1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0)
206 ;
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237 {
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247 }
248
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
259 }
260
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 kfree(name_node);
264 }
265
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268 {
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271 }
272
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 hlist_del_rcu(&name_node->hlist);
276 }
277
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280 {
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288 }
289
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292 {
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300 }
301
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327 }
328
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 struct net *net = dev_net(dev);
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
370
371 dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
387
388 dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392 * Our notifier list
393 */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410 static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460 {
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466 }
467
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480 {
481 }
482
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
493
494
495 /*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 struct list_head *head = ptype_head(pt);
536
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
560
561 spin_lock(&ptype_lock);
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 __dev_remove_pack(pt);
591
592 synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 struct packet_offload *elem;
612
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
641 spin_lock(&offload_lock);
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 spin_unlock(&offload_lock);
653 }
654
655 /**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 __dev_remove_offload(po);
670
671 synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
714 *
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
719 */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
733 }
734 }
735 return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
749 */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769 }
770
771 /*
772 * Saves at boot time configured settings for any netdevice.
773 */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
805
806 /**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
819 return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 struct netdev_name_node *node_name;
864
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
880 */
881
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 struct netdev_name_node *node_name;
885
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 struct net_device *dev;
906
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
932
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
936
937 return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1020 */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 struct net_device *dev;
1024 int ret;
1025
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1028
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1033 }
1034
1035 strcpy(name, dev->name);
1036
1037 ret = 0;
1038 out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1042 }
1043
1044 /**
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1055 *
1056 */
1057
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1060 {
1061 struct net_device *dev;
1062
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1067
1068 return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 struct net_device *dev;
1075
1076 ASSERT_RTNL();
1077 for_each_netdev(net, dev)
1078 if (dev->type == type)
1079 return dev;
1080
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 struct net_device *dev, *ret = NULL;
1088
1089 rcu_read_lock();
1090 for_each_netdev_rcu(net, dev)
1091 if (dev->type == type) {
1092 dev_hold(dev);
1093 ret = dev;
1094 break;
1095 }
1096 rcu_read_unlock();
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101 /**
1102 * __dev_get_by_flags - find any device with given flags
1103 * @net: the applicable net namespace
1104 * @if_flags: IFF_* values
1105 * @mask: bitmask of bits in if_flags to check
1106 *
1107 * Search for any interface with the given flags. Returns NULL if a device
1108 * is not found or a pointer to the device. Must be called inside
1109 * rtnl_lock(), and result refcount is unchanged.
1110 */
1111
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 unsigned short mask)
1114 {
1115 struct net_device *dev, *ret;
1116
1117 ASSERT_RTNL();
1118
1119 ret = NULL;
1120 for_each_netdev(net, dev) {
1121 if (((dev->flags ^ if_flags) & mask) == 0) {
1122 ret = dev;
1123 break;
1124 }
1125 }
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130 /**
1131 * dev_valid_name - check if name is okay for network device
1132 * @name: name string
1133 *
1134 * Network device names need to be valid file names to
1135 * allow sysfs to work. We also disallow any kind of
1136 * whitespace.
1137 */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 if (*name == '\0')
1141 return false;
1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 return false;
1144 if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 return false;
1146
1147 while (*name) {
1148 if (*name == '/' || *name == ':' || isspace(*name))
1149 return false;
1150 name++;
1151 }
1152 return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155
1156 /**
1157 * __dev_alloc_name - allocate a name for a device
1158 * @net: network namespace to allocate the device name in
1159 * @name: name format string
1160 * @buf: scratch buffer and result name string
1161 *
1162 * Passed a format string - eg "lt%d" it will try and find a suitable
1163 * id. It scans list of devices to build up a free map, then chooses
1164 * the first empty slot. The caller must hold the dev_base or rtnl lock
1165 * while allocating the name and adding the device in order to avoid
1166 * duplicates.
1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168 * Returns the number of the unit assigned or a negative errno code.
1169 */
1170
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 int i = 0;
1174 const char *p;
1175 const int max_netdevices = 8*PAGE_SIZE;
1176 unsigned long *inuse;
1177 struct net_device *d;
1178
1179 if (!dev_valid_name(name))
1180 return -EINVAL;
1181
1182 p = strchr(name, '%');
1183 if (p) {
1184 /*
1185 * Verify the string as this thing may have come from
1186 * the user. There must be either one "%d" and no other "%"
1187 * characters.
1188 */
1189 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 return -EINVAL;
1191
1192 /* Use one page as a bit array of possible slots */
1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 if (!inuse)
1195 return -ENOMEM;
1196
1197 for_each_netdev(net, d) {
1198 struct netdev_name_node *name_node;
1199 list_for_each_entry(name_node, &d->name_node->list, list) {
1200 if (!sscanf(name_node->name, name, &i))
1201 continue;
1202 if (i < 0 || i >= max_netdevices)
1203 continue;
1204
1205 /* avoid cases where sscanf is not exact inverse of printf */
1206 snprintf(buf, IFNAMSIZ, name, i);
1207 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 set_bit(i, inuse);
1209 }
1210 if (!sscanf(d->name, name, &i))
1211 continue;
1212 if (i < 0 || i >= max_netdevices)
1213 continue;
1214
1215 /* avoid cases where sscanf is not exact inverse of printf */
1216 snprintf(buf, IFNAMSIZ, name, i);
1217 if (!strncmp(buf, d->name, IFNAMSIZ))
1218 set_bit(i, inuse);
1219 }
1220
1221 i = find_first_zero_bit(inuse, max_netdevices);
1222 free_page((unsigned long) inuse);
1223 }
1224
1225 snprintf(buf, IFNAMSIZ, name, i);
1226 if (!__dev_get_by_name(net, buf))
1227 return i;
1228
1229 /* It is possible to run out of possible slots
1230 * when the name is long and there isn't enough space left
1231 * for the digits, or if all bits are used.
1232 */
1233 return -ENFILE;
1234 }
1235
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 struct net_device *dev,
1238 const char *name)
1239 {
1240 char buf[IFNAMSIZ];
1241 int ret;
1242
1243 BUG_ON(!net);
1244 ret = __dev_alloc_name(net, name, buf);
1245 if (ret >= 0)
1246 strlcpy(dev->name, buf, IFNAMSIZ);
1247 return ret;
1248 }
1249
1250 /**
1251 * dev_alloc_name - allocate a name for a device
1252 * @dev: device
1253 * @name: name format string
1254 *
1255 * Passed a format string - eg "lt%d" it will try and find a suitable
1256 * id. It scans list of devices to build up a free map, then chooses
1257 * the first empty slot. The caller must hold the dev_base or rtnl lock
1258 * while allocating the name and adding the device in order to avoid
1259 * duplicates.
1260 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261 * Returns the number of the unit assigned or a negative errno code.
1262 */
1263
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 const char *name)
1272 {
1273 BUG_ON(!net);
1274
1275 if (!dev_valid_name(name))
1276 return -EINVAL;
1277
1278 if (strchr(name, '%'))
1279 return dev_alloc_name_ns(net, dev, name);
1280 else if (__dev_get_by_name(net, name))
1281 return -EEXIST;
1282 else if (dev->name != name)
1283 strlcpy(dev->name, name, IFNAMSIZ);
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * dev_change_name - change name of a device
1290 * @dev: device
1291 * @newname: name (or format string) must be at least IFNAMSIZ
1292 *
1293 * Change name of a device, can pass format strings "eth%d".
1294 * for wildcarding.
1295 */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 unsigned char old_assign_type;
1299 char oldname[IFNAMSIZ];
1300 int err = 0;
1301 int ret;
1302 struct net *net;
1303
1304 ASSERT_RTNL();
1305 BUG_ON(!dev_net(dev));
1306
1307 net = dev_net(dev);
1308
1309 /* Some auto-enslaved devices e.g. failover slaves are
1310 * special, as userspace might rename the device after
1311 * the interface had been brought up and running since
1312 * the point kernel initiated auto-enslavement. Allow
1313 * live name change even when these slave devices are
1314 * up and running.
1315 *
1316 * Typically, users of these auto-enslaving devices
1317 * don't actually care about slave name change, as
1318 * they are supposed to operate on master interface
1319 * directly.
1320 */
1321 if (dev->flags & IFF_UP &&
1322 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 return -EBUSY;
1324
1325 down_write(&devnet_rename_sem);
1326
1327 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 up_write(&devnet_rename_sem);
1329 return 0;
1330 }
1331
1332 memcpy(oldname, dev->name, IFNAMSIZ);
1333
1334 err = dev_get_valid_name(net, dev, newname);
1335 if (err < 0) {
1336 up_write(&devnet_rename_sem);
1337 return err;
1338 }
1339
1340 if (oldname[0] && !strchr(oldname, '%'))
1341 netdev_info(dev, "renamed from %s\n", oldname);
1342
1343 old_assign_type = dev->name_assign_type;
1344 dev->name_assign_type = NET_NAME_RENAMED;
1345
1346 rollback:
1347 ret = device_rename(&dev->dev, dev->name);
1348 if (ret) {
1349 memcpy(dev->name, oldname, IFNAMSIZ);
1350 dev->name_assign_type = old_assign_type;
1351 up_write(&devnet_rename_sem);
1352 return ret;
1353 }
1354
1355 up_write(&devnet_rename_sem);
1356
1357 netdev_adjacent_rename_links(dev, oldname);
1358
1359 write_lock_bh(&dev_base_lock);
1360 netdev_name_node_del(dev->name_node);
1361 write_unlock_bh(&dev_base_lock);
1362
1363 synchronize_rcu();
1364
1365 write_lock_bh(&dev_base_lock);
1366 netdev_name_node_add(net, dev->name_node);
1367 write_unlock_bh(&dev_base_lock);
1368
1369 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 ret = notifier_to_errno(ret);
1371
1372 if (ret) {
1373 /* err >= 0 after dev_alloc_name() or stores the first errno */
1374 if (err >= 0) {
1375 err = ret;
1376 down_write(&devnet_rename_sem);
1377 memcpy(dev->name, oldname, IFNAMSIZ);
1378 memcpy(oldname, newname, IFNAMSIZ);
1379 dev->name_assign_type = old_assign_type;
1380 old_assign_type = NET_NAME_RENAMED;
1381 goto rollback;
1382 } else {
1383 pr_err("%s: name change rollback failed: %d\n",
1384 dev->name, ret);
1385 }
1386 }
1387
1388 return err;
1389 }
1390
1391 /**
1392 * dev_set_alias - change ifalias of a device
1393 * @dev: device
1394 * @alias: name up to IFALIASZ
1395 * @len: limit of bytes to copy from info
1396 *
1397 * Set ifalias for a device,
1398 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 struct dev_ifalias *new_alias = NULL;
1402
1403 if (len >= IFALIASZ)
1404 return -EINVAL;
1405
1406 if (len) {
1407 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 if (!new_alias)
1409 return -ENOMEM;
1410
1411 memcpy(new_alias->ifalias, alias, len);
1412 new_alias->ifalias[len] = 0;
1413 }
1414
1415 mutex_lock(&ifalias_mutex);
1416 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 mutex_is_locked(&ifalias_mutex));
1418 mutex_unlock(&ifalias_mutex);
1419
1420 if (new_alias)
1421 kfree_rcu(new_alias, rcuhead);
1422
1423 return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426
1427 /**
1428 * dev_get_alias - get ifalias of a device
1429 * @dev: device
1430 * @name: buffer to store name of ifalias
1431 * @len: size of buffer
1432 *
1433 * get ifalias for a device. Caller must make sure dev cannot go
1434 * away, e.g. rcu read lock or own a reference count to device.
1435 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 const struct dev_ifalias *alias;
1439 int ret = 0;
1440
1441 rcu_read_lock();
1442 alias = rcu_dereference(dev->ifalias);
1443 if (alias)
1444 ret = snprintf(name, len, "%s", alias->ifalias);
1445 rcu_read_unlock();
1446
1447 return ret;
1448 }
1449
1450 /**
1451 * netdev_features_change - device changes features
1452 * @dev: device to cause notification
1453 *
1454 * Called to indicate a device has changed features.
1455 */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461
1462 /**
1463 * netdev_state_change - device changes state
1464 * @dev: device to cause notification
1465 *
1466 * Called to indicate a device has changed state. This function calls
1467 * the notifier chains for netdev_chain and sends a NEWLINK message
1468 * to the routing socket.
1469 */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 struct netdev_notifier_change_info change_info = {
1474 .info.dev = dev,
1475 };
1476
1477 call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 &change_info.info);
1479 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 }
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483
1484 /**
1485 * netdev_notify_peers - notify network peers about existence of @dev
1486 * @dev: network device
1487 *
1488 * Generate traffic such that interested network peers are aware of
1489 * @dev, such as by generating a gratuitous ARP. This may be used when
1490 * a device wants to inform the rest of the network about some sort of
1491 * reconfiguration such as a failover event or virtual machine
1492 * migration.
1493 */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 rtnl_lock();
1497 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 const struct net_device_ops *ops = dev->netdev_ops;
1506 int ret;
1507
1508 ASSERT_RTNL();
1509
1510 if (!netif_device_present(dev)) {
1511 /* may be detached because parent is runtime-suspended */
1512 if (dev->dev.parent)
1513 pm_runtime_resume(dev->dev.parent);
1514 if (!netif_device_present(dev))
1515 return -ENODEV;
1516 }
1517
1518 /* Block netpoll from trying to do any rx path servicing.
1519 * If we don't do this there is a chance ndo_poll_controller
1520 * or ndo_poll may be running while we open the device
1521 */
1522 netpoll_poll_disable(dev);
1523
1524 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 ret = notifier_to_errno(ret);
1526 if (ret)
1527 return ret;
1528
1529 set_bit(__LINK_STATE_START, &dev->state);
1530
1531 if (ops->ndo_validate_addr)
1532 ret = ops->ndo_validate_addr(dev);
1533
1534 if (!ret && ops->ndo_open)
1535 ret = ops->ndo_open(dev);
1536
1537 netpoll_poll_enable(dev);
1538
1539 if (ret)
1540 clear_bit(__LINK_STATE_START, &dev->state);
1541 else {
1542 dev->flags |= IFF_UP;
1543 dev_set_rx_mode(dev);
1544 dev_activate(dev);
1545 add_device_randomness(dev->dev_addr, dev->addr_len);
1546 }
1547
1548 return ret;
1549 }
1550
1551 /**
1552 * dev_open - prepare an interface for use.
1553 * @dev: device to open
1554 * @extack: netlink extended ack
1555 *
1556 * Takes a device from down to up state. The device's private open
1557 * function is invoked and then the multicast lists are loaded. Finally
1558 * the device is moved into the up state and a %NETDEV_UP message is
1559 * sent to the netdev notifier chain.
1560 *
1561 * Calling this function on an active interface is a nop. On a failure
1562 * a negative errno code is returned.
1563 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 int ret;
1567
1568 if (dev->flags & IFF_UP)
1569 return 0;
1570
1571 ret = __dev_open(dev, extack);
1572 if (ret < 0)
1573 return ret;
1574
1575 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 call_netdevice_notifiers(NETDEV_UP, dev);
1577
1578 return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 struct net_device *dev;
1585
1586 ASSERT_RTNL();
1587 might_sleep();
1588
1589 list_for_each_entry(dev, head, close_list) {
1590 /* Temporarily disable netpoll until the interface is down */
1591 netpoll_poll_disable(dev);
1592
1593 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594
1595 clear_bit(__LINK_STATE_START, &dev->state);
1596
1597 /* Synchronize to scheduled poll. We cannot touch poll list, it
1598 * can be even on different cpu. So just clear netif_running().
1599 *
1600 * dev->stop() will invoke napi_disable() on all of it's
1601 * napi_struct instances on this device.
1602 */
1603 smp_mb__after_atomic(); /* Commit netif_running(). */
1604 }
1605
1606 dev_deactivate_many(head);
1607
1608 list_for_each_entry(dev, head, close_list) {
1609 const struct net_device_ops *ops = dev->netdev_ops;
1610
1611 /*
1612 * Call the device specific close. This cannot fail.
1613 * Only if device is UP
1614 *
1615 * We allow it to be called even after a DETACH hot-plug
1616 * event.
1617 */
1618 if (ops->ndo_stop)
1619 ops->ndo_stop(dev);
1620
1621 dev->flags &= ~IFF_UP;
1622 netpoll_poll_enable(dev);
1623 }
1624 }
1625
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 LIST_HEAD(single);
1629
1630 list_add(&dev->close_list, &single);
1631 __dev_close_many(&single);
1632 list_del(&single);
1633 }
1634
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 struct net_device *dev, *tmp;
1638
1639 /* Remove the devices that don't need to be closed */
1640 list_for_each_entry_safe(dev, tmp, head, close_list)
1641 if (!(dev->flags & IFF_UP))
1642 list_del_init(&dev->close_list);
1643
1644 __dev_close_many(head);
1645
1646 list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 if (unlink)
1650 list_del_init(&dev->close_list);
1651 }
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654
1655 /**
1656 * dev_close - shutdown an interface.
1657 * @dev: device to shutdown
1658 *
1659 * This function moves an active device into down state. A
1660 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662 * chain.
1663 */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 if (dev->flags & IFF_UP) {
1667 LIST_HEAD(single);
1668
1669 list_add(&dev->close_list, &single);
1670 dev_close_many(&single, true);
1671 list_del(&single);
1672 }
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675
1676
1677 /**
1678 * dev_disable_lro - disable Large Receive Offload on a device
1679 * @dev: device
1680 *
1681 * Disable Large Receive Offload (LRO) on a net device. Must be
1682 * called under RTNL. This is needed if received packets may be
1683 * forwarded to another interface.
1684 */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 struct net_device *lower_dev;
1688 struct list_head *iter;
1689
1690 dev->wanted_features &= ~NETIF_F_LRO;
1691 netdev_update_features(dev);
1692
1693 if (unlikely(dev->features & NETIF_F_LRO))
1694 netdev_WARN(dev, "failed to disable LRO!\n");
1695
1696 netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700
1701 /**
1702 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703 * @dev: device
1704 *
1705 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1706 * called under RTNL. This is needed if Generic XDP is installed on
1707 * the device.
1708 */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 netdev_update_features(dev);
1713
1714 if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) \
1721 case NETDEV_##val: \
1722 return "NETDEV_" __stringify(val);
1723 switch (cmd) {
1724 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 N(PRE_CHANGEADDR)
1734 }
1735 #undef N
1736 return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 struct net_device *dev)
1742 {
1743 struct netdev_notifier_info info = {
1744 .dev = dev,
1745 };
1746
1747 return nb->notifier_call(nb, val, &info);
1748 }
1749
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 struct net_device *dev)
1752 {
1753 int err;
1754
1755 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 err = notifier_to_errno(err);
1757 if (err)
1758 return err;
1759
1760 if (!(dev->flags & IFF_UP))
1761 return 0;
1762
1763 call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 return 0;
1765 }
1766
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 struct net_device *dev)
1769 {
1770 if (dev->flags & IFF_UP) {
1771 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 dev);
1773 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 }
1775 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 struct net *net)
1780 {
1781 struct net_device *dev;
1782 int err;
1783
1784 for_each_netdev(net, dev) {
1785 err = call_netdevice_register_notifiers(nb, dev);
1786 if (err)
1787 goto rollback;
1788 }
1789 return 0;
1790
1791 rollback:
1792 for_each_netdev_continue_reverse(net, dev)
1793 call_netdevice_unregister_notifiers(nb, dev);
1794 return err;
1795 }
1796
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 struct net *net)
1799 {
1800 struct net_device *dev;
1801
1802 for_each_netdev(net, dev)
1803 call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805
1806 static int dev_boot_phase = 1;
1807
1808 /**
1809 * register_netdevice_notifier - register a network notifier block
1810 * @nb: notifier
1811 *
1812 * Register a notifier to be called when network device events occur.
1813 * The notifier passed is linked into the kernel structures and must
1814 * not be reused until it has been unregistered. A negative errno code
1815 * is returned on a failure.
1816 *
1817 * When registered all registration and up events are replayed
1818 * to the new notifier to allow device to have a race free
1819 * view of the network device list.
1820 */
1821
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 struct net *net;
1825 int err;
1826
1827 /* Close race with setup_net() and cleanup_net() */
1828 down_write(&pernet_ops_rwsem);
1829 rtnl_lock();
1830 err = raw_notifier_chain_register(&netdev_chain, nb);
1831 if (err)
1832 goto unlock;
1833 if (dev_boot_phase)
1834 goto unlock;
1835 for_each_net(net) {
1836 err = call_netdevice_register_net_notifiers(nb, net);
1837 if (err)
1838 goto rollback;
1839 }
1840
1841 unlock:
1842 rtnl_unlock();
1843 up_write(&pernet_ops_rwsem);
1844 return err;
1845
1846 rollback:
1847 for_each_net_continue_reverse(net)
1848 call_netdevice_unregister_net_notifiers(nb, net);
1849
1850 raw_notifier_chain_unregister(&netdev_chain, nb);
1851 goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854
1855 /**
1856 * unregister_netdevice_notifier - unregister a network notifier block
1857 * @nb: notifier
1858 *
1859 * Unregister a notifier previously registered by
1860 * register_netdevice_notifier(). The notifier is unlinked into the
1861 * kernel structures and may then be reused. A negative errno code
1862 * is returned on a failure.
1863 *
1864 * After unregistering unregister and down device events are synthesized
1865 * for all devices on the device list to the removed notifier to remove
1866 * the need for special case cleanup code.
1867 */
1868
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 struct net *net;
1872 int err;
1873
1874 /* Close race with setup_net() and cleanup_net() */
1875 down_write(&pernet_ops_rwsem);
1876 rtnl_lock();
1877 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 if (err)
1879 goto unlock;
1880
1881 for_each_net(net)
1882 call_netdevice_unregister_net_notifiers(nb, net);
1883
1884 unlock:
1885 rtnl_unlock();
1886 up_write(&pernet_ops_rwsem);
1887 return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 struct notifier_block *nb,
1893 bool ignore_call_fail)
1894 {
1895 int err;
1896
1897 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 if (err)
1899 return err;
1900 if (dev_boot_phase)
1901 return 0;
1902
1903 err = call_netdevice_register_net_notifiers(nb, net);
1904 if (err && !ignore_call_fail)
1905 goto chain_unregister;
1906
1907 return 0;
1908
1909 chain_unregister:
1910 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 return err;
1912 }
1913
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 struct notifier_block *nb)
1916 {
1917 int err;
1918
1919 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 if (err)
1921 return err;
1922
1923 call_netdevice_unregister_net_notifiers(nb, net);
1924 return 0;
1925 }
1926
1927 /**
1928 * register_netdevice_notifier_net - register a per-netns network notifier block
1929 * @net: network namespace
1930 * @nb: notifier
1931 *
1932 * Register a notifier to be called when network device events occur.
1933 * The notifier passed is linked into the kernel structures and must
1934 * not be reused until it has been unregistered. A negative errno code
1935 * is returned on a failure.
1936 *
1937 * When registered all registration and up events are replayed
1938 * to the new notifier to allow device to have a race free
1939 * view of the network device list.
1940 */
1941
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 int err;
1945
1946 rtnl_lock();
1947 err = __register_netdevice_notifier_net(net, nb, false);
1948 rtnl_unlock();
1949 return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952
1953 /**
1954 * unregister_netdevice_notifier_net - unregister a per-netns
1955 * network notifier block
1956 * @net: network namespace
1957 * @nb: notifier
1958 *
1959 * Unregister a notifier previously registered by
1960 * register_netdevice_notifier(). The notifier is unlinked into the
1961 * kernel structures and may then be reused. A negative errno code
1962 * is returned on a failure.
1963 *
1964 * After unregistering unregister and down device events are synthesized
1965 * for all devices on the device list to the removed notifier to remove
1966 * the need for special case cleanup code.
1967 */
1968
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 struct notifier_block *nb)
1971 {
1972 int err;
1973
1974 rtnl_lock();
1975 err = __unregister_netdevice_notifier_net(net, nb);
1976 rtnl_unlock();
1977 return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 struct notifier_block *nb,
1983 struct netdev_net_notifier *nn)
1984 {
1985 int err;
1986
1987 rtnl_lock();
1988 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 if (!err) {
1990 nn->nb = nb;
1991 list_add(&nn->list, &dev->net_notifier_list);
1992 }
1993 rtnl_unlock();
1994 return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 struct notifier_block *nb,
2000 struct netdev_net_notifier *nn)
2001 {
2002 int err;
2003
2004 rtnl_lock();
2005 list_del(&nn->list);
2006 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 rtnl_unlock();
2008 return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 struct net *net)
2014 {
2015 struct netdev_net_notifier *nn;
2016
2017 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 __register_netdevice_notifier_net(net, nn->nb, true);
2020 }
2021 }
2022
2023 /**
2024 * call_netdevice_notifiers_info - call all network notifier blocks
2025 * @val: value passed unmodified to notifier function
2026 * @info: notifier information data
2027 *
2028 * Call all network notifier blocks. Parameters and return value
2029 * are as for raw_notifier_call_chain().
2030 */
2031
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 struct netdev_notifier_info *info)
2034 {
2035 struct net *net = dev_net(info->dev);
2036 int ret;
2037
2038 ASSERT_RTNL();
2039
2040 /* Run per-netns notifier block chain first, then run the global one.
2041 * Hopefully, one day, the global one is going to be removed after
2042 * all notifier block registrators get converted to be per-netns.
2043 */
2044 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 if (ret & NOTIFY_STOP_MASK)
2046 return ret;
2047 return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 struct net_device *dev,
2052 struct netlink_ext_ack *extack)
2053 {
2054 struct netdev_notifier_info info = {
2055 .dev = dev,
2056 .extack = extack,
2057 };
2058
2059 return call_netdevice_notifiers_info(val, &info);
2060 }
2061
2062 /**
2063 * call_netdevice_notifiers - call all network notifier blocks
2064 * @val: value passed unmodified to notifier function
2065 * @dev: net_device pointer passed unmodified to notifier function
2066 *
2067 * Call all network notifier blocks. Parameters and return value
2068 * are as for raw_notifier_call_chain().
2069 */
2070
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076
2077 /**
2078 * call_netdevice_notifiers_mtu - call all network notifier blocks
2079 * @val: value passed unmodified to notifier function
2080 * @dev: net_device pointer passed unmodified to notifier function
2081 * @arg: additional u32 argument passed to the notifier function
2082 *
2083 * Call all network notifier blocks. Parameters and return value
2084 * are as for raw_notifier_call_chain().
2085 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 struct net_device *dev, u32 arg)
2088 {
2089 struct netdev_notifier_info_ext info = {
2090 .info.dev = dev,
2091 .ext.mtu = arg,
2092 };
2093
2094 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095
2096 return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 int wanted;
2139
2140 wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 if (wanted > 0)
2142 static_branch_enable(&netstamp_needed_key);
2143 else
2144 static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 int wanted;
2153
2154 while (1) {
2155 wanted = atomic_read(&netstamp_wanted);
2156 if (wanted <= 0)
2157 break;
2158 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 return;
2160 }
2161 atomic_inc(&netstamp_needed_deferred);
2162 schedule_work(&netstamp_work);
2163 #else
2164 static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 int wanted;
2173
2174 while (1) {
2175 wanted = atomic_read(&netstamp_wanted);
2176 if (wanted <= 1)
2177 break;
2178 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 return;
2180 }
2181 atomic_dec(&netstamp_needed_deferred);
2182 schedule_work(&netstamp_work);
2183 #else
2184 static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 skb->tstamp = 0;
2192 if (static_branch_unlikely(&netstamp_needed_key))
2193 __net_timestamp(skb);
2194 }
2195
2196 #define net_timestamp_check(COND, SKB) \
2197 if (static_branch_unlikely(&netstamp_needed_key)) { \
2198 if ((COND) && !(SKB)->tstamp) \
2199 __net_timestamp(SKB); \
2200 } \
2201
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 unsigned int len;
2205
2206 if (!(dev->flags & IFF_UP))
2207 return false;
2208
2209 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 if (skb->len <= len)
2211 return true;
2212
2213 /* if TSO is enabled, we don't care about the length as the packet
2214 * could be forwarded without being segmented before
2215 */
2216 if (skb_is_gso(skb))
2217 return true;
2218
2219 return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 int ret = ____dev_forward_skb(dev, skb);
2226
2227 if (likely(!ret)) {
2228 skb->protocol = eth_type_trans(skb, dev);
2229 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 }
2231
2232 return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235
2236 /**
2237 * dev_forward_skb - loopback an skb to another netif
2238 *
2239 * @dev: destination network device
2240 * @skb: buffer to forward
2241 *
2242 * return values:
2243 * NET_RX_SUCCESS (no congestion)
2244 * NET_RX_DROP (packet was dropped, but freed)
2245 *
2246 * dev_forward_skb can be used for injecting an skb from the
2247 * start_xmit function of one device into the receive queue
2248 * of another device.
2249 *
2250 * The receiving device may be in another namespace, so
2251 * we have to clear all information in the skb that could
2252 * impact namespace isolation.
2253 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 struct packet_type *pt_prev,
2262 struct net_device *orig_dev)
2263 {
2264 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 return -ENOMEM;
2266 refcount_inc(&skb->users);
2267 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 struct packet_type **pt,
2272 struct net_device *orig_dev,
2273 __be16 type,
2274 struct list_head *ptype_list)
2275 {
2276 struct packet_type *ptype, *pt_prev = *pt;
2277
2278 list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 if (ptype->type != type)
2280 continue;
2281 if (pt_prev)
2282 deliver_skb(skb, pt_prev, orig_dev);
2283 pt_prev = ptype;
2284 }
2285 *pt = pt_prev;
2286 }
2287
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 if (!ptype->af_packet_priv || !skb->sk)
2291 return false;
2292
2293 if (ptype->id_match)
2294 return ptype->id_match(ptype, skb->sk);
2295 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 return true;
2297
2298 return false;
2299 }
2300
2301 /**
2302 * dev_nit_active - return true if any network interface taps are in use
2303 *
2304 * @dev: network device to check for the presence of taps
2305 */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311
2312 /*
2313 * Support routine. Sends outgoing frames to any network
2314 * taps currently in use.
2315 */
2316
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 struct packet_type *ptype;
2320 struct sk_buff *skb2 = NULL;
2321 struct packet_type *pt_prev = NULL;
2322 struct list_head *ptype_list = &ptype_all;
2323
2324 rcu_read_lock();
2325 again:
2326 list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 if (ptype->ignore_outgoing)
2328 continue;
2329
2330 /* Never send packets back to the socket
2331 * they originated from - MvS (miquels@drinkel.ow.org)
2332 */
2333 if (skb_loop_sk(ptype, skb))
2334 continue;
2335
2336 if (pt_prev) {
2337 deliver_skb(skb2, pt_prev, skb->dev);
2338 pt_prev = ptype;
2339 continue;
2340 }
2341
2342 /* need to clone skb, done only once */
2343 skb2 = skb_clone(skb, GFP_ATOMIC);
2344 if (!skb2)
2345 goto out_unlock;
2346
2347 net_timestamp_set(skb2);
2348
2349 /* skb->nh should be correctly
2350 * set by sender, so that the second statement is
2351 * just protection against buggy protocols.
2352 */
2353 skb_reset_mac_header(skb2);
2354
2355 if (skb_network_header(skb2) < skb2->data ||
2356 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 ntohs(skb2->protocol),
2359 dev->name);
2360 skb_reset_network_header(skb2);
2361 }
2362
2363 skb2->transport_header = skb2->network_header;
2364 skb2->pkt_type = PACKET_OUTGOING;
2365 pt_prev = ptype;
2366 }
2367
2368 if (ptype_list == &ptype_all) {
2369 ptype_list = &dev->ptype_all;
2370 goto again;
2371 }
2372 out_unlock:
2373 if (pt_prev) {
2374 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 else
2377 kfree_skb(skb2);
2378 }
2379 rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382
2383 /**
2384 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385 * @dev: Network device
2386 * @txq: number of queues available
2387 *
2388 * If real_num_tx_queues is changed the tc mappings may no longer be
2389 * valid. To resolve this verify the tc mapping remains valid and if
2390 * not NULL the mapping. With no priorities mapping to this
2391 * offset/count pair it will no longer be used. In the worst case TC0
2392 * is invalid nothing can be done so disable priority mappings. If is
2393 * expected that drivers will fix this mapping if they can before
2394 * calling netif_set_real_num_tx_queues.
2395 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 int i;
2399 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400
2401 /* If TC0 is invalidated disable TC mapping */
2402 if (tc->offset + tc->count > txq) {
2403 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 dev->num_tc = 0;
2405 return;
2406 }
2407
2408 /* Invalidated prio to tc mappings set to TC0 */
2409 for (i = 1; i < TC_BITMASK + 1; i++) {
2410 int q = netdev_get_prio_tc_map(dev, i);
2411
2412 tc = &dev->tc_to_txq[q];
2413 if (tc->offset + tc->count > txq) {
2414 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 i, q);
2416 netdev_set_prio_tc_map(dev, i, 0);
2417 }
2418 }
2419 }
2420
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 if (dev->num_tc) {
2424 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 int i;
2426
2427 /* walk through the TCs and see if it falls into any of them */
2428 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 if ((txq - tc->offset) < tc->count)
2430 return i;
2431 }
2432
2433 /* didn't find it, just return -1 to indicate no match */
2434 return -1;
2435 }
2436
2437 return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P) \
2448 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 int tci, u16 index)
2452 {
2453 struct xps_map *map = NULL;
2454 int pos;
2455
2456 if (dev_maps)
2457 map = xmap_dereference(dev_maps->attr_map[tci]);
2458 if (!map)
2459 return false;
2460
2461 for (pos = map->len; pos--;) {
2462 if (map->queues[pos] != index)
2463 continue;
2464
2465 if (map->len > 1) {
2466 map->queues[pos] = map->queues[--map->len];
2467 break;
2468 }
2469
2470 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 kfree_rcu(map, rcu);
2472 return false;
2473 }
2474
2475 return true;
2476 }
2477
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 struct xps_dev_maps *dev_maps,
2480 int cpu, u16 offset, u16 count)
2481 {
2482 int num_tc = dev->num_tc ? : 1;
2483 bool active = false;
2484 int tci;
2485
2486 for (tci = cpu * num_tc; num_tc--; tci++) {
2487 int i, j;
2488
2489 for (i = count, j = offset; i--; j++) {
2490 if (!remove_xps_queue(dev_maps, tci, j))
2491 break;
2492 }
2493
2494 active |= i < 0;
2495 }
2496
2497 return active;
2498 }
2499
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 struct xps_dev_maps *dev_maps,
2502 bool is_rxqs_map)
2503 {
2504 if (is_rxqs_map) {
2505 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 } else {
2508 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 }
2510 static_key_slow_dec_cpuslocked(&xps_needed);
2511 kfree_rcu(dev_maps, rcu);
2512 }
2513
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 bool active = false;
2519 int i, j;
2520
2521 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 j < nr_ids;)
2523 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 count);
2525 if (!active)
2526 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527
2528 if (!is_rxqs_map) {
2529 for (i = offset + (count - 1); count--; i--) {
2530 netdev_queue_numa_node_write(
2531 netdev_get_tx_queue(dev, i),
2532 NUMA_NO_NODE);
2533 }
2534 }
2535 }
2536
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 u16 count)
2539 {
2540 const unsigned long *possible_mask = NULL;
2541 struct xps_dev_maps *dev_maps;
2542 unsigned int nr_ids;
2543
2544 if (!static_key_false(&xps_needed))
2545 return;
2546
2547 cpus_read_lock();
2548 mutex_lock(&xps_map_mutex);
2549
2550 if (static_key_false(&xps_rxqs_needed)) {
2551 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 if (dev_maps) {
2553 nr_ids = dev->num_rx_queues;
2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 offset, count, true);
2556 }
2557 }
2558
2559 dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 if (!dev_maps)
2561 goto out_no_maps;
2562
2563 if (num_possible_cpus() > 1)
2564 possible_mask = cpumask_bits(cpu_possible_mask);
2565 nr_ids = nr_cpu_ids;
2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 false);
2568
2569 out_no_maps:
2570 mutex_unlock(&xps_map_mutex);
2571 cpus_read_unlock();
2572 }
2573
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 u16 index, bool is_rxqs_map)
2581 {
2582 struct xps_map *new_map;
2583 int alloc_len = XPS_MIN_MAP_ALLOC;
2584 int i, pos;
2585
2586 for (pos = 0; map && pos < map->len; pos++) {
2587 if (map->queues[pos] != index)
2588 continue;
2589 return map;
2590 }
2591
2592 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 if (map) {
2594 if (pos < map->alloc_len)
2595 return map;
2596
2597 alloc_len = map->alloc_len * 2;
2598 }
2599
2600 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 * map
2602 */
2603 if (is_rxqs_map)
2604 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 else
2606 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 cpu_to_node(attr_index));
2608 if (!new_map)
2609 return NULL;
2610
2611 for (i = 0; i < pos; i++)
2612 new_map->queues[i] = map->queues[i];
2613 new_map->alloc_len = alloc_len;
2614 new_map->len = pos;
2615
2616 return new_map;
2617 }
2618
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 u16 index, bool is_rxqs_map)
2622 {
2623 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 int i, j, tci, numa_node_id = -2;
2626 int maps_sz, num_tc = 1, tc = 0;
2627 struct xps_map *map, *new_map;
2628 bool active = false;
2629 unsigned int nr_ids;
2630
2631 WARN_ON_ONCE(index >= dev->num_tx_queues);
2632
2633 if (dev->num_tc) {
2634 /* Do not allow XPS on subordinate device directly */
2635 num_tc = dev->num_tc;
2636 if (num_tc < 0)
2637 return -EINVAL;
2638
2639 /* If queue belongs to subordinate dev use its map */
2640 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2641
2642 tc = netdev_txq_to_tc(dev, index);
2643 if (tc < 0)
2644 return -EINVAL;
2645 }
2646
2647 mutex_lock(&xps_map_mutex);
2648 if (is_rxqs_map) {
2649 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2650 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2651 nr_ids = dev->num_rx_queues;
2652 } else {
2653 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2654 if (num_possible_cpus() > 1) {
2655 online_mask = cpumask_bits(cpu_online_mask);
2656 possible_mask = cpumask_bits(cpu_possible_mask);
2657 }
2658 dev_maps = xmap_dereference(dev->xps_cpus_map);
2659 nr_ids = nr_cpu_ids;
2660 }
2661
2662 if (maps_sz < L1_CACHE_BYTES)
2663 maps_sz = L1_CACHE_BYTES;
2664
2665 /* allocate memory for queue storage */
2666 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2667 j < nr_ids;) {
2668 if (!new_dev_maps)
2669 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2670 if (!new_dev_maps) {
2671 mutex_unlock(&xps_map_mutex);
2672 return -ENOMEM;
2673 }
2674
2675 tci = j * num_tc + tc;
2676 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2677 NULL;
2678
2679 map = expand_xps_map(map, j, index, is_rxqs_map);
2680 if (!map)
2681 goto error;
2682
2683 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2684 }
2685
2686 if (!new_dev_maps)
2687 goto out_no_new_maps;
2688
2689 if (!dev_maps) {
2690 /* Increment static keys at most once per type */
2691 static_key_slow_inc_cpuslocked(&xps_needed);
2692 if (is_rxqs_map)
2693 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2694 }
2695
2696 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2697 j < nr_ids;) {
2698 /* copy maps belonging to foreign traffic classes */
2699 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2700 /* fill in the new device map from the old device map */
2701 map = xmap_dereference(dev_maps->attr_map[tci]);
2702 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2703 }
2704
2705 /* We need to explicitly update tci as prevous loop
2706 * could break out early if dev_maps is NULL.
2707 */
2708 tci = j * num_tc + tc;
2709
2710 if (netif_attr_test_mask(j, mask, nr_ids) &&
2711 netif_attr_test_online(j, online_mask, nr_ids)) {
2712 /* add tx-queue to CPU/rx-queue maps */
2713 int pos = 0;
2714
2715 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 while ((pos < map->len) && (map->queues[pos] != index))
2717 pos++;
2718
2719 if (pos == map->len)
2720 map->queues[map->len++] = index;
2721 #ifdef CONFIG_NUMA
2722 if (!is_rxqs_map) {
2723 if (numa_node_id == -2)
2724 numa_node_id = cpu_to_node(j);
2725 else if (numa_node_id != cpu_to_node(j))
2726 numa_node_id = -1;
2727 }
2728 #endif
2729 } else if (dev_maps) {
2730 /* fill in the new device map from the old device map */
2731 map = xmap_dereference(dev_maps->attr_map[tci]);
2732 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2733 }
2734
2735 /* copy maps belonging to foreign traffic classes */
2736 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2737 /* fill in the new device map from the old device map */
2738 map = xmap_dereference(dev_maps->attr_map[tci]);
2739 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2740 }
2741 }
2742
2743 if (is_rxqs_map)
2744 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2745 else
2746 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2747
2748 /* Cleanup old maps */
2749 if (!dev_maps)
2750 goto out_no_old_maps;
2751
2752 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2753 j < nr_ids;) {
2754 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2755 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2756 map = xmap_dereference(dev_maps->attr_map[tci]);
2757 if (map && map != new_map)
2758 kfree_rcu(map, rcu);
2759 }
2760 }
2761
2762 kfree_rcu(dev_maps, rcu);
2763
2764 out_no_old_maps:
2765 dev_maps = new_dev_maps;
2766 active = true;
2767
2768 out_no_new_maps:
2769 if (!is_rxqs_map) {
2770 /* update Tx queue numa node */
2771 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2772 (numa_node_id >= 0) ?
2773 numa_node_id : NUMA_NO_NODE);
2774 }
2775
2776 if (!dev_maps)
2777 goto out_no_maps;
2778
2779 /* removes tx-queue from unused CPUs/rx-queues */
2780 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2781 j < nr_ids;) {
2782 for (i = tc, tci = j * num_tc; i--; tci++)
2783 active |= remove_xps_queue(dev_maps, tci, index);
2784 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2785 !netif_attr_test_online(j, online_mask, nr_ids))
2786 active |= remove_xps_queue(dev_maps, tci, index);
2787 for (i = num_tc - tc, tci++; --i; tci++)
2788 active |= remove_xps_queue(dev_maps, tci, index);
2789 }
2790
2791 /* free map if not active */
2792 if (!active)
2793 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2794
2795 out_no_maps:
2796 mutex_unlock(&xps_map_mutex);
2797
2798 return 0;
2799 error:
2800 /* remove any maps that we added */
2801 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2802 j < nr_ids;) {
2803 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2804 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2805 map = dev_maps ?
2806 xmap_dereference(dev_maps->attr_map[tci]) :
2807 NULL;
2808 if (new_map && new_map != map)
2809 kfree(new_map);
2810 }
2811 }
2812
2813 mutex_unlock(&xps_map_mutex);
2814
2815 kfree(new_dev_maps);
2816 return -ENOMEM;
2817 }
2818 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2819
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2820 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2821 u16 index)
2822 {
2823 int ret;
2824
2825 cpus_read_lock();
2826 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2827 cpus_read_unlock();
2828
2829 return ret;
2830 }
2831 EXPORT_SYMBOL(netif_set_xps_queue);
2832
2833 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2834 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2835 {
2836 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2837
2838 /* Unbind any subordinate channels */
2839 while (txq-- != &dev->_tx[0]) {
2840 if (txq->sb_dev)
2841 netdev_unbind_sb_channel(dev, txq->sb_dev);
2842 }
2843 }
2844
netdev_reset_tc(struct net_device * dev)2845 void netdev_reset_tc(struct net_device *dev)
2846 {
2847 #ifdef CONFIG_XPS
2848 netif_reset_xps_queues_gt(dev, 0);
2849 #endif
2850 netdev_unbind_all_sb_channels(dev);
2851
2852 /* Reset TC configuration of device */
2853 dev->num_tc = 0;
2854 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2855 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2856 }
2857 EXPORT_SYMBOL(netdev_reset_tc);
2858
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2859 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2860 {
2861 if (tc >= dev->num_tc)
2862 return -EINVAL;
2863
2864 #ifdef CONFIG_XPS
2865 netif_reset_xps_queues(dev, offset, count);
2866 #endif
2867 dev->tc_to_txq[tc].count = count;
2868 dev->tc_to_txq[tc].offset = offset;
2869 return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_tc_queue);
2872
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2873 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2874 {
2875 if (num_tc > TC_MAX_QUEUE)
2876 return -EINVAL;
2877
2878 #ifdef CONFIG_XPS
2879 netif_reset_xps_queues_gt(dev, 0);
2880 #endif
2881 netdev_unbind_all_sb_channels(dev);
2882
2883 dev->num_tc = num_tc;
2884 return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_set_num_tc);
2887
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2888 void netdev_unbind_sb_channel(struct net_device *dev,
2889 struct net_device *sb_dev)
2890 {
2891 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2892
2893 #ifdef CONFIG_XPS
2894 netif_reset_xps_queues_gt(sb_dev, 0);
2895 #endif
2896 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2897 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2898
2899 while (txq-- != &dev->_tx[0]) {
2900 if (txq->sb_dev == sb_dev)
2901 txq->sb_dev = NULL;
2902 }
2903 }
2904 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2905
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2906 int netdev_bind_sb_channel_queue(struct net_device *dev,
2907 struct net_device *sb_dev,
2908 u8 tc, u16 count, u16 offset)
2909 {
2910 /* Make certain the sb_dev and dev are already configured */
2911 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2912 return -EINVAL;
2913
2914 /* We cannot hand out queues we don't have */
2915 if ((offset + count) > dev->real_num_tx_queues)
2916 return -EINVAL;
2917
2918 /* Record the mapping */
2919 sb_dev->tc_to_txq[tc].count = count;
2920 sb_dev->tc_to_txq[tc].offset = offset;
2921
2922 /* Provide a way for Tx queue to find the tc_to_txq map or
2923 * XPS map for itself.
2924 */
2925 while (count--)
2926 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2927
2928 return 0;
2929 }
2930 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2931
netdev_set_sb_channel(struct net_device * dev,u16 channel)2932 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2933 {
2934 /* Do not use a multiqueue device to represent a subordinate channel */
2935 if (netif_is_multiqueue(dev))
2936 return -ENODEV;
2937
2938 /* We allow channels 1 - 32767 to be used for subordinate channels.
2939 * Channel 0 is meant to be "native" mode and used only to represent
2940 * the main root device. We allow writing 0 to reset the device back
2941 * to normal mode after being used as a subordinate channel.
2942 */
2943 if (channel > S16_MAX)
2944 return -EINVAL;
2945
2946 dev->num_tc = -channel;
2947
2948 return 0;
2949 }
2950 EXPORT_SYMBOL(netdev_set_sb_channel);
2951
2952 /*
2953 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2954 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2955 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2956 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2957 {
2958 bool disabling;
2959 int rc;
2960
2961 disabling = txq < dev->real_num_tx_queues;
2962
2963 if (txq < 1 || txq > dev->num_tx_queues)
2964 return -EINVAL;
2965
2966 if (dev->reg_state == NETREG_REGISTERED ||
2967 dev->reg_state == NETREG_UNREGISTERING) {
2968 ASSERT_RTNL();
2969
2970 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2971 txq);
2972 if (rc)
2973 return rc;
2974
2975 if (dev->num_tc)
2976 netif_setup_tc(dev, txq);
2977
2978 dev_qdisc_change_real_num_tx(dev, txq);
2979
2980 dev->real_num_tx_queues = txq;
2981
2982 if (disabling) {
2983 synchronize_net();
2984 qdisc_reset_all_tx_gt(dev, txq);
2985 #ifdef CONFIG_XPS
2986 netif_reset_xps_queues_gt(dev, txq);
2987 #endif
2988 }
2989 } else {
2990 dev->real_num_tx_queues = txq;
2991 }
2992
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2996
2997 #ifdef CONFIG_SYSFS
2998 /**
2999 * netif_set_real_num_rx_queues - set actual number of RX queues used
3000 * @dev: Network device
3001 * @rxq: Actual number of RX queues
3002 *
3003 * This must be called either with the rtnl_lock held or before
3004 * registration of the net device. Returns 0 on success, or a
3005 * negative error code. If called before registration, it always
3006 * succeeds.
3007 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3008 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3009 {
3010 int rc;
3011
3012 if (rxq < 1 || rxq > dev->num_rx_queues)
3013 return -EINVAL;
3014
3015 if (dev->reg_state == NETREG_REGISTERED) {
3016 ASSERT_RTNL();
3017
3018 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3019 rxq);
3020 if (rc)
3021 return rc;
3022 }
3023
3024 dev->real_num_rx_queues = rxq;
3025 return 0;
3026 }
3027 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3028 #endif
3029
3030 /**
3031 * netif_get_num_default_rss_queues - default number of RSS queues
3032 *
3033 * This routine should set an upper limit on the number of RSS queues
3034 * used by default by multiqueue devices.
3035 */
netif_get_num_default_rss_queues(void)3036 int netif_get_num_default_rss_queues(void)
3037 {
3038 return is_kdump_kernel() ?
3039 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3040 }
3041 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3042
__netif_reschedule(struct Qdisc * q)3043 static void __netif_reschedule(struct Qdisc *q)
3044 {
3045 struct softnet_data *sd;
3046 unsigned long flags;
3047
3048 local_irq_save(flags);
3049 sd = this_cpu_ptr(&softnet_data);
3050 q->next_sched = NULL;
3051 *sd->output_queue_tailp = q;
3052 sd->output_queue_tailp = &q->next_sched;
3053 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3054 local_irq_restore(flags);
3055 }
3056
__netif_schedule(struct Qdisc * q)3057 void __netif_schedule(struct Qdisc *q)
3058 {
3059 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3060 __netif_reschedule(q);
3061 }
3062 EXPORT_SYMBOL(__netif_schedule);
3063
3064 struct dev_kfree_skb_cb {
3065 enum skb_free_reason reason;
3066 };
3067
get_kfree_skb_cb(const struct sk_buff * skb)3068 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3069 {
3070 return (struct dev_kfree_skb_cb *)skb->cb;
3071 }
3072
netif_schedule_queue(struct netdev_queue * txq)3073 void netif_schedule_queue(struct netdev_queue *txq)
3074 {
3075 rcu_read_lock();
3076 if (!netif_xmit_stopped(txq)) {
3077 struct Qdisc *q = rcu_dereference(txq->qdisc);
3078
3079 __netif_schedule(q);
3080 }
3081 rcu_read_unlock();
3082 }
3083 EXPORT_SYMBOL(netif_schedule_queue);
3084
netif_tx_wake_queue(struct netdev_queue * dev_queue)3085 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3086 {
3087 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3088 struct Qdisc *q;
3089
3090 rcu_read_lock();
3091 q = rcu_dereference(dev_queue->qdisc);
3092 __netif_schedule(q);
3093 rcu_read_unlock();
3094 }
3095 }
3096 EXPORT_SYMBOL(netif_tx_wake_queue);
3097
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3098 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3099 {
3100 unsigned long flags;
3101
3102 if (unlikely(!skb))
3103 return;
3104
3105 if (likely(refcount_read(&skb->users) == 1)) {
3106 smp_rmb();
3107 refcount_set(&skb->users, 0);
3108 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3109 return;
3110 }
3111 get_kfree_skb_cb(skb)->reason = reason;
3112 local_irq_save(flags);
3113 skb->next = __this_cpu_read(softnet_data.completion_queue);
3114 __this_cpu_write(softnet_data.completion_queue, skb);
3115 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3116 local_irq_restore(flags);
3117 }
3118 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3119
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3120 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3121 {
3122 if (in_irq() || irqs_disabled())
3123 __dev_kfree_skb_irq(skb, reason);
3124 else if (unlikely(reason == SKB_REASON_DROPPED))
3125 kfree_skb(skb);
3126 else
3127 consume_skb(skb);
3128 }
3129 EXPORT_SYMBOL(__dev_kfree_skb_any);
3130
3131
3132 /**
3133 * netif_device_detach - mark device as removed
3134 * @dev: network device
3135 *
3136 * Mark device as removed from system and therefore no longer available.
3137 */
netif_device_detach(struct net_device * dev)3138 void netif_device_detach(struct net_device *dev)
3139 {
3140 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3141 netif_running(dev)) {
3142 netif_tx_stop_all_queues(dev);
3143 }
3144 }
3145 EXPORT_SYMBOL(netif_device_detach);
3146
3147 /**
3148 * netif_device_attach - mark device as attached
3149 * @dev: network device
3150 *
3151 * Mark device as attached from system and restart if needed.
3152 */
netif_device_attach(struct net_device * dev)3153 void netif_device_attach(struct net_device *dev)
3154 {
3155 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3156 netif_running(dev)) {
3157 netif_tx_wake_all_queues(dev);
3158 __netdev_watchdog_up(dev);
3159 }
3160 }
3161 EXPORT_SYMBOL(netif_device_attach);
3162
3163 /*
3164 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3165 * to be used as a distribution range.
3166 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3167 static u16 skb_tx_hash(const struct net_device *dev,
3168 const struct net_device *sb_dev,
3169 struct sk_buff *skb)
3170 {
3171 u32 hash;
3172 u16 qoffset = 0;
3173 u16 qcount = dev->real_num_tx_queues;
3174
3175 if (dev->num_tc) {
3176 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3177
3178 qoffset = sb_dev->tc_to_txq[tc].offset;
3179 qcount = sb_dev->tc_to_txq[tc].count;
3180 if (unlikely(!qcount)) {
3181 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3182 sb_dev->name, qoffset, tc);
3183 qoffset = 0;
3184 qcount = dev->real_num_tx_queues;
3185 }
3186 }
3187
3188 if (skb_rx_queue_recorded(skb)) {
3189 hash = skb_get_rx_queue(skb);
3190 if (hash >= qoffset)
3191 hash -= qoffset;
3192 while (unlikely(hash >= qcount))
3193 hash -= qcount;
3194 return hash + qoffset;
3195 }
3196
3197 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198 }
3199
skb_warn_bad_offload(const struct sk_buff * skb)3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3201 {
3202 static const netdev_features_t null_features;
3203 struct net_device *dev = skb->dev;
3204 const char *name = "";
3205
3206 if (!net_ratelimit())
3207 return;
3208
3209 if (dev) {
3210 if (dev->dev.parent)
3211 name = dev_driver_string(dev->dev.parent);
3212 else
3213 name = netdev_name(dev);
3214 }
3215 skb_dump(KERN_WARNING, skb, false);
3216 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 name, dev ? &dev->features : &null_features,
3218 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219 }
3220
3221 /*
3222 * Invalidate hardware checksum when packet is to be mangled, and
3223 * complete checksum manually on outgoing path.
3224 */
skb_checksum_help(struct sk_buff * skb)3225 int skb_checksum_help(struct sk_buff *skb)
3226 {
3227 __wsum csum;
3228 int ret = 0, offset;
3229
3230 if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 goto out_set_summed;
3232
3233 if (unlikely(skb_shinfo(skb)->gso_size)) {
3234 skb_warn_bad_offload(skb);
3235 return -EINVAL;
3236 }
3237
3238 /* Before computing a checksum, we should make sure no frag could
3239 * be modified by an external entity : checksum could be wrong.
3240 */
3241 if (skb_has_shared_frag(skb)) {
3242 ret = __skb_linearize(skb);
3243 if (ret)
3244 goto out;
3245 }
3246
3247 offset = skb_checksum_start_offset(skb);
3248 ret = -EINVAL;
3249 if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3250 goto out;
3251
3252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3253
3254 offset += skb->csum_offset;
3255 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3256 goto out;
3257
3258 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259 if (ret)
3260 goto out;
3261
3262 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264 skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266 return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269
skb_crc32c_csum_help(struct sk_buff * skb)3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272 __le32 crc32c_csum;
3273 int ret = 0, offset, start;
3274
3275 if (skb->ip_summed != CHECKSUM_PARTIAL)
3276 goto out;
3277
3278 if (unlikely(skb_is_gso(skb)))
3279 goto out;
3280
3281 /* Before computing a checksum, we should make sure no frag could
3282 * be modified by an external entity : checksum could be wrong.
3283 */
3284 if (unlikely(skb_has_shared_frag(skb))) {
3285 ret = __skb_linearize(skb);
3286 if (ret)
3287 goto out;
3288 }
3289 start = skb_checksum_start_offset(skb);
3290 offset = start + offsetof(struct sctphdr, checksum);
3291 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 ret = -EINVAL;
3293 goto out;
3294 }
3295
3296 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297 if (ret)
3298 goto out;
3299
3300 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 skb->len - start, ~(__u32)0,
3302 crc32c_csum_stub));
3303 *(__le32 *)(skb->data + offset) = crc32c_csum;
3304 skb->ip_summed = CHECKSUM_NONE;
3305 skb->csum_not_inet = 0;
3306 out:
3307 return ret;
3308 }
3309
skb_network_protocol(struct sk_buff * skb,int * depth)3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312 __be16 type = skb->protocol;
3313
3314 /* Tunnel gso handlers can set protocol to ethernet. */
3315 if (type == htons(ETH_P_TEB)) {
3316 struct ethhdr *eth;
3317
3318 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319 return 0;
3320
3321 eth = (struct ethhdr *)skb->data;
3322 type = eth->h_proto;
3323 }
3324
3325 return vlan_get_protocol_and_depth(skb, type, depth);
3326 }
3327
3328 /**
3329 * skb_mac_gso_segment - mac layer segmentation handler.
3330 * @skb: buffer to segment
3331 * @features: features for the output path (see dev->features)
3332 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 netdev_features_t features)
3335 {
3336 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 struct packet_offload *ptype;
3338 int vlan_depth = skb->mac_len;
3339 __be16 type = skb_network_protocol(skb, &vlan_depth);
3340
3341 if (unlikely(!type))
3342 return ERR_PTR(-EINVAL);
3343
3344 __skb_pull(skb, vlan_depth);
3345
3346 rcu_read_lock();
3347 list_for_each_entry_rcu(ptype, &offload_base, list) {
3348 if (ptype->type == type && ptype->callbacks.gso_segment) {
3349 segs = ptype->callbacks.gso_segment(skb, features);
3350 break;
3351 }
3352 }
3353 rcu_read_unlock();
3354
3355 __skb_push(skb, skb->data - skb_mac_header(skb));
3356
3357 return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360
3361
3362 /* openvswitch calls this on rx path, so we need a different check.
3363 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366 if (tx_path)
3367 return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 skb->ip_summed != CHECKSUM_UNNECESSARY;
3369
3370 return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372
3373 /**
3374 * __skb_gso_segment - Perform segmentation on skb.
3375 * @skb: buffer to segment
3376 * @features: features for the output path (see dev->features)
3377 * @tx_path: whether it is called in TX path
3378 *
3379 * This function segments the given skb and returns a list of segments.
3380 *
3381 * It may return NULL if the skb requires no segmentation. This is
3382 * only possible when GSO is used for verifying header integrity.
3383 *
3384 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 netdev_features_t features, bool tx_path)
3388 {
3389 struct sk_buff *segs;
3390
3391 if (unlikely(skb_needs_check(skb, tx_path))) {
3392 int err;
3393
3394 /* We're going to init ->check field in TCP or UDP header */
3395 err = skb_cow_head(skb, 0);
3396 if (err < 0)
3397 return ERR_PTR(err);
3398 }
3399
3400 /* Only report GSO partial support if it will enable us to
3401 * support segmentation on this frame without needing additional
3402 * work.
3403 */
3404 if (features & NETIF_F_GSO_PARTIAL) {
3405 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 struct net_device *dev = skb->dev;
3407
3408 partial_features |= dev->features & dev->gso_partial_features;
3409 if (!skb_gso_ok(skb, features | partial_features))
3410 features &= ~NETIF_F_GSO_PARTIAL;
3411 }
3412
3413 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415
3416 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417 SKB_GSO_CB(skb)->encap_level = 0;
3418
3419 skb_reset_mac_header(skb);
3420 skb_reset_mac_len(skb);
3421
3422 segs = skb_mac_gso_segment(skb, features);
3423
3424 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425 skb_warn_bad_offload(skb);
3426
3427 return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 if (net_ratelimit()) {
3436 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437 skb_dump(KERN_ERR, skb, true);
3438 dump_stack();
3439 }
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443
3444 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448 int i;
3449
3450 if (!(dev->features & NETIF_F_HIGHDMA)) {
3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453
3454 if (PageHighMem(skb_frag_page(frag)))
3455 return 1;
3456 }
3457 }
3458 #endif
3459 return 0;
3460 }
3461
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463 * instead of standard features for the netdev.
3464 */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 netdev_features_t features,
3468 __be16 type)
3469 {
3470 if (eth_p_mpls(type))
3471 features &= skb->dev->mpls_features;
3472
3473 return features;
3474 }
3475 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 netdev_features_t features,
3478 __be16 type)
3479 {
3480 return features;
3481 }
3482 #endif
3483
harmonize_features(struct sk_buff * skb,netdev_features_t features)3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485 netdev_features_t features)
3486 {
3487 __be16 type;
3488
3489 type = skb_network_protocol(skb, NULL);
3490 features = net_mpls_features(skb, features, type);
3491
3492 if (skb->ip_summed != CHECKSUM_NONE &&
3493 !can_checksum_protocol(features, type)) {
3494 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495 }
3496 if (illegal_highdma(skb->dev, skb))
3497 features &= ~NETIF_F_SG;
3498
3499 return features;
3500 }
3501
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505 {
3506 return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513 {
3514 return vlan_features_check(skb, features);
3515 }
3516
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 struct net_device *dev,
3519 netdev_features_t features)
3520 {
3521 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522
3523 if (gso_segs > dev->gso_max_segs)
3524 return features & ~NETIF_F_GSO_MASK;
3525
3526 /* Support for GSO partial features requires software
3527 * intervention before we can actually process the packets
3528 * so we need to strip support for any partial features now
3529 * and we can pull them back in after we have partially
3530 * segmented the frame.
3531 */
3532 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3533 features &= ~dev->gso_partial_features;
3534
3535 /* Make sure to clear the IPv4 ID mangling feature if the
3536 * IPv4 header has the potential to be fragmented.
3537 */
3538 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3539 struct iphdr *iph = skb->encapsulation ?
3540 inner_ip_hdr(skb) : ip_hdr(skb);
3541
3542 if (!(iph->frag_off & htons(IP_DF)))
3543 features &= ~NETIF_F_TSO_MANGLEID;
3544 }
3545
3546 return features;
3547 }
3548
netif_skb_features(struct sk_buff * skb)3549 netdev_features_t netif_skb_features(struct sk_buff *skb)
3550 {
3551 struct net_device *dev = skb->dev;
3552 netdev_features_t features = dev->features;
3553
3554 if (skb_is_gso(skb))
3555 features = gso_features_check(skb, dev, features);
3556
3557 /* If encapsulation offload request, verify we are testing
3558 * hardware encapsulation features instead of standard
3559 * features for the netdev
3560 */
3561 if (skb->encapsulation)
3562 features &= dev->hw_enc_features;
3563
3564 if (skb_vlan_tagged(skb))
3565 features = netdev_intersect_features(features,
3566 dev->vlan_features |
3567 NETIF_F_HW_VLAN_CTAG_TX |
3568 NETIF_F_HW_VLAN_STAG_TX);
3569
3570 if (dev->netdev_ops->ndo_features_check)
3571 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3572 features);
3573 else
3574 features &= dflt_features_check(skb, dev, features);
3575
3576 return harmonize_features(skb, features);
3577 }
3578 EXPORT_SYMBOL(netif_skb_features);
3579
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3580 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3581 struct netdev_queue *txq, bool more)
3582 {
3583 unsigned int len;
3584 int rc;
3585
3586 if (dev_nit_active(dev))
3587 dev_queue_xmit_nit(skb, dev);
3588
3589 len = skb->len;
3590 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3591 trace_net_dev_start_xmit(skb, dev);
3592 rc = netdev_start_xmit(skb, dev, txq, more);
3593 trace_net_dev_xmit(skb, rc, dev, len);
3594
3595 return rc;
3596 }
3597
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3598 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3599 struct netdev_queue *txq, int *ret)
3600 {
3601 struct sk_buff *skb = first;
3602 int rc = NETDEV_TX_OK;
3603
3604 while (skb) {
3605 struct sk_buff *next = skb->next;
3606
3607 skb_mark_not_on_list(skb);
3608 rc = xmit_one(skb, dev, txq, next != NULL);
3609 if (unlikely(!dev_xmit_complete(rc))) {
3610 skb->next = next;
3611 goto out;
3612 }
3613
3614 skb = next;
3615 if (netif_tx_queue_stopped(txq) && skb) {
3616 rc = NETDEV_TX_BUSY;
3617 break;
3618 }
3619 }
3620
3621 out:
3622 *ret = rc;
3623 return skb;
3624 }
3625
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3626 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3627 netdev_features_t features)
3628 {
3629 if (skb_vlan_tag_present(skb) &&
3630 !vlan_hw_offload_capable(features, skb->vlan_proto))
3631 skb = __vlan_hwaccel_push_inside(skb);
3632 return skb;
3633 }
3634
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3635 int skb_csum_hwoffload_help(struct sk_buff *skb,
3636 const netdev_features_t features)
3637 {
3638 if (unlikely(skb_csum_is_sctp(skb)))
3639 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3640 skb_crc32c_csum_help(skb);
3641
3642 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3643 }
3644 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3645
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3646 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3647 {
3648 netdev_features_t features;
3649
3650 features = netif_skb_features(skb);
3651 skb = validate_xmit_vlan(skb, features);
3652 if (unlikely(!skb))
3653 goto out_null;
3654
3655 skb = sk_validate_xmit_skb(skb, dev);
3656 if (unlikely(!skb))
3657 goto out_null;
3658
3659 if (netif_needs_gso(skb, features)) {
3660 struct sk_buff *segs;
3661
3662 segs = skb_gso_segment(skb, features);
3663 if (IS_ERR(segs)) {
3664 goto out_kfree_skb;
3665 } else if (segs) {
3666 consume_skb(skb);
3667 skb = segs;
3668 }
3669 } else {
3670 if (skb_needs_linearize(skb, features) &&
3671 __skb_linearize(skb))
3672 goto out_kfree_skb;
3673
3674 /* If packet is not checksummed and device does not
3675 * support checksumming for this protocol, complete
3676 * checksumming here.
3677 */
3678 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3679 if (skb->encapsulation)
3680 skb_set_inner_transport_header(skb,
3681 skb_checksum_start_offset(skb));
3682 else
3683 skb_set_transport_header(skb,
3684 skb_checksum_start_offset(skb));
3685 if (skb_csum_hwoffload_help(skb, features))
3686 goto out_kfree_skb;
3687 }
3688 }
3689
3690 skb = validate_xmit_xfrm(skb, features, again);
3691
3692 return skb;
3693
3694 out_kfree_skb:
3695 kfree_skb(skb);
3696 out_null:
3697 atomic_long_inc(&dev->tx_dropped);
3698 return NULL;
3699 }
3700
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3701 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3702 {
3703 struct sk_buff *next, *head = NULL, *tail;
3704
3705 for (; skb != NULL; skb = next) {
3706 next = skb->next;
3707 skb_mark_not_on_list(skb);
3708
3709 /* in case skb wont be segmented, point to itself */
3710 skb->prev = skb;
3711
3712 skb = validate_xmit_skb(skb, dev, again);
3713 if (!skb)
3714 continue;
3715
3716 if (!head)
3717 head = skb;
3718 else
3719 tail->next = skb;
3720 /* If skb was segmented, skb->prev points to
3721 * the last segment. If not, it still contains skb.
3722 */
3723 tail = skb->prev;
3724 }
3725 return head;
3726 }
3727 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3728
qdisc_pkt_len_init(struct sk_buff * skb)3729 static void qdisc_pkt_len_init(struct sk_buff *skb)
3730 {
3731 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3732
3733 qdisc_skb_cb(skb)->pkt_len = skb->len;
3734
3735 /* To get more precise estimation of bytes sent on wire,
3736 * we add to pkt_len the headers size of all segments
3737 */
3738 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3739 unsigned int hdr_len;
3740 u16 gso_segs = shinfo->gso_segs;
3741
3742 /* mac layer + network layer */
3743 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3744
3745 /* + transport layer */
3746 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3747 const struct tcphdr *th;
3748 struct tcphdr _tcphdr;
3749
3750 th = skb_header_pointer(skb, skb_transport_offset(skb),
3751 sizeof(_tcphdr), &_tcphdr);
3752 if (likely(th))
3753 hdr_len += __tcp_hdrlen(th);
3754 } else {
3755 struct udphdr _udphdr;
3756
3757 if (skb_header_pointer(skb, skb_transport_offset(skb),
3758 sizeof(_udphdr), &_udphdr))
3759 hdr_len += sizeof(struct udphdr);
3760 }
3761
3762 if (shinfo->gso_type & SKB_GSO_DODGY)
3763 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3764 shinfo->gso_size);
3765
3766 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3767 }
3768 }
3769
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3770 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3771 struct net_device *dev,
3772 struct netdev_queue *txq)
3773 {
3774 spinlock_t *root_lock = qdisc_lock(q);
3775 struct sk_buff *to_free = NULL;
3776 bool contended;
3777 int rc;
3778
3779 qdisc_calculate_pkt_len(skb, q);
3780
3781 if (q->flags & TCQ_F_NOLOCK) {
3782 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3783 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3784 qdisc_run(q);
3785
3786 if (unlikely(to_free))
3787 kfree_skb_list(to_free);
3788 return rc;
3789 }
3790
3791 /*
3792 * Heuristic to force contended enqueues to serialize on a
3793 * separate lock before trying to get qdisc main lock.
3794 * This permits qdisc->running owner to get the lock more
3795 * often and dequeue packets faster.
3796 */
3797 contended = qdisc_is_running(q);
3798 if (unlikely(contended))
3799 spin_lock(&q->busylock);
3800
3801 spin_lock(root_lock);
3802 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3803 __qdisc_drop(skb, &to_free);
3804 rc = NET_XMIT_DROP;
3805 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3806 qdisc_run_begin(q)) {
3807 /*
3808 * This is a work-conserving queue; there are no old skbs
3809 * waiting to be sent out; and the qdisc is not running -
3810 * xmit the skb directly.
3811 */
3812
3813 qdisc_bstats_update(q, skb);
3814
3815 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3816 if (unlikely(contended)) {
3817 spin_unlock(&q->busylock);
3818 contended = false;
3819 }
3820 __qdisc_run(q);
3821 }
3822
3823 qdisc_run_end(q);
3824 rc = NET_XMIT_SUCCESS;
3825 } else {
3826 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3827 if (qdisc_run_begin(q)) {
3828 if (unlikely(contended)) {
3829 spin_unlock(&q->busylock);
3830 contended = false;
3831 }
3832 __qdisc_run(q);
3833 qdisc_run_end(q);
3834 }
3835 }
3836 spin_unlock(root_lock);
3837 if (unlikely(to_free))
3838 kfree_skb_list(to_free);
3839 if (unlikely(contended))
3840 spin_unlock(&q->busylock);
3841 return rc;
3842 }
3843
3844 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3845 static void skb_update_prio(struct sk_buff *skb)
3846 {
3847 const struct netprio_map *map;
3848 const struct sock *sk;
3849 unsigned int prioidx;
3850
3851 if (skb->priority)
3852 return;
3853 map = rcu_dereference_bh(skb->dev->priomap);
3854 if (!map)
3855 return;
3856 sk = skb_to_full_sk(skb);
3857 if (!sk)
3858 return;
3859
3860 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3861
3862 if (prioidx < map->priomap_len)
3863 skb->priority = map->priomap[prioidx];
3864 }
3865 #else
3866 #define skb_update_prio(skb)
3867 #endif
3868
3869 /**
3870 * dev_loopback_xmit - loop back @skb
3871 * @net: network namespace this loopback is happening in
3872 * @sk: sk needed to be a netfilter okfn
3873 * @skb: buffer to transmit
3874 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3875 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3876 {
3877 skb_reset_mac_header(skb);
3878 __skb_pull(skb, skb_network_offset(skb));
3879 skb->pkt_type = PACKET_LOOPBACK;
3880 if (skb->ip_summed == CHECKSUM_NONE)
3881 skb->ip_summed = CHECKSUM_UNNECESSARY;
3882 WARN_ON(!skb_dst(skb));
3883 skb_dst_force(skb);
3884 netif_rx_ni(skb);
3885 return 0;
3886 }
3887 EXPORT_SYMBOL(dev_loopback_xmit);
3888
3889 #ifdef CONFIG_NET_EGRESS
3890 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3891 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3892 {
3893 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3894 struct tcf_result cl_res;
3895
3896 if (!miniq)
3897 return skb;
3898
3899 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3900 qdisc_skb_cb(skb)->mru = 0;
3901 mini_qdisc_bstats_cpu_update(miniq, skb);
3902
3903 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3904 case TC_ACT_OK:
3905 case TC_ACT_RECLASSIFY:
3906 skb->tc_index = TC_H_MIN(cl_res.classid);
3907 break;
3908 case TC_ACT_SHOT:
3909 mini_qdisc_qstats_cpu_drop(miniq);
3910 *ret = NET_XMIT_DROP;
3911 kfree_skb(skb);
3912 return NULL;
3913 case TC_ACT_STOLEN:
3914 case TC_ACT_QUEUED:
3915 case TC_ACT_TRAP:
3916 *ret = NET_XMIT_SUCCESS;
3917 consume_skb(skb);
3918 return NULL;
3919 case TC_ACT_REDIRECT:
3920 /* No need to push/pop skb's mac_header here on egress! */
3921 skb_do_redirect(skb);
3922 *ret = NET_XMIT_SUCCESS;
3923 return NULL;
3924 default:
3925 break;
3926 }
3927
3928 return skb;
3929 }
3930 #endif /* CONFIG_NET_EGRESS */
3931
3932 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3933 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3934 struct xps_dev_maps *dev_maps, unsigned int tci)
3935 {
3936 struct xps_map *map;
3937 int queue_index = -1;
3938
3939 if (dev->num_tc) {
3940 tci *= dev->num_tc;
3941 tci += netdev_get_prio_tc_map(dev, skb->priority);
3942 }
3943
3944 map = rcu_dereference(dev_maps->attr_map[tci]);
3945 if (map) {
3946 if (map->len == 1)
3947 queue_index = map->queues[0];
3948 else
3949 queue_index = map->queues[reciprocal_scale(
3950 skb_get_hash(skb), map->len)];
3951 if (unlikely(queue_index >= dev->real_num_tx_queues))
3952 queue_index = -1;
3953 }
3954 return queue_index;
3955 }
3956 #endif
3957
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3958 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3959 struct sk_buff *skb)
3960 {
3961 #ifdef CONFIG_XPS
3962 struct xps_dev_maps *dev_maps;
3963 struct sock *sk = skb->sk;
3964 int queue_index = -1;
3965
3966 if (!static_key_false(&xps_needed))
3967 return -1;
3968
3969 rcu_read_lock();
3970 if (!static_key_false(&xps_rxqs_needed))
3971 goto get_cpus_map;
3972
3973 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3974 if (dev_maps) {
3975 int tci = sk_rx_queue_get(sk);
3976
3977 if (tci >= 0 && tci < dev->num_rx_queues)
3978 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3979 tci);
3980 }
3981
3982 get_cpus_map:
3983 if (queue_index < 0) {
3984 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3985 if (dev_maps) {
3986 unsigned int tci = skb->sender_cpu - 1;
3987
3988 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3989 tci);
3990 }
3991 }
3992 rcu_read_unlock();
3993
3994 return queue_index;
3995 #else
3996 return -1;
3997 #endif
3998 }
3999
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4000 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4001 struct net_device *sb_dev)
4002 {
4003 return 0;
4004 }
4005 EXPORT_SYMBOL(dev_pick_tx_zero);
4006
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4007 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4008 struct net_device *sb_dev)
4009 {
4010 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4011 }
4012 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4013
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4014 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4015 struct net_device *sb_dev)
4016 {
4017 struct sock *sk = skb->sk;
4018 int queue_index = sk_tx_queue_get(sk);
4019
4020 sb_dev = sb_dev ? : dev;
4021
4022 if (queue_index < 0 || skb->ooo_okay ||
4023 queue_index >= dev->real_num_tx_queues) {
4024 int new_index = get_xps_queue(dev, sb_dev, skb);
4025
4026 if (new_index < 0)
4027 new_index = skb_tx_hash(dev, sb_dev, skb);
4028
4029 if (queue_index != new_index && sk &&
4030 sk_fullsock(sk) &&
4031 rcu_access_pointer(sk->sk_dst_cache))
4032 sk_tx_queue_set(sk, new_index);
4033
4034 queue_index = new_index;
4035 }
4036
4037 return queue_index;
4038 }
4039 EXPORT_SYMBOL(netdev_pick_tx);
4040
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4041 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4042 struct sk_buff *skb,
4043 struct net_device *sb_dev)
4044 {
4045 int queue_index = 0;
4046
4047 #ifdef CONFIG_XPS
4048 u32 sender_cpu = skb->sender_cpu - 1;
4049
4050 if (sender_cpu >= (u32)NR_CPUS)
4051 skb->sender_cpu = raw_smp_processor_id() + 1;
4052 #endif
4053
4054 if (dev->real_num_tx_queues != 1) {
4055 const struct net_device_ops *ops = dev->netdev_ops;
4056
4057 if (ops->ndo_select_queue)
4058 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4059 else
4060 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4061
4062 queue_index = netdev_cap_txqueue(dev, queue_index);
4063 }
4064
4065 skb_set_queue_mapping(skb, queue_index);
4066 return netdev_get_tx_queue(dev, queue_index);
4067 }
4068
4069 /**
4070 * __dev_queue_xmit - transmit a buffer
4071 * @skb: buffer to transmit
4072 * @sb_dev: suboordinate device used for L2 forwarding offload
4073 *
4074 * Queue a buffer for transmission to a network device. The caller must
4075 * have set the device and priority and built the buffer before calling
4076 * this function. The function can be called from an interrupt.
4077 *
4078 * A negative errno code is returned on a failure. A success does not
4079 * guarantee the frame will be transmitted as it may be dropped due
4080 * to congestion or traffic shaping.
4081 *
4082 * -----------------------------------------------------------------------------------
4083 * I notice this method can also return errors from the queue disciplines,
4084 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4085 * be positive.
4086 *
4087 * Regardless of the return value, the skb is consumed, so it is currently
4088 * difficult to retry a send to this method. (You can bump the ref count
4089 * before sending to hold a reference for retry if you are careful.)
4090 *
4091 * When calling this method, interrupts MUST be enabled. This is because
4092 * the BH enable code must have IRQs enabled so that it will not deadlock.
4093 * --BLG
4094 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4095 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4096 {
4097 struct net_device *dev = skb->dev;
4098 struct netdev_queue *txq;
4099 struct Qdisc *q;
4100 int rc = -ENOMEM;
4101 bool again = false;
4102
4103 skb_reset_mac_header(skb);
4104 skb_assert_len(skb);
4105
4106 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4107 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4108
4109 /* Disable soft irqs for various locks below. Also
4110 * stops preemption for RCU.
4111 */
4112 rcu_read_lock_bh();
4113
4114 skb_update_prio(skb);
4115
4116 qdisc_pkt_len_init(skb);
4117 #ifdef CONFIG_NET_CLS_ACT
4118 skb->tc_at_ingress = 0;
4119 # ifdef CONFIG_NET_EGRESS
4120 if (static_branch_unlikely(&egress_needed_key)) {
4121 skb = sch_handle_egress(skb, &rc, dev);
4122 if (!skb)
4123 goto out;
4124 }
4125 # endif
4126 #endif
4127 /* If device/qdisc don't need skb->dst, release it right now while
4128 * its hot in this cpu cache.
4129 */
4130 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4131 skb_dst_drop(skb);
4132 else
4133 skb_dst_force(skb);
4134
4135 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4136 q = rcu_dereference_bh(txq->qdisc);
4137
4138 trace_net_dev_queue(skb);
4139 if (q->enqueue) {
4140 rc = __dev_xmit_skb(skb, q, dev, txq);
4141 goto out;
4142 }
4143
4144 /* The device has no queue. Common case for software devices:
4145 * loopback, all the sorts of tunnels...
4146
4147 * Really, it is unlikely that netif_tx_lock protection is necessary
4148 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4149 * counters.)
4150 * However, it is possible, that they rely on protection
4151 * made by us here.
4152
4153 * Check this and shot the lock. It is not prone from deadlocks.
4154 *Either shot noqueue qdisc, it is even simpler 8)
4155 */
4156 if (dev->flags & IFF_UP) {
4157 int cpu = smp_processor_id(); /* ok because BHs are off */
4158
4159 /* Other cpus might concurrently change txq->xmit_lock_owner
4160 * to -1 or to their cpu id, but not to our id.
4161 */
4162 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4163 if (dev_xmit_recursion())
4164 goto recursion_alert;
4165
4166 skb = validate_xmit_skb(skb, dev, &again);
4167 if (!skb)
4168 goto out;
4169
4170 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4171 HARD_TX_LOCK(dev, txq, cpu);
4172
4173 if (!netif_xmit_stopped(txq)) {
4174 dev_xmit_recursion_inc();
4175 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4176 dev_xmit_recursion_dec();
4177 if (dev_xmit_complete(rc)) {
4178 HARD_TX_UNLOCK(dev, txq);
4179 goto out;
4180 }
4181 }
4182 HARD_TX_UNLOCK(dev, txq);
4183 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4184 dev->name);
4185 } else {
4186 /* Recursion is detected! It is possible,
4187 * unfortunately
4188 */
4189 recursion_alert:
4190 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4191 dev->name);
4192 }
4193 }
4194
4195 rc = -ENETDOWN;
4196 rcu_read_unlock_bh();
4197
4198 atomic_long_inc(&dev->tx_dropped);
4199 kfree_skb_list(skb);
4200 return rc;
4201 out:
4202 rcu_read_unlock_bh();
4203 return rc;
4204 }
4205
dev_queue_xmit(struct sk_buff * skb)4206 int dev_queue_xmit(struct sk_buff *skb)
4207 {
4208 return __dev_queue_xmit(skb, NULL);
4209 }
4210 EXPORT_SYMBOL(dev_queue_xmit);
4211
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4212 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4213 {
4214 return __dev_queue_xmit(skb, sb_dev);
4215 }
4216 EXPORT_SYMBOL(dev_queue_xmit_accel);
4217
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4218 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4219 {
4220 struct net_device *dev = skb->dev;
4221 struct sk_buff *orig_skb = skb;
4222 struct netdev_queue *txq;
4223 int ret = NETDEV_TX_BUSY;
4224 bool again = false;
4225
4226 if (unlikely(!netif_running(dev) ||
4227 !netif_carrier_ok(dev)))
4228 goto drop;
4229
4230 skb = validate_xmit_skb_list(skb, dev, &again);
4231 if (skb != orig_skb)
4232 goto drop;
4233
4234 skb_set_queue_mapping(skb, queue_id);
4235 txq = skb_get_tx_queue(dev, skb);
4236 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4237
4238 local_bh_disable();
4239
4240 dev_xmit_recursion_inc();
4241 HARD_TX_LOCK(dev, txq, smp_processor_id());
4242 if (!netif_xmit_frozen_or_drv_stopped(txq))
4243 ret = netdev_start_xmit(skb, dev, txq, false);
4244 HARD_TX_UNLOCK(dev, txq);
4245 dev_xmit_recursion_dec();
4246
4247 local_bh_enable();
4248 return ret;
4249 drop:
4250 atomic_long_inc(&dev->tx_dropped);
4251 kfree_skb_list(skb);
4252 return NET_XMIT_DROP;
4253 }
4254 EXPORT_SYMBOL(__dev_direct_xmit);
4255
4256 /*************************************************************************
4257 * Receiver routines
4258 *************************************************************************/
4259
4260 int netdev_max_backlog __read_mostly = 1000;
4261 EXPORT_SYMBOL(netdev_max_backlog);
4262
4263 int netdev_tstamp_prequeue __read_mostly = 1;
4264 int netdev_budget __read_mostly = 300;
4265 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4266 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4267 int weight_p __read_mostly = 64; /* old backlog weight */
4268 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4269 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4270 int dev_rx_weight __read_mostly = 64;
4271 int dev_tx_weight __read_mostly = 64;
4272 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4273 int gro_normal_batch __read_mostly = 8;
4274
4275 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4276 static inline void ____napi_schedule(struct softnet_data *sd,
4277 struct napi_struct *napi)
4278 {
4279 list_add_tail(&napi->poll_list, &sd->poll_list);
4280 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4281 }
4282
4283 #ifdef CONFIG_RPS
4284
4285 /* One global table that all flow-based protocols share. */
4286 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4287 EXPORT_SYMBOL(rps_sock_flow_table);
4288 u32 rps_cpu_mask __read_mostly;
4289 EXPORT_SYMBOL(rps_cpu_mask);
4290
4291 struct static_key_false rps_needed __read_mostly;
4292 EXPORT_SYMBOL(rps_needed);
4293 struct static_key_false rfs_needed __read_mostly;
4294 EXPORT_SYMBOL(rfs_needed);
4295
4296 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4297 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4298 struct rps_dev_flow *rflow, u16 next_cpu)
4299 {
4300 if (next_cpu < nr_cpu_ids) {
4301 #ifdef CONFIG_RFS_ACCEL
4302 struct netdev_rx_queue *rxqueue;
4303 struct rps_dev_flow_table *flow_table;
4304 struct rps_dev_flow *old_rflow;
4305 u32 flow_id;
4306 u16 rxq_index;
4307 int rc;
4308
4309 /* Should we steer this flow to a different hardware queue? */
4310 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4311 !(dev->features & NETIF_F_NTUPLE))
4312 goto out;
4313 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4314 if (rxq_index == skb_get_rx_queue(skb))
4315 goto out;
4316
4317 rxqueue = dev->_rx + rxq_index;
4318 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4319 if (!flow_table)
4320 goto out;
4321 flow_id = skb_get_hash(skb) & flow_table->mask;
4322 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4323 rxq_index, flow_id);
4324 if (rc < 0)
4325 goto out;
4326 old_rflow = rflow;
4327 rflow = &flow_table->flows[flow_id];
4328 rflow->filter = rc;
4329 if (old_rflow->filter == rflow->filter)
4330 old_rflow->filter = RPS_NO_FILTER;
4331 out:
4332 #endif
4333 rflow->last_qtail =
4334 per_cpu(softnet_data, next_cpu).input_queue_head;
4335 }
4336
4337 rflow->cpu = next_cpu;
4338 return rflow;
4339 }
4340
4341 /*
4342 * get_rps_cpu is called from netif_receive_skb and returns the target
4343 * CPU from the RPS map of the receiving queue for a given skb.
4344 * rcu_read_lock must be held on entry.
4345 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4346 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4347 struct rps_dev_flow **rflowp)
4348 {
4349 const struct rps_sock_flow_table *sock_flow_table;
4350 struct netdev_rx_queue *rxqueue = dev->_rx;
4351 struct rps_dev_flow_table *flow_table;
4352 struct rps_map *map;
4353 int cpu = -1;
4354 u32 tcpu;
4355 u32 hash;
4356
4357 if (skb_rx_queue_recorded(skb)) {
4358 u16 index = skb_get_rx_queue(skb);
4359
4360 if (unlikely(index >= dev->real_num_rx_queues)) {
4361 WARN_ONCE(dev->real_num_rx_queues > 1,
4362 "%s received packet on queue %u, but number "
4363 "of RX queues is %u\n",
4364 dev->name, index, dev->real_num_rx_queues);
4365 goto done;
4366 }
4367 rxqueue += index;
4368 }
4369
4370 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4371
4372 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4373 map = rcu_dereference(rxqueue->rps_map);
4374 if (!flow_table && !map)
4375 goto done;
4376
4377 skb_reset_network_header(skb);
4378 hash = skb_get_hash(skb);
4379 if (!hash)
4380 goto done;
4381
4382 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4383 if (flow_table && sock_flow_table) {
4384 struct rps_dev_flow *rflow;
4385 u32 next_cpu;
4386 u32 ident;
4387
4388 /* First check into global flow table if there is a match.
4389 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4390 */
4391 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4392 if ((ident ^ hash) & ~rps_cpu_mask)
4393 goto try_rps;
4394
4395 next_cpu = ident & rps_cpu_mask;
4396
4397 /* OK, now we know there is a match,
4398 * we can look at the local (per receive queue) flow table
4399 */
4400 rflow = &flow_table->flows[hash & flow_table->mask];
4401 tcpu = rflow->cpu;
4402
4403 /*
4404 * If the desired CPU (where last recvmsg was done) is
4405 * different from current CPU (one in the rx-queue flow
4406 * table entry), switch if one of the following holds:
4407 * - Current CPU is unset (>= nr_cpu_ids).
4408 * - Current CPU is offline.
4409 * - The current CPU's queue tail has advanced beyond the
4410 * last packet that was enqueued using this table entry.
4411 * This guarantees that all previous packets for the flow
4412 * have been dequeued, thus preserving in order delivery.
4413 */
4414 if (unlikely(tcpu != next_cpu) &&
4415 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4416 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4417 rflow->last_qtail)) >= 0)) {
4418 tcpu = next_cpu;
4419 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4420 }
4421
4422 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4423 *rflowp = rflow;
4424 cpu = tcpu;
4425 goto done;
4426 }
4427 }
4428
4429 try_rps:
4430
4431 if (map) {
4432 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4433 if (cpu_online(tcpu)) {
4434 cpu = tcpu;
4435 goto done;
4436 }
4437 }
4438
4439 done:
4440 return cpu;
4441 }
4442
4443 #ifdef CONFIG_RFS_ACCEL
4444
4445 /**
4446 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4447 * @dev: Device on which the filter was set
4448 * @rxq_index: RX queue index
4449 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4450 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4451 *
4452 * Drivers that implement ndo_rx_flow_steer() should periodically call
4453 * this function for each installed filter and remove the filters for
4454 * which it returns %true.
4455 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4456 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4457 u32 flow_id, u16 filter_id)
4458 {
4459 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4460 struct rps_dev_flow_table *flow_table;
4461 struct rps_dev_flow *rflow;
4462 bool expire = true;
4463 unsigned int cpu;
4464
4465 rcu_read_lock();
4466 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467 if (flow_table && flow_id <= flow_table->mask) {
4468 rflow = &flow_table->flows[flow_id];
4469 cpu = READ_ONCE(rflow->cpu);
4470 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4471 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4472 rflow->last_qtail) <
4473 (int)(10 * flow_table->mask)))
4474 expire = false;
4475 }
4476 rcu_read_unlock();
4477 return expire;
4478 }
4479 EXPORT_SYMBOL(rps_may_expire_flow);
4480
4481 #endif /* CONFIG_RFS_ACCEL */
4482
4483 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4484 static void rps_trigger_softirq(void *data)
4485 {
4486 struct softnet_data *sd = data;
4487
4488 ____napi_schedule(sd, &sd->backlog);
4489 sd->received_rps++;
4490 }
4491
4492 #endif /* CONFIG_RPS */
4493
4494 /*
4495 * Check if this softnet_data structure is another cpu one
4496 * If yes, queue it to our IPI list and return 1
4497 * If no, return 0
4498 */
rps_ipi_queued(struct softnet_data * sd)4499 static int rps_ipi_queued(struct softnet_data *sd)
4500 {
4501 #ifdef CONFIG_RPS
4502 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4503
4504 if (sd != mysd) {
4505 sd->rps_ipi_next = mysd->rps_ipi_list;
4506 mysd->rps_ipi_list = sd;
4507
4508 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4509 return 1;
4510 }
4511 #endif /* CONFIG_RPS */
4512 return 0;
4513 }
4514
4515 #ifdef CONFIG_NET_FLOW_LIMIT
4516 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4517 #endif
4518
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4519 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4520 {
4521 #ifdef CONFIG_NET_FLOW_LIMIT
4522 struct sd_flow_limit *fl;
4523 struct softnet_data *sd;
4524 unsigned int old_flow, new_flow;
4525
4526 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4527 return false;
4528
4529 sd = this_cpu_ptr(&softnet_data);
4530
4531 rcu_read_lock();
4532 fl = rcu_dereference(sd->flow_limit);
4533 if (fl) {
4534 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4535 old_flow = fl->history[fl->history_head];
4536 fl->history[fl->history_head] = new_flow;
4537
4538 fl->history_head++;
4539 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4540
4541 if (likely(fl->buckets[old_flow]))
4542 fl->buckets[old_flow]--;
4543
4544 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4545 fl->count++;
4546 rcu_read_unlock();
4547 return true;
4548 }
4549 }
4550 rcu_read_unlock();
4551 #endif
4552 return false;
4553 }
4554
4555 /*
4556 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4557 * queue (may be a remote CPU queue).
4558 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4559 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4560 unsigned int *qtail)
4561 {
4562 struct softnet_data *sd;
4563 unsigned long flags;
4564 unsigned int qlen;
4565
4566 sd = &per_cpu(softnet_data, cpu);
4567
4568 local_irq_save(flags);
4569
4570 rps_lock(sd);
4571 if (!netif_running(skb->dev))
4572 goto drop;
4573 qlen = skb_queue_len(&sd->input_pkt_queue);
4574 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4575 if (qlen) {
4576 enqueue:
4577 __skb_queue_tail(&sd->input_pkt_queue, skb);
4578 input_queue_tail_incr_save(sd, qtail);
4579 rps_unlock(sd);
4580 local_irq_restore(flags);
4581 return NET_RX_SUCCESS;
4582 }
4583
4584 /* Schedule NAPI for backlog device
4585 * We can use non atomic operation since we own the queue lock
4586 */
4587 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4588 if (!rps_ipi_queued(sd))
4589 ____napi_schedule(sd, &sd->backlog);
4590 }
4591 goto enqueue;
4592 }
4593
4594 drop:
4595 sd->dropped++;
4596 rps_unlock(sd);
4597
4598 local_irq_restore(flags);
4599
4600 atomic_long_inc(&skb->dev->rx_dropped);
4601 kfree_skb(skb);
4602 return NET_RX_DROP;
4603 }
4604
netif_get_rxqueue(struct sk_buff * skb)4605 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4606 {
4607 struct net_device *dev = skb->dev;
4608 struct netdev_rx_queue *rxqueue;
4609
4610 rxqueue = dev->_rx;
4611
4612 if (skb_rx_queue_recorded(skb)) {
4613 u16 index = skb_get_rx_queue(skb);
4614
4615 if (unlikely(index >= dev->real_num_rx_queues)) {
4616 WARN_ONCE(dev->real_num_rx_queues > 1,
4617 "%s received packet on queue %u, but number "
4618 "of RX queues is %u\n",
4619 dev->name, index, dev->real_num_rx_queues);
4620
4621 return rxqueue; /* Return first rxqueue */
4622 }
4623 rxqueue += index;
4624 }
4625 return rxqueue;
4626 }
4627
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4628 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4629 struct xdp_buff *xdp,
4630 struct bpf_prog *xdp_prog)
4631 {
4632 struct netdev_rx_queue *rxqueue;
4633 void *orig_data, *orig_data_end;
4634 u32 metalen, act = XDP_DROP;
4635 __be16 orig_eth_type;
4636 struct ethhdr *eth;
4637 bool orig_bcast;
4638 int hlen, off;
4639 u32 mac_len;
4640
4641 /* Reinjected packets coming from act_mirred or similar should
4642 * not get XDP generic processing.
4643 */
4644 if (skb_is_redirected(skb))
4645 return XDP_PASS;
4646
4647 /* XDP packets must be linear and must have sufficient headroom
4648 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4649 * native XDP provides, thus we need to do it here as well.
4650 */
4651 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4652 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4653 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4654 int troom = skb->tail + skb->data_len - skb->end;
4655
4656 /* In case we have to go down the path and also linearize,
4657 * then lets do the pskb_expand_head() work just once here.
4658 */
4659 if (pskb_expand_head(skb,
4660 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4661 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4662 goto do_drop;
4663 if (skb_linearize(skb))
4664 goto do_drop;
4665 }
4666
4667 /* The XDP program wants to see the packet starting at the MAC
4668 * header.
4669 */
4670 mac_len = skb->data - skb_mac_header(skb);
4671 hlen = skb_headlen(skb) + mac_len;
4672 xdp->data = skb->data - mac_len;
4673 xdp->data_meta = xdp->data;
4674 xdp->data_end = xdp->data + hlen;
4675 xdp->data_hard_start = skb->data - skb_headroom(skb);
4676
4677 /* SKB "head" area always have tailroom for skb_shared_info */
4678 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4679 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4680
4681 orig_data_end = xdp->data_end;
4682 orig_data = xdp->data;
4683 eth = (struct ethhdr *)xdp->data;
4684 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4685 orig_eth_type = eth->h_proto;
4686
4687 rxqueue = netif_get_rxqueue(skb);
4688 xdp->rxq = &rxqueue->xdp_rxq;
4689
4690 act = bpf_prog_run_xdp(xdp_prog, xdp);
4691
4692 /* check if bpf_xdp_adjust_head was used */
4693 off = xdp->data - orig_data;
4694 if (off) {
4695 if (off > 0)
4696 __skb_pull(skb, off);
4697 else if (off < 0)
4698 __skb_push(skb, -off);
4699
4700 skb->mac_header += off;
4701 skb_reset_network_header(skb);
4702 }
4703
4704 /* check if bpf_xdp_adjust_tail was used */
4705 off = xdp->data_end - orig_data_end;
4706 if (off != 0) {
4707 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4708 skb->len += off; /* positive on grow, negative on shrink */
4709 }
4710
4711 /* check if XDP changed eth hdr such SKB needs update */
4712 eth = (struct ethhdr *)xdp->data;
4713 if ((orig_eth_type != eth->h_proto) ||
4714 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4715 __skb_push(skb, ETH_HLEN);
4716 skb->protocol = eth_type_trans(skb, skb->dev);
4717 }
4718
4719 switch (act) {
4720 case XDP_REDIRECT:
4721 case XDP_TX:
4722 __skb_push(skb, mac_len);
4723 break;
4724 case XDP_PASS:
4725 metalen = xdp->data - xdp->data_meta;
4726 if (metalen)
4727 skb_metadata_set(skb, metalen);
4728 break;
4729 default:
4730 bpf_warn_invalid_xdp_action(act);
4731 fallthrough;
4732 case XDP_ABORTED:
4733 trace_xdp_exception(skb->dev, xdp_prog, act);
4734 fallthrough;
4735 case XDP_DROP:
4736 do_drop:
4737 kfree_skb(skb);
4738 break;
4739 }
4740
4741 return act;
4742 }
4743
4744 /* When doing generic XDP we have to bypass the qdisc layer and the
4745 * network taps in order to match in-driver-XDP behavior.
4746 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4747 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4748 {
4749 struct net_device *dev = skb->dev;
4750 struct netdev_queue *txq;
4751 bool free_skb = true;
4752 int cpu, rc;
4753
4754 txq = netdev_core_pick_tx(dev, skb, NULL);
4755 cpu = smp_processor_id();
4756 HARD_TX_LOCK(dev, txq, cpu);
4757 if (!netif_xmit_stopped(txq)) {
4758 rc = netdev_start_xmit(skb, dev, txq, 0);
4759 if (dev_xmit_complete(rc))
4760 free_skb = false;
4761 }
4762 HARD_TX_UNLOCK(dev, txq);
4763 if (free_skb) {
4764 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4765 kfree_skb(skb);
4766 }
4767 }
4768
4769 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4770
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4771 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4772 {
4773 if (xdp_prog) {
4774 struct xdp_buff xdp;
4775 u32 act;
4776 int err;
4777
4778 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4779 if (act != XDP_PASS) {
4780 switch (act) {
4781 case XDP_REDIRECT:
4782 err = xdp_do_generic_redirect(skb->dev, skb,
4783 &xdp, xdp_prog);
4784 if (err)
4785 goto out_redir;
4786 break;
4787 case XDP_TX:
4788 generic_xdp_tx(skb, xdp_prog);
4789 break;
4790 }
4791 return XDP_DROP;
4792 }
4793 }
4794 return XDP_PASS;
4795 out_redir:
4796 kfree_skb(skb);
4797 return XDP_DROP;
4798 }
4799 EXPORT_SYMBOL_GPL(do_xdp_generic);
4800
netif_rx_internal(struct sk_buff * skb)4801 static int netif_rx_internal(struct sk_buff *skb)
4802 {
4803 int ret;
4804
4805 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4806
4807 trace_netif_rx(skb);
4808
4809 #ifdef CONFIG_RPS
4810 if (static_branch_unlikely(&rps_needed)) {
4811 struct rps_dev_flow voidflow, *rflow = &voidflow;
4812 int cpu;
4813
4814 preempt_disable();
4815 rcu_read_lock();
4816
4817 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4818 if (cpu < 0)
4819 cpu = smp_processor_id();
4820
4821 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4822
4823 rcu_read_unlock();
4824 preempt_enable();
4825 } else
4826 #endif
4827 {
4828 unsigned int qtail;
4829
4830 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4831 put_cpu();
4832 }
4833 return ret;
4834 }
4835
4836 /**
4837 * netif_rx - post buffer to the network code
4838 * @skb: buffer to post
4839 *
4840 * This function receives a packet from a device driver and queues it for
4841 * the upper (protocol) levels to process. It always succeeds. The buffer
4842 * may be dropped during processing for congestion control or by the
4843 * protocol layers.
4844 *
4845 * return values:
4846 * NET_RX_SUCCESS (no congestion)
4847 * NET_RX_DROP (packet was dropped)
4848 *
4849 */
4850
netif_rx(struct sk_buff * skb)4851 int netif_rx(struct sk_buff *skb)
4852 {
4853 int ret;
4854
4855 trace_netif_rx_entry(skb);
4856
4857 ret = netif_rx_internal(skb);
4858 trace_netif_rx_exit(ret);
4859
4860 return ret;
4861 }
4862 EXPORT_SYMBOL(netif_rx);
4863
netif_rx_ni(struct sk_buff * skb)4864 int netif_rx_ni(struct sk_buff *skb)
4865 {
4866 int err;
4867
4868 trace_netif_rx_ni_entry(skb);
4869
4870 preempt_disable();
4871 err = netif_rx_internal(skb);
4872 if (local_softirq_pending())
4873 do_softirq();
4874 preempt_enable();
4875 trace_netif_rx_ni_exit(err);
4876
4877 return err;
4878 }
4879 EXPORT_SYMBOL(netif_rx_ni);
4880
netif_rx_any_context(struct sk_buff * skb)4881 int netif_rx_any_context(struct sk_buff *skb)
4882 {
4883 /*
4884 * If invoked from contexts which do not invoke bottom half
4885 * processing either at return from interrupt or when softrqs are
4886 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4887 * directly.
4888 */
4889 if (in_interrupt())
4890 return netif_rx(skb);
4891 else
4892 return netif_rx_ni(skb);
4893 }
4894 EXPORT_SYMBOL(netif_rx_any_context);
4895
net_tx_action(struct softirq_action * h)4896 static __latent_entropy void net_tx_action(struct softirq_action *h)
4897 {
4898 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4899
4900 if (sd->completion_queue) {
4901 struct sk_buff *clist;
4902
4903 local_irq_disable();
4904 clist = sd->completion_queue;
4905 sd->completion_queue = NULL;
4906 local_irq_enable();
4907
4908 while (clist) {
4909 struct sk_buff *skb = clist;
4910
4911 clist = clist->next;
4912
4913 WARN_ON(refcount_read(&skb->users));
4914 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4915 trace_consume_skb(skb);
4916 else
4917 trace_kfree_skb(skb, net_tx_action);
4918
4919 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4920 __kfree_skb(skb);
4921 else
4922 __kfree_skb_defer(skb);
4923 }
4924
4925 __kfree_skb_flush();
4926 }
4927
4928 if (sd->output_queue) {
4929 struct Qdisc *head;
4930
4931 local_irq_disable();
4932 head = sd->output_queue;
4933 sd->output_queue = NULL;
4934 sd->output_queue_tailp = &sd->output_queue;
4935 local_irq_enable();
4936
4937 rcu_read_lock();
4938
4939 while (head) {
4940 struct Qdisc *q = head;
4941 spinlock_t *root_lock = NULL;
4942
4943 head = head->next_sched;
4944
4945 /* We need to make sure head->next_sched is read
4946 * before clearing __QDISC_STATE_SCHED
4947 */
4948 smp_mb__before_atomic();
4949
4950 if (!(q->flags & TCQ_F_NOLOCK)) {
4951 root_lock = qdisc_lock(q);
4952 spin_lock(root_lock);
4953 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4954 &q->state))) {
4955 /* There is a synchronize_net() between
4956 * STATE_DEACTIVATED flag being set and
4957 * qdisc_reset()/some_qdisc_is_busy() in
4958 * dev_deactivate(), so we can safely bail out
4959 * early here to avoid data race between
4960 * qdisc_deactivate() and some_qdisc_is_busy()
4961 * for lockless qdisc.
4962 */
4963 clear_bit(__QDISC_STATE_SCHED, &q->state);
4964 continue;
4965 }
4966
4967 clear_bit(__QDISC_STATE_SCHED, &q->state);
4968 qdisc_run(q);
4969 if (root_lock)
4970 spin_unlock(root_lock);
4971 }
4972
4973 rcu_read_unlock();
4974 }
4975
4976 xfrm_dev_backlog(sd);
4977 }
4978
4979 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4980 /* This hook is defined here for ATM LANE */
4981 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4982 unsigned char *addr) __read_mostly;
4983 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4984 #endif
4985
4986 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4987 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4988 struct net_device *orig_dev, bool *another)
4989 {
4990 #ifdef CONFIG_NET_CLS_ACT
4991 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4992 struct tcf_result cl_res;
4993
4994 /* If there's at least one ingress present somewhere (so
4995 * we get here via enabled static key), remaining devices
4996 * that are not configured with an ingress qdisc will bail
4997 * out here.
4998 */
4999 if (!miniq)
5000 return skb;
5001
5002 if (*pt_prev) {
5003 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5004 *pt_prev = NULL;
5005 }
5006
5007 qdisc_skb_cb(skb)->pkt_len = skb->len;
5008 qdisc_skb_cb(skb)->mru = 0;
5009 skb->tc_at_ingress = 1;
5010 mini_qdisc_bstats_cpu_update(miniq, skb);
5011
5012 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5013 &cl_res, false)) {
5014 case TC_ACT_OK:
5015 case TC_ACT_RECLASSIFY:
5016 skb->tc_index = TC_H_MIN(cl_res.classid);
5017 break;
5018 case TC_ACT_SHOT:
5019 mini_qdisc_qstats_cpu_drop(miniq);
5020 kfree_skb(skb);
5021 return NULL;
5022 case TC_ACT_STOLEN:
5023 case TC_ACT_QUEUED:
5024 case TC_ACT_TRAP:
5025 consume_skb(skb);
5026 return NULL;
5027 case TC_ACT_REDIRECT:
5028 /* skb_mac_header check was done by cls/act_bpf, so
5029 * we can safely push the L2 header back before
5030 * redirecting to another netdev
5031 */
5032 __skb_push(skb, skb->mac_len);
5033 if (skb_do_redirect(skb) == -EAGAIN) {
5034 __skb_pull(skb, skb->mac_len);
5035 *another = true;
5036 break;
5037 }
5038 return NULL;
5039 case TC_ACT_CONSUMED:
5040 return NULL;
5041 default:
5042 break;
5043 }
5044 #endif /* CONFIG_NET_CLS_ACT */
5045 return skb;
5046 }
5047
5048 /**
5049 * netdev_is_rx_handler_busy - check if receive handler is registered
5050 * @dev: device to check
5051 *
5052 * Check if a receive handler is already registered for a given device.
5053 * Return true if there one.
5054 *
5055 * The caller must hold the rtnl_mutex.
5056 */
netdev_is_rx_handler_busy(struct net_device * dev)5057 bool netdev_is_rx_handler_busy(struct net_device *dev)
5058 {
5059 ASSERT_RTNL();
5060 return dev && rtnl_dereference(dev->rx_handler);
5061 }
5062 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5063
5064 /**
5065 * netdev_rx_handler_register - register receive handler
5066 * @dev: device to register a handler for
5067 * @rx_handler: receive handler to register
5068 * @rx_handler_data: data pointer that is used by rx handler
5069 *
5070 * Register a receive handler for a device. This handler will then be
5071 * called from __netif_receive_skb. A negative errno code is returned
5072 * on a failure.
5073 *
5074 * The caller must hold the rtnl_mutex.
5075 *
5076 * For a general description of rx_handler, see enum rx_handler_result.
5077 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5078 int netdev_rx_handler_register(struct net_device *dev,
5079 rx_handler_func_t *rx_handler,
5080 void *rx_handler_data)
5081 {
5082 if (netdev_is_rx_handler_busy(dev))
5083 return -EBUSY;
5084
5085 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5086 return -EINVAL;
5087
5088 /* Note: rx_handler_data must be set before rx_handler */
5089 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5090 rcu_assign_pointer(dev->rx_handler, rx_handler);
5091
5092 return 0;
5093 }
5094 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5095
5096 /**
5097 * netdev_rx_handler_unregister - unregister receive handler
5098 * @dev: device to unregister a handler from
5099 *
5100 * Unregister a receive handler from a device.
5101 *
5102 * The caller must hold the rtnl_mutex.
5103 */
netdev_rx_handler_unregister(struct net_device * dev)5104 void netdev_rx_handler_unregister(struct net_device *dev)
5105 {
5106
5107 ASSERT_RTNL();
5108 RCU_INIT_POINTER(dev->rx_handler, NULL);
5109 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5110 * section has a guarantee to see a non NULL rx_handler_data
5111 * as well.
5112 */
5113 synchronize_net();
5114 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5115 }
5116 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5117
5118 /*
5119 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5120 * the special handling of PFMEMALLOC skbs.
5121 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5122 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5123 {
5124 switch (skb->protocol) {
5125 case htons(ETH_P_ARP):
5126 case htons(ETH_P_IP):
5127 case htons(ETH_P_IPV6):
5128 case htons(ETH_P_8021Q):
5129 case htons(ETH_P_8021AD):
5130 return true;
5131 default:
5132 return false;
5133 }
5134 }
5135
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5136 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5137 int *ret, struct net_device *orig_dev)
5138 {
5139 if (nf_hook_ingress_active(skb)) {
5140 int ingress_retval;
5141
5142 if (*pt_prev) {
5143 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5144 *pt_prev = NULL;
5145 }
5146
5147 rcu_read_lock();
5148 ingress_retval = nf_hook_ingress(skb);
5149 rcu_read_unlock();
5150 return ingress_retval;
5151 }
5152 return 0;
5153 }
5154
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5155 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5156 struct packet_type **ppt_prev)
5157 {
5158 struct packet_type *ptype, *pt_prev;
5159 rx_handler_func_t *rx_handler;
5160 struct sk_buff *skb = *pskb;
5161 struct net_device *orig_dev;
5162 bool deliver_exact = false;
5163 int ret = NET_RX_DROP;
5164 __be16 type;
5165
5166 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5167
5168 trace_netif_receive_skb(skb);
5169
5170 orig_dev = skb->dev;
5171
5172 skb_reset_network_header(skb);
5173 if (!skb_transport_header_was_set(skb))
5174 skb_reset_transport_header(skb);
5175 skb_reset_mac_len(skb);
5176
5177 pt_prev = NULL;
5178
5179 another_round:
5180 skb->skb_iif = skb->dev->ifindex;
5181
5182 __this_cpu_inc(softnet_data.processed);
5183
5184 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5185 int ret2;
5186
5187 preempt_disable();
5188 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5189 preempt_enable();
5190
5191 if (ret2 != XDP_PASS) {
5192 ret = NET_RX_DROP;
5193 goto out;
5194 }
5195 skb_reset_mac_len(skb);
5196 }
5197
5198 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5199 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5200 skb = skb_vlan_untag(skb);
5201 if (unlikely(!skb))
5202 goto out;
5203 }
5204
5205 if (skb_skip_tc_classify(skb))
5206 goto skip_classify;
5207
5208 if (pfmemalloc)
5209 goto skip_taps;
5210
5211 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5212 if (pt_prev)
5213 ret = deliver_skb(skb, pt_prev, orig_dev);
5214 pt_prev = ptype;
5215 }
5216
5217 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5218 if (pt_prev)
5219 ret = deliver_skb(skb, pt_prev, orig_dev);
5220 pt_prev = ptype;
5221 }
5222
5223 skip_taps:
5224 #ifdef CONFIG_NET_INGRESS
5225 if (static_branch_unlikely(&ingress_needed_key)) {
5226 bool another = false;
5227
5228 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5229 &another);
5230 if (another)
5231 goto another_round;
5232 if (!skb)
5233 goto out;
5234
5235 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5236 goto out;
5237 }
5238 #endif
5239 skb_reset_redirect(skb);
5240 skip_classify:
5241 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5242 goto drop;
5243
5244 if (skb_vlan_tag_present(skb)) {
5245 if (pt_prev) {
5246 ret = deliver_skb(skb, pt_prev, orig_dev);
5247 pt_prev = NULL;
5248 }
5249 if (vlan_do_receive(&skb))
5250 goto another_round;
5251 else if (unlikely(!skb))
5252 goto out;
5253 }
5254
5255 rx_handler = rcu_dereference(skb->dev->rx_handler);
5256 if (rx_handler) {
5257 if (pt_prev) {
5258 ret = deliver_skb(skb, pt_prev, orig_dev);
5259 pt_prev = NULL;
5260 }
5261 switch (rx_handler(&skb)) {
5262 case RX_HANDLER_CONSUMED:
5263 ret = NET_RX_SUCCESS;
5264 goto out;
5265 case RX_HANDLER_ANOTHER:
5266 goto another_round;
5267 case RX_HANDLER_EXACT:
5268 deliver_exact = true;
5269 case RX_HANDLER_PASS:
5270 break;
5271 default:
5272 BUG();
5273 }
5274 }
5275
5276 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5277 check_vlan_id:
5278 if (skb_vlan_tag_get_id(skb)) {
5279 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5280 * find vlan device.
5281 */
5282 skb->pkt_type = PACKET_OTHERHOST;
5283 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5284 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5285 /* Outer header is 802.1P with vlan 0, inner header is
5286 * 802.1Q or 802.1AD and vlan_do_receive() above could
5287 * not find vlan dev for vlan id 0.
5288 */
5289 __vlan_hwaccel_clear_tag(skb);
5290 skb = skb_vlan_untag(skb);
5291 if (unlikely(!skb))
5292 goto out;
5293 if (vlan_do_receive(&skb))
5294 /* After stripping off 802.1P header with vlan 0
5295 * vlan dev is found for inner header.
5296 */
5297 goto another_round;
5298 else if (unlikely(!skb))
5299 goto out;
5300 else
5301 /* We have stripped outer 802.1P vlan 0 header.
5302 * But could not find vlan dev.
5303 * check again for vlan id to set OTHERHOST.
5304 */
5305 goto check_vlan_id;
5306 }
5307 /* Note: we might in the future use prio bits
5308 * and set skb->priority like in vlan_do_receive()
5309 * For the time being, just ignore Priority Code Point
5310 */
5311 __vlan_hwaccel_clear_tag(skb);
5312 }
5313
5314 type = skb->protocol;
5315
5316 /* deliver only exact match when indicated */
5317 if (likely(!deliver_exact)) {
5318 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5319 &ptype_base[ntohs(type) &
5320 PTYPE_HASH_MASK]);
5321 }
5322
5323 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5324 &orig_dev->ptype_specific);
5325
5326 if (unlikely(skb->dev != orig_dev)) {
5327 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328 &skb->dev->ptype_specific);
5329 }
5330
5331 if (pt_prev) {
5332 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5333 goto drop;
5334 *ppt_prev = pt_prev;
5335 } else {
5336 drop:
5337 if (!deliver_exact)
5338 atomic_long_inc(&skb->dev->rx_dropped);
5339 else
5340 atomic_long_inc(&skb->dev->rx_nohandler);
5341 kfree_skb(skb);
5342 /* Jamal, now you will not able to escape explaining
5343 * me how you were going to use this. :-)
5344 */
5345 ret = NET_RX_DROP;
5346 }
5347
5348 out:
5349 /* The invariant here is that if *ppt_prev is not NULL
5350 * then skb should also be non-NULL.
5351 *
5352 * Apparently *ppt_prev assignment above holds this invariant due to
5353 * skb dereferencing near it.
5354 */
5355 *pskb = skb;
5356 return ret;
5357 }
5358
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5359 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5360 {
5361 struct net_device *orig_dev = skb->dev;
5362 struct packet_type *pt_prev = NULL;
5363 int ret;
5364
5365 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5366 if (pt_prev)
5367 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5368 skb->dev, pt_prev, orig_dev);
5369 return ret;
5370 }
5371
5372 /**
5373 * netif_receive_skb_core - special purpose version of netif_receive_skb
5374 * @skb: buffer to process
5375 *
5376 * More direct receive version of netif_receive_skb(). It should
5377 * only be used by callers that have a need to skip RPS and Generic XDP.
5378 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5379 *
5380 * This function may only be called from softirq context and interrupts
5381 * should be enabled.
5382 *
5383 * Return values (usually ignored):
5384 * NET_RX_SUCCESS: no congestion
5385 * NET_RX_DROP: packet was dropped
5386 */
netif_receive_skb_core(struct sk_buff * skb)5387 int netif_receive_skb_core(struct sk_buff *skb)
5388 {
5389 int ret;
5390
5391 rcu_read_lock();
5392 ret = __netif_receive_skb_one_core(skb, false);
5393 rcu_read_unlock();
5394
5395 return ret;
5396 }
5397 EXPORT_SYMBOL(netif_receive_skb_core);
5398
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5399 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5400 struct packet_type *pt_prev,
5401 struct net_device *orig_dev)
5402 {
5403 struct sk_buff *skb, *next;
5404
5405 if (!pt_prev)
5406 return;
5407 if (list_empty(head))
5408 return;
5409 if (pt_prev->list_func != NULL)
5410 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5411 ip_list_rcv, head, pt_prev, orig_dev);
5412 else
5413 list_for_each_entry_safe(skb, next, head, list) {
5414 skb_list_del_init(skb);
5415 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5416 }
5417 }
5418
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5419 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5420 {
5421 /* Fast-path assumptions:
5422 * - There is no RX handler.
5423 * - Only one packet_type matches.
5424 * If either of these fails, we will end up doing some per-packet
5425 * processing in-line, then handling the 'last ptype' for the whole
5426 * sublist. This can't cause out-of-order delivery to any single ptype,
5427 * because the 'last ptype' must be constant across the sublist, and all
5428 * other ptypes are handled per-packet.
5429 */
5430 /* Current (common) ptype of sublist */
5431 struct packet_type *pt_curr = NULL;
5432 /* Current (common) orig_dev of sublist */
5433 struct net_device *od_curr = NULL;
5434 struct list_head sublist;
5435 struct sk_buff *skb, *next;
5436
5437 INIT_LIST_HEAD(&sublist);
5438 list_for_each_entry_safe(skb, next, head, list) {
5439 struct net_device *orig_dev = skb->dev;
5440 struct packet_type *pt_prev = NULL;
5441
5442 skb_list_del_init(skb);
5443 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5444 if (!pt_prev)
5445 continue;
5446 if (pt_curr != pt_prev || od_curr != orig_dev) {
5447 /* dispatch old sublist */
5448 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5449 /* start new sublist */
5450 INIT_LIST_HEAD(&sublist);
5451 pt_curr = pt_prev;
5452 od_curr = orig_dev;
5453 }
5454 list_add_tail(&skb->list, &sublist);
5455 }
5456
5457 /* dispatch final sublist */
5458 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5459 }
5460
__netif_receive_skb(struct sk_buff * skb)5461 static int __netif_receive_skb(struct sk_buff *skb)
5462 {
5463 int ret;
5464
5465 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5466 unsigned int noreclaim_flag;
5467
5468 /*
5469 * PFMEMALLOC skbs are special, they should
5470 * - be delivered to SOCK_MEMALLOC sockets only
5471 * - stay away from userspace
5472 * - have bounded memory usage
5473 *
5474 * Use PF_MEMALLOC as this saves us from propagating the allocation
5475 * context down to all allocation sites.
5476 */
5477 noreclaim_flag = memalloc_noreclaim_save();
5478 ret = __netif_receive_skb_one_core(skb, true);
5479 memalloc_noreclaim_restore(noreclaim_flag);
5480 } else
5481 ret = __netif_receive_skb_one_core(skb, false);
5482
5483 return ret;
5484 }
5485
__netif_receive_skb_list(struct list_head * head)5486 static void __netif_receive_skb_list(struct list_head *head)
5487 {
5488 unsigned long noreclaim_flag = 0;
5489 struct sk_buff *skb, *next;
5490 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5491
5492 list_for_each_entry_safe(skb, next, head, list) {
5493 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5494 struct list_head sublist;
5495
5496 /* Handle the previous sublist */
5497 list_cut_before(&sublist, head, &skb->list);
5498 if (!list_empty(&sublist))
5499 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5500 pfmemalloc = !pfmemalloc;
5501 /* See comments in __netif_receive_skb */
5502 if (pfmemalloc)
5503 noreclaim_flag = memalloc_noreclaim_save();
5504 else
5505 memalloc_noreclaim_restore(noreclaim_flag);
5506 }
5507 }
5508 /* Handle the remaining sublist */
5509 if (!list_empty(head))
5510 __netif_receive_skb_list_core(head, pfmemalloc);
5511 /* Restore pflags */
5512 if (pfmemalloc)
5513 memalloc_noreclaim_restore(noreclaim_flag);
5514 }
5515
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5516 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5517 {
5518 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5519 struct bpf_prog *new = xdp->prog;
5520 int ret = 0;
5521
5522 if (new) {
5523 u32 i;
5524
5525 mutex_lock(&new->aux->used_maps_mutex);
5526
5527 /* generic XDP does not work with DEVMAPs that can
5528 * have a bpf_prog installed on an entry
5529 */
5530 for (i = 0; i < new->aux->used_map_cnt; i++) {
5531 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5532 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5533 mutex_unlock(&new->aux->used_maps_mutex);
5534 return -EINVAL;
5535 }
5536 }
5537
5538 mutex_unlock(&new->aux->used_maps_mutex);
5539 }
5540
5541 switch (xdp->command) {
5542 case XDP_SETUP_PROG:
5543 rcu_assign_pointer(dev->xdp_prog, new);
5544 if (old)
5545 bpf_prog_put(old);
5546
5547 if (old && !new) {
5548 static_branch_dec(&generic_xdp_needed_key);
5549 } else if (new && !old) {
5550 static_branch_inc(&generic_xdp_needed_key);
5551 dev_disable_lro(dev);
5552 dev_disable_gro_hw(dev);
5553 }
5554 break;
5555
5556 default:
5557 ret = -EINVAL;
5558 break;
5559 }
5560
5561 return ret;
5562 }
5563
netif_receive_skb_internal(struct sk_buff * skb)5564 static int netif_receive_skb_internal(struct sk_buff *skb)
5565 {
5566 int ret;
5567
5568 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5569
5570 if (skb_defer_rx_timestamp(skb))
5571 return NET_RX_SUCCESS;
5572
5573 rcu_read_lock();
5574 #ifdef CONFIG_RPS
5575 if (static_branch_unlikely(&rps_needed)) {
5576 struct rps_dev_flow voidflow, *rflow = &voidflow;
5577 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5578
5579 if (cpu >= 0) {
5580 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5581 rcu_read_unlock();
5582 return ret;
5583 }
5584 }
5585 #endif
5586 ret = __netif_receive_skb(skb);
5587 rcu_read_unlock();
5588 return ret;
5589 }
5590
netif_receive_skb_list_internal(struct list_head * head)5591 static void netif_receive_skb_list_internal(struct list_head *head)
5592 {
5593 struct sk_buff *skb, *next;
5594 struct list_head sublist;
5595
5596 INIT_LIST_HEAD(&sublist);
5597 list_for_each_entry_safe(skb, next, head, list) {
5598 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5599 skb_list_del_init(skb);
5600 if (!skb_defer_rx_timestamp(skb))
5601 list_add_tail(&skb->list, &sublist);
5602 }
5603 list_splice_init(&sublist, head);
5604
5605 rcu_read_lock();
5606 #ifdef CONFIG_RPS
5607 if (static_branch_unlikely(&rps_needed)) {
5608 list_for_each_entry_safe(skb, next, head, list) {
5609 struct rps_dev_flow voidflow, *rflow = &voidflow;
5610 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5611
5612 if (cpu >= 0) {
5613 /* Will be handled, remove from list */
5614 skb_list_del_init(skb);
5615 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5616 }
5617 }
5618 }
5619 #endif
5620 __netif_receive_skb_list(head);
5621 rcu_read_unlock();
5622 }
5623
5624 /**
5625 * netif_receive_skb - process receive buffer from network
5626 * @skb: buffer to process
5627 *
5628 * netif_receive_skb() is the main receive data processing function.
5629 * It always succeeds. The buffer may be dropped during processing
5630 * for congestion control or by the protocol layers.
5631 *
5632 * This function may only be called from softirq context and interrupts
5633 * should be enabled.
5634 *
5635 * Return values (usually ignored):
5636 * NET_RX_SUCCESS: no congestion
5637 * NET_RX_DROP: packet was dropped
5638 */
netif_receive_skb(struct sk_buff * skb)5639 int netif_receive_skb(struct sk_buff *skb)
5640 {
5641 int ret;
5642
5643 trace_netif_receive_skb_entry(skb);
5644
5645 ret = netif_receive_skb_internal(skb);
5646 trace_netif_receive_skb_exit(ret);
5647
5648 return ret;
5649 }
5650 EXPORT_SYMBOL(netif_receive_skb);
5651
5652 /**
5653 * netif_receive_skb_list - process many receive buffers from network
5654 * @head: list of skbs to process.
5655 *
5656 * Since return value of netif_receive_skb() is normally ignored, and
5657 * wouldn't be meaningful for a list, this function returns void.
5658 *
5659 * This function may only be called from softirq context and interrupts
5660 * should be enabled.
5661 */
netif_receive_skb_list(struct list_head * head)5662 void netif_receive_skb_list(struct list_head *head)
5663 {
5664 struct sk_buff *skb;
5665
5666 if (list_empty(head))
5667 return;
5668 if (trace_netif_receive_skb_list_entry_enabled()) {
5669 list_for_each_entry(skb, head, list)
5670 trace_netif_receive_skb_list_entry(skb);
5671 }
5672 netif_receive_skb_list_internal(head);
5673 trace_netif_receive_skb_list_exit(0);
5674 }
5675 EXPORT_SYMBOL(netif_receive_skb_list);
5676
5677 static DEFINE_PER_CPU(struct work_struct, flush_works);
5678
5679 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5680 static void flush_backlog(struct work_struct *work)
5681 {
5682 struct sk_buff *skb, *tmp;
5683 struct softnet_data *sd;
5684
5685 local_bh_disable();
5686 sd = this_cpu_ptr(&softnet_data);
5687
5688 local_irq_disable();
5689 rps_lock(sd);
5690 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5691 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5692 __skb_unlink(skb, &sd->input_pkt_queue);
5693 dev_kfree_skb_irq(skb);
5694 input_queue_head_incr(sd);
5695 }
5696 }
5697 rps_unlock(sd);
5698 local_irq_enable();
5699
5700 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5701 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5702 __skb_unlink(skb, &sd->process_queue);
5703 kfree_skb(skb);
5704 input_queue_head_incr(sd);
5705 }
5706 }
5707 local_bh_enable();
5708 }
5709
flush_required(int cpu)5710 static bool flush_required(int cpu)
5711 {
5712 #if IS_ENABLED(CONFIG_RPS)
5713 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5714 bool do_flush;
5715
5716 local_irq_disable();
5717 rps_lock(sd);
5718
5719 /* as insertion into process_queue happens with the rps lock held,
5720 * process_queue access may race only with dequeue
5721 */
5722 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5723 !skb_queue_empty_lockless(&sd->process_queue);
5724 rps_unlock(sd);
5725 local_irq_enable();
5726
5727 return do_flush;
5728 #endif
5729 /* without RPS we can't safely check input_pkt_queue: during a
5730 * concurrent remote skb_queue_splice() we can detect as empty both
5731 * input_pkt_queue and process_queue even if the latter could end-up
5732 * containing a lot of packets.
5733 */
5734 return true;
5735 }
5736
flush_all_backlogs(void)5737 static void flush_all_backlogs(void)
5738 {
5739 static cpumask_t flush_cpus;
5740 unsigned int cpu;
5741
5742 /* since we are under rtnl lock protection we can use static data
5743 * for the cpumask and avoid allocating on stack the possibly
5744 * large mask
5745 */
5746 ASSERT_RTNL();
5747
5748 get_online_cpus();
5749
5750 cpumask_clear(&flush_cpus);
5751 for_each_online_cpu(cpu) {
5752 if (flush_required(cpu)) {
5753 queue_work_on(cpu, system_highpri_wq,
5754 per_cpu_ptr(&flush_works, cpu));
5755 cpumask_set_cpu(cpu, &flush_cpus);
5756 }
5757 }
5758
5759 /* we can have in flight packet[s] on the cpus we are not flushing,
5760 * synchronize_net() in unregister_netdevice_many() will take care of
5761 * them
5762 */
5763 for_each_cpu(cpu, &flush_cpus)
5764 flush_work(per_cpu_ptr(&flush_works, cpu));
5765
5766 put_online_cpus();
5767 }
5768
5769 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5770 static void gro_normal_list(struct napi_struct *napi)
5771 {
5772 if (!napi->rx_count)
5773 return;
5774 netif_receive_skb_list_internal(&napi->rx_list);
5775 INIT_LIST_HEAD(&napi->rx_list);
5776 napi->rx_count = 0;
5777 }
5778
5779 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5780 * pass the whole batch up to the stack.
5781 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5782 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5783 {
5784 list_add_tail(&skb->list, &napi->rx_list);
5785 napi->rx_count += segs;
5786 if (napi->rx_count >= gro_normal_batch)
5787 gro_normal_list(napi);
5788 }
5789
5790 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5791 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5792 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5793 {
5794 struct packet_offload *ptype;
5795 __be16 type = skb->protocol;
5796 struct list_head *head = &offload_base;
5797 int err = -ENOENT;
5798
5799 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5800
5801 if (NAPI_GRO_CB(skb)->count == 1) {
5802 skb_shinfo(skb)->gso_size = 0;
5803 goto out;
5804 }
5805
5806 rcu_read_lock();
5807 list_for_each_entry_rcu(ptype, head, list) {
5808 if (ptype->type != type || !ptype->callbacks.gro_complete)
5809 continue;
5810
5811 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5812 ipv6_gro_complete, inet_gro_complete,
5813 skb, 0);
5814 break;
5815 }
5816 rcu_read_unlock();
5817
5818 if (err) {
5819 WARN_ON(&ptype->list == head);
5820 kfree_skb(skb);
5821 return NET_RX_SUCCESS;
5822 }
5823
5824 out:
5825 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5826 return NET_RX_SUCCESS;
5827 }
5828
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5829 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5830 bool flush_old)
5831 {
5832 struct list_head *head = &napi->gro_hash[index].list;
5833 struct sk_buff *skb, *p;
5834
5835 list_for_each_entry_safe_reverse(skb, p, head, list) {
5836 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5837 return;
5838 skb_list_del_init(skb);
5839 napi_gro_complete(napi, skb);
5840 napi->gro_hash[index].count--;
5841 }
5842
5843 if (!napi->gro_hash[index].count)
5844 __clear_bit(index, &napi->gro_bitmask);
5845 }
5846
5847 /* napi->gro_hash[].list contains packets ordered by age.
5848 * youngest packets at the head of it.
5849 * Complete skbs in reverse order to reduce latencies.
5850 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5851 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5852 {
5853 unsigned long bitmask = napi->gro_bitmask;
5854 unsigned int i, base = ~0U;
5855
5856 while ((i = ffs(bitmask)) != 0) {
5857 bitmask >>= i;
5858 base += i;
5859 __napi_gro_flush_chain(napi, base, flush_old);
5860 }
5861 }
5862 EXPORT_SYMBOL(napi_gro_flush);
5863
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5864 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5865 struct sk_buff *skb)
5866 {
5867 unsigned int maclen = skb->dev->hard_header_len;
5868 u32 hash = skb_get_hash_raw(skb);
5869 struct list_head *head;
5870 struct sk_buff *p;
5871
5872 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5873 list_for_each_entry(p, head, list) {
5874 unsigned long diffs;
5875
5876 NAPI_GRO_CB(p)->flush = 0;
5877
5878 if (hash != skb_get_hash_raw(p)) {
5879 NAPI_GRO_CB(p)->same_flow = 0;
5880 continue;
5881 }
5882
5883 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5884 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5885 if (skb_vlan_tag_present(p))
5886 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5887 diffs |= skb_metadata_dst_cmp(p, skb);
5888 diffs |= skb_metadata_differs(p, skb);
5889 if (maclen == ETH_HLEN)
5890 diffs |= compare_ether_header(skb_mac_header(p),
5891 skb_mac_header(skb));
5892 else if (!diffs)
5893 diffs = memcmp(skb_mac_header(p),
5894 skb_mac_header(skb),
5895 maclen);
5896
5897 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5898 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5899 if (!diffs) {
5900 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5901 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5902
5903 diffs |= (!!p_ext) ^ (!!skb_ext);
5904 if (!diffs && unlikely(skb_ext))
5905 diffs |= p_ext->chain ^ skb_ext->chain;
5906 }
5907 #endif
5908
5909 NAPI_GRO_CB(p)->same_flow = !diffs;
5910 }
5911
5912 return head;
5913 }
5914
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5915 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5916 {
5917 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5918 const skb_frag_t *frag0 = &pinfo->frags[0];
5919
5920 NAPI_GRO_CB(skb)->data_offset = 0;
5921 NAPI_GRO_CB(skb)->frag0 = NULL;
5922 NAPI_GRO_CB(skb)->frag0_len = 0;
5923
5924 if (!skb_headlen(skb) && pinfo->nr_frags &&
5925 !PageHighMem(skb_frag_page(frag0)) &&
5926 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5927 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5928 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5929 skb_frag_size(frag0),
5930 skb->end - skb->tail);
5931 }
5932 }
5933
gro_pull_from_frag0(struct sk_buff * skb,int grow)5934 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5935 {
5936 struct skb_shared_info *pinfo = skb_shinfo(skb);
5937
5938 BUG_ON(skb->end - skb->tail < grow);
5939
5940 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5941
5942 skb->data_len -= grow;
5943 skb->tail += grow;
5944
5945 skb_frag_off_add(&pinfo->frags[0], grow);
5946 skb_frag_size_sub(&pinfo->frags[0], grow);
5947
5948 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5949 skb_frag_unref(skb, 0);
5950 memmove(pinfo->frags, pinfo->frags + 1,
5951 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5952 }
5953 }
5954
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5955 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5956 {
5957 struct sk_buff *oldest;
5958
5959 oldest = list_last_entry(head, struct sk_buff, list);
5960
5961 /* We are called with head length >= MAX_GRO_SKBS, so this is
5962 * impossible.
5963 */
5964 if (WARN_ON_ONCE(!oldest))
5965 return;
5966
5967 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5968 * SKB to the chain.
5969 */
5970 skb_list_del_init(oldest);
5971 napi_gro_complete(napi, oldest);
5972 }
5973
5974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5975 struct sk_buff *));
5976 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5977 struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5978 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5979 {
5980 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5981 struct list_head *head = &offload_base;
5982 struct packet_offload *ptype;
5983 __be16 type = skb->protocol;
5984 struct list_head *gro_head;
5985 struct sk_buff *pp = NULL;
5986 enum gro_result ret;
5987 int same_flow;
5988 int grow;
5989
5990 if (netif_elide_gro(skb->dev))
5991 goto normal;
5992
5993 gro_head = gro_list_prepare(napi, skb);
5994
5995 rcu_read_lock();
5996 list_for_each_entry_rcu(ptype, head, list) {
5997 if (ptype->type != type || !ptype->callbacks.gro_receive)
5998 continue;
5999
6000 skb_set_network_header(skb, skb_gro_offset(skb));
6001 skb_reset_mac_len(skb);
6002 NAPI_GRO_CB(skb)->same_flow = 0;
6003 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6004 NAPI_GRO_CB(skb)->free = 0;
6005 NAPI_GRO_CB(skb)->encap_mark = 0;
6006 NAPI_GRO_CB(skb)->recursion_counter = 0;
6007 NAPI_GRO_CB(skb)->is_fou = 0;
6008 NAPI_GRO_CB(skb)->is_atomic = 1;
6009 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6010
6011 /* Setup for GRO checksum validation */
6012 switch (skb->ip_summed) {
6013 case CHECKSUM_COMPLETE:
6014 NAPI_GRO_CB(skb)->csum = skb->csum;
6015 NAPI_GRO_CB(skb)->csum_valid = 1;
6016 NAPI_GRO_CB(skb)->csum_cnt = 0;
6017 break;
6018 case CHECKSUM_UNNECESSARY:
6019 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6020 NAPI_GRO_CB(skb)->csum_valid = 0;
6021 break;
6022 default:
6023 NAPI_GRO_CB(skb)->csum_cnt = 0;
6024 NAPI_GRO_CB(skb)->csum_valid = 0;
6025 }
6026
6027 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6028 ipv6_gro_receive, inet_gro_receive,
6029 gro_head, skb);
6030 break;
6031 }
6032 rcu_read_unlock();
6033
6034 if (&ptype->list == head)
6035 goto normal;
6036
6037 if (PTR_ERR(pp) == -EINPROGRESS) {
6038 ret = GRO_CONSUMED;
6039 goto ok;
6040 }
6041
6042 same_flow = NAPI_GRO_CB(skb)->same_flow;
6043 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6044
6045 if (pp) {
6046 skb_list_del_init(pp);
6047 napi_gro_complete(napi, pp);
6048 napi->gro_hash[hash].count--;
6049 }
6050
6051 if (same_flow)
6052 goto ok;
6053
6054 if (NAPI_GRO_CB(skb)->flush)
6055 goto normal;
6056
6057 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6058 gro_flush_oldest(napi, gro_head);
6059 } else {
6060 napi->gro_hash[hash].count++;
6061 }
6062 NAPI_GRO_CB(skb)->count = 1;
6063 NAPI_GRO_CB(skb)->age = jiffies;
6064 NAPI_GRO_CB(skb)->last = skb;
6065 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6066 list_add(&skb->list, gro_head);
6067 ret = GRO_HELD;
6068
6069 pull:
6070 grow = skb_gro_offset(skb) - skb_headlen(skb);
6071 if (grow > 0)
6072 gro_pull_from_frag0(skb, grow);
6073 ok:
6074 if (napi->gro_hash[hash].count) {
6075 if (!test_bit(hash, &napi->gro_bitmask))
6076 __set_bit(hash, &napi->gro_bitmask);
6077 } else if (test_bit(hash, &napi->gro_bitmask)) {
6078 __clear_bit(hash, &napi->gro_bitmask);
6079 }
6080
6081 return ret;
6082
6083 normal:
6084 ret = GRO_NORMAL;
6085 goto pull;
6086 }
6087
gro_find_receive_by_type(__be16 type)6088 struct packet_offload *gro_find_receive_by_type(__be16 type)
6089 {
6090 struct list_head *offload_head = &offload_base;
6091 struct packet_offload *ptype;
6092
6093 list_for_each_entry_rcu(ptype, offload_head, list) {
6094 if (ptype->type != type || !ptype->callbacks.gro_receive)
6095 continue;
6096 return ptype;
6097 }
6098 return NULL;
6099 }
6100 EXPORT_SYMBOL(gro_find_receive_by_type);
6101
gro_find_complete_by_type(__be16 type)6102 struct packet_offload *gro_find_complete_by_type(__be16 type)
6103 {
6104 struct list_head *offload_head = &offload_base;
6105 struct packet_offload *ptype;
6106
6107 list_for_each_entry_rcu(ptype, offload_head, list) {
6108 if (ptype->type != type || !ptype->callbacks.gro_complete)
6109 continue;
6110 return ptype;
6111 }
6112 return NULL;
6113 }
6114 EXPORT_SYMBOL(gro_find_complete_by_type);
6115
napi_skb_free_stolen_head(struct sk_buff * skb)6116 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6117 {
6118 nf_reset_ct(skb);
6119 skb_dst_drop(skb);
6120 skb_ext_put(skb);
6121 kmem_cache_free(skbuff_head_cache, skb);
6122 }
6123
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6124 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6125 struct sk_buff *skb,
6126 gro_result_t ret)
6127 {
6128 switch (ret) {
6129 case GRO_NORMAL:
6130 gro_normal_one(napi, skb, 1);
6131 break;
6132
6133 case GRO_DROP:
6134 kfree_skb(skb);
6135 break;
6136
6137 case GRO_MERGED_FREE:
6138 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6139 napi_skb_free_stolen_head(skb);
6140 else
6141 __kfree_skb(skb);
6142 break;
6143
6144 case GRO_HELD:
6145 case GRO_MERGED:
6146 case GRO_CONSUMED:
6147 break;
6148 }
6149
6150 return ret;
6151 }
6152
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6153 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6154 {
6155 gro_result_t ret;
6156
6157 skb_mark_napi_id(skb, napi);
6158 trace_napi_gro_receive_entry(skb);
6159
6160 skb_gro_reset_offset(skb, 0);
6161
6162 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6163 trace_napi_gro_receive_exit(ret);
6164
6165 return ret;
6166 }
6167 EXPORT_SYMBOL(napi_gro_receive);
6168
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6169 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6170 {
6171 if (unlikely(skb->pfmemalloc)) {
6172 consume_skb(skb);
6173 return;
6174 }
6175 __skb_pull(skb, skb_headlen(skb));
6176 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6177 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6178 __vlan_hwaccel_clear_tag(skb);
6179 skb->dev = napi->dev;
6180 skb->skb_iif = 0;
6181
6182 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6183 skb->pkt_type = PACKET_HOST;
6184
6185 skb->encapsulation = 0;
6186 skb_shinfo(skb)->gso_type = 0;
6187 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6188 skb_ext_reset(skb);
6189 nf_reset_ct(skb);
6190
6191 napi->skb = skb;
6192 }
6193
napi_get_frags(struct napi_struct * napi)6194 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6195 {
6196 struct sk_buff *skb = napi->skb;
6197
6198 if (!skb) {
6199 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6200 if (skb) {
6201 napi->skb = skb;
6202 skb_mark_napi_id(skb, napi);
6203 }
6204 }
6205 return skb;
6206 }
6207 EXPORT_SYMBOL(napi_get_frags);
6208
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6209 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6210 struct sk_buff *skb,
6211 gro_result_t ret)
6212 {
6213 switch (ret) {
6214 case GRO_NORMAL:
6215 case GRO_HELD:
6216 __skb_push(skb, ETH_HLEN);
6217 skb->protocol = eth_type_trans(skb, skb->dev);
6218 if (ret == GRO_NORMAL)
6219 gro_normal_one(napi, skb, 1);
6220 break;
6221
6222 case GRO_DROP:
6223 napi_reuse_skb(napi, skb);
6224 break;
6225
6226 case GRO_MERGED_FREE:
6227 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6228 napi_skb_free_stolen_head(skb);
6229 else
6230 napi_reuse_skb(napi, skb);
6231 break;
6232
6233 case GRO_MERGED:
6234 case GRO_CONSUMED:
6235 break;
6236 }
6237
6238 return ret;
6239 }
6240
6241 /* Upper GRO stack assumes network header starts at gro_offset=0
6242 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6243 * We copy ethernet header into skb->data to have a common layout.
6244 */
napi_frags_skb(struct napi_struct * napi)6245 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6246 {
6247 struct sk_buff *skb = napi->skb;
6248 const struct ethhdr *eth;
6249 unsigned int hlen = sizeof(*eth);
6250
6251 napi->skb = NULL;
6252
6253 skb_reset_mac_header(skb);
6254 skb_gro_reset_offset(skb, hlen);
6255
6256 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6257 eth = skb_gro_header_slow(skb, hlen, 0);
6258 if (unlikely(!eth)) {
6259 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6260 __func__, napi->dev->name);
6261 napi_reuse_skb(napi, skb);
6262 return NULL;
6263 }
6264 } else {
6265 eth = (const struct ethhdr *)skb->data;
6266 gro_pull_from_frag0(skb, hlen);
6267 NAPI_GRO_CB(skb)->frag0 += hlen;
6268 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6269 }
6270 __skb_pull(skb, hlen);
6271
6272 /*
6273 * This works because the only protocols we care about don't require
6274 * special handling.
6275 * We'll fix it up properly in napi_frags_finish()
6276 */
6277 skb->protocol = eth->h_proto;
6278
6279 return skb;
6280 }
6281
napi_gro_frags(struct napi_struct * napi)6282 gro_result_t napi_gro_frags(struct napi_struct *napi)
6283 {
6284 gro_result_t ret;
6285 struct sk_buff *skb = napi_frags_skb(napi);
6286
6287 if (!skb)
6288 return GRO_DROP;
6289
6290 trace_napi_gro_frags_entry(skb);
6291
6292 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6293 trace_napi_gro_frags_exit(ret);
6294
6295 return ret;
6296 }
6297 EXPORT_SYMBOL(napi_gro_frags);
6298
6299 /* Compute the checksum from gro_offset and return the folded value
6300 * after adding in any pseudo checksum.
6301 */
__skb_gro_checksum_complete(struct sk_buff * skb)6302 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6303 {
6304 __wsum wsum;
6305 __sum16 sum;
6306
6307 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6308
6309 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6310 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6311 /* See comments in __skb_checksum_complete(). */
6312 if (likely(!sum)) {
6313 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6314 !skb->csum_complete_sw)
6315 netdev_rx_csum_fault(skb->dev, skb);
6316 }
6317
6318 NAPI_GRO_CB(skb)->csum = wsum;
6319 NAPI_GRO_CB(skb)->csum_valid = 1;
6320
6321 return sum;
6322 }
6323 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6324
net_rps_send_ipi(struct softnet_data * remsd)6325 static void net_rps_send_ipi(struct softnet_data *remsd)
6326 {
6327 #ifdef CONFIG_RPS
6328 while (remsd) {
6329 struct softnet_data *next = remsd->rps_ipi_next;
6330
6331 if (cpu_online(remsd->cpu))
6332 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6333 remsd = next;
6334 }
6335 #endif
6336 }
6337
6338 /*
6339 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6340 * Note: called with local irq disabled, but exits with local irq enabled.
6341 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6342 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6343 {
6344 #ifdef CONFIG_RPS
6345 struct softnet_data *remsd = sd->rps_ipi_list;
6346
6347 if (remsd) {
6348 sd->rps_ipi_list = NULL;
6349
6350 local_irq_enable();
6351
6352 /* Send pending IPI's to kick RPS processing on remote cpus. */
6353 net_rps_send_ipi(remsd);
6354 } else
6355 #endif
6356 local_irq_enable();
6357 }
6358
sd_has_rps_ipi_waiting(struct softnet_data * sd)6359 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6360 {
6361 #ifdef CONFIG_RPS
6362 return sd->rps_ipi_list != NULL;
6363 #else
6364 return false;
6365 #endif
6366 }
6367
process_backlog(struct napi_struct * napi,int quota)6368 static int process_backlog(struct napi_struct *napi, int quota)
6369 {
6370 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6371 bool again = true;
6372 int work = 0;
6373
6374 /* Check if we have pending ipi, its better to send them now,
6375 * not waiting net_rx_action() end.
6376 */
6377 if (sd_has_rps_ipi_waiting(sd)) {
6378 local_irq_disable();
6379 net_rps_action_and_irq_enable(sd);
6380 }
6381
6382 napi->weight = READ_ONCE(dev_rx_weight);
6383 while (again) {
6384 struct sk_buff *skb;
6385
6386 while ((skb = __skb_dequeue(&sd->process_queue))) {
6387 rcu_read_lock();
6388 __netif_receive_skb(skb);
6389 rcu_read_unlock();
6390 input_queue_head_incr(sd);
6391 if (++work >= quota)
6392 return work;
6393
6394 }
6395
6396 local_irq_disable();
6397 rps_lock(sd);
6398 if (skb_queue_empty(&sd->input_pkt_queue)) {
6399 /*
6400 * Inline a custom version of __napi_complete().
6401 * only current cpu owns and manipulates this napi,
6402 * and NAPI_STATE_SCHED is the only possible flag set
6403 * on backlog.
6404 * We can use a plain write instead of clear_bit(),
6405 * and we dont need an smp_mb() memory barrier.
6406 */
6407 napi->state = 0;
6408 again = false;
6409 } else {
6410 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6411 &sd->process_queue);
6412 }
6413 rps_unlock(sd);
6414 local_irq_enable();
6415 }
6416
6417 return work;
6418 }
6419
6420 /**
6421 * __napi_schedule - schedule for receive
6422 * @n: entry to schedule
6423 *
6424 * The entry's receive function will be scheduled to run.
6425 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6426 */
__napi_schedule(struct napi_struct * n)6427 void __napi_schedule(struct napi_struct *n)
6428 {
6429 unsigned long flags;
6430
6431 local_irq_save(flags);
6432 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6433 local_irq_restore(flags);
6434 }
6435 EXPORT_SYMBOL(__napi_schedule);
6436
6437 /**
6438 * napi_schedule_prep - check if napi can be scheduled
6439 * @n: napi context
6440 *
6441 * Test if NAPI routine is already running, and if not mark
6442 * it as running. This is used as a condition variable to
6443 * insure only one NAPI poll instance runs. We also make
6444 * sure there is no pending NAPI disable.
6445 */
napi_schedule_prep(struct napi_struct * n)6446 bool napi_schedule_prep(struct napi_struct *n)
6447 {
6448 unsigned long val, new;
6449
6450 do {
6451 val = READ_ONCE(n->state);
6452 if (unlikely(val & NAPIF_STATE_DISABLE))
6453 return false;
6454 new = val | NAPIF_STATE_SCHED;
6455
6456 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6457 * This was suggested by Alexander Duyck, as compiler
6458 * emits better code than :
6459 * if (val & NAPIF_STATE_SCHED)
6460 * new |= NAPIF_STATE_MISSED;
6461 */
6462 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6463 NAPIF_STATE_MISSED;
6464 } while (cmpxchg(&n->state, val, new) != val);
6465
6466 return !(val & NAPIF_STATE_SCHED);
6467 }
6468 EXPORT_SYMBOL(napi_schedule_prep);
6469
6470 /**
6471 * __napi_schedule_irqoff - schedule for receive
6472 * @n: entry to schedule
6473 *
6474 * Variant of __napi_schedule() assuming hard irqs are masked.
6475 *
6476 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6477 * because the interrupt disabled assumption might not be true
6478 * due to force-threaded interrupts and spinlock substitution.
6479 */
__napi_schedule_irqoff(struct napi_struct * n)6480 void __napi_schedule_irqoff(struct napi_struct *n)
6481 {
6482 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6483 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6484 else
6485 __napi_schedule(n);
6486 }
6487 EXPORT_SYMBOL(__napi_schedule_irqoff);
6488
napi_complete_done(struct napi_struct * n,int work_done)6489 bool napi_complete_done(struct napi_struct *n, int work_done)
6490 {
6491 unsigned long flags, val, new, timeout = 0;
6492 bool ret = true;
6493
6494 /*
6495 * 1) Don't let napi dequeue from the cpu poll list
6496 * just in case its running on a different cpu.
6497 * 2) If we are busy polling, do nothing here, we have
6498 * the guarantee we will be called later.
6499 */
6500 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6501 NAPIF_STATE_IN_BUSY_POLL)))
6502 return false;
6503
6504 if (work_done) {
6505 if (n->gro_bitmask)
6506 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6507 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6508 }
6509 if (n->defer_hard_irqs_count > 0) {
6510 n->defer_hard_irqs_count--;
6511 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6512 if (timeout)
6513 ret = false;
6514 }
6515 if (n->gro_bitmask) {
6516 /* When the NAPI instance uses a timeout and keeps postponing
6517 * it, we need to bound somehow the time packets are kept in
6518 * the GRO layer
6519 */
6520 napi_gro_flush(n, !!timeout);
6521 }
6522
6523 gro_normal_list(n);
6524
6525 if (unlikely(!list_empty(&n->poll_list))) {
6526 /* If n->poll_list is not empty, we need to mask irqs */
6527 local_irq_save(flags);
6528 list_del_init(&n->poll_list);
6529 local_irq_restore(flags);
6530 }
6531
6532 do {
6533 val = READ_ONCE(n->state);
6534
6535 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6536
6537 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6538
6539 /* If STATE_MISSED was set, leave STATE_SCHED set,
6540 * because we will call napi->poll() one more time.
6541 * This C code was suggested by Alexander Duyck to help gcc.
6542 */
6543 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6544 NAPIF_STATE_SCHED;
6545 } while (cmpxchg(&n->state, val, new) != val);
6546
6547 if (unlikely(val & NAPIF_STATE_MISSED)) {
6548 __napi_schedule(n);
6549 return false;
6550 }
6551
6552 if (timeout)
6553 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6554 HRTIMER_MODE_REL_PINNED);
6555 return ret;
6556 }
6557 EXPORT_SYMBOL(napi_complete_done);
6558
6559 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6560 static struct napi_struct *napi_by_id(unsigned int napi_id)
6561 {
6562 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6563 struct napi_struct *napi;
6564
6565 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6566 if (napi->napi_id == napi_id)
6567 return napi;
6568
6569 return NULL;
6570 }
6571
6572 #if defined(CONFIG_NET_RX_BUSY_POLL)
6573
6574 #define BUSY_POLL_BUDGET 8
6575
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6576 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6577 {
6578 int rc;
6579
6580 /* Busy polling means there is a high chance device driver hard irq
6581 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6582 * set in napi_schedule_prep().
6583 * Since we are about to call napi->poll() once more, we can safely
6584 * clear NAPI_STATE_MISSED.
6585 *
6586 * Note: x86 could use a single "lock and ..." instruction
6587 * to perform these two clear_bit()
6588 */
6589 clear_bit(NAPI_STATE_MISSED, &napi->state);
6590 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6591
6592 local_bh_disable();
6593
6594 /* All we really want here is to re-enable device interrupts.
6595 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6596 */
6597 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6598 /* We can't gro_normal_list() here, because napi->poll() might have
6599 * rearmed the napi (napi_complete_done()) in which case it could
6600 * already be running on another CPU.
6601 */
6602 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6603 netpoll_poll_unlock(have_poll_lock);
6604 if (rc == BUSY_POLL_BUDGET) {
6605 /* As the whole budget was spent, we still own the napi so can
6606 * safely handle the rx_list.
6607 */
6608 gro_normal_list(napi);
6609 __napi_schedule(napi);
6610 }
6611 local_bh_enable();
6612 }
6613
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6614 void napi_busy_loop(unsigned int napi_id,
6615 bool (*loop_end)(void *, unsigned long),
6616 void *loop_end_arg)
6617 {
6618 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6619 int (*napi_poll)(struct napi_struct *napi, int budget);
6620 void *have_poll_lock = NULL;
6621 struct napi_struct *napi;
6622
6623 restart:
6624 napi_poll = NULL;
6625
6626 rcu_read_lock();
6627
6628 napi = napi_by_id(napi_id);
6629 if (!napi)
6630 goto out;
6631
6632 preempt_disable();
6633 for (;;) {
6634 int work = 0;
6635
6636 local_bh_disable();
6637 if (!napi_poll) {
6638 unsigned long val = READ_ONCE(napi->state);
6639
6640 /* If multiple threads are competing for this napi,
6641 * we avoid dirtying napi->state as much as we can.
6642 */
6643 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6644 NAPIF_STATE_IN_BUSY_POLL))
6645 goto count;
6646 if (cmpxchg(&napi->state, val,
6647 val | NAPIF_STATE_IN_BUSY_POLL |
6648 NAPIF_STATE_SCHED) != val)
6649 goto count;
6650 have_poll_lock = netpoll_poll_lock(napi);
6651 napi_poll = napi->poll;
6652 }
6653 work = napi_poll(napi, BUSY_POLL_BUDGET);
6654 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6655 gro_normal_list(napi);
6656 count:
6657 if (work > 0)
6658 __NET_ADD_STATS(dev_net(napi->dev),
6659 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6660 local_bh_enable();
6661
6662 if (!loop_end || loop_end(loop_end_arg, start_time))
6663 break;
6664
6665 if (unlikely(need_resched())) {
6666 if (napi_poll)
6667 busy_poll_stop(napi, have_poll_lock);
6668 preempt_enable();
6669 rcu_read_unlock();
6670 cond_resched();
6671 if (loop_end(loop_end_arg, start_time))
6672 return;
6673 goto restart;
6674 }
6675 cpu_relax();
6676 }
6677 if (napi_poll)
6678 busy_poll_stop(napi, have_poll_lock);
6679 preempt_enable();
6680 out:
6681 rcu_read_unlock();
6682 }
6683 EXPORT_SYMBOL(napi_busy_loop);
6684
6685 #endif /* CONFIG_NET_RX_BUSY_POLL */
6686
napi_hash_add(struct napi_struct * napi)6687 static void napi_hash_add(struct napi_struct *napi)
6688 {
6689 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6690 return;
6691
6692 spin_lock(&napi_hash_lock);
6693
6694 /* 0..NR_CPUS range is reserved for sender_cpu use */
6695 do {
6696 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6697 napi_gen_id = MIN_NAPI_ID;
6698 } while (napi_by_id(napi_gen_id));
6699 napi->napi_id = napi_gen_id;
6700
6701 hlist_add_head_rcu(&napi->napi_hash_node,
6702 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6703
6704 spin_unlock(&napi_hash_lock);
6705 }
6706
6707 /* Warning : caller is responsible to make sure rcu grace period
6708 * is respected before freeing memory containing @napi
6709 */
napi_hash_del(struct napi_struct * napi)6710 static void napi_hash_del(struct napi_struct *napi)
6711 {
6712 spin_lock(&napi_hash_lock);
6713
6714 hlist_del_init_rcu(&napi->napi_hash_node);
6715
6716 spin_unlock(&napi_hash_lock);
6717 }
6718
napi_watchdog(struct hrtimer * timer)6719 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6720 {
6721 struct napi_struct *napi;
6722
6723 napi = container_of(timer, struct napi_struct, timer);
6724
6725 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6726 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6727 */
6728 if (!napi_disable_pending(napi) &&
6729 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6730 __napi_schedule_irqoff(napi);
6731
6732 return HRTIMER_NORESTART;
6733 }
6734
init_gro_hash(struct napi_struct * napi)6735 static void init_gro_hash(struct napi_struct *napi)
6736 {
6737 int i;
6738
6739 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6740 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6741 napi->gro_hash[i].count = 0;
6742 }
6743 napi->gro_bitmask = 0;
6744 }
6745
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6746 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6747 int (*poll)(struct napi_struct *, int), int weight)
6748 {
6749 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6750 return;
6751
6752 INIT_LIST_HEAD(&napi->poll_list);
6753 INIT_HLIST_NODE(&napi->napi_hash_node);
6754 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6755 napi->timer.function = napi_watchdog;
6756 init_gro_hash(napi);
6757 napi->skb = NULL;
6758 INIT_LIST_HEAD(&napi->rx_list);
6759 napi->rx_count = 0;
6760 napi->poll = poll;
6761 if (weight > NAPI_POLL_WEIGHT)
6762 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6763 weight);
6764 napi->weight = weight;
6765 napi->dev = dev;
6766 #ifdef CONFIG_NETPOLL
6767 napi->poll_owner = -1;
6768 #endif
6769 set_bit(NAPI_STATE_SCHED, &napi->state);
6770 set_bit(NAPI_STATE_NPSVC, &napi->state);
6771 list_add_rcu(&napi->dev_list, &dev->napi_list);
6772 napi_hash_add(napi);
6773 }
6774 EXPORT_SYMBOL(netif_napi_add);
6775
napi_disable(struct napi_struct * n)6776 void napi_disable(struct napi_struct *n)
6777 {
6778 might_sleep();
6779 set_bit(NAPI_STATE_DISABLE, &n->state);
6780
6781 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6782 msleep(1);
6783 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6784 msleep(1);
6785
6786 hrtimer_cancel(&n->timer);
6787
6788 clear_bit(NAPI_STATE_DISABLE, &n->state);
6789 }
6790 EXPORT_SYMBOL(napi_disable);
6791
flush_gro_hash(struct napi_struct * napi)6792 static void flush_gro_hash(struct napi_struct *napi)
6793 {
6794 int i;
6795
6796 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6797 struct sk_buff *skb, *n;
6798
6799 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6800 kfree_skb(skb);
6801 napi->gro_hash[i].count = 0;
6802 }
6803 }
6804
6805 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6806 void __netif_napi_del(struct napi_struct *napi)
6807 {
6808 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6809 return;
6810
6811 napi_hash_del(napi);
6812 list_del_rcu(&napi->dev_list);
6813 napi_free_frags(napi);
6814
6815 flush_gro_hash(napi);
6816 napi->gro_bitmask = 0;
6817 }
6818 EXPORT_SYMBOL(__netif_napi_del);
6819
napi_poll(struct napi_struct * n,struct list_head * repoll)6820 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6821 {
6822 void *have;
6823 int work, weight;
6824
6825 list_del_init(&n->poll_list);
6826
6827 have = netpoll_poll_lock(n);
6828
6829 weight = n->weight;
6830
6831 /* This NAPI_STATE_SCHED test is for avoiding a race
6832 * with netpoll's poll_napi(). Only the entity which
6833 * obtains the lock and sees NAPI_STATE_SCHED set will
6834 * actually make the ->poll() call. Therefore we avoid
6835 * accidentally calling ->poll() when NAPI is not scheduled.
6836 */
6837 work = 0;
6838 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6839 work = n->poll(n, weight);
6840 trace_napi_poll(n, work, weight);
6841 }
6842
6843 if (unlikely(work > weight))
6844 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6845 n->poll, work, weight);
6846
6847 if (likely(work < weight))
6848 goto out_unlock;
6849
6850 /* Drivers must not modify the NAPI state if they
6851 * consume the entire weight. In such cases this code
6852 * still "owns" the NAPI instance and therefore can
6853 * move the instance around on the list at-will.
6854 */
6855 if (unlikely(napi_disable_pending(n))) {
6856 napi_complete(n);
6857 goto out_unlock;
6858 }
6859
6860 if (n->gro_bitmask) {
6861 /* flush too old packets
6862 * If HZ < 1000, flush all packets.
6863 */
6864 napi_gro_flush(n, HZ >= 1000);
6865 }
6866
6867 gro_normal_list(n);
6868
6869 /* Some drivers may have called napi_schedule
6870 * prior to exhausting their budget.
6871 */
6872 if (unlikely(!list_empty(&n->poll_list))) {
6873 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6874 n->dev ? n->dev->name : "backlog");
6875 goto out_unlock;
6876 }
6877
6878 list_add_tail(&n->poll_list, repoll);
6879
6880 out_unlock:
6881 netpoll_poll_unlock(have);
6882
6883 return work;
6884 }
6885
net_rx_action(struct softirq_action * h)6886 static __latent_entropy void net_rx_action(struct softirq_action *h)
6887 {
6888 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6889 unsigned long time_limit = jiffies +
6890 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6891 int budget = READ_ONCE(netdev_budget);
6892 LIST_HEAD(list);
6893 LIST_HEAD(repoll);
6894
6895 local_irq_disable();
6896 list_splice_init(&sd->poll_list, &list);
6897 local_irq_enable();
6898
6899 for (;;) {
6900 struct napi_struct *n;
6901
6902 if (list_empty(&list)) {
6903 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6904 goto out;
6905 break;
6906 }
6907
6908 n = list_first_entry(&list, struct napi_struct, poll_list);
6909 budget -= napi_poll(n, &repoll);
6910
6911 /* If softirq window is exhausted then punt.
6912 * Allow this to run for 2 jiffies since which will allow
6913 * an average latency of 1.5/HZ.
6914 */
6915 if (unlikely(budget <= 0 ||
6916 time_after_eq(jiffies, time_limit))) {
6917 sd->time_squeeze++;
6918 break;
6919 }
6920 }
6921
6922 local_irq_disable();
6923
6924 list_splice_tail_init(&sd->poll_list, &list);
6925 list_splice_tail(&repoll, &list);
6926 list_splice(&list, &sd->poll_list);
6927 if (!list_empty(&sd->poll_list))
6928 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6929
6930 net_rps_action_and_irq_enable(sd);
6931 out:
6932 __kfree_skb_flush();
6933 }
6934
6935 struct netdev_adjacent {
6936 struct net_device *dev;
6937
6938 /* upper master flag, there can only be one master device per list */
6939 bool master;
6940
6941 /* lookup ignore flag */
6942 bool ignore;
6943
6944 /* counter for the number of times this device was added to us */
6945 u16 ref_nr;
6946
6947 /* private field for the users */
6948 void *private;
6949
6950 struct list_head list;
6951 struct rcu_head rcu;
6952 };
6953
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6954 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6955 struct list_head *adj_list)
6956 {
6957 struct netdev_adjacent *adj;
6958
6959 list_for_each_entry(adj, adj_list, list) {
6960 if (adj->dev == adj_dev)
6961 return adj;
6962 }
6963 return NULL;
6964 }
6965
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6966 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6967 struct netdev_nested_priv *priv)
6968 {
6969 struct net_device *dev = (struct net_device *)priv->data;
6970
6971 return upper_dev == dev;
6972 }
6973
6974 /**
6975 * netdev_has_upper_dev - Check if device is linked to an upper device
6976 * @dev: device
6977 * @upper_dev: upper device to check
6978 *
6979 * Find out if a device is linked to specified upper device and return true
6980 * in case it is. Note that this checks only immediate upper device,
6981 * not through a complete stack of devices. The caller must hold the RTNL lock.
6982 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6983 bool netdev_has_upper_dev(struct net_device *dev,
6984 struct net_device *upper_dev)
6985 {
6986 struct netdev_nested_priv priv = {
6987 .data = (void *)upper_dev,
6988 };
6989
6990 ASSERT_RTNL();
6991
6992 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6993 &priv);
6994 }
6995 EXPORT_SYMBOL(netdev_has_upper_dev);
6996
6997 /**
6998 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6999 * @dev: device
7000 * @upper_dev: upper device to check
7001 *
7002 * Find out if a device is linked to specified upper device and return true
7003 * in case it is. Note that this checks the entire upper device chain.
7004 * The caller must hold rcu lock.
7005 */
7006
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7007 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7008 struct net_device *upper_dev)
7009 {
7010 struct netdev_nested_priv priv = {
7011 .data = (void *)upper_dev,
7012 };
7013
7014 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7015 &priv);
7016 }
7017 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7018
7019 /**
7020 * netdev_has_any_upper_dev - Check if device is linked to some device
7021 * @dev: device
7022 *
7023 * Find out if a device is linked to an upper device and return true in case
7024 * it is. The caller must hold the RTNL lock.
7025 */
netdev_has_any_upper_dev(struct net_device * dev)7026 bool netdev_has_any_upper_dev(struct net_device *dev)
7027 {
7028 ASSERT_RTNL();
7029
7030 return !list_empty(&dev->adj_list.upper);
7031 }
7032 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7033
7034 /**
7035 * netdev_master_upper_dev_get - Get master upper device
7036 * @dev: device
7037 *
7038 * Find a master upper device and return pointer to it or NULL in case
7039 * it's not there. The caller must hold the RTNL lock.
7040 */
netdev_master_upper_dev_get(struct net_device * dev)7041 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7042 {
7043 struct netdev_adjacent *upper;
7044
7045 ASSERT_RTNL();
7046
7047 if (list_empty(&dev->adj_list.upper))
7048 return NULL;
7049
7050 upper = list_first_entry(&dev->adj_list.upper,
7051 struct netdev_adjacent, list);
7052 if (likely(upper->master))
7053 return upper->dev;
7054 return NULL;
7055 }
7056 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7057
__netdev_master_upper_dev_get(struct net_device * dev)7058 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7059 {
7060 struct netdev_adjacent *upper;
7061
7062 ASSERT_RTNL();
7063
7064 if (list_empty(&dev->adj_list.upper))
7065 return NULL;
7066
7067 upper = list_first_entry(&dev->adj_list.upper,
7068 struct netdev_adjacent, list);
7069 if (likely(upper->master) && !upper->ignore)
7070 return upper->dev;
7071 return NULL;
7072 }
7073
7074 /**
7075 * netdev_has_any_lower_dev - Check if device is linked to some device
7076 * @dev: device
7077 *
7078 * Find out if a device is linked to a lower device and return true in case
7079 * it is. The caller must hold the RTNL lock.
7080 */
netdev_has_any_lower_dev(struct net_device * dev)7081 static bool netdev_has_any_lower_dev(struct net_device *dev)
7082 {
7083 ASSERT_RTNL();
7084
7085 return !list_empty(&dev->adj_list.lower);
7086 }
7087
netdev_adjacent_get_private(struct list_head * adj_list)7088 void *netdev_adjacent_get_private(struct list_head *adj_list)
7089 {
7090 struct netdev_adjacent *adj;
7091
7092 adj = list_entry(adj_list, struct netdev_adjacent, list);
7093
7094 return adj->private;
7095 }
7096 EXPORT_SYMBOL(netdev_adjacent_get_private);
7097
7098 /**
7099 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7100 * @dev: device
7101 * @iter: list_head ** of the current position
7102 *
7103 * Gets the next device from the dev's upper list, starting from iter
7104 * position. The caller must hold RCU read lock.
7105 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7106 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7107 struct list_head **iter)
7108 {
7109 struct netdev_adjacent *upper;
7110
7111 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7112
7113 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7114
7115 if (&upper->list == &dev->adj_list.upper)
7116 return NULL;
7117
7118 *iter = &upper->list;
7119
7120 return upper->dev;
7121 }
7122 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7123
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7124 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7125 struct list_head **iter,
7126 bool *ignore)
7127 {
7128 struct netdev_adjacent *upper;
7129
7130 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7131
7132 if (&upper->list == &dev->adj_list.upper)
7133 return NULL;
7134
7135 *iter = &upper->list;
7136 *ignore = upper->ignore;
7137
7138 return upper->dev;
7139 }
7140
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7141 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7142 struct list_head **iter)
7143 {
7144 struct netdev_adjacent *upper;
7145
7146 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7147
7148 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7149
7150 if (&upper->list == &dev->adj_list.upper)
7151 return NULL;
7152
7153 *iter = &upper->list;
7154
7155 return upper->dev;
7156 }
7157
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7158 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7159 int (*fn)(struct net_device *dev,
7160 struct netdev_nested_priv *priv),
7161 struct netdev_nested_priv *priv)
7162 {
7163 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7164 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7165 int ret, cur = 0;
7166 bool ignore;
7167
7168 now = dev;
7169 iter = &dev->adj_list.upper;
7170
7171 while (1) {
7172 if (now != dev) {
7173 ret = fn(now, priv);
7174 if (ret)
7175 return ret;
7176 }
7177
7178 next = NULL;
7179 while (1) {
7180 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7181 if (!udev)
7182 break;
7183 if (ignore)
7184 continue;
7185
7186 next = udev;
7187 niter = &udev->adj_list.upper;
7188 dev_stack[cur] = now;
7189 iter_stack[cur++] = iter;
7190 break;
7191 }
7192
7193 if (!next) {
7194 if (!cur)
7195 return 0;
7196 next = dev_stack[--cur];
7197 niter = iter_stack[cur];
7198 }
7199
7200 now = next;
7201 iter = niter;
7202 }
7203
7204 return 0;
7205 }
7206
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7207 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7208 int (*fn)(struct net_device *dev,
7209 struct netdev_nested_priv *priv),
7210 struct netdev_nested_priv *priv)
7211 {
7212 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7213 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7214 int ret, cur = 0;
7215
7216 now = dev;
7217 iter = &dev->adj_list.upper;
7218
7219 while (1) {
7220 if (now != dev) {
7221 ret = fn(now, priv);
7222 if (ret)
7223 return ret;
7224 }
7225
7226 next = NULL;
7227 while (1) {
7228 udev = netdev_next_upper_dev_rcu(now, &iter);
7229 if (!udev)
7230 break;
7231
7232 next = udev;
7233 niter = &udev->adj_list.upper;
7234 dev_stack[cur] = now;
7235 iter_stack[cur++] = iter;
7236 break;
7237 }
7238
7239 if (!next) {
7240 if (!cur)
7241 return 0;
7242 next = dev_stack[--cur];
7243 niter = iter_stack[cur];
7244 }
7245
7246 now = next;
7247 iter = niter;
7248 }
7249
7250 return 0;
7251 }
7252 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7253
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7254 static bool __netdev_has_upper_dev(struct net_device *dev,
7255 struct net_device *upper_dev)
7256 {
7257 struct netdev_nested_priv priv = {
7258 .flags = 0,
7259 .data = (void *)upper_dev,
7260 };
7261
7262 ASSERT_RTNL();
7263
7264 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7265 &priv);
7266 }
7267
7268 /**
7269 * netdev_lower_get_next_private - Get the next ->private from the
7270 * lower neighbour list
7271 * @dev: device
7272 * @iter: list_head ** of the current position
7273 *
7274 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7275 * list, starting from iter position. The caller must hold either hold the
7276 * RTNL lock or its own locking that guarantees that the neighbour lower
7277 * list will remain unchanged.
7278 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7279 void *netdev_lower_get_next_private(struct net_device *dev,
7280 struct list_head **iter)
7281 {
7282 struct netdev_adjacent *lower;
7283
7284 lower = list_entry(*iter, struct netdev_adjacent, list);
7285
7286 if (&lower->list == &dev->adj_list.lower)
7287 return NULL;
7288
7289 *iter = lower->list.next;
7290
7291 return lower->private;
7292 }
7293 EXPORT_SYMBOL(netdev_lower_get_next_private);
7294
7295 /**
7296 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7297 * lower neighbour list, RCU
7298 * variant
7299 * @dev: device
7300 * @iter: list_head ** of the current position
7301 *
7302 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7303 * list, starting from iter position. The caller must hold RCU read lock.
7304 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7305 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7306 struct list_head **iter)
7307 {
7308 struct netdev_adjacent *lower;
7309
7310 WARN_ON_ONCE(!rcu_read_lock_held());
7311
7312 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7313
7314 if (&lower->list == &dev->adj_list.lower)
7315 return NULL;
7316
7317 *iter = &lower->list;
7318
7319 return lower->private;
7320 }
7321 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7322
7323 /**
7324 * netdev_lower_get_next - Get the next device from the lower neighbour
7325 * list
7326 * @dev: device
7327 * @iter: list_head ** of the current position
7328 *
7329 * Gets the next netdev_adjacent from the dev's lower neighbour
7330 * list, starting from iter position. The caller must hold RTNL lock or
7331 * its own locking that guarantees that the neighbour lower
7332 * list will remain unchanged.
7333 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7334 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7335 {
7336 struct netdev_adjacent *lower;
7337
7338 lower = list_entry(*iter, struct netdev_adjacent, list);
7339
7340 if (&lower->list == &dev->adj_list.lower)
7341 return NULL;
7342
7343 *iter = lower->list.next;
7344
7345 return lower->dev;
7346 }
7347 EXPORT_SYMBOL(netdev_lower_get_next);
7348
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7349 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7350 struct list_head **iter)
7351 {
7352 struct netdev_adjacent *lower;
7353
7354 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7355
7356 if (&lower->list == &dev->adj_list.lower)
7357 return NULL;
7358
7359 *iter = &lower->list;
7360
7361 return lower->dev;
7362 }
7363
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7364 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7365 struct list_head **iter,
7366 bool *ignore)
7367 {
7368 struct netdev_adjacent *lower;
7369
7370 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7371
7372 if (&lower->list == &dev->adj_list.lower)
7373 return NULL;
7374
7375 *iter = &lower->list;
7376 *ignore = lower->ignore;
7377
7378 return lower->dev;
7379 }
7380
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7381 int netdev_walk_all_lower_dev(struct net_device *dev,
7382 int (*fn)(struct net_device *dev,
7383 struct netdev_nested_priv *priv),
7384 struct netdev_nested_priv *priv)
7385 {
7386 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7387 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7388 int ret, cur = 0;
7389
7390 now = dev;
7391 iter = &dev->adj_list.lower;
7392
7393 while (1) {
7394 if (now != dev) {
7395 ret = fn(now, priv);
7396 if (ret)
7397 return ret;
7398 }
7399
7400 next = NULL;
7401 while (1) {
7402 ldev = netdev_next_lower_dev(now, &iter);
7403 if (!ldev)
7404 break;
7405
7406 next = ldev;
7407 niter = &ldev->adj_list.lower;
7408 dev_stack[cur] = now;
7409 iter_stack[cur++] = iter;
7410 break;
7411 }
7412
7413 if (!next) {
7414 if (!cur)
7415 return 0;
7416 next = dev_stack[--cur];
7417 niter = iter_stack[cur];
7418 }
7419
7420 now = next;
7421 iter = niter;
7422 }
7423
7424 return 0;
7425 }
7426 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7427
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7428 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7429 int (*fn)(struct net_device *dev,
7430 struct netdev_nested_priv *priv),
7431 struct netdev_nested_priv *priv)
7432 {
7433 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7434 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7435 int ret, cur = 0;
7436 bool ignore;
7437
7438 now = dev;
7439 iter = &dev->adj_list.lower;
7440
7441 while (1) {
7442 if (now != dev) {
7443 ret = fn(now, priv);
7444 if (ret)
7445 return ret;
7446 }
7447
7448 next = NULL;
7449 while (1) {
7450 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7451 if (!ldev)
7452 break;
7453 if (ignore)
7454 continue;
7455
7456 next = ldev;
7457 niter = &ldev->adj_list.lower;
7458 dev_stack[cur] = now;
7459 iter_stack[cur++] = iter;
7460 break;
7461 }
7462
7463 if (!next) {
7464 if (!cur)
7465 return 0;
7466 next = dev_stack[--cur];
7467 niter = iter_stack[cur];
7468 }
7469
7470 now = next;
7471 iter = niter;
7472 }
7473
7474 return 0;
7475 }
7476
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7477 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7478 struct list_head **iter)
7479 {
7480 struct netdev_adjacent *lower;
7481
7482 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7483 if (&lower->list == &dev->adj_list.lower)
7484 return NULL;
7485
7486 *iter = &lower->list;
7487
7488 return lower->dev;
7489 }
7490 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7491
__netdev_upper_depth(struct net_device * dev)7492 static u8 __netdev_upper_depth(struct net_device *dev)
7493 {
7494 struct net_device *udev;
7495 struct list_head *iter;
7496 u8 max_depth = 0;
7497 bool ignore;
7498
7499 for (iter = &dev->adj_list.upper,
7500 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7501 udev;
7502 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7503 if (ignore)
7504 continue;
7505 if (max_depth < udev->upper_level)
7506 max_depth = udev->upper_level;
7507 }
7508
7509 return max_depth;
7510 }
7511
__netdev_lower_depth(struct net_device * dev)7512 static u8 __netdev_lower_depth(struct net_device *dev)
7513 {
7514 struct net_device *ldev;
7515 struct list_head *iter;
7516 u8 max_depth = 0;
7517 bool ignore;
7518
7519 for (iter = &dev->adj_list.lower,
7520 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7521 ldev;
7522 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7523 if (ignore)
7524 continue;
7525 if (max_depth < ldev->lower_level)
7526 max_depth = ldev->lower_level;
7527 }
7528
7529 return max_depth;
7530 }
7531
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7532 static int __netdev_update_upper_level(struct net_device *dev,
7533 struct netdev_nested_priv *__unused)
7534 {
7535 dev->upper_level = __netdev_upper_depth(dev) + 1;
7536 return 0;
7537 }
7538
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7539 static int __netdev_update_lower_level(struct net_device *dev,
7540 struct netdev_nested_priv *priv)
7541 {
7542 dev->lower_level = __netdev_lower_depth(dev) + 1;
7543
7544 #ifdef CONFIG_LOCKDEP
7545 if (!priv)
7546 return 0;
7547
7548 if (priv->flags & NESTED_SYNC_IMM)
7549 dev->nested_level = dev->lower_level - 1;
7550 if (priv->flags & NESTED_SYNC_TODO)
7551 net_unlink_todo(dev);
7552 #endif
7553 return 0;
7554 }
7555
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7556 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7557 int (*fn)(struct net_device *dev,
7558 struct netdev_nested_priv *priv),
7559 struct netdev_nested_priv *priv)
7560 {
7561 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7562 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7563 int ret, cur = 0;
7564
7565 now = dev;
7566 iter = &dev->adj_list.lower;
7567
7568 while (1) {
7569 if (now != dev) {
7570 ret = fn(now, priv);
7571 if (ret)
7572 return ret;
7573 }
7574
7575 next = NULL;
7576 while (1) {
7577 ldev = netdev_next_lower_dev_rcu(now, &iter);
7578 if (!ldev)
7579 break;
7580
7581 next = ldev;
7582 niter = &ldev->adj_list.lower;
7583 dev_stack[cur] = now;
7584 iter_stack[cur++] = iter;
7585 break;
7586 }
7587
7588 if (!next) {
7589 if (!cur)
7590 return 0;
7591 next = dev_stack[--cur];
7592 niter = iter_stack[cur];
7593 }
7594
7595 now = next;
7596 iter = niter;
7597 }
7598
7599 return 0;
7600 }
7601 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7602
7603 /**
7604 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7605 * lower neighbour list, RCU
7606 * variant
7607 * @dev: device
7608 *
7609 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7610 * list. The caller must hold RCU read lock.
7611 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7612 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7613 {
7614 struct netdev_adjacent *lower;
7615
7616 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7617 struct netdev_adjacent, list);
7618 if (lower)
7619 return lower->private;
7620 return NULL;
7621 }
7622 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7623
7624 /**
7625 * netdev_master_upper_dev_get_rcu - Get master upper device
7626 * @dev: device
7627 *
7628 * Find a master upper device and return pointer to it or NULL in case
7629 * it's not there. The caller must hold the RCU read lock.
7630 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7631 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7632 {
7633 struct netdev_adjacent *upper;
7634
7635 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7636 struct netdev_adjacent, list);
7637 if (upper && likely(upper->master))
7638 return upper->dev;
7639 return NULL;
7640 }
7641 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7642
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7643 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7644 struct net_device *adj_dev,
7645 struct list_head *dev_list)
7646 {
7647 char linkname[IFNAMSIZ+7];
7648
7649 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7650 "upper_%s" : "lower_%s", adj_dev->name);
7651 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7652 linkname);
7653 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7654 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7655 char *name,
7656 struct list_head *dev_list)
7657 {
7658 char linkname[IFNAMSIZ+7];
7659
7660 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7661 "upper_%s" : "lower_%s", name);
7662 sysfs_remove_link(&(dev->dev.kobj), linkname);
7663 }
7664
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7665 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7666 struct net_device *adj_dev,
7667 struct list_head *dev_list)
7668 {
7669 return (dev_list == &dev->adj_list.upper ||
7670 dev_list == &dev->adj_list.lower) &&
7671 net_eq(dev_net(dev), dev_net(adj_dev));
7672 }
7673
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7674 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7675 struct net_device *adj_dev,
7676 struct list_head *dev_list,
7677 void *private, bool master)
7678 {
7679 struct netdev_adjacent *adj;
7680 int ret;
7681
7682 adj = __netdev_find_adj(adj_dev, dev_list);
7683
7684 if (adj) {
7685 adj->ref_nr += 1;
7686 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7687 dev->name, adj_dev->name, adj->ref_nr);
7688
7689 return 0;
7690 }
7691
7692 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7693 if (!adj)
7694 return -ENOMEM;
7695
7696 adj->dev = adj_dev;
7697 adj->master = master;
7698 adj->ref_nr = 1;
7699 adj->private = private;
7700 adj->ignore = false;
7701 dev_hold(adj_dev);
7702
7703 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7704 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7705
7706 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7707 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7708 if (ret)
7709 goto free_adj;
7710 }
7711
7712 /* Ensure that master link is always the first item in list. */
7713 if (master) {
7714 ret = sysfs_create_link(&(dev->dev.kobj),
7715 &(adj_dev->dev.kobj), "master");
7716 if (ret)
7717 goto remove_symlinks;
7718
7719 list_add_rcu(&adj->list, dev_list);
7720 } else {
7721 list_add_tail_rcu(&adj->list, dev_list);
7722 }
7723
7724 return 0;
7725
7726 remove_symlinks:
7727 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7728 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7729 free_adj:
7730 kfree(adj);
7731 dev_put(adj_dev);
7732
7733 return ret;
7734 }
7735
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7736 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7737 struct net_device *adj_dev,
7738 u16 ref_nr,
7739 struct list_head *dev_list)
7740 {
7741 struct netdev_adjacent *adj;
7742
7743 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7744 dev->name, adj_dev->name, ref_nr);
7745
7746 adj = __netdev_find_adj(adj_dev, dev_list);
7747
7748 if (!adj) {
7749 pr_err("Adjacency does not exist for device %s from %s\n",
7750 dev->name, adj_dev->name);
7751 WARN_ON(1);
7752 return;
7753 }
7754
7755 if (adj->ref_nr > ref_nr) {
7756 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7757 dev->name, adj_dev->name, ref_nr,
7758 adj->ref_nr - ref_nr);
7759 adj->ref_nr -= ref_nr;
7760 return;
7761 }
7762
7763 if (adj->master)
7764 sysfs_remove_link(&(dev->dev.kobj), "master");
7765
7766 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7767 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7768
7769 list_del_rcu(&adj->list);
7770 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7771 adj_dev->name, dev->name, adj_dev->name);
7772 dev_put(adj_dev);
7773 kfree_rcu(adj, rcu);
7774 }
7775
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7776 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7777 struct net_device *upper_dev,
7778 struct list_head *up_list,
7779 struct list_head *down_list,
7780 void *private, bool master)
7781 {
7782 int ret;
7783
7784 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7785 private, master);
7786 if (ret)
7787 return ret;
7788
7789 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7790 private, false);
7791 if (ret) {
7792 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7793 return ret;
7794 }
7795
7796 return 0;
7797 }
7798
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7799 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7800 struct net_device *upper_dev,
7801 u16 ref_nr,
7802 struct list_head *up_list,
7803 struct list_head *down_list)
7804 {
7805 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7806 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7807 }
7808
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7809 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7810 struct net_device *upper_dev,
7811 void *private, bool master)
7812 {
7813 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7814 &dev->adj_list.upper,
7815 &upper_dev->adj_list.lower,
7816 private, master);
7817 }
7818
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7819 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7820 struct net_device *upper_dev)
7821 {
7822 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7823 &dev->adj_list.upper,
7824 &upper_dev->adj_list.lower);
7825 }
7826
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7827 static int __netdev_upper_dev_link(struct net_device *dev,
7828 struct net_device *upper_dev, bool master,
7829 void *upper_priv, void *upper_info,
7830 struct netdev_nested_priv *priv,
7831 struct netlink_ext_ack *extack)
7832 {
7833 struct netdev_notifier_changeupper_info changeupper_info = {
7834 .info = {
7835 .dev = dev,
7836 .extack = extack,
7837 },
7838 .upper_dev = upper_dev,
7839 .master = master,
7840 .linking = true,
7841 .upper_info = upper_info,
7842 };
7843 struct net_device *master_dev;
7844 int ret = 0;
7845
7846 ASSERT_RTNL();
7847
7848 if (dev == upper_dev)
7849 return -EBUSY;
7850
7851 /* To prevent loops, check if dev is not upper device to upper_dev. */
7852 if (__netdev_has_upper_dev(upper_dev, dev))
7853 return -EBUSY;
7854
7855 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7856 return -EMLINK;
7857
7858 if (!master) {
7859 if (__netdev_has_upper_dev(dev, upper_dev))
7860 return -EEXIST;
7861 } else {
7862 master_dev = __netdev_master_upper_dev_get(dev);
7863 if (master_dev)
7864 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7865 }
7866
7867 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7868 &changeupper_info.info);
7869 ret = notifier_to_errno(ret);
7870 if (ret)
7871 return ret;
7872
7873 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7874 master);
7875 if (ret)
7876 return ret;
7877
7878 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7879 &changeupper_info.info);
7880 ret = notifier_to_errno(ret);
7881 if (ret)
7882 goto rollback;
7883
7884 __netdev_update_upper_level(dev, NULL);
7885 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7886
7887 __netdev_update_lower_level(upper_dev, priv);
7888 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7889 priv);
7890
7891 return 0;
7892
7893 rollback:
7894 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7895
7896 return ret;
7897 }
7898
7899 /**
7900 * netdev_upper_dev_link - Add a link to the upper device
7901 * @dev: device
7902 * @upper_dev: new upper device
7903 * @extack: netlink extended ack
7904 *
7905 * Adds a link to device which is upper to this one. The caller must hold
7906 * the RTNL lock. On a failure a negative errno code is returned.
7907 * On success the reference counts are adjusted and the function
7908 * returns zero.
7909 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7910 int netdev_upper_dev_link(struct net_device *dev,
7911 struct net_device *upper_dev,
7912 struct netlink_ext_ack *extack)
7913 {
7914 struct netdev_nested_priv priv = {
7915 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7916 .data = NULL,
7917 };
7918
7919 return __netdev_upper_dev_link(dev, upper_dev, false,
7920 NULL, NULL, &priv, extack);
7921 }
7922 EXPORT_SYMBOL(netdev_upper_dev_link);
7923
7924 /**
7925 * netdev_master_upper_dev_link - Add a master link to the upper device
7926 * @dev: device
7927 * @upper_dev: new upper device
7928 * @upper_priv: upper device private
7929 * @upper_info: upper info to be passed down via notifier
7930 * @extack: netlink extended ack
7931 *
7932 * Adds a link to device which is upper to this one. In this case, only
7933 * one master upper device can be linked, although other non-master devices
7934 * might be linked as well. The caller must hold the RTNL lock.
7935 * On a failure a negative errno code is returned. On success the reference
7936 * counts are adjusted and the function returns zero.
7937 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7938 int netdev_master_upper_dev_link(struct net_device *dev,
7939 struct net_device *upper_dev,
7940 void *upper_priv, void *upper_info,
7941 struct netlink_ext_ack *extack)
7942 {
7943 struct netdev_nested_priv priv = {
7944 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7945 .data = NULL,
7946 };
7947
7948 return __netdev_upper_dev_link(dev, upper_dev, true,
7949 upper_priv, upper_info, &priv, extack);
7950 }
7951 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7952
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7953 static void __netdev_upper_dev_unlink(struct net_device *dev,
7954 struct net_device *upper_dev,
7955 struct netdev_nested_priv *priv)
7956 {
7957 struct netdev_notifier_changeupper_info changeupper_info = {
7958 .info = {
7959 .dev = dev,
7960 },
7961 .upper_dev = upper_dev,
7962 .linking = false,
7963 };
7964
7965 ASSERT_RTNL();
7966
7967 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7968
7969 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7970 &changeupper_info.info);
7971
7972 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7973
7974 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7975 &changeupper_info.info);
7976
7977 __netdev_update_upper_level(dev, NULL);
7978 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7979
7980 __netdev_update_lower_level(upper_dev, priv);
7981 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7982 priv);
7983 }
7984
7985 /**
7986 * netdev_upper_dev_unlink - Removes a link to upper device
7987 * @dev: device
7988 * @upper_dev: new upper device
7989 *
7990 * Removes a link to device which is upper to this one. The caller must hold
7991 * the RTNL lock.
7992 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7993 void netdev_upper_dev_unlink(struct net_device *dev,
7994 struct net_device *upper_dev)
7995 {
7996 struct netdev_nested_priv priv = {
7997 .flags = NESTED_SYNC_TODO,
7998 .data = NULL,
7999 };
8000
8001 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8002 }
8003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8004
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8005 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8006 struct net_device *lower_dev,
8007 bool val)
8008 {
8009 struct netdev_adjacent *adj;
8010
8011 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8012 if (adj)
8013 adj->ignore = val;
8014
8015 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8016 if (adj)
8017 adj->ignore = val;
8018 }
8019
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8020 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8021 struct net_device *lower_dev)
8022 {
8023 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8024 }
8025
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8026 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8027 struct net_device *lower_dev)
8028 {
8029 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8030 }
8031
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8032 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8033 struct net_device *new_dev,
8034 struct net_device *dev,
8035 struct netlink_ext_ack *extack)
8036 {
8037 struct netdev_nested_priv priv = {
8038 .flags = 0,
8039 .data = NULL,
8040 };
8041 int err;
8042
8043 if (!new_dev)
8044 return 0;
8045
8046 if (old_dev && new_dev != old_dev)
8047 netdev_adjacent_dev_disable(dev, old_dev);
8048 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8049 extack);
8050 if (err) {
8051 if (old_dev && new_dev != old_dev)
8052 netdev_adjacent_dev_enable(dev, old_dev);
8053 return err;
8054 }
8055
8056 return 0;
8057 }
8058 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8059
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8060 void netdev_adjacent_change_commit(struct net_device *old_dev,
8061 struct net_device *new_dev,
8062 struct net_device *dev)
8063 {
8064 struct netdev_nested_priv priv = {
8065 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8066 .data = NULL,
8067 };
8068
8069 if (!new_dev || !old_dev)
8070 return;
8071
8072 if (new_dev == old_dev)
8073 return;
8074
8075 netdev_adjacent_dev_enable(dev, old_dev);
8076 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8077 }
8078 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8079
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8080 void netdev_adjacent_change_abort(struct net_device *old_dev,
8081 struct net_device *new_dev,
8082 struct net_device *dev)
8083 {
8084 struct netdev_nested_priv priv = {
8085 .flags = 0,
8086 .data = NULL,
8087 };
8088
8089 if (!new_dev)
8090 return;
8091
8092 if (old_dev && new_dev != old_dev)
8093 netdev_adjacent_dev_enable(dev, old_dev);
8094
8095 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8096 }
8097 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8098
8099 /**
8100 * netdev_bonding_info_change - Dispatch event about slave change
8101 * @dev: device
8102 * @bonding_info: info to dispatch
8103 *
8104 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8105 * The caller must hold the RTNL lock.
8106 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8107 void netdev_bonding_info_change(struct net_device *dev,
8108 struct netdev_bonding_info *bonding_info)
8109 {
8110 struct netdev_notifier_bonding_info info = {
8111 .info.dev = dev,
8112 };
8113
8114 memcpy(&info.bonding_info, bonding_info,
8115 sizeof(struct netdev_bonding_info));
8116 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8117 &info.info);
8118 }
8119 EXPORT_SYMBOL(netdev_bonding_info_change);
8120
8121 /**
8122 * netdev_get_xmit_slave - Get the xmit slave of master device
8123 * @dev: device
8124 * @skb: The packet
8125 * @all_slaves: assume all the slaves are active
8126 *
8127 * The reference counters are not incremented so the caller must be
8128 * careful with locks. The caller must hold RCU lock.
8129 * %NULL is returned if no slave is found.
8130 */
8131
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8132 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8133 struct sk_buff *skb,
8134 bool all_slaves)
8135 {
8136 const struct net_device_ops *ops = dev->netdev_ops;
8137
8138 if (!ops->ndo_get_xmit_slave)
8139 return NULL;
8140 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8141 }
8142 EXPORT_SYMBOL(netdev_get_xmit_slave);
8143
netdev_adjacent_add_links(struct net_device * dev)8144 static void netdev_adjacent_add_links(struct net_device *dev)
8145 {
8146 struct netdev_adjacent *iter;
8147
8148 struct net *net = dev_net(dev);
8149
8150 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8151 if (!net_eq(net, dev_net(iter->dev)))
8152 continue;
8153 netdev_adjacent_sysfs_add(iter->dev, dev,
8154 &iter->dev->adj_list.lower);
8155 netdev_adjacent_sysfs_add(dev, iter->dev,
8156 &dev->adj_list.upper);
8157 }
8158
8159 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8160 if (!net_eq(net, dev_net(iter->dev)))
8161 continue;
8162 netdev_adjacent_sysfs_add(iter->dev, dev,
8163 &iter->dev->adj_list.upper);
8164 netdev_adjacent_sysfs_add(dev, iter->dev,
8165 &dev->adj_list.lower);
8166 }
8167 }
8168
netdev_adjacent_del_links(struct net_device * dev)8169 static void netdev_adjacent_del_links(struct net_device *dev)
8170 {
8171 struct netdev_adjacent *iter;
8172
8173 struct net *net = dev_net(dev);
8174
8175 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8176 if (!net_eq(net, dev_net(iter->dev)))
8177 continue;
8178 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8179 &iter->dev->adj_list.lower);
8180 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8181 &dev->adj_list.upper);
8182 }
8183
8184 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8185 if (!net_eq(net, dev_net(iter->dev)))
8186 continue;
8187 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8188 &iter->dev->adj_list.upper);
8189 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8190 &dev->adj_list.lower);
8191 }
8192 }
8193
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8194 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8195 {
8196 struct netdev_adjacent *iter;
8197
8198 struct net *net = dev_net(dev);
8199
8200 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8201 if (!net_eq(net, dev_net(iter->dev)))
8202 continue;
8203 netdev_adjacent_sysfs_del(iter->dev, oldname,
8204 &iter->dev->adj_list.lower);
8205 netdev_adjacent_sysfs_add(iter->dev, dev,
8206 &iter->dev->adj_list.lower);
8207 }
8208
8209 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8210 if (!net_eq(net, dev_net(iter->dev)))
8211 continue;
8212 netdev_adjacent_sysfs_del(iter->dev, oldname,
8213 &iter->dev->adj_list.upper);
8214 netdev_adjacent_sysfs_add(iter->dev, dev,
8215 &iter->dev->adj_list.upper);
8216 }
8217 }
8218
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8219 void *netdev_lower_dev_get_private(struct net_device *dev,
8220 struct net_device *lower_dev)
8221 {
8222 struct netdev_adjacent *lower;
8223
8224 if (!lower_dev)
8225 return NULL;
8226 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8227 if (!lower)
8228 return NULL;
8229
8230 return lower->private;
8231 }
8232 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8233
8234
8235 /**
8236 * netdev_lower_change - Dispatch event about lower device state change
8237 * @lower_dev: device
8238 * @lower_state_info: state to dispatch
8239 *
8240 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8241 * The caller must hold the RTNL lock.
8242 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8243 void netdev_lower_state_changed(struct net_device *lower_dev,
8244 void *lower_state_info)
8245 {
8246 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8247 .info.dev = lower_dev,
8248 };
8249
8250 ASSERT_RTNL();
8251 changelowerstate_info.lower_state_info = lower_state_info;
8252 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8253 &changelowerstate_info.info);
8254 }
8255 EXPORT_SYMBOL(netdev_lower_state_changed);
8256
dev_change_rx_flags(struct net_device * dev,int flags)8257 static void dev_change_rx_flags(struct net_device *dev, int flags)
8258 {
8259 const struct net_device_ops *ops = dev->netdev_ops;
8260
8261 if (ops->ndo_change_rx_flags)
8262 ops->ndo_change_rx_flags(dev, flags);
8263 }
8264
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8265 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8266 {
8267 unsigned int old_flags = dev->flags;
8268 kuid_t uid;
8269 kgid_t gid;
8270
8271 ASSERT_RTNL();
8272
8273 dev->flags |= IFF_PROMISC;
8274 dev->promiscuity += inc;
8275 if (dev->promiscuity == 0) {
8276 /*
8277 * Avoid overflow.
8278 * If inc causes overflow, untouch promisc and return error.
8279 */
8280 if (inc < 0)
8281 dev->flags &= ~IFF_PROMISC;
8282 else {
8283 dev->promiscuity -= inc;
8284 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8285 dev->name);
8286 return -EOVERFLOW;
8287 }
8288 }
8289 if (dev->flags != old_flags) {
8290 pr_info("device %s %s promiscuous mode\n",
8291 dev->name,
8292 dev->flags & IFF_PROMISC ? "entered" : "left");
8293 if (audit_enabled) {
8294 current_uid_gid(&uid, &gid);
8295 audit_log(audit_context(), GFP_ATOMIC,
8296 AUDIT_ANOM_PROMISCUOUS,
8297 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8298 dev->name, (dev->flags & IFF_PROMISC),
8299 (old_flags & IFF_PROMISC),
8300 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8301 from_kuid(&init_user_ns, uid),
8302 from_kgid(&init_user_ns, gid),
8303 audit_get_sessionid(current));
8304 }
8305
8306 dev_change_rx_flags(dev, IFF_PROMISC);
8307 }
8308 if (notify)
8309 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8310 return 0;
8311 }
8312
8313 /**
8314 * dev_set_promiscuity - update promiscuity count on a device
8315 * @dev: device
8316 * @inc: modifier
8317 *
8318 * Add or remove promiscuity from a device. While the count in the device
8319 * remains above zero the interface remains promiscuous. Once it hits zero
8320 * the device reverts back to normal filtering operation. A negative inc
8321 * value is used to drop promiscuity on the device.
8322 * Return 0 if successful or a negative errno code on error.
8323 */
dev_set_promiscuity(struct net_device * dev,int inc)8324 int dev_set_promiscuity(struct net_device *dev, int inc)
8325 {
8326 unsigned int old_flags = dev->flags;
8327 int err;
8328
8329 err = __dev_set_promiscuity(dev, inc, true);
8330 if (err < 0)
8331 return err;
8332 if (dev->flags != old_flags)
8333 dev_set_rx_mode(dev);
8334 return err;
8335 }
8336 EXPORT_SYMBOL(dev_set_promiscuity);
8337
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8338 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8339 {
8340 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8341
8342 ASSERT_RTNL();
8343
8344 dev->flags |= IFF_ALLMULTI;
8345 dev->allmulti += inc;
8346 if (dev->allmulti == 0) {
8347 /*
8348 * Avoid overflow.
8349 * If inc causes overflow, untouch allmulti and return error.
8350 */
8351 if (inc < 0)
8352 dev->flags &= ~IFF_ALLMULTI;
8353 else {
8354 dev->allmulti -= inc;
8355 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8356 dev->name);
8357 return -EOVERFLOW;
8358 }
8359 }
8360 if (dev->flags ^ old_flags) {
8361 dev_change_rx_flags(dev, IFF_ALLMULTI);
8362 dev_set_rx_mode(dev);
8363 if (notify)
8364 __dev_notify_flags(dev, old_flags,
8365 dev->gflags ^ old_gflags);
8366 }
8367 return 0;
8368 }
8369
8370 /**
8371 * dev_set_allmulti - update allmulti count on a device
8372 * @dev: device
8373 * @inc: modifier
8374 *
8375 * Add or remove reception of all multicast frames to a device. While the
8376 * count in the device remains above zero the interface remains listening
8377 * to all interfaces. Once it hits zero the device reverts back to normal
8378 * filtering operation. A negative @inc value is used to drop the counter
8379 * when releasing a resource needing all multicasts.
8380 * Return 0 if successful or a negative errno code on error.
8381 */
8382
dev_set_allmulti(struct net_device * dev,int inc)8383 int dev_set_allmulti(struct net_device *dev, int inc)
8384 {
8385 return __dev_set_allmulti(dev, inc, true);
8386 }
8387 EXPORT_SYMBOL(dev_set_allmulti);
8388
8389 /*
8390 * Upload unicast and multicast address lists to device and
8391 * configure RX filtering. When the device doesn't support unicast
8392 * filtering it is put in promiscuous mode while unicast addresses
8393 * are present.
8394 */
__dev_set_rx_mode(struct net_device * dev)8395 void __dev_set_rx_mode(struct net_device *dev)
8396 {
8397 const struct net_device_ops *ops = dev->netdev_ops;
8398
8399 /* dev_open will call this function so the list will stay sane. */
8400 if (!(dev->flags&IFF_UP))
8401 return;
8402
8403 if (!netif_device_present(dev))
8404 return;
8405
8406 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8407 /* Unicast addresses changes may only happen under the rtnl,
8408 * therefore calling __dev_set_promiscuity here is safe.
8409 */
8410 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8411 __dev_set_promiscuity(dev, 1, false);
8412 dev->uc_promisc = true;
8413 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8414 __dev_set_promiscuity(dev, -1, false);
8415 dev->uc_promisc = false;
8416 }
8417 }
8418
8419 if (ops->ndo_set_rx_mode)
8420 ops->ndo_set_rx_mode(dev);
8421 }
8422
dev_set_rx_mode(struct net_device * dev)8423 void dev_set_rx_mode(struct net_device *dev)
8424 {
8425 netif_addr_lock_bh(dev);
8426 __dev_set_rx_mode(dev);
8427 netif_addr_unlock_bh(dev);
8428 }
8429
8430 /**
8431 * dev_get_flags - get flags reported to userspace
8432 * @dev: device
8433 *
8434 * Get the combination of flag bits exported through APIs to userspace.
8435 */
dev_get_flags(const struct net_device * dev)8436 unsigned int dev_get_flags(const struct net_device *dev)
8437 {
8438 unsigned int flags;
8439
8440 flags = (dev->flags & ~(IFF_PROMISC |
8441 IFF_ALLMULTI |
8442 IFF_RUNNING |
8443 IFF_LOWER_UP |
8444 IFF_DORMANT)) |
8445 (dev->gflags & (IFF_PROMISC |
8446 IFF_ALLMULTI));
8447
8448 if (netif_running(dev)) {
8449 if (netif_oper_up(dev))
8450 flags |= IFF_RUNNING;
8451 if (netif_carrier_ok(dev))
8452 flags |= IFF_LOWER_UP;
8453 if (netif_dormant(dev))
8454 flags |= IFF_DORMANT;
8455 }
8456
8457 return flags;
8458 }
8459 EXPORT_SYMBOL(dev_get_flags);
8460
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8461 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8462 struct netlink_ext_ack *extack)
8463 {
8464 unsigned int old_flags = dev->flags;
8465 int ret;
8466
8467 ASSERT_RTNL();
8468
8469 /*
8470 * Set the flags on our device.
8471 */
8472
8473 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8474 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8475 IFF_AUTOMEDIA)) |
8476 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8477 IFF_ALLMULTI));
8478
8479 /*
8480 * Load in the correct multicast list now the flags have changed.
8481 */
8482
8483 if ((old_flags ^ flags) & IFF_MULTICAST)
8484 dev_change_rx_flags(dev, IFF_MULTICAST);
8485
8486 dev_set_rx_mode(dev);
8487
8488 /*
8489 * Have we downed the interface. We handle IFF_UP ourselves
8490 * according to user attempts to set it, rather than blindly
8491 * setting it.
8492 */
8493
8494 ret = 0;
8495 if ((old_flags ^ flags) & IFF_UP) {
8496 if (old_flags & IFF_UP)
8497 __dev_close(dev);
8498 else
8499 ret = __dev_open(dev, extack);
8500 }
8501
8502 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8503 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8504 unsigned int old_flags = dev->flags;
8505
8506 dev->gflags ^= IFF_PROMISC;
8507
8508 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8509 if (dev->flags != old_flags)
8510 dev_set_rx_mode(dev);
8511 }
8512
8513 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8514 * is important. Some (broken) drivers set IFF_PROMISC, when
8515 * IFF_ALLMULTI is requested not asking us and not reporting.
8516 */
8517 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8518 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8519
8520 dev->gflags ^= IFF_ALLMULTI;
8521 __dev_set_allmulti(dev, inc, false);
8522 }
8523
8524 return ret;
8525 }
8526
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8527 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8528 unsigned int gchanges)
8529 {
8530 unsigned int changes = dev->flags ^ old_flags;
8531
8532 if (gchanges)
8533 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8534
8535 if (changes & IFF_UP) {
8536 if (dev->flags & IFF_UP)
8537 call_netdevice_notifiers(NETDEV_UP, dev);
8538 else
8539 call_netdevice_notifiers(NETDEV_DOWN, dev);
8540 }
8541
8542 if (dev->flags & IFF_UP &&
8543 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8544 struct netdev_notifier_change_info change_info = {
8545 .info = {
8546 .dev = dev,
8547 },
8548 .flags_changed = changes,
8549 };
8550
8551 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8552 }
8553 }
8554
8555 /**
8556 * dev_change_flags - change device settings
8557 * @dev: device
8558 * @flags: device state flags
8559 * @extack: netlink extended ack
8560 *
8561 * Change settings on device based state flags. The flags are
8562 * in the userspace exported format.
8563 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8564 int dev_change_flags(struct net_device *dev, unsigned int flags,
8565 struct netlink_ext_ack *extack)
8566 {
8567 int ret;
8568 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8569
8570 ret = __dev_change_flags(dev, flags, extack);
8571 if (ret < 0)
8572 return ret;
8573
8574 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8575 __dev_notify_flags(dev, old_flags, changes);
8576 return ret;
8577 }
8578 EXPORT_SYMBOL(dev_change_flags);
8579
__dev_set_mtu(struct net_device * dev,int new_mtu)8580 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8581 {
8582 const struct net_device_ops *ops = dev->netdev_ops;
8583
8584 if (ops->ndo_change_mtu)
8585 return ops->ndo_change_mtu(dev, new_mtu);
8586
8587 /* Pairs with all the lockless reads of dev->mtu in the stack */
8588 WRITE_ONCE(dev->mtu, new_mtu);
8589 return 0;
8590 }
8591 EXPORT_SYMBOL(__dev_set_mtu);
8592
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8593 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8594 struct netlink_ext_ack *extack)
8595 {
8596 /* MTU must be positive, and in range */
8597 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8598 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8599 return -EINVAL;
8600 }
8601
8602 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8603 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8604 return -EINVAL;
8605 }
8606 return 0;
8607 }
8608
8609 /**
8610 * dev_set_mtu_ext - Change maximum transfer unit
8611 * @dev: device
8612 * @new_mtu: new transfer unit
8613 * @extack: netlink extended ack
8614 *
8615 * Change the maximum transfer size of the network device.
8616 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8617 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8618 struct netlink_ext_ack *extack)
8619 {
8620 int err, orig_mtu;
8621
8622 if (new_mtu == dev->mtu)
8623 return 0;
8624
8625 err = dev_validate_mtu(dev, new_mtu, extack);
8626 if (err)
8627 return err;
8628
8629 if (!netif_device_present(dev))
8630 return -ENODEV;
8631
8632 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8633 err = notifier_to_errno(err);
8634 if (err)
8635 return err;
8636
8637 orig_mtu = dev->mtu;
8638 err = __dev_set_mtu(dev, new_mtu);
8639
8640 if (!err) {
8641 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8642 orig_mtu);
8643 err = notifier_to_errno(err);
8644 if (err) {
8645 /* setting mtu back and notifying everyone again,
8646 * so that they have a chance to revert changes.
8647 */
8648 __dev_set_mtu(dev, orig_mtu);
8649 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8650 new_mtu);
8651 }
8652 }
8653 return err;
8654 }
8655
dev_set_mtu(struct net_device * dev,int new_mtu)8656 int dev_set_mtu(struct net_device *dev, int new_mtu)
8657 {
8658 struct netlink_ext_ack extack;
8659 int err;
8660
8661 memset(&extack, 0, sizeof(extack));
8662 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8663 if (err && extack._msg)
8664 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8665 return err;
8666 }
8667 EXPORT_SYMBOL(dev_set_mtu);
8668
8669 /**
8670 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8671 * @dev: device
8672 * @new_len: new tx queue length
8673 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8674 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8675 {
8676 unsigned int orig_len = dev->tx_queue_len;
8677 int res;
8678
8679 if (new_len != (unsigned int)new_len)
8680 return -ERANGE;
8681
8682 if (new_len != orig_len) {
8683 dev->tx_queue_len = new_len;
8684 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8685 res = notifier_to_errno(res);
8686 if (res)
8687 goto err_rollback;
8688 res = dev_qdisc_change_tx_queue_len(dev);
8689 if (res)
8690 goto err_rollback;
8691 }
8692
8693 return 0;
8694
8695 err_rollback:
8696 netdev_err(dev, "refused to change device tx_queue_len\n");
8697 dev->tx_queue_len = orig_len;
8698 return res;
8699 }
8700
8701 /**
8702 * dev_set_group - Change group this device belongs to
8703 * @dev: device
8704 * @new_group: group this device should belong to
8705 */
dev_set_group(struct net_device * dev,int new_group)8706 void dev_set_group(struct net_device *dev, int new_group)
8707 {
8708 dev->group = new_group;
8709 }
8710 EXPORT_SYMBOL(dev_set_group);
8711
8712 /**
8713 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8714 * @dev: device
8715 * @addr: new address
8716 * @extack: netlink extended ack
8717 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8718 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8719 struct netlink_ext_ack *extack)
8720 {
8721 struct netdev_notifier_pre_changeaddr_info info = {
8722 .info.dev = dev,
8723 .info.extack = extack,
8724 .dev_addr = addr,
8725 };
8726 int rc;
8727
8728 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8729 return notifier_to_errno(rc);
8730 }
8731 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8732
8733 /**
8734 * dev_set_mac_address - Change Media Access Control Address
8735 * @dev: device
8736 * @sa: new address
8737 * @extack: netlink extended ack
8738 *
8739 * Change the hardware (MAC) address of the device
8740 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8741 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8742 struct netlink_ext_ack *extack)
8743 {
8744 const struct net_device_ops *ops = dev->netdev_ops;
8745 int err;
8746
8747 if (!ops->ndo_set_mac_address)
8748 return -EOPNOTSUPP;
8749 if (sa->sa_family != dev->type)
8750 return -EINVAL;
8751 if (!netif_device_present(dev))
8752 return -ENODEV;
8753 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8754 if (err)
8755 return err;
8756 err = ops->ndo_set_mac_address(dev, sa);
8757 if (err)
8758 return err;
8759 dev->addr_assign_type = NET_ADDR_SET;
8760 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8761 add_device_randomness(dev->dev_addr, dev->addr_len);
8762 return 0;
8763 }
8764 EXPORT_SYMBOL(dev_set_mac_address);
8765
8766 static DECLARE_RWSEM(dev_addr_sem);
8767
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8768 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8769 struct netlink_ext_ack *extack)
8770 {
8771 int ret;
8772
8773 down_write(&dev_addr_sem);
8774 ret = dev_set_mac_address(dev, sa, extack);
8775 up_write(&dev_addr_sem);
8776 return ret;
8777 }
8778 EXPORT_SYMBOL(dev_set_mac_address_user);
8779
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8780 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8781 {
8782 size_t size = sizeof(sa->sa_data);
8783 struct net_device *dev;
8784 int ret = 0;
8785
8786 down_read(&dev_addr_sem);
8787 rcu_read_lock();
8788
8789 dev = dev_get_by_name_rcu(net, dev_name);
8790 if (!dev) {
8791 ret = -ENODEV;
8792 goto unlock;
8793 }
8794 if (!dev->addr_len)
8795 memset(sa->sa_data, 0, size);
8796 else
8797 memcpy(sa->sa_data, dev->dev_addr,
8798 min_t(size_t, size, dev->addr_len));
8799 sa->sa_family = dev->type;
8800
8801 unlock:
8802 rcu_read_unlock();
8803 up_read(&dev_addr_sem);
8804 return ret;
8805 }
8806 EXPORT_SYMBOL(dev_get_mac_address);
8807
8808 /**
8809 * dev_change_carrier - Change device carrier
8810 * @dev: device
8811 * @new_carrier: new value
8812 *
8813 * Change device carrier
8814 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8815 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8816 {
8817 const struct net_device_ops *ops = dev->netdev_ops;
8818
8819 if (!ops->ndo_change_carrier)
8820 return -EOPNOTSUPP;
8821 if (!netif_device_present(dev))
8822 return -ENODEV;
8823 return ops->ndo_change_carrier(dev, new_carrier);
8824 }
8825 EXPORT_SYMBOL(dev_change_carrier);
8826
8827 /**
8828 * dev_get_phys_port_id - Get device physical port ID
8829 * @dev: device
8830 * @ppid: port ID
8831 *
8832 * Get device physical port ID
8833 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8834 int dev_get_phys_port_id(struct net_device *dev,
8835 struct netdev_phys_item_id *ppid)
8836 {
8837 const struct net_device_ops *ops = dev->netdev_ops;
8838
8839 if (!ops->ndo_get_phys_port_id)
8840 return -EOPNOTSUPP;
8841 return ops->ndo_get_phys_port_id(dev, ppid);
8842 }
8843 EXPORT_SYMBOL(dev_get_phys_port_id);
8844
8845 /**
8846 * dev_get_phys_port_name - Get device physical port name
8847 * @dev: device
8848 * @name: port name
8849 * @len: limit of bytes to copy to name
8850 *
8851 * Get device physical port name
8852 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8853 int dev_get_phys_port_name(struct net_device *dev,
8854 char *name, size_t len)
8855 {
8856 const struct net_device_ops *ops = dev->netdev_ops;
8857 int err;
8858
8859 if (ops->ndo_get_phys_port_name) {
8860 err = ops->ndo_get_phys_port_name(dev, name, len);
8861 if (err != -EOPNOTSUPP)
8862 return err;
8863 }
8864 return devlink_compat_phys_port_name_get(dev, name, len);
8865 }
8866 EXPORT_SYMBOL(dev_get_phys_port_name);
8867
8868 /**
8869 * dev_get_port_parent_id - Get the device's port parent identifier
8870 * @dev: network device
8871 * @ppid: pointer to a storage for the port's parent identifier
8872 * @recurse: allow/disallow recursion to lower devices
8873 *
8874 * Get the devices's port parent identifier
8875 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8876 int dev_get_port_parent_id(struct net_device *dev,
8877 struct netdev_phys_item_id *ppid,
8878 bool recurse)
8879 {
8880 const struct net_device_ops *ops = dev->netdev_ops;
8881 struct netdev_phys_item_id first = { };
8882 struct net_device *lower_dev;
8883 struct list_head *iter;
8884 int err;
8885
8886 if (ops->ndo_get_port_parent_id) {
8887 err = ops->ndo_get_port_parent_id(dev, ppid);
8888 if (err != -EOPNOTSUPP)
8889 return err;
8890 }
8891
8892 err = devlink_compat_switch_id_get(dev, ppid);
8893 if (!err || err != -EOPNOTSUPP)
8894 return err;
8895
8896 if (!recurse)
8897 return -EOPNOTSUPP;
8898
8899 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8900 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8901 if (err)
8902 break;
8903 if (!first.id_len)
8904 first = *ppid;
8905 else if (memcmp(&first, ppid, sizeof(*ppid)))
8906 return -EOPNOTSUPP;
8907 }
8908
8909 return err;
8910 }
8911 EXPORT_SYMBOL(dev_get_port_parent_id);
8912
8913 /**
8914 * netdev_port_same_parent_id - Indicate if two network devices have
8915 * the same port parent identifier
8916 * @a: first network device
8917 * @b: second network device
8918 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8919 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8920 {
8921 struct netdev_phys_item_id a_id = { };
8922 struct netdev_phys_item_id b_id = { };
8923
8924 if (dev_get_port_parent_id(a, &a_id, true) ||
8925 dev_get_port_parent_id(b, &b_id, true))
8926 return false;
8927
8928 return netdev_phys_item_id_same(&a_id, &b_id);
8929 }
8930 EXPORT_SYMBOL(netdev_port_same_parent_id);
8931
8932 /**
8933 * dev_change_proto_down - update protocol port state information
8934 * @dev: device
8935 * @proto_down: new value
8936 *
8937 * This info can be used by switch drivers to set the phys state of the
8938 * port.
8939 */
dev_change_proto_down(struct net_device * dev,bool proto_down)8940 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8941 {
8942 const struct net_device_ops *ops = dev->netdev_ops;
8943
8944 if (!ops->ndo_change_proto_down)
8945 return -EOPNOTSUPP;
8946 if (!netif_device_present(dev))
8947 return -ENODEV;
8948 return ops->ndo_change_proto_down(dev, proto_down);
8949 }
8950 EXPORT_SYMBOL(dev_change_proto_down);
8951
8952 /**
8953 * dev_change_proto_down_generic - generic implementation for
8954 * ndo_change_proto_down that sets carrier according to
8955 * proto_down.
8956 *
8957 * @dev: device
8958 * @proto_down: new value
8959 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8960 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8961 {
8962 if (proto_down)
8963 netif_carrier_off(dev);
8964 else
8965 netif_carrier_on(dev);
8966 dev->proto_down = proto_down;
8967 return 0;
8968 }
8969 EXPORT_SYMBOL(dev_change_proto_down_generic);
8970
8971 /**
8972 * dev_change_proto_down_reason - proto down reason
8973 *
8974 * @dev: device
8975 * @mask: proto down mask
8976 * @value: proto down value
8977 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8978 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8979 u32 value)
8980 {
8981 int b;
8982
8983 if (!mask) {
8984 dev->proto_down_reason = value;
8985 } else {
8986 for_each_set_bit(b, &mask, 32) {
8987 if (value & (1 << b))
8988 dev->proto_down_reason |= BIT(b);
8989 else
8990 dev->proto_down_reason &= ~BIT(b);
8991 }
8992 }
8993 }
8994 EXPORT_SYMBOL(dev_change_proto_down_reason);
8995
8996 struct bpf_xdp_link {
8997 struct bpf_link link;
8998 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8999 int flags;
9000 };
9001
dev_xdp_mode(struct net_device * dev,u32 flags)9002 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9003 {
9004 if (flags & XDP_FLAGS_HW_MODE)
9005 return XDP_MODE_HW;
9006 if (flags & XDP_FLAGS_DRV_MODE)
9007 return XDP_MODE_DRV;
9008 if (flags & XDP_FLAGS_SKB_MODE)
9009 return XDP_MODE_SKB;
9010 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9011 }
9012
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9013 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9014 {
9015 switch (mode) {
9016 case XDP_MODE_SKB:
9017 return generic_xdp_install;
9018 case XDP_MODE_DRV:
9019 case XDP_MODE_HW:
9020 return dev->netdev_ops->ndo_bpf;
9021 default:
9022 return NULL;
9023 };
9024 }
9025
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9026 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9027 enum bpf_xdp_mode mode)
9028 {
9029 return dev->xdp_state[mode].link;
9030 }
9031
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9032 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9033 enum bpf_xdp_mode mode)
9034 {
9035 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9036
9037 if (link)
9038 return link->link.prog;
9039 return dev->xdp_state[mode].prog;
9040 }
9041
dev_xdp_prog_count(struct net_device * dev)9042 static u8 dev_xdp_prog_count(struct net_device *dev)
9043 {
9044 u8 count = 0;
9045 int i;
9046
9047 for (i = 0; i < __MAX_XDP_MODE; i++)
9048 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9049 count++;
9050 return count;
9051 }
9052
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9053 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9054 {
9055 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9056
9057 return prog ? prog->aux->id : 0;
9058 }
9059
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9060 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9061 struct bpf_xdp_link *link)
9062 {
9063 dev->xdp_state[mode].link = link;
9064 dev->xdp_state[mode].prog = NULL;
9065 }
9066
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9067 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9068 struct bpf_prog *prog)
9069 {
9070 dev->xdp_state[mode].link = NULL;
9071 dev->xdp_state[mode].prog = prog;
9072 }
9073
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9074 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9075 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9076 u32 flags, struct bpf_prog *prog)
9077 {
9078 struct netdev_bpf xdp;
9079 int err;
9080
9081 memset(&xdp, 0, sizeof(xdp));
9082 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9083 xdp.extack = extack;
9084 xdp.flags = flags;
9085 xdp.prog = prog;
9086
9087 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9088 * "moved" into driver), so they don't increment it on their own, but
9089 * they do decrement refcnt when program is detached or replaced.
9090 * Given net_device also owns link/prog, we need to bump refcnt here
9091 * to prevent drivers from underflowing it.
9092 */
9093 if (prog)
9094 bpf_prog_inc(prog);
9095 err = bpf_op(dev, &xdp);
9096 if (err) {
9097 if (prog)
9098 bpf_prog_put(prog);
9099 return err;
9100 }
9101
9102 if (mode != XDP_MODE_HW)
9103 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9104
9105 return 0;
9106 }
9107
dev_xdp_uninstall(struct net_device * dev)9108 static void dev_xdp_uninstall(struct net_device *dev)
9109 {
9110 struct bpf_xdp_link *link;
9111 struct bpf_prog *prog;
9112 enum bpf_xdp_mode mode;
9113 bpf_op_t bpf_op;
9114
9115 ASSERT_RTNL();
9116
9117 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9118 prog = dev_xdp_prog(dev, mode);
9119 if (!prog)
9120 continue;
9121
9122 bpf_op = dev_xdp_bpf_op(dev, mode);
9123 if (!bpf_op)
9124 continue;
9125
9126 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9127
9128 /* auto-detach link from net device */
9129 link = dev_xdp_link(dev, mode);
9130 if (link)
9131 link->dev = NULL;
9132 else
9133 bpf_prog_put(prog);
9134
9135 dev_xdp_set_link(dev, mode, NULL);
9136 }
9137 }
9138
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9139 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9140 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9141 struct bpf_prog *old_prog, u32 flags)
9142 {
9143 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9144 struct bpf_prog *cur_prog;
9145 enum bpf_xdp_mode mode;
9146 bpf_op_t bpf_op;
9147 int err;
9148
9149 ASSERT_RTNL();
9150
9151 /* either link or prog attachment, never both */
9152 if (link && (new_prog || old_prog))
9153 return -EINVAL;
9154 /* link supports only XDP mode flags */
9155 if (link && (flags & ~XDP_FLAGS_MODES)) {
9156 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9157 return -EINVAL;
9158 }
9159 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9160 if (num_modes > 1) {
9161 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9162 return -EINVAL;
9163 }
9164 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9165 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9166 NL_SET_ERR_MSG(extack,
9167 "More than one program loaded, unset mode is ambiguous");
9168 return -EINVAL;
9169 }
9170 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9171 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9172 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9173 return -EINVAL;
9174 }
9175
9176 mode = dev_xdp_mode(dev, flags);
9177 /* can't replace attached link */
9178 if (dev_xdp_link(dev, mode)) {
9179 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9180 return -EBUSY;
9181 }
9182
9183 cur_prog = dev_xdp_prog(dev, mode);
9184 /* can't replace attached prog with link */
9185 if (link && cur_prog) {
9186 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9187 return -EBUSY;
9188 }
9189 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9190 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9191 return -EEXIST;
9192 }
9193
9194 /* put effective new program into new_prog */
9195 if (link)
9196 new_prog = link->link.prog;
9197
9198 if (new_prog) {
9199 bool offload = mode == XDP_MODE_HW;
9200 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9201 ? XDP_MODE_DRV : XDP_MODE_SKB;
9202
9203 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9204 NL_SET_ERR_MSG(extack, "XDP program already attached");
9205 return -EBUSY;
9206 }
9207 if (!offload && dev_xdp_prog(dev, other_mode)) {
9208 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9209 return -EEXIST;
9210 }
9211 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9212 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9213 return -EINVAL;
9214 }
9215 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9216 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9217 return -EINVAL;
9218 }
9219 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9220 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9221 return -EINVAL;
9222 }
9223 }
9224
9225 /* don't call drivers if the effective program didn't change */
9226 if (new_prog != cur_prog) {
9227 bpf_op = dev_xdp_bpf_op(dev, mode);
9228 if (!bpf_op) {
9229 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9230 return -EOPNOTSUPP;
9231 }
9232
9233 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9234 if (err)
9235 return err;
9236 }
9237
9238 if (link)
9239 dev_xdp_set_link(dev, mode, link);
9240 else
9241 dev_xdp_set_prog(dev, mode, new_prog);
9242 if (cur_prog)
9243 bpf_prog_put(cur_prog);
9244
9245 return 0;
9246 }
9247
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9248 static int dev_xdp_attach_link(struct net_device *dev,
9249 struct netlink_ext_ack *extack,
9250 struct bpf_xdp_link *link)
9251 {
9252 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9253 }
9254
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9255 static int dev_xdp_detach_link(struct net_device *dev,
9256 struct netlink_ext_ack *extack,
9257 struct bpf_xdp_link *link)
9258 {
9259 enum bpf_xdp_mode mode;
9260 bpf_op_t bpf_op;
9261
9262 ASSERT_RTNL();
9263
9264 mode = dev_xdp_mode(dev, link->flags);
9265 if (dev_xdp_link(dev, mode) != link)
9266 return -EINVAL;
9267
9268 bpf_op = dev_xdp_bpf_op(dev, mode);
9269 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9270 dev_xdp_set_link(dev, mode, NULL);
9271 return 0;
9272 }
9273
bpf_xdp_link_release(struct bpf_link * link)9274 static void bpf_xdp_link_release(struct bpf_link *link)
9275 {
9276 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9277
9278 rtnl_lock();
9279
9280 /* if racing with net_device's tear down, xdp_link->dev might be
9281 * already NULL, in which case link was already auto-detached
9282 */
9283 if (xdp_link->dev) {
9284 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9285 xdp_link->dev = NULL;
9286 }
9287
9288 rtnl_unlock();
9289 }
9290
bpf_xdp_link_detach(struct bpf_link * link)9291 static int bpf_xdp_link_detach(struct bpf_link *link)
9292 {
9293 bpf_xdp_link_release(link);
9294 return 0;
9295 }
9296
bpf_xdp_link_dealloc(struct bpf_link * link)9297 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9298 {
9299 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9300
9301 kfree(xdp_link);
9302 }
9303
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9304 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9305 struct seq_file *seq)
9306 {
9307 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9308 u32 ifindex = 0;
9309
9310 rtnl_lock();
9311 if (xdp_link->dev)
9312 ifindex = xdp_link->dev->ifindex;
9313 rtnl_unlock();
9314
9315 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9316 }
9317
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9318 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9319 struct bpf_link_info *info)
9320 {
9321 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9322 u32 ifindex = 0;
9323
9324 rtnl_lock();
9325 if (xdp_link->dev)
9326 ifindex = xdp_link->dev->ifindex;
9327 rtnl_unlock();
9328
9329 info->xdp.ifindex = ifindex;
9330 return 0;
9331 }
9332
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9333 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9334 struct bpf_prog *old_prog)
9335 {
9336 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9337 enum bpf_xdp_mode mode;
9338 bpf_op_t bpf_op;
9339 int err = 0;
9340
9341 rtnl_lock();
9342
9343 /* link might have been auto-released already, so fail */
9344 if (!xdp_link->dev) {
9345 err = -ENOLINK;
9346 goto out_unlock;
9347 }
9348
9349 if (old_prog && link->prog != old_prog) {
9350 err = -EPERM;
9351 goto out_unlock;
9352 }
9353 old_prog = link->prog;
9354 if (old_prog->type != new_prog->type ||
9355 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9356 err = -EINVAL;
9357 goto out_unlock;
9358 }
9359
9360 if (old_prog == new_prog) {
9361 /* no-op, don't disturb drivers */
9362 bpf_prog_put(new_prog);
9363 goto out_unlock;
9364 }
9365
9366 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9367 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9368 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9369 xdp_link->flags, new_prog);
9370 if (err)
9371 goto out_unlock;
9372
9373 old_prog = xchg(&link->prog, new_prog);
9374 bpf_prog_put(old_prog);
9375
9376 out_unlock:
9377 rtnl_unlock();
9378 return err;
9379 }
9380
9381 static const struct bpf_link_ops bpf_xdp_link_lops = {
9382 .release = bpf_xdp_link_release,
9383 .dealloc = bpf_xdp_link_dealloc,
9384 .detach = bpf_xdp_link_detach,
9385 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9386 .fill_link_info = bpf_xdp_link_fill_link_info,
9387 .update_prog = bpf_xdp_link_update,
9388 };
9389
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9390 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9391 {
9392 struct net *net = current->nsproxy->net_ns;
9393 struct bpf_link_primer link_primer;
9394 struct bpf_xdp_link *link;
9395 struct net_device *dev;
9396 int err, fd;
9397
9398 rtnl_lock();
9399 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9400 if (!dev) {
9401 rtnl_unlock();
9402 return -EINVAL;
9403 }
9404
9405 link = kzalloc(sizeof(*link), GFP_USER);
9406 if (!link) {
9407 err = -ENOMEM;
9408 goto unlock;
9409 }
9410
9411 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9412 link->dev = dev;
9413 link->flags = attr->link_create.flags;
9414
9415 err = bpf_link_prime(&link->link, &link_primer);
9416 if (err) {
9417 kfree(link);
9418 goto unlock;
9419 }
9420
9421 err = dev_xdp_attach_link(dev, NULL, link);
9422 rtnl_unlock();
9423
9424 if (err) {
9425 link->dev = NULL;
9426 bpf_link_cleanup(&link_primer);
9427 goto out_put_dev;
9428 }
9429
9430 fd = bpf_link_settle(&link_primer);
9431 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9432 dev_put(dev);
9433 return fd;
9434
9435 unlock:
9436 rtnl_unlock();
9437
9438 out_put_dev:
9439 dev_put(dev);
9440 return err;
9441 }
9442
9443 /**
9444 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9445 * @dev: device
9446 * @extack: netlink extended ack
9447 * @fd: new program fd or negative value to clear
9448 * @expected_fd: old program fd that userspace expects to replace or clear
9449 * @flags: xdp-related flags
9450 *
9451 * Set or clear a bpf program for a device
9452 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9453 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9454 int fd, int expected_fd, u32 flags)
9455 {
9456 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9457 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9458 int err;
9459
9460 ASSERT_RTNL();
9461
9462 if (fd >= 0) {
9463 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9464 mode != XDP_MODE_SKB);
9465 if (IS_ERR(new_prog))
9466 return PTR_ERR(new_prog);
9467 }
9468
9469 if (expected_fd >= 0) {
9470 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9471 mode != XDP_MODE_SKB);
9472 if (IS_ERR(old_prog)) {
9473 err = PTR_ERR(old_prog);
9474 old_prog = NULL;
9475 goto err_out;
9476 }
9477 }
9478
9479 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9480
9481 err_out:
9482 if (err && new_prog)
9483 bpf_prog_put(new_prog);
9484 if (old_prog)
9485 bpf_prog_put(old_prog);
9486 return err;
9487 }
9488
9489 /**
9490 * dev_new_index - allocate an ifindex
9491 * @net: the applicable net namespace
9492 *
9493 * Returns a suitable unique value for a new device interface
9494 * number. The caller must hold the rtnl semaphore or the
9495 * dev_base_lock to be sure it remains unique.
9496 */
dev_new_index(struct net * net)9497 static int dev_new_index(struct net *net)
9498 {
9499 int ifindex = net->ifindex;
9500
9501 for (;;) {
9502 if (++ifindex <= 0)
9503 ifindex = 1;
9504 if (!__dev_get_by_index(net, ifindex))
9505 return net->ifindex = ifindex;
9506 }
9507 }
9508
9509 /* Delayed registration/unregisteration */
9510 static LIST_HEAD(net_todo_list);
9511 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9512
net_set_todo(struct net_device * dev)9513 static void net_set_todo(struct net_device *dev)
9514 {
9515 list_add_tail(&dev->todo_list, &net_todo_list);
9516 dev_net(dev)->dev_unreg_count++;
9517 }
9518
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9519 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9520 struct net_device *upper, netdev_features_t features)
9521 {
9522 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9523 netdev_features_t feature;
9524 int feature_bit;
9525
9526 for_each_netdev_feature(upper_disables, feature_bit) {
9527 feature = __NETIF_F_BIT(feature_bit);
9528 if (!(upper->wanted_features & feature)
9529 && (features & feature)) {
9530 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9531 &feature, upper->name);
9532 features &= ~feature;
9533 }
9534 }
9535
9536 return features;
9537 }
9538
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9539 static void netdev_sync_lower_features(struct net_device *upper,
9540 struct net_device *lower, netdev_features_t features)
9541 {
9542 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9543 netdev_features_t feature;
9544 int feature_bit;
9545
9546 for_each_netdev_feature(upper_disables, feature_bit) {
9547 feature = __NETIF_F_BIT(feature_bit);
9548 if (!(features & feature) && (lower->features & feature)) {
9549 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9550 &feature, lower->name);
9551 lower->wanted_features &= ~feature;
9552 __netdev_update_features(lower);
9553
9554 if (unlikely(lower->features & feature))
9555 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9556 &feature, lower->name);
9557 else
9558 netdev_features_change(lower);
9559 }
9560 }
9561 }
9562
netdev_fix_features(struct net_device * dev,netdev_features_t features)9563 static netdev_features_t netdev_fix_features(struct net_device *dev,
9564 netdev_features_t features)
9565 {
9566 /* Fix illegal checksum combinations */
9567 if ((features & NETIF_F_HW_CSUM) &&
9568 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9569 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9570 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9571 }
9572
9573 /* TSO requires that SG is present as well. */
9574 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9575 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9576 features &= ~NETIF_F_ALL_TSO;
9577 }
9578
9579 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9580 !(features & NETIF_F_IP_CSUM)) {
9581 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9582 features &= ~NETIF_F_TSO;
9583 features &= ~NETIF_F_TSO_ECN;
9584 }
9585
9586 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9587 !(features & NETIF_F_IPV6_CSUM)) {
9588 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9589 features &= ~NETIF_F_TSO6;
9590 }
9591
9592 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9593 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9594 features &= ~NETIF_F_TSO_MANGLEID;
9595
9596 /* TSO ECN requires that TSO is present as well. */
9597 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9598 features &= ~NETIF_F_TSO_ECN;
9599
9600 /* Software GSO depends on SG. */
9601 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9602 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9603 features &= ~NETIF_F_GSO;
9604 }
9605
9606 /* GSO partial features require GSO partial be set */
9607 if ((features & dev->gso_partial_features) &&
9608 !(features & NETIF_F_GSO_PARTIAL)) {
9609 netdev_dbg(dev,
9610 "Dropping partially supported GSO features since no GSO partial.\n");
9611 features &= ~dev->gso_partial_features;
9612 }
9613
9614 if (!(features & NETIF_F_RXCSUM)) {
9615 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9616 * successfully merged by hardware must also have the
9617 * checksum verified by hardware. If the user does not
9618 * want to enable RXCSUM, logically, we should disable GRO_HW.
9619 */
9620 if (features & NETIF_F_GRO_HW) {
9621 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9622 features &= ~NETIF_F_GRO_HW;
9623 }
9624 }
9625
9626 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9627 if (features & NETIF_F_RXFCS) {
9628 if (features & NETIF_F_LRO) {
9629 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9630 features &= ~NETIF_F_LRO;
9631 }
9632
9633 if (features & NETIF_F_GRO_HW) {
9634 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9635 features &= ~NETIF_F_GRO_HW;
9636 }
9637 }
9638
9639 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9640 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9641 features &= ~NETIF_F_HW_TLS_RX;
9642 }
9643
9644 return features;
9645 }
9646
__netdev_update_features(struct net_device * dev)9647 int __netdev_update_features(struct net_device *dev)
9648 {
9649 struct net_device *upper, *lower;
9650 netdev_features_t features;
9651 struct list_head *iter;
9652 int err = -1;
9653
9654 ASSERT_RTNL();
9655
9656 features = netdev_get_wanted_features(dev);
9657
9658 if (dev->netdev_ops->ndo_fix_features)
9659 features = dev->netdev_ops->ndo_fix_features(dev, features);
9660
9661 /* driver might be less strict about feature dependencies */
9662 features = netdev_fix_features(dev, features);
9663
9664 /* some features can't be enabled if they're off on an upper device */
9665 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9666 features = netdev_sync_upper_features(dev, upper, features);
9667
9668 if (dev->features == features)
9669 goto sync_lower;
9670
9671 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9672 &dev->features, &features);
9673
9674 if (dev->netdev_ops->ndo_set_features)
9675 err = dev->netdev_ops->ndo_set_features(dev, features);
9676 else
9677 err = 0;
9678
9679 if (unlikely(err < 0)) {
9680 netdev_err(dev,
9681 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9682 err, &features, &dev->features);
9683 /* return non-0 since some features might have changed and
9684 * it's better to fire a spurious notification than miss it
9685 */
9686 return -1;
9687 }
9688
9689 sync_lower:
9690 /* some features must be disabled on lower devices when disabled
9691 * on an upper device (think: bonding master or bridge)
9692 */
9693 netdev_for_each_lower_dev(dev, lower, iter)
9694 netdev_sync_lower_features(dev, lower, features);
9695
9696 if (!err) {
9697 netdev_features_t diff = features ^ dev->features;
9698
9699 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9700 /* udp_tunnel_{get,drop}_rx_info both need
9701 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9702 * device, or they won't do anything.
9703 * Thus we need to update dev->features
9704 * *before* calling udp_tunnel_get_rx_info,
9705 * but *after* calling udp_tunnel_drop_rx_info.
9706 */
9707 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9708 dev->features = features;
9709 udp_tunnel_get_rx_info(dev);
9710 } else {
9711 udp_tunnel_drop_rx_info(dev);
9712 }
9713 }
9714
9715 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9716 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9717 dev->features = features;
9718 err |= vlan_get_rx_ctag_filter_info(dev);
9719 } else {
9720 vlan_drop_rx_ctag_filter_info(dev);
9721 }
9722 }
9723
9724 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9725 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9726 dev->features = features;
9727 err |= vlan_get_rx_stag_filter_info(dev);
9728 } else {
9729 vlan_drop_rx_stag_filter_info(dev);
9730 }
9731 }
9732
9733 dev->features = features;
9734 }
9735
9736 return err < 0 ? 0 : 1;
9737 }
9738
9739 /**
9740 * netdev_update_features - recalculate device features
9741 * @dev: the device to check
9742 *
9743 * Recalculate dev->features set and send notifications if it
9744 * has changed. Should be called after driver or hardware dependent
9745 * conditions might have changed that influence the features.
9746 */
netdev_update_features(struct net_device * dev)9747 void netdev_update_features(struct net_device *dev)
9748 {
9749 if (__netdev_update_features(dev))
9750 netdev_features_change(dev);
9751 }
9752 EXPORT_SYMBOL(netdev_update_features);
9753
9754 /**
9755 * netdev_change_features - recalculate device features
9756 * @dev: the device to check
9757 *
9758 * Recalculate dev->features set and send notifications even
9759 * if they have not changed. Should be called instead of
9760 * netdev_update_features() if also dev->vlan_features might
9761 * have changed to allow the changes to be propagated to stacked
9762 * VLAN devices.
9763 */
netdev_change_features(struct net_device * dev)9764 void netdev_change_features(struct net_device *dev)
9765 {
9766 __netdev_update_features(dev);
9767 netdev_features_change(dev);
9768 }
9769 EXPORT_SYMBOL(netdev_change_features);
9770
9771 /**
9772 * netif_stacked_transfer_operstate - transfer operstate
9773 * @rootdev: the root or lower level device to transfer state from
9774 * @dev: the device to transfer operstate to
9775 *
9776 * Transfer operational state from root to device. This is normally
9777 * called when a stacking relationship exists between the root
9778 * device and the device(a leaf device).
9779 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9780 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9781 struct net_device *dev)
9782 {
9783 if (rootdev->operstate == IF_OPER_DORMANT)
9784 netif_dormant_on(dev);
9785 else
9786 netif_dormant_off(dev);
9787
9788 if (rootdev->operstate == IF_OPER_TESTING)
9789 netif_testing_on(dev);
9790 else
9791 netif_testing_off(dev);
9792
9793 if (netif_carrier_ok(rootdev))
9794 netif_carrier_on(dev);
9795 else
9796 netif_carrier_off(dev);
9797 }
9798 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9799
netif_alloc_rx_queues(struct net_device * dev)9800 static int netif_alloc_rx_queues(struct net_device *dev)
9801 {
9802 unsigned int i, count = dev->num_rx_queues;
9803 struct netdev_rx_queue *rx;
9804 size_t sz = count * sizeof(*rx);
9805 int err = 0;
9806
9807 BUG_ON(count < 1);
9808
9809 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9810 if (!rx)
9811 return -ENOMEM;
9812
9813 dev->_rx = rx;
9814
9815 for (i = 0; i < count; i++) {
9816 rx[i].dev = dev;
9817
9818 /* XDP RX-queue setup */
9819 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9820 if (err < 0)
9821 goto err_rxq_info;
9822 }
9823 return 0;
9824
9825 err_rxq_info:
9826 /* Rollback successful reg's and free other resources */
9827 while (i--)
9828 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9829 kvfree(dev->_rx);
9830 dev->_rx = NULL;
9831 return err;
9832 }
9833
netif_free_rx_queues(struct net_device * dev)9834 static void netif_free_rx_queues(struct net_device *dev)
9835 {
9836 unsigned int i, count = dev->num_rx_queues;
9837
9838 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9839 if (!dev->_rx)
9840 return;
9841
9842 for (i = 0; i < count; i++)
9843 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9844
9845 kvfree(dev->_rx);
9846 }
9847
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9848 static void netdev_init_one_queue(struct net_device *dev,
9849 struct netdev_queue *queue, void *_unused)
9850 {
9851 /* Initialize queue lock */
9852 spin_lock_init(&queue->_xmit_lock);
9853 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9854 queue->xmit_lock_owner = -1;
9855 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9856 queue->dev = dev;
9857 #ifdef CONFIG_BQL
9858 dql_init(&queue->dql, HZ);
9859 #endif
9860 }
9861
netif_free_tx_queues(struct net_device * dev)9862 static void netif_free_tx_queues(struct net_device *dev)
9863 {
9864 kvfree(dev->_tx);
9865 }
9866
netif_alloc_netdev_queues(struct net_device * dev)9867 static int netif_alloc_netdev_queues(struct net_device *dev)
9868 {
9869 unsigned int count = dev->num_tx_queues;
9870 struct netdev_queue *tx;
9871 size_t sz = count * sizeof(*tx);
9872
9873 if (count < 1 || count > 0xffff)
9874 return -EINVAL;
9875
9876 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9877 if (!tx)
9878 return -ENOMEM;
9879
9880 dev->_tx = tx;
9881
9882 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9883 spin_lock_init(&dev->tx_global_lock);
9884
9885 return 0;
9886 }
9887
netif_tx_stop_all_queues(struct net_device * dev)9888 void netif_tx_stop_all_queues(struct net_device *dev)
9889 {
9890 unsigned int i;
9891
9892 for (i = 0; i < dev->num_tx_queues; i++) {
9893 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9894
9895 netif_tx_stop_queue(txq);
9896 }
9897 }
9898 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9899
9900 /**
9901 * register_netdevice - register a network device
9902 * @dev: device to register
9903 *
9904 * Take a completed network device structure and add it to the kernel
9905 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9906 * chain. 0 is returned on success. A negative errno code is returned
9907 * on a failure to set up the device, or if the name is a duplicate.
9908 *
9909 * Callers must hold the rtnl semaphore. You may want
9910 * register_netdev() instead of this.
9911 *
9912 * BUGS:
9913 * The locking appears insufficient to guarantee two parallel registers
9914 * will not get the same name.
9915 */
9916
register_netdevice(struct net_device * dev)9917 int register_netdevice(struct net_device *dev)
9918 {
9919 int ret;
9920 struct net *net = dev_net(dev);
9921
9922 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9923 NETDEV_FEATURE_COUNT);
9924 BUG_ON(dev_boot_phase);
9925 ASSERT_RTNL();
9926
9927 might_sleep();
9928
9929 /* When net_device's are persistent, this will be fatal. */
9930 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9931 BUG_ON(!net);
9932
9933 ret = ethtool_check_ops(dev->ethtool_ops);
9934 if (ret)
9935 return ret;
9936
9937 spin_lock_init(&dev->addr_list_lock);
9938 netdev_set_addr_lockdep_class(dev);
9939
9940 ret = dev_get_valid_name(net, dev, dev->name);
9941 if (ret < 0)
9942 goto out;
9943
9944 ret = -ENOMEM;
9945 dev->name_node = netdev_name_node_head_alloc(dev);
9946 if (!dev->name_node)
9947 goto out;
9948
9949 /* Init, if this function is available */
9950 if (dev->netdev_ops->ndo_init) {
9951 ret = dev->netdev_ops->ndo_init(dev);
9952 if (ret) {
9953 if (ret > 0)
9954 ret = -EIO;
9955 goto err_free_name;
9956 }
9957 }
9958
9959 if (((dev->hw_features | dev->features) &
9960 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9961 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9962 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9963 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9964 ret = -EINVAL;
9965 goto err_uninit;
9966 }
9967
9968 ret = -EBUSY;
9969 if (!dev->ifindex)
9970 dev->ifindex = dev_new_index(net);
9971 else if (__dev_get_by_index(net, dev->ifindex))
9972 goto err_uninit;
9973
9974 /* Transfer changeable features to wanted_features and enable
9975 * software offloads (GSO and GRO).
9976 */
9977 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9978 dev->features |= NETIF_F_SOFT_FEATURES;
9979
9980 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9981 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9982 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9983 }
9984
9985 dev->wanted_features = dev->features & dev->hw_features;
9986
9987 if (!(dev->flags & IFF_LOOPBACK))
9988 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9989
9990 /* If IPv4 TCP segmentation offload is supported we should also
9991 * allow the device to enable segmenting the frame with the option
9992 * of ignoring a static IP ID value. This doesn't enable the
9993 * feature itself but allows the user to enable it later.
9994 */
9995 if (dev->hw_features & NETIF_F_TSO)
9996 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9997 if (dev->vlan_features & NETIF_F_TSO)
9998 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9999 if (dev->mpls_features & NETIF_F_TSO)
10000 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10001 if (dev->hw_enc_features & NETIF_F_TSO)
10002 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10003
10004 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10005 */
10006 dev->vlan_features |= NETIF_F_HIGHDMA;
10007
10008 /* Make NETIF_F_SG inheritable to tunnel devices.
10009 */
10010 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10011
10012 /* Make NETIF_F_SG inheritable to MPLS.
10013 */
10014 dev->mpls_features |= NETIF_F_SG;
10015
10016 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10017 ret = notifier_to_errno(ret);
10018 if (ret)
10019 goto err_uninit;
10020
10021 ret = netdev_register_kobject(dev);
10022 if (ret) {
10023 dev->reg_state = NETREG_UNREGISTERED;
10024 goto err_uninit;
10025 }
10026 dev->reg_state = NETREG_REGISTERED;
10027
10028 __netdev_update_features(dev);
10029
10030 /*
10031 * Default initial state at registry is that the
10032 * device is present.
10033 */
10034
10035 set_bit(__LINK_STATE_PRESENT, &dev->state);
10036
10037 linkwatch_init_dev(dev);
10038
10039 dev_init_scheduler(dev);
10040 dev_hold(dev);
10041 list_netdevice(dev);
10042 add_device_randomness(dev->dev_addr, dev->addr_len);
10043
10044 /* If the device has permanent device address, driver should
10045 * set dev_addr and also addr_assign_type should be set to
10046 * NET_ADDR_PERM (default value).
10047 */
10048 if (dev->addr_assign_type == NET_ADDR_PERM)
10049 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10050
10051 /* Notify protocols, that a new device appeared. */
10052 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10053 ret = notifier_to_errno(ret);
10054 if (ret) {
10055 /* Expect explicit free_netdev() on failure */
10056 dev->needs_free_netdev = false;
10057 unregister_netdevice_queue(dev, NULL);
10058 goto out;
10059 }
10060 /*
10061 * Prevent userspace races by waiting until the network
10062 * device is fully setup before sending notifications.
10063 */
10064 if (!dev->rtnl_link_ops ||
10065 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10066 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10067
10068 out:
10069 return ret;
10070
10071 err_uninit:
10072 if (dev->netdev_ops->ndo_uninit)
10073 dev->netdev_ops->ndo_uninit(dev);
10074 if (dev->priv_destructor)
10075 dev->priv_destructor(dev);
10076 err_free_name:
10077 netdev_name_node_free(dev->name_node);
10078 goto out;
10079 }
10080 EXPORT_SYMBOL(register_netdevice);
10081
10082 /**
10083 * init_dummy_netdev - init a dummy network device for NAPI
10084 * @dev: device to init
10085 *
10086 * This takes a network device structure and initialize the minimum
10087 * amount of fields so it can be used to schedule NAPI polls without
10088 * registering a full blown interface. This is to be used by drivers
10089 * that need to tie several hardware interfaces to a single NAPI
10090 * poll scheduler due to HW limitations.
10091 */
init_dummy_netdev(struct net_device * dev)10092 int init_dummy_netdev(struct net_device *dev)
10093 {
10094 /* Clear everything. Note we don't initialize spinlocks
10095 * are they aren't supposed to be taken by any of the
10096 * NAPI code and this dummy netdev is supposed to be
10097 * only ever used for NAPI polls
10098 */
10099 memset(dev, 0, sizeof(struct net_device));
10100
10101 /* make sure we BUG if trying to hit standard
10102 * register/unregister code path
10103 */
10104 dev->reg_state = NETREG_DUMMY;
10105
10106 /* NAPI wants this */
10107 INIT_LIST_HEAD(&dev->napi_list);
10108
10109 /* a dummy interface is started by default */
10110 set_bit(__LINK_STATE_PRESENT, &dev->state);
10111 set_bit(__LINK_STATE_START, &dev->state);
10112
10113 /* napi_busy_loop stats accounting wants this */
10114 dev_net_set(dev, &init_net);
10115
10116 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10117 * because users of this 'device' dont need to change
10118 * its refcount.
10119 */
10120
10121 return 0;
10122 }
10123 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10124
10125
10126 /**
10127 * register_netdev - register a network device
10128 * @dev: device to register
10129 *
10130 * Take a completed network device structure and add it to the kernel
10131 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10132 * chain. 0 is returned on success. A negative errno code is returned
10133 * on a failure to set up the device, or if the name is a duplicate.
10134 *
10135 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10136 * and expands the device name if you passed a format string to
10137 * alloc_netdev.
10138 */
register_netdev(struct net_device * dev)10139 int register_netdev(struct net_device *dev)
10140 {
10141 int err;
10142
10143 if (rtnl_lock_killable())
10144 return -EINTR;
10145 err = register_netdevice(dev);
10146 rtnl_unlock();
10147 return err;
10148 }
10149 EXPORT_SYMBOL(register_netdev);
10150
netdev_refcnt_read(const struct net_device * dev)10151 int netdev_refcnt_read(const struct net_device *dev)
10152 {
10153 int i, refcnt = 0;
10154
10155 for_each_possible_cpu(i)
10156 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10157 return refcnt;
10158 }
10159 EXPORT_SYMBOL(netdev_refcnt_read);
10160
10161 #define WAIT_REFS_MIN_MSECS 1
10162 #define WAIT_REFS_MAX_MSECS 250
10163 /**
10164 * netdev_wait_allrefs - wait until all references are gone.
10165 * @dev: target net_device
10166 *
10167 * This is called when unregistering network devices.
10168 *
10169 * Any protocol or device that holds a reference should register
10170 * for netdevice notification, and cleanup and put back the
10171 * reference if they receive an UNREGISTER event.
10172 * We can get stuck here if buggy protocols don't correctly
10173 * call dev_put.
10174 */
netdev_wait_allrefs(struct net_device * dev)10175 static void netdev_wait_allrefs(struct net_device *dev)
10176 {
10177 unsigned long rebroadcast_time, warning_time;
10178 int wait = 0, refcnt;
10179
10180 linkwatch_forget_dev(dev);
10181
10182 rebroadcast_time = warning_time = jiffies;
10183 refcnt = netdev_refcnt_read(dev);
10184
10185 while (refcnt != 0) {
10186 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10187 rtnl_lock();
10188
10189 /* Rebroadcast unregister notification */
10190 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10191
10192 __rtnl_unlock();
10193 rcu_barrier();
10194 rtnl_lock();
10195
10196 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10197 &dev->state)) {
10198 /* We must not have linkwatch events
10199 * pending on unregister. If this
10200 * happens, we simply run the queue
10201 * unscheduled, resulting in a noop
10202 * for this device.
10203 */
10204 linkwatch_run_queue();
10205 }
10206
10207 __rtnl_unlock();
10208
10209 rebroadcast_time = jiffies;
10210 }
10211
10212 if (!wait) {
10213 rcu_barrier();
10214 wait = WAIT_REFS_MIN_MSECS;
10215 } else {
10216 msleep(wait);
10217 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10218 }
10219
10220 refcnt = netdev_refcnt_read(dev);
10221
10222 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10223 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10224 dev->name, refcnt);
10225 warning_time = jiffies;
10226 }
10227 }
10228 }
10229
10230 /* The sequence is:
10231 *
10232 * rtnl_lock();
10233 * ...
10234 * register_netdevice(x1);
10235 * register_netdevice(x2);
10236 * ...
10237 * unregister_netdevice(y1);
10238 * unregister_netdevice(y2);
10239 * ...
10240 * rtnl_unlock();
10241 * free_netdev(y1);
10242 * free_netdev(y2);
10243 *
10244 * We are invoked by rtnl_unlock().
10245 * This allows us to deal with problems:
10246 * 1) We can delete sysfs objects which invoke hotplug
10247 * without deadlocking with linkwatch via keventd.
10248 * 2) Since we run with the RTNL semaphore not held, we can sleep
10249 * safely in order to wait for the netdev refcnt to drop to zero.
10250 *
10251 * We must not return until all unregister events added during
10252 * the interval the lock was held have been completed.
10253 */
netdev_run_todo(void)10254 void netdev_run_todo(void)
10255 {
10256 struct list_head list;
10257 #ifdef CONFIG_LOCKDEP
10258 struct list_head unlink_list;
10259
10260 list_replace_init(&net_unlink_list, &unlink_list);
10261
10262 while (!list_empty(&unlink_list)) {
10263 struct net_device *dev = list_first_entry(&unlink_list,
10264 struct net_device,
10265 unlink_list);
10266 list_del_init(&dev->unlink_list);
10267 dev->nested_level = dev->lower_level - 1;
10268 }
10269 #endif
10270
10271 /* Snapshot list, allow later requests */
10272 list_replace_init(&net_todo_list, &list);
10273
10274 __rtnl_unlock();
10275
10276
10277 /* Wait for rcu callbacks to finish before next phase */
10278 if (!list_empty(&list))
10279 rcu_barrier();
10280
10281 while (!list_empty(&list)) {
10282 struct net_device *dev
10283 = list_first_entry(&list, struct net_device, todo_list);
10284 list_del(&dev->todo_list);
10285
10286 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10287 pr_err("network todo '%s' but state %d\n",
10288 dev->name, dev->reg_state);
10289 dump_stack();
10290 continue;
10291 }
10292
10293 dev->reg_state = NETREG_UNREGISTERED;
10294
10295 netdev_wait_allrefs(dev);
10296
10297 /* paranoia */
10298 BUG_ON(netdev_refcnt_read(dev));
10299 BUG_ON(!list_empty(&dev->ptype_all));
10300 BUG_ON(!list_empty(&dev->ptype_specific));
10301 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10302 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10303
10304 if (dev->priv_destructor)
10305 dev->priv_destructor(dev);
10306 if (dev->needs_free_netdev)
10307 free_netdev(dev);
10308
10309 /* Report a network device has been unregistered */
10310 rtnl_lock();
10311 dev_net(dev)->dev_unreg_count--;
10312 __rtnl_unlock();
10313 wake_up(&netdev_unregistering_wq);
10314
10315 /* Free network device */
10316 kobject_put(&dev->dev.kobj);
10317 }
10318 }
10319
10320 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10321 * all the same fields in the same order as net_device_stats, with only
10322 * the type differing, but rtnl_link_stats64 may have additional fields
10323 * at the end for newer counters.
10324 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10325 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10326 const struct net_device_stats *netdev_stats)
10327 {
10328 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10329 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10330 u64 *dst = (u64 *)stats64;
10331
10332 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10333 for (i = 0; i < n; i++)
10334 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10335 /* zero out counters that only exist in rtnl_link_stats64 */
10336 memset((char *)stats64 + n * sizeof(u64), 0,
10337 sizeof(*stats64) - n * sizeof(u64));
10338 }
10339 EXPORT_SYMBOL(netdev_stats_to_stats64);
10340
10341 /**
10342 * dev_get_stats - get network device statistics
10343 * @dev: device to get statistics from
10344 * @storage: place to store stats
10345 *
10346 * Get network statistics from device. Return @storage.
10347 * The device driver may provide its own method by setting
10348 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10349 * otherwise the internal statistics structure is used.
10350 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10351 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10352 struct rtnl_link_stats64 *storage)
10353 {
10354 const struct net_device_ops *ops = dev->netdev_ops;
10355
10356 if (ops->ndo_get_stats64) {
10357 memset(storage, 0, sizeof(*storage));
10358 ops->ndo_get_stats64(dev, storage);
10359 } else if (ops->ndo_get_stats) {
10360 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10361 } else {
10362 netdev_stats_to_stats64(storage, &dev->stats);
10363 }
10364 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10365 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10366 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10367 return storage;
10368 }
10369 EXPORT_SYMBOL(dev_get_stats);
10370
10371 /**
10372 * dev_fetch_sw_netstats - get per-cpu network device statistics
10373 * @s: place to store stats
10374 * @netstats: per-cpu network stats to read from
10375 *
10376 * Read per-cpu network statistics and populate the related fields in @s.
10377 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10378 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10379 const struct pcpu_sw_netstats __percpu *netstats)
10380 {
10381 int cpu;
10382
10383 for_each_possible_cpu(cpu) {
10384 const struct pcpu_sw_netstats *stats;
10385 struct pcpu_sw_netstats tmp;
10386 unsigned int start;
10387
10388 stats = per_cpu_ptr(netstats, cpu);
10389 do {
10390 start = u64_stats_fetch_begin_irq(&stats->syncp);
10391 tmp.rx_packets = stats->rx_packets;
10392 tmp.rx_bytes = stats->rx_bytes;
10393 tmp.tx_packets = stats->tx_packets;
10394 tmp.tx_bytes = stats->tx_bytes;
10395 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10396
10397 s->rx_packets += tmp.rx_packets;
10398 s->rx_bytes += tmp.rx_bytes;
10399 s->tx_packets += tmp.tx_packets;
10400 s->tx_bytes += tmp.tx_bytes;
10401 }
10402 }
10403 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10404
dev_ingress_queue_create(struct net_device * dev)10405 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10406 {
10407 struct netdev_queue *queue = dev_ingress_queue(dev);
10408
10409 #ifdef CONFIG_NET_CLS_ACT
10410 if (queue)
10411 return queue;
10412 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10413 if (!queue)
10414 return NULL;
10415 netdev_init_one_queue(dev, queue, NULL);
10416 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10417 queue->qdisc_sleeping = &noop_qdisc;
10418 rcu_assign_pointer(dev->ingress_queue, queue);
10419 #endif
10420 return queue;
10421 }
10422
10423 static const struct ethtool_ops default_ethtool_ops;
10424
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10425 void netdev_set_default_ethtool_ops(struct net_device *dev,
10426 const struct ethtool_ops *ops)
10427 {
10428 if (dev->ethtool_ops == &default_ethtool_ops)
10429 dev->ethtool_ops = ops;
10430 }
10431 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10432
netdev_freemem(struct net_device * dev)10433 void netdev_freemem(struct net_device *dev)
10434 {
10435 char *addr = (char *)dev - dev->padded;
10436
10437 kvfree(addr);
10438 }
10439
10440 /**
10441 * alloc_netdev_mqs - allocate network device
10442 * @sizeof_priv: size of private data to allocate space for
10443 * @name: device name format string
10444 * @name_assign_type: origin of device name
10445 * @setup: callback to initialize device
10446 * @txqs: the number of TX subqueues to allocate
10447 * @rxqs: the number of RX subqueues to allocate
10448 *
10449 * Allocates a struct net_device with private data area for driver use
10450 * and performs basic initialization. Also allocates subqueue structs
10451 * for each queue on the device.
10452 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10453 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10454 unsigned char name_assign_type,
10455 void (*setup)(struct net_device *),
10456 unsigned int txqs, unsigned int rxqs)
10457 {
10458 struct net_device *dev;
10459 unsigned int alloc_size;
10460 struct net_device *p;
10461
10462 BUG_ON(strlen(name) >= sizeof(dev->name));
10463
10464 if (txqs < 1) {
10465 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10466 return NULL;
10467 }
10468
10469 if (rxqs < 1) {
10470 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10471 return NULL;
10472 }
10473
10474 alloc_size = sizeof(struct net_device);
10475 if (sizeof_priv) {
10476 /* ensure 32-byte alignment of private area */
10477 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10478 alloc_size += sizeof_priv;
10479 }
10480 /* ensure 32-byte alignment of whole construct */
10481 alloc_size += NETDEV_ALIGN - 1;
10482
10483 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10484 if (!p)
10485 return NULL;
10486
10487 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10488 dev->padded = (char *)dev - (char *)p;
10489
10490 dev->pcpu_refcnt = alloc_percpu(int);
10491 if (!dev->pcpu_refcnt)
10492 goto free_dev;
10493
10494 if (dev_addr_init(dev))
10495 goto free_pcpu;
10496
10497 dev_mc_init(dev);
10498 dev_uc_init(dev);
10499
10500 dev_net_set(dev, &init_net);
10501
10502 dev->gso_max_size = GSO_MAX_SIZE;
10503 dev->gso_max_segs = GSO_MAX_SEGS;
10504 dev->upper_level = 1;
10505 dev->lower_level = 1;
10506 #ifdef CONFIG_LOCKDEP
10507 dev->nested_level = 0;
10508 INIT_LIST_HEAD(&dev->unlink_list);
10509 #endif
10510
10511 INIT_LIST_HEAD(&dev->napi_list);
10512 INIT_LIST_HEAD(&dev->unreg_list);
10513 INIT_LIST_HEAD(&dev->close_list);
10514 INIT_LIST_HEAD(&dev->link_watch_list);
10515 INIT_LIST_HEAD(&dev->adj_list.upper);
10516 INIT_LIST_HEAD(&dev->adj_list.lower);
10517 INIT_LIST_HEAD(&dev->ptype_all);
10518 INIT_LIST_HEAD(&dev->ptype_specific);
10519 INIT_LIST_HEAD(&dev->net_notifier_list);
10520 #ifdef CONFIG_NET_SCHED
10521 hash_init(dev->qdisc_hash);
10522 #endif
10523 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10524 setup(dev);
10525
10526 if (!dev->tx_queue_len) {
10527 dev->priv_flags |= IFF_NO_QUEUE;
10528 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10529 }
10530
10531 dev->num_tx_queues = txqs;
10532 dev->real_num_tx_queues = txqs;
10533 if (netif_alloc_netdev_queues(dev))
10534 goto free_all;
10535
10536 dev->num_rx_queues = rxqs;
10537 dev->real_num_rx_queues = rxqs;
10538 if (netif_alloc_rx_queues(dev))
10539 goto free_all;
10540
10541 strcpy(dev->name, name);
10542 dev->name_assign_type = name_assign_type;
10543 dev->group = INIT_NETDEV_GROUP;
10544 if (!dev->ethtool_ops)
10545 dev->ethtool_ops = &default_ethtool_ops;
10546
10547 nf_hook_ingress_init(dev);
10548
10549 return dev;
10550
10551 free_all:
10552 free_netdev(dev);
10553 return NULL;
10554
10555 free_pcpu:
10556 free_percpu(dev->pcpu_refcnt);
10557 free_dev:
10558 netdev_freemem(dev);
10559 return NULL;
10560 }
10561 EXPORT_SYMBOL(alloc_netdev_mqs);
10562
10563 /**
10564 * free_netdev - free network device
10565 * @dev: device
10566 *
10567 * This function does the last stage of destroying an allocated device
10568 * interface. The reference to the device object is released. If this
10569 * is the last reference then it will be freed.Must be called in process
10570 * context.
10571 */
free_netdev(struct net_device * dev)10572 void free_netdev(struct net_device *dev)
10573 {
10574 struct napi_struct *p, *n;
10575
10576 might_sleep();
10577
10578 /* When called immediately after register_netdevice() failed the unwind
10579 * handling may still be dismantling the device. Handle that case by
10580 * deferring the free.
10581 */
10582 if (dev->reg_state == NETREG_UNREGISTERING) {
10583 ASSERT_RTNL();
10584 dev->needs_free_netdev = true;
10585 return;
10586 }
10587
10588 netif_free_tx_queues(dev);
10589 netif_free_rx_queues(dev);
10590
10591 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10592
10593 /* Flush device addresses */
10594 dev_addr_flush(dev);
10595
10596 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10597 netif_napi_del(p);
10598
10599 free_percpu(dev->pcpu_refcnt);
10600 dev->pcpu_refcnt = NULL;
10601 free_percpu(dev->xdp_bulkq);
10602 dev->xdp_bulkq = NULL;
10603
10604 /* Compatibility with error handling in drivers */
10605 if (dev->reg_state == NETREG_UNINITIALIZED) {
10606 netdev_freemem(dev);
10607 return;
10608 }
10609
10610 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10611 dev->reg_state = NETREG_RELEASED;
10612
10613 /* will free via device release */
10614 put_device(&dev->dev);
10615 }
10616 EXPORT_SYMBOL(free_netdev);
10617
10618 /**
10619 * synchronize_net - Synchronize with packet receive processing
10620 *
10621 * Wait for packets currently being received to be done.
10622 * Does not block later packets from starting.
10623 */
synchronize_net(void)10624 void synchronize_net(void)
10625 {
10626 might_sleep();
10627 if (rtnl_is_locked())
10628 synchronize_rcu_expedited();
10629 else
10630 synchronize_rcu();
10631 }
10632 EXPORT_SYMBOL(synchronize_net);
10633
10634 /**
10635 * unregister_netdevice_queue - remove device from the kernel
10636 * @dev: device
10637 * @head: list
10638 *
10639 * This function shuts down a device interface and removes it
10640 * from the kernel tables.
10641 * If head not NULL, device is queued to be unregistered later.
10642 *
10643 * Callers must hold the rtnl semaphore. You may want
10644 * unregister_netdev() instead of this.
10645 */
10646
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10647 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10648 {
10649 ASSERT_RTNL();
10650
10651 if (head) {
10652 list_move_tail(&dev->unreg_list, head);
10653 } else {
10654 LIST_HEAD(single);
10655
10656 list_add(&dev->unreg_list, &single);
10657 unregister_netdevice_many(&single);
10658 }
10659 }
10660 EXPORT_SYMBOL(unregister_netdevice_queue);
10661
10662 /**
10663 * unregister_netdevice_many - unregister many devices
10664 * @head: list of devices
10665 *
10666 * Note: As most callers use a stack allocated list_head,
10667 * we force a list_del() to make sure stack wont be corrupted later.
10668 */
unregister_netdevice_many(struct list_head * head)10669 void unregister_netdevice_many(struct list_head *head)
10670 {
10671 struct net_device *dev, *tmp;
10672 LIST_HEAD(close_head);
10673
10674 BUG_ON(dev_boot_phase);
10675 ASSERT_RTNL();
10676
10677 if (list_empty(head))
10678 return;
10679
10680 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10681 /* Some devices call without registering
10682 * for initialization unwind. Remove those
10683 * devices and proceed with the remaining.
10684 */
10685 if (dev->reg_state == NETREG_UNINITIALIZED) {
10686 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10687 dev->name, dev);
10688
10689 WARN_ON(1);
10690 list_del(&dev->unreg_list);
10691 continue;
10692 }
10693 dev->dismantle = true;
10694 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10695 }
10696
10697 /* If device is running, close it first. */
10698 list_for_each_entry(dev, head, unreg_list)
10699 list_add_tail(&dev->close_list, &close_head);
10700 dev_close_many(&close_head, true);
10701
10702 list_for_each_entry(dev, head, unreg_list) {
10703 /* And unlink it from device chain. */
10704 unlist_netdevice(dev);
10705
10706 dev->reg_state = NETREG_UNREGISTERING;
10707 }
10708 flush_all_backlogs();
10709
10710 synchronize_net();
10711
10712 list_for_each_entry(dev, head, unreg_list) {
10713 struct sk_buff *skb = NULL;
10714
10715 /* Shutdown queueing discipline. */
10716 dev_shutdown(dev);
10717
10718 dev_xdp_uninstall(dev);
10719
10720 /* Notify protocols, that we are about to destroy
10721 * this device. They should clean all the things.
10722 */
10723 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10724
10725 if (!dev->rtnl_link_ops ||
10726 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10727 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10728 GFP_KERNEL, NULL, 0);
10729
10730 /*
10731 * Flush the unicast and multicast chains
10732 */
10733 dev_uc_flush(dev);
10734 dev_mc_flush(dev);
10735
10736 netdev_name_node_alt_flush(dev);
10737 netdev_name_node_free(dev->name_node);
10738
10739 if (dev->netdev_ops->ndo_uninit)
10740 dev->netdev_ops->ndo_uninit(dev);
10741
10742 if (skb)
10743 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10744
10745 /* Notifier chain MUST detach us all upper devices. */
10746 WARN_ON(netdev_has_any_upper_dev(dev));
10747 WARN_ON(netdev_has_any_lower_dev(dev));
10748
10749 /* Remove entries from kobject tree */
10750 netdev_unregister_kobject(dev);
10751 #ifdef CONFIG_XPS
10752 /* Remove XPS queueing entries */
10753 netif_reset_xps_queues_gt(dev, 0);
10754 #endif
10755 }
10756
10757 synchronize_net();
10758
10759 list_for_each_entry(dev, head, unreg_list) {
10760 dev_put(dev);
10761 net_set_todo(dev);
10762 }
10763
10764 list_del(head);
10765 }
10766 EXPORT_SYMBOL(unregister_netdevice_many);
10767
10768 /**
10769 * unregister_netdev - remove device from the kernel
10770 * @dev: device
10771 *
10772 * This function shuts down a device interface and removes it
10773 * from the kernel tables.
10774 *
10775 * This is just a wrapper for unregister_netdevice that takes
10776 * the rtnl semaphore. In general you want to use this and not
10777 * unregister_netdevice.
10778 */
unregister_netdev(struct net_device * dev)10779 void unregister_netdev(struct net_device *dev)
10780 {
10781 rtnl_lock();
10782 unregister_netdevice(dev);
10783 rtnl_unlock();
10784 }
10785 EXPORT_SYMBOL(unregister_netdev);
10786
10787 /**
10788 * dev_change_net_namespace - move device to different nethost namespace
10789 * @dev: device
10790 * @net: network namespace
10791 * @pat: If not NULL name pattern to try if the current device name
10792 * is already taken in the destination network namespace.
10793 *
10794 * This function shuts down a device interface and moves it
10795 * to a new network namespace. On success 0 is returned, on
10796 * a failure a netagive errno code is returned.
10797 *
10798 * Callers must hold the rtnl semaphore.
10799 */
10800
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10801 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10802 {
10803 struct net *net_old = dev_net(dev);
10804 int err, new_nsid, new_ifindex;
10805
10806 ASSERT_RTNL();
10807
10808 /* Don't allow namespace local devices to be moved. */
10809 err = -EINVAL;
10810 if (dev->features & NETIF_F_NETNS_LOCAL)
10811 goto out;
10812
10813 /* Ensure the device has been registrered */
10814 if (dev->reg_state != NETREG_REGISTERED)
10815 goto out;
10816
10817 /* Get out if there is nothing todo */
10818 err = 0;
10819 if (net_eq(net_old, net))
10820 goto out;
10821
10822 /* Pick the destination device name, and ensure
10823 * we can use it in the destination network namespace.
10824 */
10825 err = -EEXIST;
10826 if (__dev_get_by_name(net, dev->name)) {
10827 /* We get here if we can't use the current device name */
10828 if (!pat)
10829 goto out;
10830 err = dev_get_valid_name(net, dev, pat);
10831 if (err < 0)
10832 goto out;
10833 }
10834
10835 /*
10836 * And now a mini version of register_netdevice unregister_netdevice.
10837 */
10838
10839 /* If device is running close it first. */
10840 dev_close(dev);
10841
10842 /* And unlink it from device chain */
10843 unlist_netdevice(dev);
10844
10845 synchronize_net();
10846
10847 /* Shutdown queueing discipline. */
10848 dev_shutdown(dev);
10849
10850 /* Notify protocols, that we are about to destroy
10851 * this device. They should clean all the things.
10852 *
10853 * Note that dev->reg_state stays at NETREG_REGISTERED.
10854 * This is wanted because this way 8021q and macvlan know
10855 * the device is just moving and can keep their slaves up.
10856 */
10857 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10858 rcu_barrier();
10859
10860 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10861 /* If there is an ifindex conflict assign a new one */
10862 if (__dev_get_by_index(net, dev->ifindex))
10863 new_ifindex = dev_new_index(net);
10864 else
10865 new_ifindex = dev->ifindex;
10866
10867 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10868 new_ifindex);
10869
10870 /*
10871 * Flush the unicast and multicast chains
10872 */
10873 dev_uc_flush(dev);
10874 dev_mc_flush(dev);
10875
10876 /* Send a netdev-removed uevent to the old namespace */
10877 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10878 netdev_adjacent_del_links(dev);
10879
10880 /* Move per-net netdevice notifiers that are following the netdevice */
10881 move_netdevice_notifiers_dev_net(dev, net);
10882
10883 /* Actually switch the network namespace */
10884 dev_net_set(dev, net);
10885 dev->ifindex = new_ifindex;
10886
10887 /* Send a netdev-add uevent to the new namespace */
10888 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10889 netdev_adjacent_add_links(dev);
10890
10891 /* Fixup kobjects */
10892 err = device_rename(&dev->dev, dev->name);
10893 WARN_ON(err);
10894
10895 /* Adapt owner in case owning user namespace of target network
10896 * namespace is different from the original one.
10897 */
10898 err = netdev_change_owner(dev, net_old, net);
10899 WARN_ON(err);
10900
10901 /* Add the device back in the hashes */
10902 list_netdevice(dev);
10903
10904 /* Notify protocols, that a new device appeared. */
10905 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10906
10907 /*
10908 * Prevent userspace races by waiting until the network
10909 * device is fully setup before sending notifications.
10910 */
10911 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10912
10913 synchronize_net();
10914 err = 0;
10915 out:
10916 return err;
10917 }
10918 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10919
dev_cpu_dead(unsigned int oldcpu)10920 static int dev_cpu_dead(unsigned int oldcpu)
10921 {
10922 struct sk_buff **list_skb;
10923 struct sk_buff *skb;
10924 unsigned int cpu;
10925 struct softnet_data *sd, *oldsd, *remsd = NULL;
10926
10927 local_irq_disable();
10928 cpu = smp_processor_id();
10929 sd = &per_cpu(softnet_data, cpu);
10930 oldsd = &per_cpu(softnet_data, oldcpu);
10931
10932 /* Find end of our completion_queue. */
10933 list_skb = &sd->completion_queue;
10934 while (*list_skb)
10935 list_skb = &(*list_skb)->next;
10936 /* Append completion queue from offline CPU. */
10937 *list_skb = oldsd->completion_queue;
10938 oldsd->completion_queue = NULL;
10939
10940 /* Append output queue from offline CPU. */
10941 if (oldsd->output_queue) {
10942 *sd->output_queue_tailp = oldsd->output_queue;
10943 sd->output_queue_tailp = oldsd->output_queue_tailp;
10944 oldsd->output_queue = NULL;
10945 oldsd->output_queue_tailp = &oldsd->output_queue;
10946 }
10947 /* Append NAPI poll list from offline CPU, with one exception :
10948 * process_backlog() must be called by cpu owning percpu backlog.
10949 * We properly handle process_queue & input_pkt_queue later.
10950 */
10951 while (!list_empty(&oldsd->poll_list)) {
10952 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10953 struct napi_struct,
10954 poll_list);
10955
10956 list_del_init(&napi->poll_list);
10957 if (napi->poll == process_backlog)
10958 napi->state = 0;
10959 else
10960 ____napi_schedule(sd, napi);
10961 }
10962
10963 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10964 local_irq_enable();
10965
10966 #ifdef CONFIG_RPS
10967 remsd = oldsd->rps_ipi_list;
10968 oldsd->rps_ipi_list = NULL;
10969 #endif
10970 /* send out pending IPI's on offline CPU */
10971 net_rps_send_ipi(remsd);
10972
10973 /* Process offline CPU's input_pkt_queue */
10974 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10975 netif_rx_ni(skb);
10976 input_queue_head_incr(oldsd);
10977 }
10978 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10979 netif_rx_ni(skb);
10980 input_queue_head_incr(oldsd);
10981 }
10982
10983 return 0;
10984 }
10985
10986 /**
10987 * netdev_increment_features - increment feature set by one
10988 * @all: current feature set
10989 * @one: new feature set
10990 * @mask: mask feature set
10991 *
10992 * Computes a new feature set after adding a device with feature set
10993 * @one to the master device with current feature set @all. Will not
10994 * enable anything that is off in @mask. Returns the new feature set.
10995 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10996 netdev_features_t netdev_increment_features(netdev_features_t all,
10997 netdev_features_t one, netdev_features_t mask)
10998 {
10999 if (mask & NETIF_F_HW_CSUM)
11000 mask |= NETIF_F_CSUM_MASK;
11001 mask |= NETIF_F_VLAN_CHALLENGED;
11002
11003 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11004 all &= one | ~NETIF_F_ALL_FOR_ALL;
11005
11006 /* If one device supports hw checksumming, set for all. */
11007 if (all & NETIF_F_HW_CSUM)
11008 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11009
11010 return all;
11011 }
11012 EXPORT_SYMBOL(netdev_increment_features);
11013
netdev_create_hash(void)11014 static struct hlist_head * __net_init netdev_create_hash(void)
11015 {
11016 int i;
11017 struct hlist_head *hash;
11018
11019 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11020 if (hash != NULL)
11021 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11022 INIT_HLIST_HEAD(&hash[i]);
11023
11024 return hash;
11025 }
11026
11027 /* Initialize per network namespace state */
netdev_init(struct net * net)11028 static int __net_init netdev_init(struct net *net)
11029 {
11030 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11031 8 * sizeof_field(struct napi_struct, gro_bitmask));
11032
11033 if (net != &init_net)
11034 INIT_LIST_HEAD(&net->dev_base_head);
11035
11036 net->dev_name_head = netdev_create_hash();
11037 if (net->dev_name_head == NULL)
11038 goto err_name;
11039
11040 net->dev_index_head = netdev_create_hash();
11041 if (net->dev_index_head == NULL)
11042 goto err_idx;
11043
11044 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11045
11046 return 0;
11047
11048 err_idx:
11049 kfree(net->dev_name_head);
11050 err_name:
11051 return -ENOMEM;
11052 }
11053
11054 /**
11055 * netdev_drivername - network driver for the device
11056 * @dev: network device
11057 *
11058 * Determine network driver for device.
11059 */
netdev_drivername(const struct net_device * dev)11060 const char *netdev_drivername(const struct net_device *dev)
11061 {
11062 const struct device_driver *driver;
11063 const struct device *parent;
11064 const char *empty = "";
11065
11066 parent = dev->dev.parent;
11067 if (!parent)
11068 return empty;
11069
11070 driver = parent->driver;
11071 if (driver && driver->name)
11072 return driver->name;
11073 return empty;
11074 }
11075
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11076 static void __netdev_printk(const char *level, const struct net_device *dev,
11077 struct va_format *vaf)
11078 {
11079 if (dev && dev->dev.parent) {
11080 dev_printk_emit(level[1] - '0',
11081 dev->dev.parent,
11082 "%s %s %s%s: %pV",
11083 dev_driver_string(dev->dev.parent),
11084 dev_name(dev->dev.parent),
11085 netdev_name(dev), netdev_reg_state(dev),
11086 vaf);
11087 } else if (dev) {
11088 printk("%s%s%s: %pV",
11089 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11090 } else {
11091 printk("%s(NULL net_device): %pV", level, vaf);
11092 }
11093 }
11094
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11095 void netdev_printk(const char *level, const struct net_device *dev,
11096 const char *format, ...)
11097 {
11098 struct va_format vaf;
11099 va_list args;
11100
11101 va_start(args, format);
11102
11103 vaf.fmt = format;
11104 vaf.va = &args;
11105
11106 __netdev_printk(level, dev, &vaf);
11107
11108 va_end(args);
11109 }
11110 EXPORT_SYMBOL(netdev_printk);
11111
11112 #define define_netdev_printk_level(func, level) \
11113 void func(const struct net_device *dev, const char *fmt, ...) \
11114 { \
11115 struct va_format vaf; \
11116 va_list args; \
11117 \
11118 va_start(args, fmt); \
11119 \
11120 vaf.fmt = fmt; \
11121 vaf.va = &args; \
11122 \
11123 __netdev_printk(level, dev, &vaf); \
11124 \
11125 va_end(args); \
11126 } \
11127 EXPORT_SYMBOL(func);
11128
11129 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11130 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11131 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11132 define_netdev_printk_level(netdev_err, KERN_ERR);
11133 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11134 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11135 define_netdev_printk_level(netdev_info, KERN_INFO);
11136
netdev_exit(struct net * net)11137 static void __net_exit netdev_exit(struct net *net)
11138 {
11139 kfree(net->dev_name_head);
11140 kfree(net->dev_index_head);
11141 if (net != &init_net)
11142 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11143 }
11144
11145 static struct pernet_operations __net_initdata netdev_net_ops = {
11146 .init = netdev_init,
11147 .exit = netdev_exit,
11148 };
11149
default_device_exit(struct net * net)11150 static void __net_exit default_device_exit(struct net *net)
11151 {
11152 struct net_device *dev, *aux;
11153 /*
11154 * Push all migratable network devices back to the
11155 * initial network namespace
11156 */
11157 rtnl_lock();
11158 for_each_netdev_safe(net, dev, aux) {
11159 int err;
11160 char fb_name[IFNAMSIZ];
11161
11162 /* Ignore unmoveable devices (i.e. loopback) */
11163 if (dev->features & NETIF_F_NETNS_LOCAL)
11164 continue;
11165
11166 /* Leave virtual devices for the generic cleanup */
11167 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11168 continue;
11169
11170 /* Push remaining network devices to init_net */
11171 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11172 if (__dev_get_by_name(&init_net, fb_name))
11173 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11174 err = dev_change_net_namespace(dev, &init_net, fb_name);
11175 if (err) {
11176 pr_emerg("%s: failed to move %s to init_net: %d\n",
11177 __func__, dev->name, err);
11178 BUG();
11179 }
11180 }
11181 rtnl_unlock();
11182 }
11183
rtnl_lock_unregistering(struct list_head * net_list)11184 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11185 {
11186 /* Return with the rtnl_lock held when there are no network
11187 * devices unregistering in any network namespace in net_list.
11188 */
11189 struct net *net;
11190 bool unregistering;
11191 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11192
11193 add_wait_queue(&netdev_unregistering_wq, &wait);
11194 for (;;) {
11195 unregistering = false;
11196 rtnl_lock();
11197 list_for_each_entry(net, net_list, exit_list) {
11198 if (net->dev_unreg_count > 0) {
11199 unregistering = true;
11200 break;
11201 }
11202 }
11203 if (!unregistering)
11204 break;
11205 __rtnl_unlock();
11206
11207 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11208 }
11209 remove_wait_queue(&netdev_unregistering_wq, &wait);
11210 }
11211
default_device_exit_batch(struct list_head * net_list)11212 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11213 {
11214 /* At exit all network devices most be removed from a network
11215 * namespace. Do this in the reverse order of registration.
11216 * Do this across as many network namespaces as possible to
11217 * improve batching efficiency.
11218 */
11219 struct net_device *dev;
11220 struct net *net;
11221 LIST_HEAD(dev_kill_list);
11222
11223 /* To prevent network device cleanup code from dereferencing
11224 * loopback devices or network devices that have been freed
11225 * wait here for all pending unregistrations to complete,
11226 * before unregistring the loopback device and allowing the
11227 * network namespace be freed.
11228 *
11229 * The netdev todo list containing all network devices
11230 * unregistrations that happen in default_device_exit_batch
11231 * will run in the rtnl_unlock() at the end of
11232 * default_device_exit_batch.
11233 */
11234 rtnl_lock_unregistering(net_list);
11235 list_for_each_entry(net, net_list, exit_list) {
11236 for_each_netdev_reverse(net, dev) {
11237 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11238 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11239 else
11240 unregister_netdevice_queue(dev, &dev_kill_list);
11241 }
11242 }
11243 unregister_netdevice_many(&dev_kill_list);
11244 rtnl_unlock();
11245 }
11246
11247 static struct pernet_operations __net_initdata default_device_ops = {
11248 .exit = default_device_exit,
11249 .exit_batch = default_device_exit_batch,
11250 };
11251
11252 /*
11253 * Initialize the DEV module. At boot time this walks the device list and
11254 * unhooks any devices that fail to initialise (normally hardware not
11255 * present) and leaves us with a valid list of present and active devices.
11256 *
11257 */
11258
11259 /*
11260 * This is called single threaded during boot, so no need
11261 * to take the rtnl semaphore.
11262 */
net_dev_init(void)11263 static int __init net_dev_init(void)
11264 {
11265 int i, rc = -ENOMEM;
11266
11267 BUG_ON(!dev_boot_phase);
11268
11269 if (dev_proc_init())
11270 goto out;
11271
11272 if (netdev_kobject_init())
11273 goto out;
11274
11275 INIT_LIST_HEAD(&ptype_all);
11276 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11277 INIT_LIST_HEAD(&ptype_base[i]);
11278
11279 INIT_LIST_HEAD(&offload_base);
11280
11281 if (register_pernet_subsys(&netdev_net_ops))
11282 goto out;
11283
11284 /*
11285 * Initialise the packet receive queues.
11286 */
11287
11288 for_each_possible_cpu(i) {
11289 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11290 struct softnet_data *sd = &per_cpu(softnet_data, i);
11291
11292 INIT_WORK(flush, flush_backlog);
11293
11294 skb_queue_head_init(&sd->input_pkt_queue);
11295 skb_queue_head_init(&sd->process_queue);
11296 #ifdef CONFIG_XFRM_OFFLOAD
11297 skb_queue_head_init(&sd->xfrm_backlog);
11298 #endif
11299 INIT_LIST_HEAD(&sd->poll_list);
11300 sd->output_queue_tailp = &sd->output_queue;
11301 #ifdef CONFIG_RPS
11302 sd->csd.func = rps_trigger_softirq;
11303 sd->csd.info = sd;
11304 sd->cpu = i;
11305 #endif
11306
11307 init_gro_hash(&sd->backlog);
11308 sd->backlog.poll = process_backlog;
11309 sd->backlog.weight = weight_p;
11310 }
11311
11312 dev_boot_phase = 0;
11313
11314 /* The loopback device is special if any other network devices
11315 * is present in a network namespace the loopback device must
11316 * be present. Since we now dynamically allocate and free the
11317 * loopback device ensure this invariant is maintained by
11318 * keeping the loopback device as the first device on the
11319 * list of network devices. Ensuring the loopback devices
11320 * is the first device that appears and the last network device
11321 * that disappears.
11322 */
11323 if (register_pernet_device(&loopback_net_ops))
11324 goto out;
11325
11326 if (register_pernet_device(&default_device_ops))
11327 goto out;
11328
11329 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11330 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11331
11332 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11333 NULL, dev_cpu_dead);
11334 WARN_ON(rc < 0);
11335 rc = 0;
11336 out:
11337 return rc;
11338 }
11339
11340 subsys_initcall(net_dev_init);
11341