1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
54 /*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63 {
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116 }
117
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155 }
156
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166 }
167
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173 }
174
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189 }
190
191 /**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202 {
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278 fail:
279 destroy_unused_super(s);
280 return NULL;
281 }
282
283 /* Superblock refcounting */
284
285 /*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_destroy_keyring(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
300 }
301 }
302
303 /**
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
306 *
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
309 */
put_super(struct super_block * sb)310 static void put_super(struct super_block *sb)
311 {
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
315 }
316
317
318 /**
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
326 *
327 * Caller holds exclusive lock on superblock; that lock is released.
328 */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
336
337 /*
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
341 */
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
344
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
349 }
350 }
351
352 EXPORT_SYMBOL(deactivate_locked_super);
353
354 /**
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
357 *
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
361 */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
367 }
368 }
369
370 EXPORT_SYMBOL(deactivate_super);
371
372 /**
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
375 *
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
384 */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
393 }
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
397 }
398
399 /*
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
402 *
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
410 *
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
415 */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
423 }
424
425 return false;
426 }
427
428 /**
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
431 *
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
437 *
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
441 */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 const struct super_operations *sop = sb->s_op;
445
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
450
451 cgroup_writeback_umount();
452
453 /* evict all inodes with zero refcount */
454 evict_inodes(sb);
455 /* only nonzero refcount inodes can have marks */
456 fsnotify_sb_delete(sb);
457 fscrypt_destroy_keyring(sb);
458
459 if (sb->s_dio_done_wq) {
460 destroy_workqueue(sb->s_dio_done_wq);
461 sb->s_dio_done_wq = NULL;
462 }
463
464 if (sop->put_super)
465 sop->put_super(sb);
466
467 if (!list_empty(&sb->s_inodes)) {
468 printk("VFS: Busy inodes after unmount of %s. "
469 "Self-destruct in 5 seconds. Have a nice day...\n",
470 sb->s_id);
471 }
472 }
473 spin_lock(&sb_lock);
474 /* should be initialized for __put_super_and_need_restart() */
475 hlist_del_init(&sb->s_instances);
476 spin_unlock(&sb_lock);
477 up_write(&sb->s_umount);
478 if (sb->s_bdi != &noop_backing_dev_info) {
479 bdi_put(sb->s_bdi);
480 sb->s_bdi = &noop_backing_dev_info;
481 }
482 }
483
484 EXPORT_SYMBOL(generic_shutdown_super);
485
mount_capable(struct fs_context * fc)486 bool mount_capable(struct fs_context *fc)
487 {
488 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
489 return capable(CAP_SYS_ADMIN);
490 else
491 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
492 }
493
494 /**
495 * sget_fc - Find or create a superblock
496 * @fc: Filesystem context.
497 * @test: Comparison callback
498 * @set: Setup callback
499 *
500 * Find or create a superblock using the parameters stored in the filesystem
501 * context and the two callback functions.
502 *
503 * If an extant superblock is matched, then that will be returned with an
504 * elevated reference count that the caller must transfer or discard.
505 *
506 * If no match is made, a new superblock will be allocated and basic
507 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
508 * the set() callback will be invoked), the superblock will be published and it
509 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
510 * as yet unset.
511 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))512 struct super_block *sget_fc(struct fs_context *fc,
513 int (*test)(struct super_block *, struct fs_context *),
514 int (*set)(struct super_block *, struct fs_context *))
515 {
516 struct super_block *s = NULL;
517 struct super_block *old;
518 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
519 int err;
520
521 retry:
522 spin_lock(&sb_lock);
523 if (test) {
524 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
525 if (test(old, fc))
526 goto share_extant_sb;
527 }
528 }
529 if (!s) {
530 spin_unlock(&sb_lock);
531 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
532 if (!s)
533 return ERR_PTR(-ENOMEM);
534 goto retry;
535 }
536
537 s->s_fs_info = fc->s_fs_info;
538 err = set(s, fc);
539 if (err) {
540 s->s_fs_info = NULL;
541 spin_unlock(&sb_lock);
542 destroy_unused_super(s);
543 return ERR_PTR(err);
544 }
545 fc->s_fs_info = NULL;
546 s->s_type = fc->fs_type;
547 s->s_iflags |= fc->s_iflags;
548 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
549 list_add_tail(&s->s_list, &super_blocks);
550 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
551 spin_unlock(&sb_lock);
552 get_filesystem(s->s_type);
553 register_shrinker_prepared(&s->s_shrink);
554 return s;
555
556 share_extant_sb:
557 if (user_ns != old->s_user_ns) {
558 spin_unlock(&sb_lock);
559 destroy_unused_super(s);
560 return ERR_PTR(-EBUSY);
561 }
562 if (!grab_super(old))
563 goto retry;
564 destroy_unused_super(s);
565 return old;
566 }
567 EXPORT_SYMBOL(sget_fc);
568
569 /**
570 * sget - find or create a superblock
571 * @type: filesystem type superblock should belong to
572 * @test: comparison callback
573 * @set: setup callback
574 * @flags: mount flags
575 * @data: argument to each of them
576 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)577 struct super_block *sget(struct file_system_type *type,
578 int (*test)(struct super_block *,void *),
579 int (*set)(struct super_block *,void *),
580 int flags,
581 void *data)
582 {
583 struct user_namespace *user_ns = current_user_ns();
584 struct super_block *s = NULL;
585 struct super_block *old;
586 int err;
587
588 /* We don't yet pass the user namespace of the parent
589 * mount through to here so always use &init_user_ns
590 * until that changes.
591 */
592 if (flags & SB_SUBMOUNT)
593 user_ns = &init_user_ns;
594
595 retry:
596 spin_lock(&sb_lock);
597 if (test) {
598 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
599 if (!test(old, data))
600 continue;
601 if (user_ns != old->s_user_ns) {
602 spin_unlock(&sb_lock);
603 destroy_unused_super(s);
604 return ERR_PTR(-EBUSY);
605 }
606 if (!grab_super(old))
607 goto retry;
608 destroy_unused_super(s);
609 return old;
610 }
611 }
612 if (!s) {
613 spin_unlock(&sb_lock);
614 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
615 if (!s)
616 return ERR_PTR(-ENOMEM);
617 goto retry;
618 }
619
620 err = set(s, data);
621 if (err) {
622 spin_unlock(&sb_lock);
623 destroy_unused_super(s);
624 return ERR_PTR(err);
625 }
626 s->s_type = type;
627 strlcpy(s->s_id, type->name, sizeof(s->s_id));
628 list_add_tail(&s->s_list, &super_blocks);
629 hlist_add_head(&s->s_instances, &type->fs_supers);
630 spin_unlock(&sb_lock);
631 get_filesystem(type);
632 register_shrinker_prepared(&s->s_shrink);
633 return s;
634 }
635 EXPORT_SYMBOL(sget);
636
drop_super(struct super_block * sb)637 void drop_super(struct super_block *sb)
638 {
639 up_read(&sb->s_umount);
640 put_super(sb);
641 }
642
643 EXPORT_SYMBOL(drop_super);
644
drop_super_exclusive(struct super_block * sb)645 void drop_super_exclusive(struct super_block *sb)
646 {
647 up_write(&sb->s_umount);
648 put_super(sb);
649 }
650 EXPORT_SYMBOL(drop_super_exclusive);
651
__iterate_supers(void (* f)(struct super_block *))652 static void __iterate_supers(void (*f)(struct super_block *))
653 {
654 struct super_block *sb, *p = NULL;
655
656 spin_lock(&sb_lock);
657 list_for_each_entry(sb, &super_blocks, s_list) {
658 if (hlist_unhashed(&sb->s_instances))
659 continue;
660 sb->s_count++;
661 spin_unlock(&sb_lock);
662
663 f(sb);
664
665 spin_lock(&sb_lock);
666 if (p)
667 __put_super(p);
668 p = sb;
669 }
670 if (p)
671 __put_super(p);
672 spin_unlock(&sb_lock);
673 }
674 /**
675 * iterate_supers - call function for all active superblocks
676 * @f: function to call
677 * @arg: argument to pass to it
678 *
679 * Scans the superblock list and calls given function, passing it
680 * locked superblock and given argument.
681 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)682 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
683 {
684 struct super_block *sb, *p = NULL;
685
686 spin_lock(&sb_lock);
687 list_for_each_entry(sb, &super_blocks, s_list) {
688 if (hlist_unhashed(&sb->s_instances))
689 continue;
690 sb->s_count++;
691 spin_unlock(&sb_lock);
692
693 down_read(&sb->s_umount);
694 if (sb->s_root && (sb->s_flags & SB_BORN))
695 f(sb, arg);
696 up_read(&sb->s_umount);
697
698 spin_lock(&sb_lock);
699 if (p)
700 __put_super(p);
701 p = sb;
702 }
703 if (p)
704 __put_super(p);
705 spin_unlock(&sb_lock);
706 }
707
708 /**
709 * iterate_supers_type - call function for superblocks of given type
710 * @type: fs type
711 * @f: function to call
712 * @arg: argument to pass to it
713 *
714 * Scans the superblock list and calls given function, passing it
715 * locked superblock and given argument.
716 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)717 void iterate_supers_type(struct file_system_type *type,
718 void (*f)(struct super_block *, void *), void *arg)
719 {
720 struct super_block *sb, *p = NULL;
721
722 spin_lock(&sb_lock);
723 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
724 sb->s_count++;
725 spin_unlock(&sb_lock);
726
727 down_read(&sb->s_umount);
728 if (sb->s_root && (sb->s_flags & SB_BORN))
729 f(sb, arg);
730 up_read(&sb->s_umount);
731
732 spin_lock(&sb_lock);
733 if (p)
734 __put_super(p);
735 p = sb;
736 }
737 if (p)
738 __put_super(p);
739 spin_unlock(&sb_lock);
740 }
741
742 EXPORT_SYMBOL(iterate_supers_type);
743
__get_super(struct block_device * bdev,bool excl)744 static struct super_block *__get_super(struct block_device *bdev, bool excl)
745 {
746 struct super_block *sb;
747
748 if (!bdev)
749 return NULL;
750
751 spin_lock(&sb_lock);
752 rescan:
753 list_for_each_entry(sb, &super_blocks, s_list) {
754 if (hlist_unhashed(&sb->s_instances))
755 continue;
756 if (sb->s_bdev == bdev) {
757 sb->s_count++;
758 spin_unlock(&sb_lock);
759 if (!excl)
760 down_read(&sb->s_umount);
761 else
762 down_write(&sb->s_umount);
763 /* still alive? */
764 if (sb->s_root && (sb->s_flags & SB_BORN))
765 return sb;
766 if (!excl)
767 up_read(&sb->s_umount);
768 else
769 up_write(&sb->s_umount);
770 /* nope, got unmounted */
771 spin_lock(&sb_lock);
772 __put_super(sb);
773 goto rescan;
774 }
775 }
776 spin_unlock(&sb_lock);
777 return NULL;
778 }
779
780 /**
781 * get_super - get the superblock of a device
782 * @bdev: device to get the superblock for
783 *
784 * Scans the superblock list and finds the superblock of the file system
785 * mounted on the device given. %NULL is returned if no match is found.
786 */
get_super(struct block_device * bdev)787 struct super_block *get_super(struct block_device *bdev)
788 {
789 return __get_super(bdev, false);
790 }
791 EXPORT_SYMBOL(get_super);
792
__get_super_thawed(struct block_device * bdev,bool excl)793 static struct super_block *__get_super_thawed(struct block_device *bdev,
794 bool excl)
795 {
796 while (1) {
797 struct super_block *s = __get_super(bdev, excl);
798 if (!s || s->s_writers.frozen == SB_UNFROZEN)
799 return s;
800 if (!excl)
801 up_read(&s->s_umount);
802 else
803 up_write(&s->s_umount);
804 wait_event(s->s_writers.wait_unfrozen,
805 s->s_writers.frozen == SB_UNFROZEN);
806 put_super(s);
807 }
808 }
809
810 /**
811 * get_super_thawed - get thawed superblock of a device
812 * @bdev: device to get the superblock for
813 *
814 * Scans the superblock list and finds the superblock of the file system
815 * mounted on the device. The superblock is returned once it is thawed
816 * (or immediately if it was not frozen). %NULL is returned if no match
817 * is found.
818 */
get_super_thawed(struct block_device * bdev)819 struct super_block *get_super_thawed(struct block_device *bdev)
820 {
821 return __get_super_thawed(bdev, false);
822 }
823 EXPORT_SYMBOL(get_super_thawed);
824
825 /**
826 * get_super_exclusive_thawed - get thawed superblock of a device
827 * @bdev: device to get the superblock for
828 *
829 * Scans the superblock list and finds the superblock of the file system
830 * mounted on the device. The superblock is returned once it is thawed
831 * (or immediately if it was not frozen) and s_umount semaphore is held
832 * in exclusive mode. %NULL is returned if no match is found.
833 */
get_super_exclusive_thawed(struct block_device * bdev)834 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
835 {
836 return __get_super_thawed(bdev, true);
837 }
838 EXPORT_SYMBOL(get_super_exclusive_thawed);
839
840 /**
841 * get_active_super - get an active reference to the superblock of a device
842 * @bdev: device to get the superblock for
843 *
844 * Scans the superblock list and finds the superblock of the file system
845 * mounted on the device given. Returns the superblock with an active
846 * reference or %NULL if none was found.
847 */
get_active_super(struct block_device * bdev)848 struct super_block *get_active_super(struct block_device *bdev)
849 {
850 struct super_block *sb;
851
852 if (!bdev)
853 return NULL;
854
855 restart:
856 spin_lock(&sb_lock);
857 list_for_each_entry(sb, &super_blocks, s_list) {
858 if (hlist_unhashed(&sb->s_instances))
859 continue;
860 if (sb->s_bdev == bdev) {
861 if (!grab_super(sb))
862 goto restart;
863 up_write(&sb->s_umount);
864 return sb;
865 }
866 }
867 spin_unlock(&sb_lock);
868 return NULL;
869 }
870
user_get_super(dev_t dev)871 struct super_block *user_get_super(dev_t dev)
872 {
873 struct super_block *sb;
874
875 spin_lock(&sb_lock);
876 rescan:
877 list_for_each_entry(sb, &super_blocks, s_list) {
878 if (hlist_unhashed(&sb->s_instances))
879 continue;
880 if (sb->s_dev == dev) {
881 sb->s_count++;
882 spin_unlock(&sb_lock);
883 down_read(&sb->s_umount);
884 /* still alive? */
885 if (sb->s_root && (sb->s_flags & SB_BORN))
886 return sb;
887 up_read(&sb->s_umount);
888 /* nope, got unmounted */
889 spin_lock(&sb_lock);
890 __put_super(sb);
891 goto rescan;
892 }
893 }
894 spin_unlock(&sb_lock);
895 return NULL;
896 }
897
898 /**
899 * reconfigure_super - asks filesystem to change superblock parameters
900 * @fc: The superblock and configuration
901 *
902 * Alters the configuration parameters of a live superblock.
903 */
reconfigure_super(struct fs_context * fc)904 int reconfigure_super(struct fs_context *fc)
905 {
906 struct super_block *sb = fc->root->d_sb;
907 int retval;
908 bool remount_ro = false;
909 bool remount_rw = false;
910 bool force = fc->sb_flags & SB_FORCE;
911
912 if (fc->sb_flags_mask & ~MS_RMT_MASK)
913 return -EINVAL;
914 if (sb->s_writers.frozen != SB_UNFROZEN)
915 return -EBUSY;
916
917 retval = security_sb_remount(sb, fc->security);
918 if (retval)
919 return retval;
920
921 if (fc->sb_flags_mask & SB_RDONLY) {
922 #ifdef CONFIG_BLOCK
923 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
924 return -EACCES;
925 #endif
926 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
927 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
928 }
929
930 if (remount_ro) {
931 if (!hlist_empty(&sb->s_pins)) {
932 up_write(&sb->s_umount);
933 group_pin_kill(&sb->s_pins);
934 down_write(&sb->s_umount);
935 if (!sb->s_root)
936 return 0;
937 if (sb->s_writers.frozen != SB_UNFROZEN)
938 return -EBUSY;
939 remount_ro = !sb_rdonly(sb);
940 }
941 }
942 shrink_dcache_sb(sb);
943
944 /* If we are reconfiguring to RDONLY and current sb is read/write,
945 * make sure there are no files open for writing.
946 */
947 if (remount_ro) {
948 if (force) {
949 sb->s_readonly_remount = 1;
950 smp_wmb();
951 } else {
952 retval = sb_prepare_remount_readonly(sb);
953 if (retval)
954 return retval;
955 }
956 } else if (remount_rw) {
957 /*
958 * We set s_readonly_remount here to protect filesystem's
959 * reconfigure code from writes from userspace until
960 * reconfigure finishes.
961 */
962 sb->s_readonly_remount = 1;
963 smp_wmb();
964 }
965
966 if (fc->ops->reconfigure) {
967 retval = fc->ops->reconfigure(fc);
968 if (retval) {
969 if (!force)
970 goto cancel_readonly;
971 /* If forced remount, go ahead despite any errors */
972 WARN(1, "forced remount of a %s fs returned %i\n",
973 sb->s_type->name, retval);
974 }
975 }
976
977 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
978 (fc->sb_flags & fc->sb_flags_mask)));
979 /* Needs to be ordered wrt mnt_is_readonly() */
980 smp_wmb();
981 sb->s_readonly_remount = 0;
982
983 /*
984 * Some filesystems modify their metadata via some other path than the
985 * bdev buffer cache (eg. use a private mapping, or directories in
986 * pagecache, etc). Also file data modifications go via their own
987 * mappings. So If we try to mount readonly then copy the filesystem
988 * from bdev, we could get stale data, so invalidate it to give a best
989 * effort at coherency.
990 */
991 if (remount_ro && sb->s_bdev)
992 invalidate_bdev(sb->s_bdev);
993 return 0;
994
995 cancel_readonly:
996 sb->s_readonly_remount = 0;
997 return retval;
998 }
999
do_emergency_remount_callback(struct super_block * sb)1000 static void do_emergency_remount_callback(struct super_block *sb)
1001 {
1002 down_write(&sb->s_umount);
1003 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1004 !sb_rdonly(sb)) {
1005 struct fs_context *fc;
1006
1007 fc = fs_context_for_reconfigure(sb->s_root,
1008 SB_RDONLY | SB_FORCE, SB_RDONLY);
1009 if (!IS_ERR(fc)) {
1010 if (parse_monolithic_mount_data(fc, NULL) == 0)
1011 (void)reconfigure_super(fc);
1012 put_fs_context(fc);
1013 }
1014 }
1015 up_write(&sb->s_umount);
1016 }
1017
do_emergency_remount(struct work_struct * work)1018 static void do_emergency_remount(struct work_struct *work)
1019 {
1020 __iterate_supers(do_emergency_remount_callback);
1021 kfree(work);
1022 printk("Emergency Remount complete\n");
1023 }
1024
emergency_remount(void)1025 void emergency_remount(void)
1026 {
1027 struct work_struct *work;
1028
1029 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1030 if (work) {
1031 INIT_WORK(work, do_emergency_remount);
1032 schedule_work(work);
1033 }
1034 }
1035
do_thaw_all_callback(struct super_block * sb)1036 static void do_thaw_all_callback(struct super_block *sb)
1037 {
1038 down_write(&sb->s_umount);
1039 if (sb->s_root && sb->s_flags & SB_BORN) {
1040 emergency_thaw_bdev(sb);
1041 thaw_super_locked(sb);
1042 } else {
1043 up_write(&sb->s_umount);
1044 }
1045 }
1046
do_thaw_all(struct work_struct * work)1047 static void do_thaw_all(struct work_struct *work)
1048 {
1049 __iterate_supers(do_thaw_all_callback);
1050 kfree(work);
1051 printk(KERN_WARNING "Emergency Thaw complete\n");
1052 }
1053
1054 /**
1055 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1056 *
1057 * Used for emergency unfreeze of all filesystems via SysRq
1058 */
emergency_thaw_all(void)1059 void emergency_thaw_all(void)
1060 {
1061 struct work_struct *work;
1062
1063 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1064 if (work) {
1065 INIT_WORK(work, do_thaw_all);
1066 schedule_work(work);
1067 }
1068 }
1069
1070 static DEFINE_IDA(unnamed_dev_ida);
1071
1072 /**
1073 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1074 * @p: Pointer to a dev_t.
1075 *
1076 * Filesystems which don't use real block devices can call this function
1077 * to allocate a virtual block device.
1078 *
1079 * Context: Any context. Frequently called while holding sb_lock.
1080 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1081 * or -ENOMEM if memory allocation failed.
1082 */
get_anon_bdev(dev_t * p)1083 int get_anon_bdev(dev_t *p)
1084 {
1085 int dev;
1086
1087 /*
1088 * Many userspace utilities consider an FSID of 0 invalid.
1089 * Always return at least 1 from get_anon_bdev.
1090 */
1091 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1092 GFP_ATOMIC);
1093 if (dev == -ENOSPC)
1094 dev = -EMFILE;
1095 if (dev < 0)
1096 return dev;
1097
1098 *p = MKDEV(0, dev);
1099 return 0;
1100 }
1101 EXPORT_SYMBOL(get_anon_bdev);
1102
free_anon_bdev(dev_t dev)1103 void free_anon_bdev(dev_t dev)
1104 {
1105 ida_free(&unnamed_dev_ida, MINOR(dev));
1106 }
1107 EXPORT_SYMBOL(free_anon_bdev);
1108
set_anon_super(struct super_block * s,void * data)1109 int set_anon_super(struct super_block *s, void *data)
1110 {
1111 return get_anon_bdev(&s->s_dev);
1112 }
1113 EXPORT_SYMBOL(set_anon_super);
1114
kill_anon_super(struct super_block * sb)1115 void kill_anon_super(struct super_block *sb)
1116 {
1117 dev_t dev = sb->s_dev;
1118 generic_shutdown_super(sb);
1119 free_anon_bdev(dev);
1120 }
1121 EXPORT_SYMBOL(kill_anon_super);
1122
kill_litter_super(struct super_block * sb)1123 void kill_litter_super(struct super_block *sb)
1124 {
1125 if (sb->s_root)
1126 d_genocide(sb->s_root);
1127 kill_anon_super(sb);
1128 }
1129 EXPORT_SYMBOL(kill_litter_super);
1130
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1131 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1132 {
1133 return set_anon_super(sb, NULL);
1134 }
1135 EXPORT_SYMBOL(set_anon_super_fc);
1136
test_keyed_super(struct super_block * sb,struct fs_context * fc)1137 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1138 {
1139 return sb->s_fs_info == fc->s_fs_info;
1140 }
1141
test_single_super(struct super_block * s,struct fs_context * fc)1142 static int test_single_super(struct super_block *s, struct fs_context *fc)
1143 {
1144 return 1;
1145 }
1146
1147 /**
1148 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1149 * @fc: The filesystem context holding the parameters
1150 * @keying: How to distinguish superblocks
1151 * @fill_super: Helper to initialise a new superblock
1152 *
1153 * Search for a superblock and create a new one if not found. The search
1154 * criterion is controlled by @keying. If the search fails, a new superblock
1155 * is created and @fill_super() is called to initialise it.
1156 *
1157 * @keying can take one of a number of values:
1158 *
1159 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1160 * system. This is typically used for special system filesystems.
1161 *
1162 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1163 * distinct keys (where the key is in s_fs_info). Searching for the same
1164 * key again will turn up the superblock for that key.
1165 *
1166 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1167 * unkeyed. Each call will get a new superblock.
1168 *
1169 * A permissions check is made by sget_fc() unless we're getting a superblock
1170 * for a kernel-internal mount or a submount.
1171 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1172 int vfs_get_super(struct fs_context *fc,
1173 enum vfs_get_super_keying keying,
1174 int (*fill_super)(struct super_block *sb,
1175 struct fs_context *fc))
1176 {
1177 int (*test)(struct super_block *, struct fs_context *);
1178 struct super_block *sb;
1179 int err;
1180
1181 switch (keying) {
1182 case vfs_get_single_super:
1183 case vfs_get_single_reconf_super:
1184 test = test_single_super;
1185 break;
1186 case vfs_get_keyed_super:
1187 test = test_keyed_super;
1188 break;
1189 case vfs_get_independent_super:
1190 test = NULL;
1191 break;
1192 default:
1193 BUG();
1194 }
1195
1196 sb = sget_fc(fc, test, set_anon_super_fc);
1197 if (IS_ERR(sb))
1198 return PTR_ERR(sb);
1199
1200 if (!sb->s_root) {
1201 err = fill_super(sb, fc);
1202 if (err)
1203 goto error;
1204
1205 sb->s_flags |= SB_ACTIVE;
1206 fc->root = dget(sb->s_root);
1207 } else {
1208 fc->root = dget(sb->s_root);
1209 if (keying == vfs_get_single_reconf_super) {
1210 err = reconfigure_super(fc);
1211 if (err < 0) {
1212 dput(fc->root);
1213 fc->root = NULL;
1214 goto error;
1215 }
1216 }
1217 }
1218
1219 return 0;
1220
1221 error:
1222 deactivate_locked_super(sb);
1223 return err;
1224 }
1225 EXPORT_SYMBOL(vfs_get_super);
1226
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1227 int get_tree_nodev(struct fs_context *fc,
1228 int (*fill_super)(struct super_block *sb,
1229 struct fs_context *fc))
1230 {
1231 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1232 }
1233 EXPORT_SYMBOL(get_tree_nodev);
1234
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1235 int get_tree_single(struct fs_context *fc,
1236 int (*fill_super)(struct super_block *sb,
1237 struct fs_context *fc))
1238 {
1239 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1240 }
1241 EXPORT_SYMBOL(get_tree_single);
1242
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1243 int get_tree_single_reconf(struct fs_context *fc,
1244 int (*fill_super)(struct super_block *sb,
1245 struct fs_context *fc))
1246 {
1247 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1248 }
1249 EXPORT_SYMBOL(get_tree_single_reconf);
1250
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1251 int get_tree_keyed(struct fs_context *fc,
1252 int (*fill_super)(struct super_block *sb,
1253 struct fs_context *fc),
1254 void *key)
1255 {
1256 fc->s_fs_info = key;
1257 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1258 }
1259 EXPORT_SYMBOL(get_tree_keyed);
1260
1261 #ifdef CONFIG_BLOCK
1262
set_bdev_super(struct super_block * s,void * data)1263 static int set_bdev_super(struct super_block *s, void *data)
1264 {
1265 s->s_bdev = data;
1266 s->s_dev = s->s_bdev->bd_dev;
1267 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1268
1269 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1270 s->s_iflags |= SB_I_STABLE_WRITES;
1271 return 0;
1272 }
1273
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1274 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1275 {
1276 return set_bdev_super(s, fc->sget_key);
1277 }
1278
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1279 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1280 {
1281 return s->s_bdev == fc->sget_key;
1282 }
1283
1284 /**
1285 * get_tree_bdev - Get a superblock based on a single block device
1286 * @fc: The filesystem context holding the parameters
1287 * @fill_super: Helper to initialise a new superblock
1288 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1289 int get_tree_bdev(struct fs_context *fc,
1290 int (*fill_super)(struct super_block *,
1291 struct fs_context *))
1292 {
1293 struct block_device *bdev;
1294 struct super_block *s;
1295 fmode_t mode = FMODE_READ | FMODE_EXCL;
1296 int error = 0;
1297
1298 if (!(fc->sb_flags & SB_RDONLY))
1299 mode |= FMODE_WRITE;
1300
1301 if (!fc->source)
1302 return invalf(fc, "No source specified");
1303
1304 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1305 if (IS_ERR(bdev)) {
1306 errorf(fc, "%s: Can't open blockdev", fc->source);
1307 return PTR_ERR(bdev);
1308 }
1309
1310 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1311 * will protect the lockfs code from trying to start a snapshot while
1312 * we are mounting
1313 */
1314 mutex_lock(&bdev->bd_fsfreeze_mutex);
1315 if (bdev->bd_fsfreeze_count > 0) {
1316 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1317 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1318 blkdev_put(bdev, mode);
1319 return -EBUSY;
1320 }
1321
1322 fc->sb_flags |= SB_NOSEC;
1323 fc->sget_key = bdev;
1324 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1325 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1326 if (IS_ERR(s)) {
1327 blkdev_put(bdev, mode);
1328 return PTR_ERR(s);
1329 }
1330
1331 if (s->s_root) {
1332 /* Don't summarily change the RO/RW state. */
1333 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1334 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1335 deactivate_locked_super(s);
1336 blkdev_put(bdev, mode);
1337 return -EBUSY;
1338 }
1339
1340 /*
1341 * s_umount nests inside bd_mutex during
1342 * __invalidate_device(). blkdev_put() acquires
1343 * bd_mutex and can't be called under s_umount. Drop
1344 * s_umount temporarily. This is safe as we're
1345 * holding an active reference.
1346 */
1347 up_write(&s->s_umount);
1348 blkdev_put(bdev, mode);
1349 down_write(&s->s_umount);
1350 } else {
1351 s->s_mode = mode;
1352 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1353 sb_set_blocksize(s, block_size(bdev));
1354 error = fill_super(s, fc);
1355 if (error) {
1356 deactivate_locked_super(s);
1357 return error;
1358 }
1359
1360 s->s_flags |= SB_ACTIVE;
1361 bdev->bd_super = s;
1362 }
1363
1364 BUG_ON(fc->root);
1365 fc->root = dget(s->s_root);
1366 return 0;
1367 }
1368 EXPORT_SYMBOL(get_tree_bdev);
1369
test_bdev_super(struct super_block * s,void * data)1370 static int test_bdev_super(struct super_block *s, void *data)
1371 {
1372 return (void *)s->s_bdev == data;
1373 }
1374
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1375 struct dentry *mount_bdev(struct file_system_type *fs_type,
1376 int flags, const char *dev_name, void *data,
1377 int (*fill_super)(struct super_block *, void *, int))
1378 {
1379 struct block_device *bdev;
1380 struct super_block *s;
1381 fmode_t mode = FMODE_READ | FMODE_EXCL;
1382 int error = 0;
1383
1384 if (!(flags & SB_RDONLY))
1385 mode |= FMODE_WRITE;
1386
1387 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1388 if (IS_ERR(bdev))
1389 return ERR_CAST(bdev);
1390
1391 /*
1392 * once the super is inserted into the list by sget, s_umount
1393 * will protect the lockfs code from trying to start a snapshot
1394 * while we are mounting
1395 */
1396 mutex_lock(&bdev->bd_fsfreeze_mutex);
1397 if (bdev->bd_fsfreeze_count > 0) {
1398 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1399 error = -EBUSY;
1400 goto error_bdev;
1401 }
1402 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1403 bdev);
1404 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1405 if (IS_ERR(s))
1406 goto error_s;
1407
1408 if (s->s_root) {
1409 if ((flags ^ s->s_flags) & SB_RDONLY) {
1410 deactivate_locked_super(s);
1411 error = -EBUSY;
1412 goto error_bdev;
1413 }
1414
1415 /*
1416 * s_umount nests inside bd_mutex during
1417 * __invalidate_device(). blkdev_put() acquires
1418 * bd_mutex and can't be called under s_umount. Drop
1419 * s_umount temporarily. This is safe as we're
1420 * holding an active reference.
1421 */
1422 up_write(&s->s_umount);
1423 blkdev_put(bdev, mode);
1424 down_write(&s->s_umount);
1425 } else {
1426 s->s_mode = mode;
1427 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1428 sb_set_blocksize(s, block_size(bdev));
1429 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1430 if (error) {
1431 deactivate_locked_super(s);
1432 goto error;
1433 }
1434
1435 s->s_flags |= SB_ACTIVE;
1436 bdev->bd_super = s;
1437 }
1438
1439 return dget(s->s_root);
1440
1441 error_s:
1442 error = PTR_ERR(s);
1443 error_bdev:
1444 blkdev_put(bdev, mode);
1445 error:
1446 return ERR_PTR(error);
1447 }
1448 EXPORT_SYMBOL(mount_bdev);
1449
kill_block_super(struct super_block * sb)1450 void kill_block_super(struct super_block *sb)
1451 {
1452 struct block_device *bdev = sb->s_bdev;
1453 fmode_t mode = sb->s_mode;
1454
1455 bdev->bd_super = NULL;
1456 generic_shutdown_super(sb);
1457 sync_blockdev(bdev);
1458 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1459 blkdev_put(bdev, mode | FMODE_EXCL);
1460 }
1461
1462 EXPORT_SYMBOL(kill_block_super);
1463 #endif
1464
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1465 struct dentry *mount_nodev(struct file_system_type *fs_type,
1466 int flags, void *data,
1467 int (*fill_super)(struct super_block *, void *, int))
1468 {
1469 int error;
1470 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1471
1472 if (IS_ERR(s))
1473 return ERR_CAST(s);
1474
1475 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1476 if (error) {
1477 deactivate_locked_super(s);
1478 return ERR_PTR(error);
1479 }
1480 s->s_flags |= SB_ACTIVE;
1481 return dget(s->s_root);
1482 }
1483 EXPORT_SYMBOL(mount_nodev);
1484
reconfigure_single(struct super_block * s,int flags,void * data)1485 int reconfigure_single(struct super_block *s,
1486 int flags, void *data)
1487 {
1488 struct fs_context *fc;
1489 int ret;
1490
1491 /* The caller really need to be passing fc down into mount_single(),
1492 * then a chunk of this can be removed. [Bollocks -- AV]
1493 * Better yet, reconfiguration shouldn't happen, but rather the second
1494 * mount should be rejected if the parameters are not compatible.
1495 */
1496 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1497 if (IS_ERR(fc))
1498 return PTR_ERR(fc);
1499
1500 ret = parse_monolithic_mount_data(fc, data);
1501 if (ret < 0)
1502 goto out;
1503
1504 ret = reconfigure_super(fc);
1505 out:
1506 put_fs_context(fc);
1507 return ret;
1508 }
1509
compare_single(struct super_block * s,void * p)1510 static int compare_single(struct super_block *s, void *p)
1511 {
1512 return 1;
1513 }
1514
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1515 struct dentry *mount_single(struct file_system_type *fs_type,
1516 int flags, void *data,
1517 int (*fill_super)(struct super_block *, void *, int))
1518 {
1519 struct super_block *s;
1520 int error;
1521
1522 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1523 if (IS_ERR(s))
1524 return ERR_CAST(s);
1525 if (!s->s_root) {
1526 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1527 if (!error)
1528 s->s_flags |= SB_ACTIVE;
1529 } else {
1530 error = reconfigure_single(s, flags, data);
1531 }
1532 if (unlikely(error)) {
1533 deactivate_locked_super(s);
1534 return ERR_PTR(error);
1535 }
1536 return dget(s->s_root);
1537 }
1538 EXPORT_SYMBOL(mount_single);
1539
1540 /**
1541 * vfs_get_tree - Get the mountable root
1542 * @fc: The superblock configuration context.
1543 *
1544 * The filesystem is invoked to get or create a superblock which can then later
1545 * be used for mounting. The filesystem places a pointer to the root to be
1546 * used for mounting in @fc->root.
1547 */
vfs_get_tree(struct fs_context * fc)1548 int vfs_get_tree(struct fs_context *fc)
1549 {
1550 struct super_block *sb;
1551 int error;
1552
1553 if (fc->root)
1554 return -EBUSY;
1555
1556 /* Get the mountable root in fc->root, with a ref on the root and a ref
1557 * on the superblock.
1558 */
1559 error = fc->ops->get_tree(fc);
1560 if (error < 0)
1561 return error;
1562
1563 if (!fc->root) {
1564 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1565 fc->fs_type->name);
1566 /* We don't know what the locking state of the superblock is -
1567 * if there is a superblock.
1568 */
1569 BUG();
1570 }
1571
1572 sb = fc->root->d_sb;
1573 WARN_ON(!sb->s_bdi);
1574
1575 /*
1576 * Write barrier is for super_cache_count(). We place it before setting
1577 * SB_BORN as the data dependency between the two functions is the
1578 * superblock structure contents that we just set up, not the SB_BORN
1579 * flag.
1580 */
1581 smp_wmb();
1582 sb->s_flags |= SB_BORN;
1583
1584 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1585 if (unlikely(error)) {
1586 fc_drop_locked(fc);
1587 return error;
1588 }
1589
1590 /*
1591 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1592 * but s_maxbytes was an unsigned long long for many releases. Throw
1593 * this warning for a little while to try and catch filesystems that
1594 * violate this rule.
1595 */
1596 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1597 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1598
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(vfs_get_tree);
1602
1603 /*
1604 * Setup private BDI for given superblock. It gets automatically cleaned up
1605 * in generic_shutdown_super().
1606 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1607 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1608 {
1609 struct backing_dev_info *bdi;
1610 int err;
1611 va_list args;
1612
1613 bdi = bdi_alloc(NUMA_NO_NODE);
1614 if (!bdi)
1615 return -ENOMEM;
1616
1617 va_start(args, fmt);
1618 err = bdi_register_va(bdi, fmt, args);
1619 va_end(args);
1620 if (err) {
1621 bdi_put(bdi);
1622 return err;
1623 }
1624 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1625 sb->s_bdi = bdi;
1626
1627 return 0;
1628 }
1629 EXPORT_SYMBOL(super_setup_bdi_name);
1630
1631 /*
1632 * Setup private BDI for given superblock. I gets automatically cleaned up
1633 * in generic_shutdown_super().
1634 */
super_setup_bdi(struct super_block * sb)1635 int super_setup_bdi(struct super_block *sb)
1636 {
1637 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1638
1639 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1640 atomic_long_inc_return(&bdi_seq));
1641 }
1642 EXPORT_SYMBOL(super_setup_bdi);
1643
1644 /**
1645 * sb_wait_write - wait until all writers to given file system finish
1646 * @sb: the super for which we wait
1647 * @level: type of writers we wait for (normal vs page fault)
1648 *
1649 * This function waits until there are no writers of given type to given file
1650 * system.
1651 */
sb_wait_write(struct super_block * sb,int level)1652 static void sb_wait_write(struct super_block *sb, int level)
1653 {
1654 percpu_down_write(sb->s_writers.rw_sem + level-1);
1655 }
1656
1657 /*
1658 * We are going to return to userspace and forget about these locks, the
1659 * ownership goes to the caller of thaw_super() which does unlock().
1660 */
lockdep_sb_freeze_release(struct super_block * sb)1661 static void lockdep_sb_freeze_release(struct super_block *sb)
1662 {
1663 int level;
1664
1665 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1666 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1667 }
1668
1669 /*
1670 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1671 */
lockdep_sb_freeze_acquire(struct super_block * sb)1672 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1673 {
1674 int level;
1675
1676 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1677 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1678 }
1679
sb_freeze_unlock(struct super_block * sb,int level)1680 static void sb_freeze_unlock(struct super_block *sb, int level)
1681 {
1682 for (level--; level >= 0; level--)
1683 percpu_up_write(sb->s_writers.rw_sem + level);
1684 }
1685
1686 /**
1687 * freeze_super - lock the filesystem and force it into a consistent state
1688 * @sb: the super to lock
1689 *
1690 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1691 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1692 * -EBUSY.
1693 *
1694 * During this function, sb->s_writers.frozen goes through these values:
1695 *
1696 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1697 *
1698 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1699 * writes should be blocked, though page faults are still allowed. We wait for
1700 * all writes to complete and then proceed to the next stage.
1701 *
1702 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1703 * but internal fs threads can still modify the filesystem (although they
1704 * should not dirty new pages or inodes), writeback can run etc. After waiting
1705 * for all running page faults we sync the filesystem which will clean all
1706 * dirty pages and inodes (no new dirty pages or inodes can be created when
1707 * sync is running).
1708 *
1709 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1710 * modification are blocked (e.g. XFS preallocation truncation on inode
1711 * reclaim). This is usually implemented by blocking new transactions for
1712 * filesystems that have them and need this additional guard. After all
1713 * internal writers are finished we call ->freeze_fs() to finish filesystem
1714 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1715 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1716 *
1717 * sb->s_writers.frozen is protected by sb->s_umount.
1718 */
freeze_super(struct super_block * sb)1719 int freeze_super(struct super_block *sb)
1720 {
1721 int ret;
1722
1723 atomic_inc(&sb->s_active);
1724 down_write(&sb->s_umount);
1725 if (sb->s_writers.frozen != SB_UNFROZEN) {
1726 deactivate_locked_super(sb);
1727 return -EBUSY;
1728 }
1729
1730 if (!(sb->s_flags & SB_BORN)) {
1731 up_write(&sb->s_umount);
1732 return 0; /* sic - it's "nothing to do" */
1733 }
1734
1735 if (sb_rdonly(sb)) {
1736 /* Nothing to do really... */
1737 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1738 up_write(&sb->s_umount);
1739 return 0;
1740 }
1741
1742 sb->s_writers.frozen = SB_FREEZE_WRITE;
1743 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1744 up_write(&sb->s_umount);
1745 sb_wait_write(sb, SB_FREEZE_WRITE);
1746 down_write(&sb->s_umount);
1747
1748 /* Now we go and block page faults... */
1749 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1750 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1751
1752 /* All writers are done so after syncing there won't be dirty data */
1753 ret = sync_filesystem(sb);
1754 if (ret) {
1755 sb->s_writers.frozen = SB_UNFROZEN;
1756 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1757 wake_up(&sb->s_writers.wait_unfrozen);
1758 deactivate_locked_super(sb);
1759 return ret;
1760 }
1761
1762 /* Now wait for internal filesystem counter */
1763 sb->s_writers.frozen = SB_FREEZE_FS;
1764 sb_wait_write(sb, SB_FREEZE_FS);
1765
1766 if (sb->s_op->freeze_fs) {
1767 ret = sb->s_op->freeze_fs(sb);
1768 if (ret) {
1769 printk(KERN_ERR
1770 "VFS:Filesystem freeze failed\n");
1771 sb->s_writers.frozen = SB_UNFROZEN;
1772 sb_freeze_unlock(sb, SB_FREEZE_FS);
1773 wake_up(&sb->s_writers.wait_unfrozen);
1774 deactivate_locked_super(sb);
1775 return ret;
1776 }
1777 }
1778 /*
1779 * For debugging purposes so that fs can warn if it sees write activity
1780 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1781 */
1782 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1783 lockdep_sb_freeze_release(sb);
1784 up_write(&sb->s_umount);
1785 return 0;
1786 }
1787 EXPORT_SYMBOL(freeze_super);
1788
1789 /**
1790 * thaw_super -- unlock filesystem
1791 * @sb: the super to thaw
1792 *
1793 * Unlocks the filesystem and marks it writeable again after freeze_super().
1794 */
thaw_super_locked(struct super_block * sb)1795 static int thaw_super_locked(struct super_block *sb)
1796 {
1797 int error;
1798
1799 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1800 up_write(&sb->s_umount);
1801 return -EINVAL;
1802 }
1803
1804 if (sb_rdonly(sb)) {
1805 sb->s_writers.frozen = SB_UNFROZEN;
1806 goto out;
1807 }
1808
1809 lockdep_sb_freeze_acquire(sb);
1810
1811 if (sb->s_op->unfreeze_fs) {
1812 error = sb->s_op->unfreeze_fs(sb);
1813 if (error) {
1814 printk(KERN_ERR
1815 "VFS:Filesystem thaw failed\n");
1816 lockdep_sb_freeze_release(sb);
1817 up_write(&sb->s_umount);
1818 return error;
1819 }
1820 }
1821
1822 sb->s_writers.frozen = SB_UNFROZEN;
1823 sb_freeze_unlock(sb, SB_FREEZE_FS);
1824 out:
1825 wake_up(&sb->s_writers.wait_unfrozen);
1826 deactivate_locked_super(sb);
1827 return 0;
1828 }
1829
thaw_super(struct super_block * sb)1830 int thaw_super(struct super_block *sb)
1831 {
1832 down_write(&sb->s_umount);
1833 return thaw_super_locked(sb);
1834 }
1835 EXPORT_SYMBOL(thaw_super);
1836