry)2191 int pid_delete_dentry(const struct dentry *dentry)
2192 {
2193 	/* Is the task we represent dead?
2194 	 * If so, then don't put the dentry on the lru list,
2195 	 * kill it immediately.
2196 	 */
2197 	return proc_inode_is_dead(d_inode(dentry));
2198 }
2199 
2200 const struct dentry_operations pid_dentry_operations =
2201 {
2202 	.d_revalidate	= pid_revalidate,
2203 	.d_delete	= pid_delete_dentry,
2204 };
2205 
2206 /* Lookups */
2207 
2208 /*
2209  * Fill a directory entry.
2210  *
2211  * If possible create the dcache entry and derive our inode number and
2212  * file type from dcache entry.
2213  *
2214  * Since all of the proc inode numbers are dynamically generated, the inode
2215  * numbers do not exist until the inode is cache.  This means creating the
2216  * the dcache entry in readdir is necessary to keep the inode numbers
2217  * reported by readdir in sync with the inode numbers reported
2218  * by stat.
2219  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2220 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2221 	const char *name, unsigned int len,
2222 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2223 {
2224 	struct dentry *child, *dir = file->f_path.dentry;
2225 	struct qstr qname = QSTR_INIT(name, len);
2226 	struct inode *inode;
2227 	unsigned type = DT_UNKNOWN;
2228 	ino_t ino = 1;
2229 
2230 	child = d_hash_and_lookup(dir, &qname);
2231 	if (!child) {
2232 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2233 		child = d_alloc_parallel(dir, &qname, &wq);
2234 		if (IS_ERR(child))
2235 			goto end_instantiate;
2236 		if (d_in_lookup(child)) {
2237 			struct dentry *res;
2238 			res = instantiate(child, task, ptr);
2239 			d_lookup_done(child);
2240 			if (unlikely(res)) {
2241 				dput(child);
2242 				child = res;
2243 				if (IS_ERR(child))
2244 					goto end_instantiate;
2245 			}
2246 		}
2247 	}
2248 	inode = d_inode(child);
2249 	ino = inode->i_ino;
2250 	type = inode->i_mode >> 12;
2251 	dput(child);
2252 end_instantiate:
2253 	return dir_emit(ctx, name, len, ino, type);
2254 }
2255 
2256 /*
2257  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2258  * which represent vma start and end addresses.
2259  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2260 static int dname_to_vma_addr(struct dentry *dentry,
2261 			     unsigned long *start, unsigned long *end)
2262 {
2263 	const char *str = dentry->d_name.name;
2264 	unsigned long long sval, eval;
2265 	unsigned int len;
2266 
2267 	if (str[0] == '0' && str[1] != '-')
2268 		return -EINVAL;
2269 	len = _parse_integer(str, 16, &sval);
2270 	if (len & KSTRTOX_OVERFLOW)
2271 		return -EINVAL;
2272 	if (sval != (unsigned long)sval)
2273 		return -EINVAL;
2274 	str += len;
2275 
2276 	if (*str != '-')
2277 		return -EINVAL;
2278 	str++;
2279 
2280 	if (str[0] == '0' && str[1])
2281 		return -EINVAL;
2282 	len = _parse_integer(str, 16, &eval);
2283 	if (len & KSTRTOX_OVERFLOW)
2284 		return -EINVAL;
2285 	if (eval != (unsigned long)eval)
2286 		return -EINVAL;
2287 	str += len;
2288 
2289 	if (*str != '\0')
2290 		return -EINVAL;
2291 
2292 	*start = sval;
2293 	*end = eval;
2294 
2295 	return 0;
2296 }
2297 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2298 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2299 {
2300 	unsigned long vm_start, vm_end;
2301 	bool exact_vma_exists = false;
2302 	struct mm_struct *mm = NULL;
2303 	struct task_struct *task;
2304 	struct inode *inode;
2305 	int status = 0;
2306 
2307 	if (flags & LOOKUP_RCU)
2308 		return -ECHILD;
2309 
2310 	inode = d_inode(dentry);
2311 	task = get_proc_task(inode);
2312 	if (!task)
2313 		goto out_notask;
2314 
2315 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2316 	if (IS_ERR_OR_NULL(mm))
2317 		goto out;
2318 
2319 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2320 		status = mmap_read_lock_killable(mm);
2321 		if (!status) {
2322 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2323 							    vm_end);
2324 			mmap_read_unlock(mm);
2325 		}
2326 	}
2327 
2328 	mmput(mm);
2329 
2330 	if (exact_vma_exists) {
2331 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2332 
2333 		security_task_to_inode(task, inode);
2334 		status = 1;
2335 	}
2336 
2337 out:
2338 	put_task_struct(task);
2339 
2340 out_notask:
2341 	return status;
2342 }
2343 
2344 static const struct dentry_operations tid_map_files_dentry_operations = {
2345 	.d_revalidate	= map_files_d_revalidate,
2346 	.d_delete	= pid_delete_dentry,
2347 };
2348 
map_files_get_link(struct dentry * dentry,struct path * path)2349 static int map_files_get_link(struct dentry *dentry, struct path *path)
2350 {
2351 	unsigned long vm_start, vm_end;
2352 	struct vm_area_struct *vma;
2353 	struct task_struct *task;
2354 	struct mm_struct *mm;
2355 	int rc;
2356 
2357 	rc = -ENOENT;
2358 	task = get_proc_task(d_inode(dentry));
2359 	if (!task)
2360 		goto out;
2361 
2362 	mm = get_task_mm(task);
2363 	put_task_struct(task);
2364 	if (!mm)
2365 		goto out;
2366 
2367 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2368 	if (rc)
2369 		goto out_mmput;
2370 
2371 	rc = mmap_read_lock_killable(mm);
2372 	if (rc)
2373 		goto out_mmput;
2374 
2375 	rc = -ENOENT;
2376 	vma = find_exact_vma(mm, vm_start, vm_end);
2377 	if (vma && vma->vm_file) {
2378 		*path = vma->vm_file->f_path;
2379 		path_get(path);
2380 		rc = 0;
2381 	}
2382 	mmap_read_unlock(mm);
2383 
2384 out_mmput:
2385 	mmput(mm);
2386 out:
2387 	return rc;
2388 }
2389 
2390 struct map_files_info {
2391 	unsigned long	start;
2392 	unsigned long	end;
2393 	fmode_t		mode;
2394 };
2395 
2396 /*
2397  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2398  * to concerns about how the symlinks may be used to bypass permissions on
2399  * ancestor directories in the path to the file in question.
2400  */
2401 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2402 proc_map_files_get_link(struct dentry *dentry,
2403 			struct inode *inode,
2404 		        struct delayed_call *done)
2405 {
2406 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2407 		return ERR_PTR(-EPERM);
2408 
2409 	return proc_pid_get_link(dentry, inode, done);
2410 }
2411 
2412 /*
2413  * Identical to proc_pid_link_inode_operations except for get_link()
2414  */
2415 static const struct inode_operations proc_map_files_link_inode_operations = {
2416 	.readlink	= proc_pid_readlink,
2417 	.get_link	= proc_map_files_get_link,
2418 	.setattr	= proc_setattr,
2419 };
2420 
2421 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2422 proc_map_files_instantiate(struct dentry *dentry,
2423 			   struct task_struct *task, const void *ptr)
2424 {
2425 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2426 	struct proc_inode *ei;
2427 	struct inode *inode;
2428 
2429 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2430 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2431 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2432 	if (!inode)
2433 		return ERR_PTR(-ENOENT);
2434 
2435 	ei = PROC_I(inode);
2436 	ei->op.proc_get_link = map_files_get_link;
2437 
2438 	inode->i_op = &proc_map_files_link_inode_operations;
2439 	inode->i_size = 64;
2440 
2441 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2442 	return d_splice_alias(inode, dentry);
2443 }
2444 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2445 static struct dentry *proc_map_files_lookup(struct inode *dir,
2446 		struct dentry *dentry, unsigned int flags)
2447 {
2448 	unsigned long vm_start, vm_end;
2449 	struct vm_area_struct *vma;
2450 	struct task_struct *task;
2451 	struct dentry *result;
2452 	struct mm_struct *mm;
2453 
2454 	result = ERR_PTR(-ENOENT);
2455 	task = get_proc_task(dir);
2456 	if (!task)
2457 		goto out;
2458 
2459 	result = ERR_PTR(-EACCES);
2460 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2461 		goto out_put_task;
2462 
2463 	result = ERR_PTR(-ENOENT);
2464 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2465 		goto out_put_task;
2466 
2467 	mm = get_task_mm(task);
2468 	if (!mm)
2469 		goto out_put_task;
2470 
2471 	result = ERR_PTR(-EINTR);
2472 	if (mmap_read_lock_killable(mm))
2473 		goto out_put_mm;
2474 
2475 	result = ERR_PTR(-ENOENT);
2476 	vma = find_exact_vma(mm, vm_start, vm_end);
2477 	if (!vma)
2478 		goto out_no_vma;
2479 
2480 	if (vma->vm_file)
2481 		result = proc_map_files_instantiate(dentry, task,
2482 				(void *)(unsigned long)vma->vm_file->f_mode);
2483 
2484 out_no_vma:
2485 	mmap_read_unlock(mm);
2486 out_put_mm:
2487 	mmput(mm);
2488 out_put_task:
2489 	put_task_struct(task);
2490 out:
2491 	return result;
2492 }
2493 
2494 static const struct inode_operations proc_map_files_inode_operations = {
2495 	.lookup		= proc_map_files_lookup,
2496 	.permission	= proc_fd_permission,
2497 	.setattr	= proc_setattr,
2498 };
2499 
2500 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2501 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2502 {
2503 	struct vm_area_struct *vma;
2504 	struct task_struct *task;
2505 	struct mm_struct *mm;
2506 	unsigned long nr_files, pos, i;
2507 	GENRADIX(struct map_files_info) fa;
2508 	struct map_files_info *p;
2509 	int ret;
2510 
2511 	genradix_init(&fa);
2512 
2513 	ret = -ENOENT;
2514 	task = get_proc_task(file_inode(file));
2515 	if (!task)
2516 		goto out;
2517 
2518 	ret = -EACCES;
2519 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2520 		goto out_put_task;
2521 
2522 	ret = 0;
2523 	if (!dir_emit_dots(file, ctx))
2524 		goto out_put_task;
2525 
2526 	mm = get_task_mm(task);
2527 	if (!mm)
2528 		goto out_put_task;
2529 
2530 	ret = mmap_read_lock_killable(mm);
2531 	if (ret) {
2532 		mmput(mm);
2533 		goto out_put_task;
2534 	}
2535 
2536 	nr_files = 0;
2537 
2538 	/*
2539 	 * We need two passes here:
2540 	 *
2541 	 *  1) Collect vmas of mapped files with mmap_lock taken
2542 	 *  2) Release mmap_lock and instantiate entries
2543 	 *
2544 	 * otherwise we get lockdep complained, since filldir()
2545 	 * routine might require mmap_lock taken in might_fault().
2546 	 */
2547 
2548 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2549 		if (!vma->vm_file)
2550 			continue;
2551 		if (++pos <= ctx->pos)
2552 			continue;
2553 
2554 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2555 		if (!p) {
2556 			ret = -ENOMEM;
2557 			mmap_read_unlock(mm);
2558 			mmput(mm);
2559 			goto out_put_task;
2560 		}
2561 
2562 		p->start = vma->vm_start;
2563 		p->end = vma->vm_end;
2564 		p->mode = vma->vm_file->f_mode;
2565 	}
2566 	mmap_read_unlock(mm);
2567 	mmput(mm);
2568 
2569 	for (i = 0; i < nr_files; i++) {
2570 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2571 		unsigned int len;
2572 
2573 		p = genradix_ptr(&fa, i);
2574 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2575 		if (!proc_fill_cache(file, ctx,
2576 				      buf, len,
2577 				      proc_map_files_instantiate,
2578 				      task,
2579 				      (void *)(unsigned long)p->mode))
2580 			break;
2581 		ctx->pos++;
2582 	}
2583 
2584 out_put_task:
2585 	put_task_struct(task);
2586 out:
2587 	genradix_free(&fa);
2588 	return ret;
2589 }
2590 
2591 static const struct file_operations proc_map_files_operations = {
2592 	.read		= generic_read_dir,
2593 	.iterate_shared	= proc_map_files_readdir,
2594 	.llseek		= generic_file_llseek,
2595 };
2596 
2597 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2598 struct timers_private {
2599 	struct pid *pid;
2600 	struct task_struct *task;
2601 	struct sighand_struct *sighand;
2602 	struct pid_namespace *ns;
2603 	unsigned long flags;
2604 };
2605 
timers_start(struct seq_file * m,loff_t * pos)2606 static void *timers_start(struct seq_file *m, loff_t *pos)
2607 {
2608 	struct timers_private *tp = m->private;
2609 
2610 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2611 	if (!tp->task)
2612 		return ERR_PTR(-ESRCH);
2613 
2614 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2615 	if (!tp->sighand)
2616 		return ERR_PTR(-ESRCH);
2617 
2618 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2619 }
2620 
timers_next(struct seq_file * m,void * v,loff_t * pos)2621 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2622 {
2623 	struct timers_private *tp = m->private;
2624 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2625 }
2626 
timers_stop(struct seq_file * m,void * v)2627 static void timers_stop(struct seq_file *m, void *v)
2628 {
2629 	struct timers_private *tp = m->private;
2630 
2631 	if (tp->sighand) {
2632 		unlock_task_sighand(tp->task, &tp->flags);
2633 		tp->sighand = NULL;
2634 	}
2635 
2636 	if (tp->task) {
2637 		put_task_struct(tp->task);
2638 		tp->task = NULL;
2639 	}
2640 }
2641 
show_timer(struct seq_file * m,void * v)2642 static int show_timer(struct seq_file *m, void *v)
2643 {
2644 	struct k_itimer *timer;
2645 	struct timers_private *tp = m->private;
2646 	int notify;
2647 	static const char * const nstr[] = {
2648 		[SIGEV_SIGNAL] = "signal",
2649 		[SIGEV_NONE] = "none",
2650 		[SIGEV_THREAD] = "thread",
2651 	};
2652 
2653 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2654 	notify = timer->it_sigev_notify;
2655 
2656 	seq_printf(m, "ID: %d\n", timer->it_id);
2657 	seq_printf(m, "signal: %d/%px\n",
2658 		   timer->sigq->info.si_signo,
2659 		   timer->sigq->info.si_value.sival_ptr);
2660 	seq_printf(m, "notify: %s/%s.%d\n",
2661 		   nstr[notify & ~SIGEV_THREAD_ID],
2662 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2663 		   pid_nr_ns(timer->it_pid, tp->ns));
2664 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2665 
2666 	return 0;
2667 }
2668 
2669 static const struct seq_operations proc_timers_seq_ops = {
2670 	.start	= timers_start,
2671 	.next	= timers_next,
2672 	.stop	= timers_stop,
2673 	.show	= show_timer,
2674 };
2675 
proc_timers_open(struct inode * inode,struct file * file)2676 static int proc_timers_open(struct inode *inode, struct file *file)
2677 {
2678 	struct timers_private *tp;
2679 
2680 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2681 			sizeof(struct timers_private));
2682 	if (!tp)
2683 		return -ENOMEM;
2684 
2685 	tp->pid = proc_pid(inode);
2686 	tp->ns = proc_pid_ns(inode->i_sb);
2687 	return 0;
2688 }
2689 
2690 static const struct file_operations proc_timers_operations = {
2691 	.open		= proc_timers_open,
2692 	.read		= seq_read,
2693 	.llseek		= seq_lseek,
2694 	.release	= seq_release_private,
2695 };
2696 #endif
2697 
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2698 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2699 					size_t count, loff_t *offset)
2700 {
2701 	struct inode *inode = file_inode(file);
2702 	struct task_struct *p;
2703 	u64 slack_ns;
2704 	int err;
2705 
2706 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2707 	if (err < 0)
2708 		return err;
2709 
2710 	p = get_proc_task(inode);
2711 	if (!p)
2712 		return -ESRCH;
2713 
2714 	if (p != current) {
2715 		rcu_read_lock();
2716 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2717 			rcu_read_unlock();
2718 			count = -EPERM;
2719 			goto out;
2720 		}
2721 		rcu_read_unlock();
2722 
2723 		err = security_task_setscheduler(p);
2724 		if (err) {
2725 			count = err;
2726 			goto out;
2727 		}
2728 	}
2729 
2730 	task_lock(p);
2731 	if (slack_ns == 0)
2732 		p->timer_slack_ns = p->default_timer_slack_ns;
2733 	else
2734 		p->timer_slack_ns = slack_ns;
2735 	task_unlock(p);
2736 
2737 out:
2738 	put_task_struct(p);
2739 
2740 	return count;
2741 }
2742 
timerslack_ns_show(struct seq_file * m,void * v)2743 static int timerslack_ns_show(struct seq_file *m, void *v)
2744 {
2745 	struct inode *inode = m->private;
2746 	struct task_struct *p;
2747 	int err = 0;
2748 
2749 	p = get_proc_task(inode);
2750 	if (!p)
2751 		return -ESRCH;
2752 
2753 	if (p != current) {
2754 		rcu_read_lock();
2755 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2756 			rcu_read_unlock();
2757 			err = -EPERM;
2758 			goto out;
2759 		}
2760 		rcu_read_unlock();
2761 
2762 		err = security_task_getscheduler(p);
2763 		if (err)
2764 			goto out;
2765 	}
2766 
2767 	task_lock(p);
2768 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2769 	task_unlock(p);
2770 
2771 out:
2772 	put_task_struct(p);
2773 
2774 	return err;
2775 }
2776 
timerslack_ns_open(struct inode * inode,struct file * filp)2777 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2778 {
2779 	return single_open(filp, timerslack_ns_show, inode);
2780 }
2781 
2782 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2783 	.open		= timerslack_ns_open,
2784 	.read		= seq_read,
2785 	.write		= timerslack_ns_write,
2786 	.llseek		= seq_lseek,
2787 	.release	= single_release,
2788 };
2789 
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2790 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2791 	struct task_struct *task, const void *ptr)
2792 {
2793 	const struct pid_entry *p = ptr;
2794 	struct inode *inode;
2795 	struct proc_inode *ei;
2796 
2797 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2798 	if (!inode)
2799 		return ERR_PTR(-ENOENT);
2800 
2801 	ei = PROC_I(inode);
2802 	if (S_ISDIR(inode->i_mode))
2803 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2804 	if (p->iop)
2805 		inode->i_op = p->iop;
2806 	if (p->fop)
2807 		inode->i_fop = p->fop;
2808 	ei->op = p->op;
2809 	pid_update_inode(task, inode);
2810 	d_set_d_op(dentry, &pid_dentry_operations);
2811 	return d_splice_alias(inode, dentry);
2812 }
2813 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2814 static struct dentry *proc_pident_lookup(struct inode *dir,
2815 					 struct dentry *dentry,
2816 					 const struct pid_entry *p,
2817 					 const struct pid_entry *end)
2818 {
2819 	struct task_struct *task = get_proc_task(dir);
2820 	struct dentry *res = ERR_PTR(-ENOENT);
2821 
2822 	if (!task)
2823 		goto out_no_task;
2824 
2825 	/*
2826 	 * Yes, it does not scale. And it should not. Don't add
2827 	 * new entries into /proc/<tgid>/ without very good reasons.
2828 	 */
2829 	for (; p < end; p++) {
2830 		if (p->len != dentry->d_name.len)
2831 			continue;
2832 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2833 			res = proc_pident_instantiate(dentry, task, p);
2834 			break;
2835 		}
2836 	}
2837 	put_task_struct(task);
2838 out_no_task:
2839 	return res;
2840 }
2841 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2842 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2843 		const struct pid_entry *ents, unsigned int nents)
2844 {
2845 	struct task_struct *task = get_proc_task(file_inode(file));
2846 	const struct pid_entry *p;
2847 
2848 	if (!task)
2849 		return -ENOENT;
2850 
2851 	if (!dir_emit_dots(file, ctx))
2852 		goto out;
2853 
2854 	if (ctx->pos >= nents + 2)
2855 		goto out;
2856 
2857 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2858 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2859 				proc_pident_instantiate, task, p))
2860 			break;
2861 		ctx->pos++;
2862 	}
2863 out:
2864 	put_task_struct(task);
2865 	return 0;
2866 }
2867 
2868 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2869 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2870 {
2871 	file->private_data = NULL;
2872 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2873 	return 0;
2874 }
2875 
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2876 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2877 				  size_t count, loff_t *ppos)
2878 {
2879 	struct inode * inode = file_inode(file);
2880 	char *p = NULL;
2881 	ssize_t length;
2882 	struct task_struct *task = get_proc_task(inode);
2883 
2884 	if (!task)
2885 		return -ESRCH;
2886 
2887 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2888 				      (char*)file->f_path.dentry->d_name.name,
2889 				      &p);
2890 	put_task_struct(task);
2891 	if (length > 0)
2892 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2893 	kfree(p);
2894 	return length;
2895 }
2896 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2897 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2898 				   size_t count, loff_t *ppos)
2899 {
2900 	struct inode * inode = file_inode(file);
2901 	struct task_struct *task;
2902 	void *page;
2903 	int rv;
2904 
2905 	/* A task may only write when it was the opener. */
2906 	if (file->private_data != current->mm)
2907 		return -EPERM;
2908 
2909 	rcu_read_lock();
2910 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2911 	if (!task) {
2912 		rcu_read_unlock();
2913 		return -ESRCH;
2914 	}
2915 	/* A task may only write its own attributes. */
2916 	if (current != task) {
2917 		rcu_read_unlock();
2918 		return -EACCES;
2919 	}
2920 	/* Prevent changes to overridden credentials. */
2921 	if (current_cred() != current_real_cred()) {
2922 		rcu_read_unlock();
2923 		return -EBUSY;
2924 	}
2925 	rcu_read_unlock();
2926 
2927 	if (count > PAGE_SIZE)
2928 		count = PAGE_SIZE;
2929 
2930 	/* No partial writes. */
2931 	if (*ppos != 0)
2932 		return -EINVAL;
2933 
2934 	page = memdup_user(buf, count);
2935 	if (IS_ERR(page)) {
2936 		rv = PTR_ERR(page);
2937 		goto out;
2938 	}
2939 
2940 	/* Guard against adverse ptrace interaction */
2941 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2942 	if (rv < 0)
2943 		goto out_free;
2944 
2945 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2946 				  file->f_path.dentry->d_name.name, page,
2947 				  count);
2948 	mutex_unlock(&current->signal->cred_guard_mutex);
2949 out_free:
2950 	kfree(page);
2951 out:
2952 	return rv;
2953 }
2954 
2955 static const struct file_operations proc_pid_attr_operations = {
2956 	.open		= proc_pid_attr_open,
2957 	.read		= proc_pid_attr_read,
2958 	.write		= proc_pid_attr_write,
2959 	.llseek		= generic_file_llseek,
2960 	.release	= mem_release,
2961 };
2962 
2963 #define LSM_DIR_OPS(LSM) \
2964 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2965 			     struct dir_context *ctx) \
2966 { \
2967 	return proc_pident_readdir(filp, ctx, \
2968 				   LSM##_attr_dir_stuff, \
2969 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2970 } \
2971 \
2972 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2973 	.read		= generic_read_dir, \
2974 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2975 	.llseek		= default_llseek, \
2976 }; \
2977 \
2978 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2979 				struct dentry *dentry, unsigned int flags) \
2980 { \
2981 	return proc_pident_lookup(dir, dentry, \
2982 				  LSM##_attr_dir_stuff, \
2983 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2984 } \
2985 \
2986 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2987 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2988 	.getattr	= pid_getattr, \
2989 	.setattr	= proc_setattr, \
2990 }
2991 
2992 #ifdef CONFIG_SECURITY_SMACK
2993 static const struct pid_entry smack_attr_dir_stuff[] = {
2994 	ATTR("smack", "current",	0666),
2995 };
2996 LSM_DIR_OPS(smack);
2997 #endif
2998 
2999 #ifdef CONFIG_SECURITY_APPARMOR
3000 static const struct pid_entry apparmor_attr_dir_stuff[] = {
3001 	ATTR("apparmor", "current",	0666),
3002 	ATTR("apparmor", "prev",	0444),
3003 	ATTR("apparmor", "exec",	0666),
3004 };
3005 LSM_DIR_OPS(apparmor);
3006 #endif
3007 
3008 static const struct pid_entry attr_dir_stuff[] = {
3009 	ATTR(NULL, "current",		0666),
3010 	ATTR(NULL, "prev",		0444),
3011 	ATTR(NULL, "exec",		0666),
3012 	ATTR(NULL, "fscreate",		0666),
3013 	ATTR(NULL, "keycreate",		0666),
3014 	ATTR(NULL, "sockcreate",	0666),
3015 #ifdef CONFIG_SECURITY_SMACK
3016 	DIR("smack",			0555,
3017 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
3018 #endif
3019 #ifdef CONFIG_SECURITY_APPARMOR
3020 	DIR("apparmor",			0555,
3021 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
3022 #endif
3023 };
3024 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)3025 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
3026 {
3027 	return proc_pident_readdir(file, ctx,
3028 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
3029 }
3030 
3031 static const struct file_operations proc_attr_dir_operations = {
3032 	.read		= generic_read_dir,
3033 	.iterate_shared	= proc_attr_dir_readdir,
3034 	.llseek		= generic_file_llseek,
3035 };
3036 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3037 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
3038 				struct dentry *dentry, unsigned int flags)
3039 {
3040 	return proc_pident_lookup(dir, dentry,
3041 				  attr_dir_stuff,
3042 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
3043 }
3044 
3045 static const struct inode_operations proc_attr_dir_inode_operations = {
3046 	.lookup		= proc_attr_dir_lookup,
3047 	.getattr	= pid_getattr,
3048 	.setattr	= proc_setattr,
3049 };
3050 
3051 #endif
3052 
3053 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3054 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
3055 					 size_t count, loff_t *ppos)
3056 {
3057 	struct task_struct *task = get_proc_task(file_inode(file));
3058 	struct mm_struct *mm;
3059 	char buffer[PROC_NUMBUF];
3060 	size_t len;
3061 	int ret;
3062 
3063 	if (!task)
3064 		return -ESRCH;
3065 
3066 	ret = 0;
3067 	mm = get_task_mm(task);
3068 	if (mm) {
3069 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
3070 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
3071 				MMF_DUMP_FILTER_SHIFT));
3072 		mmput(mm);
3073 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
3074 	}
3075 
3076 	put_task_struct(task);
3077 
3078 	return ret;
3079 }
3080 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)3081 static ssize_t proc_coredump_filter_write(struct file *file,
3082 					  const char __user *buf,
3083 					  size_t count,
3084 					  loff_t *ppos)
3085 {
3086 	struct task_struct *task;
3087 	struct mm_struct *mm;
3088 	unsigned int val;
3089 	int ret;
3090 	int i;
3091 	unsigned long mask;
3092 
3093 	ret = kstrtouint_from_user(buf, count, 0, &val);
3094 	if (ret < 0)
3095 		return ret;
3096 
3097 	ret = -ESRCH;
3098 	task = get_proc_task(file_inode(file));
3099 	if (!task)
3100 		goto out_no_task;
3101 
3102 	mm = get_task_mm(task);
3103 	if (!mm)
3104 		goto out_no_mm;
3105 	ret = 0;
3106 
3107 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3108 		if (val & mask)
3109 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3110 		else
3111 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3112 	}
3113 
3114 	mmput(mm);
3115  out_no_mm:
3116 	put_task_struct(task);
3117  out_no_task:
3118 	if (ret < 0)
3119 		return ret;
3120 	return count;
3121 }
3122 
3123 static const struct file_operations proc_coredump_filter_operations = {
3124 	.read		= proc_coredump_filter_read,
3125 	.write		= proc_coredump_filter_write,
3126 	.llseek		= generic_file_llseek,
3127 };
3128 #endif
3129 
3130 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3131 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3132 {
3133 	struct task_io_accounting acct = task->ioac;
3134 	unsigned long flags;
3135 	int result;
3136 
3137 	result = down_read_killable(&task->signal->exec_update_lock);
3138 	if (result)
3139 		return result;
3140 
3141 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3142 		result = -EACCES;
3143 		goto out_unlock;
3144 	}
3145 
3146 	if (whole && lock_task_sighand(task, &flags)) {
3147 		struct task_struct *t = task;
3148 
3149 		task_io_accounting_add(&acct, &task->signal->ioac);
3150 		while_each_thread(task, t)
3151 			task_io_accounting_add(&acct, &t->ioac);
3152 
3153 		unlock_task_sighand(task, &flags);
3154 	}
3155 	seq_printf(m,
3156 		   "rchar: %llu\n"
3157 		   "wchar: %llu\n"
3158 		   "syscr: %llu\n"
3159 		   "syscw: %llu\n"
3160 		   "read_bytes: %llu\n"
3161 		   "write_bytes: %llu\n"
3162 		   "cancelled_write_bytes: %llu\n",
3163 		   (unsigned long long)acct.rchar,
3164 		   (unsigned long long)acct.wchar,
3165 		   (unsigned long long)acct.syscr,
3166 		   (unsigned long long)acct.syscw,
3167 		   (unsigned long long)acct.read_bytes,
3168 		   (unsigned long long)acct.write_bytes,
3169 		   (unsigned long long)acct.cancelled_write_bytes);
3170 	result = 0;
3171 
3172 out_unlock:
3173 	up_read(&task->signal->exec_update_lock);
3174 	return result;
3175 }
3176 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3177 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3178 				  struct pid *pid, struct task_struct *task)
3179 {
3180 	return do_io_accounting(task, m, 0);
3181 }
3182 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3183 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3184 				   struct pid *pid, struct task_struct *task)
3185 {
3186 	return do_io_accounting(task, m, 1);
3187 }
3188 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3189 
3190 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3191 static int proc_id_map_open(struct inode *inode, struct file *file,
3192 	const struct seq_operations *seq_ops)
3193 {
3194 	struct user_namespace *ns = NULL;
3195 	struct task_struct *task;
3196 	struct seq_file *seq;
3197 	int ret = -EINVAL;
3198 
3199 	task = get_proc_task(inode);
3200 	if (task) {
3201 		rcu_read_lock();
3202 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3203 		rcu_read_unlock();
3204 		put_task_struct(task);
3205 	}
3206 	if (!ns)
3207 		goto err;
3208 
3209 	ret = seq_open(file, seq_ops);
3210 	if (ret)
3211 		goto err_put_ns;
3212 
3213 	seq = file->private_data;
3214 	seq->private = ns;
3215 
3216 	return 0;
3217 err_put_ns:
3218 	put_user_ns(ns);
3219 err:
3220 	return ret;
3221 }
3222 
proc_id_map_release(struct inode * inode,struct file * file)3223 static int proc_id_map_release(struct inode *inode, struct file *file)
3224 {
3225 	struct seq_file *seq = file->private_data;
3226 	struct user_namespace *ns = seq->private;
3227 	put_user_ns(ns);
3228 	return seq_release(inode, file);
3229 }
3230 
proc_uid_map_open(struct inode * inode,struct file * file)3231 static int proc_uid_map_open(struct inode *inode, struct file *file)
3232 {
3233 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3234 }
3235 
proc_gid_map_open(struct inode * inode,struct file * file)3236 static int proc_gid_map_open(struct inode *inode, struct file *file)
3237 {
3238 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3239 }
3240 
proc_projid_map_open(struct inode * inode,struct file * file)3241 static int proc_projid_map_open(struct inode *inode, struct file *file)
3242 {
3243 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3244 }
3245 
3246 static const struct file_operations proc_uid_map_operations = {
3247 	.open		= proc_uid_map_open,
3248 	.write		= proc_uid_map_write,
3249 	.read		= seq_read,
3250 	.llseek		= seq_lseek,
3251 	.release	= proc_id_map_release,
3252 };
3253 
3254 static const struct file_operations proc_gid_map_operations = {
3255 	.open		= proc_gid_map_open,
3256 	.write		= proc_gid_map_write,
3257 	.read		= seq_read,
3258 	.llseek		= seq_lseek,
3259 	.release	= proc_id_map_release,
3260 };
3261 
3262 static const struct file_operations proc_projid_map_operations = {
3263 	.open		= proc_projid_map_open,
3264 	.write		= proc_projid_map_write,
3265 	.read		= seq_read,
3266 	.llseek		= seq_lseek,
3267 	.release	= proc_id_map_release,
3268 };
3269 
proc_setgroups_open(struct inode * inode,struct file * file)3270 static int proc_setgroups_open(struct inode *inode, struct file *file)
3271 {
3272 	struct user_namespace *ns = NULL;
3273 	struct task_struct *task;
3274 	int ret;
3275 
3276 	ret = -ESRCH;
3277 	task = get_proc_task(inode);
3278 	if (task) {
3279 		rcu_read_lock();
3280 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3281 		rcu_read_unlock();
3282 		put_task_struct(task);
3283 	}
3284 	if (!ns)
3285 		goto err;
3286 
3287 	if (file->f_mode & FMODE_WRITE) {
3288 		ret = -EACCES;
3289 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3290 			goto err_put_ns;
3291 	}
3292 
3293 	ret = single_open(file, &proc_setgroups_show, ns);
3294 	if (ret)
3295 		goto err_put_ns;
3296 
3297 	return 0;
3298 err_put_ns:
3299 	put_user_ns(ns);
3300 err:
3301 	return ret;
3302 }
3303 
proc_setgroups_release(struct inode * inode,struct file * file)3304 static int proc_setgroups_release(struct inode *inode, struct file *file)
3305 {
3306 	struct seq_file *seq = file->private_data;
3307 	struct user_namespace *ns = seq->private;
3308 	int ret = single_release(inode, file);
3309 	put_user_ns(ns);
3310 	return ret;
3311 }
3312 
3313 static const struct file_operations proc_setgroups_operations = {
3314 	.open		= proc_setgroups_open,
3315 	.write		= proc_setgroups_write,
3316 	.read		= seq_read,
3317 	.llseek		= seq_lseek,
3318 	.release	= proc_setgroups_release,
3319 };
3320 #endif /* CONFIG_USER_NS */
3321 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3322 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3323 				struct pid *pid, struct task_struct *task)
3324 {
3325 	int err = lock_trace(task);
3326 	if (!err) {
3327 		seq_printf(m, "%08x\n", task->personality);
3328 		unlock_trace(task);
3329 	}
3330 	return err;
3331 }
3332 
3333 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3334 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3335 				struct pid *pid, struct task_struct *task)
3336 {
3337 	seq_printf(m, "%d\n", task->patch_state);
3338 	return 0;
3339 }
3340 #endif /* CONFIG_LIVEPATCH */
3341 
3342 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3343 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3344 				struct pid *pid, struct task_struct *task)
3345 {
3346 	unsigned long prev_depth = THREAD_SIZE -
3347 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3348 	unsigned long depth = THREAD_SIZE -
3349 				(task->lowest_stack & (THREAD_SIZE - 1));
3350 
3351 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3352 							prev_depth, depth);
3353 	return 0;
3354 }
3355 #endif /* CONFIG_STACKLEAK_METRICS */
3356 
3357 #ifdef CONFIG_ACCESS_TOKENID
proc_token_operations(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3358 static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns,
3359 				 struct pid *pid, struct task_struct *task)
3360 {
3361 	seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken);
3362 	return 0;
3363 }
3364 #endif /* CONFIG_ACCESS_TOKENID */
3365 
3366 /*
3367  * Thread groups
3368  */
3369 static const struct file_operations proc_task_operations;
3370 static const struct inode_operations proc_task_inode_operations;
3371 
3372 static const struct pid_entry tgid_base_stuff[] = {
3373 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3374 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3375 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3376 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3377 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3378 #ifdef CONFIG_NET
3379 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3380 #endif
3381 	REG("environ",    S_IRUSR, proc_environ_operations),
3382 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3383 	ONE("status",     S_IRUGO, proc_pid_status),
3384 	ONE("personality", S_IRUSR, proc_pid_personality),
3385 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3386 #ifdef CONFIG_SCHED_WALT
3387 	REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations),
3388 #endif
3389 #ifdef CONFIG_SCHED_DEBUG
3390 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3391 #endif
3392 #ifdef CONFIG_SCHED_AUTOGROUP
3393 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3394 #endif
3395 #ifdef CONFIG_TIME_NS
3396 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3397 #endif
3398 #ifdef CONFIG_RSS_THRESHOLD
3399 	ONE("rss", S_IRUGO, proc_pid_rss),
3400 	REG("rss_threshold", S_IRUGO|S_IWUSR, proc_pid_rss_threshold_operations),
3401 #endif
3402 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3403 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3404 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3405 #endif
3406 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3407 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3408 	ONE("statm",      S_IRUGO, proc_pid_statm),
3409 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3410 #ifdef CONFIG_NUMA
3411 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3412 #endif
3413 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3414 	LNK("cwd",        proc_cwd_link),
3415 	LNK("root",       proc_root_link),
3416 	LNK("exe",        proc_exe_link),
3417 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3418 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3419 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3420 #ifdef CONFIG_PROC_PAGE_MONITOR
3421 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3422 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3423 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3424 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3425 #endif
3426 #ifdef CONFIG_SECURITY
3427 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3428 #endif
3429 #ifdef CONFIG_KALLSYMS
3430 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3431 #endif
3432 #ifdef CONFIG_STACKTRACE
3433 	ONE("stack",      S_IRUSR, proc_pid_stack),
3434 #endif
3435 #ifdef CONFIG_SCHED_INFO
3436 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3437 #endif
3438 #ifdef CONFIG_LATENCYTOP
3439 	REG("latency",  S_IRUGO, proc_lstats_operations),
3440 #endif
3441 #ifdef CONFIG_PROC_PID_CPUSET
3442 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3443 #endif
3444 #ifdef CONFIG_CGROUPS
3445 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3446 #endif
3447 #ifdef CONFIG_PROC_CPU_RESCTRL
3448 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3449 #endif
3450 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3451 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3452 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3453 #ifdef CONFIG_AUDIT
3454 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3455 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3456 #endif
3457 #ifdef CONFIG_FAULT_INJECTION
3458 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3459 	REG("fail-nth", 0644, proc_fail_nth_operations),
3460 #endif
3461 #ifdef CONFIG_ELF_CORE
3462 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3463 #endif
3464 #ifdef CONFIG_TASK_IO_ACCOUNTING
3465 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3466 #endif
3467 #ifdef CONFIG_USER_NS
3468 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3469 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3470 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3471 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3472 #endif
3473 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3474 	REG("timers",	  S_IRUGO, proc_timers_operations),
3475 #endif
3476 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3477 #ifdef CONFIG_LIVEPATCH
3478 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3479 #endif
3480 #ifdef CONFIG_STACKLEAK_METRICS
3481 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3482 #endif
3483 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3484 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3485 #endif
3486 #ifdef CONFIG_ACCESS_TOKENID
3487 	ONE("tokenid", S_IRUSR, proc_token_operations),
3488 #endif
3489 #ifdef CONFIG_SCHED_RTG
3490 	REG("sched_rtg_ctrl", S_IRUGO|S_IWUGO, proc_rtg_operations),
3491 #endif
3492 #ifdef CONFIG_SCHED_RTG_DEBUG
3493 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3494 #endif
3495 #ifdef CONFIG_SECURITY_XPM
3496 	REG("xpm_region", S_IRUGO, proc_xpm_region_operations),
3497 #endif
3498 };
3499 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3500 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3501 {
3502 	return proc_pident_readdir(file, ctx,
3503 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3504 }
3505 
3506 static const struct file_operations proc_tgid_base_operations = {
3507 	.read		= generic_read_dir,
3508 	.iterate_shared	= proc_tgid_base_readdir,
3509 	.llseek		= generic_file_llseek,
3510 };
3511 
tgid_pidfd_to_pid(const struct file * file)3512 struct pid *tgid_pidfd_to_pid(const struct file *file)
3513 {
3514 	if (file->f_op != &proc_tgid_base_operations)
3515 		return ERR_PTR(-EBADF);
3516 
3517 	return proc_pid(file_inode(file));
3518 }
3519 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3520 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3521 {
3522 	return proc_pident_lookup(dir, dentry,
3523 				  tgid_base_stuff,
3524 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3525 }
3526 
3527 static const struct inode_operations proc_tgid_base_inode_operations = {
3528 	.lookup		= proc_tgid_base_lookup,
3529 	.getattr	= pid_getattr,
3530 	.setattr	= proc_setattr,
3531 	.permission	= proc_pid_permission,
3532 };
3533 
3534 /**
3535  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3536  * @pid: pid that should be flushed.
3537  *
3538  * This function walks a list of inodes (that belong to any proc
3539  * filesystem) that are attached to the pid and flushes them from
3540  * the dentry cache.
3541  *
3542  * It is safe and reasonable to cache /proc entries for a task until
3543  * that task exits.  After that they just clog up the dcache with
3544  * useless entries, possibly causing useful dcache entries to be
3545  * flushed instead.  This routine is provided to flush those useless
3546  * dcache entries when a process is reaped.
3547  *
3548  * NOTE: This routine is just an optimization so it does not guarantee
3549  *       that no dcache entries will exist after a process is reaped
3550  *       it just makes it very unlikely that any will persist.
3551  */
3552 
proc_flush_pid(struct pid * pid)3553 void proc_flush_pid(struct pid *pid)
3554 {
3555 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3556 }
3557 
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3558 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3559 				   struct task_struct *task, const void *ptr)
3560 {
3561 	struct inode *inode;
3562 
3563 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3564 	if (!inode)
3565 		return ERR_PTR(-ENOENT);
3566 
3567 	inode->i_op = &proc_tgid_base_inode_operations;
3568 	inode->i_fop = &proc_tgid_base_operations;
3569 	inode->i_flags|=S_IMMUTABLE;
3570 
3571 	set_nlink(inode, nlink_tgid);
3572 	pid_update_inode(task, inode);
3573 
3574 	d_set_d_op(dentry, &pid_dentry_operations);
3575 	return d_splice_alias(inode, dentry);
3576 }
3577 
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3578 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3579 {
3580 	struct task_struct *task;
3581 	unsigned tgid;
3582 	struct proc_fs_info *fs_info;
3583 	struct pid_namespace *ns;
3584 	struct dentry *result = ERR_PTR(-ENOENT);
3585 
3586 	tgid = name_to_int(&dentry->d_name);
3587 	if (tgid == ~0U)
3588 		goto out;
3589 
3590 	fs_info = proc_sb_info(dentry->d_sb);
3591 	ns = fs_info->pid_ns;
3592 	rcu_read_lock();
3593 	task = find_task_by_pid_ns(tgid, ns);
3594 	if (task)
3595 		get_task_struct(task);
3596 	rcu_read_unlock();
3597 	if (!task)
3598 		goto out;
3599 
3600 	/* Limit procfs to only ptraceable tasks */
3601 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3602 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3603 			goto out_put_task;
3604 	}
3605 
3606 	result = proc_pid_instantiate(dentry, task, NULL);
3607 out_put_task:
3608 	put_task_struct(task);
3609 out:
3610 	return result;
3611 }
3612 
3613 /*
3614  * Find the first task with tgid >= tgid
3615  *
3616  */
3617 struct tgid_iter {
3618 	unsigned int tgid;
3619 	struct task_struct *task;
3620 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3621 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3622 {
3623 	struct pid *pid;
3624 
3625 	if (iter.task)
3626 		put_task_struct(iter.task);
3627 	rcu_read_lock();
3628 retry:
3629 	iter.task = NULL;
3630 	pid = find_ge_pid(iter.tgid, ns);
3631 	if (pid) {
3632 		iter.tgid = pid_nr_ns(pid, ns);
3633 		iter.task = pid_task(pid, PIDTYPE_TGID);
3634 		if (!iter.task) {
3635 			iter.tgid += 1;
3636 			goto retry;
3637 		}
3638 		get_task_struct(iter.task);
3639 	}
3640 	rcu_read_unlock();
3641 	return iter;
3642 }
3643 
3644 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3645 
3646 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3647 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3648 {
3649 	struct tgid_iter iter;
3650 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3651 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3652 	loff_t pos = ctx->pos;
3653 
3654 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3655 		return 0;
3656 
3657 	if (pos == TGID_OFFSET - 2) {
3658 		struct inode *inode = d_inode(fs_info->proc_self);
3659 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3660 			return 0;
3661 		ctx->pos = pos = pos + 1;
3662 	}
3663 	if (pos == TGID_OFFSET - 1) {
3664 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3665 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3666 			return 0;
3667 		ctx->pos = pos = pos + 1;
3668 	}
3669 	iter.tgid = pos - TGID_OFFSET;
3670 	iter.task = NULL;
3671 	for (iter = next_tgid(ns, iter);
3672 	     iter.task;
3673 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3674 		char name[10 + 1];
3675 		unsigned int len;
3676 
3677 		cond_resched();
3678 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3679 			continue;
3680 
3681 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3682 		ctx->pos = iter.tgid + TGID_OFFSET;
3683 		if (!proc_fill_cache(file, ctx, name, len,
3684 				     proc_pid_instantiate, iter.task, NULL)) {
3685 			put_task_struct(iter.task);
3686 			return 0;
3687 		}
3688 	}
3689 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3690 	return 0;
3691 }
3692 
3693 /*
3694  * proc_tid_comm_permission is a special permission function exclusively
3695  * used for the node /proc/<pid>/task/<tid>/comm.
3696  * It bypasses generic permission checks in the case where a task of the same
3697  * task group attempts to access the node.
3698  * The rationale behind this is that glibc and bionic access this node for
3699  * cross thread naming (pthread_set/getname_np(!self)). However, if
3700  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3701  * which locks out the cross thread naming implementation.
3702  * This function makes sure that the node is always accessible for members of
3703  * same thread group.
3704  */
proc_tid_comm_permission(struct inode * inode,int mask)3705 static int proc_tid_comm_permission(struct inode *inode, int mask)
3706 {
3707 	bool is_same_tgroup;
3708 	struct task_struct *task;
3709 
3710 	task = get_proc_task(inode);
3711 	if (!task)
3712 		return -ESRCH;
3713 	is_same_tgroup = same_thread_group(current, task);
3714 	put_task_struct(task);
3715 
3716 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3717 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3718 		 * read or written by the members of the corresponding
3719 		 * thread group.
3720 		 */
3721 		return 0;
3722 	}
3723 
3724 	return generic_permission(inode, mask);
3725 }
3726 
3727 static const struct inode_operations proc_tid_comm_inode_operations = {
3728 		.permission = proc_tid_comm_permission,
3729 };
3730 
3731 /*
3732  * Tasks
3733  */
3734 static const struct pid_entry tid_base_stuff[] = {
3735 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3736 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3737 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3738 #ifdef CONFIG_NET
3739 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3740 #endif
3741 	REG("environ",   S_IRUSR, proc_environ_operations),
3742 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3743 	ONE("status",    S_IRUGO, proc_pid_status),
3744 	ONE("personality", S_IRUSR, proc_pid_personality),
3745 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3746 #ifdef CONFIG_SCHED_DEBUG
3747 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3748 #endif
3749 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3750 			 &proc_tid_comm_inode_operations,
3751 			 &proc_pid_set_comm_operations, {}),
3752 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3753 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3754 #endif
3755 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3756 	ONE("stat",      S_IRUGO, proc_tid_stat),
3757 	ONE("statm",     S_IRUGO, proc_pid_statm),
3758 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3759 #ifdef CONFIG_PROC_CHILDREN
3760 	REG("children",  S_IRUGO, proc_tid_children_operations),
3761 #endif
3762 #ifdef CONFIG_NUMA
3763 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3764 #endif
3765 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3766 	LNK("cwd",       proc_cwd_link),
3767 	LNK("root",      proc_root_link),
3768 	LNK("exe",       proc_exe_link),
3769 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3770 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3771 #ifdef CONFIG_PROC_PAGE_MONITOR
3772 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3773 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3774 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3775 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3776 #endif
3777 #ifdef CONFIG_SECURITY
3778 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3779 #endif
3780 #ifdef CONFIG_KALLSYMS
3781 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3782 #endif
3783 #ifdef CONFIG_STACKTRACE
3784 	ONE("stack",      S_IRUSR, proc_pid_stack),
3785 #endif
3786 #ifdef CONFIG_SCHED_INFO
3787 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3788 #endif
3789 #ifdef CONFIG_LATENCYTOP
3790 	REG("latency",  S_IRUGO, proc_lstats_operations),
3791 #endif
3792 #ifdef CONFIG_PROC_PID_CPUSET
3793 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3794 #endif
3795 #ifdef CONFIG_CGROUPS
3796 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3797 #endif
3798 #ifdef CONFIG_PROC_CPU_RESCTRL
3799 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3800 #endif
3801 	ONE("oom_score", S_IRUGO, proc_oom_score),
3802 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3803 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3804 #ifdef CONFIG_AUDIT
3805 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3806 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3807 #endif
3808 #ifdef CONFIG_FAULT_INJECTION
3809 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3810 	REG("fail-nth", 0644, proc_fail_nth_operations),
3811 #endif
3812 #ifdef CONFIG_TASK_IO_ACCOUNTING
3813 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3814 #endif
3815 #ifdef CONFIG_USER_NS
3816 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3817 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3818 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3819 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3820 #endif
3821 #ifdef CONFIG_LIVEPATCH
3822 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3823 #endif
3824 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3825 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3826 #endif
3827 #ifdef CONFIG_ACCESS_TOKENID
3828 	ONE("tokenid", S_IRUSR, proc_token_operations),
3829 #endif
3830 #ifdef CONFIG_QOS_CTRL
3831 	REG("sched_qos_ctrl", S_IRUGO|S_IWUGO, proc_qos_ctrl_operations),
3832 #endif
3833 #ifdef CONFIG_SCHED_RTG_DEBUG
3834 	REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations),
3835 #endif
3836 #ifdef CONFIG_SECURITY_XPM
3837 	REG("xpm_region", S_IRUGO, proc_xpm_region_operations),
3838 #endif
3839 };
3840 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3841 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3842 {
3843 	return proc_pident_readdir(file, ctx,
3844 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3845 }
3846 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3847 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3848 {
3849 	return proc_pident_lookup(dir, dentry,
3850 				  tid_base_stuff,
3851 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3852 }
3853 
3854 static const struct file_operations proc_tid_base_operations = {
3855 	.read		= generic_read_dir,
3856 	.iterate_shared	= proc_tid_base_readdir,
3857 	.llseek		= generic_file_llseek,
3858 };
3859 
3860 static const struct inode_operations proc_tid_base_inode_operations = {
3861 	.lookup		= proc_tid_base_lookup,
3862 	.getattr	= pid_getattr,
3863 	.setattr	= proc_setattr,
3864 };
3865 
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3866 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3867 	struct task_struct *task, const void *ptr)
3868 {
3869 	struct inode *inode;
3870 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3871 	if (!inode)
3872 		return ERR_PTR(-ENOENT);
3873 
3874 	inode->i_op = &proc_tid_base_inode_operations;
3875 	inode->i_fop = &proc_tid_base_operations;
3876 	inode->i_flags |= S_IMMUTABLE;
3877 
3878 	set_nlink(inode, nlink_tid);
3879 	pid_update_inode(task, inode);
3880 
3881 	d_set_d_op(dentry, &pid_dentry_operations);
3882 	return d_splice_alias(inode, dentry);
3883 }
3884 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3885 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3886 {
3887 	struct task_struct *task;
3888 	struct task_struct *leader = get_proc_task(dir);
3889 	unsigned tid;
3890 	struct proc_fs_info *fs_info;
3891 	struct pid_namespace *ns;
3892 	struct dentry *result = ERR_PTR(-ENOENT);
3893 
3894 	if (!leader)
3895 		goto out_no_task;
3896 
3897 	tid = name_to_int(&dentry->d_name);
3898 	if (tid == ~0U)
3899 		goto out;
3900 
3901 	fs_info = proc_sb_info(dentry->d_sb);
3902 	ns = fs_info->pid_ns;
3903 	rcu_read_lock();
3904 	task = find_task_by_pid_ns(tid, ns);
3905 	if (task)
3906 		get_task_struct(task);
3907 	rcu_read_unlock();
3908 	if (!task)
3909 		goto out;
3910 	if (!same_thread_group(leader, task))
3911 		goto out_drop_task;
3912 
3913 	result = proc_task_instantiate(dentry, task, NULL);
3914 out_drop_task:
3915 	put_task_struct(task);
3916 out:
3917 	put_task_struct(leader);
3918 out_no_task:
3919 	return result;
3920 }
3921 
3922 /*
3923  * Find the first tid of a thread group to return to user space.
3924  *
3925  * Usually this is just the thread group leader, but if the users
3926  * buffer was too small or there was a seek into the middle of the
3927  * directory we have more work todo.
3928  *
3929  * In the case of a short read we start with find_task_by_pid.
3930  *
3931  * In the case of a seek we start with the leader and walk nr
3932  * threads past it.
3933  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3934 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3935 					struct pid_namespace *ns)
3936 {
3937 	struct task_struct *pos, *task;
3938 	unsigned long nr = f_pos;
3939 
3940 	if (nr != f_pos)	/* 32bit overflow? */
3941 		return NULL;
3942 
3943 	rcu_read_lock();
3944 	task = pid_task(pid, PIDTYPE_PID);
3945 	if (!task)
3946 		goto fail;
3947 
3948 	/* Attempt to start with the tid of a thread */
3949 	if (tid && nr) {
3950 		pos = find_task_by_pid_ns(tid, ns);
3951 		if (pos && same_thread_group(pos, task))
3952 			goto found;
3953 	}
3954 
3955 	/* If nr exceeds the number of threads there is nothing todo */
3956 	if (nr >= get_nr_threads(task))
3957 		goto fail;
3958 
3959 	/* If we haven't found our starting place yet start
3960 	 * with the leader and walk nr threads forward.
3961 	 */
3962 	pos = task = task->group_leader;
3963 	do {
3964 		if (!nr--)
3965 			goto found;
3966 	} while_each_thread(task, pos);
3967 fail:
3968 	pos = NULL;
3969 	goto out;
3970 found:
3971 	get_task_struct(pos);
3972 out:
3973 	rcu_read_unlock();
3974 	return pos;
3975 }
3976 
3977 /*
3978  * Find the next thread in the thread list.
3979  * Return NULL if there is an error or no next thread.
3980  *
3981  * The reference to the input task_struct is released.
3982  */
next_tid(struct task_struct * start)3983 static struct task_struct *next_tid(struct task_struct *start)
3984 {
3985 	struct task_struct *pos = NULL;
3986 	rcu_read_lock();
3987 	if (pid_alive(start)) {
3988 		pos = next_thread(start);
3989 		if (thread_group_leader(pos))
3990 			pos = NULL;
3991 		else
3992 			get_task_struct(pos);
3993 	}
3994 	rcu_read_unlock();
3995 	put_task_struct(start);
3996 	return pos;
3997 }
3998 
3999 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)4000 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
4001 {
4002 	struct inode *inode = file_inode(file);
4003 	struct task_struct *task;
4004 	struct pid_namespace *ns;
4005 	int tid;
4006 
4007 	if (proc_inode_is_dead(inode))
4008 		return -ENOENT;
4009 
4010 	if (!dir_emit_dots(file, ctx))
4011 		return 0;
4012 
4013 	/* f_version caches the tgid value that the last readdir call couldn't
4014 	 * return. lseek aka telldir automagically resets f_version to 0.
4015 	 */
4016 	ns = proc_pid_ns(inode->i_sb);
4017 	tid = (int)file->f_version;
4018 	file->f_version = 0;
4019 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
4020 	     task;
4021 	     task = next_tid(task), ctx->pos++) {
4022 		char name[10 + 1];
4023 		unsigned int len;
4024 		tid = task_pid_nr_ns(task, ns);
4025 		len = snprintf(name, sizeof(name), "%u", tid);
4026 		if (!proc_fill_cache(file, ctx, name, len,
4027 				proc_task_instantiate, task, NULL)) {
4028 			/* returning this tgid failed, save it as the first
4029 			 * pid for the next readir call */
4030 			file->f_version = (u64)tid;
4031 			put_task_struct(task);
4032 			break;
4033 		}
4034 	}
4035 
4036 	return 0;
4037 }
4038 
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)4039 static int proc_task_getattr(const struct path *path, struct kstat *stat,
4040 			     u32 request_mask, unsigned int query_flags)
4041 {
4042 	struct inode *inode = d_inode(path->dentry);
4043 	struct task_struct *p = get_proc_task(inode);
4044 	generic_fillattr(inode, stat);
4045 
4046 	if (p) {
4047 		stat->nlink += get_nr_threads(p);
4048 		put_task_struct(p);
4049 	}
4050 
4051 	return 0;
4052 }
4053 
4054 static const struct inode_operations proc_task_inode_operations = {
4055 	.lookup		= proc_task_lookup,
4056 	.getattr	= proc_task_getattr,
4057 	.setattr	= proc_setattr,
4058 	.permission	= proc_pid_permission,
4059 };
4060 
4061 static const struct file_operations proc_task_operations = {
4062 	.read		= generic_read_dir,
4063 	.iterate_shared	= proc_task_readdir,
4064 	.llseek		= generic_file_llseek,
4065 };
4066 
set_proc_pid_nlink(void)4067 void __init set_proc_pid_nlink(void)
4068 {
4069 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4070 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4071 }
4072