1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/sched/mm.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/microcode.h>
25 #include <asm/kaslr.h>
26 #include <asm/hypervisor.h>
27 #include <asm/cpufeature.h>
28 #include <asm/pti.h>
29 #include <asm/text-patching.h>
30 #include <asm/memtype.h>
31 #include <asm/paravirt.h>
32
33 /*
34 * We need to define the tracepoints somewhere, and tlb.c
35 * is only compied when SMP=y.
36 */
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/tlb.h>
39
40 #include "mm_internal.h"
41
42 /*
43 * Tables translating between page_cache_type_t and pte encoding.
44 *
45 * The default values are defined statically as minimal supported mode;
46 * WC and WT fall back to UC-. pat_init() updates these values to support
47 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
48 * for the details. Note, __early_ioremap() used during early boot-time
49 * takes pgprot_t (pte encoding) and does not use these tables.
50 *
51 * Index into __cachemode2pte_tbl[] is the cachemode.
52 *
53 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55 */
56 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
58 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
61 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
62 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
63 };
64
cachemode2protval(enum page_cache_mode pcm)65 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 {
67 if (likely(pcm == 0))
68 return 0;
69 return __cachemode2pte_tbl[pcm];
70 }
71 EXPORT_SYMBOL(cachemode2protval);
72
73 static uint8_t __pte2cachemode_tbl[8] = {
74 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
75 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
76 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
77 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
78 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82 };
83
84 /*
85 * Check that the write-protect PAT entry is set for write-protect.
86 * To do this without making assumptions how PAT has been set up (Xen has
87 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
89 * bits will select a cache mode of WP or better), and then translate the
90 * protection bits back into the cache mode using __pte2cm_idx() and the
91 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
92 */
x86_has_pat_wp(void)93 bool x86_has_pat_wp(void)
94 {
95 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96
97 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 }
99
pgprot2cachemode(pgprot_t pgprot)100 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101 {
102 unsigned long masked;
103
104 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105 if (likely(masked == 0))
106 return 0;
107 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 }
109
110 static unsigned long __initdata pgt_buf_start;
111 static unsigned long __initdata pgt_buf_end;
112 static unsigned long __initdata pgt_buf_top;
113
114 static unsigned long min_pfn_mapped;
115
116 static bool __initdata can_use_brk_pgt = true;
117
118 /*
119 * Pages returned are already directly mapped.
120 *
121 * Changing that is likely to break Xen, see commit:
122 *
123 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
124 *
125 * for detailed information.
126 */
alloc_low_pages(unsigned int num)127 __ref void *alloc_low_pages(unsigned int num)
128 {
129 unsigned long pfn;
130 int i;
131
132 if (after_bootmem) {
133 unsigned int order;
134
135 order = get_order((unsigned long)num << PAGE_SHIFT);
136 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137 }
138
139 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
140 unsigned long ret = 0;
141
142 if (min_pfn_mapped < max_pfn_mapped) {
143 ret = memblock_find_in_range(
144 min_pfn_mapped << PAGE_SHIFT,
145 max_pfn_mapped << PAGE_SHIFT,
146 PAGE_SIZE * num , PAGE_SIZE);
147 }
148 if (ret)
149 memblock_reserve(ret, PAGE_SIZE * num);
150 else if (can_use_brk_pgt)
151 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
152
153 if (!ret)
154 panic("alloc_low_pages: can not alloc memory");
155
156 pfn = ret >> PAGE_SHIFT;
157 } else {
158 pfn = pgt_buf_end;
159 pgt_buf_end += num;
160 }
161
162 for (i = 0; i < num; i++) {
163 void *adr;
164
165 adr = __va((pfn + i) << PAGE_SHIFT);
166 clear_page(adr);
167 }
168
169 return __va(pfn << PAGE_SHIFT);
170 }
171
172 /*
173 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
174 * With KASLR memory randomization, depending on the machine e820 memory
175 * and the PUD alignment. We may need twice more pages when KASLR memory
176 * randomization is enabled.
177 */
178 #ifndef CONFIG_RANDOMIZE_MEMORY
179 #define INIT_PGD_PAGE_COUNT 6
180 #else
181 #define INIT_PGD_PAGE_COUNT 12
182 #endif
183 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
184 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)185 void __init early_alloc_pgt_buf(void)
186 {
187 unsigned long tables = INIT_PGT_BUF_SIZE;
188 phys_addr_t base;
189
190 base = __pa(extend_brk(tables, PAGE_SIZE));
191
192 pgt_buf_start = base >> PAGE_SHIFT;
193 pgt_buf_end = pgt_buf_start;
194 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
195 }
196
197 int after_bootmem;
198
199 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
200
201 struct map_range {
202 unsigned long start;
203 unsigned long end;
204 unsigned page_size_mask;
205 };
206
207 static int page_size_mask;
208
209 /*
210 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
211 * enable and PPro Global page enable), so that any CPU's that boot
212 * up after us can get the correct flags. Invoked on the boot CPU.
213 */
cr4_set_bits_and_update_boot(unsigned long mask)214 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
215 {
216 mmu_cr4_features |= mask;
217 if (trampoline_cr4_features)
218 *trampoline_cr4_features = mmu_cr4_features;
219 cr4_set_bits(mask);
220 }
221
probe_page_size_mask(void)222 static void __init probe_page_size_mask(void)
223 {
224 /*
225 * For pagealloc debugging, identity mapping will use small pages.
226 * This will simplify cpa(), which otherwise needs to support splitting
227 * large pages into small in interrupt context, etc.
228 */
229 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
230 page_size_mask |= 1 << PG_LEVEL_2M;
231 else
232 direct_gbpages = 0;
233
234 /* Enable PSE if available */
235 if (boot_cpu_has(X86_FEATURE_PSE))
236 cr4_set_bits_and_update_boot(X86_CR4_PSE);
237
238 /* Enable PGE if available */
239 __supported_pte_mask &= ~_PAGE_GLOBAL;
240 if (boot_cpu_has(X86_FEATURE_PGE)) {
241 cr4_set_bits_and_update_boot(X86_CR4_PGE);
242 __supported_pte_mask |= _PAGE_GLOBAL;
243 }
244
245 /* By the default is everything supported: */
246 __default_kernel_pte_mask = __supported_pte_mask;
247 /* Except when with PTI where the kernel is mostly non-Global: */
248 if (cpu_feature_enabled(X86_FEATURE_PTI))
249 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
250
251 /* Enable 1 GB linear kernel mappings if available: */
252 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
253 printk(KERN_INFO "Using GB pages for direct mapping\n");
254 page_size_mask |= 1 << PG_LEVEL_1G;
255 } else {
256 direct_gbpages = 0;
257 }
258 }
259
260 #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
261 .family = 6, \
262 .model = _model, \
263 }
264 /*
265 * INVLPG may not properly flush Global entries
266 * on these CPUs when PCIDs are enabled.
267 */
268 static const struct x86_cpu_id invlpg_miss_ids[] = {
269 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
270 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
271 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
272 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
273 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
274 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
275 {}
276 };
277
setup_pcid(void)278 static void setup_pcid(void)
279 {
280 if (!IS_ENABLED(CONFIG_X86_64))
281 return;
282
283 if (!boot_cpu_has(X86_FEATURE_PCID))
284 return;
285
286 if (x86_match_cpu(invlpg_miss_ids)) {
287 pr_info("Incomplete global flushes, disabling PCID");
288 setup_clear_cpu_cap(X86_FEATURE_PCID);
289 return;
290 }
291
292 if (boot_cpu_has(X86_FEATURE_PGE)) {
293 /*
294 * This can't be cr4_set_bits_and_update_boot() -- the
295 * trampoline code can't handle CR4.PCIDE and it wouldn't
296 * do any good anyway. Despite the name,
297 * cr4_set_bits_and_update_boot() doesn't actually cause
298 * the bits in question to remain set all the way through
299 * the secondary boot asm.
300 *
301 * Instead, we brute-force it and set CR4.PCIDE manually in
302 * start_secondary().
303 */
304 cr4_set_bits(X86_CR4_PCIDE);
305
306 /*
307 * INVPCID's single-context modes (2/3) only work if we set
308 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
309 * on systems that have X86_CR4_PCIDE clear, or that have
310 * no INVPCID support at all.
311 */
312 if (boot_cpu_has(X86_FEATURE_INVPCID))
313 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
314 } else {
315 /*
316 * flush_tlb_all(), as currently implemented, won't work if
317 * PCID is on but PGE is not. Since that combination
318 * doesn't exist on real hardware, there's no reason to try
319 * to fully support it, but it's polite to avoid corrupting
320 * data if we're on an improperly configured VM.
321 */
322 setup_clear_cpu_cap(X86_FEATURE_PCID);
323 }
324 }
325
326 #ifdef CONFIG_X86_32
327 #define NR_RANGE_MR 3
328 #else /* CONFIG_X86_64 */
329 #define NR_RANGE_MR 5
330 #endif
331
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)332 static int __meminit save_mr(struct map_range *mr, int nr_range,
333 unsigned long start_pfn, unsigned long end_pfn,
334 unsigned long page_size_mask)
335 {
336 if (start_pfn < end_pfn) {
337 if (nr_range >= NR_RANGE_MR)
338 panic("run out of range for init_memory_mapping\n");
339 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
340 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
341 mr[nr_range].page_size_mask = page_size_mask;
342 nr_range++;
343 }
344
345 return nr_range;
346 }
347
348 /*
349 * adjust the page_size_mask for small range to go with
350 * big page size instead small one if nearby are ram too.
351 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)352 static void __ref adjust_range_page_size_mask(struct map_range *mr,
353 int nr_range)
354 {
355 int i;
356
357 for (i = 0; i < nr_range; i++) {
358 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
359 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
360 unsigned long start = round_down(mr[i].start, PMD_SIZE);
361 unsigned long end = round_up(mr[i].end, PMD_SIZE);
362
363 #ifdef CONFIG_X86_32
364 if ((end >> PAGE_SHIFT) > max_low_pfn)
365 continue;
366 #endif
367
368 if (memblock_is_region_memory(start, end - start))
369 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
370 }
371 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
372 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
373 unsigned long start = round_down(mr[i].start, PUD_SIZE);
374 unsigned long end = round_up(mr[i].end, PUD_SIZE);
375
376 if (memblock_is_region_memory(start, end - start))
377 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
378 }
379 }
380 }
381
page_size_string(struct map_range * mr)382 static const char *page_size_string(struct map_range *mr)
383 {
384 static const char str_1g[] = "1G";
385 static const char str_2m[] = "2M";
386 static const char str_4m[] = "4M";
387 static const char str_4k[] = "4k";
388
389 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
390 return str_1g;
391 /*
392 * 32-bit without PAE has a 4M large page size.
393 * PG_LEVEL_2M is misnamed, but we can at least
394 * print out the right size in the string.
395 */
396 if (IS_ENABLED(CONFIG_X86_32) &&
397 !IS_ENABLED(CONFIG_X86_PAE) &&
398 mr->page_size_mask & (1<<PG_LEVEL_2M))
399 return str_4m;
400
401 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
402 return str_2m;
403
404 return str_4k;
405 }
406
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)407 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
408 unsigned long start,
409 unsigned long end)
410 {
411 unsigned long start_pfn, end_pfn, limit_pfn;
412 unsigned long pfn;
413 int i;
414
415 limit_pfn = PFN_DOWN(end);
416
417 /* head if not big page alignment ? */
418 pfn = start_pfn = PFN_DOWN(start);
419 #ifdef CONFIG_X86_32
420 /*
421 * Don't use a large page for the first 2/4MB of memory
422 * because there are often fixed size MTRRs in there
423 * and overlapping MTRRs into large pages can cause
424 * slowdowns.
425 */
426 if (pfn == 0)
427 end_pfn = PFN_DOWN(PMD_SIZE);
428 else
429 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
430 #else /* CONFIG_X86_64 */
431 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
432 #endif
433 if (end_pfn > limit_pfn)
434 end_pfn = limit_pfn;
435 if (start_pfn < end_pfn) {
436 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
437 pfn = end_pfn;
438 }
439
440 /* big page (2M) range */
441 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
442 #ifdef CONFIG_X86_32
443 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
444 #else /* CONFIG_X86_64 */
445 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
446 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
447 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
448 #endif
449
450 if (start_pfn < end_pfn) {
451 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
452 page_size_mask & (1<<PG_LEVEL_2M));
453 pfn = end_pfn;
454 }
455
456 #ifdef CONFIG_X86_64
457 /* big page (1G) range */
458 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
459 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
460 if (start_pfn < end_pfn) {
461 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
462 page_size_mask &
463 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
464 pfn = end_pfn;
465 }
466
467 /* tail is not big page (1G) alignment */
468 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
469 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
470 if (start_pfn < end_pfn) {
471 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
472 page_size_mask & (1<<PG_LEVEL_2M));
473 pfn = end_pfn;
474 }
475 #endif
476
477 /* tail is not big page (2M) alignment */
478 start_pfn = pfn;
479 end_pfn = limit_pfn;
480 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
481
482 if (!after_bootmem)
483 adjust_range_page_size_mask(mr, nr_range);
484
485 /* try to merge same page size and continuous */
486 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
487 unsigned long old_start;
488 if (mr[i].end != mr[i+1].start ||
489 mr[i].page_size_mask != mr[i+1].page_size_mask)
490 continue;
491 /* move it */
492 old_start = mr[i].start;
493 memmove(&mr[i], &mr[i+1],
494 (nr_range - 1 - i) * sizeof(struct map_range));
495 mr[i--].start = old_start;
496 nr_range--;
497 }
498
499 for (i = 0; i < nr_range; i++)
500 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
501 mr[i].start, mr[i].end - 1,
502 page_size_string(&mr[i]));
503
504 return nr_range;
505 }
506
507 struct range pfn_mapped[E820_MAX_ENTRIES];
508 int nr_pfn_mapped;
509
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)510 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
511 {
512 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
513 nr_pfn_mapped, start_pfn, end_pfn);
514 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
515
516 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
517
518 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
519 max_low_pfn_mapped = max(max_low_pfn_mapped,
520 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
521 }
522
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)523 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
524 {
525 int i;
526
527 for (i = 0; i < nr_pfn_mapped; i++)
528 if ((start_pfn >= pfn_mapped[i].start) &&
529 (end_pfn <= pfn_mapped[i].end))
530 return true;
531
532 return false;
533 }
534
535 /*
536 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
537 * This runs before bootmem is initialized and gets pages directly from
538 * the physical memory. To access them they are temporarily mapped.
539 */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)540 unsigned long __ref init_memory_mapping(unsigned long start,
541 unsigned long end, pgprot_t prot)
542 {
543 struct map_range mr[NR_RANGE_MR];
544 unsigned long ret = 0;
545 int nr_range, i;
546
547 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
548 start, end - 1);
549
550 memset(mr, 0, sizeof(mr));
551 nr_range = split_mem_range(mr, 0, start, end);
552
553 for (i = 0; i < nr_range; i++)
554 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
555 mr[i].page_size_mask,
556 prot);
557
558 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
559
560 return ret >> PAGE_SHIFT;
561 }
562
563 /*
564 * We need to iterate through the E820 memory map and create direct mappings
565 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
566 * create direct mappings for all pfns from [0 to max_low_pfn) and
567 * [4GB to max_pfn) because of possible memory holes in high addresses
568 * that cannot be marked as UC by fixed/variable range MTRRs.
569 * Depending on the alignment of E820 ranges, this may possibly result
570 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
571 *
572 * init_mem_mapping() calls init_range_memory_mapping() with big range.
573 * That range would have hole in the middle or ends, and only ram parts
574 * will be mapped in init_range_memory_mapping().
575 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)576 static unsigned long __init init_range_memory_mapping(
577 unsigned long r_start,
578 unsigned long r_end)
579 {
580 unsigned long start_pfn, end_pfn;
581 unsigned long mapped_ram_size = 0;
582 int i;
583
584 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
585 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
586 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
587 if (start >= end)
588 continue;
589
590 /*
591 * if it is overlapping with brk pgt, we need to
592 * alloc pgt buf from memblock instead.
593 */
594 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
595 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
596 init_memory_mapping(start, end, PAGE_KERNEL);
597 mapped_ram_size += end - start;
598 can_use_brk_pgt = true;
599 }
600
601 return mapped_ram_size;
602 }
603
get_new_step_size(unsigned long step_size)604 static unsigned long __init get_new_step_size(unsigned long step_size)
605 {
606 /*
607 * Initial mapped size is PMD_SIZE (2M).
608 * We can not set step_size to be PUD_SIZE (1G) yet.
609 * In worse case, when we cross the 1G boundary, and
610 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
611 * to map 1G range with PTE. Hence we use one less than the
612 * difference of page table level shifts.
613 *
614 * Don't need to worry about overflow in the top-down case, on 32bit,
615 * when step_size is 0, round_down() returns 0 for start, and that
616 * turns it into 0x100000000ULL.
617 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
618 * needs to be taken into consideration by the code below.
619 */
620 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
621 }
622
623 /**
624 * memory_map_top_down - Map [map_start, map_end) top down
625 * @map_start: start address of the target memory range
626 * @map_end: end address of the target memory range
627 *
628 * This function will setup direct mapping for memory range
629 * [map_start, map_end) in top-down. That said, the page tables
630 * will be allocated at the end of the memory, and we map the
631 * memory in top-down.
632 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)633 static void __init memory_map_top_down(unsigned long map_start,
634 unsigned long map_end)
635 {
636 unsigned long real_end, start, last_start;
637 unsigned long step_size;
638 unsigned long addr;
639 unsigned long mapped_ram_size = 0;
640
641 /* xen has big range in reserved near end of ram, skip it at first.*/
642 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
643 real_end = addr + PMD_SIZE;
644
645 /* step_size need to be small so pgt_buf from BRK could cover it */
646 step_size = PMD_SIZE;
647 max_pfn_mapped = 0; /* will get exact value next */
648 min_pfn_mapped = real_end >> PAGE_SHIFT;
649 last_start = start = real_end;
650
651 /*
652 * We start from the top (end of memory) and go to the bottom.
653 * The memblock_find_in_range() gets us a block of RAM from the
654 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
655 * for page table.
656 */
657 while (last_start > map_start) {
658 if (last_start > step_size) {
659 start = round_down(last_start - 1, step_size);
660 if (start < map_start)
661 start = map_start;
662 } else
663 start = map_start;
664 mapped_ram_size += init_range_memory_mapping(start,
665 last_start);
666 last_start = start;
667 min_pfn_mapped = last_start >> PAGE_SHIFT;
668 if (mapped_ram_size >= step_size)
669 step_size = get_new_step_size(step_size);
670 }
671
672 if (real_end < map_end)
673 init_range_memory_mapping(real_end, map_end);
674 }
675
676 /**
677 * memory_map_bottom_up - Map [map_start, map_end) bottom up
678 * @map_start: start address of the target memory range
679 * @map_end: end address of the target memory range
680 *
681 * This function will setup direct mapping for memory range
682 * [map_start, map_end) in bottom-up. Since we have limited the
683 * bottom-up allocation above the kernel, the page tables will
684 * be allocated just above the kernel and we map the memory
685 * in [map_start, map_end) in bottom-up.
686 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)687 static void __init memory_map_bottom_up(unsigned long map_start,
688 unsigned long map_end)
689 {
690 unsigned long next, start;
691 unsigned long mapped_ram_size = 0;
692 /* step_size need to be small so pgt_buf from BRK could cover it */
693 unsigned long step_size = PMD_SIZE;
694
695 start = map_start;
696 min_pfn_mapped = start >> PAGE_SHIFT;
697
698 /*
699 * We start from the bottom (@map_start) and go to the top (@map_end).
700 * The memblock_find_in_range() gets us a block of RAM from the
701 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
702 * for page table.
703 */
704 while (start < map_end) {
705 if (step_size && map_end - start > step_size) {
706 next = round_up(start + 1, step_size);
707 if (next > map_end)
708 next = map_end;
709 } else {
710 next = map_end;
711 }
712
713 mapped_ram_size += init_range_memory_mapping(start, next);
714 start = next;
715
716 if (mapped_ram_size >= step_size)
717 step_size = get_new_step_size(step_size);
718 }
719 }
720
721 /*
722 * The real mode trampoline, which is required for bootstrapping CPUs
723 * occupies only a small area under the low 1MB. See reserve_real_mode()
724 * for details.
725 *
726 * If KASLR is disabled the first PGD entry of the direct mapping is copied
727 * to map the real mode trampoline.
728 *
729 * If KASLR is enabled, copy only the PUD which covers the low 1MB
730 * area. This limits the randomization granularity to 1GB for both 4-level
731 * and 5-level paging.
732 */
init_trampoline(void)733 static void __init init_trampoline(void)
734 {
735 #ifdef CONFIG_X86_64
736 if (!kaslr_memory_enabled())
737 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
738 else
739 init_trampoline_kaslr();
740 #endif
741 }
742
init_mem_mapping(void)743 void __init init_mem_mapping(void)
744 {
745 unsigned long end;
746
747 pti_check_boottime_disable();
748 probe_page_size_mask();
749 setup_pcid();
750
751 #ifdef CONFIG_X86_64
752 end = max_pfn << PAGE_SHIFT;
753 #else
754 end = max_low_pfn << PAGE_SHIFT;
755 #endif
756
757 /* the ISA range is always mapped regardless of memory holes */
758 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
759
760 /* Init the trampoline, possibly with KASLR memory offset */
761 init_trampoline();
762
763 /*
764 * If the allocation is in bottom-up direction, we setup direct mapping
765 * in bottom-up, otherwise we setup direct mapping in top-down.
766 */
767 if (memblock_bottom_up()) {
768 unsigned long kernel_end = __pa_symbol(_end);
769
770 /*
771 * we need two separate calls here. This is because we want to
772 * allocate page tables above the kernel. So we first map
773 * [kernel_end, end) to make memory above the kernel be mapped
774 * as soon as possible. And then use page tables allocated above
775 * the kernel to map [ISA_END_ADDRESS, kernel_end).
776 */
777 memory_map_bottom_up(kernel_end, end);
778 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
779 } else {
780 memory_map_top_down(ISA_END_ADDRESS, end);
781 }
782
783 #ifdef CONFIG_X86_64
784 if (max_pfn > max_low_pfn) {
785 /* can we preseve max_low_pfn ?*/
786 max_low_pfn = max_pfn;
787 }
788 #else
789 early_ioremap_page_table_range_init();
790 #endif
791
792 load_cr3(swapper_pg_dir);
793 __flush_tlb_all();
794
795 x86_init.hyper.init_mem_mapping();
796
797 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
798 }
799
800 /*
801 * Initialize an mm_struct to be used during poking and a pointer to be used
802 * during patching.
803 */
poking_init(void)804 void __init poking_init(void)
805 {
806 spinlock_t *ptl;
807 pte_t *ptep;
808
809 poking_mm = mm_alloc();
810 BUG_ON(!poking_mm);
811
812 /* Xen PV guests need the PGD to be pinned. */
813 paravirt_arch_dup_mmap(NULL, poking_mm);
814
815 /*
816 * Randomize the poking address, but make sure that the following page
817 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
818 * and adjust the address if the PMD ends after the first one.
819 */
820 poking_addr = TASK_UNMAPPED_BASE;
821 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
822 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
823 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
824
825 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
826 poking_addr += PAGE_SIZE;
827
828 /*
829 * We need to trigger the allocation of the page-tables that will be
830 * needed for poking now. Later, poking may be performed in an atomic
831 * section, which might cause allocation to fail.
832 */
833 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
834 BUG_ON(!ptep);
835 pte_unmap_unlock(ptep, ptl);
836 }
837
838 /*
839 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
840 * is valid. The argument is a physical page number.
841 *
842 * On x86, access has to be given to the first megabyte of RAM because that
843 * area traditionally contains BIOS code and data regions used by X, dosemu,
844 * and similar apps. Since they map the entire memory range, the whole range
845 * must be allowed (for mapping), but any areas that would otherwise be
846 * disallowed are flagged as being "zero filled" instead of rejected.
847 * Access has to be given to non-kernel-ram areas as well, these contain the
848 * PCI mmio resources as well as potential bios/acpi data regions.
849 */
devmem_is_allowed(unsigned long pagenr)850 int devmem_is_allowed(unsigned long pagenr)
851 {
852 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
853 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
854 != REGION_DISJOINT) {
855 /*
856 * For disallowed memory regions in the low 1MB range,
857 * request that the page be shown as all zeros.
858 */
859 if (pagenr < 256)
860 return 2;
861
862 return 0;
863 }
864
865 /*
866 * This must follow RAM test, since System RAM is considered a
867 * restricted resource under CONFIG_STRICT_IOMEM.
868 */
869 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
870 /* Low 1MB bypasses iomem restrictions. */
871 if (pagenr < 256)
872 return 1;
873
874 return 0;
875 }
876
877 return 1;
878 }
879
free_init_pages(const char * what,unsigned long begin,unsigned long end)880 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
881 {
882 unsigned long begin_aligned, end_aligned;
883
884 /* Make sure boundaries are page aligned */
885 begin_aligned = PAGE_ALIGN(begin);
886 end_aligned = end & PAGE_MASK;
887
888 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
889 begin = begin_aligned;
890 end = end_aligned;
891 }
892
893 if (begin >= end)
894 return;
895
896 /*
897 * If debugging page accesses then do not free this memory but
898 * mark them not present - any buggy init-section access will
899 * create a kernel page fault:
900 */
901 if (debug_pagealloc_enabled()) {
902 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
903 begin, end - 1);
904 /*
905 * Inform kmemleak about the hole in the memory since the
906 * corresponding pages will be unmapped.
907 */
908 kmemleak_free_part((void *)begin, end - begin);
909 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
910 } else {
911 /*
912 * We just marked the kernel text read only above, now that
913 * we are going to free part of that, we need to make that
914 * writeable and non-executable first.
915 */
916 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
917 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
918
919 free_reserved_area((void *)begin, (void *)end,
920 POISON_FREE_INITMEM, what);
921 }
922 }
923
924 /*
925 * begin/end can be in the direct map or the "high kernel mapping"
926 * used for the kernel image only. free_init_pages() will do the
927 * right thing for either kind of address.
928 */
free_kernel_image_pages(const char * what,void * begin,void * end)929 void free_kernel_image_pages(const char *what, void *begin, void *end)
930 {
931 unsigned long begin_ul = (unsigned long)begin;
932 unsigned long end_ul = (unsigned long)end;
933 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
934
935 free_init_pages(what, begin_ul, end_ul);
936
937 /*
938 * PTI maps some of the kernel into userspace. For performance,
939 * this includes some kernel areas that do not contain secrets.
940 * Those areas might be adjacent to the parts of the kernel image
941 * being freed, which may contain secrets. Remove the "high kernel
942 * image mapping" for these freed areas, ensuring they are not even
943 * potentially vulnerable to Meltdown regardless of the specific
944 * optimizations PTI is currently using.
945 *
946 * The "noalias" prevents unmapping the direct map alias which is
947 * needed to access the freed pages.
948 *
949 * This is only valid for 64bit kernels. 32bit has only one mapping
950 * which can't be treated in this way for obvious reasons.
951 */
952 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
953 set_memory_np_noalias(begin_ul, len_pages);
954 }
955
free_initmem(void)956 void __ref free_initmem(void)
957 {
958 e820__reallocate_tables();
959
960 mem_encrypt_free_decrypted_mem();
961
962 free_kernel_image_pages("unused kernel image (initmem)",
963 &__init_begin, &__init_end);
964 }
965
966 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)967 void __init free_initrd_mem(unsigned long start, unsigned long end)
968 {
969 /*
970 * end could be not aligned, and We can not align that,
971 * decompresser could be confused by aligned initrd_end
972 * We already reserve the end partial page before in
973 * - i386_start_kernel()
974 * - x86_64_start_kernel()
975 * - relocate_initrd()
976 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
977 */
978 free_init_pages("initrd", start, PAGE_ALIGN(end));
979 }
980 #endif
981
982 /*
983 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
984 * and pass it to the MM layer - to help it set zone watermarks more
985 * accurately.
986 *
987 * Done on 64-bit systems only for the time being, although 32-bit systems
988 * might benefit from this as well.
989 */
memblock_find_dma_reserve(void)990 void __init memblock_find_dma_reserve(void)
991 {
992 #ifdef CONFIG_X86_64
993 u64 nr_pages = 0, nr_free_pages = 0;
994 unsigned long start_pfn, end_pfn;
995 phys_addr_t start_addr, end_addr;
996 int i;
997 u64 u;
998
999 /*
1000 * Iterate over all memory ranges (free and reserved ones alike),
1001 * to calculate the total number of pages in the first 16 MB of RAM:
1002 */
1003 nr_pages = 0;
1004 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1005 start_pfn = min(start_pfn, MAX_DMA_PFN);
1006 end_pfn = min(end_pfn, MAX_DMA_PFN);
1007
1008 nr_pages += end_pfn - start_pfn;
1009 }
1010
1011 /*
1012 * Iterate over free memory ranges to calculate the number of free
1013 * pages in the DMA zone, while not counting potential partial
1014 * pages at the beginning or the end of the range:
1015 */
1016 nr_free_pages = 0;
1017 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1018 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1019 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1020
1021 if (start_pfn < end_pfn)
1022 nr_free_pages += end_pfn - start_pfn;
1023 }
1024
1025 set_dma_reserve(nr_pages - nr_free_pages);
1026 #endif
1027 }
1028
zone_sizes_init(void)1029 void __init zone_sizes_init(void)
1030 {
1031 unsigned long max_zone_pfns[MAX_NR_ZONES];
1032
1033 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1034
1035 #ifdef CONFIG_ZONE_DMA
1036 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1037 #endif
1038 #ifdef CONFIG_ZONE_DMA32
1039 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1040 #endif
1041 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1042 #ifdef CONFIG_HIGHMEM
1043 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1044 #endif
1045
1046 free_area_init(max_zone_pfns);
1047 }
1048
1049 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1050 .loaded_mm = &init_mm,
1051 .next_asid = 1,
1052 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1053 };
1054
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1055 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1056 {
1057 /* entry 0 MUST be WB (hardwired to speed up translations) */
1058 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1059
1060 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1061 __pte2cachemode_tbl[entry] = cache;
1062 }
1063
1064 #ifdef CONFIG_SWAP
max_swapfile_size(void)1065 unsigned long max_swapfile_size(void)
1066 {
1067 unsigned long pages;
1068
1069 pages = generic_max_swapfile_size();
1070
1071 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1072 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1073 unsigned long long l1tf_limit = l1tf_pfn_limit();
1074 /*
1075 * We encode swap offsets also with 3 bits below those for pfn
1076 * which makes the usable limit higher.
1077 */
1078 #if CONFIG_PGTABLE_LEVELS > 2
1079 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1080 #endif
1081 pages = min_t(unsigned long long, l1tf_limit, pages);
1082 }
1083 return pages;
1084 }
1085 #endif
1086