• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/sched/mm.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/microcode.h>
25 #include <asm/kaslr.h>
26 #include <asm/hypervisor.h>
27 #include <asm/cpufeature.h>
28 #include <asm/pti.h>
29 #include <asm/text-patching.h>
30 #include <asm/memtype.h>
31 #include <asm/paravirt.h>
32 
33 /*
34  * We need to define the tracepoints somewhere, and tlb.c
35  * is only compied when SMP=y.
36  */
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/tlb.h>
39 
40 #include "mm_internal.h"
41 
42 /*
43  * Tables translating between page_cache_type_t and pte encoding.
44  *
45  * The default values are defined statically as minimal supported mode;
46  * WC and WT fall back to UC-.  pat_init() updates these values to support
47  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
48  * for the details.  Note, __early_ioremap() used during early boot-time
49  * takes pgprot_t (pte encoding) and does not use these tables.
50  *
51  *   Index into __cachemode2pte_tbl[] is the cachemode.
52  *
53  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55  */
56 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
58 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
61 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
62 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
63 };
64 
cachemode2protval(enum page_cache_mode pcm)65 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 {
67 	if (likely(pcm == 0))
68 		return 0;
69 	return __cachemode2pte_tbl[pcm];
70 }
71 EXPORT_SYMBOL(cachemode2protval);
72 
73 static uint8_t __pte2cachemode_tbl[8] = {
74 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
75 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
76 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
78 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82 };
83 
84 /*
85  * Check that the write-protect PAT entry is set for write-protect.
86  * To do this without making assumptions how PAT has been set up (Xen has
87  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
89  * bits will select a cache mode of WP or better), and then translate the
90  * protection bits back into the cache mode using __pte2cm_idx() and the
91  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
92  */
x86_has_pat_wp(void)93 bool x86_has_pat_wp(void)
94 {
95 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96 
97 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 }
99 
pgprot2cachemode(pgprot_t pgprot)100 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101 {
102 	unsigned long masked;
103 
104 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105 	if (likely(masked == 0))
106 		return 0;
107 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 }
109 
110 static unsigned long __initdata pgt_buf_start;
111 static unsigned long __initdata pgt_buf_end;
112 static unsigned long __initdata pgt_buf_top;
113 
114 static unsigned long min_pfn_mapped;
115 
116 static bool __initdata can_use_brk_pgt = true;
117 
118 /*
119  * Pages returned are already directly mapped.
120  *
121  * Changing that is likely to break Xen, see commit:
122  *
123  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
124  *
125  * for detailed information.
126  */
alloc_low_pages(unsigned int num)127 __ref void *alloc_low_pages(unsigned int num)
128 {
129 	unsigned long pfn;
130 	int i;
131 
132 	if (after_bootmem) {
133 		unsigned int order;
134 
135 		order = get_order((unsigned long)num << PAGE_SHIFT);
136 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137 	}
138 
139 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
140 		unsigned long ret = 0;
141 
142 		if (min_pfn_mapped < max_pfn_mapped) {
143 			ret = memblock_find_in_range(
144 					min_pfn_mapped << PAGE_SHIFT,
145 					max_pfn_mapped << PAGE_SHIFT,
146 					PAGE_SIZE * num , PAGE_SIZE);
147 		}
148 		if (ret)
149 			memblock_reserve(ret, PAGE_SIZE * num);
150 		else if (can_use_brk_pgt)
151 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
152 
153 		if (!ret)
154 			panic("alloc_low_pages: can not alloc memory");
155 
156 		pfn = ret >> PAGE_SHIFT;
157 	} else {
158 		pfn = pgt_buf_end;
159 		pgt_buf_end += num;
160 	}
161 
162 	for (i = 0; i < num; i++) {
163 		void *adr;
164 
165 		adr = __va((pfn + i) << PAGE_SHIFT);
166 		clear_page(adr);
167 	}
168 
169 	return __va(pfn << PAGE_SHIFT);
170 }
171 
172 /*
173  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
174  * With KASLR memory randomization, depending on the machine e820 memory
175  * and the PUD alignment. We may need twice more pages when KASLR memory
176  * randomization is enabled.
177  */
178 #ifndef CONFIG_RANDOMIZE_MEMORY
179 #define INIT_PGD_PAGE_COUNT      6
180 #else
181 #define INIT_PGD_PAGE_COUNT      12
182 #endif
183 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
184 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)185 void  __init early_alloc_pgt_buf(void)
186 {
187 	unsigned long tables = INIT_PGT_BUF_SIZE;
188 	phys_addr_t base;
189 
190 	base = __pa(extend_brk(tables, PAGE_SIZE));
191 
192 	pgt_buf_start = base >> PAGE_SHIFT;
193 	pgt_buf_end = pgt_buf_start;
194 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
195 }
196 
197 int after_bootmem;
198 
199 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
200 
201 struct map_range {
202 	unsigned long start;
203 	unsigned long end;
204 	unsigned page_size_mask;
205 };
206 
207 static int page_size_mask;
208 
209 /*
210  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
211  * enable and PPro Global page enable), so that any CPU's that boot
212  * up after us can get the correct flags. Invoked on the boot CPU.
213  */
cr4_set_bits_and_update_boot(unsigned long mask)214 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
215 {
216 	mmu_cr4_features |= mask;
217 	if (trampoline_cr4_features)
218 		*trampoline_cr4_features = mmu_cr4_features;
219 	cr4_set_bits(mask);
220 }
221 
probe_page_size_mask(void)222 static void __init probe_page_size_mask(void)
223 {
224 	/*
225 	 * For pagealloc debugging, identity mapping will use small pages.
226 	 * This will simplify cpa(), which otherwise needs to support splitting
227 	 * large pages into small in interrupt context, etc.
228 	 */
229 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
230 		page_size_mask |= 1 << PG_LEVEL_2M;
231 	else
232 		direct_gbpages = 0;
233 
234 	/* Enable PSE if available */
235 	if (boot_cpu_has(X86_FEATURE_PSE))
236 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
237 
238 	/* Enable PGE if available */
239 	__supported_pte_mask &= ~_PAGE_GLOBAL;
240 	if (boot_cpu_has(X86_FEATURE_PGE)) {
241 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
242 		__supported_pte_mask |= _PAGE_GLOBAL;
243 	}
244 
245 	/* By the default is everything supported: */
246 	__default_kernel_pte_mask = __supported_pte_mask;
247 	/* Except when with PTI where the kernel is mostly non-Global: */
248 	if (cpu_feature_enabled(X86_FEATURE_PTI))
249 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
250 
251 	/* Enable 1 GB linear kernel mappings if available: */
252 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
253 		printk(KERN_INFO "Using GB pages for direct mapping\n");
254 		page_size_mask |= 1 << PG_LEVEL_1G;
255 	} else {
256 		direct_gbpages = 0;
257 	}
258 }
259 
260 #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
261 			      .family  = 6,			\
262 			      .model = _model,			\
263 			    }
264 /*
265  * INVLPG may not properly flush Global entries
266  * on these CPUs when PCIDs are enabled.
267  */
268 static const struct x86_cpu_id invlpg_miss_ids[] = {
269 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
270 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
271 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
272 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
273 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
274 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
275 	{}
276 };
277 
setup_pcid(void)278 static void setup_pcid(void)
279 {
280 	if (!IS_ENABLED(CONFIG_X86_64))
281 		return;
282 
283 	if (!boot_cpu_has(X86_FEATURE_PCID))
284 		return;
285 
286 	if (x86_match_cpu(invlpg_miss_ids)) {
287 		pr_info("Incomplete global flushes, disabling PCID");
288 		setup_clear_cpu_cap(X86_FEATURE_PCID);
289 		return;
290 	}
291 
292 	if (boot_cpu_has(X86_FEATURE_PGE)) {
293 		/*
294 		 * This can't be cr4_set_bits_and_update_boot() -- the
295 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
296 		 * do any good anyway.  Despite the name,
297 		 * cr4_set_bits_and_update_boot() doesn't actually cause
298 		 * the bits in question to remain set all the way through
299 		 * the secondary boot asm.
300 		 *
301 		 * Instead, we brute-force it and set CR4.PCIDE manually in
302 		 * start_secondary().
303 		 */
304 		cr4_set_bits(X86_CR4_PCIDE);
305 
306 		/*
307 		 * INVPCID's single-context modes (2/3) only work if we set
308 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
309 		 * on systems that have X86_CR4_PCIDE clear, or that have
310 		 * no INVPCID support at all.
311 		 */
312 		if (boot_cpu_has(X86_FEATURE_INVPCID))
313 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
314 	} else {
315 		/*
316 		 * flush_tlb_all(), as currently implemented, won't work if
317 		 * PCID is on but PGE is not.  Since that combination
318 		 * doesn't exist on real hardware, there's no reason to try
319 		 * to fully support it, but it's polite to avoid corrupting
320 		 * data if we're on an improperly configured VM.
321 		 */
322 		setup_clear_cpu_cap(X86_FEATURE_PCID);
323 	}
324 }
325 
326 #ifdef CONFIG_X86_32
327 #define NR_RANGE_MR 3
328 #else /* CONFIG_X86_64 */
329 #define NR_RANGE_MR 5
330 #endif
331 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)332 static int __meminit save_mr(struct map_range *mr, int nr_range,
333 			     unsigned long start_pfn, unsigned long end_pfn,
334 			     unsigned long page_size_mask)
335 {
336 	if (start_pfn < end_pfn) {
337 		if (nr_range >= NR_RANGE_MR)
338 			panic("run out of range for init_memory_mapping\n");
339 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
340 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
341 		mr[nr_range].page_size_mask = page_size_mask;
342 		nr_range++;
343 	}
344 
345 	return nr_range;
346 }
347 
348 /*
349  * adjust the page_size_mask for small range to go with
350  *	big page size instead small one if nearby are ram too.
351  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)352 static void __ref adjust_range_page_size_mask(struct map_range *mr,
353 							 int nr_range)
354 {
355 	int i;
356 
357 	for (i = 0; i < nr_range; i++) {
358 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
359 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
360 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
361 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
362 
363 #ifdef CONFIG_X86_32
364 			if ((end >> PAGE_SHIFT) > max_low_pfn)
365 				continue;
366 #endif
367 
368 			if (memblock_is_region_memory(start, end - start))
369 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
370 		}
371 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
372 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
373 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
374 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
375 
376 			if (memblock_is_region_memory(start, end - start))
377 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
378 		}
379 	}
380 }
381 
page_size_string(struct map_range * mr)382 static const char *page_size_string(struct map_range *mr)
383 {
384 	static const char str_1g[] = "1G";
385 	static const char str_2m[] = "2M";
386 	static const char str_4m[] = "4M";
387 	static const char str_4k[] = "4k";
388 
389 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
390 		return str_1g;
391 	/*
392 	 * 32-bit without PAE has a 4M large page size.
393 	 * PG_LEVEL_2M is misnamed, but we can at least
394 	 * print out the right size in the string.
395 	 */
396 	if (IS_ENABLED(CONFIG_X86_32) &&
397 	    !IS_ENABLED(CONFIG_X86_PAE) &&
398 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
399 		return str_4m;
400 
401 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
402 		return str_2m;
403 
404 	return str_4k;
405 }
406 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)407 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
408 				     unsigned long start,
409 				     unsigned long end)
410 {
411 	unsigned long start_pfn, end_pfn, limit_pfn;
412 	unsigned long pfn;
413 	int i;
414 
415 	limit_pfn = PFN_DOWN(end);
416 
417 	/* head if not big page alignment ? */
418 	pfn = start_pfn = PFN_DOWN(start);
419 #ifdef CONFIG_X86_32
420 	/*
421 	 * Don't use a large page for the first 2/4MB of memory
422 	 * because there are often fixed size MTRRs in there
423 	 * and overlapping MTRRs into large pages can cause
424 	 * slowdowns.
425 	 */
426 	if (pfn == 0)
427 		end_pfn = PFN_DOWN(PMD_SIZE);
428 	else
429 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
430 #else /* CONFIG_X86_64 */
431 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
432 #endif
433 	if (end_pfn > limit_pfn)
434 		end_pfn = limit_pfn;
435 	if (start_pfn < end_pfn) {
436 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
437 		pfn = end_pfn;
438 	}
439 
440 	/* big page (2M) range */
441 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
442 #ifdef CONFIG_X86_32
443 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
444 #else /* CONFIG_X86_64 */
445 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
446 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
447 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
448 #endif
449 
450 	if (start_pfn < end_pfn) {
451 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
452 				page_size_mask & (1<<PG_LEVEL_2M));
453 		pfn = end_pfn;
454 	}
455 
456 #ifdef CONFIG_X86_64
457 	/* big page (1G) range */
458 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
459 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
460 	if (start_pfn < end_pfn) {
461 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
462 				page_size_mask &
463 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
464 		pfn = end_pfn;
465 	}
466 
467 	/* tail is not big page (1G) alignment */
468 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
469 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
470 	if (start_pfn < end_pfn) {
471 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
472 				page_size_mask & (1<<PG_LEVEL_2M));
473 		pfn = end_pfn;
474 	}
475 #endif
476 
477 	/* tail is not big page (2M) alignment */
478 	start_pfn = pfn;
479 	end_pfn = limit_pfn;
480 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
481 
482 	if (!after_bootmem)
483 		adjust_range_page_size_mask(mr, nr_range);
484 
485 	/* try to merge same page size and continuous */
486 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
487 		unsigned long old_start;
488 		if (mr[i].end != mr[i+1].start ||
489 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
490 			continue;
491 		/* move it */
492 		old_start = mr[i].start;
493 		memmove(&mr[i], &mr[i+1],
494 			(nr_range - 1 - i) * sizeof(struct map_range));
495 		mr[i--].start = old_start;
496 		nr_range--;
497 	}
498 
499 	for (i = 0; i < nr_range; i++)
500 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
501 				mr[i].start, mr[i].end - 1,
502 				page_size_string(&mr[i]));
503 
504 	return nr_range;
505 }
506 
507 struct range pfn_mapped[E820_MAX_ENTRIES];
508 int nr_pfn_mapped;
509 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)510 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
511 {
512 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
513 					     nr_pfn_mapped, start_pfn, end_pfn);
514 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
515 
516 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
517 
518 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
519 		max_low_pfn_mapped = max(max_low_pfn_mapped,
520 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
521 }
522 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)523 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
524 {
525 	int i;
526 
527 	for (i = 0; i < nr_pfn_mapped; i++)
528 		if ((start_pfn >= pfn_mapped[i].start) &&
529 		    (end_pfn <= pfn_mapped[i].end))
530 			return true;
531 
532 	return false;
533 }
534 
535 /*
536  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
537  * This runs before bootmem is initialized and gets pages directly from
538  * the physical memory. To access them they are temporarily mapped.
539  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)540 unsigned long __ref init_memory_mapping(unsigned long start,
541 					unsigned long end, pgprot_t prot)
542 {
543 	struct map_range mr[NR_RANGE_MR];
544 	unsigned long ret = 0;
545 	int nr_range, i;
546 
547 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
548 	       start, end - 1);
549 
550 	memset(mr, 0, sizeof(mr));
551 	nr_range = split_mem_range(mr, 0, start, end);
552 
553 	for (i = 0; i < nr_range; i++)
554 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
555 						   mr[i].page_size_mask,
556 						   prot);
557 
558 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
559 
560 	return ret >> PAGE_SHIFT;
561 }
562 
563 /*
564  * We need to iterate through the E820 memory map and create direct mappings
565  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
566  * create direct mappings for all pfns from [0 to max_low_pfn) and
567  * [4GB to max_pfn) because of possible memory holes in high addresses
568  * that cannot be marked as UC by fixed/variable range MTRRs.
569  * Depending on the alignment of E820 ranges, this may possibly result
570  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
571  *
572  * init_mem_mapping() calls init_range_memory_mapping() with big range.
573  * That range would have hole in the middle or ends, and only ram parts
574  * will be mapped in init_range_memory_mapping().
575  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)576 static unsigned long __init init_range_memory_mapping(
577 					   unsigned long r_start,
578 					   unsigned long r_end)
579 {
580 	unsigned long start_pfn, end_pfn;
581 	unsigned long mapped_ram_size = 0;
582 	int i;
583 
584 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
585 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
586 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
587 		if (start >= end)
588 			continue;
589 
590 		/*
591 		 * if it is overlapping with brk pgt, we need to
592 		 * alloc pgt buf from memblock instead.
593 		 */
594 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
595 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
596 		init_memory_mapping(start, end, PAGE_KERNEL);
597 		mapped_ram_size += end - start;
598 		can_use_brk_pgt = true;
599 	}
600 
601 	return mapped_ram_size;
602 }
603 
get_new_step_size(unsigned long step_size)604 static unsigned long __init get_new_step_size(unsigned long step_size)
605 {
606 	/*
607 	 * Initial mapped size is PMD_SIZE (2M).
608 	 * We can not set step_size to be PUD_SIZE (1G) yet.
609 	 * In worse case, when we cross the 1G boundary, and
610 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
611 	 * to map 1G range with PTE. Hence we use one less than the
612 	 * difference of page table level shifts.
613 	 *
614 	 * Don't need to worry about overflow in the top-down case, on 32bit,
615 	 * when step_size is 0, round_down() returns 0 for start, and that
616 	 * turns it into 0x100000000ULL.
617 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
618 	 * needs to be taken into consideration by the code below.
619 	 */
620 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
621 }
622 
623 /**
624  * memory_map_top_down - Map [map_start, map_end) top down
625  * @map_start: start address of the target memory range
626  * @map_end: end address of the target memory range
627  *
628  * This function will setup direct mapping for memory range
629  * [map_start, map_end) in top-down. That said, the page tables
630  * will be allocated at the end of the memory, and we map the
631  * memory in top-down.
632  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)633 static void __init memory_map_top_down(unsigned long map_start,
634 				       unsigned long map_end)
635 {
636 	unsigned long real_end, start, last_start;
637 	unsigned long step_size;
638 	unsigned long addr;
639 	unsigned long mapped_ram_size = 0;
640 
641 	/* xen has big range in reserved near end of ram, skip it at first.*/
642 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
643 	real_end = addr + PMD_SIZE;
644 
645 	/* step_size need to be small so pgt_buf from BRK could cover it */
646 	step_size = PMD_SIZE;
647 	max_pfn_mapped = 0; /* will get exact value next */
648 	min_pfn_mapped = real_end >> PAGE_SHIFT;
649 	last_start = start = real_end;
650 
651 	/*
652 	 * We start from the top (end of memory) and go to the bottom.
653 	 * The memblock_find_in_range() gets us a block of RAM from the
654 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
655 	 * for page table.
656 	 */
657 	while (last_start > map_start) {
658 		if (last_start > step_size) {
659 			start = round_down(last_start - 1, step_size);
660 			if (start < map_start)
661 				start = map_start;
662 		} else
663 			start = map_start;
664 		mapped_ram_size += init_range_memory_mapping(start,
665 							last_start);
666 		last_start = start;
667 		min_pfn_mapped = last_start >> PAGE_SHIFT;
668 		if (mapped_ram_size >= step_size)
669 			step_size = get_new_step_size(step_size);
670 	}
671 
672 	if (real_end < map_end)
673 		init_range_memory_mapping(real_end, map_end);
674 }
675 
676 /**
677  * memory_map_bottom_up - Map [map_start, map_end) bottom up
678  * @map_start: start address of the target memory range
679  * @map_end: end address of the target memory range
680  *
681  * This function will setup direct mapping for memory range
682  * [map_start, map_end) in bottom-up. Since we have limited the
683  * bottom-up allocation above the kernel, the page tables will
684  * be allocated just above the kernel and we map the memory
685  * in [map_start, map_end) in bottom-up.
686  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)687 static void __init memory_map_bottom_up(unsigned long map_start,
688 					unsigned long map_end)
689 {
690 	unsigned long next, start;
691 	unsigned long mapped_ram_size = 0;
692 	/* step_size need to be small so pgt_buf from BRK could cover it */
693 	unsigned long step_size = PMD_SIZE;
694 
695 	start = map_start;
696 	min_pfn_mapped = start >> PAGE_SHIFT;
697 
698 	/*
699 	 * We start from the bottom (@map_start) and go to the top (@map_end).
700 	 * The memblock_find_in_range() gets us a block of RAM from the
701 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
702 	 * for page table.
703 	 */
704 	while (start < map_end) {
705 		if (step_size && map_end - start > step_size) {
706 			next = round_up(start + 1, step_size);
707 			if (next > map_end)
708 				next = map_end;
709 		} else {
710 			next = map_end;
711 		}
712 
713 		mapped_ram_size += init_range_memory_mapping(start, next);
714 		start = next;
715 
716 		if (mapped_ram_size >= step_size)
717 			step_size = get_new_step_size(step_size);
718 	}
719 }
720 
721 /*
722  * The real mode trampoline, which is required for bootstrapping CPUs
723  * occupies only a small area under the low 1MB.  See reserve_real_mode()
724  * for details.
725  *
726  * If KASLR is disabled the first PGD entry of the direct mapping is copied
727  * to map the real mode trampoline.
728  *
729  * If KASLR is enabled, copy only the PUD which covers the low 1MB
730  * area. This limits the randomization granularity to 1GB for both 4-level
731  * and 5-level paging.
732  */
init_trampoline(void)733 static void __init init_trampoline(void)
734 {
735 #ifdef CONFIG_X86_64
736 	if (!kaslr_memory_enabled())
737 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
738 	else
739 		init_trampoline_kaslr();
740 #endif
741 }
742 
init_mem_mapping(void)743 void __init init_mem_mapping(void)
744 {
745 	unsigned long end;
746 
747 	pti_check_boottime_disable();
748 	probe_page_size_mask();
749 	setup_pcid();
750 
751 #ifdef CONFIG_X86_64
752 	end = max_pfn << PAGE_SHIFT;
753 #else
754 	end = max_low_pfn << PAGE_SHIFT;
755 #endif
756 
757 	/* the ISA range is always mapped regardless of memory holes */
758 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
759 
760 	/* Init the trampoline, possibly with KASLR memory offset */
761 	init_trampoline();
762 
763 	/*
764 	 * If the allocation is in bottom-up direction, we setup direct mapping
765 	 * in bottom-up, otherwise we setup direct mapping in top-down.
766 	 */
767 	if (memblock_bottom_up()) {
768 		unsigned long kernel_end = __pa_symbol(_end);
769 
770 		/*
771 		 * we need two separate calls here. This is because we want to
772 		 * allocate page tables above the kernel. So we first map
773 		 * [kernel_end, end) to make memory above the kernel be mapped
774 		 * as soon as possible. And then use page tables allocated above
775 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
776 		 */
777 		memory_map_bottom_up(kernel_end, end);
778 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
779 	} else {
780 		memory_map_top_down(ISA_END_ADDRESS, end);
781 	}
782 
783 #ifdef CONFIG_X86_64
784 	if (max_pfn > max_low_pfn) {
785 		/* can we preseve max_low_pfn ?*/
786 		max_low_pfn = max_pfn;
787 	}
788 #else
789 	early_ioremap_page_table_range_init();
790 #endif
791 
792 	load_cr3(swapper_pg_dir);
793 	__flush_tlb_all();
794 
795 	x86_init.hyper.init_mem_mapping();
796 
797 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
798 }
799 
800 /*
801  * Initialize an mm_struct to be used during poking and a pointer to be used
802  * during patching.
803  */
poking_init(void)804 void __init poking_init(void)
805 {
806 	spinlock_t *ptl;
807 	pte_t *ptep;
808 
809 	poking_mm = mm_alloc();
810 	BUG_ON(!poking_mm);
811 
812 	/* Xen PV guests need the PGD to be pinned. */
813 	paravirt_arch_dup_mmap(NULL, poking_mm);
814 
815 	/*
816 	 * Randomize the poking address, but make sure that the following page
817 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
818 	 * and adjust the address if the PMD ends after the first one.
819 	 */
820 	poking_addr = TASK_UNMAPPED_BASE;
821 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
822 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
823 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
824 
825 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
826 		poking_addr += PAGE_SIZE;
827 
828 	/*
829 	 * We need to trigger the allocation of the page-tables that will be
830 	 * needed for poking now. Later, poking may be performed in an atomic
831 	 * section, which might cause allocation to fail.
832 	 */
833 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
834 	BUG_ON(!ptep);
835 	pte_unmap_unlock(ptep, ptl);
836 }
837 
838 /*
839  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
840  * is valid. The argument is a physical page number.
841  *
842  * On x86, access has to be given to the first megabyte of RAM because that
843  * area traditionally contains BIOS code and data regions used by X, dosemu,
844  * and similar apps. Since they map the entire memory range, the whole range
845  * must be allowed (for mapping), but any areas that would otherwise be
846  * disallowed are flagged as being "zero filled" instead of rejected.
847  * Access has to be given to non-kernel-ram areas as well, these contain the
848  * PCI mmio resources as well as potential bios/acpi data regions.
849  */
devmem_is_allowed(unsigned long pagenr)850 int devmem_is_allowed(unsigned long pagenr)
851 {
852 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
853 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
854 			!= REGION_DISJOINT) {
855 		/*
856 		 * For disallowed memory regions in the low 1MB range,
857 		 * request that the page be shown as all zeros.
858 		 */
859 		if (pagenr < 256)
860 			return 2;
861 
862 		return 0;
863 	}
864 
865 	/*
866 	 * This must follow RAM test, since System RAM is considered a
867 	 * restricted resource under CONFIG_STRICT_IOMEM.
868 	 */
869 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
870 		/* Low 1MB bypasses iomem restrictions. */
871 		if (pagenr < 256)
872 			return 1;
873 
874 		return 0;
875 	}
876 
877 	return 1;
878 }
879 
free_init_pages(const char * what,unsigned long begin,unsigned long end)880 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
881 {
882 	unsigned long begin_aligned, end_aligned;
883 
884 	/* Make sure boundaries are page aligned */
885 	begin_aligned = PAGE_ALIGN(begin);
886 	end_aligned   = end & PAGE_MASK;
887 
888 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
889 		begin = begin_aligned;
890 		end   = end_aligned;
891 	}
892 
893 	if (begin >= end)
894 		return;
895 
896 	/*
897 	 * If debugging page accesses then do not free this memory but
898 	 * mark them not present - any buggy init-section access will
899 	 * create a kernel page fault:
900 	 */
901 	if (debug_pagealloc_enabled()) {
902 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
903 			begin, end - 1);
904 		/*
905 		 * Inform kmemleak about the hole in the memory since the
906 		 * corresponding pages will be unmapped.
907 		 */
908 		kmemleak_free_part((void *)begin, end - begin);
909 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
910 	} else {
911 		/*
912 		 * We just marked the kernel text read only above, now that
913 		 * we are going to free part of that, we need to make that
914 		 * writeable and non-executable first.
915 		 */
916 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
917 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
918 
919 		free_reserved_area((void *)begin, (void *)end,
920 				   POISON_FREE_INITMEM, what);
921 	}
922 }
923 
924 /*
925  * begin/end can be in the direct map or the "high kernel mapping"
926  * used for the kernel image only.  free_init_pages() will do the
927  * right thing for either kind of address.
928  */
free_kernel_image_pages(const char * what,void * begin,void * end)929 void free_kernel_image_pages(const char *what, void *begin, void *end)
930 {
931 	unsigned long begin_ul = (unsigned long)begin;
932 	unsigned long end_ul = (unsigned long)end;
933 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
934 
935 	free_init_pages(what, begin_ul, end_ul);
936 
937 	/*
938 	 * PTI maps some of the kernel into userspace.  For performance,
939 	 * this includes some kernel areas that do not contain secrets.
940 	 * Those areas might be adjacent to the parts of the kernel image
941 	 * being freed, which may contain secrets.  Remove the "high kernel
942 	 * image mapping" for these freed areas, ensuring they are not even
943 	 * potentially vulnerable to Meltdown regardless of the specific
944 	 * optimizations PTI is currently using.
945 	 *
946 	 * The "noalias" prevents unmapping the direct map alias which is
947 	 * needed to access the freed pages.
948 	 *
949 	 * This is only valid for 64bit kernels. 32bit has only one mapping
950 	 * which can't be treated in this way for obvious reasons.
951 	 */
952 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
953 		set_memory_np_noalias(begin_ul, len_pages);
954 }
955 
free_initmem(void)956 void __ref free_initmem(void)
957 {
958 	e820__reallocate_tables();
959 
960 	mem_encrypt_free_decrypted_mem();
961 
962 	free_kernel_image_pages("unused kernel image (initmem)",
963 				&__init_begin, &__init_end);
964 }
965 
966 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)967 void __init free_initrd_mem(unsigned long start, unsigned long end)
968 {
969 	/*
970 	 * end could be not aligned, and We can not align that,
971 	 * decompresser could be confused by aligned initrd_end
972 	 * We already reserve the end partial page before in
973 	 *   - i386_start_kernel()
974 	 *   - x86_64_start_kernel()
975 	 *   - relocate_initrd()
976 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
977 	 */
978 	free_init_pages("initrd", start, PAGE_ALIGN(end));
979 }
980 #endif
981 
982 /*
983  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
984  * and pass it to the MM layer - to help it set zone watermarks more
985  * accurately.
986  *
987  * Done on 64-bit systems only for the time being, although 32-bit systems
988  * might benefit from this as well.
989  */
memblock_find_dma_reserve(void)990 void __init memblock_find_dma_reserve(void)
991 {
992 #ifdef CONFIG_X86_64
993 	u64 nr_pages = 0, nr_free_pages = 0;
994 	unsigned long start_pfn, end_pfn;
995 	phys_addr_t start_addr, end_addr;
996 	int i;
997 	u64 u;
998 
999 	/*
1000 	 * Iterate over all memory ranges (free and reserved ones alike),
1001 	 * to calculate the total number of pages in the first 16 MB of RAM:
1002 	 */
1003 	nr_pages = 0;
1004 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1005 		start_pfn = min(start_pfn, MAX_DMA_PFN);
1006 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1007 
1008 		nr_pages += end_pfn - start_pfn;
1009 	}
1010 
1011 	/*
1012 	 * Iterate over free memory ranges to calculate the number of free
1013 	 * pages in the DMA zone, while not counting potential partial
1014 	 * pages at the beginning or the end of the range:
1015 	 */
1016 	nr_free_pages = 0;
1017 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1018 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1019 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1020 
1021 		if (start_pfn < end_pfn)
1022 			nr_free_pages += end_pfn - start_pfn;
1023 	}
1024 
1025 	set_dma_reserve(nr_pages - nr_free_pages);
1026 #endif
1027 }
1028 
zone_sizes_init(void)1029 void __init zone_sizes_init(void)
1030 {
1031 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1032 
1033 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1034 
1035 #ifdef CONFIG_ZONE_DMA
1036 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1037 #endif
1038 #ifdef CONFIG_ZONE_DMA32
1039 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1040 #endif
1041 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1042 #ifdef CONFIG_HIGHMEM
1043 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1044 #endif
1045 
1046 	free_area_init(max_zone_pfns);
1047 }
1048 
1049 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1050 	.loaded_mm = &init_mm,
1051 	.next_asid = 1,
1052 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1053 };
1054 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1055 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1056 {
1057 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1058 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1059 
1060 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1061 	__pte2cachemode_tbl[entry] = cache;
1062 }
1063 
1064 #ifdef CONFIG_SWAP
max_swapfile_size(void)1065 unsigned long max_swapfile_size(void)
1066 {
1067 	unsigned long pages;
1068 
1069 	pages = generic_max_swapfile_size();
1070 
1071 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1072 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1073 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1074 		/*
1075 		 * We encode swap offsets also with 3 bits below those for pfn
1076 		 * which makes the usable limit higher.
1077 		 */
1078 #if CONFIG_PGTABLE_LEVELS > 2
1079 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1080 #endif
1081 		pages = min_t(unsigned long long, l1tf_limit, pages);
1082 	}
1083 	return pages;
1084 }
1085 #endif
1086