1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78
79 #include <trace/events/sched.h>
80
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85 #endif
86
87 struct rq;
88 struct cpuidle_state;
89
90 #ifdef CONFIG_SCHED_RT_CAS
91 extern unsigned long uclamp_task_util(struct task_struct *p,
92 unsigned long uclamp_min,
93 unsigned long uclamp_max);
94 #endif
95
96 #ifdef CONFIG_SCHED_WALT
97 extern unsigned int sched_ravg_window;
98 extern unsigned int walt_cpu_util_freq_divisor;
99
100 struct walt_sched_stats {
101 u64 cumulative_runnable_avg_scaled;
102 };
103
104 struct load_subtractions {
105 u64 window_start;
106 u64 subs;
107 u64 new_subs;
108 };
109
110 #define NUM_TRACKED_WINDOWS 2
111
112 struct sched_cluster {
113 raw_spinlock_t load_lock;
114 struct list_head list;
115 struct cpumask cpus;
116 int id;
117 int max_power_cost;
118 int min_power_cost;
119 int max_possible_capacity;
120 int capacity;
121 int efficiency; /* Differentiate cpus with different IPC capability */
122 int load_scale_factor;
123 unsigned int exec_scale_factor;
124 /*
125 * max_freq = user maximum
126 * max_possible_freq = maximum supported by hardware
127 */
128 unsigned int cur_freq, max_freq, min_freq;
129 unsigned int max_possible_freq;
130 bool freq_init_done;
131 };
132
133 extern unsigned int sched_disable_window_stats;
134 #endif /* CONFIG_SCHED_WALT */
135
136
137 /* task_struct::on_rq states: */
138 #define TASK_ON_RQ_QUEUED 1
139 #define TASK_ON_RQ_MIGRATING 2
140
141 extern __read_mostly int scheduler_running;
142
143 extern unsigned long calc_load_update;
144 extern atomic_long_t calc_load_tasks;
145
146 extern void calc_global_load_tick(struct rq *this_rq);
147 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
148
149 #ifdef CONFIG_SMP
150 extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
151 #endif
152
153 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
154 /*
155 * Helpers for converting nanosecond timing to jiffy resolution
156 */
157 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
158
159 #ifdef CONFIG_SCHED_LATENCY_NICE
160 /*
161 * Latency nice is meant to provide scheduler hints about the relative
162 * latency requirements of a task with respect to other tasks.
163 * Thus a task with latency_nice == 19 can be hinted as the task with no
164 * latency requirements, in contrast to the task with latency_nice == -20
165 * which should be given priority in terms of lower latency.
166 */
167 #define MAX_LATENCY_NICE 19
168 #define MIN_LATENCY_NICE -20
169
170 #define LATENCY_NICE_WIDTH \
171 (MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
172
173 /*
174 * Default tasks should be treated as a task with latency_nice = 0.
175 */
176 #define DEFAULT_LATENCY_NICE 0
177 #define DEFAULT_LATENCY_PRIO (DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
178
179 /*
180 * Convert user-nice values [ -20 ... 0 ... 19 ]
181 * to static latency [ 0..39 ],
182 * and back.
183 */
184 #define NICE_TO_LATENCY(nice) ((nice) + DEFAULT_LATENCY_PRIO)
185 #define LATENCY_TO_NICE(prio) ((prio) - DEFAULT_LATENCY_PRIO)
186 #define NICE_LATENCY_SHIFT (SCHED_FIXEDPOINT_SHIFT)
187 #define NICE_LATENCY_WEIGHT_MAX (1L << NICE_LATENCY_SHIFT)
188 #endif /* CONFIG_SCHED_LATENCY_NICE */
189
190 /*
191 * Increase resolution of nice-level calculations for 64-bit architectures.
192 * The extra resolution improves shares distribution and load balancing of
193 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
194 * hierarchies, especially on larger systems. This is not a user-visible change
195 * and does not change the user-interface for setting shares/weights.
196 *
197 * We increase resolution only if we have enough bits to allow this increased
198 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
199 * are pretty high and the returns do not justify the increased costs.
200 *
201 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
202 * increase coverage and consistency always enable it on 64-bit platforms.
203 */
204 #ifdef CONFIG_64BIT
205 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
206 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
207 # define scale_load_down(w) \
208 ({ \
209 unsigned long __w = (w); \
210 if (__w) \
211 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
212 __w; \
213 })
214 #else
215 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
216 # define scale_load(w) (w)
217 # define scale_load_down(w) (w)
218 #endif
219
220 /*
221 * Task weight (visible to users) and its load (invisible to users) have
222 * independent resolution, but they should be well calibrated. We use
223 * scale_load() and scale_load_down(w) to convert between them. The
224 * following must be true:
225 *
226 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
227 *
228 */
229 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
230
231 /*
232 * Single value that decides SCHED_DEADLINE internal math precision.
233 * 10 -> just above 1us
234 * 9 -> just above 0.5us
235 */
236 #define DL_SCALE 10
237
238 /*
239 * Single value that denotes runtime == period, ie unlimited time.
240 */
241 #define RUNTIME_INF ((u64)~0ULL)
242
idle_policy(int policy)243 static inline int idle_policy(int policy)
244 {
245 return policy == SCHED_IDLE;
246 }
fair_policy(int policy)247 static inline int fair_policy(int policy)
248 {
249 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
250 }
251
rt_policy(int policy)252 static inline int rt_policy(int policy)
253 {
254 return policy == SCHED_FIFO || policy == SCHED_RR;
255 }
256
dl_policy(int policy)257 static inline int dl_policy(int policy)
258 {
259 return policy == SCHED_DEADLINE;
260 }
valid_policy(int policy)261 static inline bool valid_policy(int policy)
262 {
263 return idle_policy(policy) || fair_policy(policy) ||
264 rt_policy(policy) || dl_policy(policy);
265 }
266
task_has_idle_policy(struct task_struct * p)267 static inline int task_has_idle_policy(struct task_struct *p)
268 {
269 return idle_policy(p->policy);
270 }
271
task_has_rt_policy(struct task_struct * p)272 static inline int task_has_rt_policy(struct task_struct *p)
273 {
274 return rt_policy(p->policy);
275 }
276
task_has_dl_policy(struct task_struct * p)277 static inline int task_has_dl_policy(struct task_struct *p)
278 {
279 return dl_policy(p->policy);
280 }
281
282 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
283
update_avg(u64 * avg,u64 sample)284 static inline void update_avg(u64 *avg, u64 sample)
285 {
286 s64 diff = sample - *avg;
287 *avg += diff / 8;
288 }
289
290 /*
291 * Shifting a value by an exponent greater *or equal* to the size of said value
292 * is UB; cap at size-1.
293 */
294 #define shr_bound(val, shift) \
295 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
296
297 /*
298 * !! For sched_setattr_nocheck() (kernel) only !!
299 *
300 * This is actually gross. :(
301 *
302 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
303 * tasks, but still be able to sleep. We need this on platforms that cannot
304 * atomically change clock frequency. Remove once fast switching will be
305 * available on such platforms.
306 *
307 * SUGOV stands for SchedUtil GOVernor.
308 */
309 #define SCHED_FLAG_SUGOV 0x10000000
310
311 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
312
dl_entity_is_special(struct sched_dl_entity * dl_se)313 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
314 {
315 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
316 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
317 #else
318 return false;
319 #endif
320 }
321
322 /*
323 * Tells if entity @a should preempt entity @b.
324 */
325 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)326 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
327 {
328 return dl_entity_is_special(a) ||
329 dl_time_before(a->deadline, b->deadline);
330 }
331
332 /*
333 * This is the priority-queue data structure of the RT scheduling class:
334 */
335 struct rt_prio_array {
336 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
337 struct list_head queue[MAX_RT_PRIO];
338 };
339
340 struct rt_bandwidth {
341 /* nests inside the rq lock: */
342 raw_spinlock_t rt_runtime_lock;
343 ktime_t rt_period;
344 u64 rt_runtime;
345 struct hrtimer rt_period_timer;
346 unsigned int rt_period_active;
347 };
348
349 void __dl_clear_params(struct task_struct *p);
350
351 struct dl_bandwidth {
352 raw_spinlock_t dl_runtime_lock;
353 u64 dl_runtime;
354 u64 dl_period;
355 };
356
dl_bandwidth_enabled(void)357 static inline int dl_bandwidth_enabled(void)
358 {
359 return sysctl_sched_rt_runtime >= 0;
360 }
361
362 /*
363 * To keep the bandwidth of -deadline tasks under control
364 * we need some place where:
365 * - store the maximum -deadline bandwidth of each cpu;
366 * - cache the fraction of bandwidth that is currently allocated in
367 * each root domain;
368 *
369 * This is all done in the data structure below. It is similar to the
370 * one used for RT-throttling (rt_bandwidth), with the main difference
371 * that, since here we are only interested in admission control, we
372 * do not decrease any runtime while the group "executes", neither we
373 * need a timer to replenish it.
374 *
375 * With respect to SMP, bandwidth is given on a per root domain basis,
376 * meaning that:
377 * - bw (< 100%) is the deadline bandwidth of each CPU;
378 * - total_bw is the currently allocated bandwidth in each root domain;
379 */
380 struct dl_bw {
381 raw_spinlock_t lock;
382 u64 bw;
383 u64 total_bw;
384 };
385
386 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
387
388 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)389 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
390 {
391 dl_b->total_bw -= tsk_bw;
392 __dl_update(dl_b, (s32)tsk_bw / cpus);
393 }
394
395 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)396 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
397 {
398 dl_b->total_bw += tsk_bw;
399 __dl_update(dl_b, -((s32)tsk_bw / cpus));
400 }
401
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)402 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
403 u64 old_bw, u64 new_bw)
404 {
405 return dl_b->bw != -1 &&
406 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
407 }
408
409 /*
410 * Verify the fitness of task @p to run on @cpu taking into account the
411 * CPU original capacity and the runtime/deadline ratio of the task.
412 *
413 * The function will return true if the CPU original capacity of the
414 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
415 * task and false otherwise.
416 */
dl_task_fits_capacity(struct task_struct * p,int cpu)417 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
418 {
419 unsigned long cap = arch_scale_cpu_capacity(cpu);
420
421 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
422 }
423
424 extern void init_dl_bw(struct dl_bw *dl_b);
425 extern int sched_dl_global_validate(void);
426 extern void sched_dl_do_global(void);
427 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
428 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
429 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
430 extern bool __checkparam_dl(const struct sched_attr *attr);
431 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
432 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
433 extern int dl_bw_check_overflow(int cpu);
434
435 #ifdef CONFIG_CGROUP_SCHED
436
437 #include <linux/cgroup.h>
438 #include <linux/psi.h>
439
440 struct cfs_rq;
441 struct rt_rq;
442
443 extern struct list_head task_groups;
444
445 struct cfs_bandwidth {
446 #ifdef CONFIG_CFS_BANDWIDTH
447 raw_spinlock_t lock;
448 ktime_t period;
449 u64 quota;
450 u64 runtime;
451 s64 hierarchical_quota;
452
453 u8 idle;
454 u8 period_active;
455 u8 slack_started;
456 struct hrtimer period_timer;
457 struct hrtimer slack_timer;
458 struct list_head throttled_cfs_rq;
459
460 /* Statistics: */
461 int nr_periods;
462 int nr_throttled;
463 u64 throttled_time;
464 #endif
465 };
466
467 /* Task group related information */
468 struct task_group {
469 struct cgroup_subsys_state css;
470
471 #ifdef CONFIG_FAIR_GROUP_SCHED
472 /* schedulable entities of this group on each CPU */
473 struct sched_entity **se;
474 /* runqueue "owned" by this group on each CPU */
475 struct cfs_rq **cfs_rq;
476 unsigned long shares;
477
478 #ifdef CONFIG_SMP
479 /*
480 * load_avg can be heavily contended at clock tick time, so put
481 * it in its own cacheline separated from the fields above which
482 * will also be accessed at each tick.
483 */
484 atomic_long_t load_avg ____cacheline_aligned;
485 #endif
486 #endif
487
488 #ifdef CONFIG_RT_GROUP_SCHED
489 struct sched_rt_entity **rt_se;
490 struct rt_rq **rt_rq;
491
492 struct rt_bandwidth rt_bandwidth;
493 #endif
494
495 struct rcu_head rcu;
496 struct list_head list;
497
498 struct task_group *parent;
499 struct list_head siblings;
500 struct list_head children;
501
502 #ifdef CONFIG_SCHED_AUTOGROUP
503 struct autogroup *autogroup;
504 #endif
505
506 struct cfs_bandwidth cfs_bandwidth;
507
508 #ifdef CONFIG_UCLAMP_TASK_GROUP
509 /* The two decimal precision [%] value requested from user-space */
510 unsigned int uclamp_pct[UCLAMP_CNT];
511 /* Clamp values requested for a task group */
512 struct uclamp_se uclamp_req[UCLAMP_CNT];
513 /* Effective clamp values used for a task group */
514 struct uclamp_se uclamp[UCLAMP_CNT];
515 #endif
516
517 #ifdef CONFIG_SCHED_RTG_CGROUP
518 /*
519 * Controls whether tasks of this cgroup should be colocated with each
520 * other and tasks of other cgroups that have the same flag turned on.
521 */
522 bool colocate;
523
524 /* Controls whether further updates are allowed to the colocate flag */
525 bool colocate_update_disabled;
526 #endif
527 };
528
529 #ifdef CONFIG_FAIR_GROUP_SCHED
530 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
531
532 /*
533 * A weight of 0 or 1 can cause arithmetics problems.
534 * A weight of a cfs_rq is the sum of weights of which entities
535 * are queued on this cfs_rq, so a weight of a entity should not be
536 * too large, so as the shares value of a task group.
537 * (The default weight is 1024 - so there's no practical
538 * limitation from this.)
539 */
540 #define MIN_SHARES (1UL << 1)
541 #define MAX_SHARES (1UL << 18)
542 #endif
543
544 typedef int (*tg_visitor)(struct task_group *, void *);
545
546 extern int walk_tg_tree_from(struct task_group *from,
547 tg_visitor down, tg_visitor up, void *data);
548
549 /*
550 * Iterate the full tree, calling @down when first entering a node and @up when
551 * leaving it for the final time.
552 *
553 * Caller must hold rcu_lock or sufficient equivalent.
554 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)555 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
556 {
557 return walk_tg_tree_from(&root_task_group, down, up, data);
558 }
559
560 extern int tg_nop(struct task_group *tg, void *data);
561
562 extern void free_fair_sched_group(struct task_group *tg);
563 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
564 extern void online_fair_sched_group(struct task_group *tg);
565 extern void unregister_fair_sched_group(struct task_group *tg);
566 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
567 struct sched_entity *se, int cpu,
568 struct sched_entity *parent);
569 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
570
571 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
572 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
573 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
574
575 extern void free_rt_sched_group(struct task_group *tg);
576 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
577 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
578 struct sched_rt_entity *rt_se, int cpu,
579 struct sched_rt_entity *parent);
580 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
581 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
582 extern long sched_group_rt_runtime(struct task_group *tg);
583 extern long sched_group_rt_period(struct task_group *tg);
584 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
585
586 extern struct task_group *sched_create_group(struct task_group *parent);
587 extern void sched_online_group(struct task_group *tg,
588 struct task_group *parent);
589 extern void sched_destroy_group(struct task_group *tg);
590 extern void sched_offline_group(struct task_group *tg);
591
592 extern void sched_move_task(struct task_struct *tsk);
593
594 #ifdef CONFIG_FAIR_GROUP_SCHED
595 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
596
597 #ifdef CONFIG_SMP
598 extern void set_task_rq_fair(struct sched_entity *se,
599 struct cfs_rq *prev, struct cfs_rq *next);
600 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)601 static inline void set_task_rq_fair(struct sched_entity *se,
602 struct cfs_rq *prev, struct cfs_rq *next) { }
603 #endif /* CONFIG_SMP */
604 #endif /* CONFIG_FAIR_GROUP_SCHED */
605
606 #else /* CONFIG_CGROUP_SCHED */
607
608 struct cfs_bandwidth { };
609
610 #endif /* CONFIG_CGROUP_SCHED */
611
612 /* CFS-related fields in a runqueue */
613 struct cfs_rq {
614 struct load_weight load;
615 unsigned int nr_running;
616 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
617 unsigned int idle_h_nr_running; /* SCHED_IDLE */
618
619 u64 exec_clock;
620 u64 min_vruntime;
621 #ifndef CONFIG_64BIT
622 u64 min_vruntime_copy;
623 #endif
624
625 struct rb_root_cached tasks_timeline;
626
627 /*
628 * 'curr' points to currently running entity on this cfs_rq.
629 * It is set to NULL otherwise (i.e when none are currently running).
630 */
631 struct sched_entity *curr;
632 struct sched_entity *next;
633 struct sched_entity *last;
634 struct sched_entity *skip;
635
636 #ifdef CONFIG_SCHED_DEBUG
637 unsigned int nr_spread_over;
638 #endif
639
640 #ifdef CONFIG_SMP
641 /*
642 * CFS load tracking
643 */
644 struct sched_avg avg;
645 #ifndef CONFIG_64BIT
646 u64 load_last_update_time_copy;
647 #endif
648 struct {
649 raw_spinlock_t lock ____cacheline_aligned;
650 int nr;
651 unsigned long load_avg;
652 unsigned long util_avg;
653 unsigned long runnable_avg;
654 } removed;
655
656 #ifdef CONFIG_FAIR_GROUP_SCHED
657 unsigned long tg_load_avg_contrib;
658 long propagate;
659 long prop_runnable_sum;
660
661 /*
662 * h_load = weight * f(tg)
663 *
664 * Where f(tg) is the recursive weight fraction assigned to
665 * this group.
666 */
667 unsigned long h_load;
668 u64 last_h_load_update;
669 struct sched_entity *h_load_next;
670 #endif /* CONFIG_FAIR_GROUP_SCHED */
671 #endif /* CONFIG_SMP */
672
673 #ifdef CONFIG_FAIR_GROUP_SCHED
674 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
675
676 /*
677 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
678 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
679 * (like users, containers etc.)
680 *
681 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
682 * This list is used during load balance.
683 */
684 int on_list;
685 struct list_head leaf_cfs_rq_list;
686 struct task_group *tg; /* group that "owns" this runqueue */
687
688 #ifdef CONFIG_SCHED_WALT
689 struct walt_sched_stats walt_stats;
690 #endif
691
692 #ifdef CONFIG_CFS_BANDWIDTH
693 int runtime_enabled;
694 s64 runtime_remaining;
695
696 u64 throttled_clock;
697 u64 throttled_clock_pelt;
698 u64 throttled_clock_pelt_time;
699 int throttled;
700 int throttle_count;
701 struct list_head throttled_list;
702 #ifdef CONFIG_SCHED_WALT
703 u64 cumulative_runnable_avg;
704 #endif
705 #endif /* CONFIG_CFS_BANDWIDTH */
706 #endif /* CONFIG_FAIR_GROUP_SCHED */
707 };
708
rt_bandwidth_enabled(void)709 static inline int rt_bandwidth_enabled(void)
710 {
711 return sysctl_sched_rt_runtime >= 0;
712 }
713
714 /* RT IPI pull logic requires IRQ_WORK */
715 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
716 # define HAVE_RT_PUSH_IPI
717 #endif
718
719 /* Real-Time classes' related field in a runqueue: */
720 struct rt_rq {
721 struct rt_prio_array active;
722 unsigned int rt_nr_running;
723 unsigned int rr_nr_running;
724 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
725 struct {
726 int curr; /* highest queued rt task prio */
727 #ifdef CONFIG_SMP
728 int next; /* next highest */
729 #endif
730 } highest_prio;
731 #endif
732 #ifdef CONFIG_SMP
733 unsigned long rt_nr_migratory;
734 unsigned long rt_nr_total;
735 int overloaded;
736 struct plist_head pushable_tasks;
737
738 #endif /* CONFIG_SMP */
739 int rt_queued;
740
741 int rt_throttled;
742 u64 rt_time;
743 u64 rt_runtime;
744 /* Nests inside the rq lock: */
745 raw_spinlock_t rt_runtime_lock;
746
747 #ifdef CONFIG_RT_GROUP_SCHED
748 unsigned long rt_nr_boosted;
749
750 struct rq *rq;
751 struct task_group *tg;
752 #endif
753 };
754
rt_rq_is_runnable(struct rt_rq * rt_rq)755 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
756 {
757 return rt_rq->rt_queued && rt_rq->rt_nr_running;
758 }
759
760 /* Deadline class' related fields in a runqueue */
761 struct dl_rq {
762 /* runqueue is an rbtree, ordered by deadline */
763 struct rb_root_cached root;
764
765 unsigned long dl_nr_running;
766
767 #ifdef CONFIG_SMP
768 /*
769 * Deadline values of the currently executing and the
770 * earliest ready task on this rq. Caching these facilitates
771 * the decision whether or not a ready but not running task
772 * should migrate somewhere else.
773 */
774 struct {
775 u64 curr;
776 u64 next;
777 } earliest_dl;
778
779 unsigned long dl_nr_migratory;
780 int overloaded;
781
782 /*
783 * Tasks on this rq that can be pushed away. They are kept in
784 * an rb-tree, ordered by tasks' deadlines, with caching
785 * of the leftmost (earliest deadline) element.
786 */
787 struct rb_root_cached pushable_dl_tasks_root;
788 #else
789 struct dl_bw dl_bw;
790 #endif
791 /*
792 * "Active utilization" for this runqueue: increased when a
793 * task wakes up (becomes TASK_RUNNING) and decreased when a
794 * task blocks
795 */
796 u64 running_bw;
797
798 /*
799 * Utilization of the tasks "assigned" to this runqueue (including
800 * the tasks that are in runqueue and the tasks that executed on this
801 * CPU and blocked). Increased when a task moves to this runqueue, and
802 * decreased when the task moves away (migrates, changes scheduling
803 * policy, or terminates).
804 * This is needed to compute the "inactive utilization" for the
805 * runqueue (inactive utilization = this_bw - running_bw).
806 */
807 u64 this_bw;
808 u64 extra_bw;
809
810 /*
811 * Inverse of the fraction of CPU utilization that can be reclaimed
812 * by the GRUB algorithm.
813 */
814 u64 bw_ratio;
815 };
816
817 #ifdef CONFIG_FAIR_GROUP_SCHED
818 /* An entity is a task if it doesn't "own" a runqueue */
819 #define entity_is_task(se) (!se->my_q)
820
se_update_runnable(struct sched_entity * se)821 static inline void se_update_runnable(struct sched_entity *se)
822 {
823 if (!entity_is_task(se))
824 se->runnable_weight = se->my_q->h_nr_running;
825 }
826
se_runnable(struct sched_entity * se)827 static inline long se_runnable(struct sched_entity *se)
828 {
829 if (entity_is_task(se))
830 return !!se->on_rq;
831 else
832 return se->runnable_weight;
833 }
834
835 #else
836 #define entity_is_task(se) 1
837
se_update_runnable(struct sched_entity * se)838 static inline void se_update_runnable(struct sched_entity *se) {}
839
se_runnable(struct sched_entity * se)840 static inline long se_runnable(struct sched_entity *se)
841 {
842 return !!se->on_rq;
843 }
844 #endif
845
846 #ifdef CONFIG_SMP
847 /*
848 * XXX we want to get rid of these helpers and use the full load resolution.
849 */
se_weight(struct sched_entity * se)850 static inline long se_weight(struct sched_entity *se)
851 {
852 return scale_load_down(se->load.weight);
853 }
854
855
sched_asym_prefer(int a,int b)856 static inline bool sched_asym_prefer(int a, int b)
857 {
858 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
859 }
860
861 struct perf_domain {
862 struct em_perf_domain *em_pd;
863 struct perf_domain *next;
864 struct rcu_head rcu;
865 };
866
867 /* Scheduling group status flags */
868 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
869 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
870
871 /*
872 * We add the notion of a root-domain which will be used to define per-domain
873 * variables. Each exclusive cpuset essentially defines an island domain by
874 * fully partitioning the member CPUs from any other cpuset. Whenever a new
875 * exclusive cpuset is created, we also create and attach a new root-domain
876 * object.
877 *
878 */
879 struct root_domain {
880 atomic_t refcount;
881 atomic_t rto_count;
882 struct rcu_head rcu;
883 cpumask_var_t span;
884 cpumask_var_t online;
885
886 /*
887 * Indicate pullable load on at least one CPU, e.g:
888 * - More than one runnable task
889 * - Running task is misfit
890 */
891 int overload;
892
893 /* Indicate one or more cpus over-utilized (tipping point) */
894 int overutilized;
895
896 /*
897 * The bit corresponding to a CPU gets set here if such CPU has more
898 * than one runnable -deadline task (as it is below for RT tasks).
899 */
900 cpumask_var_t dlo_mask;
901 atomic_t dlo_count;
902 struct dl_bw dl_bw;
903 struct cpudl cpudl;
904
905 #ifdef HAVE_RT_PUSH_IPI
906 /*
907 * For IPI pull requests, loop across the rto_mask.
908 */
909 struct irq_work rto_push_work;
910 raw_spinlock_t rto_lock;
911 /* These are only updated and read within rto_lock */
912 int rto_loop;
913 int rto_cpu;
914 /* These atomics are updated outside of a lock */
915 atomic_t rto_loop_next;
916 atomic_t rto_loop_start;
917 #endif
918 /*
919 * The "RT overload" flag: it gets set if a CPU has more than
920 * one runnable RT task.
921 */
922 cpumask_var_t rto_mask;
923 struct cpupri cpupri;
924
925 unsigned long max_cpu_capacity;
926
927 /*
928 * NULL-terminated list of performance domains intersecting with the
929 * CPUs of the rd. Protected by RCU.
930 */
931 struct perf_domain __rcu *pd;
932 #ifdef CONFIG_SCHED_RT_CAS
933 int max_cap_orig_cpu;
934 #endif
935 };
936
937 extern void init_defrootdomain(void);
938 extern int sched_init_domains(const struct cpumask *cpu_map);
939 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
940 extern void sched_get_rd(struct root_domain *rd);
941 extern void sched_put_rd(struct root_domain *rd);
942
943 #ifdef HAVE_RT_PUSH_IPI
944 extern void rto_push_irq_work_func(struct irq_work *work);
945 #endif
946 #endif /* CONFIG_SMP */
947
948 #ifdef CONFIG_UCLAMP_TASK
949 /*
950 * struct uclamp_bucket - Utilization clamp bucket
951 * @value: utilization clamp value for tasks on this clamp bucket
952 * @tasks: number of RUNNABLE tasks on this clamp bucket
953 *
954 * Keep track of how many tasks are RUNNABLE for a given utilization
955 * clamp value.
956 */
957 struct uclamp_bucket {
958 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
959 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
960 };
961
962 /*
963 * struct uclamp_rq - rq's utilization clamp
964 * @value: currently active clamp values for a rq
965 * @bucket: utilization clamp buckets affecting a rq
966 *
967 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
968 * A clamp value is affecting a rq when there is at least one task RUNNABLE
969 * (or actually running) with that value.
970 *
971 * There are up to UCLAMP_CNT possible different clamp values, currently there
972 * are only two: minimum utilization and maximum utilization.
973 *
974 * All utilization clamping values are MAX aggregated, since:
975 * - for util_min: we want to run the CPU at least at the max of the minimum
976 * utilization required by its currently RUNNABLE tasks.
977 * - for util_max: we want to allow the CPU to run up to the max of the
978 * maximum utilization allowed by its currently RUNNABLE tasks.
979 *
980 * Since on each system we expect only a limited number of different
981 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
982 * the metrics required to compute all the per-rq utilization clamp values.
983 */
984 struct uclamp_rq {
985 unsigned int value;
986 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
987 };
988
989 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
990 #endif /* CONFIG_UCLAMP_TASK */
991
992 /*
993 * This is the main, per-CPU runqueue data structure.
994 *
995 * Locking rule: those places that want to lock multiple runqueues
996 * (such as the load balancing or the thread migration code), lock
997 * acquire operations must be ordered by ascending &runqueue.
998 */
999 struct rq {
1000 /* runqueue lock: */
1001 raw_spinlock_t lock;
1002
1003 /*
1004 * nr_running and cpu_load should be in the same cacheline because
1005 * remote CPUs use both these fields when doing load calculation.
1006 */
1007 unsigned int nr_running;
1008 #ifdef CONFIG_NUMA_BALANCING
1009 unsigned int nr_numa_running;
1010 unsigned int nr_preferred_running;
1011 unsigned int numa_migrate_on;
1012 #endif
1013 #ifdef CONFIG_NO_HZ_COMMON
1014 #ifdef CONFIG_SMP
1015 unsigned long last_blocked_load_update_tick;
1016 unsigned int has_blocked_load;
1017 call_single_data_t nohz_csd;
1018 #endif /* CONFIG_SMP */
1019 unsigned int nohz_tick_stopped;
1020 atomic_t nohz_flags;
1021 #endif /* CONFIG_NO_HZ_COMMON */
1022
1023 #ifdef CONFIG_SMP
1024 unsigned int ttwu_pending;
1025 #endif
1026 u64 nr_switches;
1027
1028 #ifdef CONFIG_UCLAMP_TASK
1029 /* Utilization clamp values based on CPU's RUNNABLE tasks */
1030 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
1031 unsigned int uclamp_flags;
1032 #define UCLAMP_FLAG_IDLE 0x01
1033 #endif
1034
1035 struct cfs_rq cfs;
1036 struct rt_rq rt;
1037 struct dl_rq dl;
1038
1039 #ifdef CONFIG_FAIR_GROUP_SCHED
1040 /* list of leaf cfs_rq on this CPU: */
1041 struct list_head leaf_cfs_rq_list;
1042 struct list_head *tmp_alone_branch;
1043 #endif /* CONFIG_FAIR_GROUP_SCHED */
1044
1045 /*
1046 * This is part of a global counter where only the total sum
1047 * over all CPUs matters. A task can increase this counter on
1048 * one CPU and if it got migrated afterwards it may decrease
1049 * it on another CPU. Always updated under the runqueue lock:
1050 */
1051 unsigned long nr_uninterruptible;
1052
1053 struct task_struct __rcu *curr;
1054 struct task_struct *idle;
1055 struct task_struct *stop;
1056 unsigned long next_balance;
1057 struct mm_struct *prev_mm;
1058
1059 unsigned int clock_update_flags;
1060 u64 clock;
1061 /* Ensure that all clocks are in the same cache line */
1062 u64 clock_task ____cacheline_aligned;
1063 u64 clock_pelt;
1064 unsigned long lost_idle_time;
1065
1066 atomic_t nr_iowait;
1067
1068 #ifdef CONFIG_MEMBARRIER
1069 int membarrier_state;
1070 #endif
1071
1072 #ifdef CONFIG_SMP
1073 struct root_domain *rd;
1074 struct sched_domain __rcu *sd;
1075
1076 unsigned long cpu_capacity;
1077 unsigned long cpu_capacity_orig;
1078 unsigned long cpu_capacity_inverted;
1079
1080 struct callback_head *balance_callback;
1081
1082 unsigned char nohz_idle_balance;
1083 unsigned char idle_balance;
1084
1085 unsigned long misfit_task_load;
1086
1087 /* For active balancing */
1088 int active_balance;
1089 int push_cpu;
1090 #ifdef CONFIG_SCHED_EAS
1091 struct task_struct *push_task;
1092 #endif
1093 struct cpu_stop_work active_balance_work;
1094
1095 /* For rt active balancing */
1096 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
1097 int rt_active_balance;
1098 struct task_struct *rt_push_task;
1099 struct cpu_stop_work rt_active_balance_work;
1100 #endif
1101
1102 /* CPU of this runqueue: */
1103 int cpu;
1104 int online;
1105
1106 struct list_head cfs_tasks;
1107
1108 struct sched_avg avg_rt;
1109 struct sched_avg avg_dl;
1110 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1111 struct sched_avg avg_irq;
1112 #endif
1113 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1114 struct sched_avg avg_thermal;
1115 #endif
1116 u64 idle_stamp;
1117 u64 avg_idle;
1118
1119 /* This is used to determine avg_idle's max value */
1120 u64 max_idle_balance_cost;
1121 #endif /* CONFIG_SMP */
1122
1123 #ifdef CONFIG_SCHED_WALT
1124 struct sched_cluster *cluster;
1125 struct cpumask freq_domain_cpumask;
1126 struct walt_sched_stats walt_stats;
1127
1128 u64 window_start;
1129 unsigned long walt_flags;
1130
1131 u64 cur_irqload;
1132 u64 avg_irqload;
1133 u64 irqload_ts;
1134 u64 curr_runnable_sum;
1135 u64 prev_runnable_sum;
1136 u64 nt_curr_runnable_sum;
1137 u64 nt_prev_runnable_sum;
1138 u64 cum_window_demand_scaled;
1139 struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
1140 #ifdef CONFIG_SCHED_RTG
1141 struct group_cpu_time grp_time;
1142 #endif
1143 #endif /* CONFIG_SCHED_WALT */
1144
1145 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1146 u64 prev_irq_time;
1147 #endif
1148 #ifdef CONFIG_PARAVIRT
1149 u64 prev_steal_time;
1150 #endif
1151 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1152 u64 prev_steal_time_rq;
1153 #endif
1154
1155 /* calc_load related fields */
1156 unsigned long calc_load_update;
1157 long calc_load_active;
1158
1159 #ifdef CONFIG_SCHED_HRTICK
1160 #ifdef CONFIG_SMP
1161 call_single_data_t hrtick_csd;
1162 #endif
1163 struct hrtimer hrtick_timer;
1164 ktime_t hrtick_time;
1165 #endif
1166
1167 #ifdef CONFIG_SCHEDSTATS
1168 /* latency stats */
1169 struct sched_info rq_sched_info;
1170 unsigned long long rq_cpu_time;
1171 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1172
1173 /* sys_sched_yield() stats */
1174 unsigned int yld_count;
1175
1176 /* schedule() stats */
1177 unsigned int sched_count;
1178 unsigned int sched_goidle;
1179
1180 /* try_to_wake_up() stats */
1181 unsigned int ttwu_count;
1182 unsigned int ttwu_local;
1183 #endif
1184
1185 #ifdef CONFIG_CPU_IDLE
1186 /* Must be inspected within a rcu lock section */
1187 struct cpuidle_state *idle_state;
1188 #endif
1189 };
1190
1191 #ifdef CONFIG_FAIR_GROUP_SCHED
1192
1193 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1194 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1195 {
1196 return cfs_rq->rq;
1197 }
1198
1199 #else
1200
rq_of(struct cfs_rq * cfs_rq)1201 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1202 {
1203 return container_of(cfs_rq, struct rq, cfs);
1204 }
1205 #endif
1206
cpu_of(struct rq * rq)1207 static inline int cpu_of(struct rq *rq)
1208 {
1209 #ifdef CONFIG_SMP
1210 return rq->cpu;
1211 #else
1212 return 0;
1213 #endif
1214 }
1215
1216
1217 #ifdef CONFIG_SCHED_SMT
1218 extern void __update_idle_core(struct rq *rq);
1219
update_idle_core(struct rq * rq)1220 static inline void update_idle_core(struct rq *rq)
1221 {
1222 if (static_branch_unlikely(&sched_smt_present))
1223 __update_idle_core(rq);
1224 }
1225
1226 #else
update_idle_core(struct rq * rq)1227 static inline void update_idle_core(struct rq *rq) { }
1228 #endif
1229
1230 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1231
1232 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1233 #define this_rq() this_cpu_ptr(&runqueues)
1234 #define task_rq(p) cpu_rq(task_cpu(p))
1235 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1236 #define raw_rq() raw_cpu_ptr(&runqueues)
1237
1238 extern void update_rq_clock(struct rq *rq);
1239
__rq_clock_broken(struct rq * rq)1240 static inline u64 __rq_clock_broken(struct rq *rq)
1241 {
1242 return READ_ONCE(rq->clock);
1243 }
1244
1245 /*
1246 * rq::clock_update_flags bits
1247 *
1248 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1249 * call to __schedule(). This is an optimisation to avoid
1250 * neighbouring rq clock updates.
1251 *
1252 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1253 * in effect and calls to update_rq_clock() are being ignored.
1254 *
1255 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1256 * made to update_rq_clock() since the last time rq::lock was pinned.
1257 *
1258 * If inside of __schedule(), clock_update_flags will have been
1259 * shifted left (a left shift is a cheap operation for the fast path
1260 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1261 *
1262 * if (rq-clock_update_flags >= RQCF_UPDATED)
1263 *
1264 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1265 * one position though, because the next rq_unpin_lock() will shift it
1266 * back.
1267 */
1268 #define RQCF_REQ_SKIP 0x01
1269 #define RQCF_ACT_SKIP 0x02
1270 #define RQCF_UPDATED 0x04
1271
assert_clock_updated(struct rq * rq)1272 static inline void assert_clock_updated(struct rq *rq)
1273 {
1274 /*
1275 * The only reason for not seeing a clock update since the
1276 * last rq_pin_lock() is if we're currently skipping updates.
1277 */
1278 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1279 }
1280
rq_clock(struct rq * rq)1281 static inline u64 rq_clock(struct rq *rq)
1282 {
1283 lockdep_assert_held(&rq->lock);
1284 assert_clock_updated(rq);
1285
1286 return rq->clock;
1287 }
1288
rq_clock_task(struct rq * rq)1289 static inline u64 rq_clock_task(struct rq *rq)
1290 {
1291 lockdep_assert_held(&rq->lock);
1292 assert_clock_updated(rq);
1293
1294 return rq->clock_task;
1295 }
1296
1297 /**
1298 * By default the decay is the default pelt decay period.
1299 * The decay shift can change the decay period in
1300 * multiples of 32.
1301 * Decay shift Decay period(ms)
1302 * 0 32
1303 * 1 64
1304 * 2 128
1305 * 3 256
1306 * 4 512
1307 */
1308 extern int sched_thermal_decay_shift;
1309
rq_clock_thermal(struct rq * rq)1310 static inline u64 rq_clock_thermal(struct rq *rq)
1311 {
1312 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1313 }
1314
rq_clock_skip_update(struct rq * rq)1315 static inline void rq_clock_skip_update(struct rq *rq)
1316 {
1317 lockdep_assert_held(&rq->lock);
1318 rq->clock_update_flags |= RQCF_REQ_SKIP;
1319 }
1320
1321 /*
1322 * See rt task throttling, which is the only time a skip
1323 * request is cancelled.
1324 */
rq_clock_cancel_skipupdate(struct rq * rq)1325 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1326 {
1327 lockdep_assert_held(&rq->lock);
1328 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1329 }
1330
1331 struct rq_flags {
1332 unsigned long flags;
1333 struct pin_cookie cookie;
1334 #ifdef CONFIG_SCHED_DEBUG
1335 /*
1336 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1337 * current pin context is stashed here in case it needs to be
1338 * restored in rq_repin_lock().
1339 */
1340 unsigned int clock_update_flags;
1341 #endif
1342 };
1343
1344 /*
1345 * Lockdep annotation that avoids accidental unlocks; it's like a
1346 * sticky/continuous lockdep_assert_held().
1347 *
1348 * This avoids code that has access to 'struct rq *rq' (basically everything in
1349 * the scheduler) from accidentally unlocking the rq if they do not also have a
1350 * copy of the (on-stack) 'struct rq_flags rf'.
1351 *
1352 * Also see Documentation/locking/lockdep-design.rst.
1353 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1354 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1355 {
1356 rf->cookie = lockdep_pin_lock(&rq->lock);
1357
1358 #ifdef CONFIG_SCHED_DEBUG
1359 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1360 rf->clock_update_flags = 0;
1361 #endif
1362 }
1363
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1364 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1365 {
1366 #ifdef CONFIG_SCHED_DEBUG
1367 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1368 rf->clock_update_flags = RQCF_UPDATED;
1369 #endif
1370
1371 lockdep_unpin_lock(&rq->lock, rf->cookie);
1372 }
1373
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1374 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1375 {
1376 lockdep_repin_lock(&rq->lock, rf->cookie);
1377
1378 #ifdef CONFIG_SCHED_DEBUG
1379 /*
1380 * Restore the value we stashed in @rf for this pin context.
1381 */
1382 rq->clock_update_flags |= rf->clock_update_flags;
1383 #endif
1384 }
1385
1386 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1387 __acquires(rq->lock);
1388
1389 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1390 __acquires(p->pi_lock)
1391 __acquires(rq->lock);
1392
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1393 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1394 __releases(rq->lock)
1395 {
1396 rq_unpin_lock(rq, rf);
1397 raw_spin_unlock(&rq->lock);
1398 }
1399
1400 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1401 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1402 __releases(rq->lock)
1403 __releases(p->pi_lock)
1404 {
1405 rq_unpin_lock(rq, rf);
1406 raw_spin_unlock(&rq->lock);
1407 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1408 }
1409
1410 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1411 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1412 __acquires(rq->lock)
1413 {
1414 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1415 rq_pin_lock(rq, rf);
1416 }
1417
1418 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1419 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1420 __acquires(rq->lock)
1421 {
1422 raw_spin_lock_irq(&rq->lock);
1423 rq_pin_lock(rq, rf);
1424 }
1425
1426 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1427 rq_lock(struct rq *rq, struct rq_flags *rf)
1428 __acquires(rq->lock)
1429 {
1430 raw_spin_lock(&rq->lock);
1431 rq_pin_lock(rq, rf);
1432 }
1433
1434 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1435 rq_relock(struct rq *rq, struct rq_flags *rf)
1436 __acquires(rq->lock)
1437 {
1438 raw_spin_lock(&rq->lock);
1439 rq_repin_lock(rq, rf);
1440 }
1441
1442 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1443 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1444 __releases(rq->lock)
1445 {
1446 rq_unpin_lock(rq, rf);
1447 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1448 }
1449
1450 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1451 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1452 __releases(rq->lock)
1453 {
1454 rq_unpin_lock(rq, rf);
1455 raw_spin_unlock_irq(&rq->lock);
1456 }
1457
1458 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1459 rq_unlock(struct rq *rq, struct rq_flags *rf)
1460 __releases(rq->lock)
1461 {
1462 rq_unpin_lock(rq, rf);
1463 raw_spin_unlock(&rq->lock);
1464 }
1465
1466 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1467 this_rq_lock_irq(struct rq_flags *rf)
1468 __acquires(rq->lock)
1469 {
1470 struct rq *rq;
1471
1472 local_irq_disable();
1473 rq = this_rq();
1474 rq_lock(rq, rf);
1475 return rq;
1476 }
1477
1478 #ifdef CONFIG_NUMA
1479 enum numa_topology_type {
1480 NUMA_DIRECT,
1481 NUMA_GLUELESS_MESH,
1482 NUMA_BACKPLANE,
1483 };
1484 extern enum numa_topology_type sched_numa_topology_type;
1485 extern int sched_max_numa_distance;
1486 extern bool find_numa_distance(int distance);
1487 extern void sched_init_numa(void);
1488 extern void sched_domains_numa_masks_set(unsigned int cpu);
1489 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1490 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1491 #else
sched_init_numa(void)1492 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1493 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1494 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1495 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1496 {
1497 return nr_cpu_ids;
1498 }
1499 #endif
1500
1501 #ifdef CONFIG_NUMA_BALANCING
1502 /* The regions in numa_faults array from task_struct */
1503 enum numa_faults_stats {
1504 NUMA_MEM = 0,
1505 NUMA_CPU,
1506 NUMA_MEMBUF,
1507 NUMA_CPUBUF
1508 };
1509 extern void sched_setnuma(struct task_struct *p, int node);
1510 extern int migrate_task_to(struct task_struct *p, int cpu);
1511 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1512 int cpu, int scpu);
1513 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1514 #else
1515 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1516 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1517 {
1518 }
1519 #endif /* CONFIG_NUMA_BALANCING */
1520
1521 #ifdef CONFIG_SMP
1522
1523 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1524 queue_balance_callback(struct rq *rq,
1525 struct callback_head *head,
1526 void (*func)(struct rq *rq))
1527 {
1528 lockdep_assert_held(&rq->lock);
1529
1530 if (unlikely(head->next))
1531 return;
1532
1533 head->func = (void (*)(struct callback_head *))func;
1534 head->next = rq->balance_callback;
1535 rq->balance_callback = head;
1536 }
1537
1538 #define rcu_dereference_check_sched_domain(p) \
1539 rcu_dereference_check((p), \
1540 lockdep_is_held(&sched_domains_mutex))
1541
1542 /*
1543 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1544 * See destroy_sched_domains: call_rcu for details.
1545 *
1546 * The domain tree of any CPU may only be accessed from within
1547 * preempt-disabled sections.
1548 */
1549 #define for_each_domain(cpu, __sd) \
1550 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1551 __sd; __sd = __sd->parent)
1552
1553 /**
1554 * highest_flag_domain - Return highest sched_domain containing flag.
1555 * @cpu: The CPU whose highest level of sched domain is to
1556 * be returned.
1557 * @flag: The flag to check for the highest sched_domain
1558 * for the given CPU.
1559 *
1560 * Returns the highest sched_domain of a CPU which contains the given flag.
1561 */
highest_flag_domain(int cpu,int flag)1562 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1563 {
1564 struct sched_domain *sd, *hsd = NULL;
1565
1566 for_each_domain(cpu, sd) {
1567 if (!(sd->flags & flag))
1568 break;
1569 hsd = sd;
1570 }
1571
1572 return hsd;
1573 }
1574
lowest_flag_domain(int cpu,int flag)1575 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1576 {
1577 struct sched_domain *sd;
1578
1579 for_each_domain(cpu, sd) {
1580 if (sd->flags & flag)
1581 break;
1582 }
1583
1584 return sd;
1585 }
1586
1587 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1588 DECLARE_PER_CPU(int, sd_llc_size);
1589 DECLARE_PER_CPU(int, sd_llc_id);
1590 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1591 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1592 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1593 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1594 extern struct static_key_false sched_asym_cpucapacity;
1595
1596 struct sched_group_capacity {
1597 atomic_t ref;
1598 /*
1599 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1600 * for a single CPU.
1601 */
1602 unsigned long capacity;
1603 unsigned long min_capacity; /* Min per-CPU capacity in group */
1604 unsigned long max_capacity; /* Max per-CPU capacity in group */
1605 unsigned long next_update;
1606 int imbalance; /* XXX unrelated to capacity but shared group state */
1607
1608 #ifdef CONFIG_SCHED_DEBUG
1609 int id;
1610 #endif
1611
1612 unsigned long cpumask[]; /* Balance mask */
1613 };
1614
1615 struct sched_group {
1616 struct sched_group *next; /* Must be a circular list */
1617 atomic_t ref;
1618
1619 unsigned int group_weight;
1620 struct sched_group_capacity *sgc;
1621 int asym_prefer_cpu; /* CPU of highest priority in group */
1622
1623 /*
1624 * The CPUs this group covers.
1625 *
1626 * NOTE: this field is variable length. (Allocated dynamically
1627 * by attaching extra space to the end of the structure,
1628 * depending on how many CPUs the kernel has booted up with)
1629 */
1630 unsigned long cpumask[];
1631 };
1632
sched_group_span(struct sched_group * sg)1633 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1634 {
1635 return to_cpumask(sg->cpumask);
1636 }
1637
1638 /*
1639 * See build_balance_mask().
1640 */
group_balance_mask(struct sched_group * sg)1641 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1642 {
1643 return to_cpumask(sg->sgc->cpumask);
1644 }
1645
1646 /**
1647 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1648 * @group: The group whose first CPU is to be returned.
1649 */
group_first_cpu(struct sched_group * group)1650 static inline unsigned int group_first_cpu(struct sched_group *group)
1651 {
1652 return cpumask_first(sched_group_span(group));
1653 }
1654
1655 extern int group_balance_cpu(struct sched_group *sg);
1656
1657 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1658 void register_sched_domain_sysctl(void);
1659 void dirty_sched_domain_sysctl(int cpu);
1660 void unregister_sched_domain_sysctl(void);
1661 #else
register_sched_domain_sysctl(void)1662 static inline void register_sched_domain_sysctl(void)
1663 {
1664 }
dirty_sched_domain_sysctl(int cpu)1665 static inline void dirty_sched_domain_sysctl(int cpu)
1666 {
1667 }
unregister_sched_domain_sysctl(void)1668 static inline void unregister_sched_domain_sysctl(void)
1669 {
1670 }
1671 #endif
1672
1673 extern void flush_smp_call_function_from_idle(void);
1674
1675 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1676 static inline void flush_smp_call_function_from_idle(void) { }
1677 #endif
1678
1679 #include "stats.h"
1680 #include "autogroup.h"
1681
1682 #ifdef CONFIG_CGROUP_SCHED
1683
1684 /*
1685 * Return the group to which this tasks belongs.
1686 *
1687 * We cannot use task_css() and friends because the cgroup subsystem
1688 * changes that value before the cgroup_subsys::attach() method is called,
1689 * therefore we cannot pin it and might observe the wrong value.
1690 *
1691 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1692 * core changes this before calling sched_move_task().
1693 *
1694 * Instead we use a 'copy' which is updated from sched_move_task() while
1695 * holding both task_struct::pi_lock and rq::lock.
1696 */
task_group(struct task_struct * p)1697 static inline struct task_group *task_group(struct task_struct *p)
1698 {
1699 return p->sched_task_group;
1700 }
1701
1702 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1703 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1704 {
1705 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1706 struct task_group *tg = task_group(p);
1707 #endif
1708
1709 #ifdef CONFIG_FAIR_GROUP_SCHED
1710 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1711 p->se.cfs_rq = tg->cfs_rq[cpu];
1712 p->se.parent = tg->se[cpu];
1713 #endif
1714
1715 #ifdef CONFIG_RT_GROUP_SCHED
1716 p->rt.rt_rq = tg->rt_rq[cpu];
1717 p->rt.parent = tg->rt_se[cpu];
1718 #endif
1719 }
1720
1721 #else /* CONFIG_CGROUP_SCHED */
1722
set_task_rq(struct task_struct * p,unsigned int cpu)1723 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1724 static inline struct task_group *task_group(struct task_struct *p)
1725 {
1726 return NULL;
1727 }
1728
1729 #endif /* CONFIG_CGROUP_SCHED */
1730
__set_task_cpu(struct task_struct * p,unsigned int cpu)1731 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1732 {
1733 set_task_rq(p, cpu);
1734 #ifdef CONFIG_SMP
1735 /*
1736 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1737 * successfully executed on another CPU. We must ensure that updates of
1738 * per-task data have been completed by this moment.
1739 */
1740 smp_wmb();
1741 #ifdef CONFIG_THREAD_INFO_IN_TASK
1742 WRITE_ONCE(p->cpu, cpu);
1743 #else
1744 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1745 #endif
1746 p->wake_cpu = cpu;
1747 #endif
1748 }
1749
1750 /*
1751 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1752 */
1753 #ifdef CONFIG_SCHED_DEBUG
1754 # include <linux/static_key.h>
1755 # define const_debug __read_mostly
1756 #else
1757 # define const_debug const
1758 #endif
1759
1760 #define SCHED_FEAT(name, enabled) \
1761 __SCHED_FEAT_##name ,
1762
1763 enum {
1764 #include "features.h"
1765 __SCHED_FEAT_NR,
1766 };
1767
1768 #undef SCHED_FEAT
1769
1770 #ifdef CONFIG_SCHED_DEBUG
1771
1772 /*
1773 * To support run-time toggling of sched features, all the translation units
1774 * (but core.c) reference the sysctl_sched_features defined in core.c.
1775 */
1776 extern const_debug unsigned int sysctl_sched_features;
1777
1778 #ifdef CONFIG_JUMP_LABEL
1779 #define SCHED_FEAT(name, enabled) \
1780 static __always_inline bool static_branch_##name(struct static_key *key) \
1781 { \
1782 return static_key_##enabled(key); \
1783 }
1784
1785 #include "features.h"
1786 #undef SCHED_FEAT
1787
1788 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1789 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1790
1791 #else /* !CONFIG_JUMP_LABEL */
1792
1793 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1794
1795 #endif /* CONFIG_JUMP_LABEL */
1796
1797 #else /* !SCHED_DEBUG */
1798
1799 /*
1800 * Each translation unit has its own copy of sysctl_sched_features to allow
1801 * constants propagation at compile time and compiler optimization based on
1802 * features default.
1803 */
1804 #define SCHED_FEAT(name, enabled) \
1805 (1UL << __SCHED_FEAT_##name) * enabled |
1806 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1807 #include "features.h"
1808 0;
1809 #undef SCHED_FEAT
1810
1811 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1812
1813 #endif /* SCHED_DEBUG */
1814
1815 extern struct static_key_false sched_numa_balancing;
1816 extern struct static_key_false sched_schedstats;
1817
global_rt_period(void)1818 static inline u64 global_rt_period(void)
1819 {
1820 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1821 }
1822
global_rt_runtime(void)1823 static inline u64 global_rt_runtime(void)
1824 {
1825 if (sysctl_sched_rt_runtime < 0)
1826 return RUNTIME_INF;
1827
1828 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1829 }
1830
task_current(struct rq * rq,struct task_struct * p)1831 static inline int task_current(struct rq *rq, struct task_struct *p)
1832 {
1833 return rq->curr == p;
1834 }
1835
task_running(struct rq * rq,struct task_struct * p)1836 static inline int task_running(struct rq *rq, struct task_struct *p)
1837 {
1838 #ifdef CONFIG_SMP
1839 return p->on_cpu;
1840 #else
1841 return task_current(rq, p);
1842 #endif
1843 }
1844
task_on_rq_queued(struct task_struct * p)1845 static inline int task_on_rq_queued(struct task_struct *p)
1846 {
1847 return p->on_rq == TASK_ON_RQ_QUEUED;
1848 }
1849
task_on_rq_migrating(struct task_struct * p)1850 static inline int task_on_rq_migrating(struct task_struct *p)
1851 {
1852 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1853 }
1854
1855 /*
1856 * wake flags
1857 */
1858 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1859 #define WF_FORK 0x02 /* Child wakeup after fork */
1860 #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1861 #define WF_ON_CPU 0x08 /* Wakee is on_cpu */
1862
1863 /*
1864 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1865 * of tasks with abnormal "nice" values across CPUs the contribution that
1866 * each task makes to its run queue's load is weighted according to its
1867 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1868 * scaled version of the new time slice allocation that they receive on time
1869 * slice expiry etc.
1870 */
1871
1872 #define WEIGHT_IDLEPRIO 3
1873 #define WMULT_IDLEPRIO 1431655765
1874
1875 extern const int sched_prio_to_weight[40];
1876 extern const u32 sched_prio_to_wmult[40];
1877 #ifdef CONFIG_SCHED_LATENCY_NICE
1878 extern const int sched_latency_to_weight[40];
1879 #endif
1880
1881 /*
1882 * {de,en}queue flags:
1883 *
1884 * DEQUEUE_SLEEP - task is no longer runnable
1885 * ENQUEUE_WAKEUP - task just became runnable
1886 *
1887 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1888 * are in a known state which allows modification. Such pairs
1889 * should preserve as much state as possible.
1890 *
1891 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1892 * in the runqueue.
1893 *
1894 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1895 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1896 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1897 *
1898 */
1899
1900 #define DEQUEUE_SLEEP 0x01
1901 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1902 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1903 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1904
1905 #define ENQUEUE_WAKEUP 0x01
1906 #define ENQUEUE_RESTORE 0x02
1907 #define ENQUEUE_MOVE 0x04
1908 #define ENQUEUE_NOCLOCK 0x08
1909
1910 #define ENQUEUE_HEAD 0x10
1911 #define ENQUEUE_REPLENISH 0x20
1912 #ifdef CONFIG_SMP
1913 #define ENQUEUE_MIGRATED 0x40
1914 #else
1915 #define ENQUEUE_MIGRATED 0x00
1916 #endif
1917
1918 #define RETRY_TASK ((void *)-1UL)
1919
1920 struct sched_class {
1921
1922 #ifdef CONFIG_UCLAMP_TASK
1923 int uclamp_enabled;
1924 #endif
1925
1926 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1927 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1928 void (*yield_task) (struct rq *rq);
1929 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1930
1931 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1932
1933 struct task_struct *(*pick_next_task)(struct rq *rq);
1934
1935 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1936 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1937
1938 #ifdef CONFIG_SMP
1939 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1940 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1941 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1942
1943 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1944
1945 void (*set_cpus_allowed)(struct task_struct *p,
1946 const struct cpumask *newmask);
1947
1948 void (*rq_online)(struct rq *rq);
1949 void (*rq_offline)(struct rq *rq);
1950 #endif
1951
1952 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1953 void (*task_fork)(struct task_struct *p);
1954 void (*task_dead)(struct task_struct *p);
1955
1956 /*
1957 * The switched_from() call is allowed to drop rq->lock, therefore we
1958 * cannot assume the switched_from/switched_to pair is serliazed by
1959 * rq->lock. They are however serialized by p->pi_lock.
1960 */
1961 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1962 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1963 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1964 int oldprio);
1965
1966 unsigned int (*get_rr_interval)(struct rq *rq,
1967 struct task_struct *task);
1968
1969 void (*update_curr)(struct rq *rq);
1970
1971 #define TASK_SET_GROUP 0
1972 #define TASK_MOVE_GROUP 1
1973
1974 #ifdef CONFIG_FAIR_GROUP_SCHED
1975 void (*task_change_group)(struct task_struct *p, int type);
1976 #endif
1977 #ifdef CONFIG_SCHED_WALT
1978 void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
1979 u16 updated_demand_scaled);
1980 #endif
1981 #ifdef CONFIG_SCHED_EAS
1982 void (*check_for_migration)(struct rq *rq, struct task_struct *p);
1983 #endif
1984 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1985
put_prev_task(struct rq * rq,struct task_struct * prev)1986 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1987 {
1988 WARN_ON_ONCE(rq->curr != prev);
1989 prev->sched_class->put_prev_task(rq, prev);
1990 }
1991
set_next_task(struct rq * rq,struct task_struct * next)1992 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1993 {
1994 WARN_ON_ONCE(rq->curr != next);
1995 next->sched_class->set_next_task(rq, next, false);
1996 }
1997
1998 /* Defined in include/asm-generic/vmlinux.lds.h */
1999 extern struct sched_class __begin_sched_classes[];
2000 extern struct sched_class __end_sched_classes[];
2001
2002 #define sched_class_highest (__end_sched_classes - 1)
2003 #define sched_class_lowest (__begin_sched_classes - 1)
2004
2005 #define for_class_range(class, _from, _to) \
2006 for (class = (_from); class != (_to); class--)
2007
2008 #define for_each_class(class) \
2009 for_class_range(class, sched_class_highest, sched_class_lowest)
2010
2011 extern const struct sched_class stop_sched_class;
2012 extern const struct sched_class dl_sched_class;
2013 extern const struct sched_class rt_sched_class;
2014 extern const struct sched_class fair_sched_class;
2015 extern const struct sched_class idle_sched_class;
2016
sched_stop_runnable(struct rq * rq)2017 static inline bool sched_stop_runnable(struct rq *rq)
2018 {
2019 return rq->stop && task_on_rq_queued(rq->stop);
2020 }
2021
sched_dl_runnable(struct rq * rq)2022 static inline bool sched_dl_runnable(struct rq *rq)
2023 {
2024 return rq->dl.dl_nr_running > 0;
2025 }
2026
sched_rt_runnable(struct rq * rq)2027 static inline bool sched_rt_runnable(struct rq *rq)
2028 {
2029 return rq->rt.rt_queued > 0;
2030 }
2031
sched_fair_runnable(struct rq * rq)2032 static inline bool sched_fair_runnable(struct rq *rq)
2033 {
2034 return rq->cfs.nr_running > 0;
2035 }
2036
2037 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2038 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2039
2040 #ifdef CONFIG_SMP
2041
2042 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2043
2044 extern void trigger_load_balance(struct rq *rq);
2045
2046 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
2047
2048 #endif
2049
2050 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2051 static inline void idle_set_state(struct rq *rq,
2052 struct cpuidle_state *idle_state)
2053 {
2054 rq->idle_state = idle_state;
2055 }
2056
idle_get_state(struct rq * rq)2057 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2058 {
2059 SCHED_WARN_ON(!rcu_read_lock_held());
2060
2061 return rq->idle_state;
2062 }
2063 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2064 static inline void idle_set_state(struct rq *rq,
2065 struct cpuidle_state *idle_state)
2066 {
2067 }
2068
idle_get_state(struct rq * rq)2069 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2070 {
2071 return NULL;
2072 }
2073 #endif
2074
2075 extern void schedule_idle(void);
2076
2077 extern void sysrq_sched_debug_show(void);
2078 extern void sched_init_granularity(void);
2079 extern void update_max_interval(void);
2080
2081 extern void init_sched_dl_class(void);
2082 extern void init_sched_rt_class(void);
2083 extern void init_sched_fair_class(void);
2084
2085 extern void reweight_task(struct task_struct *p, int prio);
2086
2087 extern void resched_curr(struct rq *rq);
2088 extern void resched_cpu(int cpu);
2089
2090 extern struct rt_bandwidth def_rt_bandwidth;
2091 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2092
2093 extern struct dl_bandwidth def_dl_bandwidth;
2094 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2095 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2096 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2097
2098 #define BW_SHIFT 20
2099 #define BW_UNIT (1 << BW_SHIFT)
2100 #define RATIO_SHIFT 8
2101 #define MAX_BW_BITS (64 - BW_SHIFT)
2102 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2103 unsigned long to_ratio(u64 period, u64 runtime);
2104
2105 extern void init_entity_runnable_average(struct sched_entity *se);
2106 extern void post_init_entity_util_avg(struct task_struct *p);
2107
2108 #ifdef CONFIG_NO_HZ_FULL
2109 extern bool sched_can_stop_tick(struct rq *rq);
2110 extern int __init sched_tick_offload_init(void);
2111
2112 /*
2113 * Tick may be needed by tasks in the runqueue depending on their policy and
2114 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2115 * nohz mode if necessary.
2116 */
sched_update_tick_dependency(struct rq * rq)2117 static inline void sched_update_tick_dependency(struct rq *rq)
2118 {
2119 int cpu = cpu_of(rq);
2120
2121 if (!tick_nohz_full_cpu(cpu))
2122 return;
2123
2124 if (sched_can_stop_tick(rq))
2125 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2126 else
2127 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2128 }
2129 #else
sched_tick_offload_init(void)2130 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2131 static inline void sched_update_tick_dependency(struct rq *rq) { }
2132 #endif
2133
add_nr_running(struct rq * rq,unsigned count)2134 static inline void add_nr_running(struct rq *rq, unsigned count)
2135 {
2136 unsigned prev_nr = rq->nr_running;
2137
2138 rq->nr_running = prev_nr + count;
2139 if (trace_sched_update_nr_running_tp_enabled()) {
2140 call_trace_sched_update_nr_running(rq, count);
2141 }
2142
2143 #ifdef CONFIG_SMP
2144 if (prev_nr < 2 && rq->nr_running >= 2) {
2145 if (!READ_ONCE(rq->rd->overload))
2146 WRITE_ONCE(rq->rd->overload, 1);
2147 }
2148 #endif
2149
2150 sched_update_tick_dependency(rq);
2151 }
2152
sub_nr_running(struct rq * rq,unsigned count)2153 static inline void sub_nr_running(struct rq *rq, unsigned count)
2154 {
2155 rq->nr_running -= count;
2156 if (trace_sched_update_nr_running_tp_enabled()) {
2157 call_trace_sched_update_nr_running(rq, -count);
2158 }
2159
2160 /* Check if we still need preemption */
2161 sched_update_tick_dependency(rq);
2162 }
2163
2164 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2165 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2166
2167 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2168
2169 extern const_debug unsigned int sysctl_sched_nr_migrate;
2170 extern const_debug unsigned int sysctl_sched_migration_cost;
2171
2172 #ifdef CONFIG_SCHED_HRTICK
2173
2174 /*
2175 * Use hrtick when:
2176 * - enabled by features
2177 * - hrtimer is actually high res
2178 */
hrtick_enabled(struct rq * rq)2179 static inline int hrtick_enabled(struct rq *rq)
2180 {
2181 if (!sched_feat(HRTICK))
2182 return 0;
2183 if (!cpu_active(cpu_of(rq)))
2184 return 0;
2185 return hrtimer_is_hres_active(&rq->hrtick_timer);
2186 }
2187
2188 void hrtick_start(struct rq *rq, u64 delay);
2189
2190 #else
2191
hrtick_enabled(struct rq * rq)2192 static inline int hrtick_enabled(struct rq *rq)
2193 {
2194 return 0;
2195 }
2196
2197 #endif /* CONFIG_SCHED_HRTICK */
2198
2199 #ifdef CONFIG_SCHED_WALT
2200 u64 sched_ktime_clock(void);
2201 #else
sched_ktime_clock(void)2202 static inline u64 sched_ktime_clock(void)
2203 {
2204 return sched_clock();
2205 }
2206 #endif
2207
2208 #ifndef arch_scale_freq_tick
2209 static __always_inline
arch_scale_freq_tick(void)2210 void arch_scale_freq_tick(void)
2211 {
2212 }
2213 #endif
2214
2215 #ifndef arch_scale_freq_capacity
2216 /**
2217 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2218 * @cpu: the CPU in question.
2219 *
2220 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2221 *
2222 * f_curr
2223 * ------ * SCHED_CAPACITY_SCALE
2224 * f_max
2225 */
2226 static __always_inline
arch_scale_freq_capacity(int cpu)2227 unsigned long arch_scale_freq_capacity(int cpu)
2228 {
2229 return SCHED_CAPACITY_SCALE;
2230 }
2231 #endif
2232
2233 unsigned long capacity_curr_of(int cpu);
2234 unsigned long cpu_util(int cpu);
2235
2236 #ifdef CONFIG_SMP
2237 #ifdef CONFIG_SCHED_WALT
2238 extern unsigned int sysctl_sched_use_walt_cpu_util;
2239 extern unsigned int walt_disabled;
2240 #endif
2241 #ifdef CONFIG_PREEMPTION
2242
2243 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2244
2245 /*
2246 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2247 * way at the expense of forcing extra atomic operations in all
2248 * invocations. This assures that the double_lock is acquired using the
2249 * same underlying policy as the spinlock_t on this architecture, which
2250 * reduces latency compared to the unfair variant below. However, it
2251 * also adds more overhead and therefore may reduce throughput.
2252 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2253 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2254 __releases(this_rq->lock)
2255 __acquires(busiest->lock)
2256 __acquires(this_rq->lock)
2257 {
2258 raw_spin_unlock(&this_rq->lock);
2259 double_rq_lock(this_rq, busiest);
2260
2261 return 1;
2262 }
2263
2264 #else
2265 /*
2266 * Unfair double_lock_balance: Optimizes throughput at the expense of
2267 * latency by eliminating extra atomic operations when the locks are
2268 * already in proper order on entry. This favors lower CPU-ids and will
2269 * grant the double lock to lower CPUs over higher ids under contention,
2270 * regardless of entry order into the function.
2271 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2272 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2273 __releases(this_rq->lock)
2274 __acquires(busiest->lock)
2275 __acquires(this_rq->lock)
2276 {
2277 int ret = 0;
2278
2279 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2280 if (busiest < this_rq) {
2281 raw_spin_unlock(&this_rq->lock);
2282 raw_spin_lock(&busiest->lock);
2283 raw_spin_lock_nested(&this_rq->lock,
2284 SINGLE_DEPTH_NESTING);
2285 ret = 1;
2286 } else
2287 raw_spin_lock_nested(&busiest->lock,
2288 SINGLE_DEPTH_NESTING);
2289 }
2290 return ret;
2291 }
2292
2293 #endif /* CONFIG_PREEMPTION */
2294
2295 /*
2296 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2297 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2298 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2299 {
2300 if (unlikely(!irqs_disabled())) {
2301 /* printk() doesn't work well under rq->lock */
2302 raw_spin_unlock(&this_rq->lock);
2303 BUG_ON(1);
2304 }
2305
2306 return _double_lock_balance(this_rq, busiest);
2307 }
2308
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2309 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2310 __releases(busiest->lock)
2311 {
2312 raw_spin_unlock(&busiest->lock);
2313 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2314 }
2315
double_lock(spinlock_t * l1,spinlock_t * l2)2316 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2317 {
2318 if (l1 > l2)
2319 swap(l1, l2);
2320
2321 spin_lock(l1);
2322 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2323 }
2324
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2325 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2326 {
2327 if (l1 > l2)
2328 swap(l1, l2);
2329
2330 spin_lock_irq(l1);
2331 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2332 }
2333
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2334 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2335 {
2336 if (l1 > l2)
2337 swap(l1, l2);
2338
2339 raw_spin_lock(l1);
2340 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2341 }
2342
2343 /*
2344 * double_rq_lock - safely lock two runqueues
2345 *
2346 * Note this does not disable interrupts like task_rq_lock,
2347 * you need to do so manually before calling.
2348 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2349 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2350 __acquires(rq1->lock)
2351 __acquires(rq2->lock)
2352 {
2353 BUG_ON(!irqs_disabled());
2354 if (rq1 == rq2) {
2355 raw_spin_lock(&rq1->lock);
2356 __acquire(rq2->lock); /* Fake it out ;) */
2357 } else {
2358 if (rq1 < rq2) {
2359 raw_spin_lock(&rq1->lock);
2360 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2361 } else {
2362 raw_spin_lock(&rq2->lock);
2363 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2364 }
2365 }
2366 }
2367
2368 /*
2369 * double_rq_unlock - safely unlock two runqueues
2370 *
2371 * Note this does not restore interrupts like task_rq_unlock,
2372 * you need to do so manually after calling.
2373 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2374 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2375 __releases(rq1->lock)
2376 __releases(rq2->lock)
2377 {
2378 raw_spin_unlock(&rq1->lock);
2379 if (rq1 != rq2)
2380 raw_spin_unlock(&rq2->lock);
2381 else
2382 __release(rq2->lock);
2383 }
2384
2385 extern void set_rq_online (struct rq *rq);
2386 extern void set_rq_offline(struct rq *rq);
2387 extern bool sched_smp_initialized;
2388
2389 #else /* CONFIG_SMP */
2390
2391 /*
2392 * double_rq_lock - safely lock two runqueues
2393 *
2394 * Note this does not disable interrupts like task_rq_lock,
2395 * you need to do so manually before calling.
2396 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2397 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2398 __acquires(rq1->lock)
2399 __acquires(rq2->lock)
2400 {
2401 BUG_ON(!irqs_disabled());
2402 BUG_ON(rq1 != rq2);
2403 raw_spin_lock(&rq1->lock);
2404 __acquire(rq2->lock); /* Fake it out ;) */
2405 }
2406
2407 /*
2408 * double_rq_unlock - safely unlock two runqueues
2409 *
2410 * Note this does not restore interrupts like task_rq_unlock,
2411 * you need to do so manually after calling.
2412 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2413 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2414 __releases(rq1->lock)
2415 __releases(rq2->lock)
2416 {
2417 BUG_ON(rq1 != rq2);
2418 raw_spin_unlock(&rq1->lock);
2419 __release(rq2->lock);
2420 }
2421
2422 #endif
2423
2424 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2425 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2426
2427 #ifdef CONFIG_SCHED_DEBUG
2428 extern bool sched_debug_enabled;
2429
2430 extern void print_cfs_stats(struct seq_file *m, int cpu);
2431 extern void print_rt_stats(struct seq_file *m, int cpu);
2432 extern void print_dl_stats(struct seq_file *m, int cpu);
2433 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2434 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2435 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2436 #ifdef CONFIG_NUMA_BALANCING
2437 extern void
2438 show_numa_stats(struct task_struct *p, struct seq_file *m);
2439 extern void
2440 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2441 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2442 #endif /* CONFIG_NUMA_BALANCING */
2443 #endif /* CONFIG_SCHED_DEBUG */
2444
2445 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2446 extern void init_rt_rq(struct rt_rq *rt_rq);
2447 extern void init_dl_rq(struct dl_rq *dl_rq);
2448
2449 extern void cfs_bandwidth_usage_inc(void);
2450 extern void cfs_bandwidth_usage_dec(void);
2451
2452 #ifdef CONFIG_NO_HZ_COMMON
2453 #define NOHZ_BALANCE_KICK_BIT 0
2454 #define NOHZ_STATS_KICK_BIT 1
2455
2456 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2457 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2458
2459 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2460
2461 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2462
2463 extern void nohz_balance_exit_idle(struct rq *rq);
2464 #else
nohz_balance_exit_idle(struct rq * rq)2465 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2466 #endif
2467
2468
2469 #ifdef CONFIG_SMP
2470 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2471 void __dl_update(struct dl_bw *dl_b, s64 bw)
2472 {
2473 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2474 int i;
2475
2476 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2477 "sched RCU must be held");
2478 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2479 struct rq *rq = cpu_rq(i);
2480
2481 rq->dl.extra_bw += bw;
2482 }
2483 }
2484 #else
2485 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2486 void __dl_update(struct dl_bw *dl_b, s64 bw)
2487 {
2488 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2489
2490 dl->extra_bw += bw;
2491 }
2492 #endif
2493
2494
2495 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2496 struct irqtime {
2497 u64 total;
2498 u64 tick_delta;
2499 u64 irq_start_time;
2500 struct u64_stats_sync sync;
2501 };
2502
2503 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2504
2505 /*
2506 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2507 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2508 * and never move forward.
2509 */
irq_time_read(int cpu)2510 static inline u64 irq_time_read(int cpu)
2511 {
2512 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2513 unsigned int seq;
2514 u64 total;
2515
2516 do {
2517 seq = __u64_stats_fetch_begin(&irqtime->sync);
2518 total = irqtime->total;
2519 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2520
2521 return total;
2522 }
2523 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2524
2525 #ifdef CONFIG_CPU_FREQ
2526 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2527
2528 /**
2529 * cpufreq_update_util - Take a note about CPU utilization changes.
2530 * @rq: Runqueue to carry out the update for.
2531 * @flags: Update reason flags.
2532 *
2533 * This function is called by the scheduler on the CPU whose utilization is
2534 * being updated.
2535 *
2536 * It can only be called from RCU-sched read-side critical sections.
2537 *
2538 * The way cpufreq is currently arranged requires it to evaluate the CPU
2539 * performance state (frequency/voltage) on a regular basis to prevent it from
2540 * being stuck in a completely inadequate performance level for too long.
2541 * That is not guaranteed to happen if the updates are only triggered from CFS
2542 * and DL, though, because they may not be coming in if only RT tasks are
2543 * active all the time (or there are RT tasks only).
2544 *
2545 * As a workaround for that issue, this function is called periodically by the
2546 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2547 * but that really is a band-aid. Going forward it should be replaced with
2548 * solutions targeted more specifically at RT tasks.
2549 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2550 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2551 {
2552 struct update_util_data *data;
2553 u64 clock;
2554
2555 #ifdef CONFIG_SCHED_WALT
2556 if (!(flags & SCHED_CPUFREQ_WALT))
2557 return;
2558
2559 clock = sched_ktime_clock();
2560 #else
2561 clock = rq_clock(rq);
2562 #endif
2563 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2564 cpu_of(rq)));
2565 if (data)
2566 data->func(data, clock, flags);
2567 }
2568 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2569 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2570 #endif /* CONFIG_CPU_FREQ */
2571
2572 #ifdef CONFIG_UCLAMP_TASK
2573 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2574
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2575 static inline unsigned long uclamp_rq_get(struct rq *rq,
2576 enum uclamp_id clamp_id)
2577 {
2578 return READ_ONCE(rq->uclamp[clamp_id].value);
2579 }
2580
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2581 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2582 unsigned int value)
2583 {
2584 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
2585 }
2586
uclamp_rq_is_idle(struct rq * rq)2587 static inline bool uclamp_rq_is_idle(struct rq *rq)
2588 {
2589 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
2590 }
2591
2592 /**
2593 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2594 * @rq: The rq to clamp against. Must not be NULL.
2595 * @util: The util value to clamp.
2596 * @p: The task to clamp against. Can be NULL if you want to clamp
2597 * against @rq only.
2598 *
2599 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2600 *
2601 * If sched_uclamp_used static key is disabled, then just return the util
2602 * without any clamping since uclamp aggregation at the rq level in the fast
2603 * path is disabled, rendering this operation a NOP.
2604 *
2605 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2606 * will return the correct effective uclamp value of the task even if the
2607 * static key is disabled.
2608 */
2609 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2610 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2611 struct task_struct *p)
2612 {
2613 unsigned long min_util = 0;
2614 unsigned long max_util = 0;
2615
2616 if (!static_branch_likely(&sched_uclamp_used))
2617 return util;
2618
2619 if (p) {
2620 min_util = uclamp_eff_value(p, UCLAMP_MIN);
2621 max_util = uclamp_eff_value(p, UCLAMP_MAX);
2622
2623 /*
2624 * Ignore last runnable task's max clamp, as this task will
2625 * reset it. Similarly, no need to read the rq's min clamp.
2626 */
2627 if (uclamp_rq_is_idle(rq))
2628 goto out;
2629 }
2630
2631 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
2632 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
2633 out:
2634 /*
2635 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2636 * RUNNABLE tasks with _different_ clamps, we can end up with an
2637 * inversion. Fix it now when the clamps are applied.
2638 */
2639 if (unlikely(min_util >= max_util))
2640 return min_util;
2641
2642 return clamp(util, min_util, max_util);
2643 }
2644
uclamp_boosted(struct task_struct * p)2645 static inline bool uclamp_boosted(struct task_struct *p)
2646 {
2647 return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2648 }
2649
2650 /*
2651 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2652 * by default in the fast path and only gets turned on once userspace performs
2653 * an operation that requires it.
2654 *
2655 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2656 * hence is active.
2657 */
uclamp_is_used(void)2658 static inline bool uclamp_is_used(void)
2659 {
2660 return static_branch_likely(&sched_uclamp_used);
2661 }
2662 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)2663 static inline unsigned long uclamp_eff_value(struct task_struct *p,
2664 enum uclamp_id clamp_id)
2665 {
2666 if (clamp_id == UCLAMP_MIN)
2667 return 0;
2668
2669 return SCHED_CAPACITY_SCALE;
2670 }
2671
2672 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2673 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2674 struct task_struct *p)
2675 {
2676 return util;
2677 }
2678
uclamp_boosted(struct task_struct * p)2679 static inline bool uclamp_boosted(struct task_struct *p)
2680 {
2681 return false;
2682 }
2683
uclamp_is_used(void)2684 static inline bool uclamp_is_used(void)
2685 {
2686 return false;
2687 }
2688
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2689 static inline unsigned long uclamp_rq_get(struct rq *rq,
2690 enum uclamp_id clamp_id)
2691 {
2692 if (clamp_id == UCLAMP_MIN)
2693 return 0;
2694
2695 return SCHED_CAPACITY_SCALE;
2696 }
2697
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2698 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2699 unsigned int value)
2700 {
2701 }
2702
uclamp_rq_is_idle(struct rq * rq)2703 static inline bool uclamp_rq_is_idle(struct rq *rq)
2704 {
2705 return false;
2706 }
2707 #endif /* CONFIG_UCLAMP_TASK */
2708
2709 #ifdef arch_scale_freq_capacity
2710 # ifndef arch_scale_freq_invariant
2711 # define arch_scale_freq_invariant() true
2712 # endif
2713 #else
2714 # define arch_scale_freq_invariant() false
2715 #endif
2716
2717 #ifdef CONFIG_SMP
capacity_of(int cpu)2718 static inline unsigned long capacity_of(int cpu)
2719 {
2720 return cpu_rq(cpu)->cpu_capacity;
2721 }
2722
capacity_orig_of(int cpu)2723 static inline unsigned long capacity_orig_of(int cpu)
2724 {
2725 return cpu_rq(cpu)->cpu_capacity_orig;
2726 }
2727
2728 /*
2729 * Returns inverted capacity if the CPU is in capacity inversion state.
2730 * 0 otherwise.
2731 *
2732 * Capacity inversion detection only considers thermal impact where actual
2733 * performance points (OPPs) gets dropped.
2734 *
2735 * Capacity inversion state happens when another performance domain that has
2736 * equal or lower capacity_orig_of() becomes effectively larger than the perf
2737 * domain this CPU belongs to due to thermal pressure throttling it hard.
2738 *
2739 * See comment in update_cpu_capacity().
2740 */
cpu_in_capacity_inversion(int cpu)2741 static inline unsigned long cpu_in_capacity_inversion(int cpu)
2742 {
2743 return cpu_rq(cpu)->cpu_capacity_inverted;
2744 }
2745 #endif
2746
2747 /**
2748 * enum schedutil_type - CPU utilization type
2749 * @FREQUENCY_UTIL: Utilization used to select frequency
2750 * @ENERGY_UTIL: Utilization used during energy calculation
2751 *
2752 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2753 * need to be aggregated differently depending on the usage made of them. This
2754 * enum is used within schedutil_freq_util() to differentiate the types of
2755 * utilization expected by the callers, and adjust the aggregation accordingly.
2756 */
2757 enum schedutil_type {
2758 FREQUENCY_UTIL,
2759 ENERGY_UTIL,
2760 };
2761
2762 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2763
2764 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2765 unsigned long max, enum schedutil_type type,
2766 struct task_struct *p);
2767
cpu_bw_dl(struct rq * rq)2768 static inline unsigned long cpu_bw_dl(struct rq *rq)
2769 {
2770 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2771 }
2772
cpu_util_dl(struct rq * rq)2773 static inline unsigned long cpu_util_dl(struct rq *rq)
2774 {
2775 return READ_ONCE(rq->avg_dl.util_avg);
2776 }
2777
cpu_util_cfs(struct rq * rq)2778 static inline unsigned long cpu_util_cfs(struct rq *rq)
2779 {
2780 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2781
2782 if (sched_feat(UTIL_EST)) {
2783 util = max_t(unsigned long, util,
2784 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2785 }
2786
2787 return util;
2788 }
2789
cpu_util_rt(struct rq * rq)2790 static inline unsigned long cpu_util_rt(struct rq *rq)
2791 {
2792 return READ_ONCE(rq->avg_rt.util_avg);
2793 }
2794 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2795 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2796 unsigned long max, enum schedutil_type type,
2797 struct task_struct *p)
2798 {
2799 return 0;
2800 }
2801 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2802
2803 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2804 static inline unsigned long cpu_util_irq(struct rq *rq)
2805 {
2806 return rq->avg_irq.util_avg;
2807 }
2808
2809 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2810 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2811 {
2812 util *= (max - irq);
2813 util /= max;
2814
2815 return util;
2816
2817 }
2818 #else
cpu_util_irq(struct rq * rq)2819 static inline unsigned long cpu_util_irq(struct rq *rq)
2820 {
2821 return 0;
2822 }
2823
2824 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2825 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2826 {
2827 return util;
2828 }
2829 #endif
2830
2831 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2832
2833 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2834
2835 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2836
sched_energy_enabled(void)2837 static inline bool sched_energy_enabled(void)
2838 {
2839 return static_branch_unlikely(&sched_energy_present);
2840 }
2841
2842 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2843
2844 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2845 static inline bool sched_energy_enabled(void) { return false; }
2846
2847 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2848
2849 #ifdef CONFIG_MEMBARRIER
2850 /*
2851 * The scheduler provides memory barriers required by membarrier between:
2852 * - prior user-space memory accesses and store to rq->membarrier_state,
2853 * - store to rq->membarrier_state and following user-space memory accesses.
2854 * In the same way it provides those guarantees around store to rq->curr.
2855 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2856 static inline void membarrier_switch_mm(struct rq *rq,
2857 struct mm_struct *prev_mm,
2858 struct mm_struct *next_mm)
2859 {
2860 int membarrier_state;
2861
2862 if (prev_mm == next_mm)
2863 return;
2864
2865 membarrier_state = atomic_read(&next_mm->membarrier_state);
2866 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2867 return;
2868
2869 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2870 }
2871 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2872 static inline void membarrier_switch_mm(struct rq *rq,
2873 struct mm_struct *prev_mm,
2874 struct mm_struct *next_mm)
2875 {
2876 }
2877 #endif
2878
2879 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2880 static inline bool is_per_cpu_kthread(struct task_struct *p)
2881 {
2882 if (!(p->flags & PF_KTHREAD))
2883 return false;
2884
2885 if (p->nr_cpus_allowed != 1)
2886 return false;
2887
2888 return true;
2889 }
2890 #endif
2891
2892 void swake_up_all_locked(struct swait_queue_head *q);
2893 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2894
2895 #ifdef CONFIG_SCHED_RTG
2896 extern bool task_fits_max(struct task_struct *p, int cpu);
2897 extern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
2898 extern int update_preferred_cluster(struct related_thread_group *grp,
2899 struct task_struct *p, u32 old_load, bool from_tick);
2900 extern struct cpumask *find_rtg_target(struct task_struct *p);
2901 #endif
2902
2903 #ifdef CONFIG_SCHED_WALT
cluster_first_cpu(struct sched_cluster * cluster)2904 static inline int cluster_first_cpu(struct sched_cluster *cluster)
2905 {
2906 return cpumask_first(&cluster->cpus);
2907 }
2908
2909 extern struct list_head cluster_head;
2910 extern struct sched_cluster *sched_cluster[NR_CPUS];
2911
2912 #define for_each_sched_cluster(cluster) \
2913 list_for_each_entry_rcu(cluster, &cluster_head, list)
2914
2915 extern struct mutex policy_mutex;
2916 extern unsigned int sched_disable_window_stats;
2917 extern unsigned int max_possible_freq;
2918 extern unsigned int min_max_freq;
2919 extern unsigned int max_possible_efficiency;
2920 extern unsigned int min_possible_efficiency;
2921 extern unsigned int max_capacity;
2922 extern unsigned int min_capacity;
2923 extern unsigned int max_load_scale_factor;
2924 extern unsigned int max_possible_capacity;
2925 extern unsigned int min_max_possible_capacity;
2926 extern unsigned int max_power_cost;
2927 extern unsigned int __read_mostly sched_init_task_load_windows;
2928 extern unsigned int sysctl_sched_restrict_cluster_spill;
2929 extern unsigned int sched_pred_alert_load;
2930 extern struct sched_cluster init_cluster;
2931
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)2932 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
2933 {
2934 rq->cum_window_demand_scaled += scaled_delta;
2935 if (unlikely((s64)rq->cum_window_demand_scaled < 0))
2936 rq->cum_window_demand_scaled = 0;
2937 }
2938
2939 /* Is frequency of two cpus synchronized with each other? */
same_freq_domain(int src_cpu,int dst_cpu)2940 static inline int same_freq_domain(int src_cpu, int dst_cpu)
2941 {
2942 struct rq *rq = cpu_rq(src_cpu);
2943
2944 if (src_cpu == dst_cpu)
2945 return 1;
2946
2947 return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
2948 }
2949
2950 extern void reset_task_stats(struct task_struct *p);
2951
2952 #define CPU_RESERVED 1
is_reserved(int cpu)2953 static inline int is_reserved(int cpu)
2954 {
2955 struct rq *rq = cpu_rq(cpu);
2956
2957 return test_bit(CPU_RESERVED, &rq->walt_flags);
2958 }
2959
mark_reserved(int cpu)2960 static inline int mark_reserved(int cpu)
2961 {
2962 struct rq *rq = cpu_rq(cpu);
2963
2964 return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
2965 }
2966
clear_reserved(int cpu)2967 static inline void clear_reserved(int cpu)
2968 {
2969 struct rq *rq = cpu_rq(cpu);
2970
2971 clear_bit(CPU_RESERVED, &rq->walt_flags);
2972 }
2973
cpu_capacity(int cpu)2974 static inline int cpu_capacity(int cpu)
2975 {
2976 return cpu_rq(cpu)->cluster->capacity;
2977 }
2978
cpu_max_possible_capacity(int cpu)2979 static inline int cpu_max_possible_capacity(int cpu)
2980 {
2981 return cpu_rq(cpu)->cluster->max_possible_capacity;
2982 }
2983
cpu_load_scale_factor(int cpu)2984 static inline int cpu_load_scale_factor(int cpu)
2985 {
2986 return cpu_rq(cpu)->cluster->load_scale_factor;
2987 }
2988
cluster_max_freq(struct sched_cluster * cluster)2989 static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
2990 {
2991 /*
2992 * Governor and thermal driver don't know the other party's mitigation
2993 * voting. So struct cluster saves both and return min() for current
2994 * cluster fmax.
2995 */
2996 return cluster->max_freq;
2997 }
2998
2999 /* Keep track of max/min capacity possible across CPUs "currently" */
__update_min_max_capacity(void)3000 static inline void __update_min_max_capacity(void)
3001 {
3002 int i;
3003 int max_cap = 0, min_cap = INT_MAX;
3004
3005 for_each_possible_cpu(i) {
3006 if (!cpu_active(i))
3007 continue;
3008
3009 max_cap = max(max_cap, cpu_capacity(i));
3010 min_cap = min(min_cap, cpu_capacity(i));
3011 }
3012
3013 max_capacity = max_cap;
3014 min_capacity = min_cap;
3015 }
3016
3017 /*
3018 * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
3019 * that "most" efficient cpu gets a load_scale_factor of 1
3020 */
3021 static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster * cluster)3022 load_scale_cpu_efficiency(struct sched_cluster *cluster)
3023 {
3024 return DIV_ROUND_UP(1024 * max_possible_efficiency,
3025 cluster->efficiency);
3026 }
3027
3028 /*
3029 * Return load_scale_factor of a cpu in reference to cpu with best max_freq
3030 * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
3031 * of 1.
3032 */
load_scale_cpu_freq(struct sched_cluster * cluster)3033 static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
3034 {
3035 return DIV_ROUND_UP(1024 * max_possible_freq,
3036 cluster_max_freq(cluster));
3037 }
3038
compute_load_scale_factor(struct sched_cluster * cluster)3039 static inline int compute_load_scale_factor(struct sched_cluster *cluster)
3040 {
3041 int load_scale = 1024;
3042
3043 /*
3044 * load_scale_factor accounts for the fact that task load
3045 * is in reference to "best" performing cpu. Task's load will need to be
3046 * scaled (up) by a factor to determine suitability to be placed on a
3047 * (little) cpu.
3048 */
3049 load_scale *= load_scale_cpu_efficiency(cluster);
3050 load_scale >>= 10;
3051
3052 load_scale *= load_scale_cpu_freq(cluster);
3053 load_scale >>= 10;
3054
3055 return load_scale;
3056 }
3057
is_max_capacity_cpu(int cpu)3058 static inline bool is_max_capacity_cpu(int cpu)
3059 {
3060 return cpu_max_possible_capacity(cpu) == max_possible_capacity;
3061 }
3062
is_min_capacity_cpu(int cpu)3063 static inline bool is_min_capacity_cpu(int cpu)
3064 {
3065 return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
3066 }
3067
3068 /*
3069 * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
3070 * least efficient cpu gets capacity of 1024
3071 */
3072 static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster * cluster)3073 capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
3074 {
3075 return (1024 * cluster->efficiency) / min_possible_efficiency;
3076 }
3077
3078 /*
3079 * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
3080 * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
3081 */
capacity_scale_cpu_freq(struct sched_cluster * cluster)3082 static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
3083 {
3084 return (1024 * cluster_max_freq(cluster)) / min_max_freq;
3085 }
3086
compute_capacity(struct sched_cluster * cluster)3087 static inline int compute_capacity(struct sched_cluster *cluster)
3088 {
3089 int capacity = 1024;
3090
3091 capacity *= capacity_scale_cpu_efficiency(cluster);
3092 capacity >>= 10;
3093
3094 capacity *= capacity_scale_cpu_freq(cluster);
3095 capacity >>= 10;
3096
3097 return capacity;
3098 }
3099
power_cost(int cpu,u64 demand)3100 static inline unsigned int power_cost(int cpu, u64 demand)
3101 {
3102 return cpu_max_possible_capacity(cpu);
3103 }
3104
cpu_util_freq_walt(int cpu)3105 static inline unsigned long cpu_util_freq_walt(int cpu)
3106 {
3107 u64 util;
3108 struct rq *rq = cpu_rq(cpu);
3109 unsigned long capacity = capacity_orig_of(cpu);
3110
3111 if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util))
3112 return cpu_util(cpu);
3113
3114 util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
3115 util = div_u64(util, sched_ravg_window);
3116
3117 return (util >= capacity) ? capacity : util;
3118 }
3119
hmp_capable(void)3120 static inline bool hmp_capable(void)
3121 {
3122 return max_possible_capacity != min_max_possible_capacity;
3123 }
3124 #else /* CONFIG_SCHED_WALT */
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)3125 static inline void walt_fixup_cum_window_demand(struct rq *rq,
3126 s64 scaled_delta) { }
3127
same_freq_domain(int src_cpu,int dst_cpu)3128 static inline int same_freq_domain(int src_cpu, int dst_cpu)
3129 {
3130 return 1;
3131 }
3132
is_reserved(int cpu)3133 static inline int is_reserved(int cpu)
3134 {
3135 return 0;
3136 }
3137
clear_reserved(int cpu)3138 static inline void clear_reserved(int cpu) { }
3139
hmp_capable(void)3140 static inline bool hmp_capable(void)
3141 {
3142 return false;
3143 }
3144 #endif /* CONFIG_SCHED_WALT */
3145
3146 struct sched_avg_stats {
3147 int nr;
3148 int nr_misfit;
3149 int nr_max;
3150 int nr_scaled;
3151 };
3152 #ifdef CONFIG_SCHED_RUNNING_AVG
3153 extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
3154 #else
sched_get_nr_running_avg(struct sched_avg_stats * stats)3155 static inline void sched_get_nr_running_avg(struct sched_avg_stats *stats) { }
3156 #endif
3157
3158 #ifdef CONFIG_CPU_ISOLATION_OPT
3159 extern int group_balance_cpu_not_isolated(struct sched_group *sg);
3160 #else
group_balance_cpu_not_isolated(struct sched_group * sg)3161 static inline int group_balance_cpu_not_isolated(struct sched_group *sg)
3162 {
3163 return group_balance_cpu(sg);
3164 }
3165 #endif /* CONFIG_CPU_ISOLATION_OPT */
3166
3167 #ifdef CONFIG_HOTPLUG_CPU
3168 extern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
3169 bool migrate_pinned_tasks);
3170 #endif
3171