1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35
36 DEFINE_MUTEX(pci_slot_mutex);
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48
49 unsigned int pci_pm_d3hot_delay;
50
51 static void pci_pme_list_scan(struct work_struct *work);
52
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60 };
61
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63
pci_dev_d3_sleep(struct pci_dev * dev)64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 unsigned int delay = dev->d3hot_delay;
67
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
70
71 if (delay)
72 msleep(delay);
73 }
74
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97
98 #define DEFAULT_HOTPLUG_BUS_SIZE 1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
101
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114
115 /*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123
124 /*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128 unsigned int pcibios_max_latency = 255;
129
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138
pci_ats_disabled(void)139 bool pci_ats_disabled(void)
140 {
141 return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149
pcie_port_pm_setup(char * str)150 static int __init pcie_port_pm_setup(char *str)
151 {
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159
160 /**
161 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
162 * @bus: pointer to PCI bus structure to search
163 *
164 * Given a PCI bus, returns the highest PCI bus number present in the set
165 * including the given PCI bus and its list of child PCI buses.
166 */
pci_bus_max_busnr(struct pci_bus * bus)167 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
168 {
169 struct pci_bus *tmp;
170 unsigned char max, n;
171
172 max = bus->busn_res.end;
173 list_for_each_entry(tmp, &bus->children, node) {
174 n = pci_bus_max_busnr(tmp);
175 if (n > max)
176 max = n;
177 }
178 return max;
179 }
180 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
181
182 /**
183 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
184 * @pdev: the PCI device
185 *
186 * Returns error bits set in PCI_STATUS and clears them.
187 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)188 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
189 {
190 u16 status;
191 int ret;
192
193 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
194 if (ret != PCIBIOS_SUCCESSFUL)
195 return -EIO;
196
197 status &= PCI_STATUS_ERROR_BITS;
198 if (status)
199 pci_write_config_word(pdev, PCI_STATUS, status);
200
201 return status;
202 }
203 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
204
205 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)206 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
207 {
208 struct resource *res = &pdev->resource[bar];
209
210 /*
211 * Make sure the BAR is actually a memory resource, not an IO resource
212 */
213 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
214 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
215 return NULL;
216 }
217 return ioremap(res->start, resource_size(res));
218 }
219 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
220
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)221 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
222 {
223 /*
224 * Make sure the BAR is actually a memory resource, not an IO resource
225 */
226 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
227 WARN_ON(1);
228 return NULL;
229 }
230 return ioremap_wc(pci_resource_start(pdev, bar),
231 pci_resource_len(pdev, bar));
232 }
233 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
234 #endif
235
236 /**
237 * pci_dev_str_match_path - test if a path string matches a device
238 * @dev: the PCI device to test
239 * @path: string to match the device against
240 * @endptr: pointer to the string after the match
241 *
242 * Test if a string (typically from a kernel parameter) formatted as a
243 * path of device/function addresses matches a PCI device. The string must
244 * be of the form:
245 *
246 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
247 *
248 * A path for a device can be obtained using 'lspci -t'. Using a path
249 * is more robust against bus renumbering than using only a single bus,
250 * device and function address.
251 *
252 * Returns 1 if the string matches the device, 0 if it does not and
253 * a negative error code if it fails to parse the string.
254 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)255 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
256 const char **endptr)
257 {
258 int ret;
259 int seg, bus, slot, func;
260 char *wpath, *p;
261 char end;
262
263 *endptr = strchrnul(path, ';');
264
265 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
266 if (!wpath)
267 return -ENOMEM;
268
269 while (1) {
270 p = strrchr(wpath, '/');
271 if (!p)
272 break;
273 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
274 if (ret != 2) {
275 ret = -EINVAL;
276 goto free_and_exit;
277 }
278
279 if (dev->devfn != PCI_DEVFN(slot, func)) {
280 ret = 0;
281 goto free_and_exit;
282 }
283
284 /*
285 * Note: we don't need to get a reference to the upstream
286 * bridge because we hold a reference to the top level
287 * device which should hold a reference to the bridge,
288 * and so on.
289 */
290 dev = pci_upstream_bridge(dev);
291 if (!dev) {
292 ret = 0;
293 goto free_and_exit;
294 }
295
296 *p = 0;
297 }
298
299 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
300 &func, &end);
301 if (ret != 4) {
302 seg = 0;
303 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
304 if (ret != 3) {
305 ret = -EINVAL;
306 goto free_and_exit;
307 }
308 }
309
310 ret = (seg == pci_domain_nr(dev->bus) &&
311 bus == dev->bus->number &&
312 dev->devfn == PCI_DEVFN(slot, func));
313
314 free_and_exit:
315 kfree(wpath);
316 return ret;
317 }
318
319 /**
320 * pci_dev_str_match - test if a string matches a device
321 * @dev: the PCI device to test
322 * @p: string to match the device against
323 * @endptr: pointer to the string after the match
324 *
325 * Test if a string (typically from a kernel parameter) matches a specified
326 * PCI device. The string may be of one of the following formats:
327 *
328 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
329 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
330 *
331 * The first format specifies a PCI bus/device/function address which
332 * may change if new hardware is inserted, if motherboard firmware changes,
333 * or due to changes caused in kernel parameters. If the domain is
334 * left unspecified, it is taken to be 0. In order to be robust against
335 * bus renumbering issues, a path of PCI device/function numbers may be used
336 * to address the specific device. The path for a device can be determined
337 * through the use of 'lspci -t'.
338 *
339 * The second format matches devices using IDs in the configuration
340 * space which may match multiple devices in the system. A value of 0
341 * for any field will match all devices. (Note: this differs from
342 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
343 * legacy reasons and convenience so users don't have to specify
344 * FFFFFFFFs on the command line.)
345 *
346 * Returns 1 if the string matches the device, 0 if it does not and
347 * a negative error code if the string cannot be parsed.
348 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)349 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
350 const char **endptr)
351 {
352 int ret;
353 int count;
354 unsigned short vendor, device, subsystem_vendor, subsystem_device;
355
356 if (strncmp(p, "pci:", 4) == 0) {
357 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
358 p += 4;
359 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
360 &subsystem_vendor, &subsystem_device, &count);
361 if (ret != 4) {
362 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
363 if (ret != 2)
364 return -EINVAL;
365
366 subsystem_vendor = 0;
367 subsystem_device = 0;
368 }
369
370 p += count;
371
372 if ((!vendor || vendor == dev->vendor) &&
373 (!device || device == dev->device) &&
374 (!subsystem_vendor ||
375 subsystem_vendor == dev->subsystem_vendor) &&
376 (!subsystem_device ||
377 subsystem_device == dev->subsystem_device))
378 goto found;
379 } else {
380 /*
381 * PCI Bus, Device, Function IDs are specified
382 * (optionally, may include a path of devfns following it)
383 */
384 ret = pci_dev_str_match_path(dev, p, &p);
385 if (ret < 0)
386 return ret;
387 else if (ret)
388 goto found;
389 }
390
391 *endptr = p;
392 return 0;
393
394 found:
395 *endptr = p;
396 return 1;
397 }
398
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)399 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
400 u8 pos, int cap, int *ttl)
401 {
402 u8 id;
403 u16 ent;
404
405 pci_bus_read_config_byte(bus, devfn, pos, &pos);
406
407 while ((*ttl)--) {
408 if (pos < 0x40)
409 break;
410 pos &= ~3;
411 pci_bus_read_config_word(bus, devfn, pos, &ent);
412
413 id = ent & 0xff;
414 if (id == 0xff)
415 break;
416 if (id == cap)
417 return pos;
418 pos = (ent >> 8);
419 }
420 return 0;
421 }
422
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)423 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
424 u8 pos, int cap)
425 {
426 int ttl = PCI_FIND_CAP_TTL;
427
428 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
429 }
430
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)431 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
432 {
433 return __pci_find_next_cap(dev->bus, dev->devfn,
434 pos + PCI_CAP_LIST_NEXT, cap);
435 }
436 EXPORT_SYMBOL_GPL(pci_find_next_capability);
437
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)438 static int __pci_bus_find_cap_start(struct pci_bus *bus,
439 unsigned int devfn, u8 hdr_type)
440 {
441 u16 status;
442
443 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
444 if (!(status & PCI_STATUS_CAP_LIST))
445 return 0;
446
447 switch (hdr_type) {
448 case PCI_HEADER_TYPE_NORMAL:
449 case PCI_HEADER_TYPE_BRIDGE:
450 return PCI_CAPABILITY_LIST;
451 case PCI_HEADER_TYPE_CARDBUS:
452 return PCI_CB_CAPABILITY_LIST;
453 }
454
455 return 0;
456 }
457
458 /**
459 * pci_find_capability - query for devices' capabilities
460 * @dev: PCI device to query
461 * @cap: capability code
462 *
463 * Tell if a device supports a given PCI capability.
464 * Returns the address of the requested capability structure within the
465 * device's PCI configuration space or 0 in case the device does not
466 * support it. Possible values for @cap include:
467 *
468 * %PCI_CAP_ID_PM Power Management
469 * %PCI_CAP_ID_AGP Accelerated Graphics Port
470 * %PCI_CAP_ID_VPD Vital Product Data
471 * %PCI_CAP_ID_SLOTID Slot Identification
472 * %PCI_CAP_ID_MSI Message Signalled Interrupts
473 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
474 * %PCI_CAP_ID_PCIX PCI-X
475 * %PCI_CAP_ID_EXP PCI Express
476 */
pci_find_capability(struct pci_dev * dev,int cap)477 int pci_find_capability(struct pci_dev *dev, int cap)
478 {
479 int pos;
480
481 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
482 if (pos)
483 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
484
485 return pos;
486 }
487 EXPORT_SYMBOL(pci_find_capability);
488
489 /**
490 * pci_bus_find_capability - query for devices' capabilities
491 * @bus: the PCI bus to query
492 * @devfn: PCI device to query
493 * @cap: capability code
494 *
495 * Like pci_find_capability() but works for PCI devices that do not have a
496 * pci_dev structure set up yet.
497 *
498 * Returns the address of the requested capability structure within the
499 * device's PCI configuration space or 0 in case the device does not
500 * support it.
501 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)502 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
503 {
504 int pos;
505 u8 hdr_type;
506
507 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
508
509 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
510 if (pos)
511 pos = __pci_find_next_cap(bus, devfn, pos, cap);
512
513 return pos;
514 }
515 EXPORT_SYMBOL(pci_bus_find_capability);
516
517 /**
518 * pci_find_next_ext_capability - Find an extended capability
519 * @dev: PCI device to query
520 * @start: address at which to start looking (0 to start at beginning of list)
521 * @cap: capability code
522 *
523 * Returns the address of the next matching extended capability structure
524 * within the device's PCI configuration space or 0 if the device does
525 * not support it. Some capabilities can occur several times, e.g., the
526 * vendor-specific capability, and this provides a way to find them all.
527 */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)528 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
529 {
530 u32 header;
531 int ttl;
532 int pos = PCI_CFG_SPACE_SIZE;
533
534 /* minimum 8 bytes per capability */
535 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
536
537 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
538 return 0;
539
540 if (start)
541 pos = start;
542
543 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
544 return 0;
545
546 /*
547 * If we have no capabilities, this is indicated by cap ID,
548 * cap version and next pointer all being 0.
549 */
550 if (header == 0)
551 return 0;
552
553 while (ttl-- > 0) {
554 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
555 return pos;
556
557 pos = PCI_EXT_CAP_NEXT(header);
558 if (pos < PCI_CFG_SPACE_SIZE)
559 break;
560
561 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
562 break;
563 }
564
565 return 0;
566 }
567 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
568
569 /**
570 * pci_find_ext_capability - Find an extended capability
571 * @dev: PCI device to query
572 * @cap: capability code
573 *
574 * Returns the address of the requested extended capability structure
575 * within the device's PCI configuration space or 0 if the device does
576 * not support it. Possible values for @cap include:
577 *
578 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
579 * %PCI_EXT_CAP_ID_VC Virtual Channel
580 * %PCI_EXT_CAP_ID_DSN Device Serial Number
581 * %PCI_EXT_CAP_ID_PWR Power Budgeting
582 */
pci_find_ext_capability(struct pci_dev * dev,int cap)583 int pci_find_ext_capability(struct pci_dev *dev, int cap)
584 {
585 return pci_find_next_ext_capability(dev, 0, cap);
586 }
587 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
588
589 /**
590 * pci_get_dsn - Read and return the 8-byte Device Serial Number
591 * @dev: PCI device to query
592 *
593 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
594 * Number.
595 *
596 * Returns the DSN, or zero if the capability does not exist.
597 */
pci_get_dsn(struct pci_dev * dev)598 u64 pci_get_dsn(struct pci_dev *dev)
599 {
600 u32 dword;
601 u64 dsn;
602 int pos;
603
604 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
605 if (!pos)
606 return 0;
607
608 /*
609 * The Device Serial Number is two dwords offset 4 bytes from the
610 * capability position. The specification says that the first dword is
611 * the lower half, and the second dword is the upper half.
612 */
613 pos += 4;
614 pci_read_config_dword(dev, pos, &dword);
615 dsn = (u64)dword;
616 pci_read_config_dword(dev, pos + 4, &dword);
617 dsn |= ((u64)dword) << 32;
618
619 return dsn;
620 }
621 EXPORT_SYMBOL_GPL(pci_get_dsn);
622
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)623 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
624 {
625 int rc, ttl = PCI_FIND_CAP_TTL;
626 u8 cap, mask;
627
628 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
629 mask = HT_3BIT_CAP_MASK;
630 else
631 mask = HT_5BIT_CAP_MASK;
632
633 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
634 PCI_CAP_ID_HT, &ttl);
635 while (pos) {
636 rc = pci_read_config_byte(dev, pos + 3, &cap);
637 if (rc != PCIBIOS_SUCCESSFUL)
638 return 0;
639
640 if ((cap & mask) == ht_cap)
641 return pos;
642
643 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
644 pos + PCI_CAP_LIST_NEXT,
645 PCI_CAP_ID_HT, &ttl);
646 }
647
648 return 0;
649 }
650 /**
651 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
652 * @dev: PCI device to query
653 * @pos: Position from which to continue searching
654 * @ht_cap: Hypertransport capability code
655 *
656 * To be used in conjunction with pci_find_ht_capability() to search for
657 * all capabilities matching @ht_cap. @pos should always be a value returned
658 * from pci_find_ht_capability().
659 *
660 * NB. To be 100% safe against broken PCI devices, the caller should take
661 * steps to avoid an infinite loop.
662 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)663 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
664 {
665 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
666 }
667 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
668
669 /**
670 * pci_find_ht_capability - query a device's Hypertransport capabilities
671 * @dev: PCI device to query
672 * @ht_cap: Hypertransport capability code
673 *
674 * Tell if a device supports a given Hypertransport capability.
675 * Returns an address within the device's PCI configuration space
676 * or 0 in case the device does not support the request capability.
677 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
678 * which has a Hypertransport capability matching @ht_cap.
679 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)680 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
681 {
682 int pos;
683
684 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
685 if (pos)
686 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
687
688 return pos;
689 }
690 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
691
692 /**
693 * pci_find_parent_resource - return resource region of parent bus of given
694 * region
695 * @dev: PCI device structure contains resources to be searched
696 * @res: child resource record for which parent is sought
697 *
698 * For given resource region of given device, return the resource region of
699 * parent bus the given region is contained in.
700 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)701 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
702 struct resource *res)
703 {
704 const struct pci_bus *bus = dev->bus;
705 struct resource *r;
706 int i;
707
708 pci_bus_for_each_resource(bus, r, i) {
709 if (!r)
710 continue;
711 if (resource_contains(r, res)) {
712
713 /*
714 * If the window is prefetchable but the BAR is
715 * not, the allocator made a mistake.
716 */
717 if (r->flags & IORESOURCE_PREFETCH &&
718 !(res->flags & IORESOURCE_PREFETCH))
719 return NULL;
720
721 /*
722 * If we're below a transparent bridge, there may
723 * be both a positively-decoded aperture and a
724 * subtractively-decoded region that contain the BAR.
725 * We want the positively-decoded one, so this depends
726 * on pci_bus_for_each_resource() giving us those
727 * first.
728 */
729 return r;
730 }
731 }
732 return NULL;
733 }
734 EXPORT_SYMBOL(pci_find_parent_resource);
735
736 /**
737 * pci_find_resource - Return matching PCI device resource
738 * @dev: PCI device to query
739 * @res: Resource to look for
740 *
741 * Goes over standard PCI resources (BARs) and checks if the given resource
742 * is partially or fully contained in any of them. In that case the
743 * matching resource is returned, %NULL otherwise.
744 */
pci_find_resource(struct pci_dev * dev,struct resource * res)745 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
746 {
747 int i;
748
749 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
750 struct resource *r = &dev->resource[i];
751
752 if (r->start && resource_contains(r, res))
753 return r;
754 }
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(pci_find_resource);
759
760 /**
761 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
762 * @dev: the PCI device to operate on
763 * @pos: config space offset of status word
764 * @mask: mask of bit(s) to care about in status word
765 *
766 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
767 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)768 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
769 {
770 int i;
771
772 /* Wait for Transaction Pending bit clean */
773 for (i = 0; i < 4; i++) {
774 u16 status;
775 if (i)
776 msleep((1 << (i - 1)) * 100);
777
778 pci_read_config_word(dev, pos, &status);
779 if (!(status & mask))
780 return 1;
781 }
782
783 return 0;
784 }
785
786 static int pci_acs_enable;
787
788 /**
789 * pci_request_acs - ask for ACS to be enabled if supported
790 */
pci_request_acs(void)791 void pci_request_acs(void)
792 {
793 pci_acs_enable = 1;
794 }
795
796 static const char *disable_acs_redir_param;
797
798 /**
799 * pci_disable_acs_redir - disable ACS redirect capabilities
800 * @dev: the PCI device
801 *
802 * For only devices specified in the disable_acs_redir parameter.
803 */
pci_disable_acs_redir(struct pci_dev * dev)804 static void pci_disable_acs_redir(struct pci_dev *dev)
805 {
806 int ret = 0;
807 const char *p;
808 int pos;
809 u16 ctrl;
810
811 if (!disable_acs_redir_param)
812 return;
813
814 p = disable_acs_redir_param;
815 while (*p) {
816 ret = pci_dev_str_match(dev, p, &p);
817 if (ret < 0) {
818 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
819 disable_acs_redir_param);
820
821 break;
822 } else if (ret == 1) {
823 /* Found a match */
824 break;
825 }
826
827 if (*p != ';' && *p != ',') {
828 /* End of param or invalid format */
829 break;
830 }
831 p++;
832 }
833
834 if (ret != 1)
835 return;
836
837 if (!pci_dev_specific_disable_acs_redir(dev))
838 return;
839
840 pos = dev->acs_cap;
841 if (!pos) {
842 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
843 return;
844 }
845
846 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
847
848 /* P2P Request & Completion Redirect */
849 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
850
851 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
852
853 pci_info(dev, "disabled ACS redirect\n");
854 }
855
856 /**
857 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
858 * @dev: the PCI device
859 */
pci_std_enable_acs(struct pci_dev * dev)860 static void pci_std_enable_acs(struct pci_dev *dev)
861 {
862 int pos;
863 u16 cap;
864 u16 ctrl;
865
866 pos = dev->acs_cap;
867 if (!pos)
868 return;
869
870 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
871 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
872
873 /* Source Validation */
874 ctrl |= (cap & PCI_ACS_SV);
875
876 /* P2P Request Redirect */
877 ctrl |= (cap & PCI_ACS_RR);
878
879 /* P2P Completion Redirect */
880 ctrl |= (cap & PCI_ACS_CR);
881
882 /* Upstream Forwarding */
883 ctrl |= (cap & PCI_ACS_UF);
884
885 /* Enable Translation Blocking for external devices */
886 if (dev->external_facing || dev->untrusted)
887 ctrl |= (cap & PCI_ACS_TB);
888
889 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
890 }
891
892 /**
893 * pci_enable_acs - enable ACS if hardware support it
894 * @dev: the PCI device
895 */
pci_enable_acs(struct pci_dev * dev)896 static void pci_enable_acs(struct pci_dev *dev)
897 {
898 if (!pci_acs_enable)
899 goto disable_acs_redir;
900
901 if (!pci_dev_specific_enable_acs(dev))
902 goto disable_acs_redir;
903
904 pci_std_enable_acs(dev);
905
906 disable_acs_redir:
907 /*
908 * Note: pci_disable_acs_redir() must be called even if ACS was not
909 * enabled by the kernel because it may have been enabled by
910 * platform firmware. So if we are told to disable it, we should
911 * always disable it after setting the kernel's default
912 * preferences.
913 */
914 pci_disable_acs_redir(dev);
915 }
916
917 /**
918 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
919 * @dev: PCI device to have its BARs restored
920 *
921 * Restore the BAR values for a given device, so as to make it
922 * accessible by its driver.
923 */
pci_restore_bars(struct pci_dev * dev)924 static void pci_restore_bars(struct pci_dev *dev)
925 {
926 int i;
927
928 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
929 pci_update_resource(dev, i);
930 }
931
932 static const struct pci_platform_pm_ops *pci_platform_pm;
933
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)934 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
935 {
936 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
937 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
938 return -EINVAL;
939 pci_platform_pm = ops;
940 return 0;
941 }
942
platform_pci_power_manageable(struct pci_dev * dev)943 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
944 {
945 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
946 }
947
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)948 static inline int platform_pci_set_power_state(struct pci_dev *dev,
949 pci_power_t t)
950 {
951 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
952 }
953
platform_pci_get_power_state(struct pci_dev * dev)954 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
955 {
956 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
957 }
958
platform_pci_refresh_power_state(struct pci_dev * dev)959 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
960 {
961 if (pci_platform_pm && pci_platform_pm->refresh_state)
962 pci_platform_pm->refresh_state(dev);
963 }
964
platform_pci_choose_state(struct pci_dev * dev)965 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
966 {
967 return pci_platform_pm ?
968 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
969 }
970
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)971 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
972 {
973 return pci_platform_pm ?
974 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
975 }
976
platform_pci_need_resume(struct pci_dev * dev)977 static inline bool platform_pci_need_resume(struct pci_dev *dev)
978 {
979 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
980 }
981
platform_pci_bridge_d3(struct pci_dev * dev)982 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
983 {
984 if (pci_platform_pm && pci_platform_pm->bridge_d3)
985 return pci_platform_pm->bridge_d3(dev);
986 return false;
987 }
988
989 /**
990 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
991 * given PCI device
992 * @dev: PCI device to handle.
993 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
994 *
995 * RETURN VALUE:
996 * -EINVAL if the requested state is invalid.
997 * -EIO if device does not support PCI PM or its PM capabilities register has a
998 * wrong version, or device doesn't support the requested state.
999 * 0 if device already is in the requested state.
1000 * 0 if device's power state has been successfully changed.
1001 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1002 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1003 {
1004 u16 pmcsr;
1005 bool need_restore = false;
1006
1007 /* Check if we're already there */
1008 if (dev->current_state == state)
1009 return 0;
1010
1011 if (!dev->pm_cap)
1012 return -EIO;
1013
1014 if (state < PCI_D0 || state > PCI_D3hot)
1015 return -EINVAL;
1016
1017 /*
1018 * Validate transition: We can enter D0 from any state, but if
1019 * we're already in a low-power state, we can only go deeper. E.g.,
1020 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1021 * we'd have to go from D3 to D0, then to D1.
1022 */
1023 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1024 && dev->current_state > state) {
1025 pci_err(dev, "invalid power transition (from %s to %s)\n",
1026 pci_power_name(dev->current_state),
1027 pci_power_name(state));
1028 return -EINVAL;
1029 }
1030
1031 /* Check if this device supports the desired state */
1032 if ((state == PCI_D1 && !dev->d1_support)
1033 || (state == PCI_D2 && !dev->d2_support))
1034 return -EIO;
1035
1036 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1037 if (pmcsr == (u16) ~0) {
1038 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1039 pci_power_name(dev->current_state),
1040 pci_power_name(state));
1041 return -EIO;
1042 }
1043
1044 /*
1045 * If we're (effectively) in D3, force entire word to 0.
1046 * This doesn't affect PME_Status, disables PME_En, and
1047 * sets PowerState to 0.
1048 */
1049 switch (dev->current_state) {
1050 case PCI_D0:
1051 case PCI_D1:
1052 case PCI_D2:
1053 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1054 pmcsr |= state;
1055 break;
1056 case PCI_D3hot:
1057 case PCI_D3cold:
1058 case PCI_UNKNOWN: /* Boot-up */
1059 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1060 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1061 need_restore = true;
1062 fallthrough; /* force to D0 */
1063 default:
1064 pmcsr = 0;
1065 break;
1066 }
1067
1068 /* Enter specified state */
1069 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1070
1071 /*
1072 * Mandatory power management transition delays; see PCI PM 1.1
1073 * 5.6.1 table 18
1074 */
1075 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1076 pci_dev_d3_sleep(dev);
1077 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1078 udelay(PCI_PM_D2_DELAY);
1079
1080 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1081 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1082 if (dev->current_state != state)
1083 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1084 pci_power_name(dev->current_state),
1085 pci_power_name(state));
1086
1087 /*
1088 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1089 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1090 * from D3hot to D0 _may_ perform an internal reset, thereby
1091 * going to "D0 Uninitialized" rather than "D0 Initialized".
1092 * For example, at least some versions of the 3c905B and the
1093 * 3c556B exhibit this behaviour.
1094 *
1095 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1096 * devices in a D3hot state at boot. Consequently, we need to
1097 * restore at least the BARs so that the device will be
1098 * accessible to its driver.
1099 */
1100 if (need_restore)
1101 pci_restore_bars(dev);
1102
1103 if (dev->bus->self)
1104 pcie_aspm_pm_state_change(dev->bus->self);
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * pci_update_current_state - Read power state of given device and cache it
1111 * @dev: PCI device to handle.
1112 * @state: State to cache in case the device doesn't have the PM capability
1113 *
1114 * The power state is read from the PMCSR register, which however is
1115 * inaccessible in D3cold. The platform firmware is therefore queried first
1116 * to detect accessibility of the register. In case the platform firmware
1117 * reports an incorrect state or the device isn't power manageable by the
1118 * platform at all, we try to detect D3cold by testing accessibility of the
1119 * vendor ID in config space.
1120 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1121 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1122 {
1123 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1124 !pci_device_is_present(dev)) {
1125 dev->current_state = PCI_D3cold;
1126 } else if (dev->pm_cap) {
1127 u16 pmcsr;
1128
1129 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1130 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1131 } else {
1132 dev->current_state = state;
1133 }
1134 }
1135
1136 /**
1137 * pci_refresh_power_state - Refresh the given device's power state data
1138 * @dev: Target PCI device.
1139 *
1140 * Ask the platform to refresh the devices power state information and invoke
1141 * pci_update_current_state() to update its current PCI power state.
1142 */
pci_refresh_power_state(struct pci_dev * dev)1143 void pci_refresh_power_state(struct pci_dev *dev)
1144 {
1145 if (platform_pci_power_manageable(dev))
1146 platform_pci_refresh_power_state(dev);
1147
1148 pci_update_current_state(dev, dev->current_state);
1149 }
1150
1151 /**
1152 * pci_platform_power_transition - Use platform to change device power state
1153 * @dev: PCI device to handle.
1154 * @state: State to put the device into.
1155 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1156 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1157 {
1158 int error;
1159
1160 if (platform_pci_power_manageable(dev)) {
1161 error = platform_pci_set_power_state(dev, state);
1162 if (!error)
1163 pci_update_current_state(dev, state);
1164 } else
1165 error = -ENODEV;
1166
1167 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1168 dev->current_state = PCI_D0;
1169
1170 return error;
1171 }
1172 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1173
1174 /**
1175 * pci_wakeup - Wake up a PCI device
1176 * @pci_dev: Device to handle.
1177 * @ign: ignored parameter
1178 */
pci_wakeup(struct pci_dev * pci_dev,void * ign)1179 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1180 {
1181 pci_wakeup_event(pci_dev);
1182 pm_request_resume(&pci_dev->dev);
1183 return 0;
1184 }
1185
1186 /**
1187 * pci_wakeup_bus - Walk given bus and wake up devices on it
1188 * @bus: Top bus of the subtree to walk.
1189 */
pci_wakeup_bus(struct pci_bus * bus)1190 void pci_wakeup_bus(struct pci_bus *bus)
1191 {
1192 if (bus)
1193 pci_walk_bus(bus, pci_wakeup, NULL);
1194 }
1195
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1196 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1197 {
1198 int delay = 1;
1199 u32 id;
1200
1201 /*
1202 * After reset, the device should not silently discard config
1203 * requests, but it may still indicate that it needs more time by
1204 * responding to them with CRS completions. The Root Port will
1205 * generally synthesize ~0 data to complete the read (except when
1206 * CRS SV is enabled and the read was for the Vendor ID; in that
1207 * case it synthesizes 0x0001 data).
1208 *
1209 * Wait for the device to return a non-CRS completion. Read the
1210 * Command register instead of Vendor ID so we don't have to
1211 * contend with the CRS SV value.
1212 */
1213 pci_read_config_dword(dev, PCI_COMMAND, &id);
1214 while (id == ~0) {
1215 if (delay > timeout) {
1216 pci_warn(dev, "not ready %dms after %s; giving up\n",
1217 delay - 1, reset_type);
1218 return -ENOTTY;
1219 }
1220
1221 if (delay > PCI_RESET_WAIT)
1222 pci_info(dev, "not ready %dms after %s; waiting\n",
1223 delay - 1, reset_type);
1224
1225 msleep(delay);
1226 delay *= 2;
1227 pci_read_config_dword(dev, PCI_COMMAND, &id);
1228 }
1229
1230 if (delay > PCI_RESET_WAIT)
1231 pci_info(dev, "ready %dms after %s\n", delay - 1,
1232 reset_type);
1233
1234 return 0;
1235 }
1236
1237 /**
1238 * pci_power_up - Put the given device into D0
1239 * @dev: PCI device to power up
1240 */
pci_power_up(struct pci_dev * dev)1241 int pci_power_up(struct pci_dev *dev)
1242 {
1243 pci_platform_power_transition(dev, PCI_D0);
1244
1245 /*
1246 * Mandatory power management transition delays are handled in
1247 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1248 * corresponding bridge.
1249 */
1250 if (dev->runtime_d3cold) {
1251 /*
1252 * When powering on a bridge from D3cold, the whole hierarchy
1253 * may be powered on into D0uninitialized state, resume them to
1254 * give them a chance to suspend again
1255 */
1256 pci_wakeup_bus(dev->subordinate);
1257 }
1258
1259 return pci_raw_set_power_state(dev, PCI_D0);
1260 }
1261
1262 /**
1263 * __pci_dev_set_current_state - Set current state of a PCI device
1264 * @dev: Device to handle
1265 * @data: pointer to state to be set
1266 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1267 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1268 {
1269 pci_power_t state = *(pci_power_t *)data;
1270
1271 dev->current_state = state;
1272 return 0;
1273 }
1274
1275 /**
1276 * pci_bus_set_current_state - Walk given bus and set current state of devices
1277 * @bus: Top bus of the subtree to walk.
1278 * @state: state to be set
1279 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1280 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1281 {
1282 if (bus)
1283 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1284 }
1285
1286 /**
1287 * pci_set_power_state - Set the power state of a PCI device
1288 * @dev: PCI device to handle.
1289 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1290 *
1291 * Transition a device to a new power state, using the platform firmware and/or
1292 * the device's PCI PM registers.
1293 *
1294 * RETURN VALUE:
1295 * -EINVAL if the requested state is invalid.
1296 * -EIO if device does not support PCI PM or its PM capabilities register has a
1297 * wrong version, or device doesn't support the requested state.
1298 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1299 * 0 if device already is in the requested state.
1300 * 0 if the transition is to D3 but D3 is not supported.
1301 * 0 if device's power state has been successfully changed.
1302 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1303 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1304 {
1305 int error;
1306
1307 /* Bound the state we're entering */
1308 if (state > PCI_D3cold)
1309 state = PCI_D3cold;
1310 else if (state < PCI_D0)
1311 state = PCI_D0;
1312 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1313
1314 /*
1315 * If the device or the parent bridge do not support PCI
1316 * PM, ignore the request if we're doing anything other
1317 * than putting it into D0 (which would only happen on
1318 * boot).
1319 */
1320 return 0;
1321
1322 /* Check if we're already there */
1323 if (dev->current_state == state)
1324 return 0;
1325
1326 if (state == PCI_D0)
1327 return pci_power_up(dev);
1328
1329 /*
1330 * This device is quirked not to be put into D3, so don't put it in
1331 * D3
1332 */
1333 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1334 return 0;
1335
1336 /*
1337 * To put device in D3cold, we put device into D3hot in native
1338 * way, then put device into D3cold with platform ops
1339 */
1340 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1341 PCI_D3hot : state);
1342
1343 if (pci_platform_power_transition(dev, state))
1344 return error;
1345
1346 /* Powering off a bridge may power off the whole hierarchy */
1347 if (state == PCI_D3cold)
1348 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1349
1350 return 0;
1351 }
1352 EXPORT_SYMBOL(pci_set_power_state);
1353
1354 /**
1355 * pci_choose_state - Choose the power state of a PCI device
1356 * @dev: PCI device to be suspended
1357 * @state: target sleep state for the whole system. This is the value
1358 * that is passed to suspend() function.
1359 *
1360 * Returns PCI power state suitable for given device and given system
1361 * message.
1362 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1363 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1364 {
1365 pci_power_t ret;
1366
1367 if (!dev->pm_cap)
1368 return PCI_D0;
1369
1370 ret = platform_pci_choose_state(dev);
1371 if (ret != PCI_POWER_ERROR)
1372 return ret;
1373
1374 switch (state.event) {
1375 case PM_EVENT_ON:
1376 return PCI_D0;
1377 case PM_EVENT_FREEZE:
1378 case PM_EVENT_PRETHAW:
1379 /* REVISIT both freeze and pre-thaw "should" use D0 */
1380 case PM_EVENT_SUSPEND:
1381 case PM_EVENT_HIBERNATE:
1382 return PCI_D3hot;
1383 default:
1384 pci_info(dev, "unrecognized suspend event %d\n",
1385 state.event);
1386 BUG();
1387 }
1388 return PCI_D0;
1389 }
1390 EXPORT_SYMBOL(pci_choose_state);
1391
1392 #define PCI_EXP_SAVE_REGS 7
1393
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1394 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1395 u16 cap, bool extended)
1396 {
1397 struct pci_cap_saved_state *tmp;
1398
1399 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1400 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1401 return tmp;
1402 }
1403 return NULL;
1404 }
1405
pci_find_saved_cap(struct pci_dev * dev,char cap)1406 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1407 {
1408 return _pci_find_saved_cap(dev, cap, false);
1409 }
1410
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1411 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1412 {
1413 return _pci_find_saved_cap(dev, cap, true);
1414 }
1415
pci_save_pcie_state(struct pci_dev * dev)1416 static int pci_save_pcie_state(struct pci_dev *dev)
1417 {
1418 int i = 0;
1419 struct pci_cap_saved_state *save_state;
1420 u16 *cap;
1421
1422 if (!pci_is_pcie(dev))
1423 return 0;
1424
1425 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1426 if (!save_state) {
1427 pci_err(dev, "buffer not found in %s\n", __func__);
1428 return -ENOMEM;
1429 }
1430
1431 cap = (u16 *)&save_state->cap.data[0];
1432 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1433 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1434 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1435 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1436 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1437 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1438 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1439
1440 return 0;
1441 }
1442
pci_restore_pcie_state(struct pci_dev * dev)1443 static void pci_restore_pcie_state(struct pci_dev *dev)
1444 {
1445 int i = 0;
1446 struct pci_cap_saved_state *save_state;
1447 u16 *cap;
1448
1449 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1450 if (!save_state)
1451 return;
1452
1453 cap = (u16 *)&save_state->cap.data[0];
1454 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1455 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1456 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1457 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1458 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1459 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1460 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1461 }
1462
pci_save_pcix_state(struct pci_dev * dev)1463 static int pci_save_pcix_state(struct pci_dev *dev)
1464 {
1465 int pos;
1466 struct pci_cap_saved_state *save_state;
1467
1468 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1469 if (!pos)
1470 return 0;
1471
1472 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1473 if (!save_state) {
1474 pci_err(dev, "buffer not found in %s\n", __func__);
1475 return -ENOMEM;
1476 }
1477
1478 pci_read_config_word(dev, pos + PCI_X_CMD,
1479 (u16 *)save_state->cap.data);
1480
1481 return 0;
1482 }
1483
pci_restore_pcix_state(struct pci_dev * dev)1484 static void pci_restore_pcix_state(struct pci_dev *dev)
1485 {
1486 int i = 0, pos;
1487 struct pci_cap_saved_state *save_state;
1488 u16 *cap;
1489
1490 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1491 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1492 if (!save_state || !pos)
1493 return;
1494 cap = (u16 *)&save_state->cap.data[0];
1495
1496 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1497 }
1498
pci_save_ltr_state(struct pci_dev * dev)1499 static void pci_save_ltr_state(struct pci_dev *dev)
1500 {
1501 int ltr;
1502 struct pci_cap_saved_state *save_state;
1503 u16 *cap;
1504
1505 if (!pci_is_pcie(dev))
1506 return;
1507
1508 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1509 if (!ltr)
1510 return;
1511
1512 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1513 if (!save_state) {
1514 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1515 return;
1516 }
1517
1518 cap = (u16 *)&save_state->cap.data[0];
1519 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1520 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1521 }
1522
pci_restore_ltr_state(struct pci_dev * dev)1523 static void pci_restore_ltr_state(struct pci_dev *dev)
1524 {
1525 struct pci_cap_saved_state *save_state;
1526 int ltr;
1527 u16 *cap;
1528
1529 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1530 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1531 if (!save_state || !ltr)
1532 return;
1533
1534 cap = (u16 *)&save_state->cap.data[0];
1535 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1536 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1537 }
1538
1539 /**
1540 * pci_save_state - save the PCI configuration space of a device before
1541 * suspending
1542 * @dev: PCI device that we're dealing with
1543 */
pci_save_state(struct pci_dev * dev)1544 int pci_save_state(struct pci_dev *dev)
1545 {
1546 int i;
1547 /* XXX: 100% dword access ok here? */
1548 for (i = 0; i < 16; i++) {
1549 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1550 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1551 i * 4, dev->saved_config_space[i]);
1552 }
1553 dev->state_saved = true;
1554
1555 i = pci_save_pcie_state(dev);
1556 if (i != 0)
1557 return i;
1558
1559 i = pci_save_pcix_state(dev);
1560 if (i != 0)
1561 return i;
1562
1563 pci_save_ltr_state(dev);
1564 pci_save_dpc_state(dev);
1565 pci_save_aer_state(dev);
1566 return pci_save_vc_state(dev);
1567 }
1568 EXPORT_SYMBOL(pci_save_state);
1569
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1570 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1571 u32 saved_val, int retry, bool force)
1572 {
1573 u32 val;
1574
1575 pci_read_config_dword(pdev, offset, &val);
1576 if (!force && val == saved_val)
1577 return;
1578
1579 for (;;) {
1580 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1581 offset, val, saved_val);
1582 pci_write_config_dword(pdev, offset, saved_val);
1583 if (retry-- <= 0)
1584 return;
1585
1586 pci_read_config_dword(pdev, offset, &val);
1587 if (val == saved_val)
1588 return;
1589
1590 mdelay(1);
1591 }
1592 }
1593
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1594 static void pci_restore_config_space_range(struct pci_dev *pdev,
1595 int start, int end, int retry,
1596 bool force)
1597 {
1598 int index;
1599
1600 for (index = end; index >= start; index--)
1601 pci_restore_config_dword(pdev, 4 * index,
1602 pdev->saved_config_space[index],
1603 retry, force);
1604 }
1605
pci_restore_config_space(struct pci_dev * pdev)1606 static void pci_restore_config_space(struct pci_dev *pdev)
1607 {
1608 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1609 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1610 /* Restore BARs before the command register. */
1611 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1612 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1613 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1614 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1615
1616 /*
1617 * Force rewriting of prefetch registers to avoid S3 resume
1618 * issues on Intel PCI bridges that occur when these
1619 * registers are not explicitly written.
1620 */
1621 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1622 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1623 } else {
1624 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1625 }
1626 }
1627
pci_restore_rebar_state(struct pci_dev * pdev)1628 static void pci_restore_rebar_state(struct pci_dev *pdev)
1629 {
1630 unsigned int pos, nbars, i;
1631 u32 ctrl;
1632
1633 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1634 if (!pos)
1635 return;
1636
1637 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1638 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1639 PCI_REBAR_CTRL_NBAR_SHIFT;
1640
1641 for (i = 0; i < nbars; i++, pos += 8) {
1642 struct resource *res;
1643 int bar_idx, size;
1644
1645 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1646 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1647 res = pdev->resource + bar_idx;
1648 size = ilog2(resource_size(res)) - 20;
1649 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1650 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1651 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1652 }
1653 }
1654
1655 /**
1656 * pci_restore_state - Restore the saved state of a PCI device
1657 * @dev: PCI device that we're dealing with
1658 */
pci_restore_state(struct pci_dev * dev)1659 void pci_restore_state(struct pci_dev *dev)
1660 {
1661 if (!dev->state_saved)
1662 return;
1663
1664 /*
1665 * Restore max latencies (in the LTR capability) before enabling
1666 * LTR itself (in the PCIe capability).
1667 */
1668 pci_restore_ltr_state(dev);
1669
1670 pci_restore_pcie_state(dev);
1671 pci_restore_pasid_state(dev);
1672 pci_restore_pri_state(dev);
1673 pci_restore_ats_state(dev);
1674 pci_restore_vc_state(dev);
1675 pci_restore_rebar_state(dev);
1676 pci_restore_dpc_state(dev);
1677
1678 pci_aer_clear_status(dev);
1679 pci_restore_aer_state(dev);
1680
1681 pci_restore_config_space(dev);
1682
1683 pci_restore_pcix_state(dev);
1684 pci_restore_msi_state(dev);
1685
1686 /* Restore ACS and IOV configuration state */
1687 pci_enable_acs(dev);
1688 pci_restore_iov_state(dev);
1689
1690 dev->state_saved = false;
1691 }
1692 EXPORT_SYMBOL(pci_restore_state);
1693
1694 struct pci_saved_state {
1695 u32 config_space[16];
1696 struct pci_cap_saved_data cap[];
1697 };
1698
1699 /**
1700 * pci_store_saved_state - Allocate and return an opaque struct containing
1701 * the device saved state.
1702 * @dev: PCI device that we're dealing with
1703 *
1704 * Return NULL if no state or error.
1705 */
pci_store_saved_state(struct pci_dev * dev)1706 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1707 {
1708 struct pci_saved_state *state;
1709 struct pci_cap_saved_state *tmp;
1710 struct pci_cap_saved_data *cap;
1711 size_t size;
1712
1713 if (!dev->state_saved)
1714 return NULL;
1715
1716 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1717
1718 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1719 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1720
1721 state = kzalloc(size, GFP_KERNEL);
1722 if (!state)
1723 return NULL;
1724
1725 memcpy(state->config_space, dev->saved_config_space,
1726 sizeof(state->config_space));
1727
1728 cap = state->cap;
1729 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1730 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1731 memcpy(cap, &tmp->cap, len);
1732 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1733 }
1734 /* Empty cap_save terminates list */
1735
1736 return state;
1737 }
1738 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1739
1740 /**
1741 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1742 * @dev: PCI device that we're dealing with
1743 * @state: Saved state returned from pci_store_saved_state()
1744 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1745 int pci_load_saved_state(struct pci_dev *dev,
1746 struct pci_saved_state *state)
1747 {
1748 struct pci_cap_saved_data *cap;
1749
1750 dev->state_saved = false;
1751
1752 if (!state)
1753 return 0;
1754
1755 memcpy(dev->saved_config_space, state->config_space,
1756 sizeof(state->config_space));
1757
1758 cap = state->cap;
1759 while (cap->size) {
1760 struct pci_cap_saved_state *tmp;
1761
1762 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1763 if (!tmp || tmp->cap.size != cap->size)
1764 return -EINVAL;
1765
1766 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1767 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1768 sizeof(struct pci_cap_saved_data) + cap->size);
1769 }
1770
1771 dev->state_saved = true;
1772 return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1775
1776 /**
1777 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1778 * and free the memory allocated for it.
1779 * @dev: PCI device that we're dealing with
1780 * @state: Pointer to saved state returned from pci_store_saved_state()
1781 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1782 int pci_load_and_free_saved_state(struct pci_dev *dev,
1783 struct pci_saved_state **state)
1784 {
1785 int ret = pci_load_saved_state(dev, *state);
1786 kfree(*state);
1787 *state = NULL;
1788 return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1791
pcibios_enable_device(struct pci_dev * dev,int bars)1792 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1793 {
1794 return pci_enable_resources(dev, bars);
1795 }
1796
do_pci_enable_device(struct pci_dev * dev,int bars)1797 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1798 {
1799 int err;
1800 struct pci_dev *bridge;
1801 u16 cmd;
1802 u8 pin;
1803
1804 err = pci_set_power_state(dev, PCI_D0);
1805 if (err < 0 && err != -EIO)
1806 return err;
1807
1808 bridge = pci_upstream_bridge(dev);
1809 if (bridge)
1810 pcie_aspm_powersave_config_link(bridge);
1811
1812 err = pcibios_enable_device(dev, bars);
1813 if (err < 0)
1814 return err;
1815 pci_fixup_device(pci_fixup_enable, dev);
1816
1817 if (dev->msi_enabled || dev->msix_enabled)
1818 return 0;
1819
1820 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1821 if (pin) {
1822 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1823 if (cmd & PCI_COMMAND_INTX_DISABLE)
1824 pci_write_config_word(dev, PCI_COMMAND,
1825 cmd & ~PCI_COMMAND_INTX_DISABLE);
1826 }
1827
1828 return 0;
1829 }
1830
1831 /**
1832 * pci_reenable_device - Resume abandoned device
1833 * @dev: PCI device to be resumed
1834 *
1835 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1836 * to be called by normal code, write proper resume handler and use it instead.
1837 */
pci_reenable_device(struct pci_dev * dev)1838 int pci_reenable_device(struct pci_dev *dev)
1839 {
1840 if (pci_is_enabled(dev))
1841 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1842 return 0;
1843 }
1844 EXPORT_SYMBOL(pci_reenable_device);
1845
pci_enable_bridge(struct pci_dev * dev)1846 static void pci_enable_bridge(struct pci_dev *dev)
1847 {
1848 struct pci_dev *bridge;
1849 int retval;
1850
1851 bridge = pci_upstream_bridge(dev);
1852 if (bridge)
1853 pci_enable_bridge(bridge);
1854
1855 if (pci_is_enabled(dev)) {
1856 if (!dev->is_busmaster)
1857 pci_set_master(dev);
1858 return;
1859 }
1860
1861 retval = pci_enable_device(dev);
1862 if (retval)
1863 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1864 retval);
1865 pci_set_master(dev);
1866 }
1867
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1868 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1869 {
1870 struct pci_dev *bridge;
1871 int err;
1872 int i, bars = 0;
1873
1874 /*
1875 * Power state could be unknown at this point, either due to a fresh
1876 * boot or a device removal call. So get the current power state
1877 * so that things like MSI message writing will behave as expected
1878 * (e.g. if the device really is in D0 at enable time).
1879 */
1880 pci_update_current_state(dev, dev->current_state);
1881
1882 if (atomic_inc_return(&dev->enable_cnt) > 1)
1883 return 0; /* already enabled */
1884
1885 bridge = pci_upstream_bridge(dev);
1886 if (bridge)
1887 pci_enable_bridge(bridge);
1888
1889 /* only skip sriov related */
1890 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1891 if (dev->resource[i].flags & flags)
1892 bars |= (1 << i);
1893 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1894 if (dev->resource[i].flags & flags)
1895 bars |= (1 << i);
1896
1897 err = do_pci_enable_device(dev, bars);
1898 if (err < 0)
1899 atomic_dec(&dev->enable_cnt);
1900 return err;
1901 }
1902
1903 /**
1904 * pci_enable_device_io - Initialize a device for use with IO space
1905 * @dev: PCI device to be initialized
1906 *
1907 * Initialize device before it's used by a driver. Ask low-level code
1908 * to enable I/O resources. Wake up the device if it was suspended.
1909 * Beware, this function can fail.
1910 */
pci_enable_device_io(struct pci_dev * dev)1911 int pci_enable_device_io(struct pci_dev *dev)
1912 {
1913 return pci_enable_device_flags(dev, IORESOURCE_IO);
1914 }
1915 EXPORT_SYMBOL(pci_enable_device_io);
1916
1917 /**
1918 * pci_enable_device_mem - Initialize a device for use with Memory space
1919 * @dev: PCI device to be initialized
1920 *
1921 * Initialize device before it's used by a driver. Ask low-level code
1922 * to enable Memory resources. Wake up the device if it was suspended.
1923 * Beware, this function can fail.
1924 */
pci_enable_device_mem(struct pci_dev * dev)1925 int pci_enable_device_mem(struct pci_dev *dev)
1926 {
1927 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1928 }
1929 EXPORT_SYMBOL(pci_enable_device_mem);
1930
1931 /**
1932 * pci_enable_device - Initialize device before it's used by a driver.
1933 * @dev: PCI device to be initialized
1934 *
1935 * Initialize device before it's used by a driver. Ask low-level code
1936 * to enable I/O and memory. Wake up the device if it was suspended.
1937 * Beware, this function can fail.
1938 *
1939 * Note we don't actually enable the device many times if we call
1940 * this function repeatedly (we just increment the count).
1941 */
pci_enable_device(struct pci_dev * dev)1942 int pci_enable_device(struct pci_dev *dev)
1943 {
1944 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1945 }
1946 EXPORT_SYMBOL(pci_enable_device);
1947
1948 /*
1949 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1950 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1951 * there's no need to track it separately. pci_devres is initialized
1952 * when a device is enabled using managed PCI device enable interface.
1953 */
1954 struct pci_devres {
1955 unsigned int enabled:1;
1956 unsigned int pinned:1;
1957 unsigned int orig_intx:1;
1958 unsigned int restore_intx:1;
1959 unsigned int mwi:1;
1960 u32 region_mask;
1961 };
1962
pcim_release(struct device * gendev,void * res)1963 static void pcim_release(struct device *gendev, void *res)
1964 {
1965 struct pci_dev *dev = to_pci_dev(gendev);
1966 struct pci_devres *this = res;
1967 int i;
1968
1969 if (dev->msi_enabled)
1970 pci_disable_msi(dev);
1971 if (dev->msix_enabled)
1972 pci_disable_msix(dev);
1973
1974 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1975 if (this->region_mask & (1 << i))
1976 pci_release_region(dev, i);
1977
1978 if (this->mwi)
1979 pci_clear_mwi(dev);
1980
1981 if (this->restore_intx)
1982 pci_intx(dev, this->orig_intx);
1983
1984 if (this->enabled && !this->pinned)
1985 pci_disable_device(dev);
1986 }
1987
get_pci_dr(struct pci_dev * pdev)1988 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1989 {
1990 struct pci_devres *dr, *new_dr;
1991
1992 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1993 if (dr)
1994 return dr;
1995
1996 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1997 if (!new_dr)
1998 return NULL;
1999 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2000 }
2001
find_pci_dr(struct pci_dev * pdev)2002 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2003 {
2004 if (pci_is_managed(pdev))
2005 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2006 return NULL;
2007 }
2008
2009 /**
2010 * pcim_enable_device - Managed pci_enable_device()
2011 * @pdev: PCI device to be initialized
2012 *
2013 * Managed pci_enable_device().
2014 */
pcim_enable_device(struct pci_dev * pdev)2015 int pcim_enable_device(struct pci_dev *pdev)
2016 {
2017 struct pci_devres *dr;
2018 int rc;
2019
2020 dr = get_pci_dr(pdev);
2021 if (unlikely(!dr))
2022 return -ENOMEM;
2023 if (dr->enabled)
2024 return 0;
2025
2026 rc = pci_enable_device(pdev);
2027 if (!rc) {
2028 pdev->is_managed = 1;
2029 dr->enabled = 1;
2030 }
2031 return rc;
2032 }
2033 EXPORT_SYMBOL(pcim_enable_device);
2034
2035 /**
2036 * pcim_pin_device - Pin managed PCI device
2037 * @pdev: PCI device to pin
2038 *
2039 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2040 * driver detach. @pdev must have been enabled with
2041 * pcim_enable_device().
2042 */
pcim_pin_device(struct pci_dev * pdev)2043 void pcim_pin_device(struct pci_dev *pdev)
2044 {
2045 struct pci_devres *dr;
2046
2047 dr = find_pci_dr(pdev);
2048 WARN_ON(!dr || !dr->enabled);
2049 if (dr)
2050 dr->pinned = 1;
2051 }
2052 EXPORT_SYMBOL(pcim_pin_device);
2053
2054 /*
2055 * pcibios_add_device - provide arch specific hooks when adding device dev
2056 * @dev: the PCI device being added
2057 *
2058 * Permits the platform to provide architecture specific functionality when
2059 * devices are added. This is the default implementation. Architecture
2060 * implementations can override this.
2061 */
pcibios_add_device(struct pci_dev * dev)2062 int __weak pcibios_add_device(struct pci_dev *dev)
2063 {
2064 return 0;
2065 }
2066
2067 /**
2068 * pcibios_release_device - provide arch specific hooks when releasing
2069 * device dev
2070 * @dev: the PCI device being released
2071 *
2072 * Permits the platform to provide architecture specific functionality when
2073 * devices are released. This is the default implementation. Architecture
2074 * implementations can override this.
2075 */
pcibios_release_device(struct pci_dev * dev)2076 void __weak pcibios_release_device(struct pci_dev *dev) {}
2077
2078 /**
2079 * pcibios_disable_device - disable arch specific PCI resources for device dev
2080 * @dev: the PCI device to disable
2081 *
2082 * Disables architecture specific PCI resources for the device. This
2083 * is the default implementation. Architecture implementations can
2084 * override this.
2085 */
pcibios_disable_device(struct pci_dev * dev)2086 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2087
2088 /**
2089 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2090 * @irq: ISA IRQ to penalize
2091 * @active: IRQ active or not
2092 *
2093 * Permits the platform to provide architecture-specific functionality when
2094 * penalizing ISA IRQs. This is the default implementation. Architecture
2095 * implementations can override this.
2096 */
pcibios_penalize_isa_irq(int irq,int active)2097 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2098
do_pci_disable_device(struct pci_dev * dev)2099 static void do_pci_disable_device(struct pci_dev *dev)
2100 {
2101 u16 pci_command;
2102
2103 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2104 if (pci_command & PCI_COMMAND_MASTER) {
2105 pci_command &= ~PCI_COMMAND_MASTER;
2106 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2107 }
2108
2109 pcibios_disable_device(dev);
2110 }
2111
2112 /**
2113 * pci_disable_enabled_device - Disable device without updating enable_cnt
2114 * @dev: PCI device to disable
2115 *
2116 * NOTE: This function is a backend of PCI power management routines and is
2117 * not supposed to be called drivers.
2118 */
pci_disable_enabled_device(struct pci_dev * dev)2119 void pci_disable_enabled_device(struct pci_dev *dev)
2120 {
2121 if (pci_is_enabled(dev))
2122 do_pci_disable_device(dev);
2123 }
2124
2125 /**
2126 * pci_disable_device - Disable PCI device after use
2127 * @dev: PCI device to be disabled
2128 *
2129 * Signal to the system that the PCI device is not in use by the system
2130 * anymore. This only involves disabling PCI bus-mastering, if active.
2131 *
2132 * Note we don't actually disable the device until all callers of
2133 * pci_enable_device() have called pci_disable_device().
2134 */
pci_disable_device(struct pci_dev * dev)2135 void pci_disable_device(struct pci_dev *dev)
2136 {
2137 struct pci_devres *dr;
2138
2139 dr = find_pci_dr(dev);
2140 if (dr)
2141 dr->enabled = 0;
2142
2143 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2144 "disabling already-disabled device");
2145
2146 if (atomic_dec_return(&dev->enable_cnt) != 0)
2147 return;
2148
2149 do_pci_disable_device(dev);
2150
2151 dev->is_busmaster = 0;
2152 }
2153 EXPORT_SYMBOL(pci_disable_device);
2154
2155 /**
2156 * pcibios_set_pcie_reset_state - set reset state for device dev
2157 * @dev: the PCIe device reset
2158 * @state: Reset state to enter into
2159 *
2160 * Set the PCIe reset state for the device. This is the default
2161 * implementation. Architecture implementations can override this.
2162 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2163 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2164 enum pcie_reset_state state)
2165 {
2166 return -EINVAL;
2167 }
2168
2169 /**
2170 * pci_set_pcie_reset_state - set reset state for device dev
2171 * @dev: the PCIe device reset
2172 * @state: Reset state to enter into
2173 *
2174 * Sets the PCI reset state for the device.
2175 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2176 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2177 {
2178 return pcibios_set_pcie_reset_state(dev, state);
2179 }
2180 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2181
pcie_clear_device_status(struct pci_dev * dev)2182 void pcie_clear_device_status(struct pci_dev *dev)
2183 {
2184 u16 sta;
2185
2186 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2187 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2188 }
2189
2190 /**
2191 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2192 * @dev: PCIe root port or event collector.
2193 */
pcie_clear_root_pme_status(struct pci_dev * dev)2194 void pcie_clear_root_pme_status(struct pci_dev *dev)
2195 {
2196 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2197 }
2198
2199 /**
2200 * pci_check_pme_status - Check if given device has generated PME.
2201 * @dev: Device to check.
2202 *
2203 * Check the PME status of the device and if set, clear it and clear PME enable
2204 * (if set). Return 'true' if PME status and PME enable were both set or
2205 * 'false' otherwise.
2206 */
pci_check_pme_status(struct pci_dev * dev)2207 bool pci_check_pme_status(struct pci_dev *dev)
2208 {
2209 int pmcsr_pos;
2210 u16 pmcsr;
2211 bool ret = false;
2212
2213 if (!dev->pm_cap)
2214 return false;
2215
2216 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2217 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2218 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2219 return false;
2220
2221 /* Clear PME status. */
2222 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2223 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2224 /* Disable PME to avoid interrupt flood. */
2225 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2226 ret = true;
2227 }
2228
2229 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2230
2231 return ret;
2232 }
2233
2234 /**
2235 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2236 * @dev: Device to handle.
2237 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2238 *
2239 * Check if @dev has generated PME and queue a resume request for it in that
2240 * case.
2241 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2242 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2243 {
2244 if (pme_poll_reset && dev->pme_poll)
2245 dev->pme_poll = false;
2246
2247 if (pci_check_pme_status(dev)) {
2248 pci_wakeup_event(dev);
2249 pm_request_resume(&dev->dev);
2250 }
2251 return 0;
2252 }
2253
2254 /**
2255 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2256 * @bus: Top bus of the subtree to walk.
2257 */
pci_pme_wakeup_bus(struct pci_bus * bus)2258 void pci_pme_wakeup_bus(struct pci_bus *bus)
2259 {
2260 if (bus)
2261 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2262 }
2263
2264
2265 /**
2266 * pci_pme_capable - check the capability of PCI device to generate PME#
2267 * @dev: PCI device to handle.
2268 * @state: PCI state from which device will issue PME#.
2269 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2270 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2271 {
2272 if (!dev->pm_cap)
2273 return false;
2274
2275 return !!(dev->pme_support & (1 << state));
2276 }
2277 EXPORT_SYMBOL(pci_pme_capable);
2278
pci_pme_list_scan(struct work_struct * work)2279 static void pci_pme_list_scan(struct work_struct *work)
2280 {
2281 struct pci_pme_device *pme_dev, *n;
2282
2283 mutex_lock(&pci_pme_list_mutex);
2284 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2285 if (pme_dev->dev->pme_poll) {
2286 struct pci_dev *bridge;
2287
2288 bridge = pme_dev->dev->bus->self;
2289 /*
2290 * If bridge is in low power state, the
2291 * configuration space of subordinate devices
2292 * may be not accessible
2293 */
2294 if (bridge && bridge->current_state != PCI_D0)
2295 continue;
2296 /*
2297 * If the device is in D3cold it should not be
2298 * polled either.
2299 */
2300 if (pme_dev->dev->current_state == PCI_D3cold)
2301 continue;
2302
2303 pci_pme_wakeup(pme_dev->dev, NULL);
2304 } else {
2305 list_del(&pme_dev->list);
2306 kfree(pme_dev);
2307 }
2308 }
2309 if (!list_empty(&pci_pme_list))
2310 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2311 msecs_to_jiffies(PME_TIMEOUT));
2312 mutex_unlock(&pci_pme_list_mutex);
2313 }
2314
__pci_pme_active(struct pci_dev * dev,bool enable)2315 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2316 {
2317 u16 pmcsr;
2318
2319 if (!dev->pme_support)
2320 return;
2321
2322 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2323 /* Clear PME_Status by writing 1 to it and enable PME# */
2324 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2325 if (!enable)
2326 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2327
2328 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2329 }
2330
2331 /**
2332 * pci_pme_restore - Restore PME configuration after config space restore.
2333 * @dev: PCI device to update.
2334 */
pci_pme_restore(struct pci_dev * dev)2335 void pci_pme_restore(struct pci_dev *dev)
2336 {
2337 u16 pmcsr;
2338
2339 if (!dev->pme_support)
2340 return;
2341
2342 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2343 if (dev->wakeup_prepared) {
2344 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2345 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2346 } else {
2347 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2348 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2349 }
2350 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2351 }
2352
2353 /**
2354 * pci_pme_active - enable or disable PCI device's PME# function
2355 * @dev: PCI device to handle.
2356 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2357 *
2358 * The caller must verify that the device is capable of generating PME# before
2359 * calling this function with @enable equal to 'true'.
2360 */
pci_pme_active(struct pci_dev * dev,bool enable)2361 void pci_pme_active(struct pci_dev *dev, bool enable)
2362 {
2363 __pci_pme_active(dev, enable);
2364
2365 /*
2366 * PCI (as opposed to PCIe) PME requires that the device have
2367 * its PME# line hooked up correctly. Not all hardware vendors
2368 * do this, so the PME never gets delivered and the device
2369 * remains asleep. The easiest way around this is to
2370 * periodically walk the list of suspended devices and check
2371 * whether any have their PME flag set. The assumption is that
2372 * we'll wake up often enough anyway that this won't be a huge
2373 * hit, and the power savings from the devices will still be a
2374 * win.
2375 *
2376 * Although PCIe uses in-band PME message instead of PME# line
2377 * to report PME, PME does not work for some PCIe devices in
2378 * reality. For example, there are devices that set their PME
2379 * status bits, but don't really bother to send a PME message;
2380 * there are PCI Express Root Ports that don't bother to
2381 * trigger interrupts when they receive PME messages from the
2382 * devices below. So PME poll is used for PCIe devices too.
2383 */
2384
2385 if (dev->pme_poll) {
2386 struct pci_pme_device *pme_dev;
2387 if (enable) {
2388 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2389 GFP_KERNEL);
2390 if (!pme_dev) {
2391 pci_warn(dev, "can't enable PME#\n");
2392 return;
2393 }
2394 pme_dev->dev = dev;
2395 mutex_lock(&pci_pme_list_mutex);
2396 list_add(&pme_dev->list, &pci_pme_list);
2397 if (list_is_singular(&pci_pme_list))
2398 queue_delayed_work(system_freezable_wq,
2399 &pci_pme_work,
2400 msecs_to_jiffies(PME_TIMEOUT));
2401 mutex_unlock(&pci_pme_list_mutex);
2402 } else {
2403 mutex_lock(&pci_pme_list_mutex);
2404 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2405 if (pme_dev->dev == dev) {
2406 list_del(&pme_dev->list);
2407 kfree(pme_dev);
2408 break;
2409 }
2410 }
2411 mutex_unlock(&pci_pme_list_mutex);
2412 }
2413 }
2414
2415 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2416 }
2417 EXPORT_SYMBOL(pci_pme_active);
2418
2419 /**
2420 * __pci_enable_wake - enable PCI device as wakeup event source
2421 * @dev: PCI device affected
2422 * @state: PCI state from which device will issue wakeup events
2423 * @enable: True to enable event generation; false to disable
2424 *
2425 * This enables the device as a wakeup event source, or disables it.
2426 * When such events involves platform-specific hooks, those hooks are
2427 * called automatically by this routine.
2428 *
2429 * Devices with legacy power management (no standard PCI PM capabilities)
2430 * always require such platform hooks.
2431 *
2432 * RETURN VALUE:
2433 * 0 is returned on success
2434 * -EINVAL is returned if device is not supposed to wake up the system
2435 * Error code depending on the platform is returned if both the platform and
2436 * the native mechanism fail to enable the generation of wake-up events
2437 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2438 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2439 {
2440 int ret = 0;
2441
2442 /*
2443 * Bridges that are not power-manageable directly only signal
2444 * wakeup on behalf of subordinate devices which is set up
2445 * elsewhere, so skip them. However, bridges that are
2446 * power-manageable may signal wakeup for themselves (for example,
2447 * on a hotplug event) and they need to be covered here.
2448 */
2449 if (!pci_power_manageable(dev))
2450 return 0;
2451
2452 /* Don't do the same thing twice in a row for one device. */
2453 if (!!enable == !!dev->wakeup_prepared)
2454 return 0;
2455
2456 /*
2457 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2458 * Anderson we should be doing PME# wake enable followed by ACPI wake
2459 * enable. To disable wake-up we call the platform first, for symmetry.
2460 */
2461
2462 if (enable) {
2463 int error;
2464
2465 /*
2466 * Enable PME signaling if the device can signal PME from
2467 * D3cold regardless of whether or not it can signal PME from
2468 * the current target state, because that will allow it to
2469 * signal PME when the hierarchy above it goes into D3cold and
2470 * the device itself ends up in D3cold as a result of that.
2471 */
2472 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2473 pci_pme_active(dev, true);
2474 else
2475 ret = 1;
2476 error = platform_pci_set_wakeup(dev, true);
2477 if (ret)
2478 ret = error;
2479 if (!ret)
2480 dev->wakeup_prepared = true;
2481 } else {
2482 platform_pci_set_wakeup(dev, false);
2483 pci_pme_active(dev, false);
2484 dev->wakeup_prepared = false;
2485 }
2486
2487 return ret;
2488 }
2489
2490 /**
2491 * pci_enable_wake - change wakeup settings for a PCI device
2492 * @pci_dev: Target device
2493 * @state: PCI state from which device will issue wakeup events
2494 * @enable: Whether or not to enable event generation
2495 *
2496 * If @enable is set, check device_may_wakeup() for the device before calling
2497 * __pci_enable_wake() for it.
2498 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2499 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2500 {
2501 if (enable && !device_may_wakeup(&pci_dev->dev))
2502 return -EINVAL;
2503
2504 return __pci_enable_wake(pci_dev, state, enable);
2505 }
2506 EXPORT_SYMBOL(pci_enable_wake);
2507
2508 /**
2509 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2510 * @dev: PCI device to prepare
2511 * @enable: True to enable wake-up event generation; false to disable
2512 *
2513 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2514 * and this function allows them to set that up cleanly - pci_enable_wake()
2515 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2516 * ordering constraints.
2517 *
2518 * This function only returns error code if the device is not allowed to wake
2519 * up the system from sleep or it is not capable of generating PME# from both
2520 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2521 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2522 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2523 {
2524 return pci_pme_capable(dev, PCI_D3cold) ?
2525 pci_enable_wake(dev, PCI_D3cold, enable) :
2526 pci_enable_wake(dev, PCI_D3hot, enable);
2527 }
2528 EXPORT_SYMBOL(pci_wake_from_d3);
2529
2530 /**
2531 * pci_target_state - find an appropriate low power state for a given PCI dev
2532 * @dev: PCI device
2533 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2534 *
2535 * Use underlying platform code to find a supported low power state for @dev.
2536 * If the platform can't manage @dev, return the deepest state from which it
2537 * can generate wake events, based on any available PME info.
2538 */
pci_target_state(struct pci_dev * dev,bool wakeup)2539 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2540 {
2541 pci_power_t target_state = PCI_D3hot;
2542
2543 if (platform_pci_power_manageable(dev)) {
2544 /*
2545 * Call the platform to find the target state for the device.
2546 */
2547 pci_power_t state = platform_pci_choose_state(dev);
2548
2549 switch (state) {
2550 case PCI_POWER_ERROR:
2551 case PCI_UNKNOWN:
2552 break;
2553 case PCI_D1:
2554 case PCI_D2:
2555 if (pci_no_d1d2(dev))
2556 break;
2557 fallthrough;
2558 default:
2559 target_state = state;
2560 }
2561
2562 return target_state;
2563 }
2564
2565 if (!dev->pm_cap)
2566 target_state = PCI_D0;
2567
2568 /*
2569 * If the device is in D3cold even though it's not power-manageable by
2570 * the platform, it may have been powered down by non-standard means.
2571 * Best to let it slumber.
2572 */
2573 if (dev->current_state == PCI_D3cold)
2574 target_state = PCI_D3cold;
2575
2576 if (wakeup && dev->pme_support) {
2577 pci_power_t state = target_state;
2578
2579 /*
2580 * Find the deepest state from which the device can generate
2581 * PME#.
2582 */
2583 while (state && !(dev->pme_support & (1 << state)))
2584 state--;
2585
2586 if (state)
2587 return state;
2588 else if (dev->pme_support & 1)
2589 return PCI_D0;
2590 }
2591
2592 return target_state;
2593 }
2594
2595 /**
2596 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2597 * into a sleep state
2598 * @dev: Device to handle.
2599 *
2600 * Choose the power state appropriate for the device depending on whether
2601 * it can wake up the system and/or is power manageable by the platform
2602 * (PCI_D3hot is the default) and put the device into that state.
2603 */
pci_prepare_to_sleep(struct pci_dev * dev)2604 int pci_prepare_to_sleep(struct pci_dev *dev)
2605 {
2606 bool wakeup = device_may_wakeup(&dev->dev);
2607 pci_power_t target_state = pci_target_state(dev, wakeup);
2608 int error;
2609
2610 if (target_state == PCI_POWER_ERROR)
2611 return -EIO;
2612
2613 pci_enable_wake(dev, target_state, wakeup);
2614
2615 error = pci_set_power_state(dev, target_state);
2616
2617 if (error)
2618 pci_enable_wake(dev, target_state, false);
2619
2620 return error;
2621 }
2622 EXPORT_SYMBOL(pci_prepare_to_sleep);
2623
2624 /**
2625 * pci_back_from_sleep - turn PCI device on during system-wide transition
2626 * into working state
2627 * @dev: Device to handle.
2628 *
2629 * Disable device's system wake-up capability and put it into D0.
2630 */
pci_back_from_sleep(struct pci_dev * dev)2631 int pci_back_from_sleep(struct pci_dev *dev)
2632 {
2633 pci_enable_wake(dev, PCI_D0, false);
2634 return pci_set_power_state(dev, PCI_D0);
2635 }
2636 EXPORT_SYMBOL(pci_back_from_sleep);
2637
2638 /**
2639 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2640 * @dev: PCI device being suspended.
2641 *
2642 * Prepare @dev to generate wake-up events at run time and put it into a low
2643 * power state.
2644 */
pci_finish_runtime_suspend(struct pci_dev * dev)2645 int pci_finish_runtime_suspend(struct pci_dev *dev)
2646 {
2647 pci_power_t target_state;
2648 int error;
2649
2650 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2651 if (target_state == PCI_POWER_ERROR)
2652 return -EIO;
2653
2654 dev->runtime_d3cold = target_state == PCI_D3cold;
2655
2656 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2657
2658 error = pci_set_power_state(dev, target_state);
2659
2660 if (error) {
2661 pci_enable_wake(dev, target_state, false);
2662 dev->runtime_d3cold = false;
2663 }
2664
2665 return error;
2666 }
2667
2668 /**
2669 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2670 * @dev: Device to check.
2671 *
2672 * Return true if the device itself is capable of generating wake-up events
2673 * (through the platform or using the native PCIe PME) or if the device supports
2674 * PME and one of its upstream bridges can generate wake-up events.
2675 */
pci_dev_run_wake(struct pci_dev * dev)2676 bool pci_dev_run_wake(struct pci_dev *dev)
2677 {
2678 struct pci_bus *bus = dev->bus;
2679
2680 if (!dev->pme_support)
2681 return false;
2682
2683 /* PME-capable in principle, but not from the target power state */
2684 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2685 return false;
2686
2687 if (device_can_wakeup(&dev->dev))
2688 return true;
2689
2690 while (bus->parent) {
2691 struct pci_dev *bridge = bus->self;
2692
2693 if (device_can_wakeup(&bridge->dev))
2694 return true;
2695
2696 bus = bus->parent;
2697 }
2698
2699 /* We have reached the root bus. */
2700 if (bus->bridge)
2701 return device_can_wakeup(bus->bridge);
2702
2703 return false;
2704 }
2705 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2706
2707 /**
2708 * pci_dev_need_resume - Check if it is necessary to resume the device.
2709 * @pci_dev: Device to check.
2710 *
2711 * Return 'true' if the device is not runtime-suspended or it has to be
2712 * reconfigured due to wakeup settings difference between system and runtime
2713 * suspend, or the current power state of it is not suitable for the upcoming
2714 * (system-wide) transition.
2715 */
pci_dev_need_resume(struct pci_dev * pci_dev)2716 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2717 {
2718 struct device *dev = &pci_dev->dev;
2719 pci_power_t target_state;
2720
2721 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2722 return true;
2723
2724 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2725
2726 /*
2727 * If the earlier platform check has not triggered, D3cold is just power
2728 * removal on top of D3hot, so no need to resume the device in that
2729 * case.
2730 */
2731 return target_state != pci_dev->current_state &&
2732 target_state != PCI_D3cold &&
2733 pci_dev->current_state != PCI_D3hot;
2734 }
2735
2736 /**
2737 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2738 * @pci_dev: Device to check.
2739 *
2740 * If the device is suspended and it is not configured for system wakeup,
2741 * disable PME for it to prevent it from waking up the system unnecessarily.
2742 *
2743 * Note that if the device's power state is D3cold and the platform check in
2744 * pci_dev_need_resume() has not triggered, the device's configuration need not
2745 * be changed.
2746 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2747 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2748 {
2749 struct device *dev = &pci_dev->dev;
2750
2751 spin_lock_irq(&dev->power.lock);
2752
2753 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2754 pci_dev->current_state < PCI_D3cold)
2755 __pci_pme_active(pci_dev, false);
2756
2757 spin_unlock_irq(&dev->power.lock);
2758 }
2759
2760 /**
2761 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2762 * @pci_dev: Device to handle.
2763 *
2764 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2765 * it might have been disabled during the prepare phase of system suspend if
2766 * the device was not configured for system wakeup.
2767 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2768 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2769 {
2770 struct device *dev = &pci_dev->dev;
2771
2772 if (!pci_dev_run_wake(pci_dev))
2773 return;
2774
2775 spin_lock_irq(&dev->power.lock);
2776
2777 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2778 __pci_pme_active(pci_dev, true);
2779
2780 spin_unlock_irq(&dev->power.lock);
2781 }
2782
pci_config_pm_runtime_get(struct pci_dev * pdev)2783 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2784 {
2785 struct device *dev = &pdev->dev;
2786 struct device *parent = dev->parent;
2787
2788 if (parent)
2789 pm_runtime_get_sync(parent);
2790 pm_runtime_get_noresume(dev);
2791 /*
2792 * pdev->current_state is set to PCI_D3cold during suspending,
2793 * so wait until suspending completes
2794 */
2795 pm_runtime_barrier(dev);
2796 /*
2797 * Only need to resume devices in D3cold, because config
2798 * registers are still accessible for devices suspended but
2799 * not in D3cold.
2800 */
2801 if (pdev->current_state == PCI_D3cold)
2802 pm_runtime_resume(dev);
2803 }
2804
pci_config_pm_runtime_put(struct pci_dev * pdev)2805 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2806 {
2807 struct device *dev = &pdev->dev;
2808 struct device *parent = dev->parent;
2809
2810 pm_runtime_put(dev);
2811 if (parent)
2812 pm_runtime_put_sync(parent);
2813 }
2814
2815 static const struct dmi_system_id bridge_d3_blacklist[] = {
2816 #ifdef CONFIG_X86
2817 {
2818 /*
2819 * Gigabyte X299 root port is not marked as hotplug capable
2820 * which allows Linux to power manage it. However, this
2821 * confuses the BIOS SMI handler so don't power manage root
2822 * ports on that system.
2823 */
2824 .ident = "X299 DESIGNARE EX-CF",
2825 .matches = {
2826 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2827 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2828 },
2829 },
2830 {
2831 /*
2832 * Downstream device is not accessible after putting a root port
2833 * into D3cold and back into D0 on Elo Continental Z2 board
2834 */
2835 .ident = "Elo Continental Z2",
2836 .matches = {
2837 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2838 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2839 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2840 },
2841 },
2842 #endif
2843 { }
2844 };
2845
2846 /**
2847 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2848 * @bridge: Bridge to check
2849 *
2850 * This function checks if it is possible to move the bridge to D3.
2851 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2852 */
pci_bridge_d3_possible(struct pci_dev * bridge)2853 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2854 {
2855 if (!pci_is_pcie(bridge))
2856 return false;
2857
2858 switch (pci_pcie_type(bridge)) {
2859 case PCI_EXP_TYPE_ROOT_PORT:
2860 case PCI_EXP_TYPE_UPSTREAM:
2861 case PCI_EXP_TYPE_DOWNSTREAM:
2862 if (pci_bridge_d3_disable)
2863 return false;
2864
2865 /*
2866 * Hotplug ports handled by firmware in System Management Mode
2867 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2868 */
2869 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2870 return false;
2871
2872 if (pci_bridge_d3_force)
2873 return true;
2874
2875 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2876 if (bridge->is_thunderbolt)
2877 return true;
2878
2879 /* Platform might know better if the bridge supports D3 */
2880 if (platform_pci_bridge_d3(bridge))
2881 return true;
2882
2883 /*
2884 * Hotplug ports handled natively by the OS were not validated
2885 * by vendors for runtime D3 at least until 2018 because there
2886 * was no OS support.
2887 */
2888 if (bridge->is_hotplug_bridge)
2889 return false;
2890
2891 if (dmi_check_system(bridge_d3_blacklist))
2892 return false;
2893
2894 /*
2895 * It should be safe to put PCIe ports from 2015 or newer
2896 * to D3.
2897 */
2898 if (dmi_get_bios_year() >= 2015)
2899 return true;
2900 break;
2901 }
2902
2903 return false;
2904 }
2905
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2906 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2907 {
2908 bool *d3cold_ok = data;
2909
2910 if (/* The device needs to be allowed to go D3cold ... */
2911 dev->no_d3cold || !dev->d3cold_allowed ||
2912
2913 /* ... and if it is wakeup capable to do so from D3cold. */
2914 (device_may_wakeup(&dev->dev) &&
2915 !pci_pme_capable(dev, PCI_D3cold)) ||
2916
2917 /* If it is a bridge it must be allowed to go to D3. */
2918 !pci_power_manageable(dev))
2919
2920 *d3cold_ok = false;
2921
2922 return !*d3cold_ok;
2923 }
2924
2925 /*
2926 * pci_bridge_d3_update - Update bridge D3 capabilities
2927 * @dev: PCI device which is changed
2928 *
2929 * Update upstream bridge PM capabilities accordingly depending on if the
2930 * device PM configuration was changed or the device is being removed. The
2931 * change is also propagated upstream.
2932 */
pci_bridge_d3_update(struct pci_dev * dev)2933 void pci_bridge_d3_update(struct pci_dev *dev)
2934 {
2935 bool remove = !device_is_registered(&dev->dev);
2936 struct pci_dev *bridge;
2937 bool d3cold_ok = true;
2938
2939 bridge = pci_upstream_bridge(dev);
2940 if (!bridge || !pci_bridge_d3_possible(bridge))
2941 return;
2942
2943 /*
2944 * If D3 is currently allowed for the bridge, removing one of its
2945 * children won't change that.
2946 */
2947 if (remove && bridge->bridge_d3)
2948 return;
2949
2950 /*
2951 * If D3 is currently allowed for the bridge and a child is added or
2952 * changed, disallowance of D3 can only be caused by that child, so
2953 * we only need to check that single device, not any of its siblings.
2954 *
2955 * If D3 is currently not allowed for the bridge, checking the device
2956 * first may allow us to skip checking its siblings.
2957 */
2958 if (!remove)
2959 pci_dev_check_d3cold(dev, &d3cold_ok);
2960
2961 /*
2962 * If D3 is currently not allowed for the bridge, this may be caused
2963 * either by the device being changed/removed or any of its siblings,
2964 * so we need to go through all children to find out if one of them
2965 * continues to block D3.
2966 */
2967 if (d3cold_ok && !bridge->bridge_d3)
2968 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2969 &d3cold_ok);
2970
2971 if (bridge->bridge_d3 != d3cold_ok) {
2972 bridge->bridge_d3 = d3cold_ok;
2973 /* Propagate change to upstream bridges */
2974 pci_bridge_d3_update(bridge);
2975 }
2976 }
2977
2978 /**
2979 * pci_d3cold_enable - Enable D3cold for device
2980 * @dev: PCI device to handle
2981 *
2982 * This function can be used in drivers to enable D3cold from the device
2983 * they handle. It also updates upstream PCI bridge PM capabilities
2984 * accordingly.
2985 */
pci_d3cold_enable(struct pci_dev * dev)2986 void pci_d3cold_enable(struct pci_dev *dev)
2987 {
2988 if (dev->no_d3cold) {
2989 dev->no_d3cold = false;
2990 pci_bridge_d3_update(dev);
2991 }
2992 }
2993 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2994
2995 /**
2996 * pci_d3cold_disable - Disable D3cold for device
2997 * @dev: PCI device to handle
2998 *
2999 * This function can be used in drivers to disable D3cold from the device
3000 * they handle. It also updates upstream PCI bridge PM capabilities
3001 * accordingly.
3002 */
pci_d3cold_disable(struct pci_dev * dev)3003 void pci_d3cold_disable(struct pci_dev *dev)
3004 {
3005 if (!dev->no_d3cold) {
3006 dev->no_d3cold = true;
3007 pci_bridge_d3_update(dev);
3008 }
3009 }
3010 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3011
3012 /**
3013 * pci_pm_init - Initialize PM functions of given PCI device
3014 * @dev: PCI device to handle.
3015 */
pci_pm_init(struct pci_dev * dev)3016 void pci_pm_init(struct pci_dev *dev)
3017 {
3018 int pm;
3019 u16 status;
3020 u16 pmc;
3021
3022 pm_runtime_forbid(&dev->dev);
3023 pm_runtime_set_active(&dev->dev);
3024 pm_runtime_enable(&dev->dev);
3025 device_enable_async_suspend(&dev->dev);
3026 dev->wakeup_prepared = false;
3027
3028 dev->pm_cap = 0;
3029 dev->pme_support = 0;
3030
3031 /* find PCI PM capability in list */
3032 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3033 if (!pm)
3034 return;
3035 /* Check device's ability to generate PME# */
3036 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3037
3038 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3039 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3040 pmc & PCI_PM_CAP_VER_MASK);
3041 return;
3042 }
3043
3044 dev->pm_cap = pm;
3045 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3046 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3047 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3048 dev->d3cold_allowed = true;
3049
3050 dev->d1_support = false;
3051 dev->d2_support = false;
3052 if (!pci_no_d1d2(dev)) {
3053 if (pmc & PCI_PM_CAP_D1)
3054 dev->d1_support = true;
3055 if (pmc & PCI_PM_CAP_D2)
3056 dev->d2_support = true;
3057
3058 if (dev->d1_support || dev->d2_support)
3059 pci_info(dev, "supports%s%s\n",
3060 dev->d1_support ? " D1" : "",
3061 dev->d2_support ? " D2" : "");
3062 }
3063
3064 pmc &= PCI_PM_CAP_PME_MASK;
3065 if (pmc) {
3066 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3067 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3068 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3069 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3070 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3071 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3072 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3073 dev->pme_poll = true;
3074 /*
3075 * Make device's PM flags reflect the wake-up capability, but
3076 * let the user space enable it to wake up the system as needed.
3077 */
3078 device_set_wakeup_capable(&dev->dev, true);
3079 /* Disable the PME# generation functionality */
3080 pci_pme_active(dev, false);
3081 }
3082
3083 pci_read_config_word(dev, PCI_STATUS, &status);
3084 if (status & PCI_STATUS_IMM_READY)
3085 dev->imm_ready = 1;
3086 }
3087
pci_ea_flags(struct pci_dev * dev,u8 prop)3088 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3089 {
3090 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3091
3092 switch (prop) {
3093 case PCI_EA_P_MEM:
3094 case PCI_EA_P_VF_MEM:
3095 flags |= IORESOURCE_MEM;
3096 break;
3097 case PCI_EA_P_MEM_PREFETCH:
3098 case PCI_EA_P_VF_MEM_PREFETCH:
3099 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3100 break;
3101 case PCI_EA_P_IO:
3102 flags |= IORESOURCE_IO;
3103 break;
3104 default:
3105 return 0;
3106 }
3107
3108 return flags;
3109 }
3110
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3111 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3112 u8 prop)
3113 {
3114 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3115 return &dev->resource[bei];
3116 #ifdef CONFIG_PCI_IOV
3117 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3118 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3119 return &dev->resource[PCI_IOV_RESOURCES +
3120 bei - PCI_EA_BEI_VF_BAR0];
3121 #endif
3122 else if (bei == PCI_EA_BEI_ROM)
3123 return &dev->resource[PCI_ROM_RESOURCE];
3124 else
3125 return NULL;
3126 }
3127
3128 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3129 static int pci_ea_read(struct pci_dev *dev, int offset)
3130 {
3131 struct resource *res;
3132 int ent_size, ent_offset = offset;
3133 resource_size_t start, end;
3134 unsigned long flags;
3135 u32 dw0, bei, base, max_offset;
3136 u8 prop;
3137 bool support_64 = (sizeof(resource_size_t) >= 8);
3138
3139 pci_read_config_dword(dev, ent_offset, &dw0);
3140 ent_offset += 4;
3141
3142 /* Entry size field indicates DWORDs after 1st */
3143 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3144
3145 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3146 goto out;
3147
3148 bei = (dw0 & PCI_EA_BEI) >> 4;
3149 prop = (dw0 & PCI_EA_PP) >> 8;
3150
3151 /*
3152 * If the Property is in the reserved range, try the Secondary
3153 * Property instead.
3154 */
3155 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3156 prop = (dw0 & PCI_EA_SP) >> 16;
3157 if (prop > PCI_EA_P_BRIDGE_IO)
3158 goto out;
3159
3160 res = pci_ea_get_resource(dev, bei, prop);
3161 if (!res) {
3162 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3163 goto out;
3164 }
3165
3166 flags = pci_ea_flags(dev, prop);
3167 if (!flags) {
3168 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3169 goto out;
3170 }
3171
3172 /* Read Base */
3173 pci_read_config_dword(dev, ent_offset, &base);
3174 start = (base & PCI_EA_FIELD_MASK);
3175 ent_offset += 4;
3176
3177 /* Read MaxOffset */
3178 pci_read_config_dword(dev, ent_offset, &max_offset);
3179 ent_offset += 4;
3180
3181 /* Read Base MSBs (if 64-bit entry) */
3182 if (base & PCI_EA_IS_64) {
3183 u32 base_upper;
3184
3185 pci_read_config_dword(dev, ent_offset, &base_upper);
3186 ent_offset += 4;
3187
3188 flags |= IORESOURCE_MEM_64;
3189
3190 /* entry starts above 32-bit boundary, can't use */
3191 if (!support_64 && base_upper)
3192 goto out;
3193
3194 if (support_64)
3195 start |= ((u64)base_upper << 32);
3196 }
3197
3198 end = start + (max_offset | 0x03);
3199
3200 /* Read MaxOffset MSBs (if 64-bit entry) */
3201 if (max_offset & PCI_EA_IS_64) {
3202 u32 max_offset_upper;
3203
3204 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3205 ent_offset += 4;
3206
3207 flags |= IORESOURCE_MEM_64;
3208
3209 /* entry too big, can't use */
3210 if (!support_64 && max_offset_upper)
3211 goto out;
3212
3213 if (support_64)
3214 end += ((u64)max_offset_upper << 32);
3215 }
3216
3217 if (end < start) {
3218 pci_err(dev, "EA Entry crosses address boundary\n");
3219 goto out;
3220 }
3221
3222 if (ent_size != ent_offset - offset) {
3223 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3224 ent_size, ent_offset - offset);
3225 goto out;
3226 }
3227
3228 res->name = pci_name(dev);
3229 res->start = start;
3230 res->end = end;
3231 res->flags = flags;
3232
3233 if (bei <= PCI_EA_BEI_BAR5)
3234 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3235 bei, res, prop);
3236 else if (bei == PCI_EA_BEI_ROM)
3237 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3238 res, prop);
3239 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3240 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3241 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3242 else
3243 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3244 bei, res, prop);
3245
3246 out:
3247 return offset + ent_size;
3248 }
3249
3250 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3251 void pci_ea_init(struct pci_dev *dev)
3252 {
3253 int ea;
3254 u8 num_ent;
3255 int offset;
3256 int i;
3257
3258 /* find PCI EA capability in list */
3259 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3260 if (!ea)
3261 return;
3262
3263 /* determine the number of entries */
3264 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3265 &num_ent);
3266 num_ent &= PCI_EA_NUM_ENT_MASK;
3267
3268 offset = ea + PCI_EA_FIRST_ENT;
3269
3270 /* Skip DWORD 2 for type 1 functions */
3271 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3272 offset += 4;
3273
3274 /* parse each EA entry */
3275 for (i = 0; i < num_ent; ++i)
3276 offset = pci_ea_read(dev, offset);
3277 }
3278
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3279 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3280 struct pci_cap_saved_state *new_cap)
3281 {
3282 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3283 }
3284
3285 /**
3286 * _pci_add_cap_save_buffer - allocate buffer for saving given
3287 * capability registers
3288 * @dev: the PCI device
3289 * @cap: the capability to allocate the buffer for
3290 * @extended: Standard or Extended capability ID
3291 * @size: requested size of the buffer
3292 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3293 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3294 bool extended, unsigned int size)
3295 {
3296 int pos;
3297 struct pci_cap_saved_state *save_state;
3298
3299 if (extended)
3300 pos = pci_find_ext_capability(dev, cap);
3301 else
3302 pos = pci_find_capability(dev, cap);
3303
3304 if (!pos)
3305 return 0;
3306
3307 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3308 if (!save_state)
3309 return -ENOMEM;
3310
3311 save_state->cap.cap_nr = cap;
3312 save_state->cap.cap_extended = extended;
3313 save_state->cap.size = size;
3314 pci_add_saved_cap(dev, save_state);
3315
3316 return 0;
3317 }
3318
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3319 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3320 {
3321 return _pci_add_cap_save_buffer(dev, cap, false, size);
3322 }
3323
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3324 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3325 {
3326 return _pci_add_cap_save_buffer(dev, cap, true, size);
3327 }
3328
3329 /**
3330 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3331 * @dev: the PCI device
3332 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3333 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3334 {
3335 int error;
3336
3337 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3338 PCI_EXP_SAVE_REGS * sizeof(u16));
3339 if (error)
3340 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3341
3342 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3343 if (error)
3344 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3345
3346 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3347 2 * sizeof(u16));
3348 if (error)
3349 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3350
3351 pci_allocate_vc_save_buffers(dev);
3352 }
3353
pci_free_cap_save_buffers(struct pci_dev * dev)3354 void pci_free_cap_save_buffers(struct pci_dev *dev)
3355 {
3356 struct pci_cap_saved_state *tmp;
3357 struct hlist_node *n;
3358
3359 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3360 kfree(tmp);
3361 }
3362
3363 /**
3364 * pci_configure_ari - enable or disable ARI forwarding
3365 * @dev: the PCI device
3366 *
3367 * If @dev and its upstream bridge both support ARI, enable ARI in the
3368 * bridge. Otherwise, disable ARI in the bridge.
3369 */
pci_configure_ari(struct pci_dev * dev)3370 void pci_configure_ari(struct pci_dev *dev)
3371 {
3372 u32 cap;
3373 struct pci_dev *bridge;
3374
3375 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3376 return;
3377
3378 bridge = dev->bus->self;
3379 if (!bridge)
3380 return;
3381
3382 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3383 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3384 return;
3385
3386 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3387 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3388 PCI_EXP_DEVCTL2_ARI);
3389 bridge->ari_enabled = 1;
3390 } else {
3391 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3392 PCI_EXP_DEVCTL2_ARI);
3393 bridge->ari_enabled = 0;
3394 }
3395 }
3396
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3397 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3398 {
3399 int pos;
3400 u16 cap, ctrl;
3401
3402 pos = pdev->acs_cap;
3403 if (!pos)
3404 return false;
3405
3406 /*
3407 * Except for egress control, capabilities are either required
3408 * or only required if controllable. Features missing from the
3409 * capability field can therefore be assumed as hard-wired enabled.
3410 */
3411 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3412 acs_flags &= (cap | PCI_ACS_EC);
3413
3414 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3415 return (ctrl & acs_flags) == acs_flags;
3416 }
3417
3418 /**
3419 * pci_acs_enabled - test ACS against required flags for a given device
3420 * @pdev: device to test
3421 * @acs_flags: required PCI ACS flags
3422 *
3423 * Return true if the device supports the provided flags. Automatically
3424 * filters out flags that are not implemented on multifunction devices.
3425 *
3426 * Note that this interface checks the effective ACS capabilities of the
3427 * device rather than the actual capabilities. For instance, most single
3428 * function endpoints are not required to support ACS because they have no
3429 * opportunity for peer-to-peer access. We therefore return 'true'
3430 * regardless of whether the device exposes an ACS capability. This makes
3431 * it much easier for callers of this function to ignore the actual type
3432 * or topology of the device when testing ACS support.
3433 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3434 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3435 {
3436 int ret;
3437
3438 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3439 if (ret >= 0)
3440 return ret > 0;
3441
3442 /*
3443 * Conventional PCI and PCI-X devices never support ACS, either
3444 * effectively or actually. The shared bus topology implies that
3445 * any device on the bus can receive or snoop DMA.
3446 */
3447 if (!pci_is_pcie(pdev))
3448 return false;
3449
3450 switch (pci_pcie_type(pdev)) {
3451 /*
3452 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3453 * but since their primary interface is PCI/X, we conservatively
3454 * handle them as we would a non-PCIe device.
3455 */
3456 case PCI_EXP_TYPE_PCIE_BRIDGE:
3457 /*
3458 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3459 * applicable... must never implement an ACS Extended Capability...".
3460 * This seems arbitrary, but we take a conservative interpretation
3461 * of this statement.
3462 */
3463 case PCI_EXP_TYPE_PCI_BRIDGE:
3464 case PCI_EXP_TYPE_RC_EC:
3465 return false;
3466 /*
3467 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3468 * implement ACS in order to indicate their peer-to-peer capabilities,
3469 * regardless of whether they are single- or multi-function devices.
3470 */
3471 case PCI_EXP_TYPE_DOWNSTREAM:
3472 case PCI_EXP_TYPE_ROOT_PORT:
3473 return pci_acs_flags_enabled(pdev, acs_flags);
3474 /*
3475 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3476 * implemented by the remaining PCIe types to indicate peer-to-peer
3477 * capabilities, but only when they are part of a multifunction
3478 * device. The footnote for section 6.12 indicates the specific
3479 * PCIe types included here.
3480 */
3481 case PCI_EXP_TYPE_ENDPOINT:
3482 case PCI_EXP_TYPE_UPSTREAM:
3483 case PCI_EXP_TYPE_LEG_END:
3484 case PCI_EXP_TYPE_RC_END:
3485 if (!pdev->multifunction)
3486 break;
3487
3488 return pci_acs_flags_enabled(pdev, acs_flags);
3489 }
3490
3491 /*
3492 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3493 * to single function devices with the exception of downstream ports.
3494 */
3495 return true;
3496 }
3497
3498 /**
3499 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3500 * @start: starting downstream device
3501 * @end: ending upstream device or NULL to search to the root bus
3502 * @acs_flags: required flags
3503 *
3504 * Walk up a device tree from start to end testing PCI ACS support. If
3505 * any step along the way does not support the required flags, return false.
3506 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3507 bool pci_acs_path_enabled(struct pci_dev *start,
3508 struct pci_dev *end, u16 acs_flags)
3509 {
3510 struct pci_dev *pdev, *parent = start;
3511
3512 do {
3513 pdev = parent;
3514
3515 if (!pci_acs_enabled(pdev, acs_flags))
3516 return false;
3517
3518 if (pci_is_root_bus(pdev->bus))
3519 return (end == NULL);
3520
3521 parent = pdev->bus->self;
3522 } while (pdev != end);
3523
3524 return true;
3525 }
3526
3527 /**
3528 * pci_acs_init - Initialize ACS if hardware supports it
3529 * @dev: the PCI device
3530 */
pci_acs_init(struct pci_dev * dev)3531 void pci_acs_init(struct pci_dev *dev)
3532 {
3533 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3534
3535 /*
3536 * Attempt to enable ACS regardless of capability because some Root
3537 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3538 * the standard ACS capability but still support ACS via those
3539 * quirks.
3540 */
3541 pci_enable_acs(dev);
3542 }
3543
3544 /**
3545 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3546 * @pdev: PCI device
3547 * @bar: BAR to find
3548 *
3549 * Helper to find the position of the ctrl register for a BAR.
3550 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3551 * Returns -ENOENT if no ctrl register for the BAR could be found.
3552 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3553 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3554 {
3555 unsigned int pos, nbars, i;
3556 u32 ctrl;
3557
3558 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3559 if (!pos)
3560 return -ENOTSUPP;
3561
3562 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3563 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3564 PCI_REBAR_CTRL_NBAR_SHIFT;
3565
3566 for (i = 0; i < nbars; i++, pos += 8) {
3567 int bar_idx;
3568
3569 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3570 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3571 if (bar_idx == bar)
3572 return pos;
3573 }
3574
3575 return -ENOENT;
3576 }
3577
3578 /**
3579 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3580 * @pdev: PCI device
3581 * @bar: BAR to query
3582 *
3583 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3584 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3585 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3586 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3587 {
3588 int pos;
3589 u32 cap;
3590
3591 pos = pci_rebar_find_pos(pdev, bar);
3592 if (pos < 0)
3593 return 0;
3594
3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3596 cap &= PCI_REBAR_CAP_SIZES;
3597
3598 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3599 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3600 bar == 0 && cap == 0x7000)
3601 cap = 0x3f000;
3602
3603 return cap >> 4;
3604 }
3605
3606 /**
3607 * pci_rebar_get_current_size - get the current size of a BAR
3608 * @pdev: PCI device
3609 * @bar: BAR to set size to
3610 *
3611 * Read the size of a BAR from the resizable BAR config.
3612 * Returns size if found or negative error code.
3613 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3614 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3615 {
3616 int pos;
3617 u32 ctrl;
3618
3619 pos = pci_rebar_find_pos(pdev, bar);
3620 if (pos < 0)
3621 return pos;
3622
3623 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3624 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3625 }
3626
3627 /**
3628 * pci_rebar_set_size - set a new size for a BAR
3629 * @pdev: PCI device
3630 * @bar: BAR to set size to
3631 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3632 *
3633 * Set the new size of a BAR as defined in the spec.
3634 * Returns zero if resizing was successful, error code otherwise.
3635 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3636 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3637 {
3638 int pos;
3639 u32 ctrl;
3640
3641 pos = pci_rebar_find_pos(pdev, bar);
3642 if (pos < 0)
3643 return pos;
3644
3645 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3646 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3647 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3648 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3649 return 0;
3650 }
3651
3652 /**
3653 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3654 * @dev: the PCI device
3655 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3656 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3657 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3658 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3659 *
3660 * Return 0 if all upstream bridges support AtomicOp routing, egress
3661 * blocking is disabled on all upstream ports, and the root port supports
3662 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3663 * AtomicOp completion), or negative otherwise.
3664 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3665 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3666 {
3667 struct pci_bus *bus = dev->bus;
3668 struct pci_dev *bridge;
3669 u32 cap, ctl2;
3670
3671 if (!pci_is_pcie(dev))
3672 return -EINVAL;
3673
3674 /*
3675 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3676 * AtomicOp requesters. For now, we only support endpoints as
3677 * requesters and root ports as completers. No endpoints as
3678 * completers, and no peer-to-peer.
3679 */
3680
3681 switch (pci_pcie_type(dev)) {
3682 case PCI_EXP_TYPE_ENDPOINT:
3683 case PCI_EXP_TYPE_LEG_END:
3684 case PCI_EXP_TYPE_RC_END:
3685 break;
3686 default:
3687 return -EINVAL;
3688 }
3689
3690 while (bus->parent) {
3691 bridge = bus->self;
3692
3693 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3694
3695 switch (pci_pcie_type(bridge)) {
3696 /* Ensure switch ports support AtomicOp routing */
3697 case PCI_EXP_TYPE_UPSTREAM:
3698 case PCI_EXP_TYPE_DOWNSTREAM:
3699 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3700 return -EINVAL;
3701 break;
3702
3703 /* Ensure root port supports all the sizes we care about */
3704 case PCI_EXP_TYPE_ROOT_PORT:
3705 if ((cap & cap_mask) != cap_mask)
3706 return -EINVAL;
3707 break;
3708 }
3709
3710 /* Ensure upstream ports don't block AtomicOps on egress */
3711 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3712 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3713 &ctl2);
3714 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3715 return -EINVAL;
3716 }
3717
3718 bus = bus->parent;
3719 }
3720
3721 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3722 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3723 return 0;
3724 }
3725 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3726
3727 /**
3728 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3729 * @dev: the PCI device
3730 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3731 *
3732 * Perform INTx swizzling for a device behind one level of bridge. This is
3733 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3734 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3735 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3736 * the PCI Express Base Specification, Revision 2.1)
3737 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3738 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3739 {
3740 int slot;
3741
3742 if (pci_ari_enabled(dev->bus))
3743 slot = 0;
3744 else
3745 slot = PCI_SLOT(dev->devfn);
3746
3747 return (((pin - 1) + slot) % 4) + 1;
3748 }
3749
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3750 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3751 {
3752 u8 pin;
3753
3754 pin = dev->pin;
3755 if (!pin)
3756 return -1;
3757
3758 while (!pci_is_root_bus(dev->bus)) {
3759 pin = pci_swizzle_interrupt_pin(dev, pin);
3760 dev = dev->bus->self;
3761 }
3762 *bridge = dev;
3763 return pin;
3764 }
3765
3766 /**
3767 * pci_common_swizzle - swizzle INTx all the way to root bridge
3768 * @dev: the PCI device
3769 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3770 *
3771 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3772 * bridges all the way up to a PCI root bus.
3773 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3774 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3775 {
3776 u8 pin = *pinp;
3777
3778 while (!pci_is_root_bus(dev->bus)) {
3779 pin = pci_swizzle_interrupt_pin(dev, pin);
3780 dev = dev->bus->self;
3781 }
3782 *pinp = pin;
3783 return PCI_SLOT(dev->devfn);
3784 }
3785 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3786
3787 /**
3788 * pci_release_region - Release a PCI bar
3789 * @pdev: PCI device whose resources were previously reserved by
3790 * pci_request_region()
3791 * @bar: BAR to release
3792 *
3793 * Releases the PCI I/O and memory resources previously reserved by a
3794 * successful call to pci_request_region(). Call this function only
3795 * after all use of the PCI regions has ceased.
3796 */
pci_release_region(struct pci_dev * pdev,int bar)3797 void pci_release_region(struct pci_dev *pdev, int bar)
3798 {
3799 struct pci_devres *dr;
3800
3801 if (pci_resource_len(pdev, bar) == 0)
3802 return;
3803 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3804 release_region(pci_resource_start(pdev, bar),
3805 pci_resource_len(pdev, bar));
3806 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3807 release_mem_region(pci_resource_start(pdev, bar),
3808 pci_resource_len(pdev, bar));
3809
3810 dr = find_pci_dr(pdev);
3811 if (dr)
3812 dr->region_mask &= ~(1 << bar);
3813 }
3814 EXPORT_SYMBOL(pci_release_region);
3815
3816 /**
3817 * __pci_request_region - Reserved PCI I/O and memory resource
3818 * @pdev: PCI device whose resources are to be reserved
3819 * @bar: BAR to be reserved
3820 * @res_name: Name to be associated with resource.
3821 * @exclusive: whether the region access is exclusive or not
3822 *
3823 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3824 * being reserved by owner @res_name. Do not access any
3825 * address inside the PCI regions unless this call returns
3826 * successfully.
3827 *
3828 * If @exclusive is set, then the region is marked so that userspace
3829 * is explicitly not allowed to map the resource via /dev/mem or
3830 * sysfs MMIO access.
3831 *
3832 * Returns 0 on success, or %EBUSY on error. A warning
3833 * message is also printed on failure.
3834 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3835 static int __pci_request_region(struct pci_dev *pdev, int bar,
3836 const char *res_name, int exclusive)
3837 {
3838 struct pci_devres *dr;
3839
3840 if (pci_resource_len(pdev, bar) == 0)
3841 return 0;
3842
3843 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3844 if (!request_region(pci_resource_start(pdev, bar),
3845 pci_resource_len(pdev, bar), res_name))
3846 goto err_out;
3847 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3848 if (!__request_mem_region(pci_resource_start(pdev, bar),
3849 pci_resource_len(pdev, bar), res_name,
3850 exclusive))
3851 goto err_out;
3852 }
3853
3854 dr = find_pci_dr(pdev);
3855 if (dr)
3856 dr->region_mask |= 1 << bar;
3857
3858 return 0;
3859
3860 err_out:
3861 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3862 &pdev->resource[bar]);
3863 return -EBUSY;
3864 }
3865
3866 /**
3867 * pci_request_region - Reserve PCI I/O and memory resource
3868 * @pdev: PCI device whose resources are to be reserved
3869 * @bar: BAR to be reserved
3870 * @res_name: Name to be associated with resource
3871 *
3872 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3873 * being reserved by owner @res_name. Do not access any
3874 * address inside the PCI regions unless this call returns
3875 * successfully.
3876 *
3877 * Returns 0 on success, or %EBUSY on error. A warning
3878 * message is also printed on failure.
3879 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3880 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3881 {
3882 return __pci_request_region(pdev, bar, res_name, 0);
3883 }
3884 EXPORT_SYMBOL(pci_request_region);
3885
3886 /**
3887 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3888 * @pdev: PCI device whose resources were previously reserved
3889 * @bars: Bitmask of BARs to be released
3890 *
3891 * Release selected PCI I/O and memory resources previously reserved.
3892 * Call this function only after all use of the PCI regions has ceased.
3893 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3894 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3895 {
3896 int i;
3897
3898 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3899 if (bars & (1 << i))
3900 pci_release_region(pdev, i);
3901 }
3902 EXPORT_SYMBOL(pci_release_selected_regions);
3903
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3904 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3905 const char *res_name, int excl)
3906 {
3907 int i;
3908
3909 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3910 if (bars & (1 << i))
3911 if (__pci_request_region(pdev, i, res_name, excl))
3912 goto err_out;
3913 return 0;
3914
3915 err_out:
3916 while (--i >= 0)
3917 if (bars & (1 << i))
3918 pci_release_region(pdev, i);
3919
3920 return -EBUSY;
3921 }
3922
3923
3924 /**
3925 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3926 * @pdev: PCI device whose resources are to be reserved
3927 * @bars: Bitmask of BARs to be requested
3928 * @res_name: Name to be associated with resource
3929 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3930 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3931 const char *res_name)
3932 {
3933 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3934 }
3935 EXPORT_SYMBOL(pci_request_selected_regions);
3936
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3937 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3938 const char *res_name)
3939 {
3940 return __pci_request_selected_regions(pdev, bars, res_name,
3941 IORESOURCE_EXCLUSIVE);
3942 }
3943 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3944
3945 /**
3946 * pci_release_regions - Release reserved PCI I/O and memory resources
3947 * @pdev: PCI device whose resources were previously reserved by
3948 * pci_request_regions()
3949 *
3950 * Releases all PCI I/O and memory resources previously reserved by a
3951 * successful call to pci_request_regions(). Call this function only
3952 * after all use of the PCI regions has ceased.
3953 */
3954
pci_release_regions(struct pci_dev * pdev)3955 void pci_release_regions(struct pci_dev *pdev)
3956 {
3957 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3958 }
3959 EXPORT_SYMBOL(pci_release_regions);
3960
3961 /**
3962 * pci_request_regions - Reserve PCI I/O and memory resources
3963 * @pdev: PCI device whose resources are to be reserved
3964 * @res_name: Name to be associated with resource.
3965 *
3966 * Mark all PCI regions associated with PCI device @pdev as
3967 * being reserved by owner @res_name. Do not access any
3968 * address inside the PCI regions unless this call returns
3969 * successfully.
3970 *
3971 * Returns 0 on success, or %EBUSY on error. A warning
3972 * message is also printed on failure.
3973 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3974 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3975 {
3976 return pci_request_selected_regions(pdev,
3977 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3978 }
3979 EXPORT_SYMBOL(pci_request_regions);
3980
3981 /**
3982 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3983 * @pdev: PCI device whose resources are to be reserved
3984 * @res_name: Name to be associated with resource.
3985 *
3986 * Mark all PCI regions associated with PCI device @pdev as being reserved
3987 * by owner @res_name. Do not access any address inside the PCI regions
3988 * unless this call returns successfully.
3989 *
3990 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3991 * and the sysfs MMIO access will not be allowed.
3992 *
3993 * Returns 0 on success, or %EBUSY on error. A warning message is also
3994 * printed on failure.
3995 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3996 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3997 {
3998 return pci_request_selected_regions_exclusive(pdev,
3999 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4000 }
4001 EXPORT_SYMBOL(pci_request_regions_exclusive);
4002
4003 /*
4004 * Record the PCI IO range (expressed as CPU physical address + size).
4005 * Return a negative value if an error has occurred, zero otherwise
4006 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4007 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4008 resource_size_t size)
4009 {
4010 int ret = 0;
4011 #ifdef PCI_IOBASE
4012 struct logic_pio_hwaddr *range;
4013
4014 if (!size || addr + size < addr)
4015 return -EINVAL;
4016
4017 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4018 if (!range)
4019 return -ENOMEM;
4020
4021 range->fwnode = fwnode;
4022 range->size = size;
4023 range->hw_start = addr;
4024 range->flags = LOGIC_PIO_CPU_MMIO;
4025
4026 ret = logic_pio_register_range(range);
4027 if (ret)
4028 kfree(range);
4029
4030 /* Ignore duplicates due to deferred probing */
4031 if (ret == -EEXIST)
4032 ret = 0;
4033 #endif
4034
4035 return ret;
4036 }
4037
pci_pio_to_address(unsigned long pio)4038 phys_addr_t pci_pio_to_address(unsigned long pio)
4039 {
4040 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4041
4042 #ifdef PCI_IOBASE
4043 if (pio >= MMIO_UPPER_LIMIT)
4044 return address;
4045
4046 address = logic_pio_to_hwaddr(pio);
4047 #endif
4048
4049 return address;
4050 }
4051 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4052
pci_address_to_pio(phys_addr_t address)4053 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4054 {
4055 #ifdef PCI_IOBASE
4056 return logic_pio_trans_cpuaddr(address);
4057 #else
4058 if (address > IO_SPACE_LIMIT)
4059 return (unsigned long)-1;
4060
4061 return (unsigned long) address;
4062 #endif
4063 }
4064
4065 /**
4066 * pci_remap_iospace - Remap the memory mapped I/O space
4067 * @res: Resource describing the I/O space
4068 * @phys_addr: physical address of range to be mapped
4069 *
4070 * Remap the memory mapped I/O space described by the @res and the CPU
4071 * physical address @phys_addr into virtual address space. Only
4072 * architectures that have memory mapped IO functions defined (and the
4073 * PCI_IOBASE value defined) should call this function.
4074 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4075 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4076 {
4077 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4078 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4079
4080 if (!(res->flags & IORESOURCE_IO))
4081 return -EINVAL;
4082
4083 if (res->end > IO_SPACE_LIMIT)
4084 return -EINVAL;
4085
4086 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4087 pgprot_device(PAGE_KERNEL));
4088 #else
4089 /*
4090 * This architecture does not have memory mapped I/O space,
4091 * so this function should never be called
4092 */
4093 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4094 return -ENODEV;
4095 #endif
4096 }
4097 EXPORT_SYMBOL(pci_remap_iospace);
4098
4099 /**
4100 * pci_unmap_iospace - Unmap the memory mapped I/O space
4101 * @res: resource to be unmapped
4102 *
4103 * Unmap the CPU virtual address @res from virtual address space. Only
4104 * architectures that have memory mapped IO functions defined (and the
4105 * PCI_IOBASE value defined) should call this function.
4106 */
pci_unmap_iospace(struct resource * res)4107 void pci_unmap_iospace(struct resource *res)
4108 {
4109 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4110 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4111
4112 unmap_kernel_range(vaddr, resource_size(res));
4113 #endif
4114 }
4115 EXPORT_SYMBOL(pci_unmap_iospace);
4116
devm_pci_unmap_iospace(struct device * dev,void * ptr)4117 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4118 {
4119 struct resource **res = ptr;
4120
4121 pci_unmap_iospace(*res);
4122 }
4123
4124 /**
4125 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4126 * @dev: Generic device to remap IO address for
4127 * @res: Resource describing the I/O space
4128 * @phys_addr: physical address of range to be mapped
4129 *
4130 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4131 * detach.
4132 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4133 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4134 phys_addr_t phys_addr)
4135 {
4136 const struct resource **ptr;
4137 int error;
4138
4139 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4140 if (!ptr)
4141 return -ENOMEM;
4142
4143 error = pci_remap_iospace(res, phys_addr);
4144 if (error) {
4145 devres_free(ptr);
4146 } else {
4147 *ptr = res;
4148 devres_add(dev, ptr);
4149 }
4150
4151 return error;
4152 }
4153 EXPORT_SYMBOL(devm_pci_remap_iospace);
4154
4155 /**
4156 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4157 * @dev: Generic device to remap IO address for
4158 * @offset: Resource address to map
4159 * @size: Size of map
4160 *
4161 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4162 * detach.
4163 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4164 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4165 resource_size_t offset,
4166 resource_size_t size)
4167 {
4168 void __iomem **ptr, *addr;
4169
4170 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4171 if (!ptr)
4172 return NULL;
4173
4174 addr = pci_remap_cfgspace(offset, size);
4175 if (addr) {
4176 *ptr = addr;
4177 devres_add(dev, ptr);
4178 } else
4179 devres_free(ptr);
4180
4181 return addr;
4182 }
4183 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4184
4185 /**
4186 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4187 * @dev: generic device to handle the resource for
4188 * @res: configuration space resource to be handled
4189 *
4190 * Checks that a resource is a valid memory region, requests the memory
4191 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4192 * proper PCI configuration space memory attributes are guaranteed.
4193 *
4194 * All operations are managed and will be undone on driver detach.
4195 *
4196 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4197 * on failure. Usage example::
4198 *
4199 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4200 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4201 * if (IS_ERR(base))
4202 * return PTR_ERR(base);
4203 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4204 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4205 struct resource *res)
4206 {
4207 resource_size_t size;
4208 const char *name;
4209 void __iomem *dest_ptr;
4210
4211 BUG_ON(!dev);
4212
4213 if (!res || resource_type(res) != IORESOURCE_MEM) {
4214 dev_err(dev, "invalid resource\n");
4215 return IOMEM_ERR_PTR(-EINVAL);
4216 }
4217
4218 size = resource_size(res);
4219 name = res->name ?: dev_name(dev);
4220
4221 if (!devm_request_mem_region(dev, res->start, size, name)) {
4222 dev_err(dev, "can't request region for resource %pR\n", res);
4223 return IOMEM_ERR_PTR(-EBUSY);
4224 }
4225
4226 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4227 if (!dest_ptr) {
4228 dev_err(dev, "ioremap failed for resource %pR\n", res);
4229 devm_release_mem_region(dev, res->start, size);
4230 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4231 }
4232
4233 return dest_ptr;
4234 }
4235 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4236
__pci_set_master(struct pci_dev * dev,bool enable)4237 static void __pci_set_master(struct pci_dev *dev, bool enable)
4238 {
4239 u16 old_cmd, cmd;
4240
4241 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4242 if (enable)
4243 cmd = old_cmd | PCI_COMMAND_MASTER;
4244 else
4245 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4246 if (cmd != old_cmd) {
4247 pci_dbg(dev, "%s bus mastering\n",
4248 enable ? "enabling" : "disabling");
4249 pci_write_config_word(dev, PCI_COMMAND, cmd);
4250 }
4251 dev->is_busmaster = enable;
4252 }
4253
4254 /**
4255 * pcibios_setup - process "pci=" kernel boot arguments
4256 * @str: string used to pass in "pci=" kernel boot arguments
4257 *
4258 * Process kernel boot arguments. This is the default implementation.
4259 * Architecture specific implementations can override this as necessary.
4260 */
pcibios_setup(char * str)4261 char * __weak __init pcibios_setup(char *str)
4262 {
4263 return str;
4264 }
4265
4266 /**
4267 * pcibios_set_master - enable PCI bus-mastering for device dev
4268 * @dev: the PCI device to enable
4269 *
4270 * Enables PCI bus-mastering for the device. This is the default
4271 * implementation. Architecture specific implementations can override
4272 * this if necessary.
4273 */
pcibios_set_master(struct pci_dev * dev)4274 void __weak pcibios_set_master(struct pci_dev *dev)
4275 {
4276 u8 lat;
4277
4278 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4279 if (pci_is_pcie(dev))
4280 return;
4281
4282 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4283 if (lat < 16)
4284 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4285 else if (lat > pcibios_max_latency)
4286 lat = pcibios_max_latency;
4287 else
4288 return;
4289
4290 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4291 }
4292
4293 /**
4294 * pci_set_master - enables bus-mastering for device dev
4295 * @dev: the PCI device to enable
4296 *
4297 * Enables bus-mastering on the device and calls pcibios_set_master()
4298 * to do the needed arch specific settings.
4299 */
pci_set_master(struct pci_dev * dev)4300 void pci_set_master(struct pci_dev *dev)
4301 {
4302 __pci_set_master(dev, true);
4303 pcibios_set_master(dev);
4304 }
4305 EXPORT_SYMBOL(pci_set_master);
4306
4307 /**
4308 * pci_clear_master - disables bus-mastering for device dev
4309 * @dev: the PCI device to disable
4310 */
pci_clear_master(struct pci_dev * dev)4311 void pci_clear_master(struct pci_dev *dev)
4312 {
4313 __pci_set_master(dev, false);
4314 }
4315 EXPORT_SYMBOL(pci_clear_master);
4316
4317 /**
4318 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4319 * @dev: the PCI device for which MWI is to be enabled
4320 *
4321 * Helper function for pci_set_mwi.
4322 * Originally copied from drivers/net/acenic.c.
4323 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4324 *
4325 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4326 */
pci_set_cacheline_size(struct pci_dev * dev)4327 int pci_set_cacheline_size(struct pci_dev *dev)
4328 {
4329 u8 cacheline_size;
4330
4331 if (!pci_cache_line_size)
4332 return -EINVAL;
4333
4334 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4335 equal to or multiple of the right value. */
4336 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4337 if (cacheline_size >= pci_cache_line_size &&
4338 (cacheline_size % pci_cache_line_size) == 0)
4339 return 0;
4340
4341 /* Write the correct value. */
4342 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4343 /* Read it back. */
4344 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4345 if (cacheline_size == pci_cache_line_size)
4346 return 0;
4347
4348 pci_info(dev, "cache line size of %d is not supported\n",
4349 pci_cache_line_size << 2);
4350
4351 return -EINVAL;
4352 }
4353 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4354
4355 /**
4356 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4357 * @dev: the PCI device for which MWI is enabled
4358 *
4359 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4360 *
4361 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4362 */
pci_set_mwi(struct pci_dev * dev)4363 int pci_set_mwi(struct pci_dev *dev)
4364 {
4365 #ifdef PCI_DISABLE_MWI
4366 return 0;
4367 #else
4368 int rc;
4369 u16 cmd;
4370
4371 rc = pci_set_cacheline_size(dev);
4372 if (rc)
4373 return rc;
4374
4375 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4376 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4377 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4378 cmd |= PCI_COMMAND_INVALIDATE;
4379 pci_write_config_word(dev, PCI_COMMAND, cmd);
4380 }
4381 return 0;
4382 #endif
4383 }
4384 EXPORT_SYMBOL(pci_set_mwi);
4385
4386 /**
4387 * pcim_set_mwi - a device-managed pci_set_mwi()
4388 * @dev: the PCI device for which MWI is enabled
4389 *
4390 * Managed pci_set_mwi().
4391 *
4392 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4393 */
pcim_set_mwi(struct pci_dev * dev)4394 int pcim_set_mwi(struct pci_dev *dev)
4395 {
4396 struct pci_devres *dr;
4397
4398 dr = find_pci_dr(dev);
4399 if (!dr)
4400 return -ENOMEM;
4401
4402 dr->mwi = 1;
4403 return pci_set_mwi(dev);
4404 }
4405 EXPORT_SYMBOL(pcim_set_mwi);
4406
4407 /**
4408 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4409 * @dev: the PCI device for which MWI is enabled
4410 *
4411 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4412 * Callers are not required to check the return value.
4413 *
4414 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4415 */
pci_try_set_mwi(struct pci_dev * dev)4416 int pci_try_set_mwi(struct pci_dev *dev)
4417 {
4418 #ifdef PCI_DISABLE_MWI
4419 return 0;
4420 #else
4421 return pci_set_mwi(dev);
4422 #endif
4423 }
4424 EXPORT_SYMBOL(pci_try_set_mwi);
4425
4426 /**
4427 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4428 * @dev: the PCI device to disable
4429 *
4430 * Disables PCI Memory-Write-Invalidate transaction on the device
4431 */
pci_clear_mwi(struct pci_dev * dev)4432 void pci_clear_mwi(struct pci_dev *dev)
4433 {
4434 #ifndef PCI_DISABLE_MWI
4435 u16 cmd;
4436
4437 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4438 if (cmd & PCI_COMMAND_INVALIDATE) {
4439 cmd &= ~PCI_COMMAND_INVALIDATE;
4440 pci_write_config_word(dev, PCI_COMMAND, cmd);
4441 }
4442 #endif
4443 }
4444 EXPORT_SYMBOL(pci_clear_mwi);
4445
4446 /**
4447 * pci_intx - enables/disables PCI INTx for device dev
4448 * @pdev: the PCI device to operate on
4449 * @enable: boolean: whether to enable or disable PCI INTx
4450 *
4451 * Enables/disables PCI INTx for device @pdev
4452 */
pci_intx(struct pci_dev * pdev,int enable)4453 void pci_intx(struct pci_dev *pdev, int enable)
4454 {
4455 u16 pci_command, new;
4456
4457 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4458
4459 if (enable)
4460 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4461 else
4462 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4463
4464 if (new != pci_command) {
4465 struct pci_devres *dr;
4466
4467 pci_write_config_word(pdev, PCI_COMMAND, new);
4468
4469 dr = find_pci_dr(pdev);
4470 if (dr && !dr->restore_intx) {
4471 dr->restore_intx = 1;
4472 dr->orig_intx = !enable;
4473 }
4474 }
4475 }
4476 EXPORT_SYMBOL_GPL(pci_intx);
4477
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4478 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4479 {
4480 struct pci_bus *bus = dev->bus;
4481 bool mask_updated = true;
4482 u32 cmd_status_dword;
4483 u16 origcmd, newcmd;
4484 unsigned long flags;
4485 bool irq_pending;
4486
4487 /*
4488 * We do a single dword read to retrieve both command and status.
4489 * Document assumptions that make this possible.
4490 */
4491 BUILD_BUG_ON(PCI_COMMAND % 4);
4492 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4493
4494 raw_spin_lock_irqsave(&pci_lock, flags);
4495
4496 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4497
4498 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4499
4500 /*
4501 * Check interrupt status register to see whether our device
4502 * triggered the interrupt (when masking) or the next IRQ is
4503 * already pending (when unmasking).
4504 */
4505 if (mask != irq_pending) {
4506 mask_updated = false;
4507 goto done;
4508 }
4509
4510 origcmd = cmd_status_dword;
4511 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4512 if (mask)
4513 newcmd |= PCI_COMMAND_INTX_DISABLE;
4514 if (newcmd != origcmd)
4515 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4516
4517 done:
4518 raw_spin_unlock_irqrestore(&pci_lock, flags);
4519
4520 return mask_updated;
4521 }
4522
4523 /**
4524 * pci_check_and_mask_intx - mask INTx on pending interrupt
4525 * @dev: the PCI device to operate on
4526 *
4527 * Check if the device dev has its INTx line asserted, mask it and return
4528 * true in that case. False is returned if no interrupt was pending.
4529 */
pci_check_and_mask_intx(struct pci_dev * dev)4530 bool pci_check_and_mask_intx(struct pci_dev *dev)
4531 {
4532 return pci_check_and_set_intx_mask(dev, true);
4533 }
4534 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4535
4536 /**
4537 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4538 * @dev: the PCI device to operate on
4539 *
4540 * Check if the device dev has its INTx line asserted, unmask it if not and
4541 * return true. False is returned and the mask remains active if there was
4542 * still an interrupt pending.
4543 */
pci_check_and_unmask_intx(struct pci_dev * dev)4544 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4545 {
4546 return pci_check_and_set_intx_mask(dev, false);
4547 }
4548 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4549
4550 /**
4551 * pci_wait_for_pending_transaction - wait for pending transaction
4552 * @dev: the PCI device to operate on
4553 *
4554 * Return 0 if transaction is pending 1 otherwise.
4555 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4556 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4557 {
4558 if (!pci_is_pcie(dev))
4559 return 1;
4560
4561 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4562 PCI_EXP_DEVSTA_TRPND);
4563 }
4564 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4565
4566 /**
4567 * pcie_has_flr - check if a device supports function level resets
4568 * @dev: device to check
4569 *
4570 * Returns true if the device advertises support for PCIe function level
4571 * resets.
4572 */
pcie_has_flr(struct pci_dev * dev)4573 bool pcie_has_flr(struct pci_dev *dev)
4574 {
4575 u32 cap;
4576
4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578 return false;
4579
4580 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4581 return cap & PCI_EXP_DEVCAP_FLR;
4582 }
4583 EXPORT_SYMBOL_GPL(pcie_has_flr);
4584
4585 /**
4586 * pcie_flr - initiate a PCIe function level reset
4587 * @dev: device to reset
4588 *
4589 * Initiate a function level reset on @dev. The caller should ensure the
4590 * device supports FLR before calling this function, e.g. by using the
4591 * pcie_has_flr() helper.
4592 */
pcie_flr(struct pci_dev * dev)4593 int pcie_flr(struct pci_dev *dev)
4594 {
4595 if (!pci_wait_for_pending_transaction(dev))
4596 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4597
4598 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4599
4600 if (dev->imm_ready)
4601 return 0;
4602
4603 /*
4604 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4605 * 100ms, but may silently discard requests while the FLR is in
4606 * progress. Wait 100ms before trying to access the device.
4607 */
4608 msleep(100);
4609
4610 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4611 }
4612 EXPORT_SYMBOL_GPL(pcie_flr);
4613
pci_af_flr(struct pci_dev * dev,int probe)4614 static int pci_af_flr(struct pci_dev *dev, int probe)
4615 {
4616 int pos;
4617 u8 cap;
4618
4619 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4620 if (!pos)
4621 return -ENOTTY;
4622
4623 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4624 return -ENOTTY;
4625
4626 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4627 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4628 return -ENOTTY;
4629
4630 if (probe)
4631 return 0;
4632
4633 /*
4634 * Wait for Transaction Pending bit to clear. A word-aligned test
4635 * is used, so we use the control offset rather than status and shift
4636 * the test bit to match.
4637 */
4638 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4639 PCI_AF_STATUS_TP << 8))
4640 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4641
4642 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4643
4644 if (dev->imm_ready)
4645 return 0;
4646
4647 /*
4648 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4649 * updated 27 July 2006; a device must complete an FLR within
4650 * 100ms, but may silently discard requests while the FLR is in
4651 * progress. Wait 100ms before trying to access the device.
4652 */
4653 msleep(100);
4654
4655 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4656 }
4657
4658 /**
4659 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4660 * @dev: Device to reset.
4661 * @probe: If set, only check if the device can be reset this way.
4662 *
4663 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4664 * unset, it will be reinitialized internally when going from PCI_D3hot to
4665 * PCI_D0. If that's the case and the device is not in a low-power state
4666 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4667 *
4668 * NOTE: This causes the caller to sleep for twice the device power transition
4669 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4670 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4671 * Moreover, only devices in D0 can be reset by this function.
4672 */
pci_pm_reset(struct pci_dev * dev,int probe)4673 static int pci_pm_reset(struct pci_dev *dev, int probe)
4674 {
4675 u16 csr;
4676
4677 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4678 return -ENOTTY;
4679
4680 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4681 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4682 return -ENOTTY;
4683
4684 if (probe)
4685 return 0;
4686
4687 if (dev->current_state != PCI_D0)
4688 return -EINVAL;
4689
4690 csr &= ~PCI_PM_CTRL_STATE_MASK;
4691 csr |= PCI_D3hot;
4692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4693 pci_dev_d3_sleep(dev);
4694
4695 csr &= ~PCI_PM_CTRL_STATE_MASK;
4696 csr |= PCI_D0;
4697 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4698 pci_dev_d3_sleep(dev);
4699
4700 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4701 }
4702
4703 /**
4704 * pcie_wait_for_link_delay - Wait until link is active or inactive
4705 * @pdev: Bridge device
4706 * @active: waiting for active or inactive?
4707 * @delay: Delay to wait after link has become active (in ms)
4708 *
4709 * Use this to wait till link becomes active or inactive.
4710 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4711 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4712 int delay)
4713 {
4714 int timeout = 1000;
4715 bool ret;
4716 u16 lnk_status;
4717
4718 /*
4719 * Some controllers might not implement link active reporting. In this
4720 * case, we wait for 1000 ms + any delay requested by the caller.
4721 */
4722 if (!pdev->link_active_reporting) {
4723 msleep(timeout + delay);
4724 return true;
4725 }
4726
4727 /*
4728 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4729 * after which we should expect an link active if the reset was
4730 * successful. If so, software must wait a minimum 100ms before sending
4731 * configuration requests to devices downstream this port.
4732 *
4733 * If the link fails to activate, either the device was physically
4734 * removed or the link is permanently failed.
4735 */
4736 if (active)
4737 msleep(20);
4738 for (;;) {
4739 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4740 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4741 if (ret == active)
4742 break;
4743 if (timeout <= 0)
4744 break;
4745 msleep(10);
4746 timeout -= 10;
4747 }
4748 if (active && ret)
4749 msleep(delay);
4750
4751 return ret == active;
4752 }
4753
4754 /**
4755 * pcie_wait_for_link - Wait until link is active or inactive
4756 * @pdev: Bridge device
4757 * @active: waiting for active or inactive?
4758 *
4759 * Use this to wait till link becomes active or inactive.
4760 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4761 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4762 {
4763 return pcie_wait_for_link_delay(pdev, active, 100);
4764 }
4765
4766 /*
4767 * Find maximum D3cold delay required by all the devices on the bus. The
4768 * spec says 100 ms, but firmware can lower it and we allow drivers to
4769 * increase it as well.
4770 *
4771 * Called with @pci_bus_sem locked for reading.
4772 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4773 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4774 {
4775 const struct pci_dev *pdev;
4776 int min_delay = 100;
4777 int max_delay = 0;
4778
4779 list_for_each_entry(pdev, &bus->devices, bus_list) {
4780 if (pdev->d3cold_delay < min_delay)
4781 min_delay = pdev->d3cold_delay;
4782 if (pdev->d3cold_delay > max_delay)
4783 max_delay = pdev->d3cold_delay;
4784 }
4785
4786 return max(min_delay, max_delay);
4787 }
4788
4789 /**
4790 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4791 * @dev: PCI bridge
4792 * @reset_type: reset type in human-readable form
4793 * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4794 *
4795 * Handle necessary delays before access to the devices on the secondary
4796 * side of the bridge are permitted after D3cold to D0 transition
4797 * or Conventional Reset.
4798 *
4799 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4800 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4801 * 4.3.2.
4802 *
4803 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4804 * failed to become accessible.
4805 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4806 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4807 int timeout)
4808 {
4809 struct pci_dev *child;
4810 int delay;
4811
4812 if (pci_dev_is_disconnected(dev))
4813 return 0;
4814
4815 if (!pci_is_bridge(dev))
4816 return 0;
4817
4818 down_read(&pci_bus_sem);
4819
4820 /*
4821 * We only deal with devices that are present currently on the bus.
4822 * For any hot-added devices the access delay is handled in pciehp
4823 * board_added(). In case of ACPI hotplug the firmware is expected
4824 * to configure the devices before OS is notified.
4825 */
4826 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4827 up_read(&pci_bus_sem);
4828 return 0;
4829 }
4830
4831 /* Take d3cold_delay requirements into account */
4832 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4833 if (!delay) {
4834 up_read(&pci_bus_sem);
4835 return 0;
4836 }
4837
4838 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4839 bus_list);
4840 up_read(&pci_bus_sem);
4841
4842 /*
4843 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4844 * accessing the device after reset (that is 1000 ms + 100 ms).
4845 */
4846 if (!pci_is_pcie(dev)) {
4847 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4848 msleep(1000 + delay);
4849 return 0;
4850 }
4851
4852 /*
4853 * For PCIe downstream and root ports that do not support speeds
4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4855 * speeds (gen3) we need to wait first for the data link layer to
4856 * become active.
4857 *
4858 * However, 100 ms is the minimum and the PCIe spec says the
4859 * software must allow at least 1s before it can determine that the
4860 * device that did not respond is a broken device. There is
4861 * evidence that 100 ms is not always enough, for example certain
4862 * Titan Ridge xHCI controller does not always respond to
4863 * configuration requests if we only wait for 100 ms (see
4864 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4865 *
4866 * Therefore we wait for 100 ms and check for the device presence
4867 * until the timeout expires.
4868 */
4869 if (!pcie_downstream_port(dev))
4870 return 0;
4871
4872 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4873 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4874 msleep(delay);
4875 } else {
4876 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4877 delay);
4878 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4879 /* Did not train, no need to wait any further */
4880 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4881 return -ENOTTY;
4882 }
4883 }
4884
4885 return pci_dev_wait(child, reset_type, timeout - delay);
4886 }
4887
pci_reset_secondary_bus(struct pci_dev * dev)4888 void pci_reset_secondary_bus(struct pci_dev *dev)
4889 {
4890 u16 ctrl;
4891
4892 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4893 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4894 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4895
4896 /*
4897 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4898 * this to 2ms to ensure that we meet the minimum requirement.
4899 */
4900 msleep(2);
4901
4902 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4903 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4904 }
4905
pcibios_reset_secondary_bus(struct pci_dev * dev)4906 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4907 {
4908 pci_reset_secondary_bus(dev);
4909 }
4910
4911 /**
4912 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4913 * @dev: Bridge device
4914 *
4915 * Use the bridge control register to assert reset on the secondary bus.
4916 * Devices on the secondary bus are left in power-on state.
4917 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4918 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4919 {
4920 pcibios_reset_secondary_bus(dev);
4921
4922 return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
4923 PCIE_RESET_READY_POLL_MS);
4924 }
4925 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4926
pci_parent_bus_reset(struct pci_dev * dev,int probe)4927 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4928 {
4929 struct pci_dev *pdev;
4930
4931 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4932 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4933 return -ENOTTY;
4934
4935 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4936 if (pdev != dev)
4937 return -ENOTTY;
4938
4939 if (probe)
4940 return 0;
4941
4942 return pci_bridge_secondary_bus_reset(dev->bus->self);
4943 }
4944
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4945 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4946 {
4947 int rc = -ENOTTY;
4948
4949 if (!hotplug || !try_module_get(hotplug->owner))
4950 return rc;
4951
4952 if (hotplug->ops->reset_slot)
4953 rc = hotplug->ops->reset_slot(hotplug, probe);
4954
4955 module_put(hotplug->owner);
4956
4957 return rc;
4958 }
4959
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4960 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4961 {
4962 if (dev->multifunction || dev->subordinate || !dev->slot ||
4963 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4964 return -ENOTTY;
4965
4966 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4967 }
4968
pci_dev_lock(struct pci_dev * dev)4969 static void pci_dev_lock(struct pci_dev *dev)
4970 {
4971 /* block PM suspend, driver probe, etc. */
4972 device_lock(&dev->dev);
4973 pci_cfg_access_lock(dev);
4974 }
4975
4976 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4977 static int pci_dev_trylock(struct pci_dev *dev)
4978 {
4979 if (device_trylock(&dev->dev)) {
4980 if (pci_cfg_access_trylock(dev))
4981 return 1;
4982 device_unlock(&dev->dev);
4983 }
4984
4985 return 0;
4986 }
4987
pci_dev_unlock(struct pci_dev * dev)4988 static void pci_dev_unlock(struct pci_dev *dev)
4989 {
4990 pci_cfg_access_unlock(dev);
4991 device_unlock(&dev->dev);
4992 }
4993
pci_dev_save_and_disable(struct pci_dev * dev)4994 static void pci_dev_save_and_disable(struct pci_dev *dev)
4995 {
4996 const struct pci_error_handlers *err_handler =
4997 dev->driver ? dev->driver->err_handler : NULL;
4998
4999 /*
5000 * dev->driver->err_handler->reset_prepare() is protected against
5001 * races with ->remove() by the device lock, which must be held by
5002 * the caller.
5003 */
5004 if (err_handler && err_handler->reset_prepare)
5005 err_handler->reset_prepare(dev);
5006
5007 /*
5008 * Wake-up device prior to save. PM registers default to D0 after
5009 * reset and a simple register restore doesn't reliably return
5010 * to a non-D0 state anyway.
5011 */
5012 pci_set_power_state(dev, PCI_D0);
5013
5014 pci_save_state(dev);
5015 /*
5016 * Disable the device by clearing the Command register, except for
5017 * INTx-disable which is set. This not only disables MMIO and I/O port
5018 * BARs, but also prevents the device from being Bus Master, preventing
5019 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5020 * compliant devices, INTx-disable prevents legacy interrupts.
5021 */
5022 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5023 }
5024
pci_dev_restore(struct pci_dev * dev)5025 static void pci_dev_restore(struct pci_dev *dev)
5026 {
5027 const struct pci_error_handlers *err_handler =
5028 dev->driver ? dev->driver->err_handler : NULL;
5029
5030 pci_restore_state(dev);
5031
5032 /*
5033 * dev->driver->err_handler->reset_done() is protected against
5034 * races with ->remove() by the device lock, which must be held by
5035 * the caller.
5036 */
5037 if (err_handler && err_handler->reset_done)
5038 err_handler->reset_done(dev);
5039 }
5040
5041 /**
5042 * __pci_reset_function_locked - reset a PCI device function while holding
5043 * the @dev mutex lock.
5044 * @dev: PCI device to reset
5045 *
5046 * Some devices allow an individual function to be reset without affecting
5047 * other functions in the same device. The PCI device must be responsive
5048 * to PCI config space in order to use this function.
5049 *
5050 * The device function is presumed to be unused and the caller is holding
5051 * the device mutex lock when this function is called.
5052 *
5053 * Resetting the device will make the contents of PCI configuration space
5054 * random, so any caller of this must be prepared to reinitialise the
5055 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5056 * etc.
5057 *
5058 * Returns 0 if the device function was successfully reset or negative if the
5059 * device doesn't support resetting a single function.
5060 */
__pci_reset_function_locked(struct pci_dev * dev)5061 int __pci_reset_function_locked(struct pci_dev *dev)
5062 {
5063 int rc;
5064
5065 might_sleep();
5066
5067 /*
5068 * A reset method returns -ENOTTY if it doesn't support this device
5069 * and we should try the next method.
5070 *
5071 * If it returns 0 (success), we're finished. If it returns any
5072 * other error, we're also finished: this indicates that further
5073 * reset mechanisms might be broken on the device.
5074 */
5075 rc = pci_dev_specific_reset(dev, 0);
5076 if (rc != -ENOTTY)
5077 return rc;
5078 if (pcie_has_flr(dev)) {
5079 rc = pcie_flr(dev);
5080 if (rc != -ENOTTY)
5081 return rc;
5082 }
5083 rc = pci_af_flr(dev, 0);
5084 if (rc != -ENOTTY)
5085 return rc;
5086 rc = pci_pm_reset(dev, 0);
5087 if (rc != -ENOTTY)
5088 return rc;
5089 rc = pci_dev_reset_slot_function(dev, 0);
5090 if (rc != -ENOTTY)
5091 return rc;
5092 return pci_parent_bus_reset(dev, 0);
5093 }
5094 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5095
5096 /**
5097 * pci_probe_reset_function - check whether the device can be safely reset
5098 * @dev: PCI device to reset
5099 *
5100 * Some devices allow an individual function to be reset without affecting
5101 * other functions in the same device. The PCI device must be responsive
5102 * to PCI config space in order to use this function.
5103 *
5104 * Returns 0 if the device function can be reset or negative if the
5105 * device doesn't support resetting a single function.
5106 */
pci_probe_reset_function(struct pci_dev * dev)5107 int pci_probe_reset_function(struct pci_dev *dev)
5108 {
5109 int rc;
5110
5111 might_sleep();
5112
5113 rc = pci_dev_specific_reset(dev, 1);
5114 if (rc != -ENOTTY)
5115 return rc;
5116 if (pcie_has_flr(dev))
5117 return 0;
5118 rc = pci_af_flr(dev, 1);
5119 if (rc != -ENOTTY)
5120 return rc;
5121 rc = pci_pm_reset(dev, 1);
5122 if (rc != -ENOTTY)
5123 return rc;
5124 rc = pci_dev_reset_slot_function(dev, 1);
5125 if (rc != -ENOTTY)
5126 return rc;
5127
5128 return pci_parent_bus_reset(dev, 1);
5129 }
5130
5131 /**
5132 * pci_reset_function - quiesce and reset a PCI device function
5133 * @dev: PCI device to reset
5134 *
5135 * Some devices allow an individual function to be reset without affecting
5136 * other functions in the same device. The PCI device must be responsive
5137 * to PCI config space in order to use this function.
5138 *
5139 * This function does not just reset the PCI portion of a device, but
5140 * clears all the state associated with the device. This function differs
5141 * from __pci_reset_function_locked() in that it saves and restores device state
5142 * over the reset and takes the PCI device lock.
5143 *
5144 * Returns 0 if the device function was successfully reset or negative if the
5145 * device doesn't support resetting a single function.
5146 */
pci_reset_function(struct pci_dev * dev)5147 int pci_reset_function(struct pci_dev *dev)
5148 {
5149 int rc;
5150
5151 if (!dev->reset_fn)
5152 return -ENOTTY;
5153
5154 pci_dev_lock(dev);
5155 pci_dev_save_and_disable(dev);
5156
5157 rc = __pci_reset_function_locked(dev);
5158
5159 pci_dev_restore(dev);
5160 pci_dev_unlock(dev);
5161
5162 return rc;
5163 }
5164 EXPORT_SYMBOL_GPL(pci_reset_function);
5165
5166 /**
5167 * pci_reset_function_locked - quiesce and reset a PCI device function
5168 * @dev: PCI device to reset
5169 *
5170 * Some devices allow an individual function to be reset without affecting
5171 * other functions in the same device. The PCI device must be responsive
5172 * to PCI config space in order to use this function.
5173 *
5174 * This function does not just reset the PCI portion of a device, but
5175 * clears all the state associated with the device. This function differs
5176 * from __pci_reset_function_locked() in that it saves and restores device state
5177 * over the reset. It also differs from pci_reset_function() in that it
5178 * requires the PCI device lock to be held.
5179 *
5180 * Returns 0 if the device function was successfully reset or negative if the
5181 * device doesn't support resetting a single function.
5182 */
pci_reset_function_locked(struct pci_dev * dev)5183 int pci_reset_function_locked(struct pci_dev *dev)
5184 {
5185 int rc;
5186
5187 if (!dev->reset_fn)
5188 return -ENOTTY;
5189
5190 pci_dev_save_and_disable(dev);
5191
5192 rc = __pci_reset_function_locked(dev);
5193
5194 pci_dev_restore(dev);
5195
5196 return rc;
5197 }
5198 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5199
5200 /**
5201 * pci_try_reset_function - quiesce and reset a PCI device function
5202 * @dev: PCI device to reset
5203 *
5204 * Same as above, except return -EAGAIN if unable to lock device.
5205 */
pci_try_reset_function(struct pci_dev * dev)5206 int pci_try_reset_function(struct pci_dev *dev)
5207 {
5208 int rc;
5209
5210 if (!dev->reset_fn)
5211 return -ENOTTY;
5212
5213 if (!pci_dev_trylock(dev))
5214 return -EAGAIN;
5215
5216 pci_dev_save_and_disable(dev);
5217 rc = __pci_reset_function_locked(dev);
5218 pci_dev_restore(dev);
5219 pci_dev_unlock(dev);
5220
5221 return rc;
5222 }
5223 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5224
5225 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5226 static bool pci_bus_resetable(struct pci_bus *bus)
5227 {
5228 struct pci_dev *dev;
5229
5230
5231 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5232 return false;
5233
5234 list_for_each_entry(dev, &bus->devices, bus_list) {
5235 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5236 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5237 return false;
5238 }
5239
5240 return true;
5241 }
5242
5243 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5244 static void pci_bus_lock(struct pci_bus *bus)
5245 {
5246 struct pci_dev *dev;
5247
5248 list_for_each_entry(dev, &bus->devices, bus_list) {
5249 pci_dev_lock(dev);
5250 if (dev->subordinate)
5251 pci_bus_lock(dev->subordinate);
5252 }
5253 }
5254
5255 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5256 static void pci_bus_unlock(struct pci_bus *bus)
5257 {
5258 struct pci_dev *dev;
5259
5260 list_for_each_entry(dev, &bus->devices, bus_list) {
5261 if (dev->subordinate)
5262 pci_bus_unlock(dev->subordinate);
5263 pci_dev_unlock(dev);
5264 }
5265 }
5266
5267 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5268 static int pci_bus_trylock(struct pci_bus *bus)
5269 {
5270 struct pci_dev *dev;
5271
5272 list_for_each_entry(dev, &bus->devices, bus_list) {
5273 if (!pci_dev_trylock(dev))
5274 goto unlock;
5275 if (dev->subordinate) {
5276 if (!pci_bus_trylock(dev->subordinate)) {
5277 pci_dev_unlock(dev);
5278 goto unlock;
5279 }
5280 }
5281 }
5282 return 1;
5283
5284 unlock:
5285 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5286 if (dev->subordinate)
5287 pci_bus_unlock(dev->subordinate);
5288 pci_dev_unlock(dev);
5289 }
5290 return 0;
5291 }
5292
5293 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5294 static bool pci_slot_resetable(struct pci_slot *slot)
5295 {
5296 struct pci_dev *dev;
5297
5298 if (slot->bus->self &&
5299 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5300 return false;
5301
5302 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5303 if (!dev->slot || dev->slot != slot)
5304 continue;
5305 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5306 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5307 return false;
5308 }
5309
5310 return true;
5311 }
5312
5313 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5314 static void pci_slot_lock(struct pci_slot *slot)
5315 {
5316 struct pci_dev *dev;
5317
5318 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5319 if (!dev->slot || dev->slot != slot)
5320 continue;
5321 pci_dev_lock(dev);
5322 if (dev->subordinate)
5323 pci_bus_lock(dev->subordinate);
5324 }
5325 }
5326
5327 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5328 static void pci_slot_unlock(struct pci_slot *slot)
5329 {
5330 struct pci_dev *dev;
5331
5332 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5333 if (!dev->slot || dev->slot != slot)
5334 continue;
5335 if (dev->subordinate)
5336 pci_bus_unlock(dev->subordinate);
5337 pci_dev_unlock(dev);
5338 }
5339 }
5340
5341 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5342 static int pci_slot_trylock(struct pci_slot *slot)
5343 {
5344 struct pci_dev *dev;
5345
5346 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5347 if (!dev->slot || dev->slot != slot)
5348 continue;
5349 if (!pci_dev_trylock(dev))
5350 goto unlock;
5351 if (dev->subordinate) {
5352 if (!pci_bus_trylock(dev->subordinate)) {
5353 pci_dev_unlock(dev);
5354 goto unlock;
5355 }
5356 }
5357 }
5358 return 1;
5359
5360 unlock:
5361 list_for_each_entry_continue_reverse(dev,
5362 &slot->bus->devices, bus_list) {
5363 if (!dev->slot || dev->slot != slot)
5364 continue;
5365 if (dev->subordinate)
5366 pci_bus_unlock(dev->subordinate);
5367 pci_dev_unlock(dev);
5368 }
5369 return 0;
5370 }
5371
5372 /*
5373 * Save and disable devices from the top of the tree down while holding
5374 * the @dev mutex lock for the entire tree.
5375 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5376 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5377 {
5378 struct pci_dev *dev;
5379
5380 list_for_each_entry(dev, &bus->devices, bus_list) {
5381 pci_dev_save_and_disable(dev);
5382 if (dev->subordinate)
5383 pci_bus_save_and_disable_locked(dev->subordinate);
5384 }
5385 }
5386
5387 /*
5388 * Restore devices from top of the tree down while holding @dev mutex lock
5389 * for the entire tree. Parent bridges need to be restored before we can
5390 * get to subordinate devices.
5391 */
pci_bus_restore_locked(struct pci_bus * bus)5392 static void pci_bus_restore_locked(struct pci_bus *bus)
5393 {
5394 struct pci_dev *dev;
5395
5396 list_for_each_entry(dev, &bus->devices, bus_list) {
5397 pci_dev_restore(dev);
5398 if (dev->subordinate)
5399 pci_bus_restore_locked(dev->subordinate);
5400 }
5401 }
5402
5403 /*
5404 * Save and disable devices from the top of the tree down while holding
5405 * the @dev mutex lock for the entire tree.
5406 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5407 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5408 {
5409 struct pci_dev *dev;
5410
5411 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5412 if (!dev->slot || dev->slot != slot)
5413 continue;
5414 pci_dev_save_and_disable(dev);
5415 if (dev->subordinate)
5416 pci_bus_save_and_disable_locked(dev->subordinate);
5417 }
5418 }
5419
5420 /*
5421 * Restore devices from top of the tree down while holding @dev mutex lock
5422 * for the entire tree. Parent bridges need to be restored before we can
5423 * get to subordinate devices.
5424 */
pci_slot_restore_locked(struct pci_slot * slot)5425 static void pci_slot_restore_locked(struct pci_slot *slot)
5426 {
5427 struct pci_dev *dev;
5428
5429 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5430 if (!dev->slot || dev->slot != slot)
5431 continue;
5432 pci_dev_restore(dev);
5433 if (dev->subordinate)
5434 pci_bus_restore_locked(dev->subordinate);
5435 }
5436 }
5437
pci_slot_reset(struct pci_slot * slot,int probe)5438 static int pci_slot_reset(struct pci_slot *slot, int probe)
5439 {
5440 int rc;
5441
5442 if (!slot || !pci_slot_resetable(slot))
5443 return -ENOTTY;
5444
5445 if (!probe)
5446 pci_slot_lock(slot);
5447
5448 might_sleep();
5449
5450 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5451
5452 if (!probe)
5453 pci_slot_unlock(slot);
5454
5455 return rc;
5456 }
5457
5458 /**
5459 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5460 * @slot: PCI slot to probe
5461 *
5462 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5463 */
pci_probe_reset_slot(struct pci_slot * slot)5464 int pci_probe_reset_slot(struct pci_slot *slot)
5465 {
5466 return pci_slot_reset(slot, 1);
5467 }
5468 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5469
5470 /**
5471 * __pci_reset_slot - Try to reset a PCI slot
5472 * @slot: PCI slot to reset
5473 *
5474 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5475 * independent of other slots. For instance, some slots may support slot power
5476 * control. In the case of a 1:1 bus to slot architecture, this function may
5477 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5478 * Generally a slot reset should be attempted before a bus reset. All of the
5479 * function of the slot and any subordinate buses behind the slot are reset
5480 * through this function. PCI config space of all devices in the slot and
5481 * behind the slot is saved before and restored after reset.
5482 *
5483 * Same as above except return -EAGAIN if the slot cannot be locked
5484 */
__pci_reset_slot(struct pci_slot * slot)5485 static int __pci_reset_slot(struct pci_slot *slot)
5486 {
5487 int rc;
5488
5489 rc = pci_slot_reset(slot, 1);
5490 if (rc)
5491 return rc;
5492
5493 if (pci_slot_trylock(slot)) {
5494 pci_slot_save_and_disable_locked(slot);
5495 might_sleep();
5496 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5497 pci_slot_restore_locked(slot);
5498 pci_slot_unlock(slot);
5499 } else
5500 rc = -EAGAIN;
5501
5502 return rc;
5503 }
5504
pci_bus_reset(struct pci_bus * bus,int probe)5505 static int pci_bus_reset(struct pci_bus *bus, int probe)
5506 {
5507 int ret;
5508
5509 if (!bus->self || !pci_bus_resetable(bus))
5510 return -ENOTTY;
5511
5512 if (probe)
5513 return 0;
5514
5515 pci_bus_lock(bus);
5516
5517 might_sleep();
5518
5519 ret = pci_bridge_secondary_bus_reset(bus->self);
5520
5521 pci_bus_unlock(bus);
5522
5523 return ret;
5524 }
5525
5526 /**
5527 * pci_bus_error_reset - reset the bridge's subordinate bus
5528 * @bridge: The parent device that connects to the bus to reset
5529 *
5530 * This function will first try to reset the slots on this bus if the method is
5531 * available. If slot reset fails or is not available, this will fall back to a
5532 * secondary bus reset.
5533 */
pci_bus_error_reset(struct pci_dev * bridge)5534 int pci_bus_error_reset(struct pci_dev *bridge)
5535 {
5536 struct pci_bus *bus = bridge->subordinate;
5537 struct pci_slot *slot;
5538
5539 if (!bus)
5540 return -ENOTTY;
5541
5542 mutex_lock(&pci_slot_mutex);
5543 if (list_empty(&bus->slots))
5544 goto bus_reset;
5545
5546 list_for_each_entry(slot, &bus->slots, list)
5547 if (pci_probe_reset_slot(slot))
5548 goto bus_reset;
5549
5550 list_for_each_entry(slot, &bus->slots, list)
5551 if (pci_slot_reset(slot, 0))
5552 goto bus_reset;
5553
5554 mutex_unlock(&pci_slot_mutex);
5555 return 0;
5556 bus_reset:
5557 mutex_unlock(&pci_slot_mutex);
5558 return pci_bus_reset(bridge->subordinate, 0);
5559 }
5560
5561 /**
5562 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5563 * @bus: PCI bus to probe
5564 *
5565 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5566 */
pci_probe_reset_bus(struct pci_bus * bus)5567 int pci_probe_reset_bus(struct pci_bus *bus)
5568 {
5569 return pci_bus_reset(bus, 1);
5570 }
5571 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5572
5573 /**
5574 * __pci_reset_bus - Try to reset a PCI bus
5575 * @bus: top level PCI bus to reset
5576 *
5577 * Same as above except return -EAGAIN if the bus cannot be locked
5578 */
__pci_reset_bus(struct pci_bus * bus)5579 static int __pci_reset_bus(struct pci_bus *bus)
5580 {
5581 int rc;
5582
5583 rc = pci_bus_reset(bus, 1);
5584 if (rc)
5585 return rc;
5586
5587 if (pci_bus_trylock(bus)) {
5588 pci_bus_save_and_disable_locked(bus);
5589 might_sleep();
5590 rc = pci_bridge_secondary_bus_reset(bus->self);
5591 pci_bus_restore_locked(bus);
5592 pci_bus_unlock(bus);
5593 } else
5594 rc = -EAGAIN;
5595
5596 return rc;
5597 }
5598
5599 /**
5600 * pci_reset_bus - Try to reset a PCI bus
5601 * @pdev: top level PCI device to reset via slot/bus
5602 *
5603 * Same as above except return -EAGAIN if the bus cannot be locked
5604 */
pci_reset_bus(struct pci_dev * pdev)5605 int pci_reset_bus(struct pci_dev *pdev)
5606 {
5607 return (!pci_probe_reset_slot(pdev->slot)) ?
5608 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5609 }
5610 EXPORT_SYMBOL_GPL(pci_reset_bus);
5611
5612 /**
5613 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5614 * @dev: PCI device to query
5615 *
5616 * Returns mmrbc: maximum designed memory read count in bytes or
5617 * appropriate error value.
5618 */
pcix_get_max_mmrbc(struct pci_dev * dev)5619 int pcix_get_max_mmrbc(struct pci_dev *dev)
5620 {
5621 int cap;
5622 u32 stat;
5623
5624 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5625 if (!cap)
5626 return -EINVAL;
5627
5628 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5629 return -EINVAL;
5630
5631 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5632 }
5633 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5634
5635 /**
5636 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5637 * @dev: PCI device to query
5638 *
5639 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5640 * value.
5641 */
pcix_get_mmrbc(struct pci_dev * dev)5642 int pcix_get_mmrbc(struct pci_dev *dev)
5643 {
5644 int cap;
5645 u16 cmd;
5646
5647 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5648 if (!cap)
5649 return -EINVAL;
5650
5651 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5652 return -EINVAL;
5653
5654 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5655 }
5656 EXPORT_SYMBOL(pcix_get_mmrbc);
5657
5658 /**
5659 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5660 * @dev: PCI device to query
5661 * @mmrbc: maximum memory read count in bytes
5662 * valid values are 512, 1024, 2048, 4096
5663 *
5664 * If possible sets maximum memory read byte count, some bridges have errata
5665 * that prevent this.
5666 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5667 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5668 {
5669 int cap;
5670 u32 stat, v, o;
5671 u16 cmd;
5672
5673 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5674 return -EINVAL;
5675
5676 v = ffs(mmrbc) - 10;
5677
5678 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5679 if (!cap)
5680 return -EINVAL;
5681
5682 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5683 return -EINVAL;
5684
5685 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5686 return -E2BIG;
5687
5688 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5689 return -EINVAL;
5690
5691 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5692 if (o != v) {
5693 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5694 return -EIO;
5695
5696 cmd &= ~PCI_X_CMD_MAX_READ;
5697 cmd |= v << 2;
5698 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5699 return -EIO;
5700 }
5701 return 0;
5702 }
5703 EXPORT_SYMBOL(pcix_set_mmrbc);
5704
5705 /**
5706 * pcie_get_readrq - get PCI Express read request size
5707 * @dev: PCI device to query
5708 *
5709 * Returns maximum memory read request in bytes or appropriate error value.
5710 */
pcie_get_readrq(struct pci_dev * dev)5711 int pcie_get_readrq(struct pci_dev *dev)
5712 {
5713 u16 ctl;
5714
5715 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5716
5717 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5718 }
5719 EXPORT_SYMBOL(pcie_get_readrq);
5720
5721 /**
5722 * pcie_set_readrq - set PCI Express maximum memory read request
5723 * @dev: PCI device to query
5724 * @rq: maximum memory read count in bytes
5725 * valid values are 128, 256, 512, 1024, 2048, 4096
5726 *
5727 * If possible sets maximum memory read request in bytes
5728 */
pcie_set_readrq(struct pci_dev * dev,int rq)5729 int pcie_set_readrq(struct pci_dev *dev, int rq)
5730 {
5731 u16 v;
5732 int ret;
5733 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5734
5735 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5736 return -EINVAL;
5737
5738 /*
5739 * If using the "performance" PCIe config, we clamp the read rq
5740 * size to the max packet size to keep the host bridge from
5741 * generating requests larger than we can cope with.
5742 */
5743 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5744 int mps = pcie_get_mps(dev);
5745
5746 if (mps < rq)
5747 rq = mps;
5748 }
5749
5750 v = (ffs(rq) - 8) << 12;
5751
5752 if (bridge->no_inc_mrrs) {
5753 int max_mrrs = pcie_get_readrq(dev);
5754
5755 if (rq > max_mrrs) {
5756 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5757 return -EINVAL;
5758 }
5759 }
5760
5761 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5762 PCI_EXP_DEVCTL_READRQ, v);
5763
5764 return pcibios_err_to_errno(ret);
5765 }
5766 EXPORT_SYMBOL(pcie_set_readrq);
5767
5768 /**
5769 * pcie_get_mps - get PCI Express maximum payload size
5770 * @dev: PCI device to query
5771 *
5772 * Returns maximum payload size in bytes
5773 */
pcie_get_mps(struct pci_dev * dev)5774 int pcie_get_mps(struct pci_dev *dev)
5775 {
5776 u16 ctl;
5777
5778 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5779
5780 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5781 }
5782 EXPORT_SYMBOL(pcie_get_mps);
5783
5784 /**
5785 * pcie_set_mps - set PCI Express maximum payload size
5786 * @dev: PCI device to query
5787 * @mps: maximum payload size in bytes
5788 * valid values are 128, 256, 512, 1024, 2048, 4096
5789 *
5790 * If possible sets maximum payload size
5791 */
pcie_set_mps(struct pci_dev * dev,int mps)5792 int pcie_set_mps(struct pci_dev *dev, int mps)
5793 {
5794 u16 v;
5795 int ret;
5796
5797 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5798 return -EINVAL;
5799
5800 v = ffs(mps) - 8;
5801 if (v > dev->pcie_mpss)
5802 return -EINVAL;
5803 v <<= 5;
5804
5805 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5806 PCI_EXP_DEVCTL_PAYLOAD, v);
5807
5808 return pcibios_err_to_errno(ret);
5809 }
5810 EXPORT_SYMBOL(pcie_set_mps);
5811
5812 /**
5813 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5814 * device and its bandwidth limitation
5815 * @dev: PCI device to query
5816 * @limiting_dev: storage for device causing the bandwidth limitation
5817 * @speed: storage for speed of limiting device
5818 * @width: storage for width of limiting device
5819 *
5820 * Walk up the PCI device chain and find the point where the minimum
5821 * bandwidth is available. Return the bandwidth available there and (if
5822 * limiting_dev, speed, and width pointers are supplied) information about
5823 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5824 * raw bandwidth.
5825 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5826 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5827 enum pci_bus_speed *speed,
5828 enum pcie_link_width *width)
5829 {
5830 u16 lnksta;
5831 enum pci_bus_speed next_speed;
5832 enum pcie_link_width next_width;
5833 u32 bw, next_bw;
5834
5835 if (speed)
5836 *speed = PCI_SPEED_UNKNOWN;
5837 if (width)
5838 *width = PCIE_LNK_WIDTH_UNKNOWN;
5839
5840 bw = 0;
5841
5842 while (dev) {
5843 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5844
5845 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5846 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5847 PCI_EXP_LNKSTA_NLW_SHIFT;
5848
5849 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5850
5851 /* Check if current device limits the total bandwidth */
5852 if (!bw || next_bw <= bw) {
5853 bw = next_bw;
5854
5855 if (limiting_dev)
5856 *limiting_dev = dev;
5857 if (speed)
5858 *speed = next_speed;
5859 if (width)
5860 *width = next_width;
5861 }
5862
5863 dev = pci_upstream_bridge(dev);
5864 }
5865
5866 return bw;
5867 }
5868 EXPORT_SYMBOL(pcie_bandwidth_available);
5869
5870 /**
5871 * pcie_get_speed_cap - query for the PCI device's link speed capability
5872 * @dev: PCI device to query
5873 *
5874 * Query the PCI device speed capability. Return the maximum link speed
5875 * supported by the device.
5876 */
pcie_get_speed_cap(struct pci_dev * dev)5877 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5878 {
5879 u32 lnkcap2, lnkcap;
5880
5881 /*
5882 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5883 * implementation note there recommends using the Supported Link
5884 * Speeds Vector in Link Capabilities 2 when supported.
5885 *
5886 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5887 * should use the Supported Link Speeds field in Link Capabilities,
5888 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5889 */
5890 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5891
5892 /* PCIe r3.0-compliant */
5893 if (lnkcap2)
5894 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5895
5896 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5897 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5898 return PCIE_SPEED_5_0GT;
5899 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5900 return PCIE_SPEED_2_5GT;
5901
5902 return PCI_SPEED_UNKNOWN;
5903 }
5904 EXPORT_SYMBOL(pcie_get_speed_cap);
5905
5906 /**
5907 * pcie_get_width_cap - query for the PCI device's link width capability
5908 * @dev: PCI device to query
5909 *
5910 * Query the PCI device width capability. Return the maximum link width
5911 * supported by the device.
5912 */
pcie_get_width_cap(struct pci_dev * dev)5913 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5914 {
5915 u32 lnkcap;
5916
5917 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5918 if (lnkcap)
5919 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5920
5921 return PCIE_LNK_WIDTH_UNKNOWN;
5922 }
5923 EXPORT_SYMBOL(pcie_get_width_cap);
5924
5925 /**
5926 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5927 * @dev: PCI device
5928 * @speed: storage for link speed
5929 * @width: storage for link width
5930 *
5931 * Calculate a PCI device's link bandwidth by querying for its link speed
5932 * and width, multiplying them, and applying encoding overhead. The result
5933 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5934 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5935 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5936 enum pcie_link_width *width)
5937 {
5938 *speed = pcie_get_speed_cap(dev);
5939 *width = pcie_get_width_cap(dev);
5940
5941 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5942 return 0;
5943
5944 return *width * PCIE_SPEED2MBS_ENC(*speed);
5945 }
5946
5947 /**
5948 * __pcie_print_link_status - Report the PCI device's link speed and width
5949 * @dev: PCI device to query
5950 * @verbose: Print info even when enough bandwidth is available
5951 *
5952 * If the available bandwidth at the device is less than the device is
5953 * capable of, report the device's maximum possible bandwidth and the
5954 * upstream link that limits its performance. If @verbose, always print
5955 * the available bandwidth, even if the device isn't constrained.
5956 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5957 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5958 {
5959 enum pcie_link_width width, width_cap;
5960 enum pci_bus_speed speed, speed_cap;
5961 struct pci_dev *limiting_dev = NULL;
5962 u32 bw_avail, bw_cap;
5963
5964 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5965 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5966
5967 if (bw_avail >= bw_cap && verbose)
5968 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5969 bw_cap / 1000, bw_cap % 1000,
5970 pci_speed_string(speed_cap), width_cap);
5971 else if (bw_avail < bw_cap)
5972 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5973 bw_avail / 1000, bw_avail % 1000,
5974 pci_speed_string(speed), width,
5975 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5976 bw_cap / 1000, bw_cap % 1000,
5977 pci_speed_string(speed_cap), width_cap);
5978 }
5979
5980 /**
5981 * pcie_print_link_status - Report the PCI device's link speed and width
5982 * @dev: PCI device to query
5983 *
5984 * Report the available bandwidth at the device.
5985 */
pcie_print_link_status(struct pci_dev * dev)5986 void pcie_print_link_status(struct pci_dev *dev)
5987 {
5988 __pcie_print_link_status(dev, true);
5989 }
5990 EXPORT_SYMBOL(pcie_print_link_status);
5991
5992 /**
5993 * pci_select_bars - Make BAR mask from the type of resource
5994 * @dev: the PCI device for which BAR mask is made
5995 * @flags: resource type mask to be selected
5996 *
5997 * This helper routine makes bar mask from the type of resource.
5998 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5999 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6000 {
6001 int i, bars = 0;
6002 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6003 if (pci_resource_flags(dev, i) & flags)
6004 bars |= (1 << i);
6005 return bars;
6006 }
6007 EXPORT_SYMBOL(pci_select_bars);
6008
6009 /* Some architectures require additional programming to enable VGA */
6010 static arch_set_vga_state_t arch_set_vga_state;
6011
pci_register_set_vga_state(arch_set_vga_state_t func)6012 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6013 {
6014 arch_set_vga_state = func; /* NULL disables */
6015 }
6016
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6017 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6018 unsigned int command_bits, u32 flags)
6019 {
6020 if (arch_set_vga_state)
6021 return arch_set_vga_state(dev, decode, command_bits,
6022 flags);
6023 return 0;
6024 }
6025
6026 /**
6027 * pci_set_vga_state - set VGA decode state on device and parents if requested
6028 * @dev: the PCI device
6029 * @decode: true = enable decoding, false = disable decoding
6030 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6031 * @flags: traverse ancestors and change bridges
6032 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6033 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6034 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6035 unsigned int command_bits, u32 flags)
6036 {
6037 struct pci_bus *bus;
6038 struct pci_dev *bridge;
6039 u16 cmd;
6040 int rc;
6041
6042 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6043
6044 /* ARCH specific VGA enables */
6045 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6046 if (rc)
6047 return rc;
6048
6049 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6050 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6051 if (decode)
6052 cmd |= command_bits;
6053 else
6054 cmd &= ~command_bits;
6055 pci_write_config_word(dev, PCI_COMMAND, cmd);
6056 }
6057
6058 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6059 return 0;
6060
6061 bus = dev->bus;
6062 while (bus) {
6063 bridge = bus->self;
6064 if (bridge) {
6065 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6066 &cmd);
6067 if (decode)
6068 cmd |= PCI_BRIDGE_CTL_VGA;
6069 else
6070 cmd &= ~PCI_BRIDGE_CTL_VGA;
6071 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6072 cmd);
6073 }
6074 bus = bus->parent;
6075 }
6076 return 0;
6077 }
6078
6079 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6080 bool pci_pr3_present(struct pci_dev *pdev)
6081 {
6082 struct acpi_device *adev;
6083
6084 if (acpi_disabled)
6085 return false;
6086
6087 adev = ACPI_COMPANION(&pdev->dev);
6088 if (!adev)
6089 return false;
6090
6091 return adev->power.flags.power_resources &&
6092 acpi_has_method(adev->handle, "_PR3");
6093 }
6094 EXPORT_SYMBOL_GPL(pci_pr3_present);
6095 #endif
6096
6097 /**
6098 * pci_add_dma_alias - Add a DMA devfn alias for a device
6099 * @dev: the PCI device for which alias is added
6100 * @devfn_from: alias slot and function
6101 * @nr_devfns: number of subsequent devfns to alias
6102 *
6103 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6104 * which is used to program permissible bus-devfn source addresses for DMA
6105 * requests in an IOMMU. These aliases factor into IOMMU group creation
6106 * and are useful for devices generating DMA requests beyond or different
6107 * from their logical bus-devfn. Examples include device quirks where the
6108 * device simply uses the wrong devfn, as well as non-transparent bridges
6109 * where the alias may be a proxy for devices in another domain.
6110 *
6111 * IOMMU group creation is performed during device discovery or addition,
6112 * prior to any potential DMA mapping and therefore prior to driver probing
6113 * (especially for userspace assigned devices where IOMMU group definition
6114 * cannot be left as a userspace activity). DMA aliases should therefore
6115 * be configured via quirks, such as the PCI fixup header quirk.
6116 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6117 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6118 {
6119 int devfn_to;
6120
6121 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6122 devfn_to = devfn_from + nr_devfns - 1;
6123
6124 if (!dev->dma_alias_mask)
6125 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6126 if (!dev->dma_alias_mask) {
6127 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6128 return;
6129 }
6130
6131 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6132
6133 if (nr_devfns == 1)
6134 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6135 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6136 else if (nr_devfns > 1)
6137 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6138 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6139 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6140 }
6141
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6142 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6143 {
6144 return (dev1->dma_alias_mask &&
6145 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6146 (dev2->dma_alias_mask &&
6147 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6148 pci_real_dma_dev(dev1) == dev2 ||
6149 pci_real_dma_dev(dev2) == dev1;
6150 }
6151
pci_device_is_present(struct pci_dev * pdev)6152 bool pci_device_is_present(struct pci_dev *pdev)
6153 {
6154 u32 v;
6155
6156 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6157 pdev = pci_physfn(pdev);
6158 if (pci_dev_is_disconnected(pdev))
6159 return false;
6160 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6161 }
6162 EXPORT_SYMBOL_GPL(pci_device_is_present);
6163
pci_ignore_hotplug(struct pci_dev * dev)6164 void pci_ignore_hotplug(struct pci_dev *dev)
6165 {
6166 struct pci_dev *bridge = dev->bus->self;
6167
6168 dev->ignore_hotplug = 1;
6169 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6170 if (bridge)
6171 bridge->ignore_hotplug = 1;
6172 }
6173 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6174
6175 /**
6176 * pci_real_dma_dev - Get PCI DMA device for PCI device
6177 * @dev: the PCI device that may have a PCI DMA alias
6178 *
6179 * Permits the platform to provide architecture-specific functionality to
6180 * devices needing to alias DMA to another PCI device on another PCI bus. If
6181 * the PCI device is on the same bus, it is recommended to use
6182 * pci_add_dma_alias(). This is the default implementation. Architecture
6183 * implementations can override this.
6184 */
pci_real_dma_dev(struct pci_dev * dev)6185 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6186 {
6187 return dev;
6188 }
6189
pcibios_default_alignment(void)6190 resource_size_t __weak pcibios_default_alignment(void)
6191 {
6192 return 0;
6193 }
6194
6195 /*
6196 * Arches that don't want to expose struct resource to userland as-is in
6197 * sysfs and /proc can implement their own pci_resource_to_user().
6198 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6199 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6200 const struct resource *rsrc,
6201 resource_size_t *start, resource_size_t *end)
6202 {
6203 *start = rsrc->start;
6204 *end = rsrc->end;
6205 }
6206
6207 static char *resource_alignment_param;
6208 static DEFINE_SPINLOCK(resource_alignment_lock);
6209
6210 /**
6211 * pci_specified_resource_alignment - get resource alignment specified by user.
6212 * @dev: the PCI device to get
6213 * @resize: whether or not to change resources' size when reassigning alignment
6214 *
6215 * RETURNS: Resource alignment if it is specified.
6216 * Zero if it is not specified.
6217 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6218 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6219 bool *resize)
6220 {
6221 int align_order, count;
6222 resource_size_t align = pcibios_default_alignment();
6223 const char *p;
6224 int ret;
6225
6226 spin_lock(&resource_alignment_lock);
6227 p = resource_alignment_param;
6228 if (!p || !*p)
6229 goto out;
6230 if (pci_has_flag(PCI_PROBE_ONLY)) {
6231 align = 0;
6232 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6233 goto out;
6234 }
6235
6236 while (*p) {
6237 count = 0;
6238 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6239 p[count] == '@') {
6240 p += count + 1;
6241 if (align_order > 63) {
6242 pr_err("PCI: Invalid requested alignment (order %d)\n",
6243 align_order);
6244 align_order = PAGE_SHIFT;
6245 }
6246 } else {
6247 align_order = PAGE_SHIFT;
6248 }
6249
6250 ret = pci_dev_str_match(dev, p, &p);
6251 if (ret == 1) {
6252 *resize = true;
6253 align = 1ULL << align_order;
6254 break;
6255 } else if (ret < 0) {
6256 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6257 p);
6258 break;
6259 }
6260
6261 if (*p != ';' && *p != ',') {
6262 /* End of param or invalid format */
6263 break;
6264 }
6265 p++;
6266 }
6267 out:
6268 spin_unlock(&resource_alignment_lock);
6269 return align;
6270 }
6271
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6272 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6273 resource_size_t align, bool resize)
6274 {
6275 struct resource *r = &dev->resource[bar];
6276 resource_size_t size;
6277
6278 if (!(r->flags & IORESOURCE_MEM))
6279 return;
6280
6281 if (r->flags & IORESOURCE_PCI_FIXED) {
6282 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6283 bar, r, (unsigned long long)align);
6284 return;
6285 }
6286
6287 size = resource_size(r);
6288 if (size >= align)
6289 return;
6290
6291 /*
6292 * Increase the alignment of the resource. There are two ways we
6293 * can do this:
6294 *
6295 * 1) Increase the size of the resource. BARs are aligned on their
6296 * size, so when we reallocate space for this resource, we'll
6297 * allocate it with the larger alignment. This also prevents
6298 * assignment of any other BARs inside the alignment region, so
6299 * if we're requesting page alignment, this means no other BARs
6300 * will share the page.
6301 *
6302 * The disadvantage is that this makes the resource larger than
6303 * the hardware BAR, which may break drivers that compute things
6304 * based on the resource size, e.g., to find registers at a
6305 * fixed offset before the end of the BAR.
6306 *
6307 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6308 * set r->start to the desired alignment. By itself this
6309 * doesn't prevent other BARs being put inside the alignment
6310 * region, but if we realign *every* resource of every device in
6311 * the system, none of them will share an alignment region.
6312 *
6313 * When the user has requested alignment for only some devices via
6314 * the "pci=resource_alignment" argument, "resize" is true and we
6315 * use the first method. Otherwise we assume we're aligning all
6316 * devices and we use the second.
6317 */
6318
6319 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6320 bar, r, (unsigned long long)align);
6321
6322 if (resize) {
6323 r->start = 0;
6324 r->end = align - 1;
6325 } else {
6326 r->flags &= ~IORESOURCE_SIZEALIGN;
6327 r->flags |= IORESOURCE_STARTALIGN;
6328 r->start = align;
6329 r->end = r->start + size - 1;
6330 }
6331 r->flags |= IORESOURCE_UNSET;
6332 }
6333
6334 /*
6335 * This function disables memory decoding and releases memory resources
6336 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6337 * It also rounds up size to specified alignment.
6338 * Later on, the kernel will assign page-aligned memory resource back
6339 * to the device.
6340 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6341 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6342 {
6343 int i;
6344 struct resource *r;
6345 resource_size_t align;
6346 u16 command;
6347 bool resize = false;
6348
6349 /*
6350 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6351 * 3.4.1.11. Their resources are allocated from the space
6352 * described by the VF BARx register in the PF's SR-IOV capability.
6353 * We can't influence their alignment here.
6354 */
6355 if (dev->is_virtfn)
6356 return;
6357
6358 /* check if specified PCI is target device to reassign */
6359 align = pci_specified_resource_alignment(dev, &resize);
6360 if (!align)
6361 return;
6362
6363 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6364 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6365 pci_warn(dev, "Can't reassign resources to host bridge\n");
6366 return;
6367 }
6368
6369 pci_read_config_word(dev, PCI_COMMAND, &command);
6370 command &= ~PCI_COMMAND_MEMORY;
6371 pci_write_config_word(dev, PCI_COMMAND, command);
6372
6373 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6374 pci_request_resource_alignment(dev, i, align, resize);
6375
6376 /*
6377 * Need to disable bridge's resource window,
6378 * to enable the kernel to reassign new resource
6379 * window later on.
6380 */
6381 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6382 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6383 r = &dev->resource[i];
6384 if (!(r->flags & IORESOURCE_MEM))
6385 continue;
6386 r->flags |= IORESOURCE_UNSET;
6387 r->end = resource_size(r) - 1;
6388 r->start = 0;
6389 }
6390 pci_disable_bridge_window(dev);
6391 }
6392 }
6393
resource_alignment_show(struct bus_type * bus,char * buf)6394 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6395 {
6396 size_t count = 0;
6397
6398 spin_lock(&resource_alignment_lock);
6399 if (resource_alignment_param)
6400 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6401 spin_unlock(&resource_alignment_lock);
6402
6403 /*
6404 * When set by the command line, resource_alignment_param will not
6405 * have a trailing line feed, which is ugly. So conditionally add
6406 * it here.
6407 */
6408 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6409 buf[count - 1] = '\n';
6410 buf[count++] = 0;
6411 }
6412
6413 return count;
6414 }
6415
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6416 static ssize_t resource_alignment_store(struct bus_type *bus,
6417 const char *buf, size_t count)
6418 {
6419 char *param = kstrndup(buf, count, GFP_KERNEL);
6420
6421 if (!param)
6422 return -ENOMEM;
6423
6424 spin_lock(&resource_alignment_lock);
6425 kfree(resource_alignment_param);
6426 resource_alignment_param = param;
6427 spin_unlock(&resource_alignment_lock);
6428 return count;
6429 }
6430
6431 static BUS_ATTR_RW(resource_alignment);
6432
pci_resource_alignment_sysfs_init(void)6433 static int __init pci_resource_alignment_sysfs_init(void)
6434 {
6435 return bus_create_file(&pci_bus_type,
6436 &bus_attr_resource_alignment);
6437 }
6438 late_initcall(pci_resource_alignment_sysfs_init);
6439
pci_no_domains(void)6440 static void pci_no_domains(void)
6441 {
6442 #ifdef CONFIG_PCI_DOMAINS
6443 pci_domains_supported = 0;
6444 #endif
6445 }
6446
6447 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6448 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6449
pci_get_new_domain_nr(void)6450 static int pci_get_new_domain_nr(void)
6451 {
6452 return atomic_inc_return(&__domain_nr);
6453 }
6454
of_pci_bus_find_domain_nr(struct device * parent)6455 static int of_pci_bus_find_domain_nr(struct device *parent)
6456 {
6457 static int use_dt_domains = -1;
6458 int domain = -1;
6459
6460 if (parent)
6461 domain = of_get_pci_domain_nr(parent->of_node);
6462
6463 /*
6464 * Check DT domain and use_dt_domains values.
6465 *
6466 * If DT domain property is valid (domain >= 0) and
6467 * use_dt_domains != 0, the DT assignment is valid since this means
6468 * we have not previously allocated a domain number by using
6469 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6470 * 1, to indicate that we have just assigned a domain number from
6471 * DT.
6472 *
6473 * If DT domain property value is not valid (ie domain < 0), and we
6474 * have not previously assigned a domain number from DT
6475 * (use_dt_domains != 1) we should assign a domain number by
6476 * using the:
6477 *
6478 * pci_get_new_domain_nr()
6479 *
6480 * API and update the use_dt_domains value to keep track of method we
6481 * are using to assign domain numbers (use_dt_domains = 0).
6482 *
6483 * All other combinations imply we have a platform that is trying
6484 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6485 * which is a recipe for domain mishandling and it is prevented by
6486 * invalidating the domain value (domain = -1) and printing a
6487 * corresponding error.
6488 */
6489 if (domain >= 0 && use_dt_domains) {
6490 use_dt_domains = 1;
6491 } else if (domain < 0 && use_dt_domains != 1) {
6492 use_dt_domains = 0;
6493 domain = pci_get_new_domain_nr();
6494 } else {
6495 if (parent)
6496 pr_err("Node %pOF has ", parent->of_node);
6497 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6498 domain = -1;
6499 }
6500
6501 return domain;
6502 }
6503
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6504 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6505 {
6506 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6507 acpi_pci_bus_find_domain_nr(bus);
6508 }
6509 #endif
6510
6511 /**
6512 * pci_ext_cfg_avail - can we access extended PCI config space?
6513 *
6514 * Returns 1 if we can access PCI extended config space (offsets
6515 * greater than 0xff). This is the default implementation. Architecture
6516 * implementations can override this.
6517 */
pci_ext_cfg_avail(void)6518 int __weak pci_ext_cfg_avail(void)
6519 {
6520 return 1;
6521 }
6522
pci_fixup_cardbus(struct pci_bus * bus)6523 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6524 {
6525 }
6526 EXPORT_SYMBOL(pci_fixup_cardbus);
6527
pci_setup(char * str)6528 static int __init pci_setup(char *str)
6529 {
6530 while (str) {
6531 char *k = strchr(str, ',');
6532 if (k)
6533 *k++ = 0;
6534 if (*str && (str = pcibios_setup(str)) && *str) {
6535 if (!strcmp(str, "nomsi")) {
6536 pci_no_msi();
6537 } else if (!strncmp(str, "noats", 5)) {
6538 pr_info("PCIe: ATS is disabled\n");
6539 pcie_ats_disabled = true;
6540 } else if (!strcmp(str, "noaer")) {
6541 pci_no_aer();
6542 } else if (!strcmp(str, "earlydump")) {
6543 pci_early_dump = true;
6544 } else if (!strncmp(str, "realloc=", 8)) {
6545 pci_realloc_get_opt(str + 8);
6546 } else if (!strncmp(str, "realloc", 7)) {
6547 pci_realloc_get_opt("on");
6548 } else if (!strcmp(str, "nodomains")) {
6549 pci_no_domains();
6550 } else if (!strncmp(str, "noari", 5)) {
6551 pcie_ari_disabled = true;
6552 } else if (!strncmp(str, "cbiosize=", 9)) {
6553 pci_cardbus_io_size = memparse(str + 9, &str);
6554 } else if (!strncmp(str, "cbmemsize=", 10)) {
6555 pci_cardbus_mem_size = memparse(str + 10, &str);
6556 } else if (!strncmp(str, "resource_alignment=", 19)) {
6557 resource_alignment_param = str + 19;
6558 } else if (!strncmp(str, "ecrc=", 5)) {
6559 pcie_ecrc_get_policy(str + 5);
6560 } else if (!strncmp(str, "hpiosize=", 9)) {
6561 pci_hotplug_io_size = memparse(str + 9, &str);
6562 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6563 pci_hotplug_mmio_size = memparse(str + 11, &str);
6564 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6565 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6566 } else if (!strncmp(str, "hpmemsize=", 10)) {
6567 pci_hotplug_mmio_size = memparse(str + 10, &str);
6568 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6569 } else if (!strncmp(str, "hpbussize=", 10)) {
6570 pci_hotplug_bus_size =
6571 simple_strtoul(str + 10, &str, 0);
6572 if (pci_hotplug_bus_size > 0xff)
6573 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6574 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6575 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6576 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6577 pcie_bus_config = PCIE_BUS_SAFE;
6578 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6579 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6580 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6581 pcie_bus_config = PCIE_BUS_PEER2PEER;
6582 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6583 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6584 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6585 disable_acs_redir_param = str + 18;
6586 } else {
6587 pr_err("PCI: Unknown option `%s'\n", str);
6588 }
6589 }
6590 str = k;
6591 }
6592 return 0;
6593 }
6594 early_param("pci", pci_setup);
6595
6596 /*
6597 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6598 * in pci_setup(), above, to point to data in the __initdata section which
6599 * will be freed after the init sequence is complete. We can't allocate memory
6600 * in pci_setup() because some architectures do not have any memory allocation
6601 * service available during an early_param() call. So we allocate memory and
6602 * copy the variable here before the init section is freed.
6603 *
6604 */
pci_realloc_setup_params(void)6605 static int __init pci_realloc_setup_params(void)
6606 {
6607 resource_alignment_param = kstrdup(resource_alignment_param,
6608 GFP_KERNEL);
6609 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6610
6611 return 0;
6612 }
6613 pure_initcall(pci_realloc_setup_params);
6614