1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_
6 #define V8_CODEGEN_ARM_CONSTANTS_ARM_H_
7
8 #include <stdint.h>
9
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/common/globals.h"
13 #include "src/utils/boxed-float.h"
14 #include "src/utils/utils.h"
15
16 // ARM EABI is required.
17 #if defined(__arm__) && !defined(__ARM_EABI__)
18 #error ARM EABI support is required.
19 #endif
20
21 namespace v8 {
22 namespace internal {
23
24 // Constant pool marker.
25 // Use UDF, the permanently undefined instruction.
26 const int kConstantPoolMarkerMask = 0xfff000f0;
27 const int kConstantPoolMarker = 0xe7f000f0;
28 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)29 inline int EncodeConstantPoolLength(int length) {
30 DCHECK((length & kConstantPoolLengthMaxMask) == length);
31 return ((length & 0xfff0) << 4) | (length & 0xf);
32 }
DecodeConstantPoolLength(int instr)33 inline int DecodeConstantPoolLength(int instr) {
34 DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
35 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36 }
37
38 // Number of registers in normal ARM mode.
39 constexpr int kNumRegisters = 16;
40 constexpr int kRegSizeInBitsLog2 = 5;
41
42 // VFP support.
43 constexpr int kNumVFPSingleRegisters = 32;
44 constexpr int kNumVFPDoubleRegisters = 32;
45 constexpr int kNumVFPRegisters =
46 kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
47
48 // PC is register 15.
49 constexpr int kPCRegister = 15;
50 constexpr int kNoRegister = -1;
51
52 // Used in embedded constant pool builder - max reach in bits for
53 // various load instructions (unsigned)
54 constexpr int kLdrMaxReachBits = 12;
55 constexpr int kVldrMaxReachBits = 10;
56
57 // Actual value of root register is offset from the root array's start
58 // to take advantage of negative displacement values. Loads allow a uint12
59 // value with a separate sign bit (range [-4095, +4095]), so the first root
60 // is still addressable with a single load instruction.
61 constexpr int kRootRegisterBias = 4095;
62
63 // -----------------------------------------------------------------------------
64 // Conditions.
65
66 // Defines constants and accessor classes to assemble, disassemble and
67 // simulate ARM instructions.
68 //
69 // Section references in the code refer to the "ARM Architecture Reference
70 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
71 //
72 // Constants for specific fields are defined in their respective named enums.
73 // General constants are in an anonymous enum in class Instr.
74
75 // Values for the condition field as defined in section A3.2
76 enum Condition {
77 kNoCondition = -1,
78
79 eq = 0 << 28, // Z set Equal.
80 ne = 1 << 28, // Z clear Not equal.
81 cs = 2 << 28, // C set Unsigned higher or same.
82 cc = 3 << 28, // C clear Unsigned lower.
83 mi = 4 << 28, // N set Negative.
84 pl = 5 << 28, // N clear Positive or zero.
85 vs = 6 << 28, // V set Overflow.
86 vc = 7 << 28, // V clear No overflow.
87 hi = 8 << 28, // C set, Z clear Unsigned higher.
88 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
89 ge = 10 << 28, // N == V Greater or equal.
90 lt = 11 << 28, // N != V Less than.
91 gt = 12 << 28, // Z clear, N == V Greater than.
92 le = 13 << 28, // Z set or N != V Less then or equal
93 al = 14 << 28, // Always.
94
95 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
96 kNumberOfConditions = 16,
97
98 // Aliases.
99 hs = cs, // C set Unsigned higher or same.
100 lo = cc // C clear Unsigned lower.
101 };
102
NegateCondition(Condition cond)103 inline Condition NegateCondition(Condition cond) {
104 DCHECK(cond != al);
105 return static_cast<Condition>(cond ^ ne);
106 }
107
108 // -----------------------------------------------------------------------------
109 // Instructions encoding.
110
111 // Instr is merely used by the Assembler to distinguish 32bit integers
112 // representing instructions from usual 32 bit values.
113 // Instruction objects are pointers to 32bit values, and provide methods to
114 // access the various ISA fields.
115 using Instr = int32_t;
116
117 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
118 // as defined in section A3.4
119 enum Opcode {
120 AND = 0 << 21, // Logical AND.
121 EOR = 1 << 21, // Logical Exclusive OR.
122 SUB = 2 << 21, // Subtract.
123 RSB = 3 << 21, // Reverse Subtract.
124 ADD = 4 << 21, // Add.
125 ADC = 5 << 21, // Add with Carry.
126 SBC = 6 << 21, // Subtract with Carry.
127 RSC = 7 << 21, // Reverse Subtract with Carry.
128 TST = 8 << 21, // Test.
129 TEQ = 9 << 21, // Test Equivalence.
130 CMP = 10 << 21, // Compare.
131 CMN = 11 << 21, // Compare Negated.
132 ORR = 12 << 21, // Logical (inclusive) OR.
133 MOV = 13 << 21, // Move.
134 BIC = 14 << 21, // Bit Clear.
135 MVN = 15 << 21 // Move Not.
136 };
137
138 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
139 enum MiscInstructionsBits74 {
140 // With bits 22-21 01.
141 BX = 1 << 4,
142 BXJ = 2 << 4,
143 BLX = 3 << 4,
144 BKPT = 7 << 4,
145
146 // With bits 22-21 11.
147 CLZ = 1 << 4
148 };
149
150 // Instruction encoding bits and masks.
151 enum {
152 H = 1 << 5, // Halfword (or byte).
153 S6 = 1 << 6, // Signed (or unsigned).
154 L = 1 << 20, // Load (or store).
155 S = 1 << 20, // Set condition code (or leave unchanged).
156 W = 1 << 21, // Writeback base register (or leave unchanged).
157 A = 1 << 21, // Accumulate in multiply instruction (or not).
158 B = 1 << 22, // Unsigned byte (or word).
159 N = 1 << 22, // Long (or short).
160 U = 1 << 23, // Positive (or negative) offset/index.
161 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
162 I = 1 << 25, // Immediate shifter operand (or not).
163 B0 = 1 << 0,
164 B4 = 1 << 4,
165 B5 = 1 << 5,
166 B6 = 1 << 6,
167 B7 = 1 << 7,
168 B8 = 1 << 8,
169 B9 = 1 << 9,
170 B10 = 1 << 10,
171 B12 = 1 << 12,
172 B16 = 1 << 16,
173 B17 = 1 << 17,
174 B18 = 1 << 18,
175 B19 = 1 << 19,
176 B20 = 1 << 20,
177 B21 = 1 << 21,
178 B22 = 1 << 22,
179 B23 = 1 << 23,
180 B24 = 1 << 24,
181 B25 = 1 << 25,
182 B26 = 1 << 26,
183 B27 = 1 << 27,
184 B28 = 1 << 28,
185
186 // Instruction bit masks.
187 kCondMask = 15 << 28,
188 kALUMask = 0x6f << 21,
189 kRdMask = 15 << 12, // In str instruction.
190 kCoprocessorMask = 15 << 8,
191 kOpCodeMask = 15 << 21, // In data-processing instructions.
192 kImm24Mask = (1 << 24) - 1,
193 kImm16Mask = (1 << 16) - 1,
194 kImm8Mask = (1 << 8) - 1,
195 kOff12Mask = (1 << 12) - 1,
196 kOff8Mask = (1 << 8) - 1
197 };
198
199 enum BarrierOption {
200 OSHLD = 0x1,
201 OSHST = 0x2,
202 OSH = 0x3,
203 NSHLD = 0x5,
204 NSHST = 0x6,
205 NSH = 0x7,
206 ISHLD = 0x9,
207 ISHST = 0xa,
208 ISH = 0xb,
209 LD = 0xd,
210 ST = 0xe,
211 SY = 0xf,
212 };
213
214 // -----------------------------------------------------------------------------
215 // Addressing modes and instruction variants.
216
217 // Condition code updating mode.
218 enum SBit {
219 SetCC = 1 << 20, // Set condition code.
220 LeaveCC = 0 << 20 // Leave condition code unchanged.
221 };
222
223 // Status register selection.
224 enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 };
225
226 // Shifter types for Data-processing operands as defined in section A5.1.2.
227 enum ShiftOp {
228 LSL = 0 << 5, // Logical shift left.
229 LSR = 1 << 5, // Logical shift right.
230 ASR = 2 << 5, // Arithmetic shift right.
231 ROR = 3 << 5, // Rotate right.
232
233 // RRX is encoded as ROR with shift_imm == 0.
234 // Use a special code to make the distinction. The RRX ShiftOp is only used
235 // as an argument, and will never actually be encoded. The Assembler will
236 // detect it and emit the correct ROR shift operand with shift_imm == 0.
237 RRX = -1,
238 kNumberOfShifts = 4
239 };
240
241 // Status register fields.
242 enum SRegisterField {
243 CPSR_c = CPSR | 1 << 16,
244 CPSR_x = CPSR | 1 << 17,
245 CPSR_s = CPSR | 1 << 18,
246 CPSR_f = CPSR | 1 << 19,
247 SPSR_c = SPSR | 1 << 16,
248 SPSR_x = SPSR | 1 << 17,
249 SPSR_s = SPSR | 1 << 18,
250 SPSR_f = SPSR | 1 << 19
251 };
252
253 // Status register field mask (or'ed SRegisterField enum values).
254 using SRegisterFieldMask = uint32_t;
255
256 // Memory operand addressing mode.
257 enum AddrMode {
258 // Bit encoding P U W.
259 Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base).
260 PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback.
261 PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback.
262 NegOffset =
263 (8 | 0 | 0) << 21, // Negative offset (without writeback to base).
264 NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback.
265 NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback.
266 };
267
268 // Load/store multiple addressing mode.
269 enum BlockAddrMode {
270 // Bit encoding P U W .
271 da = (0 | 0 | 0) << 21, // Decrement after.
272 ia = (0 | 4 | 0) << 21, // Increment after.
273 db = (8 | 0 | 0) << 21, // Decrement before.
274 ib = (8 | 4 | 0) << 21, // Increment before.
275 da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base.
276 ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base.
277 db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base.
278 ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base.
279
280 // Alias modes for comparison when writeback does not matter.
281 da_x = (0 | 0 | 0) << 21, // Decrement after.
282 ia_x = (0 | 4 | 0) << 21, // Increment after.
283 db_x = (8 | 0 | 0) << 21, // Decrement before.
284 ib_x = (8 | 4 | 0) << 21, // Increment before.
285
286 kBlockAddrModeMask = (8 | 4 | 1) << 21
287 };
288
289 // Coprocessor load/store operand size.
290 enum LFlag {
291 Long = 1 << 22, // Long load/store coprocessor.
292 Short = 0 << 22 // Short load/store coprocessor.
293 };
294
295 // Neon sizes.
296 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
297
298 // NEON data type, top bit set for unsigned data types.
299 enum NeonDataType {
300 NeonS8 = 0,
301 NeonS16 = 1,
302 NeonS32 = 2,
303 NeonS64 = 3,
304 NeonU8 = 4,
305 NeonU16 = 5,
306 NeonU32 = 6,
307 NeonU64 = 7
308 };
309
NeonU(NeonDataType dt)310 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
NeonSz(NeonDataType dt)311 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
312
313 // Convert sizes to data types (U bit is clear).
NeonSizeToDataType(NeonSize size)314 inline NeonDataType NeonSizeToDataType(NeonSize size) {
315 DCHECK_NE(Neon64, size);
316 return static_cast<NeonDataType>(size);
317 }
318
NeonDataTypeToSize(NeonDataType dt)319 inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
320 return static_cast<NeonSize>(NeonSz(dt));
321 }
322
323 enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
324
325 // -----------------------------------------------------------------------------
326 // Supervisor Call (svc) specific support.
327
328 // Special Software Interrupt codes when used in the presence of the ARM
329 // simulator.
330 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
331 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
332 enum SoftwareInterruptCodes {
333 // transition to C code
334 kCallRtRedirected = 0x10,
335 // break point
336 kBreakpoint = 0x20,
337 // stop
338 kStopCode = 1 << 23
339 };
340 const uint32_t kStopCodeMask = kStopCode - 1;
341 const uint32_t kMaxStopCode = kStopCode - 1;
342 const int32_t kDefaultStopCode = -1;
343
344 // Type of VFP register. Determines register encoding.
345 enum VFPRegPrecision {
346 kSinglePrecision = 0,
347 kDoublePrecision = 1,
348 kSimd128Precision = 2
349 };
350
351 // VFP FPSCR constants.
352 enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 };
353
354 // This mask does not include the "inexact" or "input denormal" cumulative
355 // exceptions flags, because we usually don't want to check for it.
356 const uint32_t kVFPExceptionMask = 0xf;
357 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
358 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
359 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
360 const uint32_t kVFPInexactExceptionBit = 1 << 4;
361 const uint32_t kVFPFlushToZeroMask = 1 << 24;
362 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
363
364 const uint32_t kVFPNConditionFlagBit = 1 << 31;
365 const uint32_t kVFPZConditionFlagBit = 1 << 30;
366 const uint32_t kVFPCConditionFlagBit = 1 << 29;
367 const uint32_t kVFPVConditionFlagBit = 1 << 28;
368
369 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
370 enum VFPRoundingMode {
371 RN = 0 << 22, // Round to Nearest.
372 RP = 1 << 22, // Round towards Plus Infinity.
373 RM = 2 << 22, // Round towards Minus Infinity.
374 RZ = 3 << 22, // Round towards zero.
375
376 // Aliases.
377 kRoundToNearest = RN,
378 kRoundToPlusInf = RP,
379 kRoundToMinusInf = RM,
380 kRoundToZero = RZ
381 };
382
383 const uint32_t kVFPRoundingModeMask = 3 << 22;
384
385 enum CheckForInexactConversion {
386 kCheckForInexactConversion,
387 kDontCheckForInexactConversion
388 };
389
390 // -----------------------------------------------------------------------------
391 // Hints.
392
393 // Branch hints are not used on the ARM. They are defined so that they can
394 // appear in shared function signatures, but will be ignored in ARM
395 // implementations.
396 enum Hint { no_hint };
397
398 // Hints are not used on the arm. Negating is trivial.
NegateHint(Hint ignored)399 inline Hint NegateHint(Hint ignored) { return no_hint; }
400
401 // -----------------------------------------------------------------------------
402 // Instruction abstraction.
403
404 // The class Instruction enables access to individual fields defined in the ARM
405 // architecture instruction set encoding as described in figure A3-1.
406 // Note that the Assembler uses typedef int32_t Instr.
407 //
408 // Example: Test whether the instruction at ptr does set the condition code
409 // bits.
410 //
411 // bool InstructionSetsConditionCodes(byte* ptr) {
412 // Instruction* instr = Instruction::At(ptr);
413 // int type = instr->TypeValue();
414 // return ((type == 0) || (type == 1)) && instr->HasS();
415 // }
416 //
417
418 constexpr uint8_t kInstrSize = 4;
419 constexpr uint8_t kInstrSizeLog2 = 2;
420
421 class Instruction {
422 public:
423 // Difference between address of current opcode and value read from pc
424 // register.
425 static constexpr int kPcLoadDelta = 8;
426
427 // Helper macro to define static accessors.
428 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
429 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
430 static inline return_type Name(Instr instr) { \
431 char* temp = reinterpret_cast<char*>(&instr); \
432 return reinterpret_cast<Instruction*>(temp)->Name(); \
433 }
434
435 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
436
437 // Get the raw instruction bits.
InstructionBits()438 inline Instr InstructionBits() const {
439 return *reinterpret_cast<const Instr*>(this);
440 }
441
442 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)443 inline void SetInstructionBits(Instr value) {
444 *reinterpret_cast<Instr*>(this) = value;
445 }
446
447 // Extract a single bit from the instruction bits and return it as bit 0 in
448 // the result.
Bit(int nr)449 inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
450
451 // Extract a bit field <hi:lo> from the instruction bits and return it in the
452 // least-significant bits of the result.
Bits(int hi,int lo)453 inline int Bits(int hi, int lo) const {
454 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
455 }
456
457 // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)458 inline int BitField(int hi, int lo) const {
459 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
460 }
461
462 // Accessors for the different named fields used in the ARM encoding.
463 // The naming of these accessor corresponds to figure A3-1.
464 //
465 // Two kind of accessors are declared:
466 // - <Name>Field() will return the raw field, i.e. the field's bits at their
467 // original place in the instruction encoding.
468 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
469 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
470 // - <Name>Value() will return the field value, shifted back to bit 0.
471 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
472 // 0xC0810002 ConditionField(instr) will return 0xC.
473
474 // Generally applicable fields
ConditionValue()475 inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()476 inline Condition ConditionField() const {
477 return static_cast<Condition>(BitField(31, 28));
478 }
DECLARE_STATIC_TYPED_ACCESSOR(int,ConditionValue)479 DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue)
480 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField)
481
482 inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()483 inline int SpecialValue() const { return Bits(27, 23); }
484
RnValue()485 inline int RnValue() const { return Bits(19, 16); }
DECLARE_STATIC_ACCESSOR(RnValue)486 DECLARE_STATIC_ACCESSOR(RnValue)
487 inline int RdValue() const { return Bits(15, 12); }
DECLARE_STATIC_ACCESSOR(RdValue)488 DECLARE_STATIC_ACCESSOR(RdValue)
489
490 inline int CoprocessorValue() const { return Bits(11, 8); }
491 // Support for VFP.
492 // Vn(19-16) | Vd(15-12) | Vm(3-0)
VnValue()493 inline int VnValue() const { return Bits(19, 16); }
VmValue()494 inline int VmValue() const { return Bits(3, 0); }
VdValue()495 inline int VdValue() const { return Bits(15, 12); }
NValue()496 inline int NValue() const { return Bit(7); }
MValue()497 inline int MValue() const { return Bit(5); }
DValue()498 inline int DValue() const { return Bit(22); }
RtValue()499 inline int RtValue() const { return Bits(15, 12); }
PValue()500 inline int PValue() const { return Bit(24); }
UValue()501 inline int UValue() const { return Bit(23); }
Opc1Value()502 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()503 inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()504 inline int Opc3Value() const { return Bits(7, 6); }
SzValue()505 inline int SzValue() const { return Bit(8); }
VLValue()506 inline int VLValue() const { return Bit(20); }
VCValue()507 inline int VCValue() const { return Bit(8); }
VAValue()508 inline int VAValue() const { return Bits(23, 21); }
VBValue()509 inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)510 inline int VFPNRegValue(VFPRegPrecision pre) {
511 return VFPGlueRegValue(pre, 16, 7);
512 }
VFPMRegValue(VFPRegPrecision pre)513 inline int VFPMRegValue(VFPRegPrecision pre) {
514 return VFPGlueRegValue(pre, 0, 5);
515 }
VFPDRegValue(VFPRegPrecision pre)516 inline int VFPDRegValue(VFPRegPrecision pre) {
517 return VFPGlueRegValue(pre, 12, 22);
518 }
519
520 // Fields used in Data processing instructions
OpcodeValue()521 inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); }
OpcodeField()522 inline Opcode OpcodeField() const {
523 return static_cast<Opcode>(BitField(24, 21));
524 }
SValue()525 inline int SValue() const { return Bit(20); }
526 // with register
RmValue()527 inline int RmValue() const { return Bits(3, 0); }
DECLARE_STATIC_ACCESSOR(RmValue)528 DECLARE_STATIC_ACCESSOR(RmValue)
529 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()530 inline ShiftOp ShiftField() const {
531 return static_cast<ShiftOp>(BitField(6, 5));
532 }
RegShiftValue()533 inline int RegShiftValue() const { return Bit(4); }
RsValue()534 inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()535 inline int ShiftAmountValue() const { return Bits(11, 7); }
536 // with immediate
RotateValue()537 inline int RotateValue() const { return Bits(11, 8); }
DECLARE_STATIC_ACCESSOR(RotateValue)538 DECLARE_STATIC_ACCESSOR(RotateValue)
539 inline int Immed8Value() const { return Bits(7, 0); }
DECLARE_STATIC_ACCESSOR(Immed8Value)540 DECLARE_STATIC_ACCESSOR(Immed8Value)
541 inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()542 inline int ImmedMovwMovtValue() const {
543 return Immed4Value() << 12 | Offset12Value();
544 }
DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue)545 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue)
546
547 // Fields used in Load/Store instructions
548 inline int PUValue() const { return Bits(24, 23); }
PUField()549 inline int PUField() const { return BitField(24, 23); }
BValue()550 inline int BValue() const { return Bit(22); }
WValue()551 inline int WValue() const { return Bit(21); }
LValue()552 inline int LValue() const { return Bit(20); }
553 // with register uses same fields as Data processing instructions above
554 // with immediate
Offset12Value()555 inline int Offset12Value() const { return Bits(11, 0); }
556 // multiple
RlistValue()557 inline int RlistValue() const { return Bits(15, 0); }
558 // extra loads and stores
SignValue()559 inline int SignValue() const { return Bit(6); }
HValue()560 inline int HValue() const { return Bit(5); }
ImmedHValue()561 inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()562 inline int ImmedLValue() const { return Bits(3, 0); }
563
564 // Fields used in Branch instructions
LinkValue()565 inline int LinkValue() const { return Bit(24); }
SImmed24Value()566 inline int SImmed24Value() const {
567 return signed_bitextract_32(23, 0, InstructionBits());
568 }
569
IsBranch()570 bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; }
571
GetBranchOffset()572 int GetBranchOffset() {
573 DCHECK(IsBranch());
574 return SImmed24Value() * kInstrSize;
575 }
576
SetBranchOffset(int32_t branch_offset)577 void SetBranchOffset(int32_t branch_offset) {
578 DCHECK(IsBranch());
579 DCHECK_EQ(branch_offset % kInstrSize, 0);
580 int32_t new_imm24 = branch_offset / kInstrSize;
581 CHECK(is_int24(new_imm24));
582 SetInstructionBits((InstructionBits() & ~(kImm24Mask)) |
583 (new_imm24 & kImm24Mask));
584 }
585
586 // Fields used in Software interrupt instructions
SvcValue()587 inline SoftwareInterruptCodes SvcValue() const {
588 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
589 }
590
591 // Test for special encodings of type 0 instructions (extra loads and stores,
592 // as well as multiplications).
IsSpecialType0()593 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
594
595 // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()596 inline bool IsMiscType0() const {
597 return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) &&
598 ((Bit(7) == 0));
599 }
600
601 // Test for nop-like instructions which fall under type 1.
IsNopLikeType1()602 inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
603
604 // Test for a stop instruction.
IsStop()605 inline bool IsStop() const {
606 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
607 }
608
609 // Special accessors that test for existence of a value.
HasS()610 inline bool HasS() const { return SValue() == 1; }
HasB()611 inline bool HasB() const { return BValue() == 1; }
HasW()612 inline bool HasW() const { return WValue() == 1; }
HasL()613 inline bool HasL() const { return LValue() == 1; }
HasU()614 inline bool HasU() const { return UValue() == 1; }
HasSign()615 inline bool HasSign() const { return SignValue() == 1; }
HasH()616 inline bool HasH() const { return HValue() == 1; }
HasLink()617 inline bool HasLink() const { return LinkValue() == 1; }
618
619 // Decode the double immediate from a vmov instruction.
620 Float64 DoubleImmedVmov() const;
621
622 // Instructions are read of out a code stream. The only way to get a
623 // reference to an instruction is to convert a pointer. There is no way
624 // to allocate or create instances of class Instruction.
625 // Use the At(pc) function to create references to Instruction.
At(Address pc)626 static Instruction* At(Address pc) {
627 return reinterpret_cast<Instruction*>(pc);
628 }
629
630 private:
631 // Join split register codes, depending on register precision.
632 // four_bit is the position of the least-significant bit of the four
633 // bit specifier. one_bit is the position of the additional single bit
634 // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)635 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
636 if (pre == kSinglePrecision) {
637 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
638 } else {
639 int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
640 if (pre == kDoublePrecision) {
641 return reg_num;
642 }
643 DCHECK_EQ(kSimd128Precision, pre);
644 DCHECK_EQ(reg_num & 1, 0);
645 return reg_num / 2;
646 }
647 }
648
649 // We need to prevent the creation of instances of class Instruction.
650 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
651 };
652
653 // Helper functions for converting between register numbers and names.
654 class Registers {
655 public:
656 // Return the name of the register.
657 static const char* Name(int reg);
658
659 // Lookup the register number for the name provided.
660 static int Number(const char* name);
661
662 struct RegisterAlias {
663 int reg;
664 const char* name;
665 };
666
667 private:
668 static const char* names_[kNumRegisters];
669 static const RegisterAlias aliases_[];
670 };
671
672 // Helper functions for converting between VFP register numbers and names.
673 class VFPRegisters {
674 public:
675 // Return the name of the register.
676 static const char* Name(int reg, bool is_double);
677
678 // Lookup the register number for the name provided.
679 // Set flag pointed by is_double to true if register
680 // is double-precision.
681 static int Number(const char* name, bool* is_double);
682
683 private:
684 static const char* names_[kNumVFPRegisters];
685 };
686
687 // Relative jumps on ARM can address ±32 MB.
688 constexpr size_t kMaxPCRelativeCodeRangeInMB = 32;
689
690 } // namespace internal
691 } // namespace v8
692
693 #endif // V8_CODEGEN_ARM_CONSTANTS_ARM_H_
694